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Abstract 

Wei Mo 

 

Contributions of TM5, ECL3 and TM6 of human BCRP to its oligomerization 

activities and transport functions 

 

Human BCRP is one of the major ATP-binding cassette transporters 

involved in the development of multidrug resistance in cancer chemotherapy. 

Overexpression of BCRP in the tumor cell plasma membrane and apical 

membrane of the gastrointestinal tract leads to decreased intracellular 

accumulation of various anticancer drugs as well as reduced drug bioavailability. 

BCRP has been shown to exist on the plasma membrane as higher forms of 

homo-oligomers. In addition, the oligomerization domain of BCRP has been 

mapped to the carboxyl-terminal TM5-ECL3-TM6 and this truncated domain, 

when co-expressed with the full-length BCRP, displays a dominant inhibitory 

activity on BCRP function. Thus, the oligomerization of BCRP could be a 

promising target in reversing multidrug resistance mediated by BCRP.  

To further dissect the oligomerization domains of human BCRP and test 

the hypothesis that TM5, ECL3, and TM6 each plays a role in BCRP 

oligomerization and function, we engineered a series of BCRP domain-swapping 

constructs with alterations at TM5-ECL3-TM6 and further generated HEK293 cells 

stably expressing wild-type or each domain-swapping construct of BCRP. Using 

co-immunoprecipitation and chemical cross-linking, we found that TM5, ECL3, 



 vi 

and TM6 all appear to partially contribute to BCRP oligomerization, which are 

responsible for the formation of oligomeric BCRP. However, only TM5 appears to 

be a major contributor to the transport activity and drug resistance mediated by 

BCRP, while ECL3 or TM6 is insufficient for BCRP functions. Taken together, 

these findings suggest that homo-oligomeric human BCRP may be formed by the 

interactions among TM5, ECL3 and TM6, and TM5 is a crucial domain for BCRP 

functions and BCRP-mediated drug resistance. These findings may further be 

used to explore targets for therapeutic development to reverse BCRP-mediated 

drug resistance and increase the bioavailability of anti-cancer drugs for better 

treatment of multidrug resistant cancers.   

 

 

Ahmad R. Safa, Ph.D., Co-Chair of Committee 

 

 

Jian-Ting Zhang, Ph.D., Co-Chair of Committee 



 vii 

Table of Contents 

I. Introduction 

A. Structure-function relationship of BCRP 

B. Dimer vs oligomer 

C. Substrates of BCRP and its variants 

D. Physiological significance of BCRP 

E. Pathophysiological significance of BCRP 

F. Regulation of BCRP expression 

G. Modulation of BCRP functions 

H. Specific aims of the present work 

II. Materials and Methods 

A. Materials 

B. Transient and stable cell transfection 

C. Cell lysate preparation                                         

D. Co-immunoprecipitation and Western Blot 

E. Plasma membrane preparation 

F. Chemical cross-linking 

G. MTT assay 

H. Drug accumulation assay 

III. Experimental Results  

A. ECL3 is responsible for oligomerization in truncated BCRP 

construct 

B. ECL3 is responsible for oligomerization in full-length BCRP 

1 

6 

12 

15 

22 

25 

32 

42 

48 

50 

50 

50 

51 

51 

52 

53 

54 

54 

55 

55 

 

59 



 viii 

C. The cysteines in ECL3 are not essential for BCRP oligomerization 

D. The 569QYFS motif is not essential for BCRP oligomerization 

E. TM5 and TM6 are essential for the oligomerization of BCRP 

F. Either TM5 or TM6 plays a partial role in BCRP oligomerization 

G. Chemical cross-linking analyses of domain-swapping BCRP 

constructs in living cells 

H. ECL3 is insufficient for BCRP transport activity or drug resistance 

mediated by BCRP 

I. TM5 is a major contributor for the drug efflux and drug resistance 

mediated by BCRP 

J. TM6 is insufficient for the drug efflux and drug resistance mediated 

by BCRP 

IV. Discussion 

V. Summary and conclusion 

VI. Future plans 

VII. References 

Curriculum Vitae 

60 

63 

63 

66 

68 

 

71 

 

77 

 

81 

 

85 

95 

96 

97 

 

  



 ix 

List of Tables 

1. List of human ABC transporters 

2. Summary of BCRP substrates 

3. BCRP expression in human hematopoietic malignancies 

4. BCRP expression in human solid tumors 

5. The GRAVY scores of TM domains of BCRP for engineering 

domain-swapping BCRP constructs 

3 

19 

29 

31 

87 

 

 



 x 

List of Figures 

1. Domain structures of full and half ABC transporters 

2. Membrane topology model of BCRP 

3. Sequence alignment of human BCRP, rat, and mouse Bcrp1 

4. ECL3 is responsible for BCRP oligomerization in truncated BCRP 

construct 

5. The ECL3 is responsible for oligomerization in full-length BCRP 

and cysteines or the QYFS motif in ECL3 is not essential for BCRP 

oligomerization  

6. TM5 and TM6 are also essential for BCRP oligomerization 

7. Either TM5 or TM6 in full-length BCRP is partially responsible for 

oligomerization 

8. Chemical cross-linking analyses of BCRP domain-swapping 

constructs 

9. Effect of ECL3 on mitoxantrone resistance 

10. Effect of ECL3 on adriamycin resistance  

11. Expression levels of BCRP constructs in the plasma membrane 

vesicles extracted from HEK293 stable cells 

12. Effect of ECL3 on mitoxantrone accumulation activity 

13. Effect of TM5 on mitoxantrone resistance 

14. Effect of TM5 on adriamycin resistance 

15. Effect of TM5 on mitoxantrone accumulation activity  

16. Effect of TM6 on mitoxantrone resistance 

7 

10 

57 

58 

 

61 

 

 

65 

67 

 

70 

 

73 

74 

75 

 

76 

78 

79 

80 

82 



 xi 

17. Effect of TM6 on adriamycin resistance 

18. Effect of TM6 on mitoxantrone accumulation activity  

 

82 

84 

 



 xii 

List of Abbreviations 

 

BCRP 

MDR 

ABC 

Pgp  

MRP1 

PE 

PC 

VLCFA 

NBD 

MSD 

TM 

ER 

ECL 

CPT 

TKI 

PhA 

MTX 

E1S 

IAAP 

NRTI 

SP 

Breast cancer resistance protein 

Multidrug resistance 

ATP-binding cassette  

P-glycoprotein  

Multidrug resistance associated protein 1 

Phosphatidylethanolamine  

Phosphatidylcholine 

Very long chain fatty acid 

Nucleotide binding domain 

Membrane spanning domain 

Transmembrane segment 

Endoplasmic reticulum 

Extracellular loop 

Camptothecin  

Tyrosine kinase inhibitor 

Pheophorbide a 

Methotrexate  

Estrone 3-sulfate 

[(125)I]Iodoarylazidoprazosin 

Nucleoside reverse transcriptase inhibitor 

Side population 



 xiii 

GI 

FACS 

RT-PCR 

IHC 

AML 

ALL 

ICC 

FCM 

DFS 

CGH 

FISH 

dmins 

hsr 

ER 

HIF 

PPARγ 

PGR 

AHR 

UTR 

ERE 

HRE 

EMSA 

PRE 

Gastrointestinal  

Fluorescence-activated cell sorting 

Reverse transcription-polymerase chain reaction 

Immunohistochemistry  

Acute myeloid leukemia 

Acute lymphocytic leukemia 

Immunocytochemistry  

Flow cytometry 

Disease-free survival 

Comparative genomic hybridization 

Fluorescence in situ hybridization 

Double minute chromosomes 

Homogeneously staining regions 

Estrogen receptor 

Hypoxia-inducible factor 

Peroxisome proliferator-activated receptor gamma 

Progesterone receptor 

Aryl hydrocarbon receptor 

Untranslated region 

Estrogen response element 

Hypoxia response element 

Electrophoretic mobility shift assay 

Progesterone response element 



 xiv 

Nrf2 

DRE 

ARE 

MRE 

ERAD 

SNP 

FTC 

THC 

DSS 

ECL 

HEK293 

HRP 

GRAVY 

FRET 

BRET 

Nuclear factor (erythroid-derived 2)-like 2 

Dioxin-response element 

Antioxidant response element 

MicroRNA response element 

Endoplasmic reticulum associated degradation 

Single nucleotide polymorphism 

Fumitremorgin C 

Tetrahydrocurcumin  

Disuccinimidyl suberate 

Enhanced chemiluminescence 

Human embryonic kidney 293 cells 

Horseradish peroxidase 

Grand average of hydropathicity 

Fluorescence resonance energy transfer 

Bioluminescence resonance energy transfer 

 



 1 

 I. Introduction 

Chemotherapy has been a major form of treatment for various cancers 

since the 1940s. However, ineffectiveness and failure of the chemotherapy with a 

single agent was soon observed. This is due to the ability of cancer cells to mutate 

spontaneously at a rate of approximately 10-7 cells per generation, acquiring 

resistance to the single agent in response to the pressures imposed by the drug 

treatment (Boesen et al., 1994). In order to resolve this issue, the break through 

concept of combination therapy was introduced into cancer chemotherapy in the 

1960s, which was based on the premise that the emergence of resistant cancer 

could be prevented with an alternating combination of drugs that have different 

intracellular targets. Nevertheless, multidrug resistance (MDR), which refers to 

the ability of organisms and cells to display resistance to a wide range of drugs 

that are structurally and functionally unrelated, has become a pervasive clinical 

phenomenon in a majority of cancers ever since the introduction of combination 

therapy. In spite of the fact that combination therapy has proved its effectiveness 

in cancers, MDR is now a major obstacle to successful cancer chemotherapy.  

Cellular and molecular mechanisms of MDR have been extensively 

examined and reviewed in detail (Gottesman et al., 1994, Gottesman et al., 2002, 

Szakacs et al., 2006, Gillet and Gottesman, 2010). Studies with drug-selected 

model cell lines have demonstrated that overexpression of certain members from 

the ATP-binding cassette (ABC) transporter superfamily, including P-glycoprotein 

(Pgp, ABCB1), multidrug resistance associated protein 1 (MRP1, ABCC1), and 

breast cancer resistance protein (BCRP, ABCG2), is one of the major 
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mechanisms involved in MDR. The increased expression of these pre-existing 

ABC transporters on plasma membranes have led to increased efflux and 

decreased intracellular concentrations of their substrates, many of them being 

anti-cancer drugs. 

The ABC transporters represent the largest family of transmembrane 

proteins. There are now 48 known human ABC transporters, and they have been 

divided into seven distinct subfamilies from ABCA through ABCG, based on gene 

structure similarities and sequence homology (Table 1). Human ABC transporters 

are exclusively exporters. They utilize the energy from ATP hydrolysis and are 

predominantly involved in the efflux of essential endogenous compounds, 

including amino acids, metabolic products, vitamins, lipids and sterols, as well as 

exogenous drugs and toxins, from the cytoplasm into the extracellular space or 

the intracellular compartments (endoplasmic reticulum, mitochondria, peroxisome, 

etc). Therefore, human ABC transporters play essential roles in a majority of 

physiological, pathological, and pharmacological processes. 
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Table 1: List of human ABC transporters. 

Name Domain structure Major functions  

ABCA subfamily 

ABCA1 MSD1-NBD1-MSD2-NBD2 Cholesterol and phospholipids efflux 

ABCA2 MSD1-NBD1-MSD2-NBD2 Drug resistance 

ABCA3 MSD1-NBD1-MSD2-NBD2 Surfactant secretion 

ABCA4 MSD1-NBD1-MSD2-NBD2 Retina-specific and efflux N-retinylidene-PE  

ABCA5 MSD1-NBD1-MSD2-NBD2 Cholesterol efflux 

ABCA6 MSD1-NBD1-MSD2-NBD2 Macrophage lipid homeostasis? 

ABCA7 MSD1-NBD1-MSD2-NBD2 Lipid homeostasis? 

ABCA8 MSD1-NBD1-MSD2-NBD2  

ABCA9 MSD1-NBD1-MSD2-NBD2 Monocyte differentiation and macrophage lipid 
homeostasis? 

ABCA10 MSD1-NBD1-MSD2-NBD2 Macrophage lipid homeostasis? 

ABCA12 MSD1-NBD1-MSD2-NBD2 Keratinocyte differentiation 

ABCA13 MSD1-NBD1-MSD2-NBD2 Susceptibility factor for schizophrenia 

ABCB subfamily 

ABCB1  MSD1-NBD1-MSD2-NBD2 MDR 

ABCB2 MSD-NBD Peptide efflux 

ABCB3 MSD-NBD Peptide efflux 

ABCB4 MSD1-NBD1-MSD2-NBD2 Phosphatidylcholine (Frank et al.) secretion 

ABCB5 MSD1-NBD1-MSD2-NBD2 Drug resistance 

ABCB6 MSD-NBD Iron efflux 

ABCB7 MSD-NBD Iron/sulfur cluster efflux 

ABCB8 MSD-NBD Drug resistance 

ABCB9 MSD-NBD Peptide efflux  

ABCB10 MSD-NBD Peptide efflux? 

ABCB11 MSD1-NBD1-MSD2-NBD2 Bile salt efflux 

ABCC subfamily 

ABCC1  MSD0-MSD1-NBD1-MSD2-NBD2 MDR 

ABCC2 MSD0-MSD1-NBD1-MSD2-NBD2 Organic anion efflux 

ABCC3 MSD0-MSD1-NBD1-MSD2-NBD2 Organic anion efflux 

ABCC4 MSD1-NBD1-MSD2-NBD2 Nucleoside efflux 

ABCC5 MSD1-NBD1-MSD2-NBD2 Nucleoside efflux 

ABCC6 MSD0-MSD1-NBD1-MSD2-NBD2 Organic anion efflux? 
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ABCC7 MSD1-NBD1-MSD2-NBD2 Chloride ion channel 

ABCC8 MSD0-MSD1-NBD1-MSD2-NBD2 K+ channel regulation 

ABCC9 MSD0-MSD1-NBD1-MSD2-NBD2 K+ channel regulation 

ABCC10 MSD0-MSD1-NBD1-MSD2-NBD2 Organic anion efflux? 

ABCC11 MSD1-NBD1-MSD2-NBD2 Drug resistance 

ABCC12 MSD1-NBD1-MSD2-NBD2 Drug resistance 

ABCD subfamily 

ABCD1 MSD-NBD Very long chain fatty acid (VLCFA) efflux 

ABCD2 MSD-NBD VLCFA and DHA metabolism 

ABCD3 MSD-NBD VLCFA metabolism? 

ABCD4 MSD-NBD VLCFA metabolism? 

ABCE subfamily 

ABCE1 NBD1-NBD2 Translation termination and ribosome recycling 

ABCF subfamily 

ABCF1 NBD1-NBD2  

ABCF2 NBD1-NBD2 Drug resistance? 

ABCF3 NBD1-NBD2  

ABCG subfamily 

ABCG1 NBD-MSD Cholesterol efflux 

ABCG2 NBD-MSD MDR 

ABCG4 NBD-MSD Cholesterol efflux 

ABCG5 NBD-MSD Sterol efflux 

ABCG8 NBD-MSD Sterol efflux 

Summarized in (Dean et al., 2001, Cascorbi and Haenisch, 2010) 
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The human breast cancer resistance protein (BCRP) is one of the human 

ABC transporters that have been implicated in the MDR in cancer chemotherapy 

(Szakacs et al., 2006). The BCRP gene was cloned independently from both 

drug-selected model cell lines and non-drug selected human cDNA library. BCRP 

cloned by Doyle’s group from the human breast cancer MCF-7/AdVp subline was 

termed BCRP for breast cancer resistance protein (Doyle et al., 1998). 

Simultaneously, Allikmets’ group searched expressed sequence tag databases 

and described a nearly identical transporter, named ABCP for its high expression 

in the placenta (Allikmets et al., 1998). Shortly after, the cDNA of this transporter 

was cloned from a mitoxantrone-selected human colon carcinoma cell line, 

S1-M1-80, and was designated MXR for mitoxantrone resistance gene 

(Maliepaard et al., 1999). This transporter was later assigned as ABCG2 by the 

Human Genome Nomenclature Committee, as a second member of the ‘G’ 

subfamily of ABC transporters.  

Human BCRP is clinically significant in prognosis of both hematopoietic 

and solid malignancies, in the development of both innate and acquired MDR, and 

in the regulation of drug bioavailability. Thus, BCRP has been considered as 

promising in targeted cancer chemotherapy, since inhibition of BCRP increases 

not only the intracellular level but also the systemic level of anti-cancer BCRP 

substrates, therefore reversing the MDR mediated by this ABC transporter 

(Robey et al., 2011).   
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A. Structure-function relationship of BCRP 

As mentioned earlier, all human ABC transporters harbor a distinctive 

feature of modular architecture, which is composed of at least one hydrophilic 

cytosolic nucleotide binding domain (NBD) and one hydrophobic 

membrane-spanning domain (MSD) (Figure 1). Based on the structure and 

arrangement of NBD and MSD, human ABC transporters can be classified into full 

transporters, half transporters and non-transporter type ABC proteins (Linton, 

2007). Typically, full ABC transporters, such as ABCB1, comprise two 

homologous halves and are characterized by two MSDs and two NBDs with an 

arrangement of MSD1-NBD1-MSD2-NBD2 (Figure 1A). Other types of full ABC 

transporters, such as ABCC1, have an extra MSD (MSD0) at the amino terminus 

with a domain structure of MSD0-MSD1-NBD1-MSD2-NBD2 (Figure 1B). On the 

other hand, some are considered as half transporters because they contain only 

one MSD and one NBD and are about half the size of a full transporter. These 

include members of the ABCD subfamily and some of the ABCB subfamily with a 

domain structure of MSD-NBD (Figure 2C), and members of the ABCG subfamily 

with a reversed NBD-MSD configuration (Figure 2D). Finally, the ABCE and 

ABCF subfamilies do not even have MSDs and they are therefore unlikely to have 

transport ability and are categorized as non-transporter type ABC proteins. The 

domain structures corresponding to each of all 48 human ABC transporters are 

listed in Table 1.  
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Figure 1: Domain structures of full and half ABC transporters. Schematic 
domain structures of full (A, B) and half (C, D) ABC transporters are shown with 
cylinders representing transmembrane segments (TM) linked by loops. The gray 
boxes represent membrane lipid bilayers. 
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In terms of function, the MSDs seem to contain substrate-binding sites and 

usually hold diverse transmembrane segments (typically six putative α-helices per 

domain), which contribute to substrate specificity. Furthermore, MSDs may form a 

pore across the membrane through which substrates move (Linton, 2007). On the 

other hand, the NBDs are highly conserved domains and represent the hallmark 

feature of the ABC transporter superfamily. In response to ATP hydrolysis 

following substrate binding, these NBDs located at the cytoplasmic face of the 

membrane undergo conformational change, which alters both the affinity and 

orientation of the substrate-binding sites (Linton and Higgins, 2007). This is widely 

accepted as the ‘ATP switch’ model powering the function of ABC transporters.   

