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The esthetic and biocompatible properties of dental ceramics have stimulated 

extensive researches to improve their inferior mechanical properties compared with 

metallic restorations.1 Recent improvement of the mechanical properties of structural 

zirconia ceramics has enlarged its application in dentistry.2   While the first biomedical 
 

application of zirconia occurred in 1969, its use in dentistry started in the early 1990s, 

and since then zirconia ceramics have been used in the fabrication of endodontic posts, 

dental implants, implant abutments, orthodontic brackets, crown cores, and fixed partial 

denture prosthesis (FPDP) frameworks.3
 

Zirconia is a polymorphic material present in three forms. At its melting point of 
 

2680°C, it has a cubic structure that transforms into tetragonal structure below 2370°C. 

Then, the tetragonal transforms to a monoclinic structure below 1170°C. The later 

transformation results in a 3-percent to 5-percent volume expansion, which causes high 

internal stresses. In order to control the volume expansion and stabilize zirconia in the 

tetragonal phase at room temperature, Yttrium-oxide (Y2O3, 3-percent-mol) is usually 

added to pure zirconia. This partially stabilized zirconia has high flexural strength and 

fracture toughness.2 A special phenomenon associated with partially stabilized zirconia is 

known as “transformation toughening.” It occurs when an increase in the tensile stresses 

at a crack tip causes the transformation from the tetragonal phase to the monoclinic phase 

resulting in almost 3-percent to 5-percent localized expansion. Localized expansion 

triggers compressive stresses at the crack tip, counteracting the external tensile stresses 

and hence retarding crack propagation. However, the toughening mechanism does not 
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prevent the progression of a crack; it just makes it harder for the crack to propagate. 

Thus, in the presence of higher stresses, crack propagation is expected. Yttrium-oxide 

stabilized tetragonal zirconia polycrystal (Y-TZP) has mechanical properties that are 

desirable for restorative dentistry: chemical and dimensional stability, high mechanical 

strength, and fracture toughness.3
 

Despite the good mechanical properties of zirconia ceramics, current processing 
 

technologies cannot make zirconia frameworks look as translucent as natural teeth, nor 

can they provide shade characterization. Therefore, zirconia cores or frameworks are 

generally veneered with porcelain to achieve a more natural appearance.1 Veneering 

tough zirconia ceramic cores with traditional porcelains led to the fabrication of esthetic, 

all-ceramic restorations that are strong enough to replace metal-supported porcelain 

restorations. In specific clinical situations, for example, when the occlusal or palatal 

space is limited or in cases where a patient’s parafunctional activity (e.g. bruxism) may 

contraindicate the use of porcelain occlusals, the use of unveneered zirconia ceramic 

seems to be an option for all ceramic restorations.4 Zirconia has high strength and is 

tooth-colored; as a result, dental laboratories have started to promote glazed all-zirconia 
 

crowns without veneering porcelain. 
 

The wear of human enamel and opposing restorative materials are of great 

concern when selecting restorative materials for clinical treatment. Wear and loss of 

enamel are irreversible and can lead to the need for complex restorative procedures. 

Indeed, the loss of enamel could cause occlusal instability as well as potential dentin 

exposure.5 
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A smooth restoration surface is important to avoid dental complications such as 

plaque formation, gingivitis, periodontitis, and wear of the opposing dentition. It is also 

important for patient comfort.4 Surface smoothness and roughness play a major role in 

restorative material wear behavior.4 Wear usually occurs at the tips of the highest 
 

asperities, and given that increasing surface roughness is associated with increased 

asperities, a rougher surface is expected to cause more wear than a smoother one.6
 

As a general rule, ceramic materials cause greater abrasive wear of human enamel 

compared with other restorative materials,5, 7 but very little information is available 

concerning the effect of surface roughness of unveneered zirconia against the natural 

dentition. Usually, occlusal adjustments of the restorations are necessary after 

cementation. The use of diamond burs may remove the glazing material and impact the 

ceramic surface roughness. Therefore, the re-establishment of a smooth, glazed-like 

zirconia surface using intraoral polishing instruments or kits is of great clinical 

importance, because it may help to minimize the effects of surface roughness on 

antagonist wear.5, 7
 

Human enamel is considered to be the best material for in-vitro wear testing 
 

evaluation. A disadvantage of using unmodified enamel cusps is that the shape of the 

cusps varies among specimens as well as its natural substrate.5, 8 An important alternative 

to human enamel substrate variability has been the use of synthetic hydroxyapatite.9-10
 

The objectives of this study were: 1) To investigate the effects of different surface 

treatments on the surface roughness of a yttrium-stabilized tetragonal zirconia polycrystal 

ceramic (Y-TZP, Ardent Dental, Inc.); 2) To evaluate the influence of zirconia surface 
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roughness on the wear behavior against bovine enamel and synthetic hydroxyapatite; 3) 

To compare wear behavior between bovine enamel and synthetic hydroxyapatite. 

 
HYPOTHESES 

 
The null hypotheses of this study were: 1) The different polishing techniques 

tested would result in similar zirconia surface roughness values; 2) Zirconia surface 

roughness would not affect the wear of bovine enamel and hydroxyapatite specimens; 3) 

Bovine enamel and hydroxyapatite specimens would present similar wear characteristics. 

The alternative hypotheses were: 1) The different polishing techniques would 

result in distinct zirconia surface roughness values; 2) Zirconia surface roughness would 

affect the wear of both bovine enamel and hydroxyapatite; 3) Bovine enamel and 

hydroxyapatite specimens would have different wear characteristics. 
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WEAR 
 

Wear is defined as the removal of material from a solid surface as a result of 

mechanical interaction between two relatively moving surfaces.11
 

Dental wear refers to the wear process involving dentition and it is often called 

“tooth wear.” Tooth wear is a complex process and can be affected by many factors that 

includes; the abrasive nature of food, parafunctional habits, neuromuscular force, enamel 

thickness, enamel hardness (affected by degree of mineralization), dental structural 

direction, and enamel prisms orientation, presence of opposing restorative materials with 

different wear behavior compared with tooth structure, as well as pH and nature, 

viscosity, and flow rate of the saliva.12
 

 
There are many types of tooth wear. The most common types mentioned in the 

literature are attrition, abrasion, and erosion. Attrition is defined as the physiological 

wearing of dental hard tissue due to  tooth-to-tooth contact with no foreign substance 

intervening.13 Abrasion, on the other hand, is the pathological wearing of dental hard 

tissue through abnormal mechanical processes involving foreign objects or substances 

repeatedly introduced in the mouth and contacting the teeth.13 Erosion differs from the 

previous two types in that dental hard tissues are chemically etched from the tooth 

surface by acid and chelating agents.14 During function and with the presence of diet and 

saliva, a combination of the three types might be observed.13
 

 
Abrasive wear is the primary form of wear occurring in dentistry 12 and is further 

subdivided into two types: two-body and three-body abrasion. In two-body wear the 
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surfaces are worn by direct contact between opposing surfaces. This usually occurs 

during non-masticatory tooth movement and are especially prevalent with parafunctional 

habits (i.e. bruxism).15 In the three-body wear, the surfaces are worn away by the slurry 

of abrasive particles that intervene between the moving surfaces. This occurs usually 

during mastication, so that it is mostly prevalent in patients eating an abrasive diet.15 The 

purpose of two-body wear testing is to simulate attrition created by direct occlusal 

contact of teeth or restorative materials during grinding and bruxism. The purpose of 

three-body wear testing is to simulate the masticatory process when food exists between 

opposing teeth. A combination of two-body and three-body wear usually occurs between 

opposing enamel and any restorative materials in the oral cavity. The wear rates of 

restorative materials are greater from two-body wear than from three-body wear.16
 

Dental wear is a physiological process found in every population of all ages. The 
 

loss of enamel and the underlying softer dentin is a continuous phenomenon during the 

life cycle of each tooth.17 However, a modern diet and the higher prevalence of tooth 

decay increased the use of restorative materials to repair or even replace dental hard 

tissues, which might affect and accelerate the physiological wear rates. 

To prevent accelerated enamel loss by wear and its complications, an ideal 

restorative material should behave like natural enamel when placed in the oral cavity. 

