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ABSTRACT 

Linhai Li 

 

A TRANSFERABLE BIO-OPTICAL MODEL FOR QUANTIFICATION OF INLAND 

WATER CAYNOBACTERIAL PIGMENT 

 

Cyanobacterial blooms are currently one of the most important issues faced by 

environmental agencies, water authorities and public health organizations. Remote 

sensing provides an advanced approach to monitor cyanobacteria by detecting and 

quantifying chlorophyll-a (Chl-a) and phycocaynin (PC). In this thesis, an analytical bio-

optical model, more typically applied to ocean waters, was modified to accommodate the 

complexity of inland waters. The newly developed models work well to estimate inherent 

optical properties, including absorption and backscattering coefficients, in eight different 

study sites distributed around the globe. Based on derived absorption coefficients, Chl-a 

and PC concentrations were accurately retrieved for data sets collected annually from 

2006 to 2010, and the estimation accuracy exceeded that of currently used algorithms. An 

important advantage of the model is that low concentrations of Chl-a and PC can be 

predicted more accurately, enabling early warning of cyanobacterial blooms. In addition, 

the results also indicated good spatial and temporal transferability of the algorithms, since 

no specific calibration procedures were required for data sets collected in a different sites 

and seasons. The compatibility of the newly developed algorithm with MERIS spectra 

provides the possibility for routine surveillance of cyanobacterial growth in inland waters. 

Lin Li, Ph.D, Chair
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I. GENERAL INTRODUCTION 

Cyanobatecria, the largest and most diverse group of prokaryotes, can multiply very 

quickly in the warm summer, when temperature, light and nutrient runoff from 

agriculture fertilizer or other nutrient sources increase (Mishra et al., 2009). Because of 

their colored pigments, chlorophylls (green) and phycocyanin (blue), cyanobacteria are 

known as blue-green algae. Cyanobacteria usually dominate the phytoplankton in lakes, 

estuaries, and reservoirs, due to several key adaptations that include buoyancy regulation, 

elementary nitrogen fixing capability, and efficient use of yellow-orange light for 

photosynthesis (Jupp et al., 1994; Paerl & Huisman, 2009; Reynolds & Walsby, 1975), 

which make cyanobateria be main species present in eutrophic inland waters. In the 

eutrophic waters dominated by cyanobacteria, recreational activities and aquatic habitats 

are frequently impacted due to the development of thick surface scums, the development 

of taste and odor compounds, such as geosmin and 2-methylisoborneol, and human and 

animals’ health may be threatened by the cyanotoxins (Codd et al., 1999; Kuster et al., 

2006; Mishra et al., 2009; Randolph et al., 2008). Therefore, cyanobacterial blooms are 

one of the most important issues faced by environmental agencies, water authorities and 

public health organizations (Backer, 2002).  

Traditional methods for monitoring water quality consist of field sample collection, 

laboratory analysis, and identification of phytoplankton, and thus are time consuming, 

labor intensive and expensive. Collecting water samples that are representative of the 

phytoplankton community in the water column is not easy to achieve because some 

cyanobacteria regulate their buoyancy to form either dense accumulations just below the 

water surface or surface scum (Sellner, 1997) and a floating ship could disturb the natural 
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spatial distribution of a bloom (Kutser, 2004) unless a special sampling method is used 

(Metsamaa et al., 2006). In addition, predicting the location and timing of algal blooms 

using traditional field sampling methods is extremely difficult because algal blooms may 

be ephemeral, persisting for only a few days. 

Remote sensing provides an alternative means of monitoring cyanobateria blooms in 

ocean water and inland waters with space-borne satellite imagery, air-borne imagery and 

field spectrometric data. Metsamaa et al. (2006) stated that remote sensing is potentially 

the only way to map the spatial distribution and estimate the amount of cyanobacteria 

during bloom conditions when the biomass is concentrated just below the water surface, 

though remote sensing sensors can’t penetrate the extremely thick accumulation layer of 

cyanobacterial (Kutser, 2004). Moreover, remote sensing can be used to generate water 

quality maps of cyanobateria blooms that enable drinking water managers to quickly 

assess water quality and allow for improved management decisions. 

The first task of monitoring cyanobacterial blooms with remote sensing is to detect 

and quantify chlorophyll-a (Chl-a) and phycocyanin (PC) based on their optical 

properties. Chl-a, a photosynthetic pigment present in all autotrophic species is a general 

indicator for phytoplankton biomass. Chl-a has an absorption maximum at around 440 

nm and 670 nm, from which Chl-a concentrations could be estimated (e.g. Dekker, 1993; 

Gitelson et al., 2007; Gons, 1999; Simis et al., 2005). PC is the accessory pigment that 

provides a reliable signature of cyanobacteria in inland waters. PC plays a significant role 

in cyanobacterial light adaptation, which gives cyanobacteria a competitive advantages so 

that they can dominate algal species (Jupp et al., 1994). PC has an absorption peak 
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around 620 nm, from which PC concentration in cyanobacteria could be estimated 

(Dekker et al., 1993; Randolph et al., 2008; Simis et al., 2005; Schalles & Yacobi, 2000). 

Morel and Gordon (1980) summarized three types of approaches to retrieving water 

quality parameters, including Chl-a and PC concentrations, from remote sensing data. 

The first two are empirical and semi-empirical approaches that are based on statistical 

relationships between apparent optical properties (AOPs), e.g. the works listed above for 

Chl-a and PC retrieval. Both empirical and semi-empirical models describe relationships 

of single bands, band combinations or band ratios to water quality parameters. These 

types of models require water quality data with concurrent remote sensing data for 

calibration, and use linear, exponential or polynomial relationships. In spite of resulting 

in high coefficients of determination (R2), these models are site- and data- specific and 

have difficulties being transferred spatially and temporally. The bio-optical model, a third 

approach, is believed to have better spatial, temporal and instrumental transferability than 

empirical and semi-empirical methods because a bio-optical model is often based on the 

relationship of inherent optical properties (IOPs) and AOPs. 

The transferability of the bio-optical model depends on the variability of IOPs 

because IOPs have significant influences on the reflectance spectra (Mishra et al., 2009; 

Mao et al., 2010). Both the specific absorption and backscattering coefficients of 

individual water quality constituents could vary with a change of their physical state and 

environmental conditions. To be more specific, for phytoplankton specific absorption 

coefficients, )(* λpha , different cell sizes result in different package effects (Babin et al., 

2003; Sathyendranath et al., 1987), which could explain the magnitude difference of 

)(* λpha  among various phytoplankton species. Similar observations have been made by 
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Babin and Stramski (2004), Ruiz-Verdu et al. (2008a) and Mao et al. (2010). Differences 

in the pigments contained in different species could explain variations of spectra shape of 

)(* λpha  (Ruiz-Verdu et al., 2008a; Subramaniam et al., 1999b; Zhang et al., 2010). Even 

from oligotrophic water to eutrophic water, )(* λpha  also varies because of different Chl-a 

concentrations (Babin et al., 2003). Meanwhile, the absorption of tripton (TR), )(λtra , 

and colored dissolved organic matter (CDOM), )(λcdoma , could be expressed as an 

exponential function with 440 nm as a reference wavelength, i.e., 

)]440(exp[)440()( −λ×−=λ xxx Saa  (x stands for TR or CDOM, xS  is the slope). The 

slope xS  reflects the variations of )(λtra  and )(λcdoma . In fact, )(λtra  shows variations 

among different types and sizes (Babin & Stramski, 2004; Bricaud et al., 1998; Prieur & 

Sathyendranath, 1981). Babin et al. (2003) also suggested that the relative proportion of 

organic and inorganic matter in TR might be the reason causing the variations of . 

 exhibits variations in response to different salinity concentration (Gallegos et al., 

2005; Keith et al., 2002), and phytoplankton species from which CDOM is derived (Keith 

et al., 2002). In addition,  for fulvic acid is about two times that of humic acid 

(Carder et al., 1989).  

IOPs of water constituents vary both spatially and temporally, because 

phytoplankton, TR and CDOM compositions are not expected to be similar across 

different lakes, reservoirs or estuaries during different seasons. It is the IOPs variations 

that result in the optical complexity of inland waters. The objectives of this thesis include: 

1) Modifying an analytical bio-optical model to accommodate the complexity of 

inland waters and improving the IOPs estimation accuracy; 
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2) Developing a new partitioning approach to separate PC and Chl-a related 

absorption coefficients; 

3) Investigating the feasibility of applying laboratory based quantification methods 

on bio-optical model derived pigments’ absorption coefficients; 

4) Studying the performance of a bio-optical model on detecting cyanobacterial 

blooms in different sites and seasons. 
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II. A GLOBALLY TRANSFERABLE MODEL FOR INLAND WATERS (I): 

DERIVING INHERENT OPTICAL PROPERTIES AND QUANTIFYING 

CHLOROPHYLL-A ∗ 

ABSTRACT 

In-water inherent optical properties (IOPs) are the most significant factors affecting 

the light propagation within water column. Obtaining IOPs, including absorption and 

backscattering coefficients, facilitates the estimation of aquatic biomass, primary 

production, heat flux, and carbon pools. In addition, chlorophyll-a (Chl-a) concentration 

is also recommended to be determined from IOPs in inland waters, because empirical and 

some semi-empirical algorithms that directly start from remote sensing reflectance are 

usually limited to sites where they were derived. Therefore, establishing models that 

predict IOPs and Chl-a from retrieved IOPs is of significance for understanding the bio-

optical properties and occurrence of algal blooms in eutrophic reservoirs, lakes and 

estuaries makes, respectively. In this paper, a globally transferable model (GTM) is 

proposed to derive IOPs from remote sensing reflectance and to estimate Chl-a from the 

retrieved absorption coefficients. GTM accurately retrieves absorption coefficients at 443 

nm and 675 nm with R2=0.8347 and R2=0.7541 respectively, although underestimates 

absorption coefficients at 560 nm with R2=0.6911. Based on GTM-derived absorption 

coefficients, the predicted Chl-a fits well with laboratory measured Chl-a in eight 

different study sites and in different seasons, and the overall R2 equals to 0.9292 and 

mean relative error (MRE) is 21.35%. Thereafter, the models were tested on simulated 

Medium Resolution Imaging Spectrometer (MERIS) spectra, and both absorption 

                                                            
∗ The manuscript was submitted to Remote Sensing of Environments for review. 
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coefficients and Chl-a concentration were retrieved. Particularly, Chl-a was accurately 

estimated with R2=0.9138 and MRE=22.78%, which enables possible routine 

surveillance of Chl-a in inland waters using MERIS satellite imagery. 

