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ABSTRACT

Sachan, Mohit. M.S., Purdue University, August 2012. Learning in Partially
Observable Markov Decision Processes. Major Professor: Snehasis Mukhopadhyay.

Learning in Partially Observable Markov Decision process (POMDP) is motivated by

the essential need to address a number of realistic problems. A number of methods

exist for learning in POMDPs, but learning with limited amount of information about

the model of POMDP remains a highly anticipated feature. Learning with minimal

information is desirable in complex systems as methods requiring complete informa-

tion among decision makers are impractical in complex systems due to increase of

problem dimensionality.

In this thesis we address the problem of decentralized control of POMDPs with un-

known transition probabilities and reward. We suggest learning in POMDP using

a tree based approach. States of the POMDP are guessed using this tree. Each

node in the tree has an automaton in it and acts as a decentralized decision maker

for the POMDP. The start state of POMDP is known as the landmark state. Each

automaton in the tree uses a simple learning scheme to update its action choice and

requires minimal information. The principal result derived is that, without proper

knowledge of transition probabilities and rewards, the automata tree of decision mak-

ers will converge to a set of actions that maximizes the long term expected reward

per unit time obtained by the system. The analysis is based on learning in sequential

stochastic games and properties of ergodic Markov chains. Simulation results are

presented to compare the long term rewards of the system under different decision

control algorithms.
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1 INTRODUCTION

A Markov chain is a mathematical system that undergoes transitions from one state

to another, between a finite or countable number of possible states. It is a random

process characterized as memoryless: the next state depends only on the current state

and not on the sequence of events that preceded it. This specific kind of “memory-

lessness” is called the Markov property [1].

Following is an example of Markov chain.

Figure 1.1. Markov Process Example

In Figure 1.1 there are 2 states S1 and S2 in Markov chain. The agent makes a

transition from S1 to S2 with probability p = 0.9 and remain in the same state S1

with probability p = 0.1. Similarly when in state S2, it makes transition to state

S1 with probability 0.8 and remains in same state S2 with probability p = 0.2. The

transition to the next state depends only on the current state of the agent.
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If we add uncertainty to a markov chain in the form that we cannot see what state we

are currently in we get a hidden markov model (HMM). In a regular Markov model,

the state is directly visible to the observer, and therefore the state transition probabil-

ities are the only parameters whereas in a HMM, the state is not directly visible, but

output, dependent on the state, is visible. Each state has a probability distribution

over the possible output observations. Therefore the sequence of observations gen-

erated by an HMM gives some information about the sequence of states. HMM are

especially known for their application in pattern recognition such as speech, handwrit-

ing [2], gesture recognition [3], part-of-speech tagging [4], musical score following [5],

partial discharges [6] and bioinformatics.

Figure 1.2. Hidden Markov Model Example

In Figure 1.2 of Hidden Markov Model, we have two states S1 and S2. The agent

makes a transition from S1 to S2 with probability p = 0.9 and remains in the same

state S1 with probability p = 0.1. Similarly from state S2, the agent makes a transi-

tion to state S1 with probability 0.8 and remains in same state S2 with probability

p = 0.2. But the states are not visible to the agent directly, instead it sees an obser-

vation symbol O1 with probability p = 0.75 when it is in state S1 and observation

symbol O2 with probability p = 0.8 when in state S2.
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Addition of controllable actions in each state in a Markov chain gives us a Markov

Decision Process (MDP). In MDP, the next state is determined by the current state

and an action. The Markov Property holds for MDP also as it is memoryless and

depends only on current state and current action. Markov Decision Processes are

an extension of Markov chains; the difference being the addition of actions in each

state (allowing choices) and the assignment of rewards or penalty for taking an action

(adding motivation) in each state. If there is only one action available for each state

and all rewards are zero, a Markov decision process reduces to a Markov chain.

Following is an example of Markov Decision Process.

Figure 1.3. Markov Decision Process Example

In Figure 1.3 of MDP, we have two states S1 and S2. There are two actions A1 and

A2 available in each of the states. In state S1 if agent takes action A1, it moves

to state S2 with probability p = 0.7 and if it takes action A2 it moves to state S2

with probability p = 0.9. Similarly at state S2 the agent moves to state S1 with

probability p = 0.6 if it takes action A1 and it moves to S1 with probability p = 0.8

if it takes action A2.
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Further introduction of uncertainty in Markov Decision Processes gives rise to Par-

tially Observable Markov Decision Processes (POMDPs). In POMDP we cannot see

which state we are currently in, however each state emits observation symbols. Thus

the only way to guess the present state is through the emitted observation symbols.

Following is an example of a Partially Observable Markov Decision Process.

Figure 1.4. Partially Observable Markov Decision Process Example

The POMDP in Figure 1.4 contains two states S1 and S2. Each state has choice of

two actions A1 and A2 available. The agent moves from S1 to S2 with probability

p = 0.7, if it chooses action A1 and if it choose A2 at S1 it moves to S2 with

probability p = 0.9. Similarly at state S2 the agent moves to state S1 with probability

p = 0.6, if it takes action A1 and moves to state S1 with probability p = 0.8, if it

takes action A2.
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The agent does not see which state it is in instead it see the observation symbol emit-

ted by the states. State S1 emits observation symbol O1 with probability p = 0.75

and state S2 emits observation symbol O2 with probability p = 0.8.

The following diagram outlines the difference between different Markov models.

Figure 1.5. Comparison of different Markov models

In real life, decisions that humans and computers make on all levels usually have two

types of impacts:

• They cost or save time, money, or other resources, or they bring revenues,

• They have an impact on the future, by influencing the dynamics.

In many situations, decisions with the largest immediate profit may not be good in

view of future events. MDPs model this paradigm and provide results on the struc-

ture and existence of good policies and on methods for their calculation. MDPs have

attracted the attention of many researchers because they are important both from

the practical and the intellectual point of view. MDPs provide tools for the solution

of important real-life problems [7] and give a mathematical framework for modeling
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decision-making in situations where outcomes are partly random and partly under the

control of a decision maker. They have proven to be useful particularly in a variety

of sequential planning applications where it is crucial to account for uncertainty in

the process [8].

A Markov decision process (MDP) is defined by the following 4 elements:

• A finite number of states of the environment Φ = {φ1, φ2, ..., φn},

• A finite set of actions available α = {α1, α2, ..., αk}

(Alternatively, αi is the finite set of actions available from state φi.),

• A payoff function

R : Φ× Φ× α→ {−1, 0, 1}

such that rij(k) = R(φi, φj, α) is the immediate reward (or expected immedi-

ate reward) received after transition from state φi to state φj using action α.

