
Graduate School ETD Form 9 
(Revised 12/07)       

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By  

Entitled

For the degree of   

Is approved by the final examining committee: 

       
                                              Chair 

       

       

       

To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.  

      

Approved by Major Professor(s): ____________________________________

                                                      ____________________________________ 

Approved by:   
     Head of the Graduate Program     Date 

Stephen Joseph Chamblee

The Dynamics of Twisted Tent Maps

Doctor of Philosophy

Michal Misiurewicz

Roland Roeder

William Geller

Alexandre Eremenko

Michal Misiurewicz

Evgeny Mukhin 04/06/2012



Graduate School Form 20 
(Revised 9/10)  

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Research Integrity and Copyright Disclaimer 

Title of Thesis/Dissertation: 

For the degree of       Choose your degree                    

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University 
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this 
thesis/dissertation have been properly quoted and attributed. 

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the 
United States’ copyright law and that I have received written permission from the copyright owners for 
my use of their work, which is beyond the scope of the law.  I agree to indemnify and save harmless 
Purdue University from any and all claims that may be asserted or that may arise from any copyright 
violation. 

______________________________________ 
Printed Name and Signature of Candidate 

______________________________________ 
Date (month/day/year) 

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

The Dynamics of Twisted Tent Maps

Doctor of Philosophy

Stephen Joseph Chamblee

04/06/2012



THE DYNAMICS OF TWISTED TENT MAPS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Stephen Joseph Chamblee

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2012

Purdue University

Indianapolis, Indiana



ii

This work is dedicated to my family, who have given so much to make this work

possible.



iii

ACKNOWLEDGMENTS

I would like to thank all of the people at IUPUI who have helped and encouraged

me leading up to this work. To the faculty, staff, and fellow graduate students of

the IUPUI Math Department–thank you. A special thanks to the dynamical sys-

tems group for their instruction, friendship, and helpful advice. Finally, I would

like to thank my advisor, Micha l Misiurewicz, who’s help and patient guidance was

immensely valuable to me.



iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BASIC CASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 THE FILLED-IN JULIA SET . . . . . . . . . . . . . . . . . . . . . . . . 22

4 THE PERIMETER SET P . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 HUNGRY SETS AND CRISES . . . . . . . . . . . . . . . . . . . . . . . 71
5.1 Hungry Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 The Coded-Coloring of K Shows Periodic Structures in K . . . . . 74
5.3 A Hungry Set that is a Topological Annulus . . . . . . . . . . . . . 76
5.4 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Boundary Crises and Sudden Changes in Dynamics . . . . . . . . . 81
5.6 Hungry Set with Multiple Components in an Annulus . . . . . . . . 84
5.7 Swelling the Components of an Hungry Set . . . . . . . . . . . . . . 84
5.8 Coexisting Disjoint Hungry Sets . . . . . . . . . . . . . . . . . . . . 89

6 PARTITIONING THE PARAMETER SPACE . . . . . . . . . . . . . . . 91

7 ENTROPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



v

LIST OF FIGURES

Figure Page

1.1 A structure in the coded-coloring of a filled-in Julia set. . . . . . . . . . 2

1.2 A few examples of filled-in Julia sets for TTM’s. . . . . . . . . . . . . . 2

1.3 Highlighted is K(c3) which appears in the coded-coloring of K(c). . . . 3

1.4 An escape-time coloring of the parameter plane. . . . . . . . . . . . . . 4

1.5 The coded-coloring of the parameter plane . . . . . . . . . . . . . . . . 5

1.6 K resembling fractal antenna designs. . . . . . . . . . . . . . . . . . . . 6

2.1 Construction of a convex polygon P for Theorem 2.0.12 case 3. . . . . . 15

2.2 Partitions of UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 A partitioning of the neighborhood of UP when k = 5. . . . . . . . . . 19

3.1 Creation of isolated components of K . . . . . . . . . . . . . . . . . . . 27

3.2 Isolated points of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 The set of parameters where L ∩ FL 6= ∅ . . . . . . . . . . . . . . . . . 30

3.4 An example where K is connected but FL∩K is disconnected. . . . . . 33

4.1 An example of various `k. . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 An example of L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Proposition 4.0.46 when α < −1 and L0 ∩ L2 6= ∅. . . . . . . . . . . . . 40

4.4 A worst case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 The construction of P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Examples of P and K . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Some examples of P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 An example where L−1 extends past a side of P . . . . . . . . . . . . . . 48

4.9 The outer-most and inner-most boundaries of P . . . . . . . . . . . . . 51

4.10 The outer-most boundary . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.11 An example where f(P ) ⊂ P . . . . . . . . . . . . . . . . . . . . . . . . 53



vi

Figure Page

4.12 If L−1 ∩ PFL 6= ∅ then {ζ} = L−1 ∩ PFL . . . . . . . . . . . . . . . . . 53

4.13 An example where the outer-most boundary of P has 3 sides. . . . . . 55

4.14 Example where the outer-most boundary of P has 5 sides and θ > π/2. 56

4.15 Example where P is a rectangle but still has 5 sides. . . . . . . . . . . 57

4.16 Example where the outer-most boundary of P has 5 sides and θ < π/2. 58

4.17 Outer-most boundary when P has 7 sides and α > 0 . . . . . . . . . . 60

4.18 An example where S3 = S0

c3
∩ PH+. . . . . . . . . . . . . . . . . . . . . 63

4.19 An example where P resembles a ram’s head . . . . . . . . . . . . . . . 64

4.20 An example of P when ζ does not exist and K is totally disconnected. 66

4.21 An illustration showing the locations of mk, k = 0, 1, 2, 3. . . . . . . . 68

4.22 P when Im(ζ) > −1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.23 An example of P and K when ζ is above FL. . . . . . . . . . . . . . . 70

5.1 The coded-coloring of K . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 The coded-coloring of the filled-in Julia set of the map f(z) = z2 − 0.6. 77

5.3 An example where A is a topological annulus. . . . . . . . . . . . . . . 77

5.4 Simple structures found in a coded-coloring of K . . . . . . . . . . . . 78

5.5 The coded-coloring of K(c) overlaid with K(c3). . . . . . . . . . . . . . 79

5.6 The image of K(|c|2c) under a conjugating map . . . . . . . . . . . . . 80

5.7 K(|c|2c) embeds into K(c) by an affine transformation . . . . . . . . . 80

5.8 K(c) can sometimes be decomposed into smaller filled-in Julia sets. . . 81

5.9 Composite dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10 An embedding of K(c4) . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.11 The creation of “islands” . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.12 Loss of a periodic point . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.13 A change in parameter causing a hungry set to leak . . . . . . . . . . . 87

5.14 A hungry set with multiple components . . . . . . . . . . . . . . . . . . 88

5.15 Each hungry set must intersect FL . . . . . . . . . . . . . . . . . . . . 89

5.16 Using the omega-limit set of a point to find a hungry set . . . . . . . . 90



vii

Figure Page

6.1 The polygonal locus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Points in the parameter plane where `n ∈ H− . . . . . . . . . . . . . . 93

6.3 A black and white partition of the parameter plane . . . . . . . . . . . 93

6.4 A colorful partition of the parameter plane. . . . . . . . . . . . . . . . 94

6.5 The conjectured complement of the Cantor Locus . . . . . . . . . . . . 94

6.6 Very different c’s with similar structures inside of K. . . . . . . . . . . 95

6.7 Escape-time and coded-colorings of the parameter plane . . . . . . . . 96

6.8 Around a flare in 80 days . . . . . . . . . . . . . . . . . . . . . . . . . 97



viii

SYMBOLS

α . . . . . . . . . . . . 12

β . . . . . . . . . . . . 12

γ0 . . . . . . . . . . . . 14

γk . . . . . . . . . . . . 50

Γ . . . . . . . . . . . . 50

ζ . . . . . . . . . . . . . 46

η . . . . . . . . . . . . . 74

θ . . . . . . . . . . . . . 9

τ . . . . . . . . . . . . . 102

ω . . . . . . . . . . . . 73

Bd . . . . . . . . . . . 22

C . . . . . . . . . . . . 1

Cl . . . . . . . . . . . . 73

Conv . . . . . . . . . 38

D . . . . . . . . . . . . 14

Diam . . . . . . . . 23

FL . . . . . . . . . . . 9

g . . . . . . . . . . . . . 21

h . . . . . . . . . . . . . 21

Im . . . . . . . . . . . 11

Int . . . . . . . . . . . 43

J . . . . . . . . . . . . 22

K . . . . . . . . . . . . 22

`0 . . . . . . . . . . . . 35

`k . . . . . . . . . . . . 35



ix

L0 . . . . . . . . . . . 38

Lk . . . . . . . . . . . 38

m . . . . . . . . . . . . 41

P . . . . . . . . . . . . 43

PFL . . . . . . . . . 13

R . . . . . . . . . . . . 1

Re . . . . . . . . . . . 11

Reflect . . . . . . . 9

S . . . . . . . . . . . . 43

z′ . . . . . . . . . . . . 41



x

ABSTRACT

Chamblee, Stephen Joseph Ph.D., Purdue University, May 2012. The Dynamics of
Twisted Tent Maps. Major Professor: Micha l Misiurewicz.

This paper is a study of the dynamics of a new family of maps from the complex

plane to itself, which we call twisted tent maps. A twisted tent map is a complex

generalization of a real tent map. The action of this map can be visualized as the

complex scaling of the plane followed by folding the plane once. Most of the time,

scaling by a complex number will “twist” the plane, hence the name. The “folding”

both breaks analyticity (and even smoothness) and leads to interesting dynamics

ranging from easily understood and highly geometric behavior to chaotic behavior

and fractals.



1

1. INTRODUCTION

Real tent maps are piecewise-linear maps from the real line R to itself and have been

extensively studied. Real tent maps can be visualized as a real scaling followed by a

folding. Working on the complex plane C instead of R and replacing the real scaling

by multiplication by a complex parameter c, we get a complex generalization of real

tent maps. Because multiplication by a complex number usually rotates (or twists)

the complex plane, we call these new maps twisted tent maps or TTM’s. This work

attempts to both study and lay a foundation for the future study of TTM’s.

This subject has several inherent advantages for those who study TTM’s. The

first is the simplicity of the map. A twisted tent map sends a line segment to either

a line segment or to a bent line segment. This often gives rise to structures that

can be studied using geometry, although quite often these structures are very compli-

cated. The second advantage is the ability to make pictures, which aid in intuition,

understanding, and interest, since these pictures are often beautiful and pleasing on

their own (see Figure 1.1). The primary disadvantages of the subject are the lack of

analyticity and smoothness due to folding.

For us, the natural object of study is the filled-in Julia set K = K(c), which is the

set of all points whose trajectory stays bounded under forward iteration. Frequently,

a TTM restricted to a forward invariant subset of K is conjugate (in the dynamical

sense) to a real tent map. Depending on the choice of c, K(c) can be a line segment,

a double spiral of line segments, a polygon, a fractal, or even a Cantor set. In this

work, necessary and sufficient conditions will be given for K to be a polygon. Figure

1.2 shows a few examples of K.

For the most interesting TTM’s there are no attracting periodic points in C.

Instead, there can be sets of points we call hungry sets that attract neighboring

points, “eat” them, and retain them. These hungry sets can be simply connected, a
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Figure 1.1. A structure in the coded-coloring of a filled-in Julia set.

Figure 1.2. A few examples of filled-in Julia sets for TTM’s.
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topological annulus, or be comprised of periodic components. There can be several

distinct hungry sets in a filled-in Julia sets and some hungry sets can contain smaller

hungry sets.

A very standard way to make pictures of filled-in Julia sets is to color pixels based

on the escape-time algorithm (such as in Figure 1.2). However, when K has nonempty

interior, the escape-time algorithm shows only black throughout the interior of K. We

introduce a new coloring algorithm called the coded-coloring algorithm which makes

it possible to see periodic structures and their preimages in the interior of K. Some of

these structures behave like periodic copies of filled-in Julia sets for a different choice

of parameter (see Figure 1.3).

Figure 1.3. Highlighted is K(c3) which appears in the coded-coloring of
K(c).

The coded-coloring can also be used in making pictures of the parameter plane.

Any structures that appear near c in the coded-coloring of the parameter plane are ap-

proximate previews of the structures found in the coded-coloring of K(c) (see Figures

1.4 and 1.5).

There have been several generalizations of real tent maps, such as the c-tent maps

which are defined in [2]. We believe that TTM’s are also suitable subjects to study,

due to the simplicity of the formula, the complexity of the dynamical behavior, and
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Figure 1.4. The escape-time algorithm of the parameter plane near c gives
a preview of the structure found in K(c) when K(c) has empty interior.
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Figure 1.5. The coded-coloring of the parameter plane near c gives a
preview of structures found in K(c).
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to the beauty of the pictures. Further motivation for the study of TTM’s include the

following:

1. This family of maps is new, interesting, and simple enough to ensure the suc-

cessful completion of the requirement of a thesis.

2. A similar map is studied in [11].

3. It is shown in [4] that fractals (for example Koch curves) can be used as designs

for frequency independent antennae. Koch curves appear as filled-in Julia sets

for certain TTM’s. Thus, it is possible that TTM’s could be useful in finding

fractals that have not yet been considered for this purpose.

Figure 1.6. Examples of filled-in Julia sets for TTM’s that resemble cur-
rently used fractal antenna designs.

This present work is organized in the following way:

Chapter 2 provides the formal definition of a TTM, some of the basic terms, and

shows that due to conjugacy (both topological conjugacy and complex conjugation)

there is a canonical subset of the family of twisted tent maps that are sufficient

representatives of the entire family. This subset consists of TTM’s whose folding

line is the set of points with imaginary part equal to −1 and whose parameter has
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non-negative imaginary part. For a canonical TTM we show that if |c| < 1 then the

dynamics are trivial. We then study the dynamics that can occur if |c| = 1 and finish

the chapter with a list of assumptions that will be held throughout the rest of the

text.

Chapter 3 describes K when c ∈ R. In this chapter we also give some partial

results about the connectivity of K as well as several conjectures. We also give a

several different sufficient criteria for K to be a Cantor set.

In Chapter 4 we define and use the perimeter set P , which is the primary tool we

use to categorize K. The definition of P was chosen such that the following are true.

• P is compact,

• P = K for some cases,

• P always contains K,

• P is easily calculated,

• P gives us significant information about K.

In the process of defining P , we show that when K is a polygon, then its boundary

can be explicitly calculated.