Keywords: globally transferable model, chlorophyll-a, inherent optical properties, MERIS 

 

1. Introduction 

1.1 Deriving the inherent optical properties (IOPs) 

The underwater light penetration is fundamentally important to aquatic ecosystems 

because the quantity and quality of underwater light drive the photosynthesis of algae 

dwelling in water bodies (Gallegos et al., 2005). In-water inherent optical properties 

(IOPs), including absorption (a(λ), refer to table 2.1 for symbols and abbreviations) and 

backscattering (bb(λ)) coefficients, are the most significant parameters governing the light 

propagation within the water column and thus facilitate the estimation of aquatic biomass, 

primary production, heat flux, and carbon pools (Lee et al., 1996; Le et al., 2009a; Wang 

et al., 2005; and references therein).  

In recent years many efforts have been made to derive the IOPs from the apparent 

optical properties (AOP) including irradiance reflectance and remote sensing reflectance 

(e.g. Lee et al., 1996; Le et al., 2009a; Garver & Siegel, 1997; Hoge & Lyon, 1995 & 

2005; Wang et al., 2005). Empirical algorithms use simple or multiple regressions to 

relate the IOPs to the ratio of the AOPs, and can be implemented rapidly, but their 

application is limited by the variation of optical properties across different water bodies 

(Le et al., 2009a). Semi-empirical and analytical algorithms based on radiative transfer 

equations work for different water bodies and usually perform better than the empirical 
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algorithm. A derivation of IOPs from remote sensing reflectance is commonly based on 

the reflectance model shown in equation 1 (Gordon et al., 1988) that describes the 

relationship between remote sensing reflectance and IOPs. 
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where rrs(λ) is the remote sensing reflectance just beneath water surface, Lu(0-, λ) and 

Ed(0-, λ) are upwelling radiance and downwelling irradiance, respectively, and g1 and g2 

are geometrical factors. Hereafter the wavelength dependence of all model variables will 

be omitted for briefness unless it is necessary. Equation 1 is simplified in many studies 

(e.g., Brando & Dekker, 2003; Giardino et al., 2007; Hoogenboom et al., 1998; Hakvoort 

et al., 2002; Jupp et al., 1994; Kutser, 2004 & 2006; Zhang et al., 2009) by omitting the 

quadratic term and resulting in equations 2 and 3: 
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where f is a factor of light field, Q is the light distribution factor defined as 

)0(/)0( −−= uu LEQ ; R(0-), Eu(0-) and Ed(0-) are subsurface irradiance reflectance, 

upwelling and downwelling irradiance, respectively.  

Build upon equations 2 and 3, several semi-empirical and semi-analytical algorithms 

have been proposed for deriving the IOPs, including the Garver–Siegel–Maritorena 

(GSM) algorithm (Garver & Siegel, 1997; Maritorena et al., 2002; Maritorena & Siegel, 

2005 & 2006), the algorithm (referred to as HL) by Hoge and Lyon (1996, 1999 & 2005) 

and the quasi-analytical algorithm (QAA) by Lee et al. (2002, 2004 & 2009). The 
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difference among them lies in that GSM and HL require pre-defined spectral shapes of 

phytoplankton absorption (aph(λ)) and colored detritus matter (CDM, colored dissolved 

organic matter (CDOM)+non-algal particles (NAP)) absorption (acdm(λ)) while QAA 

does not have such a requirement. 

Table 2.1. Symbols and abbreviations 

Symbol/abbreviation Description Unit 

Lu(0-) Upwelling radiance below water surface W m-2 sr-1

Lx 
Radiance. x could be w: water-leaving radiance; 
sw: total radiance of water surface; sky: Sky 
radiance; p: radiance of standard panel 

W m-2 sr-1

Eu(0-) Upwelling irradiance below water surface W m-2 

Ed 
Downwelling irradiance. 0+: above water surface 
0-: below water surface W m-2 

Rrs(λ) Remote sensing reflectance above water surface sr-1 
rrs(λ) Remote sensing reflectance below water surface sr-1 

f Geometrical light factors - 
Q Light distribution factor sr 

a(λ) Total absorption coefficients of water column m-1 

ax(λ) 

Absorption coefficients of x. x could be w: water; 
ph: in vivo phytoplankton; sol: in vitro 
phytoplankton; t-w: non-water constituents; cdom: 
colored dissolved organic matter; cdm: colored 
detritus matter 

m-1 

bb(λ) Total backscattering coefficients of water column m-1 

bbx(λ) Backscattering coefficients of x. x could be w: 
water; p: suspended particles m-1 

IOPs Inherent optical properties m-1 
Chl-a Chlorophyll-a (concentration) mg m-3 
TSM Total suspended matter (concentration) g m-3 

CDOM Colored dissolved organic matter - 
NAP Non-algal particles (concentration) g m-3 
CDM Colored detritus matter, i.e. CDOM+NAP - 

 
GSM, HL and QAA are originally developed for ocean water and thus may not be 

suitable for optically complex inland waters due to high concentrations of suspended 
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sediment (SS) and CDOM (Gons, 1999 & 2000; Schalles et al., 2001; Schalles, 2006; 

Zhou et al., 2009). Such complexity is primarily manifested in the variation of the factors 

such as g1, g2, f and Q that are used in equations 1, 2 and 3. However, previous studies 

assume g1 and g2 as constants (Garver & Siegel, 1997; Maritorena et al., 2002; 

Maritorena & Siegel, 2005 & 2006; Hoge & Lyon, 1996, 1999 & 2005; Hoge et al., 

1999a & 1999b; Lee et al., 1999, 2002, 2004, 2007 & 2009; Salama et al., 2009; Wang et 

al., 2005), f or 
Q
f  as a constant (Hoogenboom et al., 1998; Hakvoort et al., 2002), or f as 

a function of just light geometry (Brando & Dekker, 2003; Giardino et al., 2007; Jupp et 

al., 1994; Kutser, 2004 & 2006; Zhang et al., 2009). In fact, f, 
Q
f  [g1 is equivalent to 

Q
f  

(Maritorena et al., 2002)] and g2 depend on many ambient factors including bio-optical 

states, sun angles, and wind speed (Gould et al., 2001; Morel & Gentilli, 1993 & 1996; 

Zhang et al., 2009), and as a result may vary sample by sample or across different water 

bodies (Gould et al., 2001). For example, the values assigned to g1 and g2 in QAA (Lee et 

al., 2002, 2004 & 2009) differ from those in GSM (Garver & Siegel, 1997; Maritorena et 

al., 2002; Maritorena & Siegel, 2005 & 2006). Although QAA and GSM perform well for 

many ocean waters using the same set of the algorithm-self-defined g1 and g2, the reason 

for this fact might be due to the relatively homogeneous conditions in ocean waters. In 

turbid inland water bodies, the variation of these factors is more complex (Zhang et al., 

2009), and leads to the dependence of g1 and g2 on study locations or sites. Therefore, g1 

and g2 should be considered as variables, when optically complex inland waters are of 

interest. The corresponding modification is expected to improve the estimation accuracy 

of IOPs in inland waters. 
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1.2 Estimation of chlorophyll-a concentration 

Based on accurately retrieved IOPs, especially a(λ), many practical applications can 

be proceeded. One of them is to predict chlorophyll-a (Chl-a) concentrations, which is so 

significant for monitoring increasing algal blooms, especially toxic cyanobacterial 

blooms (Mathews et al., 2010; Randolph et al., 2008; Simis et al., 2005 & 2007), in 

reservoirs, lakes and estuaries. Nonetheless, the optical complexity of inland waters 

makes it difficult to spectrally retrieve Chl-a because empirical algorithms for estimating 

Chl-a directly from remote sensing reflectance or leaving water radiance Lw, including 

band ratio (Dekker, 1993; Gitelson, 1992; Jupp et al., 1994; Kallio et al., 2001; Li et al., 

2010), fluorescence line height (Gower & King, 2007; Gons et al., 2008; Hu et al., 2005), 

three-band tuning algorithms (Dall'Olmo & Gitelson, 2005; Duan et al., 2010; Gitelson et 

al., 2007, 2008 & 2009), four-band algorithms (Le et al., 2009b & 2010) and other band 

combination methods (Budd et al., 2004; O'Reilly et al., 1998), are usually limited to the 

dataset on which they are calibrated (Giardino et al., 2007; Matthews et al., 2010). 

Particularly, when SS concentration is high, the scattering of SS usually masks the optical 

response of Chl-a, reducing the predictive power of the empirical algorithm (Bukata et al., 

1995; Zhou et al., 2009). Therefore, IOCCG (2006) and Zhou et al. (2009) suggested to 

derive Chl-a from IOPs for highly turbid inland waters rather than to derive directly from 

AOPs. Fortunately, several equations, e.g., equations developed by Ritchie (2008), can be 

used to quantify Chl-a from in vitro aph(λ) in laboratory and have potential to be applied 

on predicted in vivo aph(λ) with slight modification. In addition, Chl-a concentration 

could be simply determined by dividing its specific absorption coefficient, i.e. absorption 

per unit Chl-a, at 665 nm ( )665(*
pha ) from total in vivo aph(665), because )665(*

pha
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should be stable through inland waters. The stability of )665(*
pha is proved by the fact 

that Gons (1999) and Gons et al. (2000, 2002 & 2008) observed that )665(*
pha ≈0.016 m2 

(mg Chl-a)-1 works for tens of sites in Netherlands, Lake Chao and Tai in China, 

Hudson/Raritan Estuary of New Jersey and New York and the Great Lakes in USA, etc. 

1.3 Objectives of this study 

The primary aim of this study is to establish a globally transferable model (GTM) 

that could be used to invert the IOPs from remote sensing reflectance and then to estimate 

Chl-a concentration from the retrieved IOPs of inland waters. The developed model 

should derive IOPs without requiring a pre-defined shape of the specific absorption 

spectrum of an individual constituent, and are transferable across different sites and 

different seasons for quantifying Chl-a from retrieved in vivo absorption coefficients. 

2. Data collection 

The datasets used in this study were collected by different research groups, and the 

procedures for field water sampling, in situ spectral measurements and laboratory 

analysis for pigment concentration are not identical. The descriptive statistics of field 

measurements and laboratory analysis results are shown in Fig. 2.1, Fig. 2.2 and table 2.2. 

2.1 Study sites 

Lake Tai, China. Lake Taihu (LT) (30o 56'−31o 33' N, 119o 55.3'−120o 53.6' E), the 

third largest freshwater lake in China, locates in the south of Yangtze River Delta. The 

total area of the lake is 2338 km2, with an average water depth of 1.9 m and a total water 

capacity of 47.6×108 m3 (Le et al., 2009b). The water quality is severely deteriorated 

because of the increased discharge of wastewater, sewage and polluted water resulted 

from rapid economic development in the surrounding urban and rural regions. Algal 
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blooms frequently occur in some sub-regions, and the sediment resuspension is strong 

resulted from wave effects. Thus, Lake Tai is thought to be a typical highly turbid 

eutrophic lake (Sun et al., 2010).  