BCRP has been widely considered as a half ABC transporter (Doyle and 

Ross, 2003), with a reversed domain structure of N-terminal NBD followed by 

C-terminal MSD (Figure 2). Several characteristic sequence motifs of ABC 

transporters have been found within the NBD of BCRP (GenBank: AAG52982.1), 

such as 80GPTGGGKSSL89, a Walker A motif (also called P–loop, GxxGxGKS/T, 

where x can be any amino acid) and 206ILFLDE211, a Walker B motif (hhhhDE, 

where h stands for hydrophobic residue) (Walker et al., 1982, Krishnamurthy and 

Schuetz, 2006). Studies of many ATPases and ABC transporters have shown that 

the lysine (K) in the Walker A motif interacts with the γ and β phosphate groups of 

ATP and is essential for ATP hydrolysis, while the aspartate (D) in the Walker B 

motif coordinates the Mg2+ ion of Mg-ATP and is required for nucleotide binding 

(Carson et al., 1995, Gribble et al., 1997). Indeed, a lysine mutant K86M in the 

Walker A motif of BCRP, when expressed in Sf9 insect cells, lost both ATP 
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hydrolytic activity and transport ability for typical BCRP substrates, including 

mitoxantrone, rhodamine 123 and Hoechst 33342 dye, though the mutant 

maintained normal protein expression level and ATP binding activity (Ozvegy et 

al., 2002), suggesting the crucial role of these highly conserved motifs in the 

catalysis of ATP hydrolysis of BCRP. Henriksen et al. further investigated the 

K86M BCRP mutant in HEK293 cells and confirmed that this mutation does not 

affect the protein expression or the dimerization/oligomerization of BCRP 

(Henriksen et al., 2005b). Instead, the K86M BCRP mutant was inactive by itself 

and also resulted in a dominant-negative effect on wild-type BCRP function. 

Moreover, distinct from the normal plasma membrane localization of wild-type 

BCRP, K86M was localized to the Golgi apparatus followed by retrieval to the 

endoplasmic reticulum (ER), indicating that NBD might play an important role in 

the proper surface trafficking of BCRP. On the other hand, mutation of the 

putative catalytic residue E211 of the Walker B motif resulted in a total loss of 

ATPase activity and ATP dependent drug transport, suggesting ATP hydrolysis is 

crucial for BCRP transport activity (Hou et al., 2009). In addition, the D210N 

mutation results in loss of function with normal protein expression and membrane 

trafficking (Bhatia et al., 2005). 
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Figure 2: Membrane topology model of BCRP. The depicted model was 
constructed on the basis of sequence analysis and the available experimental 
data. Mutations affecting substrate specificity or catalytic activity are indicated 
with red solid circles. Amino acids as part of the motifs are indicated with gray 
solid circles. Common SNPs affecting expression or function of BCRP are 
indicated with blue dashed circles. The gray boxes represent membrane lipid 
bilayers. 
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Meanwhile, the most characteristic ABC signature motif (XSXGX) 

186VSGGERKRTS195, which might be involved in nucleotide binding and 

hydrolysis or facilitating interface with the membrane-spanning domain, is located 

in the nucleotide binding domain of BCRP preceding the Walker B motif 

(Nakanishi et al., 2003a, Dawson et al., 2007). The significance of the ABC 

signature motif in BCRP function has been demonstrated (Nakanishi et al., 

2003a) in that human BCRP cRNA containing mutations of serine 187 (S187T or 

S187A) in the ABC signature motif conferred normal protein expression of BCRP 

in Xenopus laevis oocytes, but completely abolished its transport activities. 

Recently, two putative steroid-binding sites in human BCRP were identified 

through homology modeling, including the Walker A motif in the nucleotide 

binding domain (Mares-Samano et al., 2009) and a steroid-binding element 

(552SGLLVNL558) in the TM5 of BCRP (Velamakanni et al., 2008). These results 

might provide more details on the relationship of BCRP structure and substrate 

binding, as well as development of new therapeutic ligands of BCRP. 

Amino acids that are crucial for BCRP function have also been examined 

extensively. Four amino acids of BCRP, including E446 in TM2, R482 in TM3, 

N557 in TM5 and H630 in TM6, have demonstrated their contribution to the 

substrate recognition of BCRP (Miwa et al., 2003). Two other basic residues, 

H457 and R465, might also be involved in substrate binding of BCRP (Cai et al., 

2010). Several amino acids in TM5 are also functionally relevant. L554 is 

important for transport activity (Kage et al., 2002), and N557 might play an 

essential role in the proper routing and substrate binding of BCRP (Mohrmann et 
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al., 2005), while a mutant of the conserved G553 showed reduced protein 

expression, and abolished N-glysosylation and membrane trafficking of BCRP 

(Polgar et al., 2006).   

Mutation of the conserved R383 located near the cytoplasmic side of TM1 

resulted in partial retention in the ER, impaired N-glycosylation, and rapid 

degradation through the proteasome. Overall, this mutation brought about 

impairment in BCRP expression and trafficking, indicating that R383 is crucial for 

the biogenesis of BCRP (Polgar et al., 2009). A highly conserved 406GXXXG410 

motif, which has been linked with dimerization in other membrane proteins, is also 

located in the TM1 of BCRP. Mutation of both glycines to alanines maintained a 

fully functional transporter. However, mutation of glycines to leucines resulted in 

decreased transport of mitoxantrone, PhA and BODIPY-prazosin, and abolished 

transport ability for rhodamine 123, without affecting protein expression, 

membrane trafficking, basal ATPase activity or dimer formation under 

nonreducing conditions (Polgar et al., 2004). Furthermore, the combined 

mutations of GXXXG and T402, which is located in TM1 and is adjacent to the 

GXXXG motif, markedly reduced protein expression, disrupted N-glycosylation 

and membrane trafficking and promoted proteosome-independent degradation 

(Polgar et al., 2010).  

B. Dimer vs oligomer 

While the detailed molecular mechanisms of human ABC transporter 

functions remain elusive, it is widely accepted that a functional ABC transporter 

requires two MSDs coupled to two NBDs. Co-expression of both N-terminal and 
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C-terminal halves of ABCB1 in insect cells showed normal drug transport activity 

comparable to that of intact transporter, while either half expressed individually 

retained normal trafficking yet lost transport activities (Gao et al., 1996). Similar 

results observed with ABCC7 (Ostedgaard et al., 1997) and several other 

prokaryotic ABC transporters (Gauthier et al., 2003) further strengthened this 

concept. Therefore, the functional unit of full ABC transporters is believed to be a 

monomer, and half transporters require homo- or hetero-dimerization to be 

functionally competent.  

BCRP is a half transporter and was originally thought to exist and work as 

a homo-dimer. This hypothesis is supported by a study showing that 

co-expression of an ATPase-dead BCRP with the wild-type BCRP resulted in 

reduction of the BCRP transport activity and that BCRP migrated as monomers 

on SDS-PAGE under reducing conditions but as a dimer complex in the absence 

of reducing agents (Kage et al., 2002). It was also found that human BCRP 

expressed in insect cells or bacterial cells retains its function, which argues 

against the necessity of other mammalian protein partners for BCRP function 

(Ozvegy et al., 2001). Thus, it was concluded that BCRP probably exists as a 

homo-dimer linked by disulfide bonds. Attempts have been made to determine the 

cysteine residues involved in inter-molecular disulfide bond formation, and 

Cys603 in the extracellular loop 3 (ECL3) of BCRP was identified. Cys603 is not 

required for protein expression or localization, nor is it essential for ATPase 

activity or transport function of BCRP (Bhatia et al., 2005, Henriksen et al., 2005a, 
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Liu et al., 2008), suggesting that the functional BCRP does not necessarily need 

an intermolecular disulfide bridge for its function and/or oligomerization.  

However, emerging new evidence suggests that BCRP may exist as a 

higher order of oligomer on the plasma membrane. Using chemical cross-linking 

and non-reducing SDS-PAGE, Litman et al. (Litman et al., 2002) first detected 

both an apparent BCRP dimer and higher forms of oligomers from whole cell 

lysate. Similar methods used by Bhatia’s group (Bhatia et al., 2005) demonstrated 

the presence of higher order oligomers of BCRP in both isolated cell membranes 

and whole cell preparations. Recently, using various biochemical methods such 

as non-denaturing PAGE, perfluoro-octanoic acid-PAGE (PFO-PAGE), gel 

filtration chromatography, sucrose gradient sedimentation, chemical cross-linking 

as well as co-immunoprecipitation, Xu et al. (Xu et al., 2004) demonstrated that 

the major oligomeric unit of human BCRP in plasma membranes of the 

drug-resistant cell line MCF7/AdVp3000 is a homo-dodecamer with the minimum 

stable unit of homo-tetramer. No monomeric or dimeric BCRP was found under 

non-denaturing conditions, suggesting that the major functional form of BCRP 

may be a homo-oligomer. Later, the examination of purified human BCRP using 

cryo-negative staining electron microscopy showed that purified human BCRP 

may exist as a homo-octomer consisting of four homo-dimeric BCRP complexes 

(McDevitt et al., 2006). It has also been reported that the purified BCRP in the 

presence of all solubilized membrane components is a tetrameric complex when 

expressed in Sf9 cells (Dezi et al., 2010). Although the causes for the discrepancy 

among the latter three studies are unknown, it is clear that all studies have 
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demonstrated the presence of higher order oligomeric BCRP complexes. Using 

deletion mapping and co-immunoprecipitation of differential epitope tagging of 

BCRP, Xu et al. (Xu et al., 2007) discovered that the oligomerization domain of 

human BCRP is located in the MSD, consisting of ECL3 with its flanking 

transmembrane segments (TM5 and TM6). The polypeptide consisting of 

TM5-ECL3-TM6 not only forms a homo-dodecamer complex itself but also exerts 

a dominant negative effect on wild-type BCRP drug transport function and drug 

resistance phenotypes, possibly by forming hetero-complexes with the wild-type 

BCRP. It is postulated that three different inter-molecular contacts are responsible 

for the formation of a homo-dodecamer (Xu et al., 2004, Xu et al., 2007), which 

will be further tested in the current study.  

C. Substrates of BCRP and its variants 

The substrates of BCRP, identified directly by cellular or vesicular transport 

assays, or indirectly by substrate-stimulated ATPase activity or cytotoxicity 

assays, comprise a broad spectrum of anticancer drugs, sulfate and glucuronide 

conjugates of sterols and xenobiotics, natural compounds and toxins, 

fluorescence dyes, photosensitizers, antibiotics, etc (a comprehensive list of 

BCRP substrates is in Table 2).  

Among the major groups of BCRP substrates are anticancer drugs, 

including topoisomerase inhibitors, anthracyclines, camptothecin (CPT) analogs, 

tyrosine kinase inhibitors (TKI), and antimetabolites, which have identified BCRP 

as essential for MDR in cancer chemotherapy. BCRP transports many sulfate and 

glucuronide conjugates of steroids and xenobiotics, which are two common 
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products of mammalian Phase II metabolism, suggesting that BCRP is involved in 

drug metabolism. BCRP also mediates the efflux of Pheophorbide a (PhA) (Robey 

et al., 2004) and many other photosensitizers (Robey et al., 2005), implicating 

BCRP as a possible cause for photodynamic therapy resistance. BCRP is also 

involved in the transport of Abeta(1-40) peptides at the blood-brain barrier, and 

upregulation of BCRP is correlated with Abeta deposition in cerebral vessels, 

leading to cerebral amyloid angiopathy in many Alzheimer’s disease patients 

(Xiong et al., 2009). 

Studies of CPT analogs as BCRP substrates have revealed that the polar 

groups, especially hydroxyl groups, at the 9 or 10 position of the CPT A ring 

facilitate interaction with BCRP, and this information could be used to design 

BCRP insensitive CPT analogues. Also, hydrogen bond formation might be 

involved in the substrate recognition of BCRP (Rajendra et al., 2003, Ishikawa et 

al., 2006, Nakagawa et al., 2006). Additional analysis of CPT analogue structures 

strongly suggests that high-polarity CPT analogues are good BCRP substrates, 

while the low-polarity counterparts, as poor BCRP substrates, could be 

considered as BCRP insensitive compounds (Yoshikawa et al., 2004). From this 

aspect, modification of BCRP substrates could also be considered as a practical 

approach to overcome the drug resistance mediated by BCRP.   

Interestingly, in early studies with the MCF-7/AdVp3000 or 

mitoxantrone-selected S1-M1-80 cell lines, transport of rhodamine 123 was 

observed (Litman et al., 2000). However, the transport ability of rhodamine 123 

was not seen in several other BCRP overexpressing cell lines (Honjo et al., 2001). 



 17 

This inconsistency has led to sequencing of the BCRP gene comparing a series of 

parental and BCRP overexpressing cells, and it was revealed that cells able to 

transport rhodamine 123 had a glycine (G) or threonine (T) at position 482 in the 

BCRP protein, while cells expressing wild-type BCRP with an arginine (R) at this 

site could not transport rhodamine 123. Both mutants and wild-type BCRP were 

able to efflux mitoxantrone, topotecan, SN-38, Hoechst 33342 (Ozvegy et al., 

2002) and BODIPY-prazosin (Robey et al., 2003). However, the 482G/T mutant 

has a higher affinity for anthracyclines, including doxorubicin, daunorubicin, 

epirubicin, as well as bisantrene, fluorescence dye rhodamine 123 and 

lysotracker green (Robey et al., 2003). In contrast, 482R is specific for transport of 

methotrexate (MTX) (Volk et al., 2000, Volk et al., 2002), MTX diglutamate and 

triglutamate, as well as folic acid (Chen et al., 2003). These data suggest that 

amino acid 482 might be a ‘hot spot’ for substrate specificity of BCRP.  

Nevertheless, a study using IAARh123, the photoreactive analogue of 

rhodamine 123, has surprisingly shown that both 482R and 482T bind directly to 

IAARh123. 482R could not transport IAARh123, even though it is photolabelled 

more intensely than 482T, indicating higher binding affinity of 482R to IAARh123 

(Alqawi et al., 2004). This piece of data not only provides evidence of the direct 

binding of substrates to BCRP, but also indicates that an unknown mechanism 

leads to the difference between 482R and 482T, other than substrate specificity. 

Indeed, a follow-up study, in which nine 482R mutants were generated and 

expressed in insect cells, has further demonstrated that amino acid substitution at 

position 482 induces major changes in not only substrate specificity but also the 
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transport activity of BCRP (Ozvegy-Laczka et al., 2005). 482R might also play an 

important role in ATP hydrolysis of BCRP, as demonstrated by basal and 

stimulated ATPase activity and photoaffinity labeling analyses (Ejendal et al., 

2006). Finally, compared to 482R, purified BCRP 482T exhibited an increased 

ATP hydrolysis rate and affinity for MgATP, as well as decreased sensitivity to 

vanadate inhibition and preferred binding to ATP, while substrate binding is 

similar between 482R and 482T (Pozza et al., 2006). Although mutations at 

position 482 have not been found in any clinical samples (Honjo et al., 2002, 

Nakanishi et al., 2003b, Zamber et al., 2003), 482 R does provide a superior tool 

to explore BCRP functions and to assist the modification of BCRP substrates and 

the development of BCRP inhibitors.  
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Table 2: Summary of BCRP substrates.  