Chapter 5 lays down a framework for the study of hungry sets and gives the

proofs for a few results. The rest of this chapter is broken up into sections primarily

consisting of experimental results. These experimental results include examples where

hungry sets swell in size as the modulus of the parameter is increased as well as

examples illustrating that the tools of renormalization might be useful in studying

TTM’s.

In Chapter 6 describes what we know about different pictures of the parameter

plane. These pictures include the polygonal locus, which is the set of parameters c

such that K(c) is a polygon. The coded-coloring of the parameter plane is discusses

and several open problems and conjectures can be found in this discussion.
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Chapter 7 proves several results about the entropy of a TTM, such as Theorem

7.0.16 which states that h(f |K) ≤ log min(2, |c|2) and that this inequality is sometimes

strict.

Lastly, scattered throughout this text are conjectures and open questions to aid

those who wish to continue to develop this theory.
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2. BASIC CASES

Let FL denote a line in the complex plane. (FL will later be called the folding line.)

Then FL divides the plane into two closed half planes H− and H+, where 0 ∈ H+. (If

0 ∈ FL then the choice of H+ is arbitrary.) Let Reflect(z,FL) be the reflection of the

point z about the line FL. Let c ∈ C and fix FL. We wish to study the dynamics of

a family of functions {fc} where fc : C→ C is of the form:

fc(z) =

cz if cz ∈ H+,

Reflect(cz,FL) if cz ∈ H−.
(2.1)

If 0 ∈ FL then the dynamics are trivial. Let r = |c|.

Theorem 2.0.1 Assume 0 ∈ FL. Then every point is eventually mapped into the

invariant sector S with the negative real axis as its bottom edge, vertex 0, and with

angle θ measured clockwise from the negative real axis.

1. If r < 1 then 0 is an attracting fixed point whose basin of attraction is C.

2. If r = 1, then for all z ∈ S, f 2(z) = z.

3. If r > 1, then the orbit of every nonzero point diverges to infinity.

Proof Each of these follow easily after the observation that since 0 ∈ FL, then

reflection about FL does not affect the modulus of a point.

From now on, we will assume that 0 /∈ FL. Theorem 2.0.2 shows that all choices

of FL that do not pass through the origin are equivalent. This allows us to make a

canonical choice for FL which simplifies things greatly.
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Theorem 2.0.2 Let FLF and FLG be two different choices for FL. Let F = {fc :

c ∈ C} and G = {gc : c ∈ C} be the resulting families of functions with those choices

of folding lines, defined as in (2.1). Then for every c ∈ C, fc is conjugate to gc.

Proof There exists a unique circle centered at the origin such that the line FLF is

tangent to it at a point zF . Similarly, we define zG to be the point where FLG is

tangent to some circle centered at the origin. Note that the points zF and zG depend

only on the choice of FL and not on c. We denote the closed half planes on either

side of FLF by H−F and H+
F . Likewise, the closed half planes that meet along FLG are

denoted by H−G and H+
G. Now let ϕ : C → C be define by ϕ(z) = zG

zF
z. Since neither

FLF nor FLG pass through the origin, then zF , zG 6= 0. Thus ϕ and its inverse are

well defined. The following hold trivially:

1. ϕ is a homeomorphism.

2. ϕ(cz) = cϕ for every c ∈ C.

3. ϕ(zF ) = zG

4. ϕ(FLF ) = {ϕ(z) : z ∈ FLF} = FLG

5. ϕ(H+
F ) = H+

G

6. ϕ(H−F ) = H−G

7. ϕ(Reflect(z, FLF )) = Reflect(ϕ(z),FLG)

Thus, for every c ∈ C, if z ∈ H+
F then ϕ(fc(z)) = zG

zF
cz = c

(
zG
zF
z
)

= gc(ϕ(z)).

Similarly, for every c ∈ C, if z ∈ H−F then

ϕ(fc(z)) = ϕ(Reflect(cz,FLF )) = Reflect(cϕ(z),FLG) = gc(ϕ(z)). (2.2)

Thus ϕ(fc(z)) = gc(ϕ(z)) as desired.
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Definition 2.0.3 We will denote the real and imaginary parts of z by Re(z) and

Im(z) respectively.

Theorem 2.0.2 allows us to define FL = {z : Im(z) = −1} as our canonical choice

for FL. This will be our choice for FL throughout the rest of this paper and we will

denote the family of functions induced by this choice of FL by F = {fc : c ∈ C}.

Now that a specific family of functions has been chosen, we will write FL instead of

FLF and will also drop the family subscript for the half-planes and write H+ and H−.

Throughout this paper we will write z for the complex conjugate of z.

Now, for every z ∈ C we have Reflect(z, FL) = z + i− i = z− 2i. Thus, for every

fc ∈ F we have:

fc(z) =

cz if Im(cz) ≥ −1,

cz − 2i if Im(cz) ≥ −1.

(2.3)

Each fc ∈ F scales and rotates the plane and then reflects H− across FL. This

family of maps is a generalization of the family of real tent maps.

Recall that the tent map acting on R scales the real line by a real constant and

then folds it at a particular point on R. A twisted tent map scales C by a complex

constant and then folds it across the FL. More specifically, a tent map scales and

folds; a twisted tent map scales, rotates (twists), and folds. This is why we call each

fc a twisted tent map.

If f is a twisted tent map, then it is fairy common for a one dimensional forward

invariant subset of the complex plane to have the dynamics of a tent map. For

example, when c = 2 the line segment joining the origin and−i has the same dynamics

as the tent map G : [0, 1]→ [0, 1] defined by:

G(x) =

 2x , x < 0.5

2− 2x , x ≥ 0.5.
(2.4)
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The following proposition describes the dynamics of the simplest TTM’s with

canonical FL.

Proposition 2.0.4 If fc is a twisted tent map with |c| < 1 then every point in the

complex plane is attracted to the origin.

Proof Noting that |Reflect(z, FL)| ≤ |z| for all z ∈ H− we see that |f(z)| ≤ |c||z|

for all z. Denoting the nth iterate of f by fn, we have |fn(z)| ≤ |c|n|z|. Since |c| < 1

then |fn(z)| → 0 as n→∞.

The next proposition shows that fc is conjugate (in the dynamical sense) to fc.

Thus, without loss of generality we can focus our study on parameters c = α + βi

where β ≥ 0. Written another way, if c = reiθ then we may always assume that

θ ∈ [0, π].
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Proposition 2.0.5 fc is conjugate to fc.

Proof Let ϕ(z) = −z so that ϕ is reflection about the imaginary axis. We will

show that ϕ(fc(z)) = fc(ϕ(z)). That is, we wish to show that the following diagram

commutes.

C fc−−−→ C

ϕ

y yϕ
C fc−−−→ C

(2.5)

We have that cϕ(z) = c(−z) = −cz = ϕ(cz). Since ϕ fixes the imaginary part

of its argument, this implies that Im(cϕ(z) = Im(cz). Thus, cz ∈ H− exactly when

cϕ(z) ∈ H−. Because of this, we can show that ϕ(fc(z)) = fc(ϕ(z)) by proving only

two cases.

Case 1: Im(cz) ≥ −1

ϕ(fc(z)) = ϕ(cz) = −cz = c(−z) = fc(ϕ(z)) (2.6)

Case 2: Im(cz) < −1

ϕ(fc(z)) = ϕ(cz − 2i) = −(cz − 2i) = c(−z)− 2i = fc(ϕ(z)) (2.7)

This shows that ϕ semi-conjugates fc with fc. Lastly, since ϕ is an isometry, then

it conjugates fc and fc.

The dynamics of a TTM become more interesting when |c| = 1. We need the

following.

Definition 2.0.6 We will use PFL to denote the pre-folding line, which is the

preimage of FL under f . This is also equal to the set of points {z/c : z ∈ FL}.

Definition 2.0.7 The PFL partitions the plane into two half planes. We define the

pre-upper half plane as PH+ = {z : f(z) = cz} and define the pre-lower half

plane as PH− = {z : f(z) = cz − 2i}. Note that both of the pre-half planes contain

PFL.
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The PFL plays an important role since it is an axis of symmetry. That is, if

z′ = Reflect(z,PFL), then f(z′) = f(z). Also note that an alternative and equivalent

way to define f would be to reflect every point in PH− about the PFL and then

multiply the result by c. That is, fold then multiply. This way of visualizing the

action of f is sometimes helpful.

Definition 2.0.8 If c /∈ R then the intersection between the FL and the PFL is

unique. In this case we define {γ0} = FL∩PFL.

Lemma 2.0.9 We have γ0 = α−1
β
− i.

Proof Clearly α−1
β
− i ∈ FL. Also,

f

(
α− 1

β
− i
)

= c

(
α− 1

β
− i
)

= (α + βi)

(
α− 1

β
− i
)

=
α2 − α
β

− αi+ αi− i+ β

=
α2 + β2 − α

β
− i =

|c|2 − α
β

− i ∈ FL

(2.8)

Definition 2.0.10 We will write D = {z : |z| ≤ 1}.

Lemma 2.0.11 If |c| = 1, then |f(z)| ≤ |z| with equality exactly when cz ∈ H+.

Proof If cz ∈ H+ then |f(z)| = |cz| = |z| since by assumption |c| = 1. Now assume

that cz is in the interior of H−. First note that Re(f(z)) = Re(cz). Next, since cz is

in the interior of H− then Im(cz) < −1 and so ε = min{1,−1− Im(cz)} > 0. Noting

that ε is the smallest distance from cz to FL, we have | Im(f(z))| = | Im(cz) + 2ε| <

| Im(cz)|. Thus, |f(z)| = |Re(cz)+i(Im(cz)+2ε)| < |Re(cz)+i(Im(cz))| = |cz| = |z|.
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Figure 2.1. Construction of a convex polygon P for Theorem 2.0.12 case
3.
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Theorem 2.0.12 If c = eiθ for some θ with 0 ≤ θ < 2π. Then four cases can occur:

1. If θ = 0 then fn(z) = f(z) ∈ H+ for n = 1, 2, 3, ....

2. If θ = π then every point is eventually mapped into a horizontal strip of height

2. For every point z in this strip, f 2(z) = z.

3. If θ = j
k
2π, where

• j
k

is written in lowest terms,

• j, k ∈ {1, 2, 3, ...},

• j < k 6= 2,

then there is a regular periodic polygon, centered at the origin, with period k,

such that the orbit of every point eventually intersects the polygon.

4. If θ is an irrational multiple of π, then for every point z there exists a point

q ∈ D such that |fn(z)− fn(q)| goes to 0 as n goes to infinity.

Proof Case 1: Let θ = 0 so that c = 1. The first image of the complex plane is

always H+ and since c = 1 then (fc) restricted to H+ is the identity map.

Case 2: Let θ = π so that c = −1 and let z = a+bi ∈ C be given. Since f(C) = H+

then it is enough to prove the claim only for points in H+. Let S = {z : −1 ≤ Im(z) ≤

1}. If z ∈ S ⊂ H+ then f(z) = cz = −z ∈ S and f 2(z) = −(−z) = z. Thus, every

point in S is a periodic point of period 2. Now for every z ∈ (H+ \ S) we have that

z = a + bi, b > 1 and so f(z) = cz − 2i = −a + bi− 2i. Thus if z ∈ (H+ \ S) then f

negates the real part of z subtracts 2i. This means if the first n−1 iterates of z are in

H+ \ S, then fn(z) = (−1)na+ bi− 2ni. We now write b = 2m+ r where m is a non-

negative integer and 0 ≤ r < 2. Then Im(fm(z)) = b− 2m = 2m + r − 2m = r < 2.

Now if r ≤ 1 then fm(z) ∈ S and we are done. Otherwise, fm+1(z) ∈ S.
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Case 3: Let θ = j
k
2π, where

• j
k

is written in lowest terms,

• j, k ∈ {1, 2, 3, ...},

• and j < k.

(See Figure 2.1) If j ∈ {1, k−1}, then the line segments [γ0, f(γ0)], [f(γ0), f
2(γ0)],

..., [fk−1(γ0), γ0] form the boundary of a simply connected convex polygon P centered

at 0 with k sides. By definition P is periodic with period k. If j /∈ {1, k − 1}, then

the line segments [γ0, cγ0], [cγ0, c
2γ0], ..., [ck−1γ0, γ0] form a k-pointed star which

partitions the plane and has the origin as the center of the star. By symmetry, the

piece of the partition containing the origin is a regular polygon P with k sides. By

the definition of γ0 ∈ FL, we have f(γ0) = cγ0 ∈ FL, and so the bottom-most edge of

P lies on FL. In both cases, it is evident that P = {z : cfn(z) ∈ H+, n = 0, 1, 2, ...}

and so f(P ) = P . Note that fk(z) = z for all z ∈ P .

We now show that every point in the plane is eventually mapped into P . Choose

z ∈ C and let D be a closed disk, centered at the origin, such that z ∈ D. If cz /∈ H+,

then by Lemma 2.0.11 |f(z)| < |z|. It is easily seen that for every z /∈ P we have

cfn(z) /∈ H+ at least once as n takes on the values 1, 2, 3, ..., k. Thus, every k iterates,

a point either lands in P or gets closer to the origin. Consider the sequence of iterates

of z, (zn), n = 1, 2, 3, .... Then since D is compact, and since the iterates of z are

contained in D, then this sequence has an accumulation point q inside of D. If q is

in the interior of P then we are done. If q /∈ P then by Lemma 2.0.11 |fk(q)| < |q|

which contradicts the assumption that q was an accumulation point. However, we

still have the possibility that q is on the boundary of P .

We now show that every point sufficiently close to P gets mapped into P . First

consider the special case when k = 3. Then j is either 1 or 2. But Proposition 2.0.5

implies that it is sufficient to assume j = 1. (If j = 2 then c = eiθ where θ /∈ [0, π].)

When j
k

= 1
3
, P is an equilateral triangle with the bottom edge on FL. Figure 2.2
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shows a neighborhood UP of P that has been partitioned by triangles congruent to

P and shows that f 5(UP ) = P .

Figure 2.2. Every point sufficiently close to P is eventually mapped into
P . These diagrams show the partitions of UP and show the first few
iterates of UP in the case that j = 1. P is shaded.

Now assume that k ≥ 4. (See Figure 2.3) Let S be the union of lines collinear

to the segments forming the k−pointed star in the construction of P . We define

UP = {(1 + ε)z : z ∈ P} for ε > 0 where ε is small enough that for every z ∈ UP the

line segment [z, 0] intersects at most 2 lines in S. Note that S partitions UP into the

sets A, B, and P as shown in Figure 2.3. During each iteration, multiplication by c

rotates one connected component of B and two connected components of A below FL.