Shitoukoumen Reservoir, China. Shitoukoumen Reservoir (SR) (43o 54.6' N, 125o 

46.95' E) is the major water sources for Changchun and Jiutai County, in the Jilin 

province of Northeast China, which provide more than 80% of the drinking water for the 

Changchun City (Lu et al., 2010). It has storage capacity of 70.2×107 m3, drainage area of 

4975.6 km2 and surface area of 94.2 km2 respectively (Xu et al., 2009). It is situated in 

north temperate sub-humid continental monsoon climate zone, with the mean annual 

temperature 5.3 oC and precipitation range from 369.9 to 667.9 mm. In recent years, 

serious soil erosion and water loss in the upstream increased nutrient input to the 

reservoir, and the eutrophication status is drawing intense attention from environmental 

agency and water supplying company. 

Sites in Australia. Myponga Reservoir (35o 23.7’ S, 138o 26.5’ E), about 70 km south 

from Adelaide, provides nearly 5% of water supply for Adelaide. It has a storage capacity 

of 26.8×106 m3 with surface area about 2.8 km2 and the average depth about 15 m with 

maximum as 36 m. River Murray starts from the Snowy Mountains in the eastern 

highlands and flows for 2560 km until entering to ocean via Lake Alexandrina in South 

Australia (Baker et al., 2000). Lower River Murray is the major source for irrigation and 

drinking water in South Australia (Maier et al., 1998; Burch et al., 1994). In our study, 

River Murray at Mannum and Wellington were selected as study areas. River Murray at 

Mannum (34o 54.8' S, 139o 18.9' E), about 100 km east from Adelaide, is about 150 km 
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upstream of the Murray Mouth. River Murray at Wellington (35o 20.3' S, 139o 23.3' E) is 

close to Murray Mouth where Murray River merges into Lake Alexandrina. 

Sites in Indiana, USA. The study sites are three central Indiana reservoirs, Eagle Creek 

Reservoir (39o51' N, 86o18.3' W), Geist Reservoir (39o55' N, 85o56.7' W) and Morse 

Reservoir (40o6.4' N, 86o2.3' W). The three reservoirs have similar depth (3.2-4.7 m), 

surface area (5-7.5 km2), volume (21-28×106 m3) and residence time (55-70 days). They 

were selected as the study sites because of their importance of supplying drinking water 

for residents surrounding Indianapolis metropolitan area, and that they all face the serious 

eutrophication problem. 

2.2 Remote sensing reflectance measurements 

ASD field spectrometer (Analytical Spectral Devices, Inc., Boulder, CO, USA) was 

used to measure remote sensing reflectance above water surface, denoted as Rrs(λ), on 

Lake Tai in both 2006 and 2007 and on Shitoukoumen Reservoir from 2006 to 2008. The 

measurements followed the Ocean Optical Protocols by NASA (Revision 3; Muerller & 

Fargion, 2002). Radiance of water (Lsw), sky (Lsky) and reference panel (Lp) were 

measured several times at each sample station to eliminate the error due to inappropriate 

operation. When measuring Lsw, an 1.5 m-long extending pole was positioned about 1 m 

above water surface with azimuth angle from sun as ~135o and zenith angle as ~45o to 

minimize the shading and sunglint effects (Mobley, 1999), and Lsky was measured in the 

same plane but by rotating the pole upward ~90o. Rrs was then computed as: 
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where Lw is the water-leaving radiance, r represents the reflectance of the skylight from 

air-water interface (Mobley, 1999), and Ed(0+) is the downwelling irradiance above water 

surface and defined as: 

                                                   
p

p
d

L
E

ρ
π

=+)0(   (5) 

where ρp stands for the reflectance of reference panel, and it has been calibrated as 30% 

in our case. 

Ocean Optics USB4000 (Ocean Optics, Inc., Dunedin, FL, USA) with dual 

radiometers was used to measure below water surface remote sensing reflectance rrs(λ) on 

Indiana three central reservoirs in 2008 and 2010, and on Australian study sites in 2009. 

Reflectance spectra were measured by following the procedure described in Gitelson et al. 

(2008). Radiometer 1 was pointed upward by mounting on a 2 m high pole to measure 

the real-time incidence irradiance (Ed(0+)). Simultaneously, radiometer 2, equipped with 

a 25o field-of-view optical fiber, was dipped ~2 cm into water surface with a 2 m-long 

pole and pointed downward to measure the below-surface upwelling radiance (Lu(0-)) at 

nadir. Back to laboratory, the spectra collected in situ were processed using software 

CDAP/CALMIT (University of Nebraska at Lincoln) and rrs' is computed: 

                                                            
)0(
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=
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u
rs E
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Morel and Maritorena (2001) stated Ed(0-)=0.965Ed(0+), therefore, rrs can be finally 

computed as: 

                                                           
965.0

'rs
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Table 2.2. The sampling date, number of samples and ranges of measured Chl-a and TSM as well as absorption and backscattering 

parameters 

Site Date N Chl-a TSM acdom(440) at-w(440) a at-w(675) a bbp(560) b Y b 
mg m-3 g m-3 m-1 m-1 m-1 m-1 - 

LT in 
China 

Oct.-Nov. 
2006 & Nov. 

2007 
62c 2.54-246.61 6.47-143.47 - 0.51-15.75 0.085-3.83 0.20-5.33 0.19-0.72 

SR in 
China 

Apr. 2006 - 
Sep. 2008 119 1.87-47.52 3.67-211.91 - 0.64-13.03 0.025-1.05 0.13-8.02 0.34-0.79 

Sites in 
Australia 

Feb. 2009 - 
Mar. 2009 60 6.58-79.41 2.00-94.00 - 1.37-13.04 0.072-2.17 0.03-1.52 -0.19-0.27 

Sites in 
Indiana 

Jul. 2008 - 
Nov. 2008 64 25.40-285.80 1.51-33.77 - 1.00-5.68 0.439-3.87 0.13-3.72 0.29-0.91 

Apr. 2010 - 
Oct. 2010 191 1.85-129.39 5.17-81.17 0.48-3.81 0.73-7.83 

(1.26-6.95) 
0.037-2.51 

(0.215-2.41) 0.07-1.10 -0.10-0.91 
a Only samples collected in Indiana 2010 were analyzed for these parameters and the measured values are shown in parenthesis. 

Values estimated from GTM for all sites and years are also listed here for demonstrating the variations among the sites. 

b All values comes from GTM-estimated results and listed here for comparison purpose. 

c 17 samples were excluded for statistical analysis and model test because of the presence of algal scums. 
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Fig. 2.1. Above (Rrs(λ)) and below (rrs(λ)) surface remote sensing reflectance spectra 

measured instudy sites. 
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2.3 Chl-a and total suspended matter concentration measurements 

Water samples collected in all sites were put in cold and dark coolers and then 

transported back to laboratory for Chl-a and total suspended matter (TSM) concentration 

measurements.  

Water samples for Chl-a extraction passed 0.45 µm pore size GF/C filters (Whatman), 

after which Chl-a was extracted with 90% ethanol at 80 oC and 90% acetone for samples 

collected at LT and SR, respectively. Then optical density of Chl-a extracts was 

measured using spectrophotometer and Chl-a was calculated according to Lorenzen 

(1967). For samples collected in three central Indiana reservoirs, 2008 and those collected 

in Australia, the measurements followed the procedure by EPA Method 445.0 (Arar & 

Collins, 1997) and Randolph et al. (2008). Chl-a extraction samples passed 0.45 µm pore 

size acetate filters (Whatman) and were extracted in 90% acetone, and then Chl-a was 

measured by a pre-calibrated TD-700 fluorometer (Turner Designs, Inc., Sunnyvale, CA, 

USA). Thereafter, for samples collected in three sites of Indiana, 2010, 0.45 µm pore size 

acetate filter (Whatman) and 90% acetone were used as the extraction material and 

reagent, but Chl-a was determined from absorption coefficients (asol(λ), referred as in 

vitro aph(λ); shown in Fig. 2.3) measured by spectrophotometer based on equation given 

by Ritchie (2008). 

TSM concentration was determined gravimetrically. According to the turbidity of 

samples, 150-300 ml of water sample was filtered onto pre-ashed (530 oC for 1.5 hours 

for samples of Indiana and 4 hours for other samples, respectively), pre-filtered (200 ml 

Milli-Q water) and pre-weighed GF/F filters (Whatman). Subsequently, the filters with 

particles were dried at 105 oC (1.5 hours for samples of Indiana and 4 hours for other 
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samples, respectively) and weighted with an electronic balance to obtain the TSM 

concentration. 

2.4 Absorption coefficients measurements 

Absorption of water constituents except water itself (at-w(λ)) and absorption of 

CDOM (acdom(λ)) were measured for samples collected in Indiana sites, 2010. The 

unfiltered water samples was poured into 1-cm cuvette and scanned by 

spectrophotometer (380-800 nm, 1 nm resolution) with Milli-Q water as reference, and its 

optical density (ODt-w(λ)) was determined for each sample except the first forty samples 

collected in April and May, 2010. Similarly, ODcdom(λ) was measured using the same 

instrument and configuration, but pre-filtered samples that passed 0.22 µm pore size 

GF/F filters (Whatman) were used. Subsequently, the average of ODt-w(λ) between 750 

nm and 800 nm was subtracted from ODt-w(λ) for correcting backscattering effect, when 

ODcdom(λ) was corrected for this effect according to Bricaud et al. (1981) and Zhang et al. 

(2009). Finally, at-w(λ) and acdom(λ) were computed based on: 

                                                   lODa xx /)(303.2)( λ=λ  (8) 

where x represents either t-w or cdom, 2.303 is used to convert 10-based log to 

natural log and l (=0.01 m) is optical pathlength. Both absorption spectra were then 

smoothed in MATLAB (MathWorks, Inc., Natick, MA, USA) using spline function. 
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Fig. 2.2. A: measured at-w(λ); B: measured acdom(λ). Both at-w(λ) and acdom(λ) are only 

available for samples collected in Indiana sites 2010, and 40 samples were dumped 

because of inappropriate storage. 

 

Fig. 2.3. Measured asol(λ) of samples collected in Indiana 2010. asol(λ) is also referred as 

in vitro aph(λ). 

3. Model for IOPs inversion 

The derivation of the IOPs from remote sensing reflectance starts with a reflectance 

ratio. Although f or Q
 
depends on the factors including bio-optical states, sun angles, 

wind speed as well as on wavelength (Morel & Gentili, 1993 & 1996) for a given sample 
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location, f/Q has a weak dependence on wavelength. Based on equation 2, the reflectance 

ratio can be written as: 
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where Rx(λ) can be either rrs(λ) or Rrs(λ) because they are linearly correlated as shown in 

equation 10 (Doxaran et al., 2002; Salama et al., 2009). 

                                               )()( 2 λ=λ +−
rsrs r

n
ttR   (10) 

where t- and t+ are the transmittance factor of light from water to air and from air to water, 

respectively, and n is the refractive index of water. The value of 2n
tt +−  is commonly set to 

0.54. 