According to Lambrechts et al.,17 the normal physiological wear of human enamel is 

estimated to be around 38 µm per year for molars during the running-in period (first year 

after restoration placement), and 29 µm per year for the steady-state period (begins two 

years after restoration placement). For the premolars, it was 18 µm per year during the 

running-in period, and 15 µm per year during the steady-state period. Slightly higher 
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wear rates are observed during the running-in period compared with the steady state. 

When no other restorative treatments are performed, a dynamic balance in the occlusion 

will be established.17 It is worth mention that in this in-vivo study, all restorative 

treatments for each patient were done from the beginning to establish a balanced 

occlusion. 

As wear measurements in vivo are complicated and time-consuming,18 many in- 
 

vitro wear simulation devices and methods have been introduced. The advantages of in- 

vitro models include: the examination of larger numbers of samples over relatively short 

periods of time; a controlled exposure time; the achievement of a high level of 

standardization; the ability to control numerous variables, and usefulness for 

demonstrating the wear behavior of a substance.15 On the other hand, it cannot replicate 

the oral environment precisely with all its biological variations. In fact, in-vitro models 

give us information only about trends and indications about the true extent of wear.15
 

Many factors contribute to tooth wear in the oral cavity. The factors identified in 
 

studies affecting in-vitro wear include surface quality, resistance to fatigue and fracture, 

surface roughness of the antagonist, magnitude of loading, sliding distance and speed, 

coefficient of friction, and the properties and structure of materials.1,4,19 An interesting 

finding by Seghi et al.20 is that Knoop hardness shows poor correlation with the results of 
 

abrasive wear testing. 
 

The complexity of studying and comparing wear measurements literature is 

greatly related to the wide variety of wear machines used, the types of antagonists, the 

composition and the shape of sliders (stylus), the number of cycles, the geometry of 

tested materials, the load used, the frequency of cycles, and the type of movements. 
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CERAMIC RESTORATIONS AND ZIRCONIA CERAMIC 
AS ANTAGONIST MATERIALS TO HUMAN TEETH 

 
Many researchers have studied the wear behavior of different ceramic materials 

against human enamel. As a general rule, ceramic materials cause greater abrasive wear 

of human enamel compared with other restorative materials.5,7 As mentioned previously, 

zirconia cores and frameworks are usually veneered with porcelain to make more 

esthetically pleasing restorations.1 This might be a reason for having so few studies on 

the wear behavior of zirconia ceramic itself, because most research to date focuses on 

veneering ceramics and bonding to the underlying zirconia core. 

When occlusal or palatal space is limited, the use of un-veneered zirconia ceramic 

might be an option for all ceramic restorations. Therefore, the wear behavior of zirconia 

ceramic as an antagonistic material would be important clinically. Recent advancements 

in zirconia stain and glaze techniques and the commercial promotion of all-zirconia 

crowns prompted more studies of the wear and abrasive characteristics of zirconia.1,4,19,21-
 

 
22 

 
 

Preis et al. 22 compared the wear of flat zirconia (five different zirconia ceramics) 

and four different veneering porcelain materials with different surface finishes 

(glazing/polishing) against human enamel and steatite sliders (made of magnesium 

silicate). The results showed no measurable wear on zirconia surfaces compared to 90- 

µm to 233-µm wear tract on the veneering porcelain. The authors did not measure the 

wear of enamel against zirconia due to technical problems involving human enamel wear 

quantification, but they reported a measured wear area of 0.8 mm2 to 1.4 mm2 of steatite 



11  
 
 

sliders against zirconia. An interesting finding is that antagonistic wear (steatite) against 

zirconia was lower than wear against porcelain. 

In another study by Albashaireh et al.,1 an explanation of the low wear of zirconia 
 

ceramic compared with other types of ceramic has been given. The authors suggested that 

differences in flexural strength and toughness are related to the amount of wear observed. 

They stated that zirconia had the highest flexural strength (900 MPa) and fracture 

toughness (5.5 MPa m1/2) among the studied materials and exhibit the least substance 

loss.1 In other words, flexural strength and fracture toughness have an indirect correlation 
 

to wear loss of a ceramic material. 
 

Ghazal et al.4 evaluated and correlated the wear of human enamel and nano-filled 

composite against zirconia balls with different surface roughness average values. The 

rationale for their study was that finishing techniques of ceramic lead to different surface 

roughness values. Briefly, three different surface roughness for zirconia were used (Ra = 

0.24 µm, 0.75 µm, and 2.75 µm). The results showed a measured human enamel vertical 

height loss ranging from 25 µm to 131 µm, and volume loss ranging from 0.012 mm3- 

0.211 mm3. The increase in the antagonist surface roughness (zirconia) significantly 
 

increases both the wear of human enamel and composite resin. 
 

Ghazal et al.19 investigated the effect of load magnitude on the wear of human 

enamel and composite resin against zirconia balls. The results revealed a vertical height 

loss of tooth enamel ranging from 19 µm to 35 µm under 49 N load. The increase in the 

loading force significantly increased the wear of human enamel up to 46 µm under 75 N 

load. These results highlight the significance of masticatory forces as an important factor 

affecting wear. 
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In most wear literature a load of 49N is used because it represents the average 

physiological biting forces for a normal person (i.e., non-bruxing person).7 

 
EFFECT OF SURFACE TREATMENT ON WEAR 
BEHAVIOR (GLAZING VERSUS POLISHING) 

 
Surface polishing has been reported to equal or exceed the smoothness achieved 

with surface glazing.12,23   Selective grinding to adjust the occlusion of a restoration will 

remove the glazing material. In such cases polishing a restoration is considered critical to 

re-establish a smooth surface. Therefore, it is important to evaluate the wear 

characteristics of a polished surface compared with a glazed one.1 

While many studies have compared different surface treatments on surface 
 

roughness of ceramic, especially between glazed and polished surfaces, few studies are 

available on the effects of different surface treatments on the surface roughness of 

zirconia ceramic and the associated antagonist wear behavior. 

Rosentritt et al.24 studied the two-body wear of different ceramics (glazed and un- 
 

glazed) against steatite balls and human enamel. Three types of Y-TZP ceramics were 

used, from which one system (Prettau) is available on the market for the fabrication of 

full-zirconia fixed dental prostheses without veneering. Ra values for the three zirconia 

systems were about 0.1 µm and were not significantly different from other glazed 

ceramics. An interesting finding from this study was that sliding of the steatite antagonist 

on hard zirconia surface caused only flattening of the antagonist surface, which led the 

authors to conclude zirconia can be used safely for the fabrication of fixed dental 

prostheses without veneering. 
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The surface roughness parameter used almost always in literature is Ra.1,4,22,24 Ra 

is a mathematical average value of the profile departure from the mean line within a 

sampling length. For statistical work, another parameter (Rq) is considered more 

meaningful than Ra. Rq is the square root of the average of the square of the deviation of 

the profile departure from the mean line. This parameter has the ability to detect atypical 

peaks and valleys. In our study, we have included both measurements. 

 
MATERIALS USED AS SUBSTITUTES FOR HUMAN ENAMEL 

 
The best choice for the in-vitro study of wear is human enamel. However, there 

are some complications and disadvantages to using natural human enamel, including the 

inability to obtain enamel samples of the proper size to fit the wear machines and wide 

variations in shape and physical properties between specimens. Also, enamel samples 

require extensive preparation (sectioning individual cusps, cutting standard size sliders, 

then finishing and polishing) and standardization is almost impossible due to natural 

substrate variations. All this may lead to a variation in results.11
 

 
Therefore, a substitute material that has similar average properties to that of 

human enamel would greatly improve the results obtained from simulation of wear 

testing.11 Stainless steel, steatite, synthetic hydroxyapatite, dental porcelain, and zirconia 

ceramic balls have been used as stylus substrates to evaluate wear in research studies.1, 4,
 

 
9-11, 19, 21 

 
 

It is unexpected to find a material having the same properties as human enamel in 

all aspects. However, trying to select a material that simulates natural human dental 

enamel as closely as possible in terms of structural, mechanical and chemical properties 

is most essential in wear study design.11
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Synthetic hydroxyapatite has been used as a substitute for enamel in previous 

studies.9-10 Given that human enamel consists of more than 85-percent hydroxyapatite 

might be a valid justification for using synthetic hydroxyapatite. 