After this, folding maps the component of B into P and maps the two components

of A into P ∪ B. It is now easily seen that fk(B) ⊂ P , fk(UP ) ⊂ (P ∪ B), and thus

f 2k(UP ) = P .
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Case 4: Let θ be an irrational multiple of π. Fix z0 ∈ C and let D be a closed

disk containing D∪ {z} and centered at the origin. It is easily seen that since |c| = 1

then |f(z) − f(w)| ≤ |z − w| for all z, w. In particular, when w = 0 this means

that f cannot increase the modulus of any point. For this reason and since D is

centered at the origin, then the iterates of z are contained in D. Since D is compact,

then the sequence of iterates (zn) =
(
fn(z0)
cn

)
, n = 1, 2, ... contains a subsequence

(znj
) that converges to an accumulation point q ∈ D. Then |znj

− q| goes to 0 as j

goes to infinity. If q /∈ D then for some k > 0 fk(q) ∈ PH− and by Lemma 2.0.11

|fk+1(q)| < |q|, which contradicts the assumption that q is an accumulation point.

Thus, q ∈ D.

Figure 2.3. A partitioning of the neighborhood of UP when k = 5.
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Now consider the sequence (|zn − q|) for n = 1, 2, .... Note that since f cannot

increase the distance between two points, then |fn+1(z0)−fn+1(q)| ≤ |fn(z0)−fn(q)|.

We have

|zn+1 − q| =
∣∣∣∣fn+1(z0)

cn+1
− q
∣∣∣∣

=
1

|cn+1|
∣∣fn+1(z0)− cn+1q

∣∣
= |fn+1(z0)− fn+1(q)|

≤ |fn(z0)− fn(q)|

=
1

|cn|
|fn(z0)− cnq|

=

∣∣∣∣fn(z0)

cn
− q
∣∣∣∣ = |zn − q|.

(2.9)

Thus, the sequence (|zn − q|) is a decreasing sequence of nonnegative numbers

and (by the Monotone Convergence Theorem of real numbers) has a limit. Since the

subsequence (|znj
− q|) goes to 0 as j goes to infinity, then this limit must be zero.

Lastly,

|fn(z0)− fn(q)| = |fn(z0)− cnq|

= |cn|
∣∣∣∣fn(z0)

cn
− q
∣∣∣∣

= |zn − q|

(2.10)

which we just showed goes to zero as n goes to infinity.
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As we will see, much more interesting dynamics occur when |c| > 1. Thus, unless

explicitly mentioned, for the rest of this paper we will assume that |c| > 1. The

following list of assumptions is for the reader’s reference.

Standing Assumptions: We will use the following definitions and assumptions

throughout this text. They are listed here for the reader’s convenience.

1. |c| > 1.

2. Im(c) = β > 0. (See Proposition 2.0.5)

3. c = α + βi = |c|eiθ, 0 ≤ θ < 2π.

4. fc = f is a twisted tent map with folding line consisting of points with imaginary

part equal to −1. We will only write fc if the choice of c needs to be explicitly

stated.

5. gc(z) = g(z) = cz.

6. hc(z) = h(z) = cz − 2i.

7. We will use PFL to denote the pre-folding line, which is the preimage of FL

under f .

8. We will denote the line segment between z, w ∈ C by [z, w] = [w, z].
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3. THE FILLED-IN JULIA SET

Some of the most notable objects of study in quadratic complex dynamics on the

complex plane (or Riemann sphere) are the Julia set J , filled-in Julia set K, and the

Fatou set F . We now define these notions for Twisted Tent Maps, give examples, and

note some of their key differences with their counterparts in quadratic dynamics.

Note that each TTM can be extended to a map from the Riemann sphere to the

Riemann sphere by defining f(∞) = ∞. These maps will also be called TTM’s and

it should be clear from context which definition of TTM’s we are using.

Definition 3.0.13 The filled-in Julia set is denoted by K(fc) = K(c) = K and

is the set of points with bounded trajectory under iterations of f . The Fatou set is

denoted by F (fc) = F (c) = F and is the domain of equicontinuity in the Riemann

sphere for the family of iterates of f . The Julia set is denoted by J(fc) = J(c) = J

and is the complement of F .

Definition 3.0.14 We denote the boundary of a set X by Bd(X).

The following is a short list of dynamical properties of TTM’s that are distinct

from their rational counterparts.

1. The Julia set often does not equal Bd(K),

2. The Julia set can have isolated points,

3. The Filled-in Julia set can have disjoint connected components,

4. The Filled-in Julia set can have disjoint components with nonempty interior,

5. The Julia set can have nonempty interior.
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Definition 3.0.15 We will call a point preperiodic if it is strictly preperiodic. We

will call a point eventually periodic if it is either periodic or preperiodic.

Definition 3.0.16 The diameter of a set X will be denoted Diam(X).

Proposition 3.0.17 Let U be a nonempty open subset of K. If lim
m→∞

Diam(fm(U)) =

0, then U contains no eventually periodic points.

Proof Let lim
m→∞

Diam(fm(U)) = 0. If U contains an eventually periodic point z0,

then let z be a periodic point of period n > 0 in the orbit of z0. If each of the n

points in the periodic orbit of z is on FL, then every short line segment starting from

from a point in this orbit increases in length under iteration, a contradiction. Thus,

at least one point of this orbit is not in FL. Let δ = min{| Im(fn(z)) − (−i)| 6= 0 :

n = 1, 2, · · · , n}. Then δ is the shortest non zero distance from a point in the orbit of

z to FL. Clearly, every line segment of length δ/2 starting from a point in this orbit

will increase in length under one application of f . This also is a contradiction and

we are done.

Proposition 3.0.18 The point at infinity is the only attracting periodic point.

Proof Since |c| > 1 then multiplication by c increases the modulus of a point.

Folding can only decrease the imaginary part of a point, and can decrease the modulus

of a point by at most 2. Thus, |f(z)| ≥ |cz| − 2. Let k > 2 where k 6= |c|. Then

solving |cz| − 2 > k|z| for |z|, we get |z| > 2
|c|−k . Thus, for all z such that |z| > 2

|c|−k ,

we have |f(z)| > k|z| > 2|z|. It follows easily by induction that |fn(z)| > 2n|z| which

goes to infinity exponentially as n increases. It then follows easily that infinity is an

attracting fixed point.

Now suppose that K contains an attracting periodic point. Then the basin of

attraction of this point contains an open subset U ⊂ K and we have

lim
m→∞

Diam(fm(U)) = 0.

By Proposition 3.0.17, we are done.
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A likely consequence of Propositions 3.0.17 and 3.0.18 is that the basin of attrac-

tion of infinity is the only Fatou domain. However, there is still the possibility of the

existence of wandering domains within K. We make the following conjectures.

Conjecture 3.0.19 Wandering domains do not exist.

Conjecture 3.0.20 If |c| > 1 then K = J .

If these conjectures are true, then the study of K, J, and F are in many ways

equivalent. Since K is the easiest to define, it is the one we choose to study.

We now wish to describe the simplest K when |c| > 1. We begin by characterizing

K(c) for c ∈ R; these K are contained in the imaginary axis, and are line segments

or Cantor sets. We then describe K(c) where Im(c) is small; these K are double

spirals made from line segments. We conclude this chapter with a discussion on how

continuously changing c can lead to the discontinuous creation or deletion of isolated

points or components of K.

For this chapter, let G(x) be the real tent map defined by

G(x) =

cx if x < 1
2
,

c− cx if x ≥ 1
2
.

(3.1)

Lemma 3.0.21 If c ∈ R then K(f) is a subset of the imaginary axis.

Proof Since c ∈ R then |Re(f(z))| = |c||Re(z)|. Thus, if Re(z) 6= 0, then the se-

quence (|Re(z)|, |f(Re(z))|, |f 2(Re(z))|, ...) = (|Re(z)|, |c||Re(z)|, |c|2|Re(z)|, ...) di-

verges and so z /∈ K.

Lemma 3.0.22 If c ∈ R then f restricted to the imaginary axis is conjugate to the

real tent map G.

Proof Let z = xi where x ∈ R. Then we claim that ϕ(f(z)) = G(ϕ(z)) where

ϕ(z) = ciz
2

. We first note that the intersection of PFL with the imaginary axis is

the point −i
c

, and that ϕ(−i
c

) = 1
2
. It then follows easily that z is a point in the
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intersection of PH+ and the imaginary axis if and only if ϕ(z) ≤ 1
2
. Thus, we have

two cases.

Case 1: If z ∈ PH+, then ϕ(f(z)) = ϕ(f(xi)) = ϕ(cxi) = ci(cxi)
2

= c ci(xi)
2

=

G(ϕ(z)).

Case 2: If z ∈ PH−, then ϕ(f(z)) = ci(−cxi−2i)
2

= c − c−cx
2

= G(−cx
2

) = G( ciz
2

) =

G(ϕ(z)).

Lemma 3.0.23 Let G(x) be the real tent map. Then if |c| > 2 then the set of points

on the real line whose trajectories do not diverge to infinity is a Cantor set.

Proof This is a well known result.

Lemma 3.0.24 If c ∈ R and |c| > 2, then K(f) is a Cantor set.

Proof This follows immediately from Lemmas 3.0.22 and 3.0.23.

Lemma 3.0.25 If 1 < c ≤ 2 then K = [−2i/c, 0]. If −2 ≤ c < −1 then K =[
−2i
c(1+c)

, −2i
1+c

]
.

Proof This follows from Lemma 3.0.22 and well known results in the study of the

real tent map.
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For ease of reference, we state as a theorem the collection of the above results to

describe K for all c ∈ R.

Theorem 3.0.26 Let c ∈ R.

1. If |c| < 1 then K = C.

2. If c = 1 then f(C) = H+ and f restricted to H+ is the identity map.

3. If c = −1 then every point is eventually mapped into the strip {z : −1 ≤ Im(z) ≤

1} and becomes periodic with period 2 thereafter. (0 remains a fixed point.)

4. If 1 < c ≤ 2 then K = [−2i/c, 0].

5. If −2 ≤ c < −1 then K =
[
−2i
c(1+c)

, −2i
1+c

]
.

6. If 2 < |c| then K is a Cantor set.

Proof The cases when |c| < 1, c = 1, and c = −1 follow from Proposition 2.0.4 and

Theorem 2.0.12. The rest of the cases follow from Lemmas 3.0.25 and 3.0.24.

Things start to get more exciting when θ 6= 0, π. When Im(c) is small and nonzero,

then a spiral made of line segments emanates from the origin. The PFL acts as an

axis of symmetry and so K is a double spiral. As the parameter changes, the bottom

spiral may collide with FL. When the intersection of the bottom spiral with H+ is

disconnected, then K will have isolated point and/or components which are preimages

of the portion of the lower spiral that was introduced into H+. An illustration of this

process is given in Figure 3.1.

The creation of these new components of K can be more fully understood when

considering the inverse map. The preimage under f is found by removing the open

lower half-plane, unfolding a copy of H+ onto H− and then dividing by c. Thus, if

locally the intersection K ∩ H+ consists of one point, then there will be infinitely

many preimages of that point which are all isolated points of K.
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Figure 3.1. A continuous change of parameter resulting in the creation of
isolated components of K.
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As an example, there exists a K(c) that has both isolated points and disjoint

connected components where c = 0.971 + (0.851 + ε)i and 0 < ε < 0.001. (See

Figure 3.2)

Figure 3.2. The isolated points are preimages of component A intersected
with the upper half plane. In this case the intersection is one point.

We formalize these ideas in the following results.

Lemma 3.0.27 K is completely invariant. Moreover, f−1(K ∩H+) = K.

Proof K is completely invariant trivially. Thus, f−1(K) = K. Since the first step in

finding the preimage of K is to remove the open lower half plane, then f−1(K∩H+) =

f−1(K) = K.

Proposition 3.0.28 If every point z ∈ K has the property that Im(z) > −1, then K

has uncountably many components and is a Cantor set.

Proof We will closely follow the proof in [7, pg 99]. Assume that every point

z ∈ K has the property that Im(z) > −1. Then PFL cuts the plane into two open
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half planes V0, V1, where V0 ⊂ PH+. Now let K0 = K ∩ V0 and K1 = K ∩ V1.

Then f(K0) = f(K1) = K. Note that K0 and K1 are disjoint compact sets with

K0 ∪ K1 = K. Similarly, we can split each Kn into two disjoint compact subsets

Kn0 = Kn ∩ f−1(K0) and Kn1 = Kn ∩ f−1(K1), with f(Kn`) = K`. Continuing

inductively, we split K into 2p+1 disjoint compact sets

Kn0···np = Kn0 ∩ f−1(Kn1) ∩ · · · ∩ f−p(Knp), (3.2)

with f(Kn0···np) = Kn1···np . Similarly, for any infinite sequence n0n1n2 · · · of zeros and

ones, let Kn0n1n2··· be the intersection of the nested sequence

Kn0 ⊃ Kn0n1 ⊃ Kn0n1n2 ⊃ · · · (3.3)

Each such intersection is compact and nonvacuous. In this way, we obtain un-

countably many disjoint nonvacuous subset with union K. Every connected compo-

nent of K must be contained in exactly one of these, so K has uncountably many

components. Each of the sets Kn0n1···np is disjoint from FL and since |c| > 1 then by

construction Diam(Kn0n1···np) = |c|Diam(Kn0n1···npnp+1 and thus the diameter of these

sets go to zero. Thus, K is a Cantor set.

It is worth noting that when K is a Cantor set, then the dynamics on K are

conjugate to the one-sided 2-shift.

Figure 3.3 shows the region in the parameter plane where K(c) has at least one

point in H−. (This is equivalent to the existence of `j ∈ H−, j ∈ Z.) Outside of this

region, K(c) is contained in the open upper half plane and by Proposition 3.0.28,

K(c) is a Cantor set. We conjecture that K(c) is a Cantor set if and only if `j /∈ H−

for all j ∈ Z. (We define `j on page 35.)

In Chapter 4 we prove that f has two fixed points `0, 0 where f(0) = g(0) = 0,

f(`0) = h(`0) = `0. Since the image of every point is in H+ then these fixed points

are also in H+.



30

Figure 3.3. On the left is the set of parameters c in the parameter plane
such that K(c) has at least one point in H−. On the right is the same set
along with 3 disks centered at the origin with labeled radii for reference.
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Lemma 3.0.29 If K ∩H+ is connected then K ∩H+ ∩ FL 6= ∅.

