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ABSTRACT 

Michelle C. Rigg 

 

TREE MITIGATION STRATEGIES TO REDUCE THE EFFECT OF URBAN HEAT 

ISLANDS IN CENTER TOWNSHIP, INDIANA 

 

The purpose of this study was to identify urban heat island locations within Center 

Township, Indiana and to develop a model to determine areas of high social vulnerability.  

In addition, an urban heat island mitigation strategy was developed for socially 

vulnerable and highest temperature locations.  Land surface temperature was estimated 

using Landsat ETM+ satellite imagery.  Social vulnerability was estimated using 

principal components analysis and spatial analysis methods such as kernel density 

functions.  These methods incorporate various socioeconomic variables, land surface 

temperature, and tree canopy cover.  Tree canopy cover was extracted using Quickbird 

imagery among other techniques.  Areas with high social vulnerability, high temperature 

and low tree canopy cover were analyzed and plantable spaces were assessed.  The 

findings of this study will be shared with Keep Indianapolis Beautiful, Inc. so that they 

can inform their tree planting campaigns that seek to reduce the effects of urban heat 

islands on socially vulnerable populations. 

 

Daniel P. Johnson, Ph.D., Chair 
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INTRODUCTION 

The urban heat island (UHI) effect is the characteristic warmth of urban areas compared 

to the cooler surrounding non-urbanized areas (Voogt 2002).  The urban heat island can 

be defined as the spatially-averaged temperature difference between an urban area and its 

surrounding rural area (Magee, Curtis and Wendler 1999).  In general, the ambient 

temperatures in urban areas are several degrees higher than the surrounding rural and 

suburban areas (Synnefa et al. 2008).  During the summer season, many urban areas have 

daytime temperatures of 1-6oC higher than the surrounding rural areas; this is present for 

many cities worldwide (Synnefa et al. 2008). In addition, “a key characteristic of the UHI 

effect are elevated night-time (typically minimum daily) temperatures” (Solecki et al. 

2005, 39).  Temperatures in the urban environment vary not only from rural surroundings 

but also within the urban area due to intra-urban differences in land-use and surface 

characteristics (Hart and Sailor 2009).  The UHI is caused by surface and atmospheric 

modifications that occur throughout urban areas. “Changes to the surface radiation and 

energy balances lead primarily to reduced cooling rates in urban areas” (Voogt 2002, 1).  

Warmer urban temperatures is primarily caused by anthropogenic heat released from 

vehicles, air conditioners and other heat sources, and due to the heat stored and re-

radiated by massive and complex urban structures (Rizwan, Dennis and Liu 2008).  More 

solar radiation is stored as sensible heat in urban areas due to the presence of impervious 

surfaces, the lack of vegetation and the decreased sky view factor in urban areas.  The 

ability of heat release through long-wave radiation in urban areas is typically low due to 

the canyon geometry of urban areas and the decreased sky view factor; this phenomena 

results in high heat storage in building structures (Rizwan, Dennis and Liu 2008).  Heat 
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islands are characterized into three categories based on the different layers within the 

urban atmosphere and for the varied surface types; these three layers are the canopy 

layer, boundary layer, and the surface layer urban heat island.  The urban canopy layer 

extends upwards from the surface to mean building height; the urban boundary layer is 

located above the canopy layer (Voogt and Oke 2003).  The canopy layer heat island and 

the boundary layer heat island are atmospheric heat islands because they indicate any 

warming within the urban atmosphere.  The surface urban heat island refers to the 

warmth of the urban surfaces when compared to the surrounding rural and suburban areas 

(Yuan and Bauer 2007). 

Extreme Heat Events (EHEs) are particularly pronounced in cities due to the urban heat 

island effect. In order to determine EHE days, a heat threshold has been developed for 

many U.S. cities; several evaluations have found that there is an importance of several 

consecutive days above a temperature threshold.  The National Weather Service uses a 

heat threshold when daytime heat index values are 105oF or above for more than three 

hours a day for two consecutive days, or when the daytime heat index exceeds 115oF for 

any length of time (Kalkstein et al. 1996).  Heat-related morbidity and mortality can 

occur during heat events; these are expected to increase in frequency and severity due to 

climate change.  In addition, death from extreme heat is the number one weather-related 

killer in North America (Abidine et al. 2007).  “Since 1998, heat waves have resulted in 

more weather-related fatalities annually than any other natural disaster”(Bernard and 

McGeehin 2004, 1520).  Heat stroke is the most common cause of death and severe 

illness attributable to heat. Heat stroke symptoms are characterized by a body 

temperature of 105oF (40.6oC) or higher and an altered state of mind.  Other causes of 
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death that increase during elevated heat are heart disease, diabetes, respiratory diseases, 

accidents, stroke, suicide, violence and homicide (McGeehin and Mirabelli 2001).  It is 

estimated that around 240-400 heat related deaths occur annually in the United States.  

During mid-July 1995, Chicago experienced a five-day heat wave in which temperatures 

ranged from 93oF to 104oF.  During the Chicago heat wave, approximately 525 heat-

related deaths occurred (Changnon, Kunkel and Reinke 1996).  Approximately 118 

deaths occurred in Philadelphia during a heat wave during July 6-14, 1993 (Ebi et al. 

2004).  In 2003, an estimated 70,000 people died in Europe over several months due to 

extreme heat (Stone, Hess and Frumkin 2010).  Although extreme heat events are the 

number one weather-related killer, the death count is frequently underestimated because 

heat waves are multiday events and many of the affected individuals suffer from other 

health problems. In addition, there is no widely accepted definition of a “heat-death”; this 

allows medical examiners to define heat deaths differently (Changnon, Kunkel and 

Reinke 1996). 

Various mitigation strategies can help to reduce the amount of heat stored in urban areas. 