The use of bovine enamel as a substitute to human enamel is very common, 

especially in erosion abrasion studies. Recent wear studies suggest that bovine enamel 

shows less resistance to wear and abrasion compared with human enamel.25-26
 

Mehl et al.26 compared the wear of six composite resins to that of human and 
 

bovine enamel in a dual-axis masticatory machine. They reported that wear values for 

bovine enamel were almost three times higher than those for human enamel. Although 

this difference was not statistically significant, their conclusion stated that bovine enamel 

is not a suitable substitute for human enamel in in-vitro wear test. 

Throughout the wear literature, antagonist materials and slider materials have 

varied considerably, and almost all materials have been used as both antagonists and 

sliders. Albashaireh et al.1 stated that while the use of human enamel is considered the 

best choice for a slider material, the lack of standardization and the variability in shape 

and wear behavior remains a problem. The use of a material that maintains its shape 

throughout the wear test (e.g., zirconia balls) is an advantage to minimize the effect of 

slider shape on wear behavior of the antagonist materials. 
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MATERIALS AND METHODS 
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The experimental study design consisted of two parts: Part One was aimed at 

investigating the effect of different surface treatments on full-contour zirconia surface 

roughness. The two-body wear behavior of those zirconia groups was studied against 

synthetic HA. Part Two was aimed at comparing the wear behavior of two different 

antagonist materials, bovine enamel and HA, against glazed and polished full-contour 

zirconia ceramics. 

 
PREPARATION OF ZIRCONIA SPECIMENS (Y-TZP) 

 
Forty-eight yttrium-stabilized full-contour zirconia (FCZ, Ardent Dental Inc., 

NY) ceramic specimens (hereafter named zirconia sliders) were manufactured using a 

CAD/CAM machine (Sirona, InLab MC XL). The zirconia material came from the 

manufacturer as a large disk-shaped block (Figure 1). Small cubic zirconia blocks (10 x 

10 x 10 mm3) were prepared using a band saw. Next, the samples were placed in a 
 

furnace (Pyro oven, HD Justi Company, CA) at 275° F for 30 minutes to remove the 

moisture. Using a custom jig, each block was glued to a CAD/CAM fitting pin (Figure 2) 

in preparation for milling. To facilitate the CAD/CAM process a slider replica of the 

proper shape and size was machined from an aluminum rod and scanned by a digital 

scanner (Sirona, InLab MC XL) (Figure 3 and Figure 4). This information was sent to the 

CAD/CAM milling machine. The zirconia samples were then milled to the required 

shape and dimensions (Figure 4). The base of each sample measured 6 mm in diameter 

and 4 mm high.  The slider portion of each sample was 2 mm in diameter and 1.5 mm 

high. 
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Subsequently, the specimens were sintered in a high-temperature furnace 

(Programat S1, Ivoclar-Vivadent, Buffalo, NY) at 1500˚C for 8 hours. The specimens 

experienced 19.264-percent shrinkage during sintering. The computer software 

compensates for this shrinkage during milling to produce finished specimens of the 

proper size (Figure 5). 

A custom silicone mold was fabricated to be used as a mounting jig for the 

zirconia slider samples to brass holders that will attach to the wear machine (Figure 6). A 

cylindrical plastic sleeve was attached to a brass holder with wax. Then, the sleeve was 

filled with molten wax.  The slider end of the previously described metal slider replica 

was inserted into the end of a dental surveyor rod. With the brass holder assembly resting 

on the surveyor base, the metal slider replica was lowered into the soft wax until the top 

of the replica base was even with the top of the plastic sleeve. The 1.5-mm slider was left 

exposed (Figure 6, item B). The dental surveyor was used to ensure that the specimens 

were mounted so that the slider end was parallel to the surface of the antagonist specimen 

during testing. Excess wax was removed and the wax was allowed to cool. Next, the 

mounted metal slider replica was inserted into vinyl polysiloxane impression material 

(Exafast, GC America, Inc.) and the impression material was allowed to set. Then, the 

mounted replica assembly was removed from the impression to leave a silicone mounting 

jig (Figure 6, item C). 

To mount the zirconia slider specimens, each specimen was inserted slider end 

first into the silicone mold (Figure 6, item D). Then, auto-polymerizing acrylic resin 

(Bosworth Fastray, Harry J. Bosworth Co, IL) was mixed and poured into the mold over 

the base of the zirconia slider. A lubricated brass holder was then placed into position 
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inside the mold, and slight finger pressure was used to hold it in place until the acrylic 

polymerized (Figure 6, item D). Figure 7 shows the mounted zirconia specimen with the 

1.5 mm slider exposed for testing. 
 

The zirconia sliders were randomly allocated to four groups (n= 8) according to 

the surface finishing/polishing procedure as follows: G1-as-machined; G2-glazed; G3- 

diamond bur-finishing for 10 s using a high-speed hand piece under water cooling (Fine 

needle diamond bur, #8392.31.016, Brasseler, USA); and G4-diamond bur-finishing 

(Fine needle diamond bur, #8392.31.016, Brasseler) followed by polishing with 

OptraFine polishing kit (Ivoclar-Vivadent, NY). Each polishing step was carried out for 

30 s, followed by polishing using the diamond paste supplied with the polishing kit for 

one minute. All specimens were immersed in distilled water and cleaned for three 

minutes in an ultrasonic bath after surface treatment. 

The four groups were to be tested against synthetic hydroxyapatite (HA) 

antagonists. Two additional groups (n = 8) representing G2-glazed, and G4-diamond bur- 

finishing (Fine needle diamond bur, #8392.31.016, Brasseler) followed by polishing with 

OptraFine polishing kit (Ivoclar-Vivadent, NY) were prepared in the same fashion to be 

tested against bovine enamel antagonists. A summary of the test groups is presented in 

Figure 8. 

The G2-Glazed group specimens were glazed following manufacturer instructions 

using full-contour zirconia glaze (Diazir, Diadem Precision Technology, MI) before 

mounting in acrylic resin. The firing procedure was done according to the manufacturer 

instructions using a Programat P500 furnace (Ivoclar-Vivadent) (Figure 9). 
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Baseline average surface roughness parameters (Ra, in µm,)  and (Rq, in µm) 

were recorded using a non-contact 3D profilometer (Proscan 2000, Scantron, Taunton, 

England) and dedicated software (version 2,0,17 Scantron Industrial Products Ltd., 

Taunton, England) for each zirconia slider.27-28 The mean Ra and Rq values were 

associated with each zirconia experimental group. An example of surface roughness 

scanning and measurements is shown in Figure 10 and Figure 11. 

One additional specimen per group was prepared and evaluated under a scanning 

electron microscope to obtain qualitative images of the Y-TZP surfaces after sample 

preparation (JEOL JSM-5310LV, Jeol Ltd, Tokyo, Japan). The specimens were sputter- 

coated with gold, then evaluated at X50, X500 and X1500 magnification at 20 kV 

acceleration voltages. The qualitative information aims to show the differences in surface 

topography in relation to roughness values obtained from the Proscan measurements.4
 

 
Sputter-coated specimens and SEM pictures are shown in Figures 12 and 13. 

 
Baseline vertical height for each zirconia sample was measured by a digital 

micrometer (Digi-micro, Nikon) in millimeters. Four readings were taken for each 

sample from four different locations situated on two cross lines marked on the zirconia 

slider base (Figure 14). 

 
PREPARATION OF ENAMEL AND 
HYDROXYAPATITE ANTAGONIST SPECIMENS 

 
In this study, bovine enamel and synthetic hydroxyapatite (HA) were used as an 

alternative to human enamel. Sixteen freshly extracted and caries-free bovine incisor 

teeth were obtained from Oral Health Research Institute (IUSD) and stored in 0.1-percent 

thymol solution until preparation for testing. The teeth were sectioned horizontally to 



20  
 
 

remove the root and then wet-flattened with 180-grit SiC paper into a specimen with a 

flat square-shaped facial surface. The flat facial surface was used for wear testing. The 

flat enamel sections were mounted in brass holders using auto-polymerizing acrylic resin 

in much the same way that the zirconia sliders were mounted. The specimens were then 

stored in distilled water at room temperature until testing.5 According to our pilot studies, 
 

the minimum surface area of enamel required for the wear testing was 64 mm2 (Figure 
 

15). 
 

Similarly, sintered (n=32) disk-shaped (13 mm in diameter × 2.9 mm in height) 

synthetic hydroxyapatite (Orthoblock, Calcitek Inc., Carlsbad, CA) samples were 

mounted in brass holders (Figure 16). 