(Here -1 corresponds to penalty, 0 corresponds to no feedback, 1 corresponds to

reward),

• A state transition probability function

P : Φ× Φ× α→ (0, 1)

Where pij = P (φi, φj, α) determines the probability that action α in state φi

at time t will lead to state φj at time t + 1. Pα(φi, φj) = Pr(φt+1 = φj|φt =

φi, αt = α).

The objective of learning algorithm in the MDP is to determine a policy π : Φ → α

which results in maximum long term reward.

A Partially Observable Markov Decision Process (POMDP) is further generalization

of a Markov Processes. A POMDP is similar to an MDP; we have a set of states, a set

of actions, and transition among states and finally get rewards as effect of transition.

The actions effect on the state in a POMDP is exactly the same as in an MDP. The



7

difference being we can’t observe the current state of the process so in a POMDP we

add a set of observations to the model. Now instead of directly observing the current

state, the state gives us an observation token, which provides a hint about the state

in which the process may reside. These observations are generally probabilistic; so

we need to also specify an observation function. This observation function tells us

the probability of each observation for each state in the model. The observation like-

lihood can also be made to depend on the action if needed.

An Agent in artificial intelligence (AI) is a system that perceives its environment and

takes action that maximizes its chance of success. One of the goals of AI is to design

an agent which can interact with an environment so as to maximize some reward

function.

A POMDP models an agent decision process where system dynamics are determined

by an MDP, but the agent cannot directly observe the underlying state. To know

what state it is in, it maintains a probability distribution over the set of possible

states, based on a set of observations and observation probabilities, and the underly-

ing MDP. The POMDP framework is a general framework and it can model a variety

of real-world sequential decision processes. This model augments a well-researched

framework of Markov decision processes (MDPs) [8], [9] to situations where an agent

cannot reliably identify the underlying environment state. The POMDP formalism

is very general and powerful, extending the application of MDPs to many realistic

problems [10].

A POMDP is defined as a tuple (Φ, α, O, T,Ω, R), where

• S is a set of states Φ = {φ1, φ2, ..., φn},

• A is a set of actions α = {α1, α2, ..., αk},

• O is a set of observations O = {o1, o2, ..., om},
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• T is a set of conditional transition probabilities, P (φj|φi, α),

• Ω is a set of conditional observation probabilities P (O|Φ),

• R : Φ× Φ× α→ {−1, 0, 1} is the reward function.

At each time period, the environment is in some state φi ∈ Φ. The agent takes an

action αiri ∈ α, which causes the environment to transition to state φj with probabil-

ity T (φj|φi, αiri). Finally, the agent receives a reward with expected value, say rij(k),

and the process repeats. The difficulty is that the agent does not know the exact

state it is in. Instead, it must maintain a probability distribution, known as the belief

state, over the possible states Φ. An agent needs to update its belief upon taking the

action α and observing O. Since the state is Markovian, maintaining a belief over

the states solely requires knowledge of the previous belief state, the action taken, and

the current observation. The operation is denoted b′ = τ(b, αi, o). Where b′ is the

present belief state and it depends on previous belief state b, action taken αi and the

observation symbol o seen in the transition.

POMDP problems with various performance criteria have been posed and the uses of

dynamic programming methods to determine the optimal policy are well known [9],

[11]. However, several important factors have limited the applicability of this type of

approach. First, the computation becomes burdensome when the number of states

is large. Secondly, There is no way to guess the current state based on observation

symbol with certainty. Third, the information about the model that is required for an

approach such as dynamic programming is not available. Specifically, transition prob-

abilities and corresponding rewards associated with various actions may be unknown

at the time control begun or may change during system operation. This leads to a

new adaptive problem in which, typically, parameters are estimated and, using a sepa-

ration principle, the subsequent estimates are used to update control actions [12], [13].
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Due to the generality of POMDPs, it entails a high computational cost to solve it.

The problem of finding optimal policies for finite-horizon POMDPs has been proven

to be PSPACE-complete [14]. Because of the intractability of current solution algo-

rithms, especially those that use dynamic programming to construct (approximately)

optimal value functions [15], [16], the application of POMDPs remains limited to very

small problems.

We suggest a method that addresses learning problem is POMDP and avoids a lot of

computational difficulty. The approach is different from many other currently used

approaches as no dependence on an unknown parameter is assumed. We suggest a

learning approach based on a tree, in which each node contains a learning automaton

(LA). The root node of the tree is the only known start state (Landmark state) of

POMDP. Each node in the tree has child nodes corresponding to actions available

and observation symbol emitted by the states. Each node in this LA tree corresponds

to a POMDP state. Each state in POMDP chooses its action through a correspond-

ing LA in the tree independently without the knowledge of outer world. There is no

knowledge that other agents exist or indeed that the world is an N-state POMDP

whose transition probabilities and corresponding rewards depend on actions chosen.

Each LA in the tree tries to improve its own performance by choosing a favorable

action. It chooses an action and waits for a response. No information is passes until

the process returns to the same node again. Once the process returns to the same

node the LA receives the required information and updates its action.

There is no need for explicit synchronization of different LAs in the tree. Action

at each LA node is updated only when the process returns to the same state. The

updating is done via a simple learning scheme. This scheme uses a cumulative reward

obtained from a given action normalized by the total elapsed time under that action

as its environmental response.
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The result is that individuals operating in nearly total ignorance of their surroundings

can implicitly coordinate themselves to lead to optimal group behavior. This result

is based on a result on learning in N-player identical payoff games [17].

The Landmark based approach is practical and not limiting because in most POMDP

problems we have information available about the starting states and starting state

may have some sensor that will make sure about the state when the process returns to

this state again. The Landmark state relies on the availability of sensor information

to make sure of the state.

1.1 Organization of thesis

The thesis is broadly divided into two parts: state estimation in POMDP using a tree

and then learning in POMDP using that state estimation tree. Chapter 2 will discuss

the background necessary for understanding this thesis and some current solution to

POMDP problems. In chapter 3, state estimation will be discussed in detail. We

will describe how a state in POMDP corresponds to a node in our tree. Chapter 4

will discuss the learning algorithm using learning automata in state estimation tree

in details and how each node in the tree updates its actions. Chapter 5 will show the

results and simulation of the learning algorithm on a simple POMDP problem and

will compare the results with other algorithms. Chapter 6 concludes our work and

suggests future work.
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2 BACKGROUND LITERATURE

This thesis draws motivation from the work done by Richard M. Wheeler and Kumpati

S. Narendra which describes method for decentralized learning in Markov Decision

Processes [17]. This thesis takes similar approach for learning in POMDP. In [17],

they address adaptive problem in MDP where transition probabilities may change

during the MDP process. [17] suggests model setting of myopic local agents, one lo-

cated at each state of MDP, which is unaware of the surrounding world. There is no

knowledge that other agents exist or indeed that the world is an N- state Markov chain

whose transition probabilities and corresponding rewards depend on actions chosen.