The development of effective mitigation strategies are crucial for the overall health and 

well-being of people who live in urban areas; this is of increasing importance because of 

rapid population growth in urban areas, especially in developing countries.  UHI 

mitigation strategies that have been shown to reduce temperatures include tree plantings, 

developing green roofs and building with cool materials.  “Cool materials are 

characterized by high solar reflectance and infrared emittance values” (Synnefa et al. 

2008, 2848).  The solar reflectance and the infrared emittance both affect the temperature 

of the surface.  An increase in reflectance and emittance can lower the surface 
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temperature and the surrounding ambient air temperature.  Black or dark colored 

buildings and impervious surface materials have a significantly lower reflectance and 

emittance characteristics than white building materials and impervious surfaces.  For 

example, “the temperature of a black surface with solar reflectance of 0.05 is about 50oC 

higher than ambient air temperature.  For a white surface with solar reflectance of 0.8 the 

temperature rise is about 10oC” (Synnefa et al. 2008, 2848).  Mitigation strategies that 

implement tree plantings are particularly appealing because of the relatively low cost, 

minimal maintenance and long-term benefits involved.  Tree planting mitigation has a 

two-fold benefit because the tree provides cooling shade and trees soak up groundwater, 

which then creates evapotranspiration, which cools the leaves as well as the surrounding 

air. The structure of tree and plant canopies and their physiological condition can strongly 

influence wind flow and transpiration rates.  Although planting any type of tree provides 

benefits, not all trees are equally beneficial.  For example, in temperate climates, 

deciduous trees may be better to plant than evergreens because they are able to provide 

shade in the summer and they block less of the sun’s warmth during winter. 

This research attempted to locate urban heat islands, identify locations of socially 

vulnerable populations and determine the tree canopy cover in Center Township, Indiana.  

The identification of socially vulnerable areas, low tree canopy cover and high 

temperatures helped to develop a tree planting mitigation strategy to increase tree canopy 

cover and to reduce temperatures and risk levels of vulnerable areas and.  Plantable 

spaces were identified and the results will be provided to KIB, a local non-profit group 

that organizes tree plantings. 
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BACKGROUND 

Urban Heat Islands 

An extensive amount of research on the effects, characteristics and the general causes of 

the urban heat islands have been published.  Much research has also studied various 

mitigation strategies but many of these strategies are never implemented.  The spatial 

locations of urban heat islands have been well studied and methods have been determined 

to locate UHIs.  In situ sensors can measure air temperature, which can help to locate 

atmospheric urban heat islands.  Satellite infrared remote sensing is able to measure the 

land surface temperature (LST) component of urban heat islands.  “LST has been utilized 

in various heat-balance, climate modeling and global-change studies since it is 

determined by the effective radiating temperature of the Earth’s surface, which controls 

surface heat and water exchange within the atmosphere”(Yuan and Bauer 2007, 376).   

Several studies have examined the spatial patterns and relationships of various 

socioeconomic variables and urban heat islands.  Johnson and Wilson (2009) investigated 

the spatial relationship of vulnerable populations, UHI intensities and heat-related deaths 

that occurred during the 1993 extreme heat event in Philadelphia, PA.  They used a 

standard deviational ellipse (SDE) approach to determine spatial distributions.  In 

addition, they tested the predictability of the spatial distribution of EHE mortality using 

multiple linear regression, following the exploratory analysis of the SDE (Johnson and 

Wilson 2009).  It was found that the ellipse that contained the most deaths was age 65 

and older.  In addition, it was found that the only vulnerability measure used in the study 

that was similar to the total population distribution was age 65 and older (Johnson and 

Wilson 2009).  
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Nearly all urban heat island and extreme heat event research has found the same causes 

of death and illnesses attributable to heat.  McGeehin and Mirabelli (2001) concluded that 

heat stroke is the most common cause of death and serious illness is attributable to EHEs.  

They also reported that the most common underlying medical conditions after exposure 

to excessive heat include cardiovascular and respiratory disease, diabetes, renal diseases, 

and nervous system disorders (McGeehin and Mirabelli 2001). 

Saaroni et al. (2000) investigated the spatial variability of UHI intensity in Tel Aviv, 

Israel.  During the daytime, they found both negative and positive heat pockets in the 

center of the city.   The warmer areas were associated with high building densities, heavy 

traffic flows, various daytime heat sources and low sea-breeze ventilation while the 

cooler areas were found in open areas such as plazas.   

Giridharan et al. found that the most significant land use factors that affect UHI intensity 

in Hong Kong were albedo, the sky view factor, the height to total floor area ratio and 

altitude (Giridharan, Ganesan and Lau 2005).  Giridharan et al. also determined that the 

most significant correlation between urban land use parameters and UHI intensity was 

found on clear days and summer nights (Giridharan et al. 2007). 

Socially Vulnerable Populations 

As previously stated, urban areas are particularly affected by EHEs; this is of great 

importance because urbanization is increasing at an unprecedented rate for many cities 

worldwide.  This growth in urbanization also means that the number of people exposed to 

the urban heat island effect is increasing, especially during EHEs (Voogt 2002).  As with 

most natural disasters, socially created vulnerabilities are largely ignored due to the 

difficulty in quantifying them; this helps to explain why social losses are typically absent 
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in after-disaster cost/loss estimation reports (Cutter, Boruff and Shirley 2003).  “Social 

vulnerability is partially the product of social inequalities—those social factors that 

influence or shape the susceptibility of various groups to harm and that also govern their 

ability to respond (Cutter, Boruff and Shirley 2003, 243).” Social vulnerability also 

includes place inequalities, which represents the characteristics of communities and the 

built environment, such as urbanization, growth rates, and economic vitality that 

contribute to the social vulnerability of places (Cutter, Boruff and Shirley 2003).  