Proof If K∩H+ is connected then both fixed points `0, 0 are in the same component

K0 of K ∩ H+. Let A = g−1(K0) = {z/c : z ∈ K0} and B = h−1(K0). Then by

Lemma 3.0.27 f−1(K0) = A ∪ B = K0. Thus A,B are in the same component of

K ∩H+ which implies A ∩B ∩ PFL 6= ∅. Thus K0 ∩ FL 6= ∅.

Proposition 3.0.30 K is connected if and only if K ∩H+ is connected.

Proof If K ∩ H+ is connected, then by Lemma 3.0.29 f−1(K ∩ H+) is connected.

But by Lemma 3.0.27 f−1(K ∩H+) = K. Thus K is connected.

Now let K be connected and (by way of contradiction) assume that K ∩ H+ is

disconnected. But then f−1(K ∩ H+) is disconnected. By Lemma 3.0.27 f−1(K ∩

H+) = K, a contradiction. Thus, K ∩H+ is connected.

Definition 3.0.31 A component will be call a trivial component if it consists of

a single point.

Proposition 3.0.32 If K has no trivial components and if K∩FL is connected, then

K is connected.

Proof Assume K has no trivial components. Assume K ∩FL is connected. Let K1

be the unique component containing K ∩ FL. Take any other component K2 ⊂ K.

If for every n > 0, fn(K2) 6⊂ K1, then Diam(fn(K2)) goes to infinity as n increases,

since fn(K2) ∩ FL = ∅. This is a contradiction. Thus, for all K2 there exists an n

such that fn(K2) ⊂ K1. Let K3 be the component containing 0. Since f(0) = 0, then

for all m > 0, fm(K3) ⊂ K3. So there exists an n > 0 such that fn(K3) ⊂ (K3∩K1).

Since fn(K3) 6= ∅ and fn(K3) ⊂ (K3 ∩ K1), then K3 ∩ K1 6= ∅. Since K1 and K3

are components, then K3 = K1. Recalling that f(K3) ⊂ K3 we have f(K1) ⊂ K1.

Therefore K1 ⊂ f−1(K1) and since K1 ∩ FL is connected then f−1(K1) = K1. Thus

K = K1.
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Figure 3.4 shows an example when K can be connected even if K ∩ FL is dis-

connected. For this example c ≈ 1.191487884 + 1.191487884i. The exact value of

c has α = β = (1/6)(54 + 6
√

33)1/3 + 2/(54 + 6
√

33)1/3. For this choice of c, the

bottom of K is both a subset of FL and a Cantor set. In particular `−1, `−2 ∈ FL

(see Chapter 4). The set K can be seen to be connected by the following argument.

Cover K with closed balls of radius ε centered at every point of K where ε > 0 is

chosen such that the union of these balls, B, is connected. Since every point in K

is in H+, then removing the open lower half plane does not disconnect B (this is the

crux of the argument). Since `−2 ∈ FL∩B then B ∪ Reflect(B,FL) is a connected

set. Dividing by c reduces the diameters of the balls and rotates, but has no effect on

connectivity. Obviously, f−1(B) is a compact connected set and K ⊂ f−1(B) ⊂ B.

It is now easily seen that K is the intersection of a nested sequence of nonempty,

compact, connected sets of the form f−n(B).

Proposition 3.0.33 If |c| > 2 then K is totally disconnected.

Proof Let |c| > 2 and assume that K has nontrivial connected components. Let K1

be one of these components with maximal diameter. Then Diam(K1) = d > 0 and

Diam(f(K1)) ≥ d|c|
2
> d. Since the continuous image of a connected set is connected,

then f(K1) ⊂ K is connected with diameter strictly larger than d, a contradiction.

Thus, K has only trivial components.

Conjecture 3.0.34 If |c| > 2 then K is a Cantor set.

Lemma 3.0.35 If |c| >
√

2 then K has Lebesgue measure 0.

Proof Let µ(S) denote the Lebesgue measure of a set S and for all w ∈ C, let

wS = {ws : s ∈ S}. By definition K is forward invariant. Noting that multiplication

by c scales both dimensions by a factor of |c|, we see that if |c| >
√

2 then µ(cK) =

|c|2µ(K) ≥ 2µ(K) with equality exactly when µ(K) = 0. Since folding can reduce

the measure of a set by at most half, then µ(f(K)) ≥ µ(K) with equality exactly

when µ(K) = 0. Thus, if |c| >
√

2 then K is forward invariant only if µ(K) = 0.
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Figure 3.4. An example where K is connected but FL∩K is disconnected.
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Proposition 3.0.36 If |c| > 3 then K ⊂ B(0, 1).

Proof If |z| = 1 then |f(z)| ≥ |c||z|−2 > 1 = |z|. Now if |z| = 1 +ε for some ε > 0,

then |f(z)| ≥ |c|(1 + ε) − 2 > 1 + |c|ε = |z|. Now suppose that |fn(z)| > 1 + |c|nε

for some n > 0. Then |fn+1(z)| > |c|(1 + |c|nε)− 2 > 1 + |c|n+1. Since |c| > 1, then

by induction we have that every point outside of the open unit disk has a trajectory

that diverges.
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4. THE PERIMETER SET P

In this chapter we introduce the perimeter set, Pc, which will be of primary impor-

tance throughout this paper. We will write P in stead of Pc whenever possible. Note

that Reflect(z,PFL) = 1
c

(cz − 2i). We begin with some definitions.

Definition 4.0.37 (See Figure 4.1) We define, `0 = 2i(1−c)
|c|2−1 . We also define `k, where

k 6= 0, as

`k =


`0
ck

if k > 0,

Reflect(`−k+1,PFL) = 1
c

(
`0
c−k + 2i

)
if k < 0.

(4.1)

We now show that the point `0 is a fixed point of f . First we need a lemma.

Lemma 4.0.38 We have Im(c`0) < −1.

Proof

Im(c`0) = Im

(
2i(c− |c|2)
|c|2 − 1

)
=

2α− 2|c|2

|c|2 − 1
(4.2)

Since |c| > 1 then |c|2−1 > 0 and so the inequality Im(c`0) < −1 is true precisely

when 2α− 2|c|2 < −|c|2 + 1, or equivalently when

|c|2 − 2α + 1 > 0 (4.3)

where the inequality is strict. Now since

|c|2 ≥ α2 (4.4)

(with equality only when c is real) then

|c|2 − 2α + 1 ≥ α2 − 2α + 1 = (α− 1)2 ≥ 0 (4.5)

with equality only when α = 1. Now if c is real and α = 1 then c = 1. Since we

assume that |c| > 1 then at least one of the inequalities in (4.4) or (4.5) must be

strict and (4.3) is satisfied. Thus Im(c`0) < −1.
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Figure 4.1. An example of various `k.



37

Lemma 4.0.39 The map fc has exactly two fixed points 0 and `0.

Proof Suppose that Im(cz) ≥ −1. Then since |c| > 1 we see that f(z) = cz = z

has a unique solution z = 0. Now suppose that Im(cz) < −1. Then we want to solve

f(z) = cz − 2i = z for z. We will show that z = `0 is the desired solution. This

solution is unique since h(z) = cz−2i multiplies all distances by |c|. By Lemma 4.0.38

we have:

f(`0) = c`0 − 2i

=
−2ic(1− c)
|c|2 − 1

− 2i

=
−2ic+ 2i|c|2 + (−2i|c|2 + 2i)

|c|2 − 1

=
2i(−c+ 1)

|c|2 − 1

= `0.

(4.6)

Lemma 4.0.40 will show that `k+1 and `−k are symmetric with respect to the PFL

for all k ∈ Z. (See Figure 4.1)

Lemma 4.0.40 For all k ∈ Z we have Reflect(`k,PFL) = `−k+1.

Proof We have three cases.

Case 1: If k < 0 then `k = Reflect(`−k+1,PFL) by definition and taking Reflect of

both sides we get Reflect(`k,PFL) = `−k+1.

Case 2: If k = 0 then

Reflect(`0,PFL) =
1

c

(
c`0 − 2i

)
=

1

c
(`0) = `1. (4.7)

Case 3: If k > 0 then

Reflect(`k,PFL) =
1

c

(
c`k − 2i

)
=

1

c

(
`0

c−(−k+1)
− 2i

)
= `−k+1. (4.8)
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In quadratic complex dynamics, every connected filled-in Julia set has diameter

less than or equal to 4. This is useful since it allows one to choose a fixed bailout

value for all computer pictures of connected filled-in Julia sets. We now show that

for TTM’s, the diameter of K can be arbitrarily large when |c| is close to 1. Thus,

the choice of our bailout value will need to depend on c.

Lemma 4.0.41 Let c = aλ, a > 1, |λ| = 1. Then, for a fixed λ 6= 1 we have

lim
a↘1

Diam(K(c)) =∞.

Proof We have Diam(K(c)) ≥ |`0| = 2|aλ−1|
a2−1 > 2|λ−1|

a2−1 .

Definition 4.0.42 (See Figure 4.2) Let Lj = [`j, `j+1] for j ∈ Z and let L =
∞⋃
j=1

Lj.

(See Figure 4.2)

Figure 4.2. An example of L.

Definition 4.0.43 We will denote the convex hull of a set X by Conv(X).
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Lemma 4.0.44 The PFL is the perpendicular bisector of L0.

Proof By Lemma 4.0.40, the endpoints of L0 are reflections of each other across

PFL.

Corollary 4.0.45 L−1 is a vertical line segment.

Proof Lemma 4.0.44 gives us that the PFL is perpendicular to L0. Also, f restricted

to PH+ maps PFL onto FL, maps L0 to L−1, and preserves angles.

The next proposition states that if L self-intersects, then L intersects FL before

it intersects itself.

Proposition 4.0.46 If Ln ∩ Lm 6= ∅ for some 0 < m < n, then there exists k such

that 0 < k < m and Lk ∩ FL 6= ∅.

Proof Suppose Ln ∩ Lm 6= ∅ for integers 0 < m < n. Since |c| > 1 then Ln ∩ Lm
consists of a single point which we will call xm, since xm ∈ Lm. It follows that

fm(Ln) ∩ fm(Lm) = Ln−m ∩ L0 = fm(xm) and we call this point x0. Then x0 is seen

to be the first intersection of L ∪ L0 with itself.

Assume that α ≥ −1. Later in Proposition 4.0.63 we will show that Re(γ0) <

Re(`0) if and only if α < −1. Thus, if α ≥ −1, then PFL either does not intersect cL0

or PFL intersects cL0 on/below FL. That is, if PFL∩cL0 6= ∅ then Im(PFL∩cL0) ≤

−1. Thus, if α ≥ −1 then f(L0) ⊂ PH−. Since x0 ∈ L0 then f(x0) ∈ f(L0) and is

the intersection between cL0 and Ln−m−1. Since f(x0) ∈ PH− then Ln−m−1 intersects

PFL and we conclude that Ln−m−2 ∩ FL 6= ∅ and we are done.

Now assume that α < −1. Let ω = π − θ. Then ω is the smallest angle between

any two consecutive Lk and since α < −1 then π/2 < θ < π. Since 4θ > 2π and

from the self-similarity of the Lk, it is easily seen that if L0 ∩ Ln = ∅, n = 2, 3 then

L0 ∩ Ln = ∅, n > 3. Thus, we have only two more cases.

Case 1: (See Figure 4.3) Assume L0∩L2 6= ∅. Then L0∪L1∪L2 bound an isosceles

triangle T where at least two of the interior angles are ω. By Lemma 4.0.44, PFL
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is the perpendicular bisector of L0, which implies that PFL /c is the perpendicular

bisector of L1. Thus, PFL /c bisects T and so {x0} = (L0 ∩ L2) ∈ PFL /c. But this

implies that f 2(x0) ∈ FL∩L0 and we are done.

Figure 4.3. Proposition 4.0.46 when α < −1 and L0 ∩ L2 6= ∅.

Case 2: Lastly, assume L0 ∩ L3 6= ∅ but L0 ∩ L2 = ∅. A necessary condition for

this is π
2
< θ < 2π

3
. The parameter with the smallest modulus satisfying c = reiθ and

Re(c) ≤ −1 is −1+ i
√

3 which has modulus 2. Thus, we may assume that |c| ≥ 2. To

increase the chances of L0 intersecting L3 we clearly want to minimize both |c| and

the angle between L0 and L1. Thus, we assume that |c| = 2 and ω = π
3
. Denote the

length of L0 by d. Now, plotting Ln, n = 0, 1, 2, 3 under these conditions, treating

vertices `2, `3 as flexible joints by straightening out L2, L3 towards L0, we obtain the

simplified diagram shown in Figure 4.4. Since 1.5d <
√

3d, then L3 ∩ L0 = ∅. Since
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everything that was done increased the chance of an intersection between L0 and L3,

then if α ≤ −1 and (L1 ∪ L2 ∪ L3) ∩ FL = ∅, then L0 ∩ L3 = ∅.

Figure 4.4. This figure shows Ln, n = 0, 1, 2, 3 where θ = π
3

and after
L2, L3 have been moved as close to L0 as is possible under certain worst
case conditions.

Definition 4.0.47 • Let d(z, w) = |z − w| and let d(z, S) = min{d(z, w) :

w ∈ S} for any compact set S.

• We will denote the complement of a set S by Sc.

• We will denote Reflect(z,PFL) by z′ and will write X ′ = {z′ : z ∈ X} =

Reflect(X,PFL) for any set X ⊂ C.

• We will denote the midpoint of Lk by mk = `k+`k+1

2
for k ≥ 0. We will also

write m = f(m0).

• We will denote the boundary of a set X by Bd(X).
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Figure 4.5. The construction of P .
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Definition 4.0.48 (See Figure 4.5) Let S1 be the simply connected closed region

satisfying the following.

1. S1 is one of two regions bounded on four sides by PFL, [m0, `1], [`1,m1], and

PFL /c.

2. S1 is the region containing points of arbitrarily large modulus.

3. S1 is closed.

We also define Sk recursively by Sk = Sk−1

c
∩ PH+, k = 2, 3, .... Let S =

∞⋃
k=1

Sk.

For k > 0 we define S−k = S ′k. We also define S0 = f(S1).

Definition 4.0.49 We denote the interior of a set U by Int(U) = U \ Bd(U).

Definition 4.0.50 We define P = (Int(S ∪ S ′))c.

Some examples of P ’s are given in Figures 4.6 and 4.7.

Corollary 4.0.51 P is symmetric with respect to the PFL. Furthermore, Lj and

L−j are symmetric about the PFL.

Proof This follows immediately from the definition of P and from Lemma 4.0.40.

Lemma 4.0.52 f(Sk) ⊂ Sk−1 for k = 1, 2, ....