The approach works well for MDPs but cannot be used when there is uncertainty in

states as we dont know what state we are currently in.

A policy is a set of rules that define what action to take in what state in an MDP

or POMDP such that long term rewards are maximized. In order to find a policy or

decision control in POMDP we need some form of memory for our agent to choose

actions correctly [18]. We need to maintain a probability distribution over the states

of underlying environment. This distribution is called belief state and is normally

represented as b(s) to indicate what agent believes about its current state. Using

the POMDP model the belief states are updated based on the agents action and

observations such that the belief states correspond exactly to the state occupation

probabilities. Since the agents belief state is an accurate summary of all relevant past

information it can be used by agent to choose optimal action. Belief states in combi-

nation with the updating rule form a completely observable MDP with a continuous

state space.
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The agent’s policy π specifies an action α = π(b) for any belief b. The optimal policy

π∗ yields the highest expected reward value for each belief state and is represented by

optimal value function V ∗. A powerful result of [15] is that optimal value function for

any POMDP can be approximated arbitrarily well by a piecewise linear and convex

function (PWLC). There exist a class of POMDP that has a value function exactly

as PWLC [15]. These results apply to optimal Q function, where Q function for

action α, Qα(b) is the expected reward for a policy. For the Q function Qα(b) the

policy takes action α in belief state b and behaves optimally. To behave optimally,

the agent chooses an action α that has the largest Q value for the given belief state.

The representation simplicity of PWLC functions makes them convenient. A PWLC

function Qα(b) can be written simply as

Qα(b) = max
q∈Lα

q.b (2.1)

where Lα is a finite set of S dimensional vector. So Qα(b) is the maximum of a finite

set of linear functions of b. To solve a POMDP using Q function we can temporar-

ily ignore the observation model and make use of the Q values of the underlying MDP.

Some of the methods used to solve POMDP are discussed in the following sections.

2.1 POMDP value iteration

Value iteration for MDPs is a standard method of maximizing long term reward

and finding the optimal infinite horizon policy π∗ using a sequence of optimal finite

horizon value functions V0∗, V1∗, V2 ∗ ..Vt∗ [9]. The difference between the optimal

value function and the optimal t-horizon value function goes to zero as t goes to

infinity:

lim
t→∞

max
s∈S
| V ∗(s)− Vt∗(s) | = 0. (2.2)
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Any POMDP can be reduced to a continuous belief-state MDP. Therefore, value

iteration can also be used to calculate optimal infinite horizon POMDP policies as

following:

• Initialize t = 0 and V0(b) = 0 for all b ∈ B

• While maxb∈B | Vt+1(b) − Vt(b) | > ε, calculate Vt+1(b) for all states b ∈ B

according to the following equation, and then increment t:

Vt+1(b) = max
αb∈α

[
Rb(b, αb) + γ

∑
b′∈B

T b(b, αb, b′)Vt(b′)

]
(2.3)

where γ is discount factor.

Although the belief space is continuous, any optimal finite horizon value function is

piecewise linear and convex and can be represented as a finite set of α−vectors [10].

Therefore, the essential task of all value-iteration POMDP algorithms is to find the

set Vt+1 representing value function Vt+1, given the previous set of α−vectors Vt

Various POMDP algorithms differ in how they compute value function representa-

tions. The most naive way is to construct the set of conditional plans Vt+1 by enu-

merating all the possible actions and observation mappings to the set Vt. Since many

vectors in Vt might be dominated by others, the optimal t-horizon value function can

be represented by a parsimonious set Vt
−. The set Vt

− is the smallest subset of Vt

that still represents the same value function V ∗t ; all α−vectors in Vt
− are useful at

some belief state [10]. To compute Vt+1 (and V −t+1), we only need to consider the

parsimonious set Vt
−.

Though a lot of algorithms exist to compute Vt+1, the fastest of exact value-iteration

algorithm can solve only the toy problems.
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2.2 POMDP policy iteration

Value iteration takes a larger number of iteration to converge to infinite-horizon when

the discount factor is large. Policy iteration finds the infinite-horizon policy directly

and takes a smaller number of iterations over successively improved policies. The

policy iteration algorithms iterate policies and try to improve the policies themselves.

The iteration of policies π0, π1, ...., πt then converges to the optimal infinite horizon

policy π∗, as t → ∞. Policy iteration algorithms usually work in two phases, policy

evaluation and policy improvement. In policy evaluation we compute the value func-

tion V π(b) and policy improvement improves the current policy π based on the value

function of policy evaluation step.

Value iteration algorithms extract a policy from a value function, but policy iteration

algorithms work in opposite direction. They first try to represent a policy so that its

value function can be calculated. The first POMDP policy iteration algorithm was

described in [15]. It used a cumbersome representation of a policy as a mapping from

a finite number of polyhedral belief space regions to actions, and then converted it to

a finite state controller (FSC) in order to calculate the policy value. The conversion

between the two representations is extremely complicated and difficult to implement

and policy iteration described in [15] is not used in practice.

2.3 The QMDP Value Method

Some other approaches seek learning using Q learning of the underlying MDP. Q

learning is a reinforcement learning approach in MDP and assumes that probabilities

or rewards are unknown. Q learning suggests defining a functionQ, which corresponds

to taking the action αi in state φi and then continuing optimally or according to

whatever policy one currently has.
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Q(φi, αi) =
∑
φj

Pαi(φi, φj)(Rαi(αi, αj) + γV (φj)) (2.4)

While this function is also unknown, experience during learning is based on (φi, a)

pairs (together with the outcome φj); that is, I was in state φi and I tried doing αi and

φj happened). Thus, one has an array Q and uses experience to update it directly.

To solve the POMDP using Q function we temporarily ignore the observation model

and find the Q(Φ, α) values for the MDP consisting of transition and reward only.

These values can be computed efficiently using dynamic programming approaches [8].

With Q values in hand, we can treat all the Q values for each action as a single linear

function and estimate Q value for a belief state b in POMDP as

Qα(b) =
∑
φ

b(φ)Q(φ, α) (2.5)

This estimate amounts to assuming that any uncertainty in the agents current belief

state will be gone after the next action.

The drawback of the policy is that it will not take action to gain information. For

example a “look around without moving actions and a “stay in place and ignore

everything” actions would be indistinguishable with regard to the performance of the

policies under an assumption of one-step uncertainty. This can lead to situations in

which the agent loops forever without changing belief state.