Previous social science research has found the characteristics that influence social 

vulnerability include age, gender, race and socioeconomic status.  Previous studies have 

determined that the characteristics that influence social vulnerability to extreme heat 

events are also age, gender, race, socioeconomic status and education.  Johnson and 

Wilson (2009) defined vulnerable populations in their EHE study as persons below 

poverty, those with less than a high school education, minority populations, the very 

young and the very old.  In addition, Stone et al. (2010) concluded that the populations 

vulnerable to heat are the very young and old, those who are homebound, confined to a 

bed, or unable to care for oneself, those who are socially isolated, lacking air 

conditioning and suffering from psychiatric or cardiopulmonary disease.  The majority of 

research concludes that the most vulnerable population is persons age 65 and older.  In 

fact, it has been found that more than 70 percent of heat-related deaths occur in persons 

age 65 and older (Avery 1985).  Cutter, Boruff and Shirley (2003) used the Social 

Vulnerability Index (SoVI) in order to determine the variables that are predictive of 

vulnerability to various environmental hazards for a particular location.  This approach 

reduces the number of variables using a factor reductionist technique known as principle 
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component analysis (PCA).  For their research, PCA was able to reduce the number of 

variables from 42 to 11; these variables accounted for 76 percent of the variance.  The 

output factors from the PCA were placed into an additive model used to compute a 

summary score; this summary score is the Social Vulnerability Index.  The summary 

score is based on standard deviations from the mean ranging from -1 to +1 representing 

low to high vulnerability respectively.   

Urban Heat Island Mitigation Strategies 

The development and implementation of mitigation strategies could help to lower 

temperatures in vulnerable areas, which will help to protect people and reduce heat-

related deaths and illnesses.  A key federal program that plays a leading role to promote 

heat island mitigation strategies is the Heat Island Reduction Initiative (HIRI).  The HIRI 

includes representatives from programs such as NASA, the US Department of Energy 

and the EPA.  A few examples of strategies that the HIRI promotes include the 

installation of light-colored reflective roofing and paving materials, planting shade trees 

and adding more vegetative cover (Solecki et al. 2005).  Several studies have reported 

widely successful strategies and mitigation plans to reduce the urban heat island effects 

with promising financial and environmental benefits.  Most mitigation strategies help to 

reduce anthropogenic heat release by turning off air conditioners, design of better roofs, 

or other design factors such as tree plantings (Rizwan, Dennis and Liu 2008).  It has also 

been determined that  the increase in albedo and/or vegetation in urban areas can help to 

reduce urban air temperatures with the associated benefits in terms of air quality and 

energy consumption (Synnefa et al. 2008).  
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Several studies have modeled and suggested appropriate mitigation and preventative 

methods to reduce the effect of UHIs.  Kalkstein developed a Hot Weather- Health 

Watch/Warning System for Philadelphia, PA.   Kalkstein used a climatological index for 

the study.  The climatological index is an automated air mass-based index, which 

categorizes each day based on its meteorological character using a synoptic 

climatological approach.  This type of synoptic procedure groups meteorologically 

homogenous days based on the following elements: air temperature, dew point 

temperature, total cloud cover, atmospheric pressure, wind speed and direction.  The 

overall goal of this system is to identify the oppressive air masses that are associated with 

increased mortality.  The format of the system is three-tiered; it produces a health watch, 

health alert, or a health warning. This system is used by Philadelphia’s National Weather 

Service office. (Kalkstein et al. 1996)  The official warnings and “information is 

transmitted to the Philadelphia Department of Health from the University of Delaware’s 

Center for Climatic Research, and after consultation with the local National Weather 

Service office, the health commissioner makes the final decision on the issuance of health 

advisories” (Kalkstein et al. 1996, 1524). 

In addition, “several modeling studies have suggested that urban environmental control 

strategies such as the increase of surface albedo can reduce surface and air temperatures 

and this effect is the most evident in areas where such surface modifications are most 

concentrated” (Synnefa et al. 2008, 2847).  A study carried out by Taha et al. examined 

the meteorological impacts of large-scale increases in albedo and vegetation in urban 

areas for 10 cities.  This study found that changes in albedo and vegetation could offset 

the 1o-2oC urban heat islands found in the majority of cities studied.  In a different study, 
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Taha found that large-scale increase in both albedo and vegetative cover could result in a 

3oC-3.5oC decrease in air temperature during some hours of the day (Taha 2005). 

Previous studies that evaluated the effect of shade trees have typically been small-scale 

experiments that examine the effect of trees on individual buildings or large-scale 

simulation modeling studies.  Akbari et al. were able to quantify the effect of shade trees 

on the total cooling costs of two comparable houses.  For this experiment, 16 potted trees 

were placed along the south and west walls of the homes; the homeowners kept their 

houses at the same temperature and used similar lighting.  Akbari et al. found that the 

trees were able to reduce the cooling costs between 26 and 47 percent (Akbari et al. 

1997). Akbari and Taha used simulation modeling to determine the effect of trees on 

energy usage in four Canadian cities.  It was concluded that  increasing vegetative cover 

in a neighborhood by 30 percent and increasing the albedo of houses by 20 percent would 

decrease heating costs by 10-20 percent and decrease cooling costs by 30-100 percent 

(Akbari and Taha 1992). 

Hart et al. used a combination of land-use data, surface cover imagery and weekday/ 

weekend daytime tree-structured regression models to quantify the land-use and surface 

characteristics that have the most significant impact and influence on UHI intensity in the 

Portland metropolitan area.  Their results suggested that the most important urban 

characteristic separating warmer areas from cooler areas was canopy cover.  They found 

that the influence of Portland’s Forest Park is greatest during the warmest part of the day 

when factors such as shading from the dense canopy cover and evapotranspiration are 

most significant (Hart and Sailor 2009).  In addition, Hart et al. also determined the 

difference of anthropogenic activity on UHI intensity for both weekends and weekdays: 
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the temperatures in Portland’s downtown core experience 1-2oC stronger UHI intensity 

on weekday afternoons than on weekend afternoons (Hart and Sailor 2009).  This 

difference between UHI intensity during weekends and weekdays is most likely due to 

differences in anthropogenic heat emissions; emissions are less during the weekends 

because of a decrease in building maintenance and traffic flows directed downtown (Hart 

and Sailor 2009).   