Proof Let z ∈ Sk for some k ∈ {1, 2, ...}. Then by the definition of Sk we have

z ∈
(
Sk−1

c
∩ PH+

)
. Since z ∈ PH+ then f(z) = cz ∈ c

(
Sk−1

c

)
= Sk−1. Since z was

arbitrary, then f(Sk) ⊂ Sk−1 for k = 1, 2, ....

Lemma 4.0.53 Int(S0) ⊂ P c.

Proof This follows immediately from symmetry and Corollary 4.0.45, which says

that f(L0) is a vertical line segment. It is easy to see that f(L0) is collinear with

L−1.
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Figure 4.6. The left-most images show examples where P = K and K is
a polygon. Changing the parameters slightly results in filled-in Julia sets
that are clearly not polygons. The right-most pictures show the perimeter
sets P for the middle-most pictures.

Figure 4.7. Some examples of P .
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Proposition 4.0.54 P c is forward invariant.

Proof Since f restricted to PH+ is multiplication by c, then for any set U ⊂ PH+

we have f(Int(U)) = c Int(U) = Int(cU). Since P c is symmetric with respect to PFL,

then f(P c) = f(P c ∩ PH+) = cInt

(
∞⋃
k=1

Sk

)
= Int

(
∞⋃
k=1

cSk

)
⊂ Int

(
∞⋃
k=1

Sk−1

)
.

Lastly, Lemma 4.0.53 gives us that Int

(
∞⋃
k=1

Sk−1

)
⊂ P c.

Corollary 4.0.55 P ∩H+ ⊂ f(P ).

Proof Let f(z) ∈ P ∩ H+. Then z ∈ P since otherwise z ∈ P c and then by

Proposition 4.0.54 we would have f(z) ∈ P c.

Lemma 4.0.56 P is compact.

Proof P c = Int(S ∪ S ′) and is so it is open. Thus, P is closed. To show that P

is bounded we begin with a disk D centered at the origin and containing the line

segment L0 = [`0, `1]. Now for all k > 1 we have that |`k| ≤ |`0|
|c| . Thus Lk ⊂ D, k ≥ 0.

Similarly, L′ ⊂ D′. Let γ1 = γ0/c. Then by construction Conv(P ) = Conv((L ∪

L′ ∪ {γ1}). Therefore, any disk centered at the origin containing D ∪D′ ∪ {γ1} will

contain Conv(P ) and necessarily also P . Thus, P is a closed and bounded subset of

the complex plane, and is therefore compact.

Lemma 4.0.57 If z ∈ P c then d(f(z), P ) ≥ |c|d(z, P ).

Proof Let z ∈ P c be given. Since P is symmetric with respect to the PFL then

d(z, P ) = d(z′, P ). Also, since f(z) = f(z′) then d(f(z), P ) = d(f(z′), P ). Thus,

d(f(z), P ) ≥ |c|d(z, P ) if and only if d(f(z′), P ) ≥ |c|d(z′, P ), and so we may assume

that z ∈ PH+.

Since P is compact, then there exists w ∈ P such that d(z, w) = d(z, P ). Clearly,

w ∈ PH+, for otherwise d(z, w′) < d(z, w) which would contradict d(z, w) = d(z, P ).

Noting that f restricted to PH+ is multiplication by c, we have that d(f(z), f(P )) =
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d(f(z), f(w)) = d(cz, cw) = |cz − cw| = |c||z − w| = |c|d(z, P ). Now by Corol-

lary 4.0.55 P ∩ H+ ⊂ f(P ), and so for every point q ∈ P ∩ H+ we have d(q, P ) ≥

d(q, f(P )). Setting q = f(z) this becomes d(f(z), P ) ≥ d(f(z), f(P )). Thus if z ∈ P c

then d(f(z), P ) ≥ d(f(z), f(P )) = |c|d(z, P ).

Theorem 4.0.58 K ⊂ P .

Proof Let z ∈ P c. Then by Lemma 4.0.57, d(f(z), P ) ≥ |c|d(z, P ). By Proposi-

tion 4.0.54 we have that f(z) ∈ P c. Thus, d(fn(z), P ) ≥ |c|nd(z, P ) ans so d(fn(z), P )

grows exponentially as n increases. This shows that z /∈ K. Since z ∈ P c was arbi-

trary, then K ∩ P c = ∅ and thus K ⊂ P .

Definition 4.0.59 If L ∩ PFL 6= ∅, then there exists a smallest positive integer n

such that Ln ∩ PFL. In this case, we define {ζ} = Ln ∩ PFL.

Proposition 4.0.60 If z ∈ P then Re(z) ≥ Re(`0).

Proof It is easily seen that the points of P with the smallest real part belong to

the outer-most boundary of P . Due to this and the spiraling of L′, for there to be

a point z ∈ P with Re(z) < Re(`0), then L′ must have a self-intersection. Then

by Proposition 4.0.46, ζ must exist and by definition, P is contained in the polygon

bounded by the outer-most boundary of P . It is clear that every point in this polygon

has real part greater than or equal to Re(`0).

Corollary 4.0.61 If z ∈ P , then Re(z) ≥ Re(`0).

Proof This follows immediately from Theorem 4.0.58 and Proposition 4.0.60.

Lemma 4.0.62 If Re(γ0) < Re(`0) then m /∈ P .

Proof (See Figure 4.5) If Re(γ0) < Re(`0) then the PFL crosses f(L0) above the

FL and so by the definition and symmetry of P the point m = Re(`0)− i /∈ P .



47

Proposition 4.0.63 Re(γ0) < Re(`0) if and only if α < −1. Furthermore, if α < −1

then γ0 /∈ K.

Proof Re(γ0) = α−1
β

and Re(`0) = −2β
α2+β2−1 . Since β > 0 and |c| = α2 +β2 > 1, then

both denominators are positive. We have

Re(γ0) < Re(`0)

is equivalent to
α− 1

β
<

−2β

α2 + β2 − 1

is equilvalent to

(α− 1)(α2 + β2 − 1) < −2β2

is equivalent to

(α− 1)(α2 − 1) + β2(α + 1) < 0

is equivalent to

((α− 1)2 + β2)(α + 1) < 0

is equivalent to α < −1. Thus α < −1 if and only if Re(γ0) < Re(`0). As a result,

if α < −1 then Re(γ0) < Re(`0) and so γ0 /∈ P . Theorem 4.0.58 then gives us that

γ0 /∈ K.

Corollary 4.0.64 Re(γ0) = Re(`0) if and only if α = −1.

Lemma 4.0.65 If L0 ⊂ K then α ≥ −1.

Proof We will show that if α < −1 then L0 6⊂ K. Now assume that α < −1. By

Proposition 4.0.63 Re(γ0) < Re(`0). By Lemma 4.0.62 the point m /∈ P . Thus by

Theorem 4.0.58 we have that m /∈ K. This is a contradiction since m ∈ f(L0) ⊂ K.

Thus α ≥ −1.
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Lemma 4.0.66 f(L−1 ∩ PH−) ⊂ L0.

Proof f(L−1 ∩ PH−) = f(L1 ∩ PH+) ⊂ g(L1) = L0.

It is important to notice that there are times when the full line segment [`−1, `0] =

L−1 extends past a side of P . One such case is illustrated in Figure 4.8.

Figure 4.8. An example where L−1 extends past a side of P .

Proposition 4.0.67 Im(`−1) > −1 if and only if |c| >
√

2.

Proof We first note that `0 = 2i(1−c)
|c|2−1 . Now

`−1 =
1

c

(
`0
c
− 2i

)
=

1

c

(
−2i(1− c)
c(|c|2 − 1)

− 2i

)
=
−2i(1− c)− 2ic(|c|2 − 1)

|c|2(|c|2 − 1)

=
−2i(1− c− c+ c|c|2)
|c|2(|c|2 − 1)

.

(4.9)
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So

Im(`−1) =
−2(1− 2α + α|c|2

|c|2(|c|2 − 1)

=
−2 + 4α− 2α|c|2

|c|2(|c|2 − 1)

=
−2 + 4α− 2αδ

δ(δ − 1)
.

(4.10)

where δ = |c|2 = α2 +β2. Now the claim that Im(`−1) > −1 is equivalent to the claim

that Im(`−1) + 1 > 0. We have:

Im(`−1) + 1 =
−2 + 4α− 2αδ

δ(δ − 1)
+ 1

=
−2 + 4α− 2αδ + δ2 − δ

δ(δ − 1)

=
(δ − 2)(δ + 1− 2α)

δ(δ − 1)

= (δ − 2)
(α− 1)2 + β2

δ(δ − 1)

(4.11)

which is greater than 0 exactly when δ = |c|2 > 2.

Corollary 4.0.68 If |c| =
√

2 then Im(`−1) = −1.

Lemma 4.0.69 If L0 ⊂ K then |c| ≤
√

2.

Proof Since L0 ⊂ K then f(L0) = [m, `0] ⊂ (L−1∩PH−). (Otherwise part of f(L0)

would be outside of P and by Theorem 4.0.58 L0 6⊂ K.) By Lemma 4.0.66 we have

that f(L−1 ∩ PH−) ⊂ L0. Thus f 2(L0) ⊂ L0. Let λ = |`0 − `1| be the length of

L0. Then the length of f(L0) is equal to |c|λ
2

. Thus, the length of the line segment

f 2(L0) = |c|2λ
2

. Since f 2(L0) ⊂ L0 then |c|2λ
2

< λ, which implies that |c| ≤
√

2.

Theorem 4.0.70 L0 ⊂ K if and only if α ≥ −1 and |c| ≤
√

2.

Proof Assume that L0 ⊂ K. Then by Lemma 4.0.65 and Lemma 4.0.69 we have

that α ≥ −1 and that |c| ≤
√

2.

Now assume that α ≥ −1 and |c| ≤
√

2. We will show that L0 ⊂ K by proving

that f 2(L0) ⊂ L0. It is always true that f(L0) = [m, `0]. Also, since |c| ≤
√

2, then
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Proposition 4.0.67 gives us that Im(`−1) ≤ −1 and so m ∈ L−1 = [`−1, `0]. Since

α ≥ −1 then by Proposition 4.0.63 Re(γ0) ≥ Re(`0). This means that PFL cannot

cross L−1 above FL and so [m, `0] ⊂ (L−1 ∩ PH−). Thus f 2(L0) = f([m, `0]) ⊂

f(L−1 ∩ PH−) which by Lemma 4.0.66 is a subset of L0. Thus, f 2(L0) ⊂ L0 and so

L0 ⊂ K.

Lemma 4.0.71 Let z ∈ K and let U be an open neighborhood of z. Then there exists

an n > 0 such that fn(U) ∩ FL 6= ∅.

Proof Let B(ε, z) ⊂ U be a closed ball of radius ε > 0 centered at z ∈ K. If

the images of U do not intersect FL, then fn(B(ε, z)) = B(cnε, fn(z)). Since K is

bounded, this is impossible, since for a sufficiently large n the largest distance from

a point of K to FL is smaller than cnε.

We now define a curve Γ which is a subset of the preimages of PFL. Γ is con-

structed in the same way as L. Recall that {γ0} = {α−1
β
− i} = FL∩PFL.

Definition 4.0.72 We make the following definitions.

1. We define γk = γ0
ck
, k ∈ Z.

2. We define Γk to be the line segment [γk, γk+1] for all k ∈ Z.

3. We also define Γ =
∞⋃
k=1

Γk.

Note that Γ0 ∩ Γ = {γ1} in the same way as L0 ∩ L = {`1}.

Definition 4.0.73 If ζ exists and n is the smallest positive integer such that ζ ∈ Ln,

then we define the outer-most boundary of P to be

[`n, ζ] ∪ [`−(n−1), ζ] ∪

 ⋃
|k|≤n−1

Lk

 . (4.12)

If ζ does not exist then the outer-most boundary of P is L′ ∪ L0 ∪ L and we

additionally define the inner-most boundary of P to be Γ ∪ Γ′ (see Figure 4.9).
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Figure 4.9. On the left is an example of the outer-most and inner-most
boundaries of P . Shown on the right is K.
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When P is a polygon then the outer-most boundary of P is just the boundary of

P . This is not true when P is not a polygon. Figure 4.10 shows an example where

K = P , K has nonempty interior, and yet the outer-most boundary of P is not the

boundary of P .

Figure 4.10. In the middle is the outer-most boundary of P for c =
−1.06 + 0.5i. For this choice of c, the outer-most boundary is a triangle.
However, K is a polygon with infinitely many sides.

Lemma 4.0.74 If L−1 ∩ PFL 6= ∅ then {ζ} = L−1 ∩ PFL .

Proof Since L−1 ∩ PFL 6= ∅ then by the symmetry of L′ ∪ L0 ∪ L about PFL we

have that the outermost boundary of P has 3 sides and {ζ} = L−1 ∩ PFL. (See

Figure 4.12)
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Figure 4.11. An example where f(P ) ⊂ P .

Figure 4.12. An example (when c = −1.06 + 0.5i) showing that if L−1 ∩
PFL 6= ∅ then {ζ} = L−1 ∩ PFL.
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Lemma 4.0.75 If ζ exists, then the outer-most boundary of P has an odd number

of sides.

Proof If ζ exists, then the outer-most boundary of P is a polygon. Due to symmetry

and the fact that L0 is shared by by both PH+ and PH−, it is clear that the outer-

most boundary of P will have an odd number of sides.

Note that when c is purely imaginary and 1 < |c| ≤
√

2, then P looks like a

rectangle, but the sides L2 and L−2 are counted separately. In this case, the outer-

most boundary of P has 5 sides.

Lemma 4.0.76 If ζ exists and α ≤ 0, then the outer-most boundary of P has either

3 or 5 sides.

Proof Suppose ζ ∈ Ln, for some n > 0. If n = 1, 2, then the outer-most boundary

of P has 3 or 5 sides respectively, and we are done. Thus we may assume that n ≥ 3

and that (L1 ∪ L2) ∩ PFL = ∅. In particular this means that `3 ∈ PH+. Then α ≤ 0

implies θ ≥ π
2

and so L3 starts at `3 and slopes away from PFL. Thus, L3∩PFL = ∅.

It is now easy to see that for ζ ∈ Ln to be true, it is neccessary for L to have a

self-intersection along at least one of L1, L2, L3. However, Proposition 4.0.46 would

then imply that (L1 ∪ L2) ∩ FL 6= ∅. But this means that (L1 ∪ L2 ∪ L3) ∩ PFL 6= ∅,

a contradiction.

Proposition 4.0.77 If Im(ζ) ≤ −1 then α ≥ −1 and |c| ≤
√

2.