Substrates Reference  
Topoisomerase inhibitors  
Mitoxantrone (topoisomerase II inhibitor) (Doyle and Ross, 2003) 
Bisantrene (topoisomerase II inhibitor) (Litman et al., 2000) 
Etoposide (topoisomeriase II inihibitor) (Yuan et al., 2009) 
Becatecarin (topoisomerase II inhibitor) (Robey et al., 2009) 
NB-506, J-107088 (topoisomerase I inhibitors) (Komatani et al., 2001) 
Anthracyclines (Topoisomerase II inhibitors)  
Daunorubicin  (Ozvegy et al., 2001) 
Doxorubicin (Adriamycin) (Ozvegy et al., 2001) 
Epirubicin  (Robey et al., 2003) 
Pirarubicin  (Yuan et al., 2009) 
Camptothecin analogs (Topoisomerase I inhibitors)   
Topotecan  (Maliepaard et al., 1999) 
SN-38 (Maliepaard et al., 1999) 
CPT-11 (Maliepaard et al., 2001b) 
9-aminocamptothecin (Maliepaard et al., 2001b) 
NX211 (Maliepaard et al., 2001b) 
DX-8951f (van Hattum et al., 2002) 
Homocamptothecins   (Bates et al., 2004) 
BN80915 (diflomotecan) (Bates et al., 2004) 
Gimatecan  (Marchetti et al., 2007) 
Belotecan  (Li et al., 2008) 
Tyrosine kinase inhibitors  
Gefitinib  (Elkind et al., 2005) 
Dasatinib  (Hiwase et al., 2008) 
Erlotinib  (Marchetti et al., 2008) 
Vandetanib (Azzariti et al., 2010) 
Nilotinib  (Hegedus et al., 2009) 
Sorafenib  (Agarwal et al., 2011) 
Tandutinib  (Yang et al., 2010) 
CI1033 (Pan-HER TKI) (Erlichman et al., 2001) 
CP-724,714 (HER2 TKI) (Feng et al., 2009) 
Symadex (fms-like tyrosine kinase 3 inhibitor) (Bram et al., 2009) 
Antimetabolites   
MTX, MTX diglutamate, MTX triglutamate (antifolate) (Chen et al., 2003) 
GW1843, Tomudex (antifolates) (Shafran et al., 2005) 
Trimetrexatte, piritrexim, metoprine, pyrimethamine 
(lipophilic antifolates)* 

(Bram et al., 2006) 

5-fluorouracil (pyrimidine analog) (Yuan et al., 2009) 
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CdAMP (nucleotide), cladribine (nucleoside) (de Wolf et al., 2008) 
Other anticancer drugs  
Flavopiridol (cyclin-dependent kinase inhibitor) (Nakanishi et al., 2003b) 
JNJ-7706621 (CDK and aurora kinases inhibitor) (Seamon et al., 2006) 
Bicalutamide (non-steroidal anti-androgen) (Colabufo et al., 2008) 
NSC73306 (Wu et al., 2007) 
Phenethyl isothiocyanate (PEITC) (Ji and Morris, 2004) 
TH-337 (indazole-based tubulin inhibitors) (Meng et al., 2008) 
Sulfate and glucuronide conjugates of xenobiotics  
Estrone 3-sulfate (E1S) (Suzuki et al., 2003) 
17beta-estradiol sulfate (Imai et al., 2003) 
DHEAS (Suzuki et al., 2003) 
4[35S]-methylumbelliferone sulfate (Suzuki et al., 2003) 
E3040 sulfate (Suzuki et al., 2003) 
Troglitazone sulfate (Enokizono et al., 2007) 
3-O-sulfate conjugate of 17alpha-ethinylestradiol (Han et al., 2010) 
SN-38-glucuronide (Nakatomi et al., 2001) 
[3H]17beta-estradiol-17beta-D-glucuronide (Suzuki et al., 2003) 
[14C]4-methylumbelliferone glucuronide (Suzuki et al., 2003) 
BP-3-sulfate and BP-3-glucuronide (Ebert et al., 2005) 
Phenolic MPA glucuronide (Miura et al., 2008) 
Photosensitizers  
Pheophorbide a (Robey et al., 2004) 
Pyropheophorbide a methyl ester (Robey et al., 2005) 
Chlorine E6 (Robey et al., 2005) 
5-aminolevulinic acid (Robey et al., 2005) 
Phytoporphyrin  (Robey et al., 2006) 
HPPH (Zheng et al., 2009) 
Natural compounds and toxins  
Folic acid  (Chen et al., 2003) 
Urate  (Woodward et al., 2009) 
Genistein (Imai et al., 2004) 
Riboflavin (vitamin B2) (van Herwaarden et al., 2007) 
Vitamin K3, plumbagin (Shukla et al., 2007) 
Glutathione (GSH) (Brechbuhl et al., 2009) 
Sphingosine 1-phosphate (Takabe et al., 2010) 
PhIP (carcinogen) (Pavek et al., 2005) 
PPIX (heme precursor) (Zhou et al., 2005a) 
Fluorescent dyes  
Rhodamine 123 (Litman et al., 2000) 
IAARh123 (Alqawi et al., 2004) 



 21 

Hoechst 33342 (Ozvegy et al., 2002) 
Lysotracker green (Robey et al., 2003) 
BODIPY-prazosin (Cygalova et al., 2009) 
D-luciferin (firefly luciferase substrate) (Zhang et al., 2009) 
Cholyl-L-lysyl-fluorescein (fluorescent bile salt derivative) (de Waart et al., 2010) 
BODIPY-FL-dihydropyridine (Shukla et al., 2006) 
Others  
[(125)I]lodoarylazidoprazosin (IAAP), [(3)H]azidopine (Shukla et al., 2006) 
Sulfasalazine (anti-inflammatory) (van der Heijden et al., 2004) 
Erythromycin (macrolide antibiotic) (Janvilisri et al., 2005) 
Ciprofloxacin, ofloxacin, norfloxacin,enrofloxacin, 
grepafloxacin, ulifloxacin (fluoroquinolone antibiotics) 

(Merino et al., 2006, Pulido et 
al., 2006, Ando et al., 2007) 

Nitrofurantoin (urinary tract antibiotic) (Merino et al., 2005b) 
Moxidectin (parasiticide) (Perez et al., 2009) 
Albendazole suloxide and oxfendazole (anthelmintics) (Merino et al., 2005a) 
Ganciclovir (antiviral drug) (Hu and Liu, 2010) 
Zidovudine (NRTI) (Wang et al., 2003) 
Lamivudine (NRTI) (Kim et al., 2007) 
Leflunomide and A771726 (antirheumatic drugs) (Kis et al., 2009) 
Diclofenac (analgesic and anti-inflammatory drug) (Lagas et al., 2009) 
Cimetidine (histamine H2-receptor antagonist) (Pavek et al., 2005) 
ME3277 (hydrophilic glycoprotein IIb/IIIa antagonist) (Kondo et al., 2005) 
Pitavastatin (HMG-CoA reductase inhibitor) (Hirano et al., 2005) 
Rosuvastatin (HMG-CoA reductase inhibitor) (Huang et al., 2006) 
Dipyridamole (thromboxane synthase inhibitor) (Zhang et al., 2005) 
Glyburide (hypoglycemic agent) (Gedeon et al., 2008) 
Nicardipine, nifedipine, nitrendipine (Ca2+ channel blocker) (Shukla et al., 2006) 
Olmesartan medoxomil (angiotensin II AT1-R antagonist) (Yamada et al., 2007) 
Befloxatone (selective monoamine oxidase inhibitor) (Tournier et al., 2011) 
Prazosin (alpha-1-adrenergic receptor antagonist) (Litman et al., 2000) 
Riluzole (Na+ channel blocker) (Milane et al., 2009) 
Amyloid-beta (Tai et al., 2009) 
Zoledronic acid (osteotropic compound) (Kars et al., 2007) 
Hesperetin conjugates (flavonoid) (Brand et al., 2008) 
Kaempferol (flavonoid) (An et al., 2011) 
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D. Physiological significance of BCRP 

The substrate spectrum and the tissue distribution of BCRP have 

implicated a key role of this transporter in the protection of the human body 

against xenobiotics. In human tissues, BCRP is prominently expressed in 

placental syncytiotrophoblasts, in the epithelium of the small intestine and colon, 

in the liver canalicular membrane, and in ducts and lobules of the breast 

(Maliepaard et al., 2001a). BCRP expression has also been detected in the 

luminal membrane of epithelial cells in normal gallbladders (Aust et al., 2004), in 

alveolar pneumocytes, sebaceous glands, interstitial cells of the testes, prostate 

epithelium, endocervical cells of the uterus, squamous epithelium of the cervix, 

islet and acinar cells of the pancreas, the zona reticularis layer of the adrenal 

gland, kidney cortical tubules, and hepatocytes (Fetsch et al., 2006, Huls et al., 

2008). BCRP is also present in venous and capillary endothelium. Furthermore, 

BCRP is predominantly localized on the plasma membrane of certain cell types of 

the above tissues (Rocchi et al., 2000), many of which harbor a secretory or 

barrier function, and this specific distribution profile is closely related to the 

physiological role of human BCRP. More importantly, BCRP is highly expressed 

in various stem cells and serves as an important determinant of the side 

population (SP) phenotype (Zhou et al., 2001). 

1. BCRP as first line defense in the GI tract 

Human BCRP is physiologically expressed in the apical membrane of 

epithelial cells in the gastrointestinal (GI) tract, with maximal expression in the 

duodenum and a gradual decrease along the GI tract to the rectum (Gutmann et 
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al., 2005). BCRP is also constitutively expressed in the liver canalicular 

membranes, which supports a possible protective role of BCRP against 

xenobiotic absorption and towards toxic metabolite excretion. It has been shown 

that administration of GF120918, a dual inhibitor of ABCB1 and BCRP, resulted in 

a significant increase in the bioavailability and systemic concentration of 

topotecan after oral administration (Kruijtzer et al., 2002). Moreover, it is also 

reported that GF120918 could markedly reduce the biliary and renal excretion of 

topotecan after intravenous administration. Considering that topotecan has higher 

affinity for BCRP than with ABCB1, inhibition of BCRP by GF120918 is likely the 

major mechanism responsible for the increased intestinal absorption and 

decreased biliary and renal excretion.  

In addition, data collected from Bcrp-null mice help to appreciate this first 

line defense role of BCRP. Bcrp-null mice are more susceptible to phototoxic skin 

lesions, which are caused by accumulation of pheophorbide a, a chlorophyll 

degradation product found in food and supplements. This has implicated that 

BCRP is crucial in protecting the human body from the development of 

protoporphyria and food-related phototoxicity (Jonker et al., 2002). Meanwhile, 

BCRP is responsible for the efflux of sulfate and glucuronide conjugates of 

xenobiotics and hormones, which are mostly products of phase II metabolism, 

suggesting that BCRP has a major role in extruding toxic metabolites, mostly 

through the biliary pathway (Dietrich et al., 2003). 
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2. BCRP in the blood-brain barrier 

BCRP is constitutively expressed at the blood-brain barrier, mainly at the 

luminal cell surface of microvessel endothelium, and serves as a crucial barrier to 

drug access into the brain (Cooray et al., 2002, Zhang et al., 2003, Aronica et al., 

2005). Indeed, BCRP works with ABCB1 in the blood-brain barrier and is 

responsible for restricting numerous xenobiotics from entering the brain. The 

positive impact is that BCRP protects the brain from the toxicity of xenobiotics, 

while the negative impact is that BCRP impedes therapeutic agents from reaching 

their intracerebral targets. 

3. BCRP in the placenta 

BCRP expression is highest on the plasma membrane of the chorionic villi 

in the placenta (Litman et al., 2002). This cellular localization indicates that BCRP 

plays a major role in protecting the fetus against toxic compounds ingested by the 

mother. In Bcrp-null mice, the fetal exposure to topotecan and other dietary toxins 

increased significantly (Jonker et al., 2000), further confirming the protecting role 

of BCRP in the placenta. 

4. BCRP in stem cells 

A fascinating property of hematopoietic stem cells is their ability to actively 

extrude Hoechst 33342, a fluorescent dye. The low Hoechst 33342 staining cells 

isolated by subsequent fluorescence-activated cell sorting (FACS) are termed as 

‘side population’ (SP) (Goodell et al., 1996), which have been shown to possess 

stem cell-like characteristics in a variety of tissues (Zhou et al., 2001, Bunting, 

2002, Lechner et al., 2002, Summer et al., 2003). BCRP is expressed at a higher 
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level in SP cells, compared to non-SP cells, and has been identified as the 

Hoechst 33342 efflux pump in SP (Kim et al., 2002, Scharenberg et al., 2002). 

Moreover, ectopic expression of BCRP conferred a SP phenotype in HEK293 

cells, indicating that BCRP might serve as an attractive candidate marker for stem 

cells (Scharenberg et al., 2002). On the other hand, BCRP is expressed 

differentiational during hematopoiesis, with the highest levels in the primitive bone 

marrow stem cell populations, followed by a sharp reduction in response to stem 

cell differentiation, suggesting possible dual roles of BCRP in maintaining human 

pluripotent stem cells in an undifferentiated state, and in protecting these stem 

cells from xenobiotics or other toxins in vivo. (Zhou et al., 2001, Bunting, 2002, 

Scharenberg et al., 2002).  

Studies with Bcrp-null mice further confirmed that BCRP is necessary for 

the SP phenotype, since loss of Bcrp expression resulted in a drastic decrease in 

SP cells in the bone marrow and skeletal muscle. Notably, it has also been shown 

that the hematopoietic cells of Bcrp-null mice became more sensitive to the 

cytotoxicity of mitoxantrone, confirming the physiological protection function of 

Bcrp in hematopoietic cells (Zhou et al., 2002).  

E. Pathophysiological significance of BCRP  

Although human BCRP is widely expressed in normal tissues, 

overexpression of BCRP has been found frequently in various drug-selected 

cancer cell lines, and contributes to the clinical MDR of hematopoietic 

malignancies and solid tumors. Increased BCRP expression has also been linked 

to cancer stem cells.  
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1. BCRP in MDR 

As mentioned earlier, BCRP was originally cloned from an Adriamycin 

selected breast cancer cell line MCF-7/AdVp, which exhibited resistance to a 

range of cytotoxic agents, including mitoxantrone, doxobucibin and daunorubicin, 

but had no increased expression of ABCB1 (Doyle et al., 1998). Overexpression 

of BCRP has been found in and correlated to the MDR phenotypes of numerous 

drug-selected cancer cell lines derived from various tumor types, including 

topotecan-selected ovarian tumor cell line T8 (Maliepaard et al., 1999), 

mitoxantrone-selected colon cancer cell line S1-M1-80 (Litman et al., 2000) and 

HT29 (Perego et al., 2001), SN-38-selected human small cell lung cancer (SCLC) 

cells PC-6/SN2-5 (Kawabata et al., 2001), mitoxantrone-selected human gastric 

carcinoma cell line EPG85-257RNOV (Stein et al., 2002), gefitinib-resistant 

non-small cell lung cancer (NSCLC) cells (Nagashima et al., 2006), 

epirubicin-resistant human hepatocyte carcinoma cells HLE-EPI (Kamiyama et 

al., 2006), and topotecan and doxorubicin selected human multiple myeloma cells 

(Turner et al., 2006). However, the BCRP-mediated drug resistance profiles found 

in these cell lines vary, which might be attributed to different cell origin or the 

involvement of other resistance factors, including other MDR ABC transporters, 

drug metabolizing enzymes, DNA repair, and apoptosis (Jaeger, 2009). 

Therefore, a complex model is required for better evaluation of MDR in cell lines.  

A recent approach by Szakacs et al. (Szakacs et al., 2004) has profiled 

mRNA expressions of the 48 known human ABC transporters and their correlation 

with the growth inhibition of 1,429 anticancer drug candidates in 60 diverse 



 27 

cancer cell lines (the NCI-60). The results could more accurately predict which 

transporters are more likely related to resistance to a certain drug tested. This 

group further designed a microarray platform, the ABC-ToxChip, to evaluate the 

transcriptional profiles of a comprehensive set of genes involved in MDR between 

parental and drug-selected cell lines (Annereau et al., 2004). The sensitivity and 

accuracy of this method has been confirmed by quantitative reverse 

transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry 

(IHC), suggesting that this microarray could serve as a helpful tool to clarify ABC 

transporters and other mechanisms responsible for MDR. 

2. BCRP in hematopoietic malignancies 

Although cellular models are powerful tools to examine the MDR 

phenotypes mediated by BCRP, the clinical relevance of BCRP in human cancers 

was mainly established in clinical samples. There has been considerable 

evidence demonstrating overexpression of BCRP in many different hematopoietic 

malignancies since its discovery. Early studies by Ross et al. have indicated 

relatively high levels of BCRP expression in 33% of acute myeloid leukemia 

(AML) blast cells (Ross et al., 2000). However, the contribution of BCRP for drug 

resistance or drug response in AML patients is so far inconclusive (Table 3). It 

was reported that BCRP expression could predict a decrease in complete 

remission as well as 4-year overall survival in AML patients with daunorubicin or 

mitoxantrone treatment (Benderra et al., 2004). Also, another study in AML 

patients of older age has demonstrated the relationship between higher 

Pgp/BCRP co-expression with lower complete response rate and overall survival 
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rate (van den Heuvel-Eibrink et al., 2007). In addition, Benderra et al. have shown 

that AML patients expressing one or none of functional ABCB1, ABCC3 or BCRP 

have a better prognosis than those patients expressing two or all of the above 

transporters (Benderra et al., 2005). These data suggest that modulation of all 

susceptible ABC transporters may provide therapeutic synergy and promote a 

better prognosis.  

The role of BCRP expression in acute lymphocytic leukemia (ALL) has also 

been implicated but stays inconclusive. Suvannasankha’s group has reported a 

correlation between BCRP expression and prognosis in adult ALL patients 

(Suvannasankha et al., 2004) while several other groups did not find such a 

relationship between BCRP expression and response in childhood ALL 

(Sauerbrey et al., 2002). One explanation for the discordance might be the 

different experimental methods used, different antidies used or different criteria 

for samples (adult or childhood) used (Table 3). It might also be necessary to 

expand the sample size. There is still a lot of work to be done in order to clarify the 

role of BCRP in drug resistance in hematopoietic malignancies. 
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Table 3: BCRP expression in human hematopoietic malignancies. 