Rosenfeld et al. developed a simulation model for Los Angeles to determine whether 

white roofs and shade trees help to reduce temperatures.  In addition, this model also 

proved that UHI mitigation strategies have a lucrative benefit/cost ratio. This model 

raised the city albedo by 7.5 percent and covered 5 percent of the area with 10 million 

trees.  This model was able to predict that the direct effect of white roofs and shade trees 

could potentially reduce air conditioning use by approximately 18 percent for buildings 

that are directly affected (Rosenfeld, Romm and Akbari 1997). Rosenfeld et al. also 

determined that these mitigation strategies have an indirect effect; it was estimated that if 

a community drops about 1oF by the use of white roofs and additional shade trees, the air 

conditioning load would decrease for everyone.  These “indirect annual savings would 

total an additional 12 percent – 0.7 billion kilowatt-hours, or $70 million” (Rosenfeld, 

Romm and Akbari 1997, 56).  

Silva et al. (2009) developed a zero-dimensional energy balance model to be used as a 

mitigation tool for the study of urban heat islands.  The zero-dimensional model helped to 

show the relative effects of four common mitigation strategies; increasing the overall 

emissivity, the percentage of vegetation, thermal conductivity, and the albedo of the 

urban environment. This model can show the increase in each of these strategies in a 
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series of percentage increase s by 5, 10, 15 and 20 percent from the standard baseline 

values. The overall goal of this model is to determine how the increases in each of the 

parameters will lead to reductions in the urban temperatures. 

Cost-Benefits of Tree Planting 

Approximately one-sixth of the electricity consumed in the United States is used to cool 

buildings; this has an annual power cost of about $40 billion.    Mitigation tree planting 

methods involve planting a large amount of shade trees, but even a single tree planted has 

a benefit. For example, “a single properly watered tree can evapotranspirate 40 gallons of 

water in a day – offsetting the heat equivalent to that produced by one hundred 100-watt 

lamps, burning 8 hours per day”(Rosenfeld, Romm and Akbari 1997, 54).  Planting trees 

can also help to reduce pollutants and smog.  Within many urban areas, a 5oF heat island 

can increase the amount of pollutants; once pollutants are released in the form of ozone, 

they form the main ingredients of smog (Rosenfeld, Romm and Akbari 1997).  The direct 

reduction of air pollution is because of a decreased use in cooling energy.  “Indirect air 

pollution reductions reflect the fact that the reaction of ozone formation (that produces 

smog) accelerates at higher temperatures, therefore at lower urban temperatures the 

probability of smog formation is decreased” (Synnefa et al. 2008, 2847).  Although most 

trees help to reduce smog there are several types that help to create it; these trees should 

not be used as mitigation trees.  Some tree species emit large amounts of volatile organic 

hydrocarbons (VOC’s) that combine with oxides of nitrogen to form smog.  Ash and 

Maple are among the more VOC-free trees, emitting only about one VOC unit. 

Eucalyptus trees are problematic because of the high amounts VOC emissions 

(Rosenfeld, Romm and Akbari 1997). 
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Public Values and Benefits from Trees  

Trees can benefit an individual, a group/organization or an entire community (Westphal 

2003).  Vegetated areas such as gardens, parks and forests have been related to positive 

social outcomes including crime reductions, health benefits, and advanced childhood 

development (Tooke et al. 2009).  An increase in trees and tree plantings can also 

improve the physical appearance of an area, improve the environmental quality, and it 

can have an impact on important social issues such as education, economic development 

and social disenfranchisement.  Research has also found that community tree plantings 

give citizens a sense of empowerment and it can help to strengthen the social fabric 

within a community (Westphal 2003).  Within urban areas, urban forests play a critical 

role and can affect people socially, physically and mentally.  Urban forests are 

ecosystems which are characterized by the existence of trees and vegetation in 

association with human developments (Nowak et al. 2001).  The increasing urban 

populations have put increasing pressure on urban forests, threatening the basic 

ecological functions such as water and air purification.  Several studies have helped to 

determine how the public values urban forests.  Hull determined through surveys that 

people believe that trees evoke positive feelings and that they serve an important role in 

improving the community image (Hull 1992).  Lohr et al. discovered through surveys that 

the public typically has positive attitudes towards trees in cities; they also determined that 

the attitudes were increasingly positive if the subject had participated in garden or 

outdoor activities during childhood (Lohr et al. 2004).  On the other hand, the people who 

valued trees the least were typically males, young people, poorly educated and those with 

low incomes.  In addition, it was determined that the highest-ranked reason for using 
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trees was for shade and cooling.  Overall, it can be determined that trees play a significant 

role in reducing temperatures, increasing the well-being and beauty of neighborhoods, 

and positively affecting people socially, educationally, emotionally and economically. 

Tree Canopy Estimation 

There is an extensive amount of research on methods used to estimate vegetation 

characteristics and tree canopy coverage within urban areas.  Urban areas contain a 

variety of tree types (species and dimensions), land uses, and manufactured structures and 

each of these has different spectral reflectance characteristics.  The urban mosaic can 

make urban tree classification very difficult because unlike trees in rural areas that tend to 

form in continuous canopies, trees in urban settings are often single trees or isolated 

groups (Avery 1985).  The increase of impervious surfaces, bare soil and shadows within 

cities also make characterizing trees by remote sensing difficult. In cases of such difficult 

characterization of urban tree canopies, it is important to use high spatial resolution 

imagery for mapping individual trees (Avery and Berlin 1992).   