Proof By Lemma 4.0.75 we may assume the outer-most boundary of P has an odd

number of sides.

Let Im(ζ) ≤ −1 and assume that α < −1. Then by Proposition 4.0.62 Re(γ0) <

Re(`0). This means that if L−1 ∩FL 6= ∅ then L−1 ∩PFL = {ζ}. Clearly, in this case

Im(ζ) > −1, a contradiction. On the other hand, if L−1 ∩FL = ∅ then Im(`−1) > −1

and by Proposition 4.0.67 |c| >
√

2.

Thus, if Im(ζ) ≤ −1 then α ≥ −1.
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We now assume that Im(ζ) ≤ −1 and that α ≥ −1 and show that for every

possible number of sides that the outer-most boundary of P can have, that |c| ≤
√

2.

Case 1: Assume that the outer-most boundary of P has 3 sides as shown in

Figure 4.13. Then {ζ} = L−1 ∩ PFL which implies that Im(`−1) ≤ Im(ζ) ≤ −1. By

Proposition 4.0.67 we have that |c| ≤
√

2.

Figure 4.13. An example where the outer-most boundary of P has 3 sides.

Case 2: Assume that the outer-most boundary of P has 5 sides. We have 3

subcases.

1. If θ > π/2, as shown in Figure 4.14, then Im(ζ) > Im(`−1) so that Im(`−1) ≤ −1.

2. If θ = π/2, as shown in Figure 4.15, then Im(ζ) = Im(`−1) so that Im(`−1) ≤ −1.

3. If θ < π/2, as shown in Figure 4.16, then ζ ∈ L2∩PFL implies that L1∩FL 6= ∅.

Thus, Im(`2) ≤ −1. Since θ < π/2 then the tilt of PFL guarantees that

Im(`−1) < Im(`2) ≤ −1.

In each of these cases, Proposition 4.0.67 implies that |c| ≤
√

2.
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Figure 4.14. An example where the outer-most boundary of P has 5 sides
and θ > π/2. This illustrates that if θ > π/2 then Im(ζ) > Im(`−1).
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Figure 4.15. An example where P is a rectangle but still has 5 sides.
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Figure 4.16. An example where the outer-most boundary of P has 5 sides
and θ < π/2.



59

Case 3: Assume that the outer-most boundary of P has 7 sides. This implies that

ζ ∈ L3 ∩ PFL and so L2 ∩ FL 6= ∅. The assumption that Im(ζ) ≤ −1 then implies

that L1 ∩ FL = ∅. We now look at three subcases.

1. By Lemma 4.0.76 α can not be less than 0.

2. Assume 0 < α ≤ 3/4. As shown in Figure 4.17, Im(ζ) ≤ −1 if and only if

Re(`0) ≤ Re(c4γ0). We have:

Re(c4γ0) =
(
α4 − 6α2β2 + β4

)(α− 1

β

)
+ 4α3β − 4αβ3, (4.13)

and Re(`0) = −2β
α2+β2−1 . Now Re(`0) ≤ Re(c4γ0) is equivalent to 0 ≤ β(α2 + β2−

1)(Re(c4γ0)− Re(`0)), which is equivalent to:

0 ≤
(
β2 + 1− 2α + α2

) (
α5 + α4 − 2α3β2 − 3αβ4 + 4αβ2 + 2 β2 − β4

)
(4.14)

We now make the change of variables β2 = t− α2 in (4.14) and get:

0 ≤ (t+ 1− 2α)
(
4α3t− 3α t2 + 4 tα− 4α3 + 2 t− 2α2 − t2 + 2 tα2

)
(4.15)

We wish to show that when 0 < α ≤ 3/4 (4.15) is not true for t ≥ 2, which

corresponds to |c| ≥
√

2. Now t + 1 − 2α > 0 when 0 < α ≤ 3/4 and t ≥ 2.

Thus, to get our contradiction, we need to show:

4α3t− 3α t2 + 4 tα− 4α3 + 2 t− 2α2 − t2 + 2 tα2 < 0. (4.16)

For t = 2, (4.16) becomes:

4α3 − 4α + 2α2 = 2α
(
2α2 − 2 + α

)
< 0. (4.17)
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Figure 4.17. An illustration showing that if α > 0 and if the outer-most
boundary of P has 7 sides, then Im(ζ) ≤ −1 if and only if Re(c4γ0) ≥
Re(`0).



61

Now (2α2 − 2 + α) has exactly one positive root, which is
√
17−1
4

> 3
4
. Thus,

(4.17) is easily seen to be true for 0 < α ≤ 3/4.

Now we need to show that (4.16) is still true for t > 2, keeping 0 < α ≤ 3/4.

For this it suffices to show that the partial derivative of the left hand side of

(4.16) is negative for t > 2 and 0 < α ≤ 3/4. We have:

∂

∂t

(
4α3t− 3α t2 + 4 tα− 4α3 + 2 t− 2α2 − t2 + 2 tα2

)
=4α3 − 6 tα + 4α + 2− 2 t+ 2α2

=α(4α2 − 6t+ 4 + 2α) + 2− 2t.

(4.18)

By our choices of t, α we have α > 0 and 2−2t < 0. Thus we have only to show

that 4α2 − 6t+ 4 + 2α < 0. Now

4α2 − 6t+ 4 + 2α ≤ 9

4
− 12 + 4 +

3

2
=
−17

4
< 0. (4.19)

This completes the proof that if the outer-most boundary of P has 7 sides, and

0 < α ≤ 3/4, then Im(ζ) ≤ −1 implies |c| ≤
√

2.

3. Assume that α > 3/4. We will assume that the outer-most boundary of P

has 7 or more sides, which means that Im(`3+n) ≤ −1 for some n = 0, 1, 2, ....

Then assuming |c| ≥
√

2 we show that |`3| < 1 by proving that |`3|2 < 1, a

contradiction.

We will need the following estimate:

|1− c|2 = |(1− α) + βi|2

= 1− 2α + α2 + β2

≤ −1

2
+ |c|2.

(4.20)

Applying the estimate given in (4.20) and using the assumption that |c| ≥
√

2,

we now show that |`3|2 < 1.
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|`3|2 =

∣∣∣∣`20c6
∣∣∣∣

=
4|1− c|2

|c|6(|c|2 − 1)2

≤
4
(−1

2
+ |c|2

)
|c|6(|c|2 − 1)2

≤ −2

|c|6
+

4

|c|4
< 1.

(4.21)

Case 4: Assume the outer-most boundary of P has 9 or more sides. Lemma 4.0.76

implies this cannot happen if α ≤ 0. Thus we may assume 0 < α. Assume also that

Im(ζ) ≤ −1. Then if ζ ∈ Lk then Lk−1 is the first segment of L to intersect FL. Thus

Im(`k) ≤ −1 and so |`k| ≥ 1. We will now show this is impossible when |c| ≥
√

2,

proceeding very much as before.

We will need the following estimate, which relies on α > 0:

|1− c|2 = |(1− α) + βi|2

= 1− 2α + α2 + β2

= 1− 2α + |c|2

≤ 1 + |c|2.

(4.22)

Now we show that if |c| ≥
√

2 then |`4|2 < 1.

|`4|2 =

∣∣∣∣`20c8
∣∣∣∣

=
4|1− c|2

|c|8(|c|2 − 1)2

≤ 4 (1 + |c|2)
|c|8(|c|2 − 1)2

≤ 4

|c|8
+

4

|c|6

≤ 7

8
< 1.

(4.23)

This completes the proof.
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Figure 4.18. An example where S3 = S0

c3
∩ PH+.
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Lemma 4.0.78 S2 = S0

c2
∩ PH+. Also, for every integer k ≥ 3, if Sk−1 = ∅, then

Sk = ∅. Furthermore, if Sk−1 6= ∅ and if γ0 /∈
k−1⋃
n=2

Sn then Sk = S0

ck
∩ PH+.

Proof (See Figure 4.18) By definition S0 = cS1. Thus S2 = S1

c
∩PH+ = S0

c2
∩PH+.

Clearly, S2 6= ∅ since M1 ⊂ S2 and 0 < θ < π. If Sk−1 = ∅, then Sk = ∅ trivially. Now

fix an integer k ≥ 3 and assume that Sk−1 = S0

ck−1 ∩ PH+ 6= ∅ and that γ0 /∈
k−1⋃
n=2

Sn.

Let A = PFL∩Sk−1. Since γ0 /∈ Sk−1 then A ⊂ H− \FL . (Here, A may be the empty

set.) Thus A
c
⊂ PH− \ PFL and so A

c
∩ Sk = ∅. Thus Sk = Sk−1

c
∩ PH+ = S0

ck
∩ PH+.

Figure 4.19. An example where P resembles a ram’s head whose horns
spiral and never self-intersect.

We now wish to define the ray M0 which intuitively is the ray perpendicular to

L0 that starts at m0 and “radiates outward” from P .

Definition 4.0.79 We define M0 = (S0∩S1). Also, for all integers k > 0, we define

Mk = M0

ck
and M−k = M ′

k.
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Theorem 4.0.80 If ζ does not exist, then:

1. P is a ram’s head bounded by inner-most and outer-most boundaries of P ,

2. γ0 /∈ P ,

3. γ0 /∈ K,

4. K ( P.

Proof Since |c| > 1, then L spirals in toward the origin. Furthermore, since ζ

does not exist, then L ⊂ PH+. Since Ln intersects Sn non-trivially, then Sn 6= ∅,

for n = 1, 2, .... Now the collection of sets S0

cn
, n = 1, 2, ... cover C \ {0}. Thus

γ0 ∈ S0

cn
for some integer n > 0. In fact, there may be infinitely many such positive

values for n and we will denote the smallest of these values by k. By the choice

of k, γ0 /∈
k−1⋃
n=2

S0

cn
and so γ0 /∈

k−1⋃
n=2

Sn. As previously argued, Sk−1 6= ∅. Then by

Lemma 4.0.78 γ0 ∈ S0

ck
∩ PH+ = Sk. Since γ0 ∈ Sk then Im(Mk ∩ PFL) ≥ −1. Then

Mk−1 ∩ FL 6= ∅. Thus Sk ∩ H+ is nonempty and bounded. It follows immediately

that Sk+n = Sk∩H+

cn
for n > 0 and so

∞⋃
n=1

Sn spirals in toward the origin. It is now easy

to see that P resembles a ram’s head as shown if Figure 4.19.

Now if Sk ∩ FL = {γ0} then γ0 ∈ Sk−1 contradicting our choice of k. Letting

A = (Sk ∪ Sk+1) ∩ PFL we see that γ0 ∈ A and that γ0 is not an endpoint of the line

segment A. Then γ0 ∈ Int(Sk ∪ S ′k ∪ Sk+1 ∪ S ′k+1). Thus, γ0 /∈ P . Since K ⊂ P , then

γ0 /∈ K. Lastly, since γ0 /∈ P and since P is a closed set, then there is a neighborhood

U 3 γ0 such that U ∩P = ∅. Now γ1 ∈ P and every neighborhood of γ1 gets mapped

into a neighborhood of γ0. Thus, there is a small enough neighborhood V 3 γ1 such

that f(V ) ⊂ U implying that V 6⊂ K and so K ( P.
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Figure 4.20. An example of P when ζ does not exist and K is totally
disconnected.
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Theorem 4.0.81 If ζ exists and Im(ζ) ≤ −1, then:

1. P is a polygon bounded by the outer-most boundary of P ,

2. P = K,

3. γ0 ∈ K.

Proof Since ζ exists, then ζ ∈ L∩ PH+ ⊂
∞⋃
n=1

Sk. Therefore ζ ∈ Sk for some k > 0.

Since Im(ζ) ≤ −1, then Sk ⊂ H−, for if not, then mk−1 ∈ (Sk ∩ Sk−1) would be in

H+ \ FL. Then mk ∈ (PH+ \ PFL) contradicting the assumption that ζ ∈ Sk. Thus,

Sk ⊂ H− and so either Sk+1 = ∅ or Sk+1 ⊂ PFL. In both cases it is easy to see that

Sk+n ⊂ P for n > 0. This means that P is simply connected. Thus, P is a polygon

bounded by the outer-most boundary of P which must contain γ0 since Im(ζ) ≤ −1.

(See Figure 4.21)

Let A = P ∩ PH+. It is easy to see that f(P ) = f(A) = cA and so Bd(f(P )) =

f(Bd(A)). Thus, to show that f(P ) ⊂ P we only need to show that f(Bd(A)) ⊂ P .

Now Bd(A) ⊂
(

k⋃
n=1

Ln

)
∪ [ζ,m0] ∪ [m0, `1]. By the construction of L we have that

f(
k⋃

n=1

Ln) ⊂ P . By Proposition 4.0.77 and Theorem 4.0.70 we have that L0 ⊂ K.

This implies that f(L0) ⊂ K. Since K ⊂ P then f(L0) ⊂ P . Since m ∈ f(L0) then

m ∈ P . Since Im(ζ) ≤ −1 and since m ∈ P then f([ζ,m0]) = [m, cζ] ⊂ P . Thus,

f(Bd(A)) ⊂ P and so f(P ) ⊂ P and P ⊂ K. By Theorem 4.0.58 K ⊂ P and so

P = K. Since γ0 ∈ P then γ0 ∈ K. (See Figure 4.11)

Theorem 4.0.82 If ζ exists and Im(ζ) > −1 then:

1. γ0 /∈ K.

2. P is not the polygon bounded by the outer-most boundary of P .

3. K ( P

Proof Since |c| > 1, then L spirals in toward the origin. Since ζ exists, then ζ ∈ Lk
for some k > 0. We may assume that k is the smallest positive integer such that
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Figure 4.21. An illustration showing the locations of mk, k = 0, 1, 2, 3.
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ζ ∈ Lk. Since Im(ζ) > −1, (and by our choice of k) then γ0 ∈ Int(Sk ∪ S ′k). Thus,

γ0 /∈ P and so γ0 /∈ K. Since Lk ∩ PFL 6= ∅ then Lk−1 ∩ FL 6= ∅. By our choice

of k we see also that Lk ∩ FL 6= ∅. Since Lk intersects both FL and PFL, then we

can let A be the closed triangle bounded by FL, PFL, and Lk. It is clear that A has

nonempty interior since Im(ζ) > −1 (see Figure 4.22).