2.4 Replicated Q-Learning

[19] explores the problem of learning in POMDP model in a reinforcement-learning

setting. The algorithm attempts to learn the transition and observation probabilities

and uses an extension of Q-Learning [20] to learn approximate Q function for the

learned POMDP Model.
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Replicated Q-learning generalizes the Q-learning to apply to vector valued states and

uses a single vector, qα, to approximate the Q function for each action α : Qα(b) =

qα.b. The components of the vector are updated using

∆qα(φ) = β b(φ)(r + γ maxα′ Qα′(b′)− qα(φ)) (2.6)

The rule to update Q is evaluated for every φ ∈ Φ and each time the agent makes a

state transition. Here β is the learning rate, b the belief state, α the action taken, r

the received reward in transition, and b′ the resulting belief state. The rule applies

the Q-learning update rule to each component of qα in proportion to the probabil-

ity that the agent is currently occupying the state associated with that component.

Simulating a series of transitions from belief state to belief state and applying the

update rule at each step, this learning rule can be used to solve a POMDP. This rule

reduces exactly to standard Q learning if observations of the POMDP are sufficient

to ensure that agent is always certain of its state [18].

Though replicated Q-Learning is a generalization of Q learning, it does not work ef-

fectively to cases when the agent is faced with significant uncertainty. And since each

component to predict Q values is adjusted independently, the learning rule tends to

move all the components of qα towards same value [18].

2.5 Linear Q-Learning

Similar to replicated Q-Learning is the Linear Q Learning algorithm. The difference

being each component of qα are adjusted to match the coefficient of the linear function

that predicts the Q value rather than training each component of qα towards the same

value. This is done by applying the delta rule for neural network [21]. On adapting

this rule to belief MDP framework it becomes as shown below:
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∆qα(φ) = β b(φ)(r + γ maxα′Qα′(b′)− qα.b) (2.7)

Like the replicated Q-learning rule, this rule reduces to ordinary Q-Learning when

the belief state is deterministic.

In neural network terminology training instance for the function Qα(.) is the linear

Q-learning view (b, r+ γ maxα′Qα′(b′)). While replicated Q-learning in contrast uses

the same as training instance for the component qα(φ) for every φ ∈ Φ.

Linear Q-learning also has the same limitation as replicated Q-learning that it con-

siders only linear approximation to the optimal Q functions.

We propose a different approach in which belief states of a POMDP are guessed

using a tree structure. We call this a state estimation tree. We construct a tree that

depends on the POMDP structure to estimate its states. Each node of the tree has

a Learning Automata (LA). The depth of the tree can be changed depending on the

model of POMDP. Each LA updates its actions when process comes back to the same

belief state again, which means that the process comes back to the same node of the

tree again.
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3 STATE ESTIMATION

A POMDP is an MDP in which agent cannot observe the current state. Similar to

an MDP, the goal of a POMDP is to maximize expected discounted future reward;

however because of its insufficient knowledge regarding the current state, a POMDP

makes an observation based on the action and resulting states.

Figure 3.1. POMDP Agent decomposition

In Figure 3.1 of POMDP agent decomposition, the agent consist of two modules a

state estimator and a policy. State estimator senses the observation from the outer



19

world and decides the current belief state b of the Agent. Based on this belief state

b agent choses an action using the policy. These actions of the agent will have effect

on the outer world of the agent and the agent will sense these changes in the outer

world in form of observation and the process will go on.

The agent makes observation and generates actions. It keeps internal belief state

b that summarizes its previous experience. The state estimator is responsible for

updating the belief state based on the last action, current observation and previous

action. Policy decides what action the agent should take given the agent’s belief state.

The belief state can be defined as the most probable state of the world, given the

past experience. This might be a basis for action in some cases but it is not sufcient

in general. In order to act effectively, an agent must take into account its own degree

of uncertainty.

An agent can be categorized as following according to the internal states it maintains.

• A reactive(memoryless) agent defined by φt = Yt,

• One having a finite fixed length window of previous observationd φt = ht−k:t,

• A variable length markov model defined by a suffix tree φt,

• A recurrent neural network defined by φt,

• One where φt = P (Xt|h1 : t) is a belief state (requires knowledge of environment

model),

• A finite state machine defined by φt.

If the environment model of the POMDP is known, the optimal approach for the

agent will be to compute sufficient statistic bt = P (Xt|h1:t), and use this as its inter-

nal state [22]. bt is called the belief (information) state, and can be updated online

using Bayes rule (sometimes called a state estimator).
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As we have already discusses that a hidden Markov model (HMM) is a statistical

Markov model in which the system being modeled is assumed to be a Markov process

with unobserved (hidden) states. The addition of actions and rewards at each state

in a HMM gives rise to a POMDP. The Viterbi algorithm is a stochastic state estima-

tor algorithm to solve HMM. This algorithm can be applied to simple scenarios like

POMDPs to estimate the state of an agent based on the observation sequence. We

will define a HMM and explain how it generates observation sequence and estimates

state sequence. This discussion is based on [23]

A HMM can be described as following:

• A finite number of states of the environment, suppose n

Φ = φ1, φ2, φ3, ..., φn

Though the states are hidden and are not observed, for many practical appli-

cations there is often some physical significance attached to the states or set of

states of the model. We denote a state at time t as qt

• A finite number of distinct observation symbols per state, suppose m

O = o1, o2, o3, ..., om

The observation symbols correspond to the physical output of the system being

modeled

• The state transition probability distribution P = [pij] where

pij = Prob[qt+1 = φj|qt = φi]

1 ≤ i, j ≤ n, pij ≥ 0, pij ≤ 1,
∑

j p
i
j = 1

• The probability distribution of observation symbol in some state j, B = bj(k)

where

bj(k) = P [ot = ok|qt = φj]

1 ≤ j ≤ n, 1 ≤ k ≤ m
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where o(t) is the observed symbol at instance t

• The initial state distribution π = πi where

πi = Prob[q1 = φi]

1 ≤ i ≤ n

If we observe a sequence O = [o1, o2, o1, , ot] and are given a model of environment

λ = (P,B, π) we can use HMM to choose to estimate the optimal state sequence

Q = q1, q2, q3, , qt.

Viterbi Algorithm is a formal technique that uses dynamic programming to discover

one of the most likely state sequences for an observation. Following is the brief de-

scription of the algorithm.

Suppose we are given a HMM with state space Φ, initial probabilities pi of being in

state i and transition probability of transitioning from state i to state j is pij. Given

an observation sequence O = [o1, o2, o1, , ot], we need to find the best state sequence

Q = [q1, q2, q3, , qt]. The most probable sequence of hidden states is that combination

that maximizes Prob(observedsequence|hiddenstatecombination).