Tooke et al. classified urban vegetation characteristics by the use of spectral mixture 

analysis and decision tree classification using Quickbird imagery.   This study was able to 

produce vegetation fractions, high albedo substrate and dark features by the use of 

spectral mixture analysis.  This study also estimated shadows using LIDAR (Light 

Detection and Ranging) data; in addition, the condition and species of the vegetation was 

collected from observations to provide training data for the decision tree classifications.  

The results suggested that tree and vegetative ground cover could be accurately separated 

along the vegetation-dark mixing line with 80 percent and 94 percent of the variance 

explained respectively.  In addition, “more categories with variance explained ranging 
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from 67% and 100%” (Tooke et al. 2009, 398).  The research also determined that leaf-

off condition of deciduous trees could create pixels that have higher dark fractions due to 

bare tree branches and exposed soil that dominate the reflectance values.  

Xiao et al. (2004) used high-resolution Airborne Visible Infrared Imaging Spectrometer 

(AVIRIS) data and multiple masking techniques to extract and identify urban vegetation 

characteristics in Modesto, CA.  The AVIRIS data categorized the vegetation based on 

the spectral character difference and the masking techniques shifted the focus on 

particular land cover types in order to reduce confounding noise during the spectral 

analysis.  Xiao et al. were able to use low altitude AVIRIS data acquired at 3.5m spatial 

resolution; this allowed for studying the urban forest at an individual tree level.   This 

study used AVIRIS data, a field survey of all street trees, and various GIS layers (parcels, 

buildings, roads etc.).  Isolated trees were used to avoid spectral mixing among different 

species, 22 different species were selected from the field sample, and training sites were 

selected with GIS for validation purposes.  Xiao et al. were able to accurately select 16 of 

the 20 tree species; accuracy increased when the trees had large crowns and dense leaves.  

Overall, Xiao et al. concluded that isolated tree species could be accurately classified 

using AVIRIS data. 
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METHODS 

Study Area 

Figure 1: Study Area 

 

This study focused on Center Township in Marion County, Indiana (as seen in Figure 1 

above), which is located within Indianapolis.  It contains the central business district 

(CBD), Indiana University Purdue University Indianapolis (IUPUI) and several hospitals.  

In addition, approximately 97 percent of the total land area within Center Township is 

developed, ranging from open space development to high intensity development (see 

Figure 2).  More specifically, the study focused on Census block groups as units of 

analysis.  A total of 235 block groups are located within Center Township. 
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Figure 2: Land Cover Type 
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Land Surface Temperature 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery was used to determine the 

land surface temperature (LST) within Center Township.  The scan line corrector failure 

within ETM+ was fixed by an algorithm performed by NASA for this imagery.  The 

Landsat image was collected on June 23, 2009 with 0 percent cloud cover; it was 

acquired from the USGS Global Visualization Viewer (GLOVIS) http://glovis.usgs.gov/.  

Landsat collects land surface temperature and stores the information as raw digital 

numbers; these numbers can be converted to degree Kelvin.  In order to determine the 

LST, methods suggested by Chander et al. (2009) were used; these methods transform the 

digital numbers to temperature.  These methods convert sensor spectral radiance to at 

sensor brightness temperature.  These methods were completed in the ERDAS Imagine 

modeler.  The Kelvin temperatures were then converted to Fahrenheit for ease of use and 

understanding.  The LST values were then mapped to display the land surface 

temperature variations throughout Center Township. 
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Figure 3: Land Surface Temperature in Kelvin 
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Socioeconomic Variables 

Socioeconomic variables were selected on the basis of previous research that identified 

variables associated with populations that are particularly vulnerable during extreme heat 

events (Johnson and Wilson 2009).  Socioeconomic data were acquired from the U.S. 

Census Bureau’s American Factfinder for 2000 at the block group level.  The variables 

selected are the following: total population, Caucasian, African American, other race, 

Hispanic, persons under the age of 5; persons age 65 and older, median household 

income, total population below poverty, age 65 and older below poverty, persons with 

less than a high school education, age 65 and older living alone.  The data was joined 

with a block group shapefile of Center Township and converted from feature to point in 

order to run the kernel density function. 

Density Estimation 

A kernel density function (KDF) was run for each of the socioeconomic variables 

selected.  A KDF is capable of transforming data that is associated with geographically 

discrete features into a continuous or smooth raster.  The KDF calculates a magnitude per 

unit area from point or polyline feature to fit a smoothly tapered surface to each point or 

polyline (ESRI 2010a).  “The kernel weights vary within its ‘sphere of influence’ 

according to their distance from the point or polyline as the intensity estimated: the 

surface value is highest at the location of the geo-feature and diminishes over from the 

geo-feature” (Li, Wang and Leung 2010, 1764-1765).  The KDF  is able transform and 

normalize data in order to represent the densities of each variable and to decrease errors 

caused by political and geographic boundaries.  In addition, the KDF outputs a raster 

dataset that can then be used to determine the zonal statistics for each of the variables. 
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Zonal Statistics 

Once the KDF’s were run for each socioeconomic variable, zonal statistics were then run 

on each KDF variable and temperature.  Zonal statistics can calculate statistics on raster 

values within the zones of another dataset” (ESRI 2010b).  In other words, the zonal 

statistics were able to use the normalized KDF data and average the pixel values for each 

block group.  This process resulted in a zonal mean for each variable within each block 

group.  The area input for the zonal statistics was the centroid point of each block group, 

the unique STFID field was chosen as the zone field and the input value raster used was 

the KDF for each of the socioeconomic variables.  