Type Correlation Methods Size Reference 

AML Yes RT-PCR 20 (Ross et al., 2000) 

AML 
No 

(mitoxantrone, topotecan or 
doxorubicin based therapy) 

ICC (BXP34) 20 (Sargent et al., 2001) 

AML 
Yes 

(daunorubicin based therapy) 
ICC (BXP34) 20 (Sargent et al., 2001) 

AML No FCM (BXP34 
& BXP21) 20 (van der Kolk et al., 

2002) 

AML 
Yes 

(relapse/refractory) 
RT-PCR 20 

(van den 
Heuvel-Eibrink et al., 

2002) 

AML 
(child) 

Yes 
(prognosis, relapse) 

RT-PCR 59 (Steinbach et al., 
2002) 

AML 
(adult) 

no RT-PCR 40 (Abbott et al., 2002) 

AML no RT-PCR 51 (Galimberti et al., 
2004) 

AML 
adult) 

Yes 
(prognosis on daunorubicin 
and mitoxantrone therapy) 

RT-PCR 149 (Benderra et al., 2004) 

AML 
(adult) 

Yes 
(complete remission, DFS, 

overall survival) 

FCM 
(BXP21) 85 (Benderra et al., 2005) 

AML 
Yes 

(relapse and DFS) 
FCM 

(BXP34) 73 (Damiani et al., 2006) 

AML 
Yes 

(complete response rate) 
RT-PCR 154 

(van den 
Heuvel-Eibrink et al., 

2007) 

AML 
Yes 

(DFS, relapse, overall survival 
to fludarabine-based therapy) 

RT-PCR 138 (Damiani et al., 2010) 

ALL 
(child) 

No 
(prognosis) 

RT-PCR 67 (Sauerbrey et al., 
2002) 

ALL Yes FCM 
(BXP34) 46 (Plasschaert et al., 

2003) 

ALL 
(adult) 

Yes 
(DFS) 

ICC (BXP21) 30 (Suvannasankha et 
al., 2004) 
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3. BCRP in solid tumors 

Recently, correlations between BCRP expression with solid tumors have 

been reported (Table 4). In Diestra’s study, a total of 150 untreated tumor 

samples from various origins were examined, and increased expression of BCRP 

was found in tumors from the digestive tract, endometrium, lung, as well as 

melanoma (Diestra et al., 2002). In breast cancer patients, BCRP expression is 

also found to correlate with response to anthracycline-based chemotherapy 

(Burger et al., 2003). Increased BCRP expression is also related to loss of 

differentiation and shorter survival in oral squamous cell carcinomas (Friedrich et 

al., 2004). In contrast, various other studies indicate that there was no relationship 

between BCRP expression and response in breast cancer (Kanzaki et al., 2001), 

advanced bladder tumors (Diestra et al., 2003) or testicular germ cell cancers 

(Zurita et al., 2003), which strongly calls for validated assays and longitudinal 

studies to definitively assess the contribution of BCRP to drug resistance in solid 

tumors. Interestingly, Gupta et al. reported reduction of BCRP mRNA and protein 

in colorectal and cervical cancer tissues (Gupta et al., 2006). This observation 

implies that BCRP may play a role in tumorigenesis in several cancer types, 

where reduction of BCRP permits the accumulation of genotoxins or other 

carcinogenic cytokines.  
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Table 4: BCRP expression in human solid tumors. 

Type Correlation Methods Size Reference 

Breast carcinoma 
No 

(doxorubicin-based treatment) 
RT-PCR 43 (Kanzaki et 

al., 2001) 

Breast carcinoma 
No 

(anthracycline-based therapy) 
IHC  

(BXP21 & BXP34) 
52 (Faneyte et 

al., 2002) 

Breast cancer 
Yes 

(anthracycline-based therapy) 
RT-PCR 59 (Burger et 

al., 2003) 

Digestive tract 
tumors Yes 

IHC  
(BXP21) 

32 (Diestra et 
al., 2002) 

Colorectal and 
cervical cancer 

Yes 
(downregulation) 

IHC 154 (Gupta et 
al., 2006) 

Endometrial 
carcinoma Yes 

IHC  
(BXP21) 

5 (Diestra et 
al., 2002) 

Lung tumors Yes 
IHC  

(BXP21) 
10 (Diestra et 

al., 2002) 

NSCLC 
Yes 

(PFS and overall survival to 
platinum-based therapy) 

IHC  
(BXP21) 

72 (Yoh et al., 
2004) 

NSCLC 
Yes 

(short survival to 
cisplatin-based therapy) 

IHC  
(BXP21) 

156 (Ota et al., 
2009) 

SCLC 
Yes 

(response and PFS to 
platinum-based therapy) 

IHC  
(BXP21) 

130 (Kim et al., 
2009b) 

Melanoma yes 
IHC  

(BXP21) 
5 (Diestra et 

al., 2002) 

Melanoma no RT-PCR 18 (Deichmann 
et al., 2005) 

Retinoblastoma 
Yes  

(invasion) 
IHC  

(5D3) 
39 (Mohan et 

al., 2006) 

Retinoblastoma No 
IHC  

(BXP21) 
18 (Wilson et 

al., 2006) 

Esophageal 
carcinoma Yes RT-PCR 100 (Tsunoda et 

al., 2006) 

T/NK-cell 
lymphoma Yes IHC 45 (Saglam et 

al., 2008) 

Diffuse large 
B-cell lymphoma 

Yes  
(prognosis) 

IHC (BXP21) 67 (Kim et al., 
2009a) 

 



 32 

F. Regulation of BCRP expression 

Increased expression of BCRP is frequently seen in both drug resistant 

cancer cell lines and clinical tumor tissues. Numerous studies have demonstrated 

that the regulation of BCRP expression occurs at several levels, including gene 

amplification, transcriptional, posttranscriptional and epigenetic modifications.  

1. Gene amplification of BCRP 

The amplification of the BCRP gene was first reported in a variety of drug 

resistant human cancer cell lines selected by mitoxantrone (Ross et al., 1999). 

Knutsen et al. verified this phenomenon and also demonstrated chromosome 

translocation in two mitoxantrone-resistant sublines of human breast cancer cell 

line, MCF-7 AdVp3000 and MCF-7 MX, by both comparative genomic 

hybridization (CGH) and Southern blot (Knutsen et al., 2000). The 

mitoxantrone-sensitive parental cell line MCF-7, on the other hand, had no copy 

number amplification or chromosome translocation of the BCRP gene. In addition, 

it has also been shown that the resistance level to SN-38 in colorectal cancer cells 

was positively correlated to BCRP gene amplification, which resulted in a marked 

decrease in the intracellular concentration of SN-38 (Candeil et al., 2004). 

Later, Knutsen’s group extended the study to investigate the mechanisms 

of BCRP gene amplification (Rao et al., 2005). SF295 glioblastoma cells were 

exposed to an increasing concentration of mitoxantrone and four sublines with 

increasing resistance to mitoxantone, named as SF295 MX50, MX100, MX250, 

and MX500, were generated. Southern blot analysis confirmed gene amplification 

in all mitoxantrone-resistant SF295 sublines. Furthermore, fluorescence in situ 
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hybridization (FISH) demonstrated that with low levels of drug selection (MX50 

and MX100), amplification of the BCRP gene was via double minute 

chromosomes (dmins). With higher levels of drug selection (MX250 and MX500), 

BCRP gene amplification was conferred more by homogeneously staining regions 

(hsr) than by double minute chromosomes. These results indicate that BCRP 

gene amplification under drug selection probably occurred initially as double 

minute chromosomes and switched to chromosomal reintegration of the amplicon 

at multiple chromosomes to generate a more stable genotype.  

2. Transcriptional regulation of BCRP 

The human BCRP gene is located on chromosome 4q22 and spans more 

than 66 kbp (Knutsen et al., 2000). It contains 16 exons and 15 introns, which 

encode a membrane protein of 655 amino acids (Kanzaki et al., 2002). The first 

exon contains most of the 5’-untranslated region (5’-UTR) of the BCRP gene, 

while the translational start site is located in exon 2. The BCRP gene has a 

TATA-less promoter with its basal promoter activity conferred by the sequence 

312 bp directly upstream from the transcriptional start site. A CCAAT box is 

present in -274 bp and removal of this CCAAT box reduces the transcription 

acitivity of the BCRP gene. There are five putative Sp1 sites downstream from a 

putative CpG island, which is a common feature of promoters lacking a TATA box. 

It is found that the homeobox gene MSX2 recruits SP1 to the Sp1 binding sites 

within BCRP promoter and upregulates BCRP gene transcription in pancreatic 

cancer cells (Hamada et al., 2011). 
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To date, six major transcription regulation pathways, including alternative 

promoters, estrogen receptor alpha (ERα), hypoxia-inducible factor 1 (HIF-1), 

peroxisome proliferator-activated receptor gamma (PPARγ), progesterone 

receptor (PGR) and aryl hydrocarbon receptor (AHR), have been identified to 

regulate BCRP mRNA expression.  

The 5’-UTR of BCRP mRNA in cell lines highly expressing BCRP have 

been examined and compared to normal tissues. At least three forms of the 

untranslated exon 1 (E1a, E1b, E1c) with a common exon 2 were revealed, 

suggesting the existence of alternative promoters of BCRP. These exon 1 

variants present tissue-specific expression, while E1c seems to be translated 

more efficiently than E1a (Nakanishi et al., 2006).  

Sequence analysis of the 5'-flanking region of the BCRP gene has led to 

the discovery of a putative estrogen response element (ERE) between the -188 to 

-172 bp of the BCRP promoter (Ee et al., 2004b). Deletion and site-directed 

mutagenic analysis confirmed the existence of ERE in the region between -243 

and -115 bp. It has been further demonstrated that 17β-estradiol (E2) could 

promote the mRNA expression of BCRP, through activation of estrogen receptor 

alpha (ERα), which directly binds to the ERE located in the BCRP promoter. 

Using a genome-wide analysis of promoter elements for transcription factor 

binding sites, Kamalakaran et al. validated that BCRP promoter does carry a 

functional ERE and that the BCRP gene is estrogen responsive (Kamalakaran et 

al., 2005). However, the regulation of BCRP by estrogen or its conjugates is not 
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limited to transcriptional level through ERE, but also related to posttranslational 

regulation via several signaling pathways.  

Studies by Krishnamurthy et al. have demonstrated that hypoxia also 

increases the mRNA expression of BCRP in three different human cell lines 

(Krishnamurthy et al., 2004). Further computer algorithm analysis of the 

5’-flanking sequence of human BCRP revealed three putative hypoxia response 

elements (HREs), all located upstream of the transcription start site. Using 

site-directed mutagenesis and electrophoretic mobility shift assays (EMSA), it was 

demonstrated that HIF-1 complex specifically binds to the BCRP promoter 

through the only functional HRE (-116 bp) and promotes the transcription of the 

BCRP gene. This upregulation of the BCRP gene by activated HIF-1 under 

hypoxia condition might be responsible for one of the mechanisms in some 

tumors that facilitate drug resistance. Moreover, IL-6 or ER stress inducer could 

synergistically increase BCRP expression through the site overlapping XBP-1 and 

HIF-1 binding sites on the BCRP promoter, indicating HRE might be involved in 

the effect of ER stress on BCRP expression (Nakamichi et al., 2009).  

Besides ERE and HRE, nuclear receptor responsive elements are usually 

seen in ABC transporter promoters responsible for transcriptional regulation 

(Repa et al., 2000, Chawla et al., 2001). Szatmari et al. first reported upregulation 

of BCRP mRNA in human myeloid lineage, monocyte-derived dendritic cells upon 

PPARγ agonist rosiglitazone treatment (Szatmari et al., 2006). This effect was 

completely abolished by PPARγ antagonist or PPARγ siRNA, indicating that it is 

indeed PPARγ receptor-specific. To elucidate the mechanisms of the above 
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phenomenon, the promoter sequence of the BCRP gene was analyzed, and three 

potential PPAR response elements were found in a conserved region around 150 

bp of length (-3946 to -3796 bp). EMSA analysis further demonstrated that all 

three putative elements were able to bind PPARγ-RXR heterodimers specifically, 

suggesting that this genomic region likely plays an important role in the PPARγ 

dependent transcriptional regulation of BCRP expression. 

Nonetheless, a novel progesterone response element (PRE) has been 

identified between -243 to -115 bp of the BCRP promoter region (Vore and 

Leggas, 2008, Wang et al., 2008). Progesterone significantly increased BCRP 

mRNA level in PGR-B-transfected but not PGR-A-transfected cells. Although 

EMSA confirmed the direct binding of PRE with either PGR-B or PGR-A, 

mutations in PRE only decreased the progesterone-response in 

PGR-B-transfected but not PGR-A-transfected cells, and further deletion of the 

PRE largely abrogated the progesterone effect. Interestingly, cotransfection of 

PGR-A and PGR-B significantly decreased the progesterone-response compared 

with PGR-B transfection alone, indicating progesterone induced BCRP mRNA 

expression through PGR-B, while PGR-A inhibits the effect of PGR-B via an 

undefined mechanism.  

Last but not least, Ebert et al. showed that either AHR or the nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2) agonists could upregulate BCRP mRNA in 

human colon cancer cells (Ebert et al., 2005, 2007). Mechanism studies have 

identified an active, proximal dioxin-response element (DRE) at -194 to -190 bp 

upstream of the transcription start site of the human BCRP gene, which is 
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responsible for the direct binding of AHR and the subsequent induction of BCRP 

mRNA (Tan et al., 2010). Moreover, an antioxidant response element (ARE) at 

-431 to -420 bp of BCRP 5’-UTR is responsible for Nrf2-mediated BCRP 

expression through interaction with Nrf2 (Singh et al., 2010). It is noteworthy that 

the functional DRE is in close proximity to ERE, HRE, as well as PRE, which 

might suggest that the proximal regions of these motifs are essential for the 

recruitment of transcriptional activation machinery onto the BCRP gene and 

promote transcription. However, whether these elements work in concert or 

compete with each other is largely unknown, and further investigation might 

provide valuable information for the characterization of transcriptional regulation 

of BCRP and other ABC transporters.  

3. Posttranscriptional regulation of BCRP 

Human BCRP is extensively N-glycosylated. Sequence analysis revealed 

three potential N-linked glycosylation sites at positions 418, 557 and 596. Through 

site-directed mutagenesis, Asp596 (N596) was demonstrated to be the only 

N-glycosylation site in BCRP (Figure 1). Nonetheless, disruption of 

N-glycosylation modification in BCRP only brought about subtle impairments in 

plasma membrane trafficking and rhodamine 123 transport activity, which 

indicates N-glycosylation on N596 is not essential for the protein expression, 

membrane trafficking, ATPase activities or transport functions (Diop and Hrycyna, 

2005). Mohrmann et al. verified that N596 is the only N-glycosylation site of BCRP 

and that N-glycosylation at 596 is not important for plasma membrane routing 

(Mohrmann et al., 2005).  
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Initially, phosphorylation of BCRP is not detected from the ovarian 

carcinoma cell line T8, and it seems that phosphorylation is not required for BCRP 

functions since substrate transport in T8 cells is effective (Mohrmann et al., 2005). 

However, Xie et al. used a yeast two-hybrid screening assay and identified BCRP 

as one of the interacting partners of Pim-1L, a serine/threonine kinase (Xie et al., 

2008). Pim-1L colocalizes with BCRP on the plasma membrane and induces the 

phosphorylation of BCRP at T362 (Figure 1) in prostate cancer cells. Knocking 

down Pim-1L or T362A mutant resulted in decreased drug resistance, impaired 

plasma membrane localization and reduced BCRP oligomer formation, indicating 

that phosphorylation of BCRP at T362 is crucial for its expression and function.  

BCRP is also under posttranscriptional regulation by microRNAs, a class of 

noncoding RNA genes. In the CD34(+)CD38(-) hematopoietic stem cells isolated 

from human umbilical cord blood, hsa-miR-520h inhibits mRNA expression of 

BCRP and possibly promotes the differentiation of hematopoietic stem cells (Liao 

et al., 2008), while in pancreatic cancer cells, hsa-miR-520h downregulates both 

mRNA and protein levels of BCRP, resulting in inhibition of cell migration and 

invasion (Wang et al., 2010). Interestingly, microRNA binds to a proximal miRNA 

response element (MRE) within the 3’-UTR of BCRP in various cancer cell lines 

and suppresses its expression (Li et al., 2011). However, drug resistant cells lost 

this putative MRE, therefore evading mRNA degradation and protein translation 

repression of BCRP mediated by microRNAs, leading to overexpression of BCRP 

(To et al., 2009). Another microRNA, miR-328, also targets 3’-UTR of the BCRP 
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gene and decreases BCRP mRNA and protein levels through mRNA cleavage 

(Pan et al., 2009). 

4. Epigenetic regulation of BCRP 

Promoter methylation has also been shown to regulate BCRP expression 

in both human multiple myeloma cells and patients’ plasma cells, with 

demethylation of BCRP promoter contributing to increased mRNA and protein 

expression (Turner et al., 2006). The promoter methylation of BCRP was also 

examined in renal carcinoma cell lines. Increased BCRP expression was seen 

after demethylation treatment, indicating that methylation resulted in the silencing 

of the BCRP gene. Chromatin immunoprecipitation assay showed that methylated 

promoter of BCRP interacted with methyl CpG binding domain proteins MBD2 

and MeCP2, which further recruited histone deacetylase 1 and a corepressor, 

resulting in interruption of BCRP transcription (To et al., 2006). Moreover, 

inhibition of DNA methylation in PC-6 lung cancer cells greatly increased both 

mRNA and protein expression of BCRP, and the promoter methylation of BCRP is 

inversely correlated with BCRP expression in both SCLC and NSCLC cells 

(Nakano et al., 2008), indicating that promoter demethylation of BCRP could be a 

common regulatory mechanism for BCRP upregulation in cancer cells. 

In addition, BCRP promoter is also regulated by histone modification. 

Following drug selection in several cancer cell lines, increased histone H3 

acetylation and reduced class I histone deacetylases associated with BCRP 

promoter were observed (To et al., 2008). Increased BCRP expression requires 

three prerequisites, removal of the repressive histone marker (trimethylated 
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histone H3 lysine), recruitment of RNA polymerase II, and recruitment of a 

chromatin-remodeling factor to the BCRP promoter. These studies further 

address the complexity of BCRP gene regulation. 

5. Regulation of BCRP degradation 

Wild-type BCRP is degraded in lysomes. However, misfolded BCRP 

proteins, such as Cys592 and Cys608 mutants, which lack the intramolecular 

disulfide bond and lose proper membrane trafficking, has been shown to be 

removed from the ER by retrotranslocation to the cytosol compartment, 

ubiquitinated by ubiquitin ligase and degraded in proteasomes (Wakabayashi et 

al., 2007, Wakabayashi-Nakao et al., 2009). In addition, Asp596 mutant, which 

lost N-glycosylation important for stabilizing de novo synthesized BCRP, also 

underwent ubiquitin-mediated proteasomal degradation (Nakagawa et al., 2009). 