The approach to find most probable sequence of hidden states by finding the combi-

nation that maximizing Prob(observedsequence|hiddenstatecombination) is viable,

but to find it by exhaustively calculating each combination is computationally expen-

sive. We can use the time invariance of the probabilities to reduce the complexity of

the calculation [24]. We will consider recursively finding the most probable sequence

of hidden states given an observation sequence and a HMM. We will first define the

partial probability δ, which is the probability of reaching a particular intermediate

state. δ represents the probability of the most probable path to a state at time t, and

not a total.
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For each intermediate and terminating state in the HMM, there is a most probable

path to that state. These paths are called partial best paths. Each of these partial

best paths has an associated probability, the partial probability or δ [25]. Thus δ(i, t)

is the maximum probability of all sequences ending at state i at time t, and the partial

best path is the sequence which achieves this maximal probability. Such a probability

(and partial path) exists for each possible value of i and t. In particular, each state

at time t = T will have a partial probability and a partial best path [25]. We find the

overall best path by choosing the state with the maximum partial probability and

choosing its partial best path. In order to do that we need to define the quantity

δt(i) = max
q1,,qt

Prob[q1, ..., qt = i, o1, o2, o1, ..., ot|λ] (3.1)

Here δt(i) is the highest probability of ending in state φi while observing the observa-

tion sequence [o1, o2, o1, ..., ot]. By using the principle of induction we can also write

it as

δt+1(j) =
[
max
i
δt(i)p

i
j

]
bj(ot) (3.2)

To get the whole state sequence we need to keep track of the argument that maxi-

mizes Equation 3.2, for each t and j. we can do this using an array ξt(j). The detailed

description to find the best state sequence is as following:

INITIALIZATION: When t = 1 the most probable path to a state does not exist. We

use the probability of being in that state given t = 1 and the observable state o1 as

δt(i) = pibi(o1)

ξ1(i) = 0

RECURSION:

δt(j) = max1≤i≤n
[
δt−1(i)p

i
j

]
bj(ot)

2 ≤ t ≤ T
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1 ≤ j ≤ n

ξt(i) = arg max1≤i≤n
[
δt−1(i)p

i
j

]
2 ≤ t ≤ T

1 ≤ j ≤ n

TERMINATION:

p∗ = max1≤i≤n[δT (i)]

q∗T = max1≤i≤n[δT (i)]

PATH BACKTRACKING:

q∗T = ξt+1(q
∗
t+1)

t = t− 1, t− 2, ..., 1

Viterbi algorithm is a deterministic algorithm and provides a computationally effi-

cient way of analyzing observations of HMMs to recapture the most likely underlying

state sequence. But to use it we should have the complete knowledge of transition

probabilities.

In our experiments we found that Viterbi algorithm maps observation sequence to

states with 60% to 80% of accuracy but it requires complete knowledge about the

model. After analyzing the Viterbi algorithm we propose a solution based on tree

structure of the states of POMDP, which does not require prior knowledge of tran-

sition probabilities or rewards probability. The only information known is assumed

to be the initial start state of the POMDP. This start state is called landmark state

of the POMDP. We assume that agent has means to know when it comes back to

landmark state.

Based on the number of states and actions available in the POMDP we create a tree

structure. The root of the tree is the landmark state. Each node has child nodes
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corresponding to actions available and observation symbols. Consider a POMDP

that has n states in it. Each state in it can observe m discrete observations symbols.

There are p actions available at each state. Then each node will have m × p child

nodes, each corresponding to the action taken and observation symbol.

Figure 3.2. State Estimation

Landmark state is the only known state in our POMDP model. We assume no in-

formation is available about the transition probabilities and the reward matrix of the

POMDP. The nodes in the tree correspond to the actual state in the POMDP. Each

node may not correspond to a unique state and multiple nodes can correspond to a

single state in POMDP. We don’t have any information about what node corresponds

to which state. Each node is mapped to some state in POMDP based on observation

symbols observed and action taken at that state. The depth of the tree decides how

many past observation we want to consider for the mapping of states. The state tree
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tells us that at the beginning the agent is in the landmark state and he will move to

other child nodes based on actions he chooses and the token he observe during the

transition process.

When the POMDP starts transition we only observe the observation symbols and ac-

tion taken by that state. Based on the actions taken and the observation symbols we

correlate each node in the tree with some state in POMDP. For example we start from

landmark state and take some action, suppose at, and observe a symbol, suppose ot.

This action may result in transition from current state to some other state. This next

state will be mapped to a child node in our tree with link (at, ot) from the current node.

The depth of the tree decides how many states we want to remember in tree form.

Each node in the tree acts as a belief state of the POMDP. Each level of tree corre-

sponds to information equivalent to 1 observation. After the number of observation

exceeds the depth of the tree, we assume that POMDP is in some unknown state.

We don’t have any information about the state of the POMDP unless the landmark

state is reached again. As we assume that the agent knows when it comes back to the

landmark state, once we get back to the landmark state we start the same mapping

process again.

We illustrate our state estimation approach in POMDP using following example.

Consider a POMDP:

• Where number of states in POMDP are 4 so we have Φ = {φ1, φ2, φ3, φ4}.

• For simplicity, we consider that there are only 2 actions available at each state,

and they are same for all the stats. α = {α1, α2} for all the states.

• There are two discrete observations available per state O = {0, 1}. In this

example we consider that these observations are the rewards that we get as a

result of transition. So when we take an action and observe an observation
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symbol 0 we get penalty (no reward), when we take an action and observe

symbol 1 we get a reward.

• Agent transitions among the states with different transition probabilities for

different actions. We don’t have any information about these transition proba-

bilities.

• In the beginning there is no knowledge present in a state so actions are chosen

randomly in each state.

Following is diagrammatic representing our POMDP:

Figure 3.3. POMDP Example diagram
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In Figure 3.3, an agent can transition among 4 states (φ1, φ2, φ3, φ4). At each state

we have two actions available (α1, α2). At each state we can observe one of the two

symbols (0, 1). We want to map the states of this POMDP with nodes in the state

estimation tree. An agent at each state takes an action and emits an observation

symbol, considered as reward. Our ultimate goal is to choose action at each state in

such a way that long term reward is maximized.

To get the idea of current state of the agent we create the state estimation tree for

this POMDP. Consider a tree with depth 3. A tree with depth 3 implies that we

can store observation symbols up to 3 observations and map states to tree nodes

for 3 continuous observations starting from root node (Landmark State). The state

estimation tree will look like following:

Figure 3.4. State Estimation Example
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In the state estimation tree, root node 0 is the landmark state. Suppose this land-

mark state is state φ1. Whenever the agent is in this state, it knows that the state

is φ1. The depth of the tree is 3. It can map tree nodes with the states only up to

3 continues observations. At the landmark state if the action α1 is taken and the

observation token 0 is received the current state of the agent is node 1. At node 1

if action α2 is taken and observation token 1 is received the current state will be-

come node 8. Once we get to the leaf nodes, we are out of tree nodes to map to the

states, so we assume that the agent is in some state that we don’t know about. As

soon as the agent gets back to the landmark state φ1 at any time during transition

in unknown states the mapping process is started again starting from the root node 0.