To reduce unknowns in equation 10, λ2 is selected to be a wavelength longer than 700 

nm where the absorption of water constituents is negligible and total absorption 

coefficient is approximated by the absorption of water (aw(λ)), i.e. a(λ2)≈aw(λ2) (Gons, 

1999 & 2000; Gons et al., 2005; Simis et al., 2005 & 2007; Gould et al., 2001; Le et al., 

2009a). Based on this assumption, Gons (2005) calculated bb(778) from remote sensing 

reflectance using equation 11 because aw(λ) is invariant with temperature around 780 nm 

(Salama et al., 2009) and the value for aw(λ) was adopted from Buiteveld et al. (1994). 
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bb(λ) and backscattering coefficients of particles (bbp(λ)) could be expressed as equation 

12 and equation 13 respectively (Lee et al., 2002, 2004 & 2009). 
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where bbw(λ) represents the backscattering coefficient of water (Buiteveld et al., 1994); Y 

is a constant for a given bb(λ) and can be derived from the reflectance ratio of band 443 

nm to band 560 nm as shown in equation 14 (Lee et al., 2009). Equation 15 (Lee et al., 

2002, 2004 & 2009) is used to calculate under surface remote sensing reflectance if 

above surface remote sensing reflectance is available. 
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After bb(λ) at all wavelengths is estimated using equations 11-15 and λ2 in equation 9 is 

appropriately specified, the total absorption could be calculated by solving equation 9. 

Simis et al. (2005 & 2007) suggested that a wavelength around 709 nm is suitable for λ2. 

Therefore, at-w(λ) is computed using equation 16. 

                          )()(
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aw(λ) changes with temperature, especially it fluctuates apparently at wavelengths 

around 750 nm (Buiteveld et al., 1994; Gould et al., 2001), and aw(λ) measured at 20 oC 

by Buiteveld et al. (1994) was adopted because 20 oC is the average temperature 

observed in Indiana study sites 2010. This aw(λ) is suitable for most of study sites, for its 

change with temperature is not significant, at least for wavelength shorter than 715 nm. 
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4. Model for Chl-a retrieval 

The derived non-water constituent bulk absorption (equation 16) should be related to 

the phytoplankton absorption in order to estimate Chl-a. Assuming that the CDM 

absorption is negligible at wavelengths longer than 620 nm, i.e. aph(λ)≈at-w(λ) for λ≥620 

nm, Simis et al. (2005 & 2007) proposed an empirical relationship to convert the non-

water bulk absorption to in vitro phytoplankton absorption at 665 nm (asol(665)): 

                                     
68.0

)665(
68.0

)665()665( phwt
sol

aaa == −  (17) 

Simis et al. (2007) suggested that 0.68 is used in equation 17 to compensate the weak 

signal received by remote sensing instrument relative to that measured by a lab 

spectrophotometer. In this study, this constant is interpreted to correct the package effect 

and band shift between asol(λ) and aph(λ) (see section 5.3.1) when conversion at-w(665) to 

asol(λ) is required for application of equation 18 (Ritchie, 2008). Note that in equation 18 

the unit is converted to mg m-3 from g m-3, and the effect of optical pathlength (=0.01 m) 

is corrected. 

                34.4)]691(4306.1)665(9442.11                               
)647(7485.1)630(3319.0[)m mg( Chl 3
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−−=− −

solsol
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aaa  (18) 

The absorption coefficients at 630 nm, 647 nm and 691 nm are small and the package 

effects are also weak, thus it is valid to assume that asol(λi) (λ1=630, λ2=647 and λ3=691) 

approximately equals to at-w(λi) and to use equation 18 for Chl-a estimation from at-w(λi). 

While Ritchie’s Chl-a model is modified for in vivo phytoplankton absorption case, it 

requires four bands. For purpose of estimating Chl-a only, an alternative could be 

pursued as shown in equation 19:  
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where )665(*
pha  denotes the specific absorption of phytoplankton at 665 nm and is set to 

be 0.016 m2 (mg Chl-a)-1 (Gons et al., 2008). 

Table 2.3. Globally transferable model (GTM) for deriving the inherent optical 

properties (IOPs) and Chl-a concentration 

Step Variable Formula 
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where Rx(λ) represents either Rrs(λ) or rrs(λ) 

6 
Chl-a (mg m-3) 
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(λi = 630, 647 and 691, respectively) 
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)665(

Chl *
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a
a

a −=− , )665(*
pha =0.016 m2 (mg Chl-a)-1 

 
Steps of GTM above are summerized in table 2.3 and the GTM-estimated Chl-a 

accuracy is evaluated using root mean square error (RMSE), relative error (RE) and mean 

relative error (MRE) are used in this paper, and their definitions are shown in equation 20, 

equation 21 and equation 22, respectively. 
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where X ' is estimated value, X is measured value and N is sample number. 

5. Results and discussion 

5.1 Derived Absorption Coefficient 

The estimated at-w(λ) spectra corresponding to the highest and lowest Chl-a at the 

study sites are shown in Fig. 2.4.A. The shape of these estimated at-w(λ) spectra can be 

divided into three groups: 1) the spectra in the first group are dominated by 

phytoplankton absorption (e.g., Aus-MAX) and show distinctive pigment absorption 

features at 443 and 675 nm due to Chl-a and at 490 nm due to carotenoid; 2) the spectra 

included in the second group show the absorption characterized by both phytoplankton 

and CDM (e.g. IN10-MAX), i.e. the pigments absorption features are distinctive but 

superimposed on the CDM absorption at short wavelengths; 3) the third group spectra 

(e.g. IN10-MIN) exhibit the characteristic CDM absorption, i.e. exponential decay curves 

without distinctive pigment absorption peaks. This qualitative evaluation implies that 

GTM works for water bodies with different constituent compositions, but not only for 

waters dominated by a single constituent. A quantitative comparison between GTM-

estimated at-w(λ) and measured at-w(λ) is made for spectral bands 443, 675 and 550 nm to 

assess the accuracy of the derived absorption spectra. The comparisons for bands 443 and 

675 nm are shown in Fig. 2.4.B and Fig. 2.4.C, respectively. Among all samples, the 
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highest aph(675) equals to 3.87 m-1 and lowest aph(675) equals to 0.025 m-1; 

correspondingly the highest at-w(443) is 15.75 m-1 and the lowest at-w(443) is 0.51 m-1. 

For band 443 nm, a high correlation between GTM-estimated and measured absorption 

coefficients was obtained with R2=0.8347, while for band 675 nm a slightly low 

correlation was yielded underestimated with R2=0.7541. Both qualitative and quantitative 

analyses indicate that GTM can be used for derivation of the non-water absorption 

coefficient of inland water bodies. 

However, a similar comparison made for band 560 nm indicates that GTM 

underestimated the absorption (Fig. 2.4.D). The underestimation possibly results from 

dropping the quadratic term of equation 1 when GTM was derived. Generally, a(560) is 

relatively low and bb(560) is high, resulting in that 
)560()560(

)560(

b
b

ba
b

+
 is often higher than 0.2. 

Dropping the quadratic term of equation 1 in the GTM development is expected to result 

in an overestimated 
)560()560(

)560(

b
b

ba
b

+
 by at least 15% (Garver & Siegel, 1997). This 

overestimation in turn induces underestimated a(560) by at least 17% if bb(560) is 

correctly estimated. Therefore, the quadratic term of equation 1 is critical in order to 

improve the GTM performance in estimating at-w(560) from high reflectance spectra of 

turbid waters, and such an improvement on GTM needs to determine g2 for each sample 

location. 
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Fig. 2.4. A: GTM-estimated at-w(λ) vs. wavelength for samples with highest and lowest 

Chl-a at each site. IN08 = Indiana 2008; IN10 = Indiana 2010; Aus = Australia. MIN 

means minimal Chl-a and MAX means maximal Chl-a; B, C and D: GTM-estimated at-

w(λ) vs. measured at-w(λ) for featured bands. 

Given the weakness of GTM developed in this study, it is interesting to compare the 

GTM performance relative to other similar algorithms described in the literature. QAA 

(version 5; Lee et al., 2009) was selected for the comparison purpose with the samples 

collected in Indiana, 2010 for which the measured absorption coefficient is available. 

QAA was chosen because of its simplicity relative to GSM and HL that require pre-
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defined absorption spectral shapes of individual constituents. It starts from empirically 

estimated at-w(560) which is then used to calculate the absorption of other wavelengths. 

The absorption spectra derived with QAA are shown in Fig. 2.5.A, and comparison 

between QAA-derived and measured absorption coefficients are shown in Fig. 2.5.B for 

band 443 nm, Fig. 2.5.C for band 675 nm and Fig. 2.5.D for band 560 nm. All R2 values 

for QAA are smaller than those for the GTM results, and significantly underestimated at-

w(560) is observed in the QAA result. Underestimated at-w(560) in the QAA result might 

result from using the fixed g1 and g2 for all sample locations and from using the simple 

empirical equation linking at-w(560) to 

)]}667(
)490(
)667(5)560(/[)]490()443(log{[ rs

rs

rs
rsrsrs r

r
rrrr ××++ . Underestimation for the 

absorption coefficients at bands 443 and 675 nm by QAA is also rooted in 

underestimated at-w(560), and this is a major limitation of QAA in estimating the 

absorption for application to reflectance spectra of optically complex inland waters unless 

a calibration similar to what Le et al. (2009) did for Lake Tai is made. In contrast, GTM 

overcomes some limitations and does not need the calibration process even for a water 

body as complex as Lake Tai, and this conclusion is supported by the correlation between 

measured Chl-a concentration and those estimated with the GTM derived absorption 

spectra for Lake Tai water samples. 

The absorption spectra derived by both GTM and QAA show anomalies beyond 715 

nm where at-w(λ) should approach to zero. The anomaly can be partially contributed to 

the temperature effect on aw(λ) around 750 nm (Gould et al., 2001) because the correction 

for his effect was not done on a site basis but used the absorption of water at 20oC for all 

samples. Nonetheless, the increase of aw(λ) due to temperature cannot explain such big 
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errors (up to ±2 m-1) in the derived absorption coefficient, and additional research efforts 

are necessary to figure out the exact reason for this. 

 

Fig. 2.5. A: Comparison between estimated at-w(λ) using QAA and measured at-w(λ) for 

smaples collected in Indiana sites 2010; B, C, D: QAA-estimated at-w(λ) vs. wavelength 

for featured bands. 

5.2 Backscattering 

Shown in table 2.2 and Fig. 2.6 are the the ranges of GTM-estimated bbp(560) and 

estimated Y with equation 14. While no measured backscattering cofficients are available 

for validating estimated values, a meaningful analysis could still be made. For example, 
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the highest bbp(λ) was derived for SR, China and the lowest for Myponga Reservoir, 

Australia. This reflects the difference of turbidity between these two sites, i.e. SR owns 

the most turbid water and water in Myponga Reservoir is the clearest. The power Y also 

shows variability among sites and seasons, but most of Y values are within the range of 

0-1 which is typical for case 2 waters (Sathyendranath & Prieur, 1989). Negative Y 

values are present for phytoplankton dominated water samples and attributed to the 

strong absorption of phytoplankton that makes bbp(λ) at 412-488 nm lower than bbp(λ) at 

longer wavelength (Gallegos et al., 2005). In addition, the variability of Y could also be 

due to the biochemical difference of particles, e.g. a high Y value implies the dominance 

of small plankton or mineral particulate (Gallegos et al., 2005). 