Principal Component Analysis 

The next step used the zonal statistic mean output to determine the social vulnerability 

levels of the block groups within Center Township.  A Social Vulnerability Index (SoVI) 

was used for the block groups of Center Township.  The Social Vulnerability Index 

reduces the number of variables to only those that account for variance using PCA.  The 

SoVI uses the factor outputs from the PCA in an additive model, which results in a score 

for overall social vulnerability.  For this study, the PCA was run on the mean value of the 

socioeconomic variables.  The central idea of the PCA is to reduce dimensionality of a 

dataset consisting of a large number of interrelated variables, while retaining as much 

variation as possible present in the dataset (Joliffe 2002).  PCA allows for robust and 

consistent sets of variables to be monitored over time in order to assess any changes in 

overall vulnerability (Cutter, Boruff and Shirley 2003).  For this PCA, the mean values of 

each socioeconomic variable by block group were used as the independent variables.  The 

output factor loadings of the PCA will help to determine the variables that are predictors 
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of social vulnerability.  The Kaiser criterion was used for the determination of which 

factors to use because of its capability to represent the most variation.  The Kaiser 

criterion retains only the factors that have eigenvalues greater than 1.  The idea behind 

the Kaiser criterion is that unless a factor extracts at least as much as the equivalent of 

one original variable, it gets dropped (StatSoft 2011).  For this research, three factors had 

eigenvalues greater than 1.  These three factors were summed and used to represent the 

social vulnerability.  A choropleth map representing social vulnerability was then created. 

Tree Canopy Assessment 

A tree canopy assessment of Center Township completed by graduate students in  

IUPUI’s Department of Geography and Keep Indianapolis Beautiful, Inc. was used to 

estimate tree canopy coverage in the study area.  The tree canopy was created using 

satellite and aerial imagery.  The Quickbird satellite collected the satellite imagery on 

April 25, 2005.  The Quickbird sensor collects multispectral imagery in the blue, green, 

red, near-infrared portions of the electromagnetic spectrum at a resolution of 2.4m.  

Additionally, the Quickbird sensor also collects panchromatic black and white imagery at 

a resolution of 61cm.   

The first phase of the tree canopy assessment involved digital image classification of the 

Quickbird satellite imagery to group the image pixels into 50 categories based on similar 

spectral qualities.  The iterative self-organizing data analysis technique (ISODATA) 

unsupervised classification algorithm was used for clustering.  The resulting clusters were 

then classified as either tree canopy, other or mixed.  The second phase of the assessment 

involved visual interpretation and on-screen digitizing using the aerial imagery as a 

backdrop to correct errors and increase the accuracy of the tree canopy map.   
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Once the canopy assessment was complete, the tree canopy data was imported into 

ArcMap as a vector file and the percent tree canopy for each block group in Center 

Township was calculated.  To determine the percent tree canopy cover more accurately, 

the tree canopy polygons were clipped by the extent of each block group.  A choropleth 

map displaying percent tree canopy was then created to visually display the data.  
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Figure 4: Percent Tree Canopy Cover 
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Plantable Space Assessment 

Standard deviation maps were created to represent percent tree canopy cover, land 

surface temperature and social vulnerability; these maps helped determine which block 

groups have temperatures and social vulnerability above the mean and tree canopy cover 

below the mean.  The block groups that have a combination of high temperature, high 

social vulnerability and low tree canopy cover were selected for further analysis; a total 

of 18 block groups were selected  These block groups were assessed and suitable spaces 

to plant trees were then determined.  Plantable spaces were chosen through visual 

interpretation of aerial imagery, land use/ land cover characteristics, building polygon 

features, hydrology characteristics and street segment data.  Locations with open space to 

plant (i.e. without impervious surfaces) were selected as plantable spaces.  Polygons were 

digitized to designate plantable spaces and the total area of plantable space for each block 

group was determined and ranked.  This data will be provided to Keep Indianapolis 

Beautiful, Inc in order to implement tree plantings in these socially vulnerable locations. 
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RESULTS 

Land Surface Temperature Results 

Land surface temperatures derived from the Landsat ETM+ image of the study area 

ranged from 289.95K–314.24K.  The highest temperatures were located within the 

central business district (CBD).  Other high temperatures were observed within high-

density/high-intensity developed neighborhoods surrounding the CBD.  Figure 3 displays 

the temperature variations within Center Township.  Zonal statistics were used to 

determine the average temperature for each block group.  These average land surface 

temperatures were converted to degrees Fahrenheit.  The average temperature in 

Fahrenheit for each block group ranged from 68.71oF–94.29oF.  Figure 4 represents the 

average temperature in Fahrenheit for each block group. 
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Figure 5: Land Surface Temperature in Fahrenheit 
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Social Vulnerability Results 

The resulting output is reported in Tables 3-8.  Table 5 is highlighted in order to represent 

how the variables are grouping together in the components.  For example, variables 

Total65_Mean to Hispanic_Mean are grouped into component 1.  Total65Alone_Mean to 

Male65_Mean are grouped into component 2; the remaining variables are grouped into 

component 3.  These components represent either greater or lesser variance.  In other 

words, the most variance in vulnerability is explained in component one, followed by 

component 2 and then component 3.  When the values within the first 3 components are 

summed, they explain about 80 percent of the total variance in vulnerability.  Figure 5 

displays components 1-3 summed;  this map represents the  social vulnerability for the 

block groups located within Center township.   
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Table 1: Total Variance Explained 

Total Variance Explained 

Component  Initial Eigenvalues  Extraction Sums of Squared Loadings 

Total  % of Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulativ

e % 

 

1  9.139 50.771 50.771 9.139 50.771 50.771

2  3.923 21.794 72.564 3.923 21.794 72.564

3  1.346 7.480 80.044 1.346 7.480 80.044

4  .867 4.818 84.862    

5  .707 3.929 88.791    

6  .492 2.735 91.525    

7  .420 2.333 93.858    

8  .358 1.991 95.849    

9  .321 1.786 97.635    

10  .153 .847 98.482    

11  .122 .677 99.159    

12  .056 .313 99.472    

13  .040 .220 99.692    

14  .037 .207 99.899    

15  .018 .101 100.000    

16  2.908E‐5 .000 100.000    

17  1.710E‐5 9.500E‐5 100.000    

18  2.540E‐6 1.411E‐5 100.000    

 