Empirical analysis was done on POMDP states and nodes in the state estimation tree.

POMDP transition probabilities were chosen randomly and it was found that 60% to

90% of the times same nodes are mapped to same POMDP state. For the POMDP

example of Figure 3.3, with random transition probabilities and state estimation tree

of depth 3 as in Figure 3.4, we observed the following mapping between states of the

POMDP and Nodes of the state estimation tree.

φ1 → 0 φ1 → 4

φ3 → 19 φ4 → 80

φ3 → R φ4 → R

φ1 → 0 φ4 → 1

φ3 → 7 φ1 → 29

φ4 → R

φ1 → 0 φ1 → 4

φ2 → 17 φ3 → 72

φ4 → R

φ1 → 0 φ2 → 4

φ3 → 20 φ1 → 82
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φ3 → R

φ1 → 0 φ4 → 1

φ3 → 7 φ4 →32

φ1 → 0 φ4 → 1

φ3 → 7 φ4 →32

φ2 → R

R denotes when we are out of the state estimation tree and cannot map states of the

POMDP with state estimation tree. Observation sequence of length 30 was considered

for this example. Summarizing the state estimation we get that

φ1 → 0(6), 4(2), 29(1), 82(1)

φ2 → 4(1), 17(1)

φ3 → 7(3), 19(1), 20(1), 72(1)

φ4 → 4(3), 80(1), 32(2)

In this mapping the only ambiguity we see is with Node 4, which is mapped to state

φ1 twice and with state φ2 once.



30

4 LEARNING IN POMDP USING TREE

Learning problem in POMDP when the knowledge of transition probabilities and re-

wards is present is common and has been studies by many researchers. This learning

problem can be stated as follows. Let φ = {φ1, φ2, ..., φn} be the state space of a finite

POMDP. And αi = {αi1, αi2, ..., αiri} be the finite set of actions/decisions available in

each state φi. The transition probabilities tij(k) and rewards rij(k) depend on the

starting state φi, the ending state φj, and the action αik(k = 1, ..., ri) used in φi. The

goal is to choose the set of actions, or policy, α = {α1
i1
, α2

i2
, ...., αNiN} that maximizes

J(α) , ∆
1

n
E

[
n−1∑
t=0

r(x(t), x(t+ 1), α)

]
(4.1)

where r(x(t), x(t+ 1), α) is the reward generated by a transition from x(t) to x(t+ 1)

using the policy α. The set of policies is limited in this formulation to stationary

nonrandomized policies. Hence, the best strategy in any state is a pure strategy and

is independent of the time at which the state is occupied. Under the following as-

sumption, it can be shown that the optimal α belongs to this set of policies [11].

Here we make the following assumption:

ASSUMPTION: The Markov chain corresponding to each policy α is Ergodic.

Therefore we can say that there are no transient states and a limiting distribution

π(α) = (π1(α), π2(α), ..., πN(α)) exists, with each πi(α) > 0, which is independent of

the initial state [17]. According to [17] under this assumption, the expected reward

per step J(α), defined in Equation 4.1, can also be written in terms of the limiting

(stationary) probabilities π(α) as

J(α) =
N∑
i=1

πi(α)
N∑
j=1

tij(α)rij(α) (4.2)
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Learning models have been studied extensively by psychologists and systems theo-

rists from both modeling and control viewpoints [26], [27], [28]. A particularly simple

model for sequential decision making in unknown random environments is the learn-

ing automaton [29]. There are many variation of learning automaton proposed but

the basic idea remains the same. The automaton has a finite set of actions and based

on environment response, it updates a probability distribution over the actions. Using

this approach, the automaton tries to learn from the environment [17].

Let α = α1, α2, ..., αr be the automaton actions available in a state and β be the

environment response set. Each element of β is normalized to lie in the interval

[0, 1]. Here 1 is the best response and 0 is the worst response. Given that at time

n the action vector is α(n) ∈ α, the response is β(n) ∈ β and actions probabilitiy

vector is p(n) = p1(n), p2(n), ..., pr(n). Then the way the action probabilities over

vector p(n) are updated is decided by the learning algorithm T of automaton so

p(n+ 1) = T [p(n), α(n), β(n)].

The essential properties of any automaton can be exhibited by the following linear

algorithm with various parameter values [17].

If α(n) = αi, then

pi(n+ 1) = pi(n) + aβ(n)[1− pi(n)]− b[1− β(n)]pi(n) (4.3)

pj(n+ 1) = pj(n)− aβ(n)pj(n) + b(1− β(n))

[
1

r − 1
− pj(n)

]
(4.4)

0 < a < 1 and 0 ≤ b < 1

a and b are called reward and penalty parameters respectively. We assume that all

initial probabilities pi(0) lie in the interval (0, 1). The learning scheme depends on the

value of a and b. if a = b then the learning scheme is linear reward-penalty. If b < a

then it is called linear reward-ε-penalty and if b = 0 then it is Linear reward-inaction

LR−I [17]. Though any of the schemes can be used, we consider (LR−I) in this thesis.
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Convergence of (LR−I) can be demonstrated by the observation that it makes a

Markov process with stationary transition probabilities. Given that environment

response β(n) for the actions α(i) are independent of time, the probability of p(n+1)

is determind by p(n). We assume that p(n), defined in 4.4, is a random vector.

If for any n unit simplex Sr is defined as

Sr , ∆

{
p|0 ≤ pi ≤ 1,

r∑
i=1

pi = 1

}
(4.5)

Equation 4.4 is linear and has an interesting distance diminishing property for a and

b. This property makes Markov process compact. The mapping T defined on Sr is

distance diminishing on Sr (T is a stochastic contraction) if, for any pair of points p1

and p2 belonging to Sr [17]

sup
p1 6=p2

d(T [p1, α, β], T [p2, α, β])

d(p1, p2)
< 1 (4.6)

where d(x1, x2) is the Euclidian distance matrix. The convergence of the LR − I

scheme can be proved by asymptotic behavior of compact Markov processes [17].

If β(n) is a measure of relative success where β(n) = 1 equals to the maximum success,

then the expected success can be defined as

M(n) , ∆ E[β(n)|p(n)] =
r∑
i=1

E[β(n)|αi]pi(n) (4.7)

In [27], maxiE[β(n)|αi] has been defined as d0 and the following theorem has been

proved:

Theorem: For any ε > 0 and any p(0) in the open simplex Sr, there exists an 0 <

a∗ < 1 such that for b = 0 and any a < a∗ in Equation 4.4

lim
n∈∞

E[M(n)] > d0 − ε (4.8)

In [27] the proof has been given for the case when β(n) is a binary random variable.