 

Fig. 2.6. GTM-estimated backscattering coefficients. A: the maximal (MAX) and 

minimal (MIN) bbp(λ) for the sites including Indiana (IN08 & IN10), Lake Tai (LT) and 

Shitokoumen (SR) in China, and Australia (AU); B: variability of estimated Y for each 

site. 
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5.3 Chlorophylls  

5.3.1 Chlorophylls estimation 

Equations 18 was first applied to the GTM derived absorption coefficients for 

estimating Chl-a. The correlation between estimated and measured Chl-a concentration is 

shown in Fig. 2.7 and the estimation accuracy is listed in table 2.4. The estimation 

accuracy for all 477 samples is reflected by R2=0.9232, RMSE=13.0704 mg m-3 and 

MRE=21.25%, respectively, indicating that Chl-a is reliabley estimated for samples 

collected from the study sites over the world and in seasons and that the GTM derived 

absorption coefficients are accurate enough for estimation of Chl-a concentration for the 

investigated water bodies. However, when considering the performance of equation 18 

for individual sites, the lowest R2 (=0.7938) is observed for SR, and for LT both RMSE 

(=29.0668 mg m-3) and MRE (=28.28%) are the highest. These two water bodies, 

compared to other water bodies with high R2 and low MRE, are the most turbid with 

more NAP among eight investigated, implying estimated Chl-a for highly turbid waters is 

not as accurate as those for the phytoplankton dominated water. Nevertheless, the 

estimation accuracy for both SR and LT are still satisfactory. 

As stated above, to estimate Chl-a with equation 18, the GTM-estimated in vivo 

aph(665) should be converted to asol(665) first, while this coversion is not required for 

bands 630, 647 and 691 nm due to very weak package effects. Equation 17 is currently 

used for such conversion. While equation 17 is the same as that by Simis et al. (2005 & 

2007), the interpretation proposed in this study differs from that by Simis et al. 

(2005&2007) who suggested 0.68 was used to compensate weaker signal received by 

remote sensors and here we suggest that constant 0.68 could be used to correct package 
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effects and a band shift existing between in vivo and in vitro phytoplankton absorption 

coefficients. This is supported by the relationship between the GTM-estimated in vivo 

aph(665) and asol(665) with a slope of 0.69 shown in Fig. 2.8, very close to 0.68 used in 

equation 17. 

Table 2.4. Evaluation of Chl-a estimation from GTM-estimated at-w(λ) using equation 18 

and equation 19. LT=Lake Tai, SR=Shitoukoumen Reservoir, Aus=Sites in Australia, 

IN08=Sites in Indiana 2008, IN10=Sites in Indiana 2010. 

Site 
Slope Intercept R2 RMSE (mg m-3) MRE(%) 

Eq. 18 Eq. 19 Eq. 18 Eq. 19 Eq. 18 Eq. 19 Eq. 18 Eq. 19 Eq. 18 Eq. 19

LT 1.193 1.1239 -1.3229 -1.451 0.9693 0.9695 29.0668 27.2695 28.28 28.07 
SR 0.9977 0.9718 1.4431 1.4099 0.7938 0.7807 5.8608 5.8098 24.44 25.13 
Aus 1.1762 1.0856 -5.1311 -4.9494 0.9444 0.9383 3.3762 4.7825 15.06 21.37 
IN08 0.9814 0.8898 7.6181 8.8395 0.9242 0.9202 16.9455 15.4355 20.73 16.58 
IN10 0.9964 0.9036 2.3174 2.6071 0.8831 0.8776 10.1314 9.7808 20.56 21.19 
All 1.0535 0.9662 0.3086 0.7474 0.9292 0.9232 13.0704 12.3310 21.25 22.38 
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Fig. 2.7. Comparison between measured Chl-a and estimated Chl-a by equation 18. 

The performances between equations 18 and 19 for the estimation of Chl-a 

concentration are compared by examining R2, RMSE and MRE and shown in table 2.4. 
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Equation 19 is a simpler model than equation 18, and based on table 2.4 one can conclude 

that the performance of equation 19 almost matches that of equation 18 that requires the 

absorption coefficient at bands 630, 647, 665 and 691 nm. An interesting question is 

which model should be used when the absorption coefficient for phytoplankton or the 

bulk absorption for non-water constituents is available. The authors recommend that 

equation 19 should be preferred over equation 18 if )665(*
pha  is available and relatively 

constant because the former is simpler than the latter. In this paper, )665(*
pha  is set to be 

0.016 m2 (mg Chl-a)-1 based on Gons et al. (2008), and then one may be curious how 

)665(*
pha varies. To investigate the variability of )665(*

pha , )665(*
pha for the water 

bodies investigated in this study was calculated by dividing the GTM-estimated aph(665) 

(≈at-w(665)) by measured Chl-a concentration with the assumption that at-w(665) is 

accurately and exactly retrieved for all sites. The average values of estimated )665(*
pha

for different sites are shown in table 2.5. Variations of )665(*
pha  observed across the 

diferent water bodies are observed with the samples collected in Indiana 2008 have the 

highest )665(*
pha (=0.0172 m2 (mg Chl-a)-1), the samples collected in Australia have the 

lowest )665(*
pha  (=0.0146 m2 (mg Chl-a)-1) and the averaged )665(*

pha  of all 477 

samples equals to 0.0161 m2 (mg Chl-a)-1. This indicates that, while )665(*
pha should be 

slightly different, )665(*
pha =0.016 m2 (mg Chl-a)-1 is appropriate for all inland waters 

investigated, and may be appropriate for inland water monitoring at the global scale. In 

fact, Bricaud et al. (1995) and Allali et al. (1997) asserted that )(* λpha around 675 nm 

should be relatively stable without many impacts of accessory pigments. The use of 
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)665(*
pha =0.016 m2 and equation 19 provides an alternative to equation 18 for 

estimating Chl-a from the derived absorption coefficient with GTM. Such approach could 

be applied to some multi-spectral images acquired by the sensor MODIS, which do not 

have the four bands required by equation 18. 

Table 2.5. GTM-Estimated )665(*
pha for the investigated sites and that by Gons et al. 

(2008). )665(*
pha are estimated by dividing estimated at-w(665) with measured Chl-a. 

Study site LT SR Aus IN08 IN10 All Gons 

Averaged )665(*
pha

m2 (mg Chl-a)-1 
0.0171 0.0169 0.0146 0.0172 0.0159 0.0161 0.0160 

 

Fig. 2.8. Estimated in vivo aph(665) (=at-w(665)) vs. measured in vitro aph(665) (also 

asol(665)). In vitro peak at 665 nm is corresponding to in vivo peak 675 nm due to the 

band shift effect. This figure shows the conversion between in vivo aph(665) and in vitro 

aph(665). 
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Fig. 2.9. Comparison between relative error (RE, equation 21) and possible interfering 

factor for estimating Chl-a. Each figure shows the RE resulted from estimation by 

equation 18 and equation 19, respectively. A: RE vs. acdom(440); B: RE vs. NAP; C: 

Relative error vs. Chl-a/TSM. 

Does this mean that equation 18 has no advantages over equation 19? Equation 18 

achieves Chl-a estimation without the requirment for )665(*
pha  but for the absorption 

coefficients at the four bands. In addition to equation 18, Ritchie (2008) also proposed 

another four equations to estimate chlorophyll-b (Chl-b), -c (Chl-c), -d (Chl-d) and total 

chlorophylls from measured asol(λ), respectively, and these equations use the same four 
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bands used in equation 18. Estimating accessory pigments, like Chl-b, -c and –d 

facilitates the identification of different phytoplankton species because accessory 

pigments contained in different species are not identical (Richardson, 1996). The 

information of phytoplankton species structure can help understand the impact of global 

climate change on phytoplankton community composition and the seasonal and regional 

variability of bio-optical properties in water bodies (Mao et al., 2010). Therefore we 

recommend that equation 18 should be used for estimating Chl-a from the derived 

absorption coefficients together with another four equations for Chl-b, -c, -d and total 

chlorophylls when these accessary pigments are of importance in remote water quality 

monitoring. 

5.3.2 Factors interfering with Chl-a retrieval 

The factors that could affect the GTM performance and in turn Chl-a estimation 

include the presence of algal scums, CDOM and NAP. Aglal scums could fail the GTM 

algorithm because they show obvious vegetation spectral features in the near-infared 

region. GTM uses rrs(778) to estimate bb(778) (equation 11). When algal scum happens, 

rrs(778) becomes higher than 0.082, leading to negative backscattering coefficients and 

failure of estimating at-w(λ). As a result, Chl-a cannot be predicted from the erroneously 

estimated at-w(λ). In this study, seventeen remote sensing reflectance spectra measured in 

LT were excluded. It is suggested to use the floating algal index (FAI, a simple MODIS 

spectral algebra; Hu, 2009) to detect algal scums before estimating Chl-a with the GTM 

algorithm. In this study, the longest wavelength for the measured reflectance spectra is 

1075 nm and not all bands are available for calculating FAI. The spectra for the 17 

sample stations were removed from the datasets manually. 
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For the case where algal scums are absent, high concentration of CDOM and NAP are 

major interfering factors for estimation of Chl-a in inland waters (Bukata, 1995; Schalles 

et al., 2001; Schalles, 2006; Zhou et al., 2009). To evaluate this effect, the relationship 

between acdom(440) used for the proxy of CDOM concentration and RE (equation 21) for 

samples collected in Indiana 2010 is shown in Fig. 2.9.A. Fig. 2.9.A shows that the 

correlation between RE and acdom(440) is not significant, implying that CDOM does not 

affect the Chl-a estimation. In fact, CDOM primarily absorbs at the wavelengths shorter 

than 620 nm and its absorption descreases exponentially with the increased wavelength. 

The CDOM absorption has no impacts on the GTM performance in estimating Chl-a 

from the derived at-w(λ) because the GTM derivation is involved with the red and near-

infrared region. NAP has a similar absorption spectra shape to CDOM, but results in 

strong scattering. As a result, NAP might have some impacts on Chl-a estimation. The 

NAP concentration was calculated according to the relationship shown in equation 23 

(Hoogenboom et al., 1998; Sun et al., 2010). 

                              )m mg(Chl07.0)m TSM(g)m NAP(g 333 −−− −−= a  (23) 

The correlation between RE and NAP for all samples is shown in Fig. 2.9.B, and the 

triangle like pattern indicates that NAP do have some impacts on Chl-a estimation. 