It follows immediately that Int(Sk+1) = Int(A
c
) 6= ∅. Now let X be the polygon

bounded by outer-most boundary of P . Then P ⊂ X and A 6⊂ X. By definition

P = X \
∞⋃

n=k+1

Sn ⊂ X \ Int(A
c
). Since Int(A) 6= ∅ and by Proposition 4.0.60, there

are points in Int(A) with real part greater than Re(`0). Since f(L0) is the vertical

line segment from `0 to FL, then is easy to see that Int(A/c) ∩X 6= ∅. This means

that P is not the polygon bounded by the outer-most boundary of P and is instead

this polygon minus at most countably many open sets. Each of these open sets are

bounded on two sides by preimages of FL. Now (when ζ exists) the outer-most

boundary of P must have at least 3 sides. Let B = h−1(A)
c

(see Figure 4.22). Then

Int(B) ∩ P 6= ∅ and f 2(B) = A. Thus, K ⊂ P , P 6= K and so K ( P .

Figure 4.22. The left-most image is K(c) surrounded by the outer-most
boundary of P . The middle image shows the construction of the sets
A,B used in Theorem 4.0.82. The right-most image is the corresponding
perimeter set P .
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Another example of P when Im(ζ) > −1 is shown in Figure 4.23. In this example,

P is a polygon with countably many open sets removed. Compare this to Figure 4.22

which shows on the far right a P which is the polygon bounded by the outer-most

boundary of P with finitely many open sets removed.

Figure 4.23. An example of P and K when ζ is above FL.
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5. HUNGRY SETS AND CRISES

5.1 Hungry Sets

Proposition 3.0.18 states that there are no attracting periodic orbits (other than the

point at infinity if we are on the Riemann sphere.) However, we can still have sets

that attract in some sense.

Definition 5.1.1 A compact set A with positive 2-dimensional Lebesgue measure,

and with the property that f(A) = A will be called a hungry set if every point

whose orbit contains a subsequence that converges to A eventually lands inside A

(gets eaten).

Hungry sets often “attract” sets of positive Lebesgue measure. For this reason,

we will borrow (and possibly modify) some familiar terminology.

Definition 5.1.2 The basin of attraction (or consumption, if you like) of a hungry

set A is definined as
∞⋃
j=0

f−j(A).

Note that under this definition, a basin of attraction is not neccessarily open.

Lemma 5.1.3 If K has nonempty interior, then K is a hungry set.

Proof K is a compact set with positive Lebesgue measure and with the property

that f(K) = K. Furthermore, if z /∈ K then it spends finite time near K and thus,

there is a positive lower bound to how close the orbit of z comes to K.

It is important to note that a hungry set is not necessarily contained in an open

subset of its basin of attraction. In fact, Lemma 5.1.3 implies that no K with positive

2-dimensional Lebesgue measure can be contained in an open forward invariant set.
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Lemma 5.1.4 If A is a hungry set then A ⊂ K ∩H+.

Proof Since every point outside of K diverges, it is easily seen that no compact

forward invariant sets exist outside of K. Also, f(A) ⊂ f(K) ⊂ K ∩H+ and we are

done.

Proposition 5.1.5 If A is a hungry set with a nontrivial component (more than one

point) C, then there exists an n > 0 such that fn(C) ∩ FL 6= ∅.

Proof Since C is a nontrivial component, then it is connected and Diam(C) = d > 0.

By Lemma 5.1.4 C ⊂ K and so the sequence (Diam(fn(C))) is bounded. But |c| > 1

and if f(C)∩FL = ∅ then Diam(f(C)) = |c|Diam(C) > Diam(C). The result follows

easily.

Note that the union of two hungry sets is a hungry set. For this reason, we need

the following definition.

Definition 5.1.6 We say that a hungry set is reducible if it contains a proper subset

which is a hungry set. Otherwise, a hungry set is said to be irreducible.

Definition 5.1.7 A hungry set A is called greedy if it is equal to the closure of its

basin of attraction. (That is, A is greedy if it has already eaten everything it possibly

can.)

Lemma 5.1.8 A hungry set is greedy if and only if it is fully invariant.

Proof This follows immediately from the definitions.

Proposition 5.1.9 Let A be a greedy hungry set. Then f(Bd(A)) ⊂ Bd(A).

Proof This is consequence of full-invariance. Let z ∈ Bd(A) and suppose f(z) ∈

A \ Bd(A). Then there is an open set V ⊂ Int(A) where f(z) ∈ V . Since f is

continuous and A is fully invariant, then U = f−1(V ) is an open subset of A containing

z. This contradicts the assumption that z ∈ Bd(A).



73

Definition 5.1.10 We will denote the closure of a set X by Cl(X).

Definition 5.1.11 Recall that the omega-limit set of z is

ω(z, f) =
⋂
n∈N

Cl({fk(z) : k > n}).

Definition 5.1.12 We will call the boundary of any set that is significant dynamically

a dynamical boundary. A continuous change in parameter can cause dynamical

boundaries to come together, meet, and then cross. We will adapt the term boundary

crisis to mean the meeting of dynamical boundaries.

Some examples of dynamical boundaries include the outer-most boundary of P ,

the inner-most boundary of P , the boundary of hungry sets, FL, and the boundary

of any periodic sets.

We now discuss some experimental results giving each type of result its own sec-

tion. Let A be a hungry set. We will give examples where the following seem to

occur.

1. An example where the coded-coloring of K shows periodic structures in K.

2. An example where A is a topological annulus.

3. Renormalization.

4. Examples where boundary crises cause sudden changes in dynamics.

5. An example where A has multiple components bounded by a topological annu-

lus.

6. Examples where an increase in the modulus of c causes the components of A

to swell. This swelling leads to boundary crises causing sudden changes in

dynamics.

7. An example where K contains multiple disjoint hungry sets.
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5.2 The Coded-Coloring of K Shows Periodic Structures in K

A traditional way to make pictures when studying the dynamics in one complex

variable, is to color a pixel based on how quickly the trajectory of the corresponding

point in the plane leaves a region known to contain K. This region is usually a

ball whose radius is called the bailout value. This coloring method is known as

the escape time algorithm. If K has nonempty interior, then using this escape time

algorithm produces colorful pictures like the first one in Figure 5.1, where there is a

large black region (which is K) surrounded by color. But the escape time algorithm

alone does not give any information as to what is happening on the inside of K. In

Figure 5.1 the last three pictures use the escape time algorithm but also use a new

coloring method we call the coded-coloring. Informally, for TTM’s, the method

of coded-coloring is an escape time algorithm for how long it takes for the orbit of

a point to be in PH+ N times, where N is the bailout value. We now give a more

formal and general definition of coded-colorings.

Definition 5.2.1 Let X be a topological space and let f be a map from X to X.

Let ϕ be a map from X to R and for every x ∈ X we call the sequence S(x) =

(ϕ(fn(x))) = (xn), n = 0, 1, 2, ... the itinerary of x. We will abuse notation and

will let ηn(x) =
n

Σ
j=0
xj. Then a coded-coloring of X is any escape-time coloring

under iteration of η.

Most of our pictures use the fastest coloring between the traditional escape time

coloring and the coded-colorings. For our coded-colorings we typically use a bailout

value between 80 and 400 and have ϕ defined by

ϕ(z) =

1 if z ∈ PH+,

0 if z ∈ PH−.
(5.1)

The common refinement of a partition is a new partition defined by intersection of

preimages of a partition. The coded-coloring is a way to color the common refinement

of a partition in a way that is sometimes useful. However, the bailout value used in
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Figure 5.1. This shows first the traditional escape time picture of the
filled-in Julia set followed by the three progressively closer looks inside K
when using the coded-coloring. A close look at the coded-coloring reveals
that there is structure inside of K and gives clues as to what that structure
is. In each picture c = 0.5567 + 0.8471i.
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the coded-coloring needs to be chosen appropriately based on the size of the structures

for which one is looking. Larger structures most easily seen with a coded-coloring

bailout value that is low, but can become very hard to see with much larger values.

Obviously, to see very small structures, a very fine partition is needed and this is

achieved by using a large bailout value.

Their are two known reasons why the coded-coloring shows the internal structure

of K. First, points that stay close together for a long time will tend to be colored

similarly. Second, the boundaries of the structures that appear in the coded-coloring

are repelling periodic structures. Thus, patterns of color accumulate on the repelling

structures. This is comparable to the Theorem in Rational Complex Dynamics that

the preimages of almost every point will accumulate on the Julia set.

It is worth noting that a coded-coloring can be used to see structure in the filled-in

Julia sets of quadratic complex polynomials. Attracting periodic points cause large

groups of points to be colored the same way. Also, since the Julia set is the closure

of the set of periodic repelling points, then patterns of color accumulate only on the

Julia set. Figure 5.2 shows the filled-in Julia set for the map f(z) = z2−0.6. Because

the parameter is real, then K is symmetric about the real axis. To have a changes in

color occur when crossing a preimage of the real axis, we used:

ϕ(z) =

 1 , Im(z) ≥ 0

0 , Im(z) < 0.
(5.2)

5.3 A Hungry Set that is a Topological Annulus

Figure 5.3 shows an example of where A is expected to be a topological annulus

bounded inside and out by the images of FL∩A. This figure shows the trajectory of

a point in A. It seems likely then that A = ω(z, f) for some z ∈ A.
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Figure 5.2. The coded-coloring of the filled-in Julia set of the map f(z) =
z2 − 0.6.

Figure 5.3. An example where A is a topological annulus.
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5.4 Renormalization

Renormalization is an important topic that is studied in papers like [8] and [6].

The following examples seem to suggest that the tools of renormalization could be

used to study TTM’s.

Letting c = 1.05i we have c4 = 1.21550625 ∈ R. Then by Theorem 3.0.26 K =

[−2i/c, 0] ≈ [−1.6454i, 0]. It is easily seen that for all z ∈ K(c4), f 4
c (z) = fc4(z). In

particular, this means that K(c4) is embedded by the identity map into K(c). The

embedded structure of K(c4) and its preimages under fc can be seen in the coded-

coloring of K(c) given in Figure 5.4. A separate example is given in Figure 5.5, which

shows an overlay of K(c3) and K(c) for c = −0.6 + 0.9i.

Figure 5.4. The coded-coloring near the origin of K(1.05i). The origin
is marked and K((1.05)4) and its preimages under fc are seen as straight
line segments.

Proposition 5.4.1 Let c = −0.65 + 0.88i. There is an affine transformation ϕ such

that for every z ∈ K(|c|2c), we have ϕ(f|c|2c(z)) = f 3
c (ϕ(z)). Furthermore, ϕ(K(|c|2c))

is a period 3 component of a hungry set in K(c).

Proof Figure 5.7 shows an example where the embedding map is an affine transfor-

mation. Let c = −0.65 + 0.88i, g(z) = cz, and h(z) = cz − 2i. It is easily checked
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Figure 5.5. The coded-coloring of K(c) overlaid with K(c3).
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that if z0 = 2i(1−c)
|c|2c−1 , then f 3

c (z0) = h(h(g(z0))) = z0. Let ϕ(z) = (Im(z0) + 1)z + z0.

Let B be a ball of radius 5.85 centered at 0 + i. The left-most picture in Figure 5.6

shows that K(|c|2c) ⊂ B. The right-most picture in Figure 5.6 shows that ϕ(B) is

contained in a non-shaded region, which is the set of points where f 2
c (z) = h(g(z)).

It is then a straightforward computation to show that for every z ∈ K(|c|2c), we have

ϕ(f|c|2c(z)) = f 3
c (ϕ(z)). This conjugacy also implies that ϕ(K(|c|2c)) is a period 3

component of a hungry set in K(c).

Figure 5.6. An illustration showing K(|c|2c) is contained in a ball whose
image under ϕ is contained in the non-shaded region, which is the set of
points where f 2

c (z) = h(g(z)).

Figure 5.7. An example of where K(|c|2c) embeds into K(c) by an affine
transformation.
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Figures 5.8 and 5.9 show pairs of images grouped vertically. For each pair, the

top image is K(c) and the bottom image is an overlay of up to three of K(c), K(c2),

and cK(c2). These pictures suggest some of the more complicated K(c) can often be

seen as the result of piecing together several other filled-in Julia sets.

Figure 5.8. K(c) can sometimes be decomposed into smaller filled-in Julia
sets.

Definition 5.4.2 The embedded image of one filled-in Julia set into another will be

called a sub-K.

5.5 Boundary Crises and Sudden Changes in Dynamics

By perturbing the parameter so that c = −0.04 + 1.05i we find that c4 =

1.20492481 + 0.18495120i /∈ R, and yet K(c4) is still embedded into K(c) by the

identity map. This is seen in the coded-coloring of K(c) given in Figure 5.10.
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Figure 5.9. K(c) can have nonempty interior when areas within it are
bounded by structures locally conjugate to other filled-in Julia sets.
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Figure 5.10. On the left is the coded-coloring near the origin of K(c) where
c = −0.04+1.05i. The origin is marked and K(c4) and its preimages under
fc are seen. On the right is K(c4).
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In both of the cases given by Figures 5.4 and 5.10 applying fc four times was

equivalent to applying fc4 once. This is due to no point getting folded more than

once every four iterations.

The coded-coloring becomes more interesting when a continuous change in param-

eter bringsFL and a preimage of K(c4) together causing a boundary crisis. A small

perturbation of parameter can cause these dynamical boundaries to cross. This leads

to the creation of islands as shown in Figure 5.11 and is the same mechanism as was

discussed in reference to Figure 3.1.

Another boundary crisis occurs when c is perturbed until K(c4) touches PFL. If

K(c4) crosses PFL, then there is a loss of the fixed point `0 of fc4 . This in turn leads

to a loss of structure. An example of this is given in Figure 5.12.

5.6 Hungry Set with Multiple Components in an Annulus

In Figure 5.13 shows the coded-colorings of Figures 5.11 and 5.12 with 10,000

points in the orbit of 0.1 − i overlayed. This suggests that the boundary crisis can

cause a hungry set with multiple components to diffuse into a larger forward invariant

set. Often, the larger forward invariant set is a topological annulus.

5.7 Swelling the Components of an Hungry Set

Figure 5.15 shows multiple examples of where a hungry set A consists of multiple

components bounded by a topological annulus. Each of these components is con-

tained in a periodic region of period 5. Let A1 be one of these components. Then

f 5(A1) = A1 and f 5(B1) = B1 where B1 is the basin of attraction of A1. The bound-

ary of B1 consists of images of FL and embedded sub-K’s. As the modulus of c is

increases, the size of each of these components increases until the boundary of one

component (actually, each simultaneously) crosses into the basin of attraction of an-

other component of A. This results in the orbit of a point under f 5 staying in one

section for a long time before moving into an adjacent section where the process is
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Figure 5.11. The coded-coloring near the origin of K when c = −0.05 +
1.05i. Comparing this to the left image in Figure 5.10, we see that islands
are created when a structure is introduced into H+ from below. The source
of the islands is indicated.