That means β = 0, 1. [30] proves the result termed as ε− optimality for general β(n).
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4.1 Automata Games and Decision Making in POMDP

This POMDP control is not a problem when the automatons exist as individual, but

it becomes a principal issue when many automatons are interconnected. In [31] con-

nection between decentralization of interconnected automaton and abstract games

was unveiled.

An automaton game involves N automaton Ai(i = 1, 2, ..., N). Each of the automaton

has an action set αi = {αi1, αi2, ..., αiri}. The automatons interact through a stationary

random environment. At each instant n, an automaton Ai selects an action accord-

ing to its current probability distribution pi(n) = (pi1, p
i
1, ..., p

i
ri

). The cumulative

action α(n) = α = α1
i1
, α2

i2
, ..., αNiN which we choose depending on the probability

p(α) = ΠN
j=1p

j
ij

(n), determines the distribution of received random response βi(n).

A stationary random environment means that the response distribution is fixed over

time and each automaton has access only to its own response. In this game formula-

tion, no player is aware of other players, other player”s action at any instance of time

or action response distribution.

In the POMDP problem also the automaton at each state will probabilistically choose

an action and based on the reward will get a response and update its action proba-

bilities. The only information available to the automaton is the reward received and

it depends upon the actions taken by other automaton when the chain is in other

states. So automata game and decentralized control of Markov chain are very similar

in this sense.

4.2 Learning as a Control Strategy for POMDP

We have discussed creation of a state estimation tree in the previous section. The

learning algorithm proposed here is based on the state estimation tree. Each node of

the state estimation tree will have an automaton in it. Automaton in each node is
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unaware of the other automatons available in other nodes of the tree. The algorithm

updates the action probability only when the process returns to the same node again.

The only known state in the tree is the root node of the tree considered as landmark

state. The tree knows its state when it gets back to the landmark state.

4.2.1 The automaton updating procedure

We propose the learning approach that involves one learning automaton for each ac-

tion state. So each of the nodes of the state estimation tree has an automaton (Ai)

in it. A coordinator is present to perform the simple administrative tasks. Each au-

tomaton works on its local time scale ni = 0, 1, 2, .... The Markov chain corresponding

to the POMDP operates on the global time scal n = {0, 1, 2, .....}. The coordinator

guesses the current node in the state estimation tree for the POMDP based on past

observations. The coordinator then activates the automaton Ai present at that node.

The automaton Ai chooses an action αik based on current action probability vector

pi(ni). If the POMDP is in an unknown state, that is the observation has passed the

height of the tree, then a random action is chosen.

An important feature of the control scheme is that Ai does not get reward information

from the current action. So the current one step reward rij(k) is unknown to it. Ai does

not receive any information about the effect of its current action or about the activity

of the Markov process. It gets this information only at time ni + 1 when the control

returns to the same node of the state estimation tree. At that time the automaton

Ai at that node receives two pieces of information from the coordinator [17]:

• The cumulative reward generated by the process up to time n,

• The current global time n.

Based on this information the automatonAi computes the incremental reward ∆ρik(ni)

generated since last local time ni(α
i(ni) = αik) and the corresponding elapsed global
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time ∆ηik(ni). The increments ∆ρik(ni) and ∆ηik(ni) are added to the current cumula-

tive totals ρik(ni) and ηik(ni). This addition results in new cumulative totals ρik(ni+1)

and ηik(ni + 1). The environment response is then calculated as:

βi(ni + 1) =
ρik(ni + 1)

ηik(ni + 1)
(4.9)

As we have already discussed that the reward rij(k) is normalized in the interval [0, 1]

so βi(ni) and as a result βi(ni + 1) also lie in [0, 1].

When we come to the leaf nodes of the maintained tree, we run out of automaton and

start choosing actions randomly (with equal probabilities). We continue this until we

come back to the known, “landmark” state, in which case we start choosing actions

again using the appropriate automata in the tree, starting with the root automata.

This process will continue forever.

When we come back to the known, landmark state, we update the root automaton

using the turn-around cumulative reward and updating scheme defined in Equation

4.4. The environment response for updating the automaton is defined by Equation

4.9. Similarly, we keep on updating the automaton used along the path followed in

the state estimation tree, in exactly similar manner.

Each Ai is assumed to use the updating scheme defined in Equation 4.4 with β(n)

defined by Equation 4.9.This modified scheme is denoted by T1 and can be briefly

described as following:

• At time n when coordinator chooses an automaton Ai, only Ai updates its

action probabilities.

• When we come to the leaf nodes of the maintained tree and run out of automata

we start choosing actions randomly but the reward generated and one instant

of global time are added to their respective current totals by the coordinator.
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• In the intervening time between two visits to any node of the tree, no knowledge

of the sequences of states visited is provided to Ai. Only the current values of

total reward and n are needed and these are incremented at each n whether any

automaton in the tree is active.

All the work of the coordinator is of book keeper and not a decision maker. All the

decision and estimations are performed by the automata and not by the coordinator.

4.2.2 Ergodic finite Markov chain property

Consider an N state Markov chain which has Na action states φ∗i ∈ φ∗, with action

set αi = {αi1, αi2, ..., αiri}, ri ≥ 2 in each state. If we associate one decision maker Ai

with each φ∗i then T = {Na, ϑ, J} denotes a finite identical payoff game among {Ai}

in which the play α ∈ ϑ = α1 ⊗ α2... ⊗ αNa results in the payoff J(α) and can be

defined as

J(α) =
∑N

i=1 πi(α)
∑N

j=1 t
i
j(α)rij(α)

and it is same as Equation 4.2. This finite identical payoff game T has a unique

equilibrium [17].

Proof: Assume that a dummy decision maker with only one action is also associated

with each non-action state. In the corresponding N−player game T ′, a play (policy)

has N rather than Na components. However, since the action sets in N −Na states

are degenerate, any play α in T is equivalent to a play in T ′ in which the Na action

state decision maker use α. The theorem for T ′ has also been proved in [17].

The proof for T ′ is related to the convergence of policy iteration method discussed

in [9]. Assume that a play α is a non-optimal equilibrium point (EP) of T ′. According

to [9], the gain J(α) and the relative values vi(α) associated with α are found as the

solution to
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J(α) = qi(α) +
N∑
j=1

tij(α)vj(α)− vi(α) (4.10)

Where i = 1, 2, ..., N

And qi(α) =
∑N

j=1 t
i
j(α)rij(α)

vN(α) is set to 0 arbitrarily to guarantee a unique solution. We can find a better

policy than α using policy iteration. Suppose that state i is one of the states in which

the better play differs from α. Consider the play β which differs from α only in state i.