Subsequently, both bovine enamel and HA specimens were wet-finished with SiC 
 

paper (600 grit to 1200 grit) to obtain a flat and standardized test surface (Figure 17).10
 

 
Samples were cleaned in an ultrasonic bath in distilled water for three minutes, then 

stored in distilled water at room temperature until testing. 

Baseline surface average roughness (Ra, in µm) was recorded using a non-contact 

profilometer (Proscan 2000, Scantron, Taunton, England) for each specimen. Parameters 

and an example of surface scan are shown in Figure 18 and Figure 19. Surface roughness 

measurements were done to confirm standardization among all samples. 

Vickers hardness for HA was measured for five samples and the average recorded 

as the hardness for all HA samples. Vickers hardness for bovine enamel was also 

measured for each sample. Due to a wide sample area, the average of 15 points per 

sample was taken as the Vickers hardness for that sample. Samples with Vickers hardness 
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less than 270 were excluded. In cases of the presence of cracks or dentin exposure after 

polishing, the sample was also excluded.  Hardness parameters are shown in Figure 20. 

 
WEAR TESTING 

 
To simulate the wear that occurs in the occlusal contact, a two-body pin-on-disk 

wear test was performed. A two-body rotating pin-on-disk wear testing machine (IUSD 

Biomaterials Lab, Indiana University, Indianapolis, IN) containing four wear stations was 

used. The brass holders containing the mounted test specimens have a large screw 

protruding out the end that is used for attaching the specimen to the wear machine. The 

mounted HA and bovine specimens were attached to the upper stationary member of the 

wear stations. The zirconia sliders were attached to the lower rotating component of the 

wear stations. The stations rotate at a constant speed with a radius of movement of 

approximately 3 mm to 4 mm.29 The wear test was run for 25,000 cycles at 1.2 Hz. The 
 

wear stations were washed continuously with water for the entire testing period to 
 

prevent the effect of debris on the wear test (Figure 21). After the wear testing, specime ns 

were removed and cleaned with distilled water in an ultrasonic bath for six minutes. 

Zirconia sliders were evaluated for height loss using the digital micrometer. The 

differences in height before and after wear were recorded as zirconia vertical height loss 

(µm) (Figure 22). 

The vertical substance loss, i.e., the maximum depth of the wear area (in µm) and 

the volume loss (mm3) of each of the HA and bovine specimens were measured using a 

non-contact optical profilometer (Proscan 2000, Scantron, Taunton, England) (Figure 23) 

by comparing the wear track to unworn areas.30 The shape of the wear track is shown in 

Figure 24. The measurements procedure for vertical height loss is given in Figure 25. 
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Figure 26 shows an example of vertical height loss measurements on the computer 

screen. Measurements of volume loss are shown in Figure 27. 

Scanning electron microscopy was performed to provide additional qualitative 

data on the wear characteristics of hydroxyapatite specimens at different magnifications. 

One specimen representing each group was sputter coated with gold, and evaluated at 

X75, X500, and X1500 magnification. 

 
STATISTICAL METHODS 

 
Summary statistics (mean, standard deviation, standard error, range) were 

calculated for surface roughness for each of the four Y-TZP finishing/polishing 

techniques. Summary statistics were calculated for each of the four polishing technique/ 

specimen (bovine enamel or synthetic hydroxyapatite) combinations for wear depth and 

volume for both the YSZ sliders and enamel/hydroxyapatite specimens. One-way 

analysis of variance (ANOVA) was used to determine the effect of the polishing 

techniques on surface roughness. Comparisons between groups for differences in 

antagonist height loss, antagonist volume, and slider height loss were performed using 

one-way ANOVA. Analyses were performed after a natural logarithm transformation of 

the data to satisfy the assumptions required for the ANOVAs. The statistical significance 

level was set at α = 0.05 for all tests. 

 
SAMPLE SIZE JUSTIFICATION 

 
In two previous studies,1,4 the standard deviation for wear depth was reported to 

be 4 µm. With eight (8) samples per polishing technique/specimen 

(enamel/hydroxyapatite) combination, the study would have 80-percent power to detect a 
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wear-depth difference  of 6.1 11m between  any two groups,  assuming two-sided tests each 

conducted at a 5-percent  significance level. 
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RESULTS 
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Hardness values for both HA and bovine were recorded to ensure they are close to 

standard values of human enamel (320 VH to 360 VH).4 The average Vickers hardness 

for HA was 467.6 VH. For bovine enamel, the hardness ranged from 270 VH to 314 VH. 
 

Mean and standard deviation for zirconia surface roughness following the four 

surface treatments were calculated and are presented in Table I. Mean and standard 

deviation for antagonist height loss and volume loss were calculated and are presented in 

Table II and Table III, respectively. Mean and standard deviation for zirconia height loss 

following wear test was also calculated (Table IV). 

Comparisons between groups for differences in surface roughness, antagonist 

height loss, antagonist volume, and slider height loss were performed using one-way 

ANOVA. Analyses were performed after a natural logarithm transformation of the data, 

in order to satisfy the assumptions required for the ANOVAs. 

 
THE EFFECT OF SURFACE TREATMENT ON 
ZIRCONIA SURFACE TOUGHNESS 

 
According to the four surface treatments produced, surface roughness was 

significantly higher for the as-machined and bur-finished zirconia sliders (Ra: 0.84 µm 

/0.89 µm, and Rq: 1.13 µm/1.2 µm respectively) than for glazed and polished zirconia 

sliders (p < 0.0001) (Ra: 0.42 µm/0.49 µm, and Rq: 63 µm/0.76 µm, respectively). 

Comparing glazed and polished zirconia sliders, it was found that surface 

roughness was significantly higher for polished zirconia sliders (Ra = 0.49, Rq = 0.76) 

than for glazed zirconia sliders (Ra = 0.42, Rq = 0.63) (p = 0.0013 for Ra, p = 0.0001 for 
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Rq). Surface roughness was not significantly different between as-machined (Ra = 0.84, 

Rq = 1.13) and bur-finished zirconia sliders (Ra = 0.89, Rq = 1.20) (p = 0.43). Results are 

shown in Table V and Figure 28. 

SEM images at X50,  X500,  and X1500 magnification showed differences in 

surface topography comparable to the roughness values obtained from the Proscan 

measurements. G2-glazed group (Ra = 0.42, Rq = 0.63) had the smoothest surface under 

SEM, while G1-as machined (Ra = 0.84, Rq = 1.13) and G3-bur-finished group (Ra = 

0.89, Rq = 1.20) showed rougher surfaces according to the SEM images. G4-polished 

group SEM images showed a smooth surface, but it was not as shiny as for the G2-glazed 

group. SEM images for the four groups are shown in Figure 29, Figure 30, Figure 31, and 

Figure 32. 

 
THE EFFECT OF WEAR ON ZIRCONIA SLIDER HEIGHT LOSS 

 
For HA antagonists, glazed zirconia sliders had significantly more slider height 

loss (35.39 µm) than as-machined (12.70 µm) (p < 0.0001), bur-finished (16.34 µm) (p = 

0.0005), and polished zirconia sliders (6.61 µm) (p < 0.0001). 
 

Polished zirconia sliders presented significantly less height loss (6.61 µm) than 
 

as-machined (12.70 µm) (p = 0.0011) and bur-finished (16.34 µm) (p = 0.0001) zirconia 

sliders. As-machined and bur-finished zirconia sliders did not show significantly different 

slider height loss (p = 0.38) (Table V and Figure 33). 

Similarly, for bovine antagonists, polished zirconia sliders demonstrated 

significantly less height loss (8.2 µm) than glazed zirconia sliders (39.5 µm) (p = 0.0001) 

(Table V and Figure 34). 
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The results suggest that regardless of the antagonist material used in this study, 

the polished zirconia showed the lowest vertical height loss, and the glazed zirconia 

sliders had the highest vertical height loss, while the as-machined and bur-finished 

groups presented intermediate values. 

 
THE EFFECT OF ZIRCONIA SURFACE ROUGHNESS 
ON ANTAGONIST HEIGHT LOSS AND VOLUME LOSS 

 
 
 

For HA Antagonists 
 

Polished zirconia sliders caused significantly less antagonist height loss (14.7 µm) 
 

and antagonist volume loss (1.3 mm3) than as-machined (24.7 µm, 2.7 mm3) (p = 
 

0.0001), bur-finished (24.3 µm, 2.5 mm3) (p = 0.0001), and glazed (25.8 µm, 2.7 mm3) (p 
 

= 0.0001) zirconia sliders, while as-machined, bur-finished, and glazed zirconia sliders 

were not significantly (p > 0.70) different from each other (Table V, Figure 35 and Figure 

36). 
 