Extraction Method: Principal Component Analysis. 
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Table 2: Component Matrix 

Component Matrix
a
 

 

Component 

1  2  3 

TotalHS_MEAN  .922 ‐.126 ‐.140

Total65_MEAN  .921 ‐.220 ‐.124

Male5_MEAN  .913 ‐.202 ‐.135

Fem5_MEAN  .913 ‐.235 ‐.110

FemHS_MEAN  .909 ‐.016 ‐.165

MaleHS_MEAN  .848 ‐.227 ‐.101

BelPov_MEAN  .839 ‐.051 ‐.281

Other_MEAN  .779 ‐.518 .046

Hispanic_MEAN  .734 ‐.533 .055

White_Mean  .696 ‐.410 .507

Male65_MEAN  .643 .569 .058

MHHI_MEAN  .471 ‐.156 .460

Total65Alone_MEAN  .544 .743 .260

BelPov65_MEAN  .390 .720 .015

Fem65Alone_MEAN  .547 .670 .155

Male65Alone_MEAN  .366 .632 .358

Fem65_MEAN  .582 .612 .044

Black_MEAN  .197 .586 ‐.682

Extraction Method: Principal Component Analysis.

a. 3 components extracted. 
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Table 3: Rotated Component Matrix 

Rotated Component Matrix
a
 

 

Component

1  2 3

Total65_MEAN  .931 .195 .086

Fem5_MEAN  .925 .182 .103

Male5_MEAN  .920 .204 .068

TotalHS_MEAN  .900 .272 .038

Other_MEAN  .874 ‐.080 .328

MaleHS_MEAN  .863 .162 .100

FemHS_MEAN  .853 .354 ‐.025

BelPov_MEAN  .837 .262 ‐.130

Hispanic_MEAN  .837 ‐.111 .336

Total65Alone_MEAN  .124 .948 .054

Fem65Alone_MEAN  .184 .860 ‐.017

Male65Alone_MEAN  ‐.017 .798 .160

Fem65_MEAN  .267 .797 ‐.095

BelPov65_MEAN  .064 .795 ‐.186

Male65_MEAN  .333 .791 ‐.059

Black_MEAN  .135 .414 ‐.811

White_Mean  .633 .094 .707

MHHI_MEAN  .350 .197 .545

Extraction Method: Principal Component Analysis. 

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 5 iterations. 
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Table 4: Component Transformation Matrix 

Component Transformation Matrix

Component 
1  2  3 

 

1  .883  .451
.134

2  ‐.383  .855
‐.350

3  ‐.273  .258
.927

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization.  
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Table 5: Coefficient Matrix 

Component Score Coefficient Matrix 

 

Component

1  2 3

White_Mean  .005 .042 .396

Black_MEAN  .100 .007 ‐.519

Other_MEAN  .117 ‐.066 .089

Hispanic_MEAN  .112 ‐.069 .096

Male5_MEAN  .135 ‐.025 ‐.062

Fem5_MEAN  .133 ‐.027 ‐.041

Male65_MEAN  ‐.005 .167 ‐.001

Fem65_MEAN  ‐.013 .171 ‐.016

Total65_MEAN  .136 ‐.026 ‐.052

MHHI_MEAN  ‐.032 .077 .338

BelPov_MEAN  .143 ‐.023 ‐.177

BelPov65_MEAN  ‐.036 .179 ‐.048

MaleHS_MEAN  .125 ‐.027 ‐.037

FemHS_MEAN  .123 .010 ‐.099

TotalHS_MEAN  .130 ‐.009 ‐.071

Male65Alone_MEAN  ‐.099 .224 .196

Fem65Alone_MEAN  ‐.044 .203 .055

Total65Alone_MEAN  ‐.073 .238 .121

Extraction Method: Principal Component Analysis. 

 Rotation Method: Varimax with Kaiser Normalization.  

 Component Scores. 
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Table 6: Covariance Matrix 

Component Score Covariance Matrix 

Component 
1  2  3 

dimen
sion0 

1 
1.000  .000 .000

2 
.000  1.000 .000

3 
.000  .000 1.000

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization.   

 Component Scores.  
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Figure 6: Socially Vulnerable Locations 
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Figure 7: Socially Vulnerable Locations with Aerial Image 
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Tree Canopy Extraction Results 

The tree canopy map provided by the IUPUI Deparment of Geography is displayed in 

Figure 6.  The majority of heavy tree canopy cover is located along water features and 

within suburban areas surrounding the CBD.  There is very little tree canopy cover within 

the CBD. 

Figure 8: Raster Image of Tree Canopy Cover 

 

The range of the percent tree canopy cover within block groups was approximately 0-46 

percent.  The block group that contained about 0 percent tree canopy cover was an 
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outlier.  This block group is only about 1536 square feet and it is located in a median 

between I-65 North and on a ramp to I-65 North.  This block group appears to be an 

anomaly with a population also of zero.  This particular block group was excluded from 

the classification when the standard deviation maps were completed. 
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Most Vulnerable Block Groups and Plantable Space Results 

The social vulnerability, tree canopy cover and temperature maps were recreated to 

represent standard deviations.  One standard deviation from the mean was used for each 

map.  Block groups with social vulnerability above the mean are mostly located within 

the central and western and near eastside areas of Center Township (see Figure 9).  The 

block groups with standard deviations above the mean for temperature are located within 

the center portion of Center Township but some are also found within the southern and 

western portion of the township (see Figure 9).  The block groups with standard 

deviations below the mean for percent tree canopy cover are located within much of 

Center Township except or the northwestern corner of the township (see Figure 10).  A 

total of 18 block groups were selected to further study for plantable space locations.  