The component of β used in state i is found as that k which maximizes the following

“test quantity”

τi(k, α) = qi(k) +
N∑
j=1

tij(k)vj(α)− vi(α) (4.11)

Where k = 1, 2, ..., ri

The test quantity depends on α since the values vj(α) in the Equation 4.11 are kept as

the ones computed from the original play α. A useful property of the test quantities

is that for any play β, J(β) =
∑N

j=1 πj(β)τj(β, α), where πj(β) is the steady state

probability for state j under play β and τj(β, α) is the test quantity formed in state j

by using play β in state j but relative values associated with play α [9]. Assumption

about the Markov chain that Markov chain corresponding to each policy α is ergodic

assures the existence of πj(β) for all j and β.

If we maximize Equation 4.11 then

τi(β, α) = τi(α, α)

τj(β, α) = τj(α, α)
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From Equations 4.10 and 4.11 we know that τj(α, α) = J(α)(j = 1, 2, ..., N). This

follows:

J(β) =
∑N

j=1 πj(β)τj(β, α) >
∑N

j=1 πj(β)τj(α, α)

Since β is superior to α and differs from α in one state α cannot be an equilibrium

point and optimal policy in T ′ is the optimal policy.

The uniqueness of an equilibrium in T is an interesting property. In any controlled

Markov chain satisfying that each policy α is ergodic, the second best policy differs

from the optimal policy only in the action chosen in exactly one state. In general,

the kth best policy can differ from the optimal policy in at most the actions chosen

in k − 1 states [17].

4.2.3 Convergence

In the previous section about property of ergodic Markov chain, it was discussed

that a Markov chain represented as an N automata game has a unique equilibrium.

A payoff in automata game T is obtained by using a fixed policy. Each decision

maker uses a updating procedure T1. T can be viewed as a limiting game T =

limn→∞ T (n). The elements of T (n), s(α, n) , ∆E[β(n)|α(n) = α] depends on n. So

the automata updating in POMDP is not the same as in an automata game. But from

the assumption of ergodic Markov chain it can be deduced that limn→∞s(α, n) =

J(α) [17]. Here J(α) is the same as defined in ergodic Markov chain property.

J(α) =
∑N

i=1 πi(α)
∑N

j=1 t
i
j(α)rij(α)

Given that we can say that for a large n the ordering among J(α) will be similar

to the ordering among s(α, n). Thus we can analyze the automata game T for the

POMDP problem. If all the states in our state estimation tree are mapped correctly

then the problem reduces to the control of Markov processes and the policy we get

by out learning method will be ε− optimal. However due to the uncertainty of state
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in POMDP, the states in state estimation tree cannot be estimated accurately. Once

the process reaches to the leaf nodes, we start taking actions randomly so the policy

we defined is not the optimal policy but it will be k−optimal. Where k is the number

of states that are not estimated properly. The policy described for POMDP will be

k − optimal as we have already discusses in previous section that kth best policy in

the Markov chain differs from the optimal policy in at most the actions chosen in

k − 1 states.
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5 RESULTS

We run our proposed learning algorithm on various POMDP problem having 4 to

6 states. The results for long term reward were compared with completely random

learning approach and with the underlying MDP having exact knowledge [17]. We

performed this analysis with state estimation tree of different state estimation tree

heights and with different transitions and reward probabilities of underlying MDP.

Transition probabilities and reward probabilities were randomly generated in the ex-

periments. Long term rewards are normalized in range between (0, 1). The results

have been analyzed on varying number of iteration for all the learning approaches. In

random learning approach there is no learning and each state takes action randomly

based on the initial probability distribution.

The results show that long term rewards with the proposed learning approach are

always better than random action strategy but is less than optimal policy reward.

The optimal policy rewards are calculated using the underlying MDP of our POMDP

problem. When we have a complete knowledge of the states, POMDP turns into an

MDP; and because of the complete knowledge of the states, optimal policy outper-

forms our approach. The results of proposed learning approach depend on the depth

of the state estimation tree and with increase in the depth of the state estimation

tree, the long term rewards are improved.

Experiments were run on the server machine with Xeon 5335 quad-core processors

and 8GB of RAM. The time taken in learning is mentioned next to the learning

methods in the following result graphs.
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Figure 5.1. Normalized long term reward in a POMDP with 6 states over
200 iterations

Figure 5.2. Normalized long term reward in a POMDP with 4 states over
200 iterations
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Figure 5.3. Normalized long term reward in a POMDP with 4 states over
1000 iterations

Figure 5.4. Normalized long term reward in a POMDP with 6 states over
1000 iterations
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Figure 5.5. Normalized long term reward in a POMDP with 6 states over
1000 iterations

In result diagrams we see that the long term rewards in POMDP with automata

tree learning lies in between random learning reward and optimal reward. In random

transition learning approach the agent at each state takes random action and does

not learn any information to maximize the rewards. The all state knowledge learning

approach has complete knowledge about its current state, hence does not need to

guess the current state. The all state knowledge learning approach gives the optimal

reward as there is no uncertainty involved about the current state. In the diagrams

we see that as the tree height increases the long term average reward tends towards

the optimal reward. Along with the depth the learning time in the POMDP also

increases. There is no significant gain in the reward of learning with automata tree

with depth 5 and with depth 7; so we can stop increasing the depth of the learning

tree when there is no significant gain of reward.
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6 CONCLUSION AND FUTURE WORK

The basic problems addressed in this thesis are learning in POMDP and adaptation

with minimum prior knowledge. The proposed solution does not require prior knowl-

edge of transition probabilities and rewards. The proposed approach can also adapt

to the changes in the environment. The approach presented in the thesis uniquely

combines flexibility of learning theory with the structure of underlying MDP for the

given POMDP. Main observation about the proposed learning approach can be sum-

marized as:

• The proposed learning approach does not require any prior knowledge of the

model of POMDP.

• The long term reward that we get is not optimal as states of the POMDP

cannot be estimated with full accuracy. But the rewards are k − optimal and

are between random rewards and optimal rewards.

• Increasing the height of state estimation tree (ie knowledge about past obser-

vations) improves the long term rewards.

The results summarize that even without any prior knowledge of the POMDP; sug-

gested learning method gives a policy for the POMDP that performs better than the

random transitions. Otherwise the best policy without any prior information will be

a random policy.

Future work can be done to estimate states more accurately. The current approach

takes random action once we pass the leaf nodes of state estimation tree until we get

back to the landmark state again and reinitialize the process. If numbers of states are

very large then it may take infinite amount of time to get back to the landmark state.
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And in that case the performance of the suggested learning approach will deteriorate.

We can further explore cases when probability of getting into landmark state is fairly

less. Another open issue is as the depth of the state estimation tree increases the

number of false state estimation will also increase. Further analysis can be done on

ideal depth of the state estimation tree for a given POMDP with N number of states.
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