 
 

For Bovine Antagonists 
 

Similarly, polished zirconia sliders resulted in significantly less antagonist height 

loss (116.2 µm) (p = 0.0001) and antagonist volume loss (17.7 mm3) (p = 0.0018) 

compared with glazed zirconia sliders (197.6 µm, and 28.5 mm3) (Table V and Figure 37 

and Figure 38). 
 
 

HA Versus Bovine Antagonists 
 

For glazed and polished zirconia sliders, antagonist height and volume loss were 

significantly higher for bovine antagonists than for HA antagonists (197.6 µm/116.2 µm, 
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and 28.5 mm3/17.7 mm3 for bovine and HA antagonists, respectively) (p < 0.0001). 

(Table V and Figure 37 and Figure 38). 

On the other hand, slider height loss was not significantly different (p > 0.49) 
 

between glazed/polished zirconia against the different antagonist materials (39.5 µm/8.2 
 

µm for glazed/polished zirconia against bovine, compared with 35.4 µm/6.6 µm for 

glazed/polished zirconia against HA) (Table V and Figure 34). 

For HA antagonist samples, scanning electron microscopy was performed at X75, 

X500, and X1500 magnification to study the differences in the characteristics of the worn 

surfaces (smooth, rough, and presence of cracks or fractures). Images for different groups 

are shown in Figure 39, Figure 40, Figure 41, and Figure 42. The qualitative information 

shows differences in the characteristics of the worn surfaces. G1, G2, and G3 caused 

rougher antagonist surfaces when compared with G4. The roughest surface was 

associated with the G2-glazed group. 
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TABLE I 
Descriptive statistics for zirconia surface roughness* 

 
Method Type Group  N Mean SD SE Min Max 

 
Ra 

Zirconia 
Slider 

 
As-machined 

  

 
8 

 
0.84A

 

 

 
0.15 

 

 
0.05 

 

 
0.60 

 

 
1.04 

  Bur-finished  8 0.89 A 0.12 0.04 0.68 1.07 
Glazed 

   Bovine 8 0.40B
 0.07 0.02 0.30 0.49 

   HA 8 0.42B
 0.09 0.03 0.32 0.58 

Polished 
   Bovine 8 0.49C

 0.06 0.02 0.41 0.58 
   HA 8 0.49C

 0.05 0.02 0.41 0.57 
 
Rq 

Zirconia 
Slider 

 
As-machined 

  

 
8 

 
1.13 I 

 

 
0.20 

 

 
0.07 

 

 
0.81 

 

 
1.39 

  Bur-finished  8 1.20 I 0.19 0.07 0.88 1.46 
Glazed 

   Bovine 8 0.56II
 0.09 0.03 0.41 0.67 

   HA 8 0.63II
 0.17 0.06 0.45 0.99 

Polished 
   Bovine 8 0.73III

 0.06 0.02 0.63 0.84 
   HA 8 0.76III

 0.06 0.02 0.69 0.89 
*Ra/Rq values for groups with the same superscript letter/number were not significantly 
different. 
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TABLE II 
 

Descriptive statistics for zirconia height loss* 
 

 Zirconia Slider Antagonist N Mean SD SE Min Max 
Slider 
Height 
Loss 
(µm) 

 
 
 
 
As-machined 

 
 
 
 
HA 

 
 
 
 

8 

 
 
 
 
12.7A

 

 
 
 
 

1.8 

 
 
 
 

0.6 

 
 
 
 

9.6 

 
 
 
 

15.4 
 Bur-finished HA 8 16.3A 6.5 2.3 6.9 27.1 
 Glazed Bovine 8 39.5B 11.2 4.0 20.4 52.8 
 Glazed HA 8 35.4B 12.5 4.4 22.9 57.6 
 Polished Bovine 8 8.2C 5.1 1.8 2.4 18.6 
 Polished HA 8 6.6C 2.8 1.0 2.5 9.9 
*Groups with the same superscript letter were not significantly different. 

 
 
 
 
 
 
 
 
 
 

TABLE III 
Descriptive statistics for antagonist height loss* 

 
 Zirconia Slider Antagonist N Mean SD SE Min Max 
Antagonist 
Height 
Loss (µm) 

 
 
 
As-machined 

 
 
 
HA 

 
 
 

8 

 

 
 

24.7A
 

 
 
 

4.6 

 
 
 

1.6 

 
 
 

15.7 

 
 
 

30.8 
Bur-finished HA 8 24.3A 3.5 1.2 17.5 29.2 
Glazed 
Glazed 

Bovine 
HA 

8 
8 

197.6B 

25.8A 

66.0 
7.7 

23.3 
2.7 

144.9 
16.7 

352.2 
41.5 

Polished 
Polished 

Bovine 
HA 

8 
8 

116.2C 

14.7D 

28.1 
3.3 

9.9 
1.2 

75.5 
9.7 

153.7 
20.8 

*Groups with the same superscript letter were not significantly different. 
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TABLE IV 
Descriptive statistics for antagonist volume loss* 

 
 Zirconia 

Slider 
 
Antagonist 

 
N 

 
Mean 

 
SD 

 
SE 

 
Min 

 
Max 

Antagonist 
Volume Loss 
(mm3) 

 
 
 
As-machined 

 
 
 
HA 

 
 
 

8 

 

 
 

2.7A
 

 
 
 

0.6 

 
 
 

0.2 

 
 
 

1.6 

 
 
 

3.3 
Bur-finished HA 8 2.5A 0.5 0.2 1.9 3.3 
Glazed 
Glazed 

Bovine 
HA 

8 
8 

28.5B 

2.7A
 

12.2 
1.1 

4.3 
0.4 

19.4 
1.9 

57.3 
4.9 

Polished 
Polished 

Bovine 
HA 

8 
8 

17.7C 

1.3D
 

3.0 
0.3 

1.1 
0.1 

12.9 
0.9 

22.1 
1.8 

*Groups with the same superscript letter were not significantly different. 
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TABLE V 
 

One-way ANOVA comparing different groups 
 

 
 

Outcome 

 
 

Effect 

 
 

NumDF 

 
 

DenDF 

 
 

FValue 

 
 

ProbF 

 
Slider Ra 

(µm) 

 
 

Zirconia Slider*Antagonist 

 
 

5 

 
 

42 

 
 

37.52 

 
 

1.91E-14 

 
Slider Rq 

(µm) 

 
 

Zirconia Slider*Antagonist 

 
 

5 

 
 

42 

 
 

27.93 

 
 

2.40E-12 

 
Antagonist 

Ra (µm) 

 
 

Zirconia Slider*Antagonist 

 
 

5 

 
 

42 

 
 

13.8 

 
 

5.51E-08 

 
Antagonist 
Rq (µm) 

 
 

Zirconia Slider*Antagonist 

 
 

5 

 
 

42 

 
 

26.57 

 
 

5.26E-12 

Slider 
Height Loss 

(µm) 

 
 

Zirconia Slider*Antagonist 

 
 

5 

 
 

42 

 
 

26.66 

 
 

4.98E-12 

Antagonist 
Height Loss 

(µm) 

 
 

Zirconia Slider*Antagonist 

 
 

5 

 
 

42 

 
 

148.77 

 
 

1.41E-25 

Antagonist 
Volume 

Loss (mm3) 

 
 

Zirconia Slider*Antagonist 

 
 

5 

 
 

42 

 
 

185.2 

 
 