In a recent study, it has been further revealed that Derlin-1, a part of the complex 

that mediates ER associated degradation (ERAD), promotes the degradation of 

wild-type BCRP through suppression of ER to Golgi transport, therefore providing 

a novel regulatory mechanism of BCRP degradation (Sugiyama et al., 2011).   

6. Pharmacogenetics of BCRP 

Pharmacogenetic variations of human BCRP have brought another level of 

regulation for the expression or function of BCRP, with the most common single 

nucleotide polymorphisms (SNPs) depicted in Figure 1. 

Imai’s group took the first step by isolating BCRP cDNA from 11 cancer cell 

lines for sequencing. Three variants, including G34A (V12M), and C421A 

(Q141K) SNPs and a splicing variant 944-949 deletion (delta315-6) were 
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identified (Imai et al., 2002). In addition, a C376T mutant, which leads to  

premature termination, was present in 3 out of 124 individuals, which resulted in 

loss of expression of BCRP protein (Imai et al., 2002). Zamber et al. moved the 

work forward through a large scale study to investigate the frequencies of all 

known coding region SNPs using DNA samples from 222 human subjects, 

representing eleven distinct ethnic groups (Zamber et al., 2003). Together, nine 

SNPs were identified, including four nonsynonymous, G34A, C421A, A616C 

(I206L), and A1768T (N590Y), as well as three synonymous and two intronic 

SNPs. Of all the SNPs discovered in this study, G34A and C421A are the most 

common.  

G34A and C421A mutants, when expressed in polarized LLC-PK1 cells, 

both displayed significantly increased drug accumulation and decreased drug 

efflux compared to wild-type BCRP. However, the molecular mechanisms of this 

observed drug resistance for G34A and C421A are totally different. Confocal 

microscopy showed that the dysfunction of G34A could be attributed to disturbed 

apical plasma membrane localization, while the dysfunction of C421A mutant is 

due to decreased ATPase activity (Mizuarai et al., 2004, Morisaki et al., 2005). 

The functional analysis of these naturally occurring SNPs might facilitate our 

understanding of the structure-function relationship of BCRP. C421A mutant also 

showed great reduction in protein expression and drug resistance compared to 

wild-type in vitro, although mRNA levels were similar (Imai et al., 2002). However, 

in vivo study failed to identify the difference in intestinal BCRP mRNA or protein 

levels between C421 homozygouts and C421A heterozygouts (Zamber et al., 
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2003), suggesting that other to-be-defined variations in vivo might contribute to 

the expression of BCRP as well.  

G. Modulation of BCRP functions 

In cancer chemotherapy, the ultimate goal targeting BCRP is to inhibit 

BCRP-mediated extrusion of these anticancer drugs to increase the effectiveness 

of treatment. Considerable efforts have been expanded to find chemosensitizers 

that will inhibit the function of BCRP and thereby reverse MDR.  

1. Modulation of BCRP by small molecular inhibitors 

The first inhibitor of BCRP, fumitremorgin C (FTC), was reported before 

BCRP had been discovered and was shown to inhibit resistance in the 

mitoxantrone selected S1-M1-3.2 colon cancer cell line (Rabindran et al., 1998). 

FTC was also shown to specifically inhibit BCRP mediated transport of 

chemotherapeutic agents in stably transfected cell lines (Rabindran et al., 2000). 

Unfortunately, clinical use of FTC was prevented by its neurotoxicity, leading to 

the development of a new tetracyclic analogue of FTC, Ko143 (Allen et al., 2002). 

Ko143 appeared to be a specific and potent inhibitor of both human BCRP and 

murine Bcrp. Most importantly, Ko143 was nontoxic in vitro at therapeutic 

concentrations and in vivo in mice either through oral or intraperitoneal 

administration (Allen et al., 2002). Subsequently, other FTC-type inhibitors, 

including the indolyl diketopiperazines (van Loevezijn et al., 2001) and tryprostatin 

A (Woehlecke et al., 2003) were screened and assessed.   

On the other hand, numerous ABCB1 inhibitors were examined for their 

ability to inhibit BCRP. For example, a potent ABCB1 inhibitor elacridar 
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(GF120918) was also a BCRP inhibitor (de Bruin et al., 1999, Maliepaard et al., 

2001b). Reserpine has also been shown to inhibit BCRP-mediated Hoechst 

33342 transport (Zhou et al., 2001, Wierdl et al., 2003), and cyclosporin A has 

been demonstrated to inhibit ATPase activity of BCRP (Ozvegy et al., 2001, Qadir 

et al., 2005). Other specific ABCB1 inhibitors that have demonstrated potent 

BCPR inhibition include tariquidar (XR9576) (Robey et al., 2004), PSC-833 

(Garcia-Escarp et al., 2004), a series of newly synthesized 1,4-dihydropyridines 

and pyridines, such as dihydropyridines, niguldipine, nicardipine and nitrendipine 

(Zhou et al., 2005b), and chromanone derivatives, such as 

piperazinobenzopyranones and phenalkylaminobenzopyranones (Boumendjel et 

al., 2005).  

Recently, several TKIs have been shown to act as BCRP inhibitors. First, 

CI1033 was shown to reverse BCRP mediated resistance to SN-38 and topotecan 

(Erlichman et al., 2001). Gefitinib (Iressa; ZD1839) has also been shown to inhibit 

BCRP mediated drug resistance, as do imatinib mesylate (Gleevec, STI571), 

EKI-785, nilotinib, erlotinib, lapatinib and sunitinib at low concentrations 

(Houghton et al., 2004, Ozvegy-Laczka et al., 2004, Nakamura et al., 2005, 

Brendel et al., 2007, Shi et al., 2007, Dai et al., 2008, Dai et al., 2009). Since 

BCRP has been shown either to directly transport or to confer resistance to 

CI1033, gefitinib, and imatinib (Burger et al., 2004, Elkind et al., 2005), it is likely 

that these TKIs act as competitive inhibitors. 

Flavonoids, a class of polyphenolic compounds widely present in foods 

and herbal products, are also found to be another class of BCRP inhibitors. 
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Silymarin, hesperetin, quercetin, and daidzein, as well as the stilbene resveratrol, 

were shown to increase intracellular accumulation of mitoxantrone and 

BODIPY-prazosin in BCRP overexpressing cells (Cooray et al., 2004). Similarly, 

chrysin and biochanin A have also been shown to be potent inhibitors of BCRP 

(Zhang et al., 2004b). It has also been reported that genestein, naringenin, 

acacetin, kaempferol and glycosylated flavonoids reversed resistance to SN-38 

and mitoxantrone in BCRP overexpressing K562 cells (Imai et al., 2004). It has 

also been postulated that flavonoids inhibit BCRP via interaction with its NBD 

(Morris and Zhang, 2006). Treatment with multiple flavonoids has revealed an 

additive effect in BCRP inhibition, implying the approach of ‘flavonoid cocktails’ 

might achieve ideal effects in reversing MDR of BCRP (Zhang et al., 2004a).    

Several other potent BCRP inhibitors include novobiocin, an 

aminocoumarin antibiotic that could decrease resistance to topotecan, SN-38 and 

mitoxantrone at low concentrations through competitive inhibition (Shiozawa et al., 

2004). UCN-01, a cyclin-dependent kinase inhibitor, could also inhibit 

BCRP-mediated xenobiotics transport (Robey et al., 2004). Some human 

immunodeficiency virus protease inhibitors (HPIs), including ritonavir, saquinavir, 

nelfinavir, and Iopinavir could effectively inhibit the transport activity of wildtype 

BCRP (482R), with less effect on its mutants (482T/G). None of the HPIs tested 

were BCRP substrates, indicating BCRP expression should be taken into account 

for drug-drug interaction when HPIs are coadministered with BCRP substrates 

(Gupta et al., 2004, Weiss et al., 2007).  
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Moreover, curcumin represents a current trend of screening natural 

compounds for cancer chemotherapy. Curcumin could inhibit the transport and 

resistance of mitoxantrone or PhA in BCRP overexpressing cells, without 

affecting ATP binding or expression of BCRP (Chearwae et al., 2006). 

Tetrahydrocurcumin (THC), a major metabolite of curcumin, also exhibited potent 

inhibition of BCRP, ABCB1 and ABCC1 (Limtrakul et al., 2007). More importantly, 

THC inhibited the binding of IAAP with BCRP, implying that THC inhibits BCRP 

function through direct interaction with the drug binding site of BCRP, instead of 

an off-target effect. 

Our group has also discovered a novel inhibitor of BCRP, PZ-39. It has 

been shown that PZ-39 directly inhibits the transport activity of BCRP acutely and 

accelerates the lysosome degradation pathway of BCRP chronically. It is so far a 

potent and specific BCRP inhibitor, which has no effect on ABCB1 or ABCC1 

(Peng et al., 2009). Inhibitor induced BCRP degradation provides a novel 

mechanism of BCRP inhibition and might become an effective way of reversing 

BCRP-mediated MDR (Peng et al., 2010).  

Recently, the development of broad-spectrum MDR modulators has also 

demonstrated their value in reversing MDR mediated by several ABC transporters. 

The semisynthetic taxane analogue ortataxel inhibits drug efflux mediated by 

ABCB1, ABCC1 and BCRP. However, ortataxel is not optimal as a clinical MDR 

reversing agent because of its cytotoxicity, imposed by the C-13 side chain of the 

taxane molecule, which inhibits microtubule depolymerization. Therefore, 

noncytotoxic taxane-based reversal agents (tRA) were designed by eliminating 
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the C-13 side chain, and the resulting tRA 98006 (Brooks et al., 2003) strongly 

modulates daunorubicin and mitoxantrone efflux and sensitizes the cells 

overexpressing the three MDR transporters to their cytotoxicities. Interestingly, 

another tRA 96023 modulates only ABCB1 and 482R BCRP, but not ABCC1 

(Minderman et al., 2004a). tRAs might be promising to be developed as 

broad-spectrum MDR modulators in the future. In addition, the pipecolinate 

derivative VX-710 (biricodar; Incel) has also shown inhibitory effects toward 

ABCB1, ABCC1 and 482R BCRP (Minderman et al., 2004b), while a novel class 

of tetrahydroisoquinolin-ethyl-phenylamine (WK-X-34 and XR9577) brought 

superior effectiveness in ABCB1 and BCRP inhibition (Jekerle et al., 2006, 

Jekerle et al., 2007), suggesting their potentials as clinical broad-spectrum MDR 

modulators.  

2.    Modulation of BCRP by gene therapy 

Besides direct inhibition of ABC transporter functions, suppression of the 

expression of the BCRP gene through hammerhead ribozyme-based or antisense 

oligonucleotide-based treatment has been demonstrated to be a powerful 

therapeutic strategy to overcome drug resistance mediated by ABC transporters 

(Kobayashi et al., 1994, Stuart et al., 2000). Hammerhead ribozyme destroys 

target genes directly via endoribonucleolytic activities, and it can be designed to 

cleave a specific mRNA molecule with a certain motif, thus might also be applied 

for downregulation of BCRP gene, therefore restoring drug sensitivity of cancer 

cells overexpressing BCRP. Kowalski’s group designed six hammerhead 

ribozymes directed against the BCRP encoding gene. One such anti-BCRP 
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ribozyme, RzB1, showed high endoribonucleolytic cleavage activity at 

physiologicl pH and temperature in a cell free system (Kowalski et al., 2001). After 

being further introduced into cell culture system, RzB1 successfully decreased 

both mRNA and protein levels of BCRP and reversed the drug-resistant 

phenotype, not only in atypical MDR human gastric carcinoma cell lines with 

moderate BCRP expression (Kowalski et al., 2002), but also in MDR MCF7/MX 

cells with a very high expression level of BCRP (Kowalski et al., 2004). Moreover, 

a newly engineered multitarget multiribozyme potently reverses BCRP-mediated 

MDR and inhibits ABCB1 and ABCC2 at the same time (Kowalski et al., 2005). 

This approach provides yet another novel tool for gene therapies against 

broad-spectrum MDR transporters. 

Additionally, antisense oligonucleotide has also been applied to modulate 

BCRP gene expression. Transfer of BCRP antisense oligonucleotide into 

topotecan-resistant ovarian cancer cells brought about a 60% reduction of BCRP 

mRNA and a substantial decrease of resistance index to topotecan, indicating 

antisense oligonucleotide could partially reverse BCRP-mediated drug resistance 

(Jia et al., 2003).   

Recently, a new approach using RNA interference has been applied for the 

specific knockdown of BCRP. siRNA significantly resulted in the downregulation 

of both exogenous and endogenous BCRP, therefore increasing the accumulation 

of topotecan (Ee et al., 2004a). However, Li et al. reported that siRNAs only 

partially reversed the MDR mediated by BCRP, indicating design of 

BCRP-specific siRNA or transfection efficiency might affect the application of this 
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approach in vitro (Li et al., 2005). Nevertheless, Priebsch’s group applied both 

specific anti-BCRP siRNAs and shRNAs in human gastric carcinoma cells with an 

atypical MDR phenotype and achieved complete reversal of MDR mediated by 

BCRP (Priebsch et al., 2006). These data re-assured the feasibility of siRNA- and 

shRNA-mediated gene therapy in reversing BCRP-dependent MDR. 

H. Specific aims of the present work 

BCRP is one of the major ABC transporters involved in the development of 

MDR in cancer chemotherapy. Overexpression of BCRP in tumor cell plasma 

membranes leads to decreased intracellular accumulation of various anticancer 

drugs. BCRP has also been suggested to be important in regulating drug 

bioavailability. Thus, inhibition of BCRP function or expression will increase not 

only the intracellular level of anti-cancer drugs but also the systemic drug levels, 

therefore, reversing multidrug resistance. Compared to other typical ABC 

transporters, BCRP is considered to be a half transporter and it has been shown 

in several studies that the major form of BCRP on the plasma membrane is 

homo-oligomer and its oligomerization domain has been mapped to the domain 

consisting of C-terminal TM5-ECL3-TM6. Furthermore, this oligomerization 

domain hetero-oligomerizes with full-length BCRP and significantly inhibits its 

drug efflux activity. Therefore, the oligomerization of BCRP could be a novel and 

promising target in reversing MDR mediated by BCRP specifically.  

The hypothesis of my project is that TM5, ECL3 or TM6 each plays a role in 

BCRP oligomerization and that this oligomerization formation can be used as a 

target for developing chemosensitizing agents to overcome BCRP-mediated MDR 
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in cancer chemotherapy. To test the above hypotheses, two specific aims are 

accomplished. The first aim is to determine if ECL3 is solely responsible for BCRP 

oligomerization. Using co-immunoprecipitation and chemical cross-linking 

analyses, I have found that ECL3 is essential for the oligomerization of BCRP, 

while neither the three cysteines nor the 569QYFS motif within ECL3 is important 

for the oligomer formation. On the other hand, both TM5 and TM6 contribute to 

oligomer formation, but to a lesser extent when compared to full-length BCRP. 

These data suggest that ECL3, TM5 and TM6 all play a partial role in the 

oligmerization of BCRP and that each domain might contain at least one 

interacting site responsible for the formation of oligomeric BCRP. The second aim 

is to further determine the role of ECL3, TM5 or TM6 in the function of BCRP. Our 

results demonstrated that domain-swapping of TM5/TM6 by TM1/TM2 markedly 

reduced BCRP functions, indicating ECL3 alone is insufficient to retain 

functionality. However, TM5 is a major contributor of BCRP function, while TM6 

alone is not sufficient to retain the transport activity or resistance phenotype of 

BCRP.  

The outcome from this study should lead to a better understanding of how 

TM5, ECL3 and TM6 contribute to the oligomerization and function of BCRP and 

thus extend our knowledge of the structure-function relationship of BCRP and 

help to develop better treatment regimens that may be used to specifically reverse 

the MDR mediated by BCRP. 
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II. Materials and Methods 

A. Materials 

All primers for engineering BCRP constructs with PCR (polymerase chain 

reaction) were obtained from Invitrogen by Life Technologies, Inc. and pfu DNA 

polymerases were purchased from Stratagene by Agilent Techonologies. All DNA 

plasmid preparation kits were from QIAGEN. Cell culture medium DMEM, 

antibiotics, and trypsin were from Cellgro by Mediatech, Inc. and Lonza, 

respectively. DNA and protein molecular weight markers were obtained from 

Fermentas Life Sciences. The chemical cross-linking reagent disuccinimidyl 

suberate (DSS) was from Pierce by Thermo Fisher Scientific. ECL (Enhanced 

chemiluminescence) Western Blot detection reagents were obtained from 

Amersham Pharmacia Biotech by GE Healthcare. All other reagents of analytic 

grade or higher were purchased from Sigma-Aldrich. 

B. Transient and stable cell transfection 

HEK293 cells (human embryonic kidney 293 cells) with stable expression 

of HA-tagged BCRP were grown at 37°C with 5% CO2 in DMEM, supplemented 

with 10% fetal bovine serum, 100 units/ml penicillin, 100 µg/ml streptomycin, with 

the presence of 0.3 mg/ml G418. For transient transfection, pcDNA 3.1(+) plasmid 

containing different Myc-tagged BCRP constructs or vector control were 

transfected into HEK293 cells or HEK293 cells with stable expression of 

HA-tagged BCRP at 90% confluency using LipofectAMINE according to the 

manufacturer's instructions. The cells were harvested for cell lysate preparations 

24 hours after transient transfection. 
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HEK293 cells were grown at 37°C with 5% CO2 in DMEM, supplemented 

with 10% fetal bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin. 

For stable transfection, pcDNA 3.1(+) plasmid containing different Myc-tagged 

BCRP constructs or vector control were first transfected into HEK293 cells using 

LipofectAMINE according to the manufacturer's instructions. 48 hours following 

transfection, different dilutions of the transfected cells were selected with 0.8 

mg/ml of G418 for 3 weeks. The stable clones with similar expression levels of all 

Myc-tagged BCRP constructs were verified by Western Blot and maintained in 0.3 

mg/ml G418. 