Briefly, many samples with Chl-a:TSM less than 6.7942×10-3 (indicated by vertical dash 

line in Fig. 2.9.C) that is equivalent to the contribution of NAP to TSM more than 

52.44% have an RE larger than 30%. This is attributed to the masking effect of NAP on 

the spectral signal of phytoplankton (Zhou et al., 2009). For the NAP-dominant other 

than phytoplankton-dominant water body, the GTM performance for estimating Chl-a 

needs improvment. 
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5.4 Application on simulated MERIS spectra 

To test the applicability of GTM to MERIS image spectra, simulated datasets were 

generated by resampling field measured hyperspectral reflectance spectra to MERIS 

spectral reolution with ENVI 4.5 (ITT, Inc., Boulder, CO, USA) (Fig. 2.10. A). The 

simulated MERIS band 2 (443 nm), band 5 (560 nm), band 9 (708 nm) and band 12 (778 

nm) were input to GTM for deriving the absorption and backscattering coefficients. Fig. 

2.10.B shows the retrieved at-w(λ) from simulated MERIS image spectra for the same 

samples shown in Fig. 2.4.A. However, equation 18 cannot be used to estimate Chl-a 

directly from predicted at-w(λ) because the required bands at 630 nm, 647 nm and 691 nm 

are not available. Alternatively, using the available bands 620 nm (band 6), 665 nm (band 

7) and 681 nm (band 8), a model (equation 24) is established using the same method in 

Ritchie (2008) based on asol(λ) shown in Fig. 2.3. 

34.4)]681(8558.268.0/)665(0186.12)620(4371.0[)m mg(Chl 3 ×−+−=− −
phphph aaaa  (24) 

Equation 24 is valuable when )665(*
pha is unknown; otherwise equation 19 should be 

used. In this study, the results by both equations 24 and 19 are shown in Fig. 2.10.C and 

Fig. 2.10.D, respectively. Both equations perform well for samples collected from all 

sites with R2=0.906 (eq. 24) and R2=0.9138 (eq. 19), respectively. Compared with the 

results derived from hyperspectral remote sensing spectra, the resultant R2 and MRE from 

the simulated datasets have a slight degradation. Nonetheless, as indicated by the decent 

R2 and MRE values, GTM can be used to estimate Chl-a from MERIS spectra. 
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Fig. 2.10. A: Simulated MERIS imagery spectra; B: GTM-estimated at-w(λ) based on A; 

C: estimated Chl-a vs. measured Chl-a using equation 24; D: estimated Chl-a vs. 

measured Chl-a using equation 19. 

6. Conclusions 

GTM was proposed and tested on field measured hyperspectral remote sensing 

reflectance in eight different reservoirs, lakes, and estuaries and in different seasons. It 

proves that the absorption coefficients could be more accurately retrieved when using a 

dynamic 
Q
f  (or g1) for the model of equation 2. GTM retrieves at-w(λ) spectra in water 

bodies dominated by either phytoplankton or CDM or water bodies with no dominant 
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constituent at all. The predicted at-w(443) and at-w(675) fit very well with measured ones, 

while at-w(560) is dramatically underestimated, which might be due to ignoring the 

quadratic term in equation 1. However, based on accurately estimated at-w(λ) at 630, 647, 

665 and 691 nm, Chl-a was calculated using laboratory-derived equation (equation 18; 

Ritchie, 2008) and good accuracy was achieved for all study sites, when the accuracy is 

comparable using only at-w(665) by equation 19. In fact, the good results by equation 19 

evidently support that )665(*
pha is stable in global scale although small variation exists. 

The application of GTM on simulated MERIS spectra was also made to examine the 

potentials of the model for satellite surveillance of bio-optical properties in inland waters. 

The at-w(λ) was predicted from simulated MERIS spectra using GTM without any 

modification, and subsequently, Chl-a was accurately retrieved by two approaches as 

well. Although the performance of the models somewhat degrades due to reduced 

spectral resolution compared to field measured remote sensing reflectance spectra, it 

exhibits great potentials for future satellite monitoring of inland waters with MERIS 

imagery. This will significantly drives our understanding on bio-optical status of inland 

waters. 
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III. A GLOBALLY TRANSFERABLE MODEL FOR INLAND WATERS (II): 

PARTITIONING NON-WATER ABSORPTION COEFFICIENTS AND ESTIMATING 

PHYCOCYANIN ∗ 

ABSTRACT 

Phycocynin (PC) primarily exists in toxic freshwater cyanobacteria. Accurate 

estimation of low PC concentration is critical to early warn potential risks of 

cyanobacterial population growth to the public. By the aid of absorption coefficients of 

acetone-extracted pigments, phytoplankton and colored detritus matter absorption were 

successfully predicted from a globally transferable model (GTM) estimated non-water 

absorption coefficients with R2>0.785 and R2=0.844, respectively. Meanwhile, PC 

absorption at 620 nm was derived, and thus PC concentrations were retrieved with 

relative root mean square error as 30.6% (R2=0.798, n=151) with a fixed PC specific 

absorption coefficient from literature, and thus no calibration was made. No significant 

overestimation was observed for samples of low PC concentration, which is commonly 

the case of semi-empirical algorithm. The improvement is evidently due to the 

elimination of colored detritus matter absorption and consideration of pigment 

composition. Therefore, the method is suggested to be suitable for detection of PC in 

inland waters and it is not necessary that cyanobacteria are the dominant phytoplankton 

species, albeit stochastically high uncertainties happen for several low PC concentration 

samples. Particularly, accurate estimation based on simulated Medium Resolution 

Imaging Spectrometer reflectance spectra implies it becomes feasible for routine 

surveillance of cyanobacterial biomass dynamics in the future. 

                                                            
∗ The manuscript was submitted to Remote Sensing of Environments for review. 
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Keywords: globally transferable model, phycocyanin, absorption partitioning, 
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1. Introduction 

Cyanobacteria, the largest and most diverse group of prokaryotes, can multiply very 

quickly in the warm summer when temperature, light and nutrient runoff from agriculture 

fertilizer increase (Mishra et al., 2009). Cyanobacteria are usually the dominant 

phytoplankton species in eutrophic lakes, estuaries, and reservoirs, due to several key 

adaptations: buoyancy regulation, nitrogen fixing capability, and harvesting yellow-

orange light for photosynthesis (Jupp et al., 1994; Paerl & Huisman, 2009). When 

cyanobacterial blooms happen in drinking and recreational waters, recreational activities 

and aquatic habitats are hampered, the aesthetics of the water is destroyed and human and 

animals’ health is threatened (Codd et al., 1999; Kuster et al., 2006; Mishra et al., 2009; 

Randolph et al., 2008). Therefore, cyanobacterial blooms are one of the most important 

issues faced by environmental agencies, water authorities and public health organizations 

(Backer, 2002). 

Cyanobacterial biomass can be assessed by detecting and quantifying phycocyanin 

(PC), an accessory pigment that is primarily present in freshwater cyanobacteria and 

plays significant role in cyanobacterial light harvesting. The presence of cyanobacteria in 

fresh water generally results in remote sensing reflectance depression around 620-630 nm 

caused by PC absorption (Metsamaa et al., 2006). Based on this spectrally diagnostic 

absorption, many efforts on remote quantification of cyanobacterial pigments have been 

made and focused on the empirical approach to deriving PC from reflectance band ratio 



 

44 
 

(Hunter et al., 2008 & 2009; Li et al., 2010; Mishra et al., 2009; Schalles & Yacobi, 2000; 

Ruiz-Verdu et al., 2008), band combinations (Dekker, 1993; Hunter et al., 2010; Li et al., 

2010; Vincent et al., 2004), and on semi-empirical algorithms (Simis et al., 2005 & 2007) 

using PC absorption (Guanter et al., 2010; Hunter et al., 2010; Randolph et al., 2008; 

Ruiz-Verdu et al., 2008; Yang & Pan, 2006;). Empirical algorithms are limited to the 

dataset where they are derived (Giardino et al., 2007; Matthews et al., 2010), while the 

semi-empirical algorithm usually predicts PC without recalibration. The semi-empirical 

algorithm derives PC bulk absorption at 620 nm, and then takes the ratio of the PC bulk 

absorption to specific absorption to calculate PC concentration (see section 2.5 for model 

description). However, the semi-empirical algorithm does not perform as well at low PC 

concentration (PC<50 mg m-3) as at high PC concentration (Simis et al. 2007). In fact, an 

intercept of 29 mg PC m-3 is present in the correlation between measured and estimated 

PC in Simis et al. (2005) implying overestimated PC. Two reasons may be responsible 

for its degraded performance at low PC concentration: 1) failing to remove the absorption 

of colored dissolved organic matter (CDOM) and non-algal particles (NAP) (hereafter 

CDOM+NAP will be referred as CDM) when deriving apc(620) and 2) inaccurate 

estimation of the PC absorption (apc(λ); refer to table 3.1 for symbols) at 620 nm from 

phytoplankton absorption (aph(λ)) using the relationship apc(620)=aph(620)-0.24aph(665). 

In fact, CDM absorption (acdm(λ)) could induce a significant error in estimated apc(620). 

For example, based on the relationship )](exp[)()( 00 λ−λ−λ=λ cdmcdmcdm Saa  (Scdm is 

exponential slope of CDM absorption; Ciotti and Bricaud 2006; Oubelkheir et al. 2007) 

and setting λ0=443 nm, acdm(443)=1.5 m-1 and Scdm=0.015 nm-1 for turbid waters, one can 

estimate acdm(620) to be 0.1055 m-1, which is equivalent to overestimated PC 
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concentration 24.53 mg PC m-3 if )620(*
pca =0.0043 m2 (mg PC)-1 is assumed (Jupp et al., 

1994). In addition, the fraction constant 0.24, used in apc(620)=aph(620)-0.24aph(665) to 

correct the proportion of chlorophyll-a (Chl-a) and accessory pigments absorption at 620 

nm, is not valid when pigments composition changes (Simis et al., 2007), resulting in 

increased uncertainties in estimated PC concentration when PC:Chl-a is less than 0.5 

(Hunter et al. 2010). 

These weaknesses of the semi-empirical algorithm imply that to improve PC 

estimation the absorption of CDM and other pigments has to be isolated. Non-water 

absorption coefficients (at-w(λ); at-w(λ)=aph(λ)+acdm(λ)) can be accurately retrieved using 

the GTM algorithm for eutrophic and turbid inland waters (Chapter 2). If at-w(λ) could be 

partitioned into acdm(λ), apc(λ) and absorption of other pigments (aph-pc(λ); aph-

pc(λ)=aph(λ)-apc(λ)), then apc(620) could be predicted from which the impacts of CDM 

and other pigments are removed. While several methods (Ciotti & Bricaud 2006; 

Oubelkheir et al. 2007; Wang et al. 2009; Zhang et al. 2009) are available for separating 

aph(λ) and non-phytoplankton absorption (either acdm(λ) or anap(λ)), they fail to retrieve 

apc(620) because apc(λ) is not considered as an independent component in the retrieval. 