1.80E-27 
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FIGURE 1.   FCZ zirconia disk as provided by the manufacturer (Ardent  Dental Inc., 
NY) to be cut into blocks for further  milling with the CAD/CAM milling 
unit. 
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FIGURE 2. Zirconia blocks preparation steps for CAD/CAM milling. A) Cutting band 
saw used for zirconia block sectioning (inset represents the prepared block 
adjacent to a premade Zir-Cad sample from Ivoclar-Vivadent. B) Furnace 
used for moisture removal. C) Jig used to attach the CAD/CAM pin to the 
zirconia sample, and D) Specimen ready to be inserted in the CAD/CAM 
milling unit. 
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FIGURE 3. CAD/CAM milling facility at Ivoclar-Vivadent labs, Buffalo, NY. A) 
Computer, scanner, and software required for scanning and designing a 
restoration. B) The milling unit used for sample preparation according to 
the computer design. 
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FIGURE 4. Zirconia sliders fabrication using CAD/CAM machine. A) Metal pattern 
prepared to be scanned by the CAD/CAM machine. B) The zirconia 
samples milled by the machine according to the scanned metal pattern. C) 
Zirconia specimens ready to be sintered. 
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FIGURE 5. Sintering. A) Sintering furnace used. B) Sintering furnace screen showing 
sintering parameters. C) Fully sintered zirconia sliders. D) Zirconia 
shrinkage after sintering. The upper samples are fully sintered compared 
with the lower samples, which are not. 
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FIGURE 6. Zirconia mounting jig fabrication and mounting steps. A) The materials 
used for fabrication of the jig, (wax, metal specimen, plastic sleeve and 
brass holders.) B) A dental surveyor was used to mount the metal specimen 
inside the wax-filled cylinder; care was taken to make sure the tip of the 
slider specimen was parallel to the floor. C) The mounting jig was 
fabricated with silicone impression material. D) The zirconia slider in 
position in the jig ready for mounting (inset shows the final specimen after 
being embedded in acrylic resin). 
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FIGURE 7. A) Schematic representation of zirconia slider showing the shape and 
dimensions of the slider. B) A mounted slider specimen with the slider tip 
extending above the mounting acrylic. 
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Part one study 
 

 
 
 

 
 

 Zirconia 
sliders G1- 
 

 Zirconia 
sliders G2- 

 Zirconia 
sliders G3- 

 Zirconia 
sliders G4- 

as  glazed  diamond  G3+ 
machined  (n=8)  bur  Optrafine 

 (n=8)    finishing 
(n=8) 

 polishing 
kit (n=8) 

 

Part two study 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zirconia sliders 
G2 - glazed 

(n=8) the same 
in previous 
part of study 

Zirconia sliders 
G2-glazed 

(n=8) 

Zirconia sliders  Zirconia sliders 
G4-G3+ G4-G3+ 
Optrafine  Optrafine 

polishing kit  polishing kit 
(n=8) the same  (n=8) 

in previous  
      part of study  1 

 
 
 
 

FIGURE 8.  Schematic representation of the experimental groups tested. 
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FIGURE 9. Glaze application to the zirconia sliders (Group 2).  A) Diazir glaze. B) 
Glazing furnace (inset shows zirconia sliders after being placed in the 
furnace). C) Glaze application on the slider surface. D) Glazed slider. 
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FIGURE  10.   Original scan of Zirconia surface taken  by Proscan  2000 profilometer 
using S5/03 sensor,  with a step size ofO.Ol  for both x andy axis, 
frequency (Hz)=  100, and scanned area of0.8 x 0.8 mm. 
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FIGURE  11.  A) Zirconia surface  scan after processing by the Proscan software; outlier 
points have been removed, and color scale has been changed to gray. B) 
Generated roughness measurements. 
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FIGURE  12 A) Sputter-coater (Denton Vacuum Desk II) and B) Zirconia 
samples sputter-coated with gold prior to SEM imaging. 
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FIGURE 13. Low-vacuum scanning electron microscope (LV SEM). 
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FIGURE 14. Baseline vertical height measurements for zirconia samples taken by 
digital micrometer. A) Nikon DigiMicro micrometer. B) Reference point 
selection; four reference points were placed on the surface of the slider 
base; after selecting the reference point, the micrometer reading was set to 
zero. C) After establishing a reference point, the tip of the micrometer was 
positioned over the slider tip to give a reading of the slider height. 
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FIGURE 15. Bovine teeth preparation and mounting steps. A) Bovine incisors were 
prepared to have a square shaped facial surface. B) A bovine enamel 
sample was placed inside a custom made mold. C) Auto-cured acrylic 
resin was used to embed the bovine specimen inside the brass holder. D) 
Final specimen after polishing. 
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FIGURE 16. Hydroxyapatite mounting steps. A) HA disks. B) HA sample placed inside 
a custom made mold. C) Auto-cured acrylic resin was used to embed the 
HA specimen inside the brass holder. D) Final specimen after polishing. 
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FIGURE 17. Polishing HA and bovine samples. A) Rotary polishing wheel used 
for polishing the samples. B) The speed of the wheel used as 200 
RPM. C) Each polishing step was carried out for 30 s, and then 
samples were cleaned with ethanol and water. Three different grits 
of SiC papers were used (600, 800 and 1200). 



51  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
 
 
 
 
 
 

B 
 
 
 

FIGURE 18. A) HA surface scan provided by the Proscan. B) Generated roughness 
measurements. Due to the large surface area of the specimen, three scans 
of three different areas were taken for each sample. 
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FIGURE 19.   A) Bovine enamel surface scan provided by the Proscan. B) Generated 
roughness measurements due to the large surface area of the specimen; 
three scans of three different areas were taken for each sample. 
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FIGURE 20. Hardness test and parameters. A) Vickers hardness testing machine. B) A 
closer picture for the specimen while placed inside the machine. C) 
Control screen of the hardness machine shows the parameter used. A load 
of 200 g for 15 s was applied, and then computer software was used to 
calculate the Vickers hardness. For HA specimens, hardness 
measurements were made at five points per sample and the average was 
considered the hardness for that sample. For bovine enamel, 15 points per 
sample were used for hardness measurements. An average Vickers 
hardness number below 270 resulted in sample exclusion from the study. 
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FIGURE 21. Two-body pin-on-disk machine, and wear testing parameters. Wear test 
was carried out for 25,000 cycles, at 1.2 Hz, using a weight of 49 N. 
Room temperature water was used continuously for lubrication purposes. 
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FIGURE 22. Zirconia vertical height loss measurements. A) Nikon DigiMicro 
micrometer. B) Baseline vertical height of zirconia samples before wear 
(inset shows an example of such measurement). C) After-wear vertical 
height measurements (inset shows the after-wear reading for the same 
sample. Reading given by micrometer is in millimeters. Vertical height 
loss was measured by subtracting the two values and then converting the 
result from mm to µm. 
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FIGURE 23. Non-contact profilometer - Proscan 2000 (Scantron, Taunton, England). 
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FIGURE 24.  Wear track formed on HA (left) and bovine (right). 
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FIGURE 25. Vertical height loss measurements. Using Proscan software, antagonist 
(HA and bovine) specimen surfaces were scanned after wear testing. 
Then, for each specimen, the software computed the vertical height loss. 
Eight areas were selected and their vertical heights were compared with 
the vertical height of the central unworn area using two-point difference 
height function. The mean average of the eight vertical high differences 
was recorded as the vertical high loss for those specimens. 
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FIGURE 26.  Example of vertical height loss. 
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FIGURE 27. Volume loss measurement by Proscan software; using the same after-wear 
scan for each sample; volume loss was measured by the software. The 
volume loss represents the volume differences between central area 
(unworn area) and the deepest part on the wear track. Three different areas 
were chosen, and six readings were taken along x and y axes; then, the 
averages were taken. 
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FIGURE 28. Zirconia surface roughness values (Ra and Rq in µm) before wear testing 
for the different groups along with standard deviation. 
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FIGURE 29. SEM micrographs at different magnifications (A) X50; (B) X500 and (C) 
X1500 for group 1 (as-machined zirconia sliders). The surface appears 
rough with circular irregularities due to bur movement during milling 
process. 
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FIGURE 30.   SEM micrographs at different magnifications (A) X50; (B) X500 and (C) 
X1500 for group 2 (glazed zirconia sliders). The surface looks smooth and 
shiny due to glaze layer. 
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FIGURE 31. SEM micrographs at different magnifications (A) X50; (B) X500 and (C) 
X1500 for group 3 (bur-finished zirconia sliders). The surface appears 
rough with parallel irregularities representing the bur strokes. 
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FIGURE  32.   SEM micrographs at different  magnifications (A)  X SO; (B)  X SOO and (C) 
X1500  for group  4 (bur-finished and polished zirconia sliders).  Images 
revealed a smooth surface with small irregularities. 
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FIGURE 33.  Zirconia slider height loss opposing HA antagonist. 
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FIGURE 34.  Zirconia slider height loss when opposing different antagonists. 
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FIGURE 1. HA height loss against different zirconia groups. 
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FIGURE 2.  HA height loss against different zirconia groups. 
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FIGURE 37. Different antagonists (HA, bovine) height loss against glazed/polished 
zirconia groups. 
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FIGURE 38. Different antagonists (HA, bovine) height loss against glazed/polished 
zirconia groups. 