C. Cell lysate preparation 

For cell lysate preparation, cells were harvested and lysed in ice-cold lysis 

buffer (150 mM NaCl, 25 mM Tris, pH 7.4, 1 mM EDTA, 1% Triton X-100, with 

freshly added 2 mM PMSF and 1 mM DTT before use). The cell lysates were 

passed through 26 gauge needles at least 20 times followed by incubation of 30 

minutes on ice. The lysates were then centrifuged at 12,000 × g for 15 minutes. 

Protein concentrations were determined by Bio-Rad protein assay dye kit, and the 

absorbance was measured by SmartSpec 3000 Spectrophotometer (Bio-Rad 

Laboratories, Inc.). 

D. Co-immunoprecipation and Western Blot 

For co-immunoprecipation, 500 µg fresh cell lysates were mixed with 2 µg 

normal mouse IgG, diluted to 1 ml with ice-cold lysis buffer used for cell lysate 

preparation and incubated for 2 hours at 4°C. The suspensions were precleared 

with 40 µl protein G-PLUS agarose beads (Santa Cruz Biotechnology, Inc.) for 2 
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hours at 4°C. After brief centrifugation at 500 × g for 1 minute, the supernatants 

were transferred to new microcentrifuge tubes and precipitated with monoclonal 

mouse anti-Myc (Cell Signaling Technology, 1:500 dilution) or anti-HA antibodies 

(Covance, 1:500 dilution) for 4 hours at 4°C. After centrifugation at 10,000 × g for 

15 minutes at 4°C, the immune complexes in supernatants were transferred to 

fresh microcentrifuge tubes and were allowed to bind to 40 µl protein G-PLUS 

agarose beads overnight at 4°C with constant rotation. Agarose beads were 

washed 5 times with 1 ml lysis buffer, and the immunoprecipitates were 

resuspended in 40 µl 2× SDS-PAGE sample buffer. 

For Western Blot analysis, cell lysates or immunoprecipitates were 

denatured in 2 × SDS-PAGE sample buffer for 30 minutes at room temperature. 

The samples were subjected to SDS-PAGE on 10% or 12% Tris-glycine 

SDS-polyacrylamide gel. The separated proteins were transferred onto a 

polyvinylidene fluoride membrane (Osmonics, Inc) and blocked in TBST (50 mM 

Tris, 150 mM NaCl, 0.1% Tween 20) containing 5% nonfat milk for 1 hour at room 

temperature. The membranes were then incubated with the primary antibodies for 

1 hour at room temperature. The bound antibodies were detected with 

horseradish peroxidase (HRP)-conjugated Rat anti-mouse Kappa IgG 

(SouthernBiotech) using ECL detection reagents.  

E. Plasma membrane preparation 

Plasma membranes were prepared as described previously with minor 

modifications (Yang et al., 2002).  Briefly, the cells were washed with ice-cold 

PBS and resuspended in hypotonic buffer (10 mM KCl, 1.5 mM MgCl2, 10 
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mM Tris, pH 7.4, 2 mM PMSF) at 106 cells/ml followed by homogenization and 

centrifugation at 1,000 × g for 10 min. The plasma membrane fractions were 

prepared by layering the 1,000 × g supernatant on top of a 35% sucrose cushion 

containing 10 mM Tris, pH 7.4 and 1 mM EDTA, followed by centrifugation at 

38,000 rpm for 1 h. The membranes at the interface between the supernatant and 

the sucrose cushion were collected, mixed with STBS buffer (250 mM sucrose, 

150 mM NaCl and 10 mM Tris, pH 7.5) and pelleted by centrifugation at 29,000 

rpm for 1 h. The final membrane pellets were resuspended in STBS buffer and 

stored at -80°C.  

F. Chemical cross-linking 

Chemical cross-linking was performed with DSS. Briefly, confluent cells in 

150 mm dishes were washed three times with KCl/Hepes buffer (90 mM KCl, 50 

mM Hepes, pH 7.5) and incubated with 2 mM DSS in the KCl/Hepes buffer for 45 

minutes at room temperature. Tris-HCl (pH 7.4) was added to a final 

concentration of 2 mM to quench the reaction. The cells were then collected for 

plasma membrane preparation as described above. 5 µg of plasma membranes 

treated with DSS dissolved in DMSO or DMSO only were treated with an equal 

volume of 2 × SDS extraction buffer for 30 minutes at room temperature followed 

by centrifugation at 11,000 × g for 10 minutes. The supernatants were then 

loaded onto precast 4-15% gradient Tris/glycine polyacrylamide gels (Bio-Rad 

Laboratories, Inc.), and electrophoresis was run at 140 volts with SDS running 

buffer. Proteins were transferred to polyvinylidene fluoride membranes followed 

by detection with Western Blot.  
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G. MTT assay 

A total of 3,000 HEK293 stable cells were plated in 96-well flat bottom 

plates for 24 hours and then exposed to Adriamycin (0, 1.6, 6.4, 25.6, 102.4, 410, 

1640 ng/mL), or mitoxantrone (0, 4, 16, 64, 256, 1024, 4096 nM). After 72 hours, 

20 µL of 5 mg/mL MTT solution in PBS were added to each well. After brief 

centrifugation and removal of the medium, 100 µl of DMSO was added to each 

well to dissolve the formazan crystals. The absorbance at 540 nm was 

determined using a MRX absorbance reader (Dynex Technologies, Inc.). 

Triplicate wells were assayed for each condition, and S.D. was determined.  

H. Drug accumulation assay 

The drug accumulation assay was performed as previously described 

(Peng et al., 2009) with minor modifications. 106 cells were trypsinized, 

resuspended in 1 mL DMEM with 20 µM mitoxantrone, and incubated at 37°C for 

30 minutes. Cells were then collected by centrifugation at 500 × g and washed 

three times with ice-cold DMEM. The cells were then resuspended in 1 mL DMEM 

and subjected to analysis by flow cytometry using BD FACSCalibur APC Analyzer. 

The data were analyzed using Cell Quest Pro (BD Biosciences). 
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III. Experimental Results 

A. ECL3 is responsible for oligomerization in truncated BCRP construct 

In a previous study, it has been demonstrated that the oligomerization site 

of BCRP is located in its C-terminus consisting of TM5-ECL3-TM6 (Xu et al., 

2007). To further map the oligomerization site, we dissected this region into three 

domains containing TM5, ECL3 and TM6, respectively. Through sequence 

alignment, we have found that ECL3 is highly conserved among human, rat and 

mouse (Figure 3). Moreover, Cys603, Cys592 and Cys608, which are responsible 

for the formation of intermolecular and intramolecular disulfide bond in BCRP 

(Wakabayashi et al., 2007), are located in ECL3. A QXXS motif (569QYFS), which 

has been shown to facilitate the transmembrane domain interactions in 

membrane proteins (Sal-Man et al., 2005), was also found in the ECL3 of BCRP 

and is conserved among human, rat and mouse (Figure 3). Therefore, I first 

tested if ECL3 is responsible for BCRP oligomerization. Since it was previously 

found that ectopically expressed Myc-BCRPTM12 construct consisting of the 

N-terminal NBD through TM2 (Figure 4A-2) retained plasma membrane trafficking 

yet did not confer oligomerization activity, I engineered a construct by swapping 

the ECL1 in Myc-BCRPTM12 to ECL3, resulting in the Myc-tagged construct of 

Myc-BCRPTM12–ECL3 (Figure 4A-3), to investigate the sole role of ECL3 in the 

oligomerization of BCRP. This construct, together with Myc-BCRPTM56 (Figure 

4A-1) as a positive control and Myc-BCRPTM12 as a negative control (Xu et al., 

2007), was transiently transfected into HEK293 stable cells that stably expressing 
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HA-tagged full-length BCRP (Figure 4, HA-BCRPFLWT), to determine if Myc- 

BCRPTM12–ECL3 interacts with the full-length BCRP. 

Twenty-four hours after transfection, cell lysates were collected and tested 

for co-expression of the full-length and truncated BCRP constructs via Western 

Blot using either anti-HA or anti-Myc antibodies. All constructs were well 

expressed in HEK293 stable cells (Figure 4B). These lysates were then subjected 

to co-immunoprecipitation using anti-Myc antibodies (Figure 4C) followed by 

Western Blot analyses probed with anti-HA antibodies. As shown in Figure 4C, 

Myc-BCRPTM12–ECL3 co-immunoprecipitates HA-BCRPFLWT (lane 3). A detailed 

analysis of the amount of coprecipitated BCRP constructs after normalization to 

their expression levels shows that the relative level of coprecipitation of 

Myc-BCRPTM12–ECL3 is reduced compared to Myc-BCRPTM56 (Figure 4D). 

Therefore, the replacement of ECL1 by ECL3 (Myc-BCRPTM12–ECL3) enabled its 

interaction with HA-BCRPFLWT, to a lesser extent when compared to 

Myc-BCRPTM56, suggesting that ECL3 alone plays a partial role in the 

oligomerziation of BCRP. 
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Figure 3: Sequence alignment of human BCRP, rat, and mouse Bcrp1. The 
sequence alignment shows over 90% similarity between rat and mouse Bcrp1 
ECL3, and around 80% similarity between human BCRP ECL3 and rat/mouse 
Bcrp1 ECL3. The conserved 569QYFS motif is indicated in underlined red letter, 
while the three cysteines in ECL3 are indicated in underlined blue letter. The 
multiple sequence alignment is performed by ClustalW2 software 
(http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalw2). 
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Figure 4: ECL3 is responsible for BCRP oligomerization in truncated BCRP 
construct. (A) Schematic diagram of HA-BCRPFLWT and the truncated 
Myc-BCRPTM56 (1), truncated Myc-BCRPTM12 (2), and the domain-swapping 
Myc-BCRPTM12-ECL3 (3) constructs. The TM segments are numbered and shown as 
boxes. The HA-tag and the Myc tag are shown as a circle and oval, respectively. 
NBD, ECL1 and ECL3 are also indicated. (B) Expression of the above BCRP 
constructs after transfection. (C) co-immunoprecipitation analysis of the above 
BCRP constructs. The Myc-tagged constructs were transiently transfected into 
HEK293 cells with stable expression of HA-BCRPFLWT. Cell lysates were collected 
24 hours after transient transfection and 400 µg total proteins was subjected to 
co-immunoprecipitation with anti-Myc antibodies followed by Western Blot 
analysis (IB). (D) Quantification of co-immunoprecipitation. The 
co-immunoprecipitation levels of constructs in (C) were quantified using 
ScnImage followed by calculation of the relative ratio of co-immunoprecipitation to 
expression level (B), N=3. 
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B. ECL3 is responsible for oligomerization in full-length BCRP 

To further confirm ECL3 is an essential component of the oligomerization 

domain and to minimize the effect of domain truncation on the expression or 

function of BCRP, I engineered a second domain-swapping construct, 

Myc-BCRPFL-ECL3 (Figure 5A-3), based on full-length BCRP. I have chosen TM1 

and TM2 to replace TM5 and TM6 respectively, since TM1 and TM2 have been 

demonstrated to retain no oligomerization activity both in previous studies (Xu et 

al., 2007) and my studies (Figure 4C). Meanwhile, Myc-BCRPFL-TM14 (Figure 5A-1), 

which has also been confirmed to abolish oligomerization activity (Xu et al., 2007), 

was used as a negative control. These two constructs, together with 

Myc-BCRPFLWT (Figure 5A-2) as a positive control, were transiently transfected 

into HEK293 cells with stable expression of HA-BCRPFLWT, respectively. All these 

contructs are well expressed as detected by Western Blot (Figure 5B). We next 

performed co-immunoprecipitation experiments with anti-HA antibodies (Figure 

5C) followed by Western Blot analysis of the precipitates. As shown in Figure 5C, 

Myc-BCRPFL-ECL3 co-precipitateS with HA-BCRPFLWT (Figure 5C, lane 3), whereas 

Myc-BCRPFL-TM14 did not (Figure 5C, lane 1), suggesting that ECL3 in full-length 

BCRP is responsible for the oligomerization of BCRP. Similar results were 

observed for co-immunoprecipitation with anti-Myc antibodies and Western Blot 

probed with anti-HA antibodies (Figure 5E). Quantification of the coprecipitated 

BCRP constructs after normalization to their expression levels shows that the 

relative level of coprecipitation of Myc-BCRPFL-ECL3 is decreased compared to 

Myc-BCRPFLWT (Figure 5D and 5F), which is consistent with the previous results 
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of Myc-BCRPTM12–EC3 (Figure 4), confirming that ECL3 plays a partial role in 

BCRP oligomerization.  

C. The cysteines in ECL3 are not essential for BCRP oligomerization 

It has been shown that ECL3 of BCRP contains three cysteines, Cys603, 

Cys592 and Cys608, which are responsible for the formation of inter- and 

intra-molecular disulfide bonds (Wakabayashi et al., 2006). It has also been 

postulated that the disulfide bonds are possibly involved in the formation of BCRP 

dimer/oligomer (Kage et al., 2005). In order to investigate if these three cysteines 

are essential for BCRP oligomerization mediated by ECL3, I engineered a 

Myc-BCRPFL-ECL3-3CL construct (Figure 5A-4) with all three cysteines mutated to 

alanines. This construct was transiently transfected into HEK293 cells stably 

expressing HA-BCRPFLWT and its expression was confirmed by Western Blot 

(Figure 5B, lane 4). Figure 5 demonstrates that following co-immunoprecipitation 

with anti-HA antibodies (Figure 5C, lane 4) and Western Blot analysis probed with 

anti-Myc antibodies, Myc-BCRPFL-ECL3-3CL co-precipitates with HA-BCRPFLWT of a 

comparable level as Myc-BCRPFL-ECL3 after normalization to protein expression 

levels (Figure 5D), indicating that these three cysteines or the disulfide bonds 

formed by them are not essential in BCRP oligomerization. 
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Figure 5: (Legend on next page).  
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Figure 5: The ECL3 is responsible for oligomerization in full-length BCRP 
and cysteines or the 569QYFS motif in ECL3 is not essential for BCRP 
oligomerization. (A) Schematic diagram of HA-BCRPFLWT, truncated 
Myc-BCRPTM14 (1), Myc-BCRPFLWT (2) and the domain-swapping constructs 
Myc-BCRPFL-ECL3 (3), Myc-BCRPFL-ECL3-3CL (4), Myc-BCRPFL-ECL3-3CL-AYFA (5). The 
TM segments are numbered and shown as boxes. The HA-tag and the Myc tag 
are shown as a circle and oval, respectively. NBD, ECL1 and ECL3 are also 
indicated. (B) Expression of the above BCRP constructs after transfection. (C) 
Co-immunoprecipitation of the above BCRP constructs. The Myc-tagged 
constructs were transiently transfected into HEK293 cells with stable expression 
of HA-BCRPFLWT. 24 hours following transfection, cell lysates were collected and 
400 µg total proteins was subjected to co-immunoprecipitation with HA (C) 
antibodies followed by Western Blot analysis. (D) Quantification of 
co-immunoprecipitation. The co-immunoprecipitation levels of constructs with 
anti-HA antibodies in (C) were quantified using ScnImage followed by calculation 
of the relative ratio of co-immunoprecipitation to expression level. (E) 
Co-immunoprecipitation of the above BCRP constructs with anti-Myc antibodies. 
(F) Quantification results of co-immunoprecipitation with anti-Myc antibodies and 
N=3. 
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Moreover, co-immunoprecipitation analysis with anti-Myc antibodies and 

Western Blot probed with anti-HA antibodies further confirmed the above findings 

(Figure 5E, lane 4). 

D. The 569QYFS motif is not essential for BCRP oligomerization 

We next studied the involvement of the 569QYFS motif (Sal-Man et al., 

2005) in BCRP oligomerization mediated by ECL3. For this purpose, 

Myc-BCRPFL-ECL3-3CL-AYFA construct (Figure 5A-5) was engineered, with the two 

essential polar amino acids (Q and S) in 569QYFS motif mutated to nonpolar 

alanines. This Myc-BCRPFL-ECL3-3CL-AYFA was transfected into HEK293 cells with 

stable expression of HA-BCRPFLWT. As shown in Figure 5, 

Myc-BCRPFL-ECL3-3CL-AYFA is similarly expressed (Figure 5B, lane 5) and 

coprecipitated by HA-BCRPFLWT (Figure 5C, lane 5) as Myc-BCRPFL-ECL3 after 

normalization to protein expression levels (Figure5D). This result was also verified 

by co-immunoprecipitation analysis with anti-Myc antibodies and Western Blot 

with anti-HA antibodies (Figure 5E, lane 5) and quantification analyses (Figure 

5F). All these findings demonstrated that the 569QYFS motif is also not involved in 

BCRP oligomerization.  

E. TM5 and TM6 are essential for the oligomerization of BCRP 

To further investigate the hypothesis that ECL3 is the sole responsible 

element for the oligomerization of BCRP, I designed a domain-swapping 

construct by replacing ECL3 in the Myc-BCRPFLWT with ECL1. This new 

Myc-BCRPFL-TM5TM6 construct (Figure 6A-1), was transiently transfected into 

HEK293 cells with stable expression of HA-BCRPFLWT. All constructs were well 
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expressed as determined via Western Blot using anti-Myc antibodies (Figure 6B). 