As a result, a new approach to the absorption retrieval where PC is treated as an 

independent component is required. 

In this study, a new approach is proposed for deriving apc(620), in which the 

phytoplankton and CDM absorption are partitioned from a globally transferable model 

(GTM)-estimated non-water absorption coefficients. The aim is 1) to develop a new 

algorithm to partition non-water absorption coefficients with apc(620) as an independent 

component; 2) to examine whether the new algorithm could improve the accuracy of 
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retrieval of PC, especially for samples with low PC. If the algorithm can be used for 

retrieval of low PC, it will permit early warning of cyanobacterial blooms with remote 

sensing data (Hunter et al. 2009). 

Table 3.1. List of symbols and acronyms. 

Symbol/ 
acronym 

Description Units 

bb(λ) Total backscattering coefficients at wavelength λ. m-1 
bbp(λ) Backscattering coefficients of particles at wavelength λ. m-1 

)(* λpca  PC specific absorption coefficients at wavelength λ. m2 (mg PC)-1

ai(λ) 

Absorption coefficients of compound i at wavelength λ. 
Subscripts used: t-w = non-water; ph = phytoplankton; cdm = 
colored detritus matter; pc = phycocyanin; sol = extracted 
phytoplankton pigments; ph-pc: phytoplankton pigments 
excluding phycocyanin; cdm+pc: colored detritus matter plus 
phycocyanin. 

m-1 

Scdm Exponential slope of acdm(λ); acdm(λ)= acdm(λ0)exp[-Scdm×(λ- 
λ0)] 

nm-1 

Rrs(λ) Above water surface remote sensing reflectance at wavelength 
λ. 

sr-1 

rrs(λ) Below water surface remote sensing reflectance at wavelength 
λ. 

sr-1 

PC Phycocyanin (concentration) mg m-3 
Chl-a Chlorophyll-a (concentration) mg m-3 

PE Phycoerythrin - 
CDM Colored detritus matter - 

rRMSE Relative root mean square error - 
RE Relative error - 

 
2. Materials and Methods 

2.1. Study sites 

The study sites are three central Indiana reservoirs: Eagle Creek Reservoir (ECR) 

(39o51' N, 86o18.3' W), Geist Reservoir (GR) (39o55' N, 85o56.7' W) and Morse 

Reservoir (MR) (40o6.4' N, 86o2.3' W). These reservoirs have similar depth (3.2-4.7 m), 

surface area (5-7.5 km2), volume (21-28 million m3) and residence time (55-70 days). 

They were selected for the study because of their importance for supplying drinking 
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water to residents surrounding the Indianapolis metropolitan area, and they all face a 

serious eutrophication problem- toxic cyanobacterial blooms. Ten field campaigns were 

conducted on these three reservoirs in 2010 and the statistical information of the 

measurements for these campaigns is listed in table 3.2. 

Table 3.2. Statistical information of pigments concentrations and PC:Chl-a ratio. 

Site Date Chl-a (mg m-3) PC (mg m-3) PC:Chl-a 
n min max avg. n min max avg. min max avg.

ECR May-Oct 2010 80 21.62 128.04 54.51 60 8.58 69.66 29.23 0.17 2.05 0.66
MR Jun-Oct 2010 56 8.31 62.12 34.47 54 1.46 146.10 90.47 0.49 1.86 1.72
GR Apr-Oct 2010 54 1.85 129.39 60.21 37 6.57 140.76 64.90 0.14 3.45 1.76

 
2.2. Reflectance measurement 

An Ocean Optics USB4000 (Ocean Optics, Inc., Dunedin, FL, USA) unit with dual 

radiometers was used to measure below surface remote sensing reflectance (rrs(λ)) in the 

three central Indiana reservoirs in 2010. Reflectance measurement was made by 

following the procedure described by Gitelson et al. (2008). Mounted on a 2 m high pole, 

radiometer 1 was pointed upward to measure the real-time incidence Ed(0+,λ), and 

simultaneously radiometer 2, equipped with a 25o field-of-view optical fiber, was dipped 

~2 cm below the water surface with a 2 m-long pole to measure the below-surface 

upwelling radiance Lu(0-,λ) on the sunny side at nadir. In situ spectra were then processed 

in laboratory using the software CALMIT Data Acquisition Program (CDAP, University 

of Nebraska at Lincoln) to compute rrs'(λ): 

                                                       
),0(
),0()('

λ+
λ−

=λ
d

u
rs E

Lr  (1) 

Based on the relationship Ed(0-,λ)=0.965Ed(0+,λ) (Morel and Maritorena (2001), remote 

sensing reflectance below the water surface (rrs(λ)) can be computed as below:  
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965.0

)(')( λ=λ rs
rs

rr  (2) 

The computed remote sensing reflectance spectra below the water surface are shown in 

Fig. 3.1. 

 

Fig. 3.1. Measured below surface remote sensing reflectance rrs(λ). PE: depression due to 

phycoerythrin (PE) absorption; PC: depression due to PC absorption. 

2.3. Pigments extraction and quantification 

Water samples were collected using 1 L amber HDPE bottle at all sites where in situ 

reflectance was measured, and then temporarily stored in cold and dark coolers. Once 

back to laboratory, samples were filtered and frozen immediately to prevent pigments 

denaturalization. Water samples for Chl-a extraction passed 0.45 µm pore size acetate 

filters (Whatman), after which Chl-a was extracted with 90% acetone for about 24 hours. 

The optical density of Chl-a extracts in solution (ODsol(λ)) was measured using a 

spectrophotometer with the spectral range of 380-750 nm at 1 nm resolution, and Chl-a 

concentration was then determined by applying the equation given in Ritchie (2008) to 
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the measured ODsol(λ). The absorption of Chl-a extracts in solution (asol(λ), also referred 

as in vitro aph(λ)) was also derived from the ODsol(λ) according to Beer's Law. 

                                                   lODa solsol /)(303.2)( λ=λ  (3) 

where 2.303 is used to convert the 10-base log to natural log and l (=0.01 m) is the optical 

path length. 

For the determination of PC concentration, a homogenization method with a tissue 

grinder was modified to improve the accuracy of measurements (Sarada et al., 1999; 

Randolph et al. 2008). Samples were filtered through 0.7 µm pore size glass fiber filter 

(Millipore APFF). The filters were then transferred to 50 milliliter polycarbonate 

centrifuge tube and broken up in 50 mmol L-1 sodium phosphate buffer (pH 7.0+0.2) 

using a stainless steel spatula. The broken filters then went through the first round of 

grinding and centrifuge. After being stored in freezer (4 oC) for 24 hours, filters were 

grinded and centrifuged again with the same equipments. PC concentration of upper 

supernatant was fluorometrically determined using TD700-fluorometer (Turner Designs, 

Inc.). The fluorometer was pre-calibrated with PC solutions produced with highly 

purified, lyophilized PC powder (Sigma-Aldrich P6161). 

2.4. Absorption coefficient in laboratory 

The measured asol(λ) above is in vitro phytoplankton absorption without PC 

contribution because PC is not soluble in acetone buffer, which can be used to derive in 

vivo phytoplankton absorption without PC contribution (aph-pc(λ)). Our rationale is that 

both in vivo phytoplankton absorption aph(λ) with PC contribution and aph-pc(λ) can be 

estimated from remote sensing reflectance. However, several studies have shown that 

band shifts exist between in vivo and in vitro aph(λ) (Emerson & Lewis 1942; Shibata et 
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al. 1954; Myers & Kratz 1955). To be compatible with in vivo aph(λ), the correction for 

this band shift on asol(λ) is required and was completed by manually adjusting asol(λ) 

toward longer wavelength according to Emerson and Lewis (1942). Briefly, the asol(λ) 

spectra were divided into three groups, asol(λ) at λ<480 nm was shifted by 8 nm, 480 nm≤ 

λ ≤580 nm by 13 nm, λ>580 nm by 10 nm, and finally the 5 nm gap between 488 nm and 

493 nm was interpolated using the spline approach and the overlapping of 591-593 nm is 

set to the original values at 578-580 nm because, before shifting, asol(λ) at 578-583 nm is 

relatively flat. As a result, the adjusted asol(λ) has the same wavelength alignment as the 

corresponding in vivo spectra, and is denoted by aph-pc(λ) hereafter. The aph-pc(λ) spectra 

are shown in Fig. 3.2.A. 

 

Fig. 3.2. A: in vivo aph-pc(λ) by adjusting asol(λ) measured in 90% acetone extraction; B: 

regression coefficients (left axis) and R2 (right axis) for equation 4 using dataset in A. 

Several previous studies (e.g. Sun et al., 2010; Wang et al., 2009 & 2010) suggested 

that in vivo aph(λ) could be expressed as a function of absorption peak value at either 443 

nm or 675 nm. Application of this rule to aph-pc(λ) results in equation 4: 

                                        )(2C)675()(1C)( λ+λ=λ −− pcphpcph aa  (4) 
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where C1(λ) and C2(λ) are the regression coefficients. The values for C1(λ) and C2(λ) 

are shown in Fig. 3.2.B. 

To obtain in vivo aph(λ) in laboratory, the absorption coefficient of non-water 

constituents (at-w(λ)=aph(λ)+acdm(λ)) was first measured. The unfiltered water samples 

were poured into 1-cm cuvette and scanned by a spectrophotometer (380-800 nm, 1 nm 

resolution) with Milli-Q water as the reference, and the optical density (ODt-w(λ)) was 

then determined for each sample (forty samples were excluded due to inappropriate 

storage). Subsequently, ODt-w(750) was subtracted from ODt-w(λ) for correcting 

backscattering effect and then converted to at-w(λ) with equation 5: 

                                                  lODa wtwt /)(303.2)( λ=λ −−  (5) 

The absorption spectra were then smoothed using the spline function implemented in 

MATLAB (MathWorks, Inc., Natick, MA, USA).  

at-w(λ) is the sum of aph(λ) and acdm(λ), from which aph(λ) and acdm(λ) can be derived. 

Bricaud & Stramski (1990) showed the following relationships for aph(λ) and acdm(λ): 

                                                 99.0)380(:)505( =phph aa  (6a) 

                                                92.0)693(:)580( =phph aa  (6b) 

                                               )exp()( cdmcdm SAa ×λ−=λ  (6c) 

                                                )()()( λ−λ=λ − cdmwtph aaa  (6d) 

where A is a constant for a given at-w(λ) spectrum. The relationships 6e-6f can be 

generated by arranging equations 6a-6d: 

            )505()380(99.0)505exp()380exp(99.0 wtwtcdmcdm aaSASA −− −=−−−  (6e) 

           )693(92.0)580()693exp(92.0)580exp( wtwtcdmcdm aaSASA −− −=−−−  (6f) 
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Solving for A and Scdm in equations 6e-6f, and then acdm(λ) and aph(λ) can be computed by 

inserting A and Scdm values back to equations 6c-6d. Derived at-w(λ), acdm(λ) and aph(λ) are 

shown in Fig. 3.3 in which acdm(750) is forced to zero. 