72  
 
 
 
 
 
 
 
 
 
 

 
 
 

FIGURE39.  SEM micrographs at different magnifications (A) X75; (B) X500 and 
(C) X1500 of the HA surface against group 1 (as-machined zirconia 
sliders). The surface looks rough with some irregularities and cracks. 
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FIGURE 40.   SEM micrographs at different magnifications (A) X75; (B) XSOO, and (C) 
Xl500 of the HA surface against group 2 (glazed zirconia sliders). The 
surface looks rougher than group 1 with some adherence of glaze material 
to the HA surface. 
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FIGURE 41. SEM micrographs at different magnifications (A) X75; (B) X500, and (C) 
X1500 of the HA surface against group 3 (bur-finished zirconia sliders). 
The surface looks rough with some irregularities, cracks, and loss of 
material. 
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FIGURE 42. SEM micrographs at different magnifications (A) X75; (B) X500, and (C) 
X1500 of the HA surface against group 4 (bur-finished and polished 
zirconia sliders). The surface looks smooth with some loss of surface 
materials. 
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DISCUSSION 
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Ceramics are generally considered the most biocompatible, durable, and esthetic 

dental materials available for restoring human teeth. Currently, there are many dental 

ceramics available on the market with distinct mechanical and physical properties as well 

as bonding ability to tooth structures and other substrates. Although dental ceramics have 

excellent properties that meet requirements of a prosthetic material, it has one major 

problem: irreversible wear of opposing tooth structure under certain condit ions. These 

conditions are mainly high occlusal forces, which may occur because of parafunctional 

habits (i.e., clenching, bruxing), and premature occlusal contacts. The most extreme wear 

damage occurs when a restoration with a rough surface contacts tooth enamel or 

underlying dentin.6 

 
The benefits of glazing and polishing procedures to reduce porcelain abrasiveness 

have been discussed in the literature. It was stated that the smoother the surfaces, the less 

wear damage will occur to opposing surfaces. Depending on the dental porcelain, it is 

claimed that glazing alone may not be able to adequately decrease the surface roughness 

because the thickness of the glaze layer may be insufficient to fill in grooves and 

irregularities within the underlying ceramic surface. Thus, it has been recommended that 

polishing or polishing followed by glazing may give better results.6
 

 
Our results show that the surface roughness is significantly higher for polished 

zirconia sliders (Ra = 0.49, Rq = 0.76) than for glazed zirconia sliders (Ra = 0.42, Rq = 

0.63) (p = 0.0013 for Ra, p = 0.0001 for Rq). The application of the full-contour zirconia 

glaze according to the manufacturer recommendations was successful in smoothing the 
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surface of the zirconia sliders. Qualitative SEM images support this conclusion. Figure 29 

through Figure 32 show the SEM images for the different surface treatments at different 

magnifications. Figure 29 shows the surface of zirconia immediately after the CAD/CAM 

milling process. The surface shows irregularities introduced during milling with a circular 

configuration. Figure 30 shows a glazed zirconia slider that looks smooth and shiny, with 

almost no surface irregularities. Figure 31 shows the bur movement strokes after 

preparing the group 3 specimens. The circular pattern seen in Figure 29 is now almost a 

set of parallel lines due to the bur shape and direction. The last image in Figure 32 shows 

the smoothness accomplished with polishing the surface of group 3 to obtain group 4 

specimens. It is apparent that the polished surface is smoother than as-machined and bur- 

finished groups, but rougher than the glazed group (Figure 30). 

The need for polishing before glazing might be true for other types of ceramics as 

reported by Dalkiz et al.,31 but not for full-contour zirconia. The manufacturer for full- 

contour zirconia glaze materials recommends sand blasting of the restoration surface with 

alumina no coarser than 50 μm and at pressures not exceeding 50 psi32 before glazing. 

Yuzugullu et al.33 studied the effect of different surface treatments, including diamond 

burs, self-glaze, over-glaze, re-glaze, pearl surface polishing, and diamond twist SCL on 

porcelain disks. It was concluded that surface treatments significantly affected Ra values 

(P < .001). This is exactly what we found in our study, where the different surface 

treatments significantly affected the Ra and Rq values (P = 0.0013 for Ra, P = 0.0001 for 
 

Rq).  
 
 
Our results were similar to the results obtained by Karayazgan et al.,34 who 

 
reported that a polished surface of feldspathic porcelain (Ra = 0.74 µm) was rougher than 



79  
 
 

an over-glazed surface (Ra = 0.58 µm). Furthermore, SEM comparison of surface 

roughness showed polished specimens to be rougher than over-glazed specimens. 

Similar results were reported by Fuzzi et al.35 where SEM and profilometry for 
 

different surface treatments of ceramic showed that the glazed surface was the smoothest, 

while the use of a 30- µm diamond instrument produced a rougher surface. This is in 

agreement with our results where the glazed Ra value (0.42 µm) was significantly lower 

than that of the bur-finished group (0.89 µm). 

Al-Marzok et al.36 also reported that glazed porcelain surfaces are smoother than 
 

polished ones. In contrast, Elmaria et al.12 reported that surface roughness of different 

ceramics was lower for polished surfaces versus glazed surfaces. The explanation for this 

might be related to sample fabrication, where they polish the ceramic surfaces after 

glazing. Al-Hiyasat et al.37 reported insignificant differences in the wear of enamel 

opposing glazed and polished ceramic groups, but the wear produced by unglazed/ 

unpolished groups was significantly higher (P < .05). 

Our results are the first comparing the effects of different surface treatments on 

the surface roughness of full-contour zirconia. The groups were chosen based on the 

adjustments commonly made to ceramic restorations in clinical situations. The first group 

was the control group; the second (glazed group) represents no need for occlusal 

corrections, and the crown is cemented without modification. The third group represents 

the occlusal corrections that are typical in most clinical cases, which might be left un- 

polished. The last group represents current recommendations. Polishing procedures are 

completed after occlusal corrections in order to re-establish a smooth, glazed-like 

zirconia surface using intraoral polishing instruments or kits.7 
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As mentioned previously, Ghazal et al.4 showed that the antagonistic surface roughness 

has a significant effect on the wear of human enamel, and that the correlation between the 

volume loss and antagonistic surface roughness was significant. This correlation was also 

reported by Elmaria et al.12   In our study, this correlation was present in group 1 (Ra = 

0.84 µm), group 3 (Ra = 0.89 µm) and group 4 (Ra = 0.49 µm). The surface roughness in 
 

these was correlated with the amount of wear observed in HA (24.7 µm, 2.7 mm3./24.3 
 

µm, 2.5 mm3./14.7 µm, 1.3mm3 respectively.). The smooth-polished zirconia surface 

produced the least amount of wear in the opposing surface. 

On the other hand, the glazed group 2 showed a different trend. Although the 

surface roughness measurements revealed the smoothest surface (Ra = 0.42, Rq = 0.63), 

the amount of wear observed in HA was almost similar to groups 1 and 3 (25.8 µm, 2.7 

mm3).  These findings corroborate a study by Heintze et al.,7 where it was reported that 

flat glazed surfaces show more antagonist wear than polished surfaces. An explanation of 

this relies on the variable that we applied the glaze material on the milled surface 

directly; this surface had irregularities and surface roughness similar to group 1 (as- 

machined zirconia sliders). During the wear testing, the HA antagonist wore away the 

glaze layer exposing the underlying rough surface. Therefore, one could speculate that 

the glazed zirconia sliders will not act as a glazed smooth surface once the glaze is worn 

away, but will act as group 1 (as-machined). For polished zirconia surfaces, because of 

the lower coefficient of friction, less antagonist wear was seen. This is applicable to 

CAD/CAM restorations where mechanical milling of the restoration produces rough 

surfaces over which glaze materials are applied.7
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This explanation is also supported by the results obtained for vertical height loss 

of the zirconia sliders. Glazed zirconia sliders had significantly more slider height loss 

(35.39 µm) than as-machined (12.70 µm) (p < 0.0001), bur finished (16.34 µm) (p = 

0.0005), and polished zirconia sliders (6.61 µm) (p < 0.0001). The higher vertical loss of 

group 2 might represent the thickness of the glaze layer accounting for the 16.4 µm 

difference in slider height of the as-machined and glazed groups when measured prior to 

wear testing. 