Co-immunoprecipitation experiments with either anti-HA antibodies (Figure 6C) or 

anti-Myc antibodies (Figure 6E) were performed followed by Western Blot 

analysis of the precipitate. To our surprise, we found that Myc-BCRPFL-TM5TM6 

(Figure 6C and 6E, lane 1) could also co-precipitate with HA-BCRPFLWT, with a 

slightly lower level as compared with Myc-BCRPFLWT (Figure 6C and 6E, lane 2), 

suggesting that the combination of two flanking transmembrane segments of 

ECL3 is also essential for BCRP to oligomerize.  
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Figure 6: TM5 and TM6 are also essential for BCRP oligomerization. (A) 
Schematic diagram of the domain-swapping Myc-BCRPFL-TM5TM6 construct (1), 
Myc-BCRPFLWT (2) and Myc-BCRPTM14 (3). The TM segments are numbered and 
shown as boxes. The HA-tag and the Myc tag are shown as a circle and oval, 
respectively. These constructs were transiently transfected into HEK293 cells 
stably expressing HA-BCRPFLWT. 24 hours following transfection, cell lysates 
were collected and expression were tested (B). 400 μg total protein was used for 
co-immunoprecipitation with anti-HA (C) and anti-Myc antibodies (E) followed by 
Western Blot analysis probed using the same two antibodies. The 
co-immunoprecipitation levels of constructs were quantified using ScnImage 
followed by calculation of the relative ratio of co-immunoprecipitation to 
expression level. (D) Quantification results of co-immunoprecipitation with anti-HA 
antibodies and N=3. (E) Quantification results of co-immunoprecipitation with 
anti-Myc antibodies. 
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F. Either TM5 or TM6 plays a partial role in BCRP oligomerization  

As shown above, Myc-BCRPFL-TM5TM6 is sufficient to interact with the 

full-length BCRP. It is of interest to determine if either TM5 or TM6 is essential for 

BCRP oligomerization. For this purpose, two additional domain-swapping 

constructs, Myc-BCRPFL-TM5 (Figure 7A-1), with ECL3 and TM6 replaced by ECL1 

and TM2, and Myc-BCRPFL-TM6 (Figure 7A-2), with TM5 and ECL3 replaced by 

TM1 and ECL1, were engineered to investigate the responsibility of TM5 or TM6 

in BCRP oligomerization. These two constructs were transiently transfected into 

HEK293 cells stably expressing HA-BCRPFLWT, respectively. All constructs were 

well expressed as determined via Western Blot using Myc antibodies (Figure 7B). 

I next performed co-immunoprecipitation using the anti-HA antibodies (Figure 7C) 

or Myc antibodies (Figure 7E) followed by Western Blot analysis probed by HA or 

Myc antibodies. It is clearly shown that either Myc-BCRPFL-TM5 (Figure 7C and 7E, 

Lane 1) or Myc-BCRPFL-TM6 (Figure 7C and 7E, Lane 2) could co-precipitate with 

HA-BCRPFLWT, suggesting that either TM5 or TM6 alone can interact with 

full-length BCRP. However, compared to Myc-BCRPFLWT (Figure 7C and 7E, Lane 

3), both Myc-BCRPFL-TM5 and Myc-BCRPFL-TM6, showed a decreased ability to 

interact with HA-BCRPFLWT after normalization to protein expression level (Figure 

7D for co-immunoprecipitation with anti-HA antibodies and 7F for 

co-immunoprecipitation with anti-Myc antibodies), indicating that TM5 and TM6 

each has only partial contribution in BCRP oligomerization.   



 67 

 

Figure 7: Either TM5 or TM6 in full-length BCRP is partially responsible for 
oligomerization. (A) Schematic diagram of HA-BCRPFLWT and Myc-BCRPFL-TM5 

(1), Myc-BCRPFL-TM6 (2), Myc-BCRPFLWT (3), Myc-BCRPTM14 (4) constructs. The 
HA-tag and the Myc tag are shown as a circle and oval, respectively. NBC, ECL1 
and ECL3 are also indicated. These constructs were transiently transfected into 
HEK293 cells stably expressing HA-BCRPFLWT. 24 hours following transfection, 
cell lysates were collected and expression were tested (B). 400 μg total protein 
was used for co-immunoprecipitation with HA (C) and anti-Myc antibodies (E) 
followed by Western Blot analysis probed using the same two antibodies. The 
co-immunoprecipitation levels of constructs were quantified using ScnImage 
followed by calculation of the relative ratio of co-immunoprecipitation to 
expression level. (D) Quantification results of co-immunoprecipitation with anti-HA 
antibodies. (E) Quantification results of co-immunoprecipitation with anti-Myc 
antibodies and N=3. 
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G. Chemical cross-linking analyses of domain-swapping BCRP 

constructs in living cells 

We next determined if BCRP domain-swapping constructs 

Myc-BCRPFL-ECL3
,
 Myc-BCRPFL-ECL3-3CL, Myc-BCRPFL-ECL3-3CL-AYFA, 

Myc-BCRPFL-TM5 or Myc-BCRPFL-TM6 could form oligomers by themselves in living 

cells. For this purpose, chemical cross-linking experiments of living cells using 

disuccinimidyl suberate (DSS) were conducted as previously described (Xu et al., 

2004). HEK293 cells stably expressing Myc-BCRPFLWT, domain-swapping 

Myc-BCRPFL-ECL3
,
 Myc-BCRPFL-ECL3-3CL, Myc-BCRPFL-ECL3-3CL-AYFA, 

Myc-BCRPFL-TM5 or and Myc-BCRPFL-TM6 were established and used for the 

cross-linking assay.  

Following 2 mM DSS treatment, plasma membranes were isolated and 

subjected to SDS-PAGE and Western Blot analyses with anti-Myc antibodies. As 

shown in Figure 8A, three bands of Myc-BCRPFLWT with molecular weight greater 

than that of the monomeric BCRP were detected following corss-linking by DSS, 

as compared with the control without DSS. The estimated sizes of these bands 

are close to 292, 219, 146 and 73 kD, corresponding to the sizes of tetrameric, 

trimeric, dimeric and monomeric Myc-BCRPFLWT. This is consistent with the 

previously reported results (Xu et al., 2004).  

On the other hand, Myc-BCRPFL-ECL3 (Figure 8B, right panel), 

Myc-BCRPFL-ECL3-3CL (Figure 8B, middle panel) and Myc-BCRPFL-ECL3-3CL-AYFA 

(Figure 8B, left panel) stable cells showed identical cross-linking products profiles 

with two major cross-linked products. The estimated molecular weights of these 
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products are close to 292, 146kD, corresponding to the size of tetrameric and 

dimeric Myc-BCRPFL-ECL3-3CL-AYFA, Myc-BCRPFL-ECL3-3CL, or Myc-BCRPFL-ECL3. The 

chemical cross-linking results confirmed that ECL3 alone plays a partial role in the 

oligomerization of BCRP and that neither three cysteines in the ECL3 nor the 

569QYFS motif is necessary for the oligomerization of BCRP. 

In addition, chemical cross-linking analyses with DSS were also performed 

in living Myc-BCRPFL-TM5 and Myc-BCRPFL-TM6 stable cells to further determine if 

Myc-BCRPFL-TM5 or Myc-BCRPFL-TM6 each forms oligomers in living cells. As 

shown in Figure 8, Myc-BCRPFL-TM5 (Figure 8C) and Myc-BCRPFL-TM6 (Figure 8D) 

expressed on the plasma membrane have two major cross-linked products. The 

estimated molecular weights of these products are close to 264 and 132kD, 

corresponding the sizes of tetrameric and dimeric Myc-BCRPFL-TM5 or 

Myc-BCRPFL-TM6. The non-crosslinked monomeric Myc-BCRPFL-TM5 or 

Myc-BCRPFL-TM6 has an apparent molecular weight of ~64 kD on SDS-PAGE. 

These results clearly suggest that either TM5 or TM6 is partially responsible for 

the oligomerization of BCRP.  
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Figure 8: Chemical cross-linking analyses of BCRP domain-swapping 
constructs.10 µg of plasma membranes isolated from the stably transfected 
HEK293 cells with Myc-BCRPFLWT, domain-swapping Myc-BCRPFL-ECL3, 
Myc-BCRPFL-ECL3-3CL, Myc-BCRPFL-ECL3-3CL-AYFA, Myc-BCRPFL-TM5 or 
Myc-BCRPFL-TM6, and truncated Myc-BCRPTM14 treated with or without 2mM DSS 
were separated by SDS-PAGE followed by Western Blot analysis. The sizes of all 
the constructs were estimated based on linear regression of the protein markers 
used.  
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H. ECL3 is insufficient for BCRP transport activity or drug resistance 

mediated by BCRP 

As shown above, Myc-BCRPFL-ECL3 plays a partial role in the 

oligomerization of BCRP. Next, I proceeded to investigate the functional 

significance of ECL3. For this purpose, I tested and compared the drug resistance 

cytotoxicity of HEK293 cells stably expressing vector control, Myc-BCRPFLWT, 

Myc-BCRPFL-ECL3 and Myc-BCRPFL-TM5TM6 to either mitoxantrone or Adriamycin. 

As shown in Figure 9-10, the cells expressing Myc-BCRPFLWT alone are resistant 

to both mitoxantrone (Figure 9A) and Adriamycin (Figure 10A) compared with 

cells transfected with vector alone. However, compared with Myc-BCRPFLWT 

stable cells, Myc-BCRPFL-ECL3 stable cells have significantly reduced mitoxantrone 

(Figure 9B) and Adriamycin (Figure 10B) resistance with a decrease in RRF 

(relative resistance factor) by 50% after normalization to the average plasma 

membrane expressions. On the other hand, Myc-BCRPFL-TM5TM6 stable cells, 

without ECL3, have shown similar mitoxantrone (Figure 9B) and Adriamycin 

(Figure 10B) resistance as the wildtype BCRP after normalization to the 

expression levels of these constructs on the plasma membranes, indicating TM5 

and TM6 are responsible for BCRP functions. Figure 11 shows the plasma 

membrane expression level of the above BCRP constructs as determined by 

Western Blot analyses with anti-Myc antibodies.  

To further confirm the results from drug resistance cytotoxicity assays, 

drug accumulation activity of HEK293 cells stably expressing vector control, 

Myc-BCRPFLWT, Myc-BCRPFL-ECL3 and Myc-BCRPFL-TM5TM6 were tested. Figure 12 
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(A) shows typical profiles of mitoxantrone accumulation in these cells as 

determined by FACS. The relative accumulation of mitoxantrone reduced 

markedly in both Myc-BCRPFLWT and Myc-BCRPFL-TM5TM6 stable cells, while 

Myc-BCRPFL-ECL3 expressing cells showed similar drug accumulation as vector 

expressing cells (Figure 12B), suggesting that ECL3 alone is insufficient to retain 

the drug efflux activity of BCRP and drug resistance mediated by BCRP. 

Furthermore, disrupting the oligomerization activity mediated by ECL3 alone 

(shown by results of Myc-BCRPFL-TM5TM6) do not affect BCRP activity, indicating 

the inter-domain interactions between ECL3s, which is partially responsible for 

the formation of BCRP oligomers, is not necessary for BCRP transport activities 

or drug resistance mediated by BCRP.  
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Figure 9: Effect of ECL3 on mitoxantrone resistance. Vector-transfected, 
Myc-BCRPFLWT, Myc-BCRPFL-ECL3 and Myc-BCRPFL-TM5TM6 stable cells were 
treated with various concentrations of mitoxantrone followed by analysis using 
MTT assy. Dose-survival curves (A) were fitted using Prism software (version 
3.02). Relative resistance factor (RRF) (B) was derived by normalizing the IC50 of 
Myc-BCRPFLWT, Myc-BCRPFL-ECL3 or Myc-BCRPFL-TM5TM6 to the IC50 of the 
vector transfected stable cells and further to the average plasma membrane 
expression of the above constructs. # p<0.01. 
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Figure 10: Effect of ECL3 on Adriamycin resistance. Vector-transfected, 
Myc-BCRPFLWT, Myc-BCRPFL-ECL3 and Myc-BCRPFL-TM5TM6 stable cells were 
treated with various concentrations of Adriamycin followed by analysis using MTT 
assy. Dose-survival curves (A) were fitted using Prism software (version 3.02). 
Relative resistance factor (RRF) (B) was derived by normalizing the IC50 of 
Myc-BCRPFLWT, Myc-BCRPFL-ECL3 or Myc-BCRPFL-TM5TM6 to the IC50 of the 
vector transfected stable cells and further to the average plasma membrane 
expression of the above constructs. # p<0.01. 
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Figure 11: Expression levels of BCRP constructs in the plasma membrane 
vesicles extracted from HEK293 stable cell clones. (A) 5µg plasma 
membrane extracted from HEK293 cells stably expression Myc-BCRPFLWT (1), 
Myc-BCRPFL-TM5 (2), Myc-BCRPFL-TM6 (3), Myc-BCRPFL-ECL3 (4), 
Myc-BCRPFL-TM5TM6 (5), Myc-BCRPFL-TM5ECL3 (6), and Myc-BCRPFL-ECL3TM6 (7) were 
probed with anti-Myc and anti-E-cadherin antibodies as internal control to 
determine the expression of these constructs on the plasma membranes. (B) The 
relative protein expression level was normalized to BCRPFLWT.  
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Figure 12: Effect of ECL3 on mitoxantrone accumulation acitvity. (A) 
Vector-transfected, Myc-BCRPFLWT, Myc-BCRPFL-ECL3 and Myc-BCRPFL-TM5TM6 

stable cells were subject to FACS analysis of mitoxantrone efflux for transport 
activity of BCRP. (B) Relative motixantrone accumulations were normalized to 
vector expressing cells. # p<0.01. 
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I. TM5 is a major contributor for the drug transport and drug resistance 

mediated by BCRP 

Next, we investigated the contribution of TM5 to drug resistance mediated 

by BCRP. MTT assays with either mitoxantrone or Adriamycin were performed 

with Myc-BCRPFL-TM5, Myc-BCRPFL-ECL3TM6 (TM5 replaced by TM1) (Figure 13A) 

stable cells. As shown in Figure 13-14, compared with Myc-BCRPFLWT stable cells, 

Myc-BCRPFL-TM5 stable cells have a trend of increased mitoxantrone (Figure 13B) 

and Adriamycin (Figure 14B) resistance. In contrast, Myc-BCRPFL-ECL3TM6 stable 

cells, which abolished the activity conferred by TM5, showed a significantly 

decreased mitoxantrone (Figure 13B) and Adriamycin (Figure 14B) resistance 

with a reduction in RRF (relative resistance factor) by more than 50%, indicating 

that TM5 alone is sufficient and necessary for BCRP functions.  

Drug accumulation assays with FACS were also performed in HEK293 

cells stably expressing vector control, Myc-BCRPFLWT, Myc-BCRPFL-TM5, and 

Myc-BCRPFL-ECL3TM6 cells to confirm the above findings. Figure 15A shows typical 

profiles of mitoxantrone accumulation in these cells as determined by FACS. The 

relative accumulation of mitoxantrone is reduced significantly in both 

Myc-BCRPFLWT and Myc-BCRPFL-TM5 stable cells, while Myc-BCRPFL-ECL3TM6 

expressing cells showed similar drug accumulation as vector expressing cells 

(Figure 15B). These results strongly suggest that TM5 is a major contributor for 

BCRP functions.   
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Figure 13: Effect of TM5 on mitoxantrone resistance. Vector-transfected, 
Myc-BCRPFLWT, Myc-BCRPFL-TM5 and Myc-BCRPFL-ECL3TM6 stable cells (A) were 
treated with various concentrations of mitoxantrone followed by analysis using 
MTT assy. Dose-survival curves (C) were fitted using Prism software (version 
3.02). Relative resistance factor (RRF) (A) was derived by normalizing the IC50 of 
Myc-BCRPFLWT, Myc-BCRPFL-TM5 or Myc-BCRPFL-ECL3TM6 to the IC50 of the 
vector transfected stable cells and further to the average plasma membrane 
expression of the above constructs. # p<0.01. 
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Figure 14: Effect of TM5 on Adriamycin resistance. Vector-transfected, 
Myc-BCRPFLWT, Myc-BCRPFL-TM5 and Myc-BCRPFL-ECL3TM6 stable cells were 
treated with various concentrations of Adriamycin followed by analysis using MTT 
assy. Dose-survival curves (A) were fitted using Prism software (version 3.02). 
Relative resistance factor (RRF) (B) was derived by normalizing the IC50 of 
Myc-BCRPFLWT, Myc-BCRPFL-TM5 or Myc-BCRPFL-ECL3TM6 to the IC50 of the 
vector transfected stable cells and further to the average plasma membrane 
expression of the above constructs. # p<0.01. 
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Figure 15: Effect of TM5 on mitoxantrone accumulation acitvity. (A) 
Myc-BCRPFLWT, Myc-BCRPFL-TM5, Myc-BCRPFL-ECL3TM6 stable cells were subject 
to FACS analysis of mitoxantrone efflux for transport activity of BCRP. (B) 
Relative mitoxantrone accumulations were normalized to vector expressing cells. 
# p<0.01. 
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J. TM6 is insufficient for the drug transport and drug resistance 

mediated by BCRP 

It has been demonstrated that TM6 plays a partial role in the 

oligomerization of BCRP. Here, the effects of TM6 on BCRP functions were 

investigated. Figure 15 and 16 show that Myc-BCRPFL-TM6 stable cells have 

significantly decreased mitoxantrone (Figure 16B) and Adriamycin (Figure 17B) 

resistance with RRF reduced by over 50% compared to Myc-BCRPFLWT stable 

cells (Figure 16C and 17C). On the other hand, Myc-BCRPFL-TM5ECL3 (TM6 

replaced by TM2) (Figure 16A) stable cells, which abolishes the contribution of 

TM6, shows a slightly increased or similar resistance to mitoxantrone (Figure 16B) 

and Adriamycin (Figure 17B), suggesting that TM6 alone is insufficient for the 

functions of BCRP.  