These block groups were chosen because they had a combination of low tree tree canopy 

cover below the mean and high social vulnerability and temperatures aboce the mean.  It 

was found that the percent plantable space for the most vulnerable block groups ranged 

from approximately 1.47-20.94 percent.  See Table 9 for each block groups percent 

plantable space.  In addition, several maps were created to show examples of the 

plantable space digitizing.  Figure 13 represents the block group with the lowest percent 

plantable space (1.47 percent).  This block group has the lowest plantable space percent 

because it is situated within the CBD where most of the groundcover is impervious 

surfaces and very little open space.  Figure 14 represents the the near average percent 

plantable space (11.86 percent).  This block group has a good deal of open space in which 

trees can be planted. This block group is a good representation of what the plantable 

space looks like for the more residential block groups that were selected.  Figure 15 
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represents the block group with the highest percent plantable space (20.94 percent).  This 

block group has a lot of plantable space because a highway exists within it.  There is a lot 

of tree planting potential because there are large amounts of open space surrounding the 

highways and on the medians.  

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

Figure 9: Social Vulnerability Measured with Standard Deviation  
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Figure 10: Land Surface Temperature Measured with Standard Deviation 
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Figure 11: Percent Tree Canopy Cover Measured with Standard Deviation   
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Figure 12: Most Vulnerable Block Groups 
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Table 7: Percent Plantable Space Characteristics 

Block Group  Plantable Space Area (sq. ft)  Block Group Area (sq. ft)  Percent Plantable Space 

180973542005  26271.21  1787995.99  1.47 

180973542006  199973.98  2787424.57  7.17 

180973542002  255712.55  3352617.26  7.63 

180973542008  173880.01  1952589.11  8.91 

180973549002  209160.15  2316402.29  9.03 

180973542001  220551.47  1993154.87  11.07 

180973551002  404524.96  3484563.98  11.61 

180973525004  324261.53  2735240.63  11.85 

180973553002  613983.98  5176058.42  11.86 

180973510001  336680.00  2645185.15  12.73 

180973559003  207171.04  1511221.40  13.71 

180973570003  275529.42  1963994.58  14.03 

180973569003  256425.38  1806855.55  14.19 

180973557003  644080.15  4521854.96  14.24 

180973571001  372887.56  2591796.29  14.39 

180973569001  562965.78  3696775.53  15.23 

180973559002  359216.19  2318227.21  15.50 

180973571004  587744.01  2806877.93  20.94 
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Figure 13: Least Plantable Space Block Group 
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Figure 14: Average Plantable Space Block Group 
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Figure 15: Most Plantable Space Block Group 
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CONCLUSION 

Locating vulnerable populations and implementing mitigation strategies before and 

during extreme heat events can help to prevent heat-related illness and death.  In addition, 

tree planting mitigation strategies can also help communities socially, aesthitcally and 

environmentally.  Several methods were implemented in this study to locate vulnerable 

populations and determine locations to implement tree plantings in order to mitigate the 

effects of urban heat islands and extreme heat events.  The land surface temperature 

within Center Township was determined first in order to locate the urban heat island 

within Center Township.  The UHI was primarily located within the CBD.  The 

temperatures ranged from 68.71oF-94.21oF throughout Center Township.   

The social vulnerability was determined by implementing the Principal Component 

Analysis.  Several socioeconomic variables were used within the PCA; these variables 

are as follows: total population, Caucasian, African American, other race, Hispanic, 

persons under the age of 5; persons age 65 and older, median household income, total 

population below poverty, age 65 and older below poverty, persons with less than a high 

school education, age 65 and older living alone.  The results of the PCA determined that 

the first three components explain about 80 percent of the total variance for vulnerability. 

The next method involved determining the location and amount of tree canopy cover.  It 

was found that the percent tree canopy cover ranged from 0-46 percent for the Center 

Township block groups.   

The first three methods determined the land surface temperature, social vulnerability and 

tree canopy cover; once these were analyzed, the results for each were then tied together.  

Standard deviation maps helped to determine the 18 high-risk block groups that are 
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particularly vulnerable to high temperatures, low tree canopy cover and high social 

vulnerability.  Further analysis was completed on the block groups to help determine 

which block groups had areas in which tree plantings could potentially be implemented.  

The overall findings found that of the 18 block groups further analyzed, 13 had more than 

10 percent plantable space.  In addition, all but one block group had more than 5 percent 

plantable space.   

Although the overall results and methods of this study were consistent and thoroughly 

examined, there were several limitations to this study.  The first limitation to this study 

was the inconsistent dates among the data.  For example, the thermal imagery was 

acquired during 2009, the socioeconomic variables were collected from 2000 and the tree 

canopy cover was extracted from 2005 data.  These inconsistencies exist due to the lack 

of access and time to acquire newer data.  This is recognized as a shortcoming for the 

research and it is suggested that further research use the most updated 2010 Census data 

along with 2010 thermal imagery and tree canopy imagery.  The KDF analysis is a good 

approach to use but it should be noted that some argue that it can introduce error and it 

may be based on underlying assumptions that may not apply to Census data.  The 

digitizing of the plantable spaces may have not been the most accurate approach but due 

to time and data availability constraints it was the most effective and efficient methods 

for this study.  Lastly, tree types were not taken into account due to the extensive nature 

and expertise of these types of research.  Forestry experts at Keep Indianapolis Beautiful 

will be able to determine tree the types most suitable to planting. 
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FURTHER RESEARCH 

The effectiveness and overall benefits of urban heat island mitigation strategies have not 

been studied enough to fully understand the best approaches.  Further research should 

study the direct impact of various mitigation strategies to fully comprehend the extent to 

which they can reduce temperatures.  In addition, it would be very informative for further 

research to extensively study the tree species that should and should not be planted.  It 

would also be interesting for additional research to examine where trees should be 

planted based on sun angles and locations around buildings; this focus would help to 

reduce energy costs. 
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