The same results were seen when changing the antagonist material (i.e., bovine 

instead of HA specimens). Polished zirconia sliders had significantly less antagonist 

height loss and volume loss (116.2 µm, and 17.7 mm3) compared with glazed zirconia 

sliders (197.6 µm, and 28.5 mm3) (p = 0.0001, p = 0.0018, respectively). Similarly, the 
 

same explanation may perhaps be applied here, where polished zirconia sliders had 

significantly less slider height loss (8.2 µm) than glazed zirconia sliders (39.5 µm) (p = 

0.0001) suggesting the wearing away of the glaze layer and exposure of the rougher 

underlying surface. Olivera et al.38 and Elmaria et al.12 have also reported that polished 

ceramics produced less enamel wear than glazed ceramics. 

The values of HA height loss and volume loss against different zirconia groups 

(14.7-25.8 µm and 1.3-2.7 mm3) are close to those reported by Ghazal et al.19 The 

vertical height loss of tooth enamel ranged from 19 µm to 35 µm against zirconia balls. 

However, the differences in the wear machine and parameters make it difficult to make 

an accurate comparison between our study and their results. 

Figure 37 through Figure 40 show the wear track observed on HA surfaces when 

facing the four different zirconia-surface treatment groups. Figure 37 shows the track 
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outline (HA against G1-as machined zirconia group), which appears slightly rough 

compared with the smoother original polished HA surface. Indeed, small cracks are seen 

at higher magnification. Figure 38 shows the track outline (HA against G2-glazed 

zirconia group), which appears rougher compared with the original polished HA surface. 

The image suggests that the glaze layer has been removed and that it adheres to the HA 

surface, a phenomenon that suggests adhesive and fatigue wear processes. During these, 

the adhesion changed the wear process from two-body to three-body and led to an 

increased amount of wear in HA opposing glazed zirconia. Figure 39 shows the track 

outline (HA against G3-bur-finished zirconia group), which appears as in G1, but much 

rougher. Cracks and surface loss of HA are suggestive of abrasion and surface fatigue. 

Finally, Figure 40 shows the track outline (HA against G4: bur-finished and polished 

zirconia group), which appears similar to  G3, but the surface looks smoother with less 

surface loss and indicates a surface fatigue wear process. 

When comparing the wear behavior of bovine enamel and HA against G2-Glazed 

and G4-bur-finished and polished zirconia, antagonist height loss and antagonist volume 

loss were significantly higher for the bovine than for the HA antagonists (197.6 µm/ 

116.2 µm, and 28.5 mm3/17.7 mm3 for bovine against glazed/polished zirconia sliders 
 

respectively) (p < 0.0001). This give us a 7.7-times to 7.9-times increase in bovine height 

loss as compared with HA, and a 10.6-times to 13.6-times increase in volume loss of 

bovine enamel as compared with HA. 

These results are similar to those of Mehl et al.,26 who reported that the wear 
 

behavior of steatite ceramic balls antagonistic to bovine enamel showed a volume loss 

nearly three times higher than steatite ceramic balls antagonistic to human enamel. 
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Although these findings were not statistically different, they suggested that bovine 

enamel is not able to substitute for human enamel in-vitro wear studies. 

An explanation for the great differences of wear behavior between the two 

antagonists may also be related to the fabrication technique. The sample surface area used 

in the present study was about 64 mm2. This area might represent different enamel 

properties and thicknesses. It is known that enamel prisms and orientation differ 

according to their position in the tooth crown; therefore, varied results might be found. 

Another reason is that polishing the bovine enamel to a flat surface might have removed a 

larger amount of harder enamel tooth structure and exposed the softer enamel underneath. 

This may also account for the significant standard deviation seen for bovine enamel 

compared with HA (Figure 35 and Figure 36). When comparing the zirconia height loss 

between G2-glazed/HA and G2-glazed-bovine, no significant differences were found 

(35.4 µm, 39.5 µm). The same trend was noticed when comparing the zirconia height loss 

between G4-polished/HA and G4-polished/bovine (6.6 µm, 8.2 µm, respectively). The 

larger differences in height loss and volume loss between HA and bovine might suggest a 

lower zirconia height loss when facing softer layers of bovine enamel, but this was not 

the case in our results, where both HA and bovine had the same amount of zirconia 
 

height loss. An explanation of that could be related to the insufficient water lubrication of 

the samples once the slider is moving deeper inside the bovine samples. A three-body 

wear process due to accumulation of debris might lead to an increased zirconia height 

loss when opposing the underlying softer layers of bovine enamel. 
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SUMMARY AND CONCLUSION 
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From these results, it can be concluded that: 
 

1.   Surface treatments played a significant role on full-contour zirconia surface 

roughness. 

2.   Although glazing reduced surface roughness, it did not alter the wear behavior 

of zirconia when compared with other unglazed groups. 

3.   The results suggested that polishing the zirconia surface might be the best 

treatment to reduce surface roughness and antagonist wear of HA and bovine 

enamel. 
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AN IN-VITRO STUDY 
 
 
 
 
 

by 
 
 

Alaa Hussein Aref Sabrah 
 
 

Indiana University School of Dentistry 
Indianapolis, Indiana 

 
 
 

Full-contour yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) 

restorations have been advocated recently in clinical situations where occlusal/palatal 

space is limited, or to withstand parafunctional activities. The objectives of this in-vitro 

study were to investigate the effects of different polishing techniques on the surface 

roughness of Y-TZP (Ardent Dental, Inc.) and to investigate the effects of different 

polishing techniques on the wear behavior of synthetic hydroxyapatite (HA) and bovine 

enamel. 

An in-vitro study was conducted by fabrication of 48 Y-TZP sliders (diameter = 2 

mm × 1.5 mm in height) using CAD/CAM technique; then the samples were embedded 

in acrylic resin using brass holders. Samples were then randomly allocated into four 

groups according to the finishing/polishing procedure: G1-as-machined (n = 8), G2- 
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glazed (n = 16), G3-diamond bur-finishing (Brasseler, USA) (n = 8) and G4- 

G3+OptraFine polishing kit (Ivoclar-Vivadent) (n = 16). Thirty-two sintered HA disks 

(diameter = 11 mm × 2.9 mm in height) and 16 bovine enamel samples with a minimum 

surface area of 64 mm2 were mounted in brass holders. Baseline surface roughness (Ra 

and Rq, in µm) were recorded using a non-contact profilometer (Proscan 2000) for all the 

samples. A two-body pin-on-disk wear test was performed for 25,000 cycles at 1.2 Hz in 

which the four zirconia groups were tested against HA, and only G2-glazed and G4- 

G3+OptraFine polishing kit (Ivoclar-Vivadent) were tested against bovine enamel. 

Vertical substance loss (µm) and volume loss (mm3) of HA were measured (Proscan). 

Zirconia height loss was measured using a digital micrometer. One-way ANOVA was 

used for statistical analysis. 

The results indicated that surface roughness measurements showed significant 

differences among the surface treatments with G1 (Ra = 0.84, Rq = 1.13 µm) and G3 (Ra 

= 0.89, Rq = 1.2 µm) being the roughest, and G2 (Ra = 0.42, Rq = 0.63 µm) the 

smoothest. The glazed group showed the highest vertical loss (35.39 µm) suggesting 

wear of the glaze layer, while the polished group showed the least vertical loss (6.61 µm). 

HA antagonist volume loss and vertical height loss for groups (G1, G2 and G3) were 

similar, while polished group (1.3 mm3, 14.7 µm) showed significant lower (p = 0.0001) 

values. Antagonist height loss and antagonist volume loss were significantly higher for 

bovine antagonist than for HA antagonist (197.6 µm/116.2 µm, and 28.5 mm3/17.7 mm3 

for bovine against glazed/polished zirconia sliders, respectively) (p < 0.0001). 
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From the results it can be concluded that glazed zirconia provided an initially 

smooth surface, but a significant increased antagonist wear compared with the polished 

surface was seen. 

Bovine enamel showed higher wear compared with HA, which suggested that 

more studies should be performed to validate the use of bovine enamel as a substitute for 

human enamel in wear studies. 
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