Drug accumulation activity of HEK293 cells stably expressing vector 

control, Myc-BCRPFLWT, Myc-BCRPFL-TM6 and Myc-BCRPFL-TM5ECL3 were also 

tested. Figure 18A shows typical profiles of mitoxantrone accumulation in these 

cells as determined by FACS. The relative accumulation of mitoxantrone was not 

reduced in either Myc-BCRPFL-TM6 stable cells compared to vector-transfected 

cells (Figure 18B), further confirming that TM6 alone is not sufficient for BCRP 

functions. Interestingly, Myc-BCRPFL-TM5ECL3 stable cells also showed similar 

mitoxantrone accumulation as vector-transfected cells.  
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Figure 16: Effect of TM6 on mitoxantrone resistance. Vector-transfected, 
Myc-BCRPFLWT, Myc-BCRPFL-TM6 and Myc-BCRPFL-TM5ECL3 (A) stable cells were 
treated with various concentrations of mitoxantrone followed by analysis using 
MTT assy. Dose-survival curves (B) were fitted using Prism software (version 
3.02). Relative resistance factor (RRF) (C) was derived by normalizing the IC50 of 
Myc-BCRPFLWT, Myc-BCRPFL-TM6 or Myc-BCRPFL-TM5ECL3 to the IC50 of the 
vector transfected stable cells and further to the average plasma membrane 
expression of the above constructs. # p<0.01. 
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Figure 17: Effect of TM6 on Adriamycin resistance. Vector-transfected, 
Myc-BCRPFLWT, Myc-BCRPFL-TM6 and Myc-BCRPFL-TM5ECL3 stable cells were 
treated with various concentrations of Adriamycin followed by analysis using MTT 
assy. Dose-survival curves (A) were fitted using Prism software (version 3.02). 
Relative resistance factor (RRF) (B) was derived by normalizing the IC50 of 
Myc-BCRPFLWT, Myc-BCRPFL-TM6 or Myc-BCRPFL-TM5ECL3 to the IC50 of the 
vector transfected stable cells and further to the average plasma membrane 
expression of the above constructs. # p<0.01. 
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Figure 18: Effect of TM6 on mitoxantrone accumulation acitvity. (A) 
Myc-BCRPFLWT, Myc-BCRPFL-TM6, Myc-BCRPFL-TM5ECL3 stable cells were subject 
to FACS analysis of mitoxantrone efflux for transport activity of BCRP. (B) 
Relative motixantrone accumulations were normalized to vector expressing cells. 
# p<0.01. 
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IV. Discussion 

Human BCRP is considered as a half transporter and exists on the plasma 

membrane as a homo-oligomer. Although there is no consistent conclusion 

concerning the composition of oligomeric BCRP complex, the region that is solely 

responsible for the oligomerization of BCRP has been mapped to C-terminal 

TM5-ECL3-TM6. In addition, introduction of the peptide containing 

TM5-ECL3-TM6 resulted in a marked inhibition of the drug transport activities and 

drug resistance phenotype of BCRP, indicating that the oligomerization of BCRP 

might be functionally significant. Therefore, it is worthwhile to further characterize 

the subdomains that are responsible for BCRP oligomerization and explore 

possible mechanisms.  

In the present studies, we dissected TM5-ECL3-TM6 into three distinct 

domains, including ECL3, TM5 and TM6, to investigate the contribution of each 

domain to the oligomerization and functions of BCRP. We engineered several 

domain-swapping constructs (Figure 5A, 6A, 7A) by substituting ECL3, TM5 or 

TM6 with ECL1, TM1 or TM2, respectively. We chose this domain-swapping 

design because the truncated construct Myc-BCRPTM12 has neither the ability to 

interact with full-length BCRP nor the oligomerization activity by itself in living cells 

(Xu et al., 2007), indicating that TM1 or TM2 is not important for the 

oligomerization activity of BCRP; therefore, replacing TM5/ECL3/TM6 with 

TM1/ECL1/TM2 is less possible to promote artificial domain interactions or to 

complicate the formation of BCRP oligomers. In addition, we also compared the 

estimated hydrophobicity of each TM domain (Table 5) to investigate the 



 86 

involvement of hydrophobic interactions in the oligomerization of BCRP. We have 

demonstrated that Myc-BCRPFL-TM5TM6 (Figure 6) interacts with full-length BCRP 

at a similar level to wild-type BCRP, while Myc-BCRPFL-TM6 (Figure 7) showed a 

decreased ability to interact with full-length BCRP. Since substitution of TM5 by 

TM1 does not change the hydrophobicity between Myc-BCRPFL-TM5TM6 and 

Myc-BCRPFL-TM6, other protein-protein interactions possibly account for the 

oligomerization activity mediated by TM5. Moreover, we have also shown that 

Myc-BCRPFL-TM5 (Figure 7) has a markedly decreased ability to interact with 

full-length BCRP compared to Myc-BCRPFL-TM5TM6 and replacement of TM6 by 

TM2 greatly reduced the hydrophobicity of Myc-BCRPFL-TM5 (Table 5). This 

observation may indicate that one of the major factors of TM6 contributing to 

BCRP oligomerization is due to its hydrophobicity.  
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Table 5: The GRAVY score of TM domains of BCRP for engineering 
domain-swapping full-length BCRP constructs. 

TM domain No. of aa Amino acids sequence GRAVY score 

TM1 21 IAQIIVTVVLGLVIGAIYFGL 2.400 

TM5 21 VATLLMTICFVFMMIFSGLLV 2.505 

TM2 20 LFFLTTNQCFSSVSAVELFV 1.260 

TM6 21 VALACMIVIFLTIAYLKLLFL 2.581 

Grand average of hydropathicity (GRAVY: indicates the solubility of the proteins: 

positive GRAVY (hydrophobic), negative GRAVY (hydrophilic) (Kyte and Doolittle, 

1982) (http://www.expasy.ch/tools/protparam.html). 
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ECL3 appears to be an essential domain for BCRP oligomerization (Figure 

4B and Figure 5B). However, neither the three cysteines nor the 569QYFS motif 

are necessary for the interaction between Myc-BCRPFL-ECL3 and full-length BCRP 

(Figure 5B) or the oligomerization activity of ECL3 by itself in living cells (Figure 

8B). Among the three cysteines predicted on the extracellular face of BCRP, 

Cys603 might be involved in the formation of an intermolecular disulfide bond, 

while Cy592 and Cy608 are responsible for the formation of an intramolecular 

disulfide bond within ECL3 of BCRP (Wakabayashi et al., 2006). In order to 

investigate the functional relevance of cysteines in BCRP, Liu et al. created a 

series of cysless mutants and expressed them in Sf9 insect cells (Liu et al., 2008). 

The results demonstrated that Cys592, Cys603 and Cys608 in ECL3 are not 

important for either expression or function of BCRP expressed in insect cells. 

Additionally, a recent study using fluorescence resonance energy transfer (FRET) 

analysis has also demonstrated that Cys603Ala mutant of BCRP does not affect 

the dimer/oligomer formation of BCRP in vivo (Ni et al., 2010). Therefore, our 

results are consistent with the above observation that Cys592, Cys603 and 

Cys608 are not essential for BCRP oligomerization. 

The short polar motif QXXS was first identified in the bacterial Tar-1 

homodimer TM domain and has been found sufficient to induce stable TM-TM 

interactions (Sal-Man et al., 2004). The two polar residues (Q and S) are crucial 

for the dimerization of the Tar-1 TM domain in vivo by creating symmetric 

hydrogen bonds that promote and/or stabilize the dimeric state of Tar-1. 

Replacement of these two polar residues by nonpolar residues markedly impaired 
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the self-association ability of the TM domain. The QXXS motif is commonly 

present in a bacterial TM database, suggesting a general role for this motif in TM 

assembly (Sal-Man et al., 2005). In our studies, we replaced these two polar 

residues with the nonpolar residue alanine to disrupt the potential inter-helical 

hydrogen bond formation. However, results from both the co-immunoprecipitation 

and the chemical cross-linking studies suggest that the 569QXXS motif is not 

essential for the formation of BCRP oligomer. This result could possibly be 

explained by the fact that the putative 569QXXS motif is located in the extracellular 

loop of BCRP, instead of transmembrane domains, therefore losing the ability to 

promote hydrogen bond formation and dimer formation. In conclusion, ECL3 is an 

essential element in BCRP oligomerization, and the detailed mechanisms of 

interactions need to be further explored.  

Chemical cross-linking, a biochemical approach used in our studies,  

takes advantage of specific features of various cross-linkers and provides 

covalent binding among adjacent subunits in a protein complex in living cells, 

which allows the detection of the cross-linked complex on SDS-PAGE for size 

estimation (Das and Fox, 1979). The results of chemical cross-linking are largely 

dependent on the distance between active groups and concentrations of the 

cross-linker as well as the availability of adjacent reactive groups in the 

neighboring protein subunits of a complex. DSS, a noncleavable and membrane 

permeable crosslinker that reacts with primary amines, has a spacer arm length of 

11.4Å, which is within the intermolecular distance of BCRP obtained from purified 

protein studies (McDevitt et al., 2006, Dezi et al., 2010) and therefore is able to 
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detect possible interactions between the transmembrane domains and the 

extracellular loop of BCRP. Indeed, Myc-BCRPFLWT showed four major bands 

corresponding to tetramer, trimer, dimer and monomer, with less than 50% of 

BCRP monomers cross-linked (Xu et al., 2004). In contrast, most of the 

domain-swapping mutants in our studies displayed higher cross-linking efficiency, 

suggesting that domain-swapping might affect the conformation of the resulting 

proteins, therefore possibly increasing the proximity of the interacting subdomains 

and increasing cross-linking of higher forms. Nevertheless, oligomers higher than 

tetramer could not be detected for both wild-type and mutant BCRP, consistent 

with our previous findings (Xu et al., 2004). 

Two anticancer agents used in our functional studies are mitoxantrone and 

Adriamycin. Mitoxantrone is a type II topoisomerase inhibitor, which disrupts DNA 

synthesis and DNA repair by intercalating into DNA. Selection with mitoxantrone 

usually results in overexpression of BCRP, and resistance to mitoxantrone is the 

most distinctive feature of the phenotype conferred by BCRP. On the other hand, 

Adriamycin, also called doxorubicin, is an anthracycline antibiotic, and its 

cytotoxicity is mainly mediated by inhibiting topoisomerase II, intercalating DNA 

and inducing reactive oxygen species production. All our BCRP constructs harbor 

482T mutations, therefore maintaining the ability to transport both mitoxantrone 

and Adriamycin effectively. So far, the exact binding sites of mitoxantrone or 

Adriamycin on BCRP are not clear, which creats some uncertainty in explaining 

the altered transport activity and resistance phenotype of BCRP 

domain-swapping constructs. However, early studies have suggested that the 
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interactions of substrate with BCRP involve multiple binding sites in the protein 

(Giri et al., 2009). Moreover, at least one amino acid, H630 (Miwa et al., 2003), 

which is predicted to be close to or in TM6, has been shown to be associated with 

mitoxantrone and Adriamycin recognition. Nevertheless, a recent study using 

purified ECL3 peptide has demonstrated that ECL3 constitutes a 

porphyrin-binding domain interacting with heme, but it does not bind to 

mitoxantrone or doxorubicin (Desuzinges-Mandon et al., 2010). Therefore, the 

loss of transport function of Myc-BCRPFL-TM6 is possibly not attributed to loss of 

substrate binding, and the observation that Myc-BCRPFL-ECL3 does not retain 

BCRP transport activity might be partially related to loss of substrate binding, 

given that TM6 might be crucial for recognition of mitoxantrone or Adriamycin. 

TM5, but not TM6 or ECL3, has been shown in our studies to be a major 

contributor to transport activity and resistance mediated by BCRP. This is 

consistent with previous reports that TM5 contains several amino acids that are 

essential for the membrane trafficking and transport activity of BCRP. Kage et al. 

have found that a leucine to proline mutation at residue 554 in the putative TM5 of 

BCRP could partially reverse the resistance of wild-type BCRP to SN-38 and 

mitoxantrone, indicating L554 might be important for transport activity (Kage et al., 

2002). Moreover, N557 might play an important role in the proper routing of BCRP 

(Mohrmann et al., 2005). One conserved residue G553 in TM5, the corresponding 

residue of which is involved in the dimerization of the Drosophila white protein 

(Mackenzie et al., 1999), has been examined as well. G553 does not seem to 

contribute to the formation of BCRP dimer/oligomer; instead, G553L mutant 
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reduced protein expression and abolished N-glysosylation and the membrane 

trafficking of BCRP (Polgar et al., 2006). In addition, a steroid binding element has 

recently been found in TM5 (Velamakanni et al., 2008), further verifying the 

signifance of TM5 in substrate binding of BCRP. These data suggest that TM5 

harbors several amino acids or elements that are important for the substrate 

binding, membrane trafficking and transport activity of BCRP, which is consistent 

with our findings that TM5 is a major contributor to BCRP functions. 

Based on the quantification analyses of our co-immunoprecipitation results, 

it has been shown that the oligomerization activity of BCRP is mediated by ECL3, 

TM5 and TM6, while each domain contributes partially to form the oligomeric 

BCRP complex. Nevertheless, both drug resistance assays and the drug 

accumulation assay have shown that Myc-BCRPFL-TM5 retains BCRP functions, 

while Myc-BCRPFL-ECL3TM6, a construct without TM5, totally lost BCRP activities. 

Furthermore, I also showed that both Myc-BCRPFL-ECL3 and Myc-BCRPFL-TM6 lost 

BCRP functions, while their counterparts Myc-BCRPFL-TM5TM6 or 

Myc-BCRPFL-TM5ECL3, which have been assisted by the existence of TM5, 

recovered both drug efflux of and drug resistance mediated by BCRP. These 

results suggest that the oligomerization activity of BCRP, at least the part 

mediated by ECL3 or TM6, is not directly correlated with the functions of BCRP. 

The existence of BCRP oligomers might provide another level of regulation 

for this drug resistance transporter (Mo and Zhang, 2009). One possibility is that 

different oligomeric states may be coupled with the catalytic cycle and promote 

transporter activity. In the nucleotide-free state, BCRP may exist as low 
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oligomerization state such as monomer. ATP/substrate binding would trigger 

conformational changes that bring the adjacent transporters closer and induce the 

formation of higher order oligomers. This oligomer formation would create a 

complex with a larger central pore, allowing a higher degree of substrate 

transport. Following completion of the transport process with ATP hydrolysis, the 

conformation of the ABC transporter restores, and oligomers dissociate. Another 

possibility is that the formation of dimers or higher order oligomers may simply 

play a regulatory role either as a functional unit or reservoir of non-functional 

molecules waiting to be activated for function. The finding that monomeric and 

dimeric ABCB1 tend to have a higher degree of phosphorylation compared to 

higher order oligomeric ABCB1 (Poruchynsky and Ling, 1994) suggests that 

post-translational modifications may regulate this activation/inactivation process. 

Given that co-expression of protein kinase C could promote substrate binding and 

ATPase activity of ABCB1 (Ahmad et al., 1994), phosphorylation may activate 

dissociation of the oligomeric ABCB1. In contrast, disruption of phosphorylation of 

BCRP resulted in impaired plasma membrane trafficking and reduced 

oligomerization, indicating that the oligomerization of BCRP probably happens on 

the plasma membrane; therefore, reduction in the amount of protein trafficked to 

the membrane leads to less formation of BCRP oligomers.  

As the number of documented oligomerization of ABC transporters rapidly 

grows (see (Mo and Zhang, 2009) for comprehensive review), it is important to 

understand the functional significance of these complexes. Studies of G-protein 

coupled receptor oligomerization have brought advances in technology to clarify 
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the composition, plasma membrane targeting, and function of oligomeric protein 

complexes (Gurevich and Gurevich, 2008). For example, FRET experiments 

could be used to track protein-protein interactions in time and space, while 

Bioluminescence resonance energy transfer (BRET) assays could be used to 

measure the relative affinities of protein-protein interactions. Moreover, a variety 

of computational studies based on sequence analysis and docking experiments 

have been performed towards the understanding of membrane protein 

complexes’ structures (Simpson et al.). Indeed, Ni et al. have applied FRET assay 

to wild-type BCRP and directly demonstrated that BCRP could form 

dimer/oligomer in cellular levels (Ni et al., 2010). This result provides a basis for 

further applying new technologies to investigate the oligomerization and function 

of BCRP and related ABC transporters.  

In conclusion, we have demonstrated in our studies that ECL3, TM5 and 

TM6 all play a partial role in BCRP oligomerization, while only TM5 is a key 

element for BCRP function. These findings suggest that oligomerization of BCRP 

might not be directly required for transport or resistance phenotype mediated by 

BCRP. Instead, BCRP might work as a monomer, while the existence of BCRP 

oligomers on the plasma membrane is a form of regulation, as discussed above. 

Still, the physiological and pharmacological significance of BCRP oligomers 

remains to be fully elucidated. 
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V. Summary and conclusion 

The experimental results of this dissertation can be summarized as follows: 

1. ECL3, TM5 and TM6 all play a partial role in BCRP oligomerization, 

and each domain might contain at least one interacting site responsible for the 

formation of oligomeric BCRP.  

2. The oligomerization activity of BCRP is partially mediated by ECL3. 

Nevertheless, disruption of this oligomerizaition mediated by ECL3 does not 

significantly affect the drug transport activity of or drug resistance conferred by 

BCRP. 

3. TM5 plays a less important role in the formation of BCRP oligomers. 

However, TM5 is a major contributor of the drug transport activity of or drug 

resistance conferred by BCRP. 

4. TM6 also contributes in part to BCRP oligomerization. Meanwhile, 

this domain is also not essential for BCRP functions. 

5. The findings of the relationship between BCRP oligomerization and 

function have enriched our understanding of the structure-function relationship of 

BCRP and will help to set the basis for the development of a better 

chemosensitizing regimen targeting BCRP-mediated MDR in cancer 

chemotherapies in the future.  
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VI. Future plans 

Based on the present work, we conclude that ECL3, TM5 and TM6 all play 

a partial role in BCRP oligomerization, while only TM5 is a key element for the 

drug transport of and drug resistance mediated by BCRP. Future directions that 

may extend the current work are: 

1. To further determine via alanine scanning assays which amino acids 

in ECL3, TM5 and TM6 are crucial for the oligomerization of BCRP. 

2. To verify via FRET analysis whether the domain-swapping 

constructs of BCRP do form oligomers in intact cells. 

3. To characterize via FRET experiments the oligomer formation of 

BCRP and its domain-swapping constructs at tissue level. 

4. To identify the cellular compartment(s) where BCRP assembles into 

higher order oligomers. 

5. To further identify the contribution of TM5 to the drug binding and 

ATPase activity of BCRP. 
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