86

Figure 5.12. The coded-coloring near the origin of K when c = −0.06 +
1.05i. Compared to Figure 5.10 you can only see faint (or transient)
structure. This is because K(c4) is no longer invariant under f 4.
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Figure 5.13. A hungry set with periodic components becoming unstable
and filling out a topological annulus bounded inside and out by images of
FL.
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Figure 5.14. An example where a hungry set has multiple components.
The orbit of a point in A is marked for the a few thousand iterations.
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repeated. Once the orbit of points begin to hop components, then A is a topologi-

cal annulus. Further increasing the modulus of c will eventually lead to the annulus

swelling until it contains the origin, at which point A is a topological disk.

Figure 5.15. Each hungry set is a subset of K and therefore is bounded.
Thus, each hungry set must intersect FL. Also, as the modulus of c
increases, then |cz| increases for every z ∈ FL. This is why the components
of the hungry set swell as the modulus of c increases.

5.8 Coexisting Disjoint Hungry Sets

By Lemma 5.1.3, any sub-K with nonempty interior is a hungry set. Figure 5.16

shows an example of a K where there is a hungry set near the origin and also a period

4 sub-K near the boundary.
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Figure 5.16. The first image shows 8,000 points in the orbit of a point
near the origin revealing a hungry set there. The rest of the images show
3 progressively closer views of a component of a period 4 hungry set on
the boundary of K(−1.004 + 0.35i).
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6. PARTITIONING THE PARAMETER SPACE

There are several different ways to draw pictures of the parameter space. Each way

has advantages and disadvantages. We begin with the definition and picture of the

polygonal locus.

Definition 6.0.1 The polygonal locus is the set of points in the parameter space

for which K is a polygon.

By Theorems 4.0.80, 4.0.81, and 4.0.82, K is a polygon exactly when γ0 ∈ K.

Thus, we can make an escape-time picture of the polygonal locus by using γ0 as our

test point. Figure 6.1 is the result. Notice the vertical line at α = −1.

The boundary of the polygonal locus consists of the union of many curves. Every

parameter on a curve has an associated K(c) and for all c on that curve, K(c) will

have the same number of sides. The equations of these curves are implicitly defined

by cn γ0 = (1− t)`0 + t`0/c, that is, fn(γ0) ∈ L1.

Figure 6.2 shows the unit disk centered at the origin and parameters where there is

a smallest positive integer n with `n ∈ H−. If n is any integer, then the corresponding

picture is Figure 6.5.

Another useful picture of the parameter plane is given in black and white in

Figure 6.3 and in color in Figure 6.4. Each of these pictures mark the circles of radii
√

2 and 1, the polygonal locus, and the regions marked in Figure 6.2.

The escape-time method of coloring the parameter plane provides visual repre-

sentations of the external structures of K(c) near a test point when K(c) has empty

interior. Close inspection of Figure 1.4 leads to Conjecture 6.0.2. Experiments sug-

gest that the closer the test point is to the origin, the more “little filled-in Julia sets”

appear along the outside of the polygonal locus.
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Figure 6.1. The polygonal locus.
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Figure 6.2. Points in the parameter plane where `n is the first to be in
the lower half plane.

Figure 6.3. A pretty partition of the portion of the parameter plane with
positive imaginary part.
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Figure 6.4. A colorful partition of the parameter plane.

Figure 6.5. On the left is the set of parameters c in the parameter plane
such that K(c) has at least one point in H−. On the right is the same set
along with 3 disks centered at the origin with labeled radii for reference.
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Figure 6.6. Very different c’s with similar structures inside of K.

Conjecture 6.0.2 Drawing an escape-time picture of the parameter plane using a

test point very close to 0 produces an atlas of K’s with empty interior all around the

outside of the polygonal locus.

Using the coded-coloring instead of just the escape-time algorithm we can get a

preview of the coded-coloring inside of K(c) near the test point. Figure 1.5 shows

that the coded-coloring of the parameter plane can help to find parameters c such

that K(c) contains sub-K’s.

Conjecture 6.0.3 In a neighborhood of c in the parameter plane, the coded-coloring

using a test point very close to 0 produces an atlas of sub-K’s which can be found in

the coded-coloring of K(c) near the test point.

Figure 6.6 inspired the following question.

Open Question 6.0.4 For which parameters are all the internal structures of K

near 0 the same?

Conjecture 6.0.5 When making coded-colorings of the parameter plane, the smaller

the modulus of the non-zero test point, the closer the similarity between the structure in
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K(c) near the test point and the structure seen in the coded-coloring of the parameter

plane near c. Any sub-K’s found in this way have sides that approach uniform length

as |c| goes to 1.

The coded-coloring of the parameter plane in Figure 6.7 reveals what resemble

sun flares coming out of the unit disk. We will refer to these as flares.

Figure 6.7. Two pictures of the escape-time coloring of the parameter
plane using −i as the test point. The picture on the left also uses the
coded-coloring.

In Figure 6.7 one of the flares is circled and Figure 6.8 shows a close-up of this

flare along with the coded-colorings of various K(c) for six different choices of c near

this flare. Experiments suggest that a flare is a set of parameters where there is an

n such that K(cn) is embedded in the dynamical structure of K(c). The larger the

flare, and the sharper the image in the flare, the more “stable” the embedding.

Now each flare has a central curve. Figure 6.8 shows that the closer a parameter is

to this central curve (near location 3), the straighter K(cn) tends to be. This suggest

that the central curves of flares meet the unit circle at points whose argument is a

rational multiple of π.

Conjecture 6.0.6 Flares in the parameter plane meet the centered unit disk at points

whose argument is a rational multiple of π.
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Figure 6.8. On the left is a close up of a flare in the coded-coloring of the
parameter plane. There are six locations marked on the left corresponding
the the approximate parameters used in coded-colorings of the six K(c)’s
on the right.
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7. ENTROPY

In this chapter, we will calculate topological entropy as defined by Adler, Konheim

and McAndrew. We will follow closely what is done in [1, page 188].

Definition 7.0.7 We will denote the cardinality of a set A by #(A).

The following Lemma is Corollary 2.2 in [9, pg 829].

Lemma 7.0.8 Let X be a nonempty compact metric space and f : X → X a Lips-

chitz continuous map with Lipschitz constant L. Then the Hausdorff dimension of X

is larger than or equal to h(f)
logL

.

Corollary 7.0.9 We have h(f |K) ≤ log(|c|2).

Proof The map f is a Lipschitz continuous map with Lipschitz constant |c|. Since

K is a polygon, then K ⊂ C is a nonempty compact metric space. Since K ⊂ C,

then clearly the Hausdorff dimension of K is less than or equal to 2. We then get our

result by applying Lemma 7.0.8.

Definition 7.0.10 Let A, B be open covers of a space X and let f : X → X be

a continuous map. The common refinement of A and B is A ∨ B = {A ∩ B :

A ∈ A, B ∈ B}. Let f−n(A) = {f−n(A) : A ∈ A}. For every positive integer n, we

define the nth common refinement of A by An = A ∨ f−1(A) ∨ ... ∨ fn−1(A).

It will be important to note that partitions are covers.
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Lemma 7.0.11 Assume that K is a polygon and let A = {PH+∩K, (PH− \PFL)∩

K}. Then h(f |K ,A) ≥ log(|c|2).

Proof Let A ∈ An and let λ be the 2-dimensional Lebesgue measure. Then fn is

one-to-one on A and so λ(fn(A)) = (|c|2)nλ(A). Also, fn(A) ⊂ f(K) ⊂ K. Thus

λ(K) ≥ λ(fn(A)) = (|c|2)nλ(A). This gives an upper estimate for λ(A), namely:

λ(A) ≤ λ(K)

(|c|2)n
. (7.1)

Also,
⋃

A∈An

A = K. And so Σ
A∈An

λ(A) = λ(K). Using our upper estimate for λ(A)

we get #(An) λ(K)
(|c|2)n ≥ λ(K). Since λ(K) > 0 then dividing both sides by λ(K) results

in:

#(An) ≥ (|c|2)n. (7.2)

Taking the logarithm of both sides and dividing by n we get:

1

n
log(#(An)) ≥ 1

n
log((|c|2)n). (7.3)

Taking the limit as n goes to infinity we get h(f,A) ≥ log(|c|2). That is, the

topological entropy of f with respect to the partition A is greater than or equal to

log(|c|2).

Lemma 7.0.12 Assume that K is a polygon. Let A = {PH+∩K, (PH−\PFL)∩K}.

Then for any z ∈ K, #({A ∈ An : z ∈ Bd(A)}) ≤ 4n+ 6.

Proof Let z ∈ K be fixed and let N(z, n) = #({A ∈ An : z ∈ Cl(A)}). If z is in

the interior of A ∈ An, then N(z, n) = 1 and we are done. It is clear that An is a

finite set. Thus, for a small enough neighborhood U of z, if A ∈ An and A ∩ U 6= ∅

then z ∈ Cl(A).

If z /∈ Bd(K) then N(z, n) is equal to twice the number of the first n preimages of

FL that are not collinear and meet at z. Obviously, the number of preimages of FL

that can meet at a point are bounded from above by the number of distinct angles

a preimage of FL can take. We now show that there cannot be more than 2n + 1

distinct angles a preimage of FL can take.
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Recall that c = |c|eiθ. To simplify the calculations, in this proof we will

measure angles relative to the negative real axis in a clockwise manner.

Note that under this temporary convention, the angle of PFL relative to the real axis

is θ, and division by c adds θ to the argument of every point.

Now f−2(FL) = f−1(PFL) consists of two rays which are constructed by removing

the open lower half-plane, unfolding a copy of the upper half-plane onto the lower

half-plane, and then dividing by c. Thus, if W n = {w1, w2, ..., wk} is the set of all

angles achieved in the first n preimages of PFL, then W n+1 = ((−W n) ∪W n) + θ =

(θ −W n) ∪ (θ +W n) ∪W n. We now list the first few angle sets.

W 0 = {θ}

W 1 = {0, θ, 2θ}

W 2 = {−θ, 0, θ, 2θ, 3θ}

W 3 = {−2θ,−θ, 0, θ, 2θ, 3θ, 4θ}

.

.

.

W n+1 = (θ −W n) ∪ (θ +W n)

(7.4)

Note that #(W n) = 2(n) + 1 for these first few sets. We now show that this

growth is true for all n ≥ 0. Now suppose that w = kθ, k ∈ Z and W n = {(x− k)θ :

x = 0, 1..., n+ 1 + k}. Letting v = w + θ we have:

W n+1 = (θ −W n) ∪ (θ +W n)

= {θ − (w + 2θ), θ − w, ..., θ + w − 2θ, θ + w}

∪ {θ − w, θ − w + 2θ, ..., θ + w, θ + w + 2θ}

= {−w − θ,−w + θ,−w + 3θ, ..., w + θ, w + 3θ}

= {−v,−v + 2θ, v + 4θ, ..., v, v + 2θ}.

(7.5)

Thus by induction, #(W n+1) = #(W n) + 2 and we have #(W n) = 2n+ 1. Therefore,

N(z, n) ≤ 2(#(W n)) = 2(2n+ 1) = 4n+ 2.
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Lastly, if z ∈ Bd(K) then at most two A ∈ An have a common boundary with K

in the small neighborhood U of z. Since the sides of the polygon K do not need to be

parallel to a preimage of FL, then this may add at most two more angles to consider.

Thus, for all z ∈ K we have N(z, n) ≤ 2(2n+ 3) = 4n+ 6.

Lemma 7.0.13 There exists an open cover B of An such that each element of B

intersects at most k(n) elements of An where k(n) grows linearly.

Proof Let B1 = {Int(A) : A ∈ An} and let B2 = {Int(Cl(Aj ∪Ak)) : Aj, Ak ∈ An}.

Then B1 ∪ B2 is a cover of K everywhere but at the locations where more than 2

elements of An meet. Since An is a finite set, then these locations are isolated and

so can be covered by disjoint open sets. By Lemma 7.0.12 each of these open set

intersects at most 4n+ 6 elements of An which grows linearly.

Theorem 7.0.14 If K is a polygon then h(f |K) = log(|c|2).

Proof Assume that K is a polygon. We define a partition of K by A = {PH+ ∩

K, (PH− \PFL)∩K}. Then Anf = A∨ f−1(A)∨ ...∨ f−(n−1)(A) is the nth-common

refinement of A with respect to f . By Lemma 7.0.13 there exists an open cover B

such that each element of B intersects at most k(n) elements of An. Let C be a

minimal subcover of Bm. Each element of C intersects at most (k(n))m elements of

(Anf )mfn . The total number of elements of (Anf )mfn is less than or equal to (#C)(k(n))m.

We get:

N ((Anfn)mfn) = (#Afn)mfn

≤ N (Bmfn)(k(n))m
(7.6)

Taking the logarithm of both sides and the limit as n goes to infinity we get:

h(fn,An) ≤ h(fn,B) + log k(n) ≤ h(fn) + log k(n).

Using the identity that for any partition A we have h(fn,An) = nh(f,A) and

dividing through by n we get h(f,A) ≤ h(f) + 1
n

log k(n). As n goes to infinity,

1
n

log k(n) goes to 0 and so h(f,A) ≤ h(f). Then by Lemma 7.0.11 log(|c|2) ≤

h(f,A) ≤ h(f). By Corollary 7.0.9 h(f) ≤ log(|c|2). Thus h(f) = log(|c|2).
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Proposition 7.0.15 We have h(f |K) ≤ log 2.

Proof LetA = {PH+∩K, (PH−\PFL)∩K} and let µ be any f -invariant probability

measure on K. Then A is a one sided generator with two elements. Thus, hµ(f) =

h(f,A) ≤ log 2. Now the variational principle states that h(f) ≤ sup{hµ(f)} where

the supremum is taken over all f -invariant probability measures on K. We have

h(f) ≤ log 2.

Theorem 7.0.16 We have h(f |K) ≤ log min(2, |c|2). Furthermore, the inequality is

sometimes strict.

Proof Let c ∈ R where 1 < c < 2. Then by Theorem 3.0.26, K is a compact

subset of the imaginary axis. By Lemma 3.0.22, f restricted to K is conjugate to

a real tent map τ from [0, 1] to itself, where the absolute value of the slope is |c|.

Thus, h(f) = h(τ). It is well known that if 1 < |c| < 2, then h(τ) = log |c|. Since

|c| < min(2, |c|2), then h(f |K) ≤ h(f) = h(τ) = log |c| < log min(2, |c|2) and we are

done.
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