 

Fig. 3.3. A: measured at-w(λ) from unfiltered water samples; B: measured acdm(λ); C: 

measured aph(λ). Forty samples are excluded due to inappropriate storage and total 151 

samples are shown in this figure. 

2.5. Remotely deriving absorption coefficients of phytoplankton, CDM and PC 

The procedure for deriving aph(λ), acdm(λ) and apc(λ) from remote sensing reflectance 

is built upon GTM which can remotely derive non-water constituents (at-w(λ)) and 
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estimate Chl-a concentration. GTM has been detailed in (Chapter 2) and therefore a brief 

description is given here. GTM starts with estimating backscattering coefficients (bb(λ)) 

from remote sensing reflectance based on equation 7a (Gordon et al. 1988) by following 

the steps described in Gons et al. (2005) and Lee et al. (2002, 2004 & 2009), and at-w(λ) is 

then retrieved by solving equation 7b constructed with reflectance band ratio.  
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where f is the light field factor, Q stands for the light distribution factor defined as 

Q=Ed(0)/Lu(0), and f/Q has only weak dependency on wavelength λ (Morel & Gentili, 

1993 & 1996); aw(λ) represents water absorption coefficients given in Buiteveld et al. 

(1994); and the relationships for the total absorption coefficient a(λ)=at-w(λ)+aw(λ) and 

a(709)≈aw(709) are used (Gons et al., 2008; Simis et al., 2005). The steps of GTM for 

deriving at-w(λ) are shown in table 3.3 and the derived at-w(λ) spectra are shown in Fig. 

3.4. After derivation of at-w(λ), an immediate task is to derive aph(λ), acdm(λ) and apc(620) 

from at-w(λ). 

Many methods are available for partitioning at-w(λ) into phytoplankton (aph(λ)) and 

colored detritus matter (acdm(λ)) absorptions, including those by Ciotti and Bricaud (2006; 

denoted as C06), Oubelkheir et al. (2007; denoted as O07) and Wang et al. (2009; 

denoted as W09). Both C06 and O07 are similar to the steps in equations 6a-6f but with 

different pairs of ratios from equations 6a and 6b, i.e. aph(490):aph(412)=0.919Chl-a0.012 

and aph(510):aph(412)=0.581Chl-a0.047 for C06, and aph(510):aph(412)=0.435 and 
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aph(555):aph(630)=0.98 for O07. W09 directly retrieves aph(443), acdm(443) and Scdm by 

solving equations 8a-8c and then to derive acdm(λ) and aph(λ) by equation 8d-8e.  

                                          )443()443()443( cdmphwt aaa +=−  (8a) 

  )]443412(exp[)443()443(7171.0)443(1365.1)412( 2 −×−++=− cdmcdmphphwt Saaaa  (8b) 

  )]443490(exp[)443()443(6366.0)443(7986.2)490( 2 −×−++=− cdmcdmphphwt Saaaa  (8c) 

  )]443750(exp[)443()]443(exp[)443()( −×−−−λ×−=λ cdmcdmcdmcdmcdm SaSaa  (8d) 

                                              )()()( λ−λ=λ − cdmwtph aaa  (8e) 

However, the algorithm for isolating PC absorption from phytoplankton absorption 

are not available, a new method for this purpose is proposed in this study. The steps of 

this new algorithm are summarized in table 3.4. First, the algorithm uses the assumptions 

that acdm(λ) for λ≥665 nm is negligible and PC absorption is only limited in a narrow 

spectral range around 620 nm (Simis et al., 2005 & 2007), and this leads to aph-pc(665)≈at-

w(665). Further analysis reveals that at-w(665) and at-w(675) are highly correlated 

(R2=0.9739) and the relationship between them is shown in equation 9.  

                              )665(1872.1)675()675( wtwtpcph aaa −−− ==  (9) 

Thereafter aph-pc(λ) is predicted by substituting equation 9 in to equation 4, which is used 

to derive the absorption of CDM+PC (acdm+pc(λ)), i.e. the difference between at-w(λ) and 

aph-pc(λ). 

                                       )()()( λ−λ=λ −−+ pcphwtpccdm aaa  (10) 

The next step is to derive acdm(λ) based on equation 11a. Again based on the assumption 

that apc(λ) is limited to narrow spectral range around 620 nm, acdm(412)=acdm+pc(412) and 

acdm(510)=acdm+pc(510) are assumed to be valid. The reason for choosing wavelengths 412 
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and 510 nm is that Medium Resolution Imaging Spectrometer (MERIS) is able to image 

at both the two wavelengths. Moreover band 443 nm was not recommended for retrieving 

acdm(λ) due to the high variability of phytoplankton absorption at this wavelength (Hoge 

& Lyon, 1999; Hoge et al., 1999; references therein). Derivation of acdm(λ) with acdm(412) 

and acdm(510) is shown in equation 11a-11b, and here 412 is set as reference wavelength. 

Subsequently, aph(λ) is determined by equation 8e. 

                                   )]412(exp[)412()( −λ×−=λ cdmcdmcdm Saa  (11a) 
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Finally, apc(λ) at the peak position 620 nm is calculated using equation 12. While PC 

absorption coefficient can be calculated for other wavelengths, they are too weak to be 

useful in PC concentration retrieval. 

                                         )620()620()620( cdmpccdmpc aaa −= +  (12) 

In addition, apc(620) can also be estimated using the semi-empirical algorithm 

developed by Simis et al. (2005 & 2007; equation 13a-13c). 
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where Rrs(λ) is the remote sensing reflectance above the water surface defined as 

Rrs(λ)=Lw(0+,λ)/Ed(0+,λ) with Lw(0+,λ) being the water-leaving radiance, and 

Rrs(λ)=0.54rrs(λ) (Gons et al., 2005). 



 

56 
 

Table 3.3. Globally transferable model (GTM) to derive IOPs and Chl-a concentration. 

Step Variable Formula 
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)778()778()778(

rs

wrs
b r

arb
−

=  

2 Y 
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

)560(
)443(9.0exp2.110.2Y

rs

rs
r
r

 

If necessary, 
)(7.152.0

)()(
λ+

λ
=λ

rs

rs
rs R

Rr  

3 bbp(560) Y7198.0
)778()778(

)560( bwb
bp

bb
b

−
=  

4 bb(λ) )(560)560()(
Y

λ+⎟
⎠
⎞

⎜
⎝
⎛

λ
=λ bwbpb bbb  

5 at-w(λ) 
()(

)709()(
)]709()709()[()709(

)( −λ−
λ

+λ
=λ− wb

bx

bwbx
wt ab

bR
babR

a

 
where Rx(λ) represents either Rrs(λ) or rrs(λ) 

6 
Chl-a (mg m-3) 
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pha =0.016 m2 (mg Chl-a)-1 

 

 

Fig. 3.4. Estimated at-w(λ) using GTM for all samples collected in Indiana 2010. 
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Table 3.4. Extended steps of GTM to estimate acdm(λ), aph(λ) and PC. 

Step Variable Formula 

7 aph-pc(λ) )(2)665()(11872.1)( λ+λ=λ −− CaCa wtpcph  

8 acdm+pc(λ) )()()( λ−λ=λ −−+ pcphwtpccdm aaa  

9 Scdm 

)412()412( pccdmcdm aa +=  
)510()510( pccdmcdm aa +=  

)510(
)412(ln

98
1

cdm

cdm
cdm a

aS −=  

10 acdm(λ) 
)]412(exp[)412()( −λ×−=λ cdmcdmcdm Saa  

and acdm(715) is set to 0*. 

11 aph(λ) )()()( λ−λ=λ − cdmwtph aaa  

12 apc(620) )620()620()620( cdmpccdmpc aaa −= +  

13 PC (mg m-3) )620(
)620(

PC *
pc

pc

a
a

= , )620(*
pca =0.0043 m2 (mg PC)-1 

* GAM-estimated at-w(λ) shows anomalies beyond 715 nm (Chapter 2). In stead of 

usually forcing acdm(750) to zero, acdm(710) is considered as offset and thus subtracted 

from whole acdm(λ), or else anomalies will occur in derived aph(λ) as well. 

The difference between algorithm developed in this study and the semi-empirical 

algorithm by Simis et al. (2005 & 2007) mainly includes 1) CDM absorption at 620 nm is 

considered when deriving apc(620) in this study, but not by Simis et al. (2005 & 2007); 

and 2) PC absorption is an independent component and do not correlate with other 

pigments absorption in this study, but Simis et al. (2005 & 2007) used an empirical 

relationship between PC absorption and all phytoplankton pigments absorption to 

estimate apc(620). As a result, some limitations of the semi-empirical algorithm by Simis 

et al. (2005 & 2007) are expected to be overcome using the new algorithm in this study. 

2.6 Retrieval of phycocyanin concentration 

PC concentration can be determined by dividing )620(*
pca  from apc(620). 
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The key to accurately predict PC is to choose an appropriate )620(*
pca . Simis et al. 

(2005) measured )620(*
pca =0.0095 m2 (mg PC)-1 with a standard deviation of 0.0033 m2 

(mg PC)-1, but they lowered to 0.007 m2 (mg PC)-1 (Simis et al. 2007). In Chapter 2, it 

suggested that )620(*
pca determined for extracts of low PC is not stable because the ratio 

of signal to noise for apc(620) is too weak due to instability of spectrophotometer. In 

addition, the intracellular water-soluble compounds, which is akin to sheath pigments 

commonly found in cyanobacteria (Subramaniam et al. 1999), impose a background on 

measured apc(620) and thus elevate )620(*
pca . Therefore, the )620(*

pca measured by 

Simis et al. (2007) are too high to determine PC in this study. Alternatively, the value 

measured in high PC concentration by Jupp et al. (1994) was used to determine PC, and 

therefore )620(*
pca  is set to 0.0043 m2 (mg PC)-1 in this study.  

The accuracy of the estimation is evaluated by relative root mean square error 

(rRMSE) and relative error (RE) shown in equations 15 and 16, respectively. 
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where n is the total sample number, and Xi' and Xi are the estimated and measured values 

for sample i, respectively. 
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3. Results 

3.1. Retrieval of aph(λ) and acdm(λ) 

The derived absorption spectra are shown in Fig. 3.5.A-5.D for acdm+pc(λ), acdm(λ), aph-

pc(λ) and aph(λ), respectively. Fig. 3.5.A clearly shows acdm+pc(λ) overall has the 

exponential decay trend with increased wavelength, the characteristics of CDM 

absorption, and the peaks due to PC and phycoerythrin (PE) are observed. The modeled 

acdm(λ) based on equation 11a-11b is shown in Fig. 3.5.B and the PC and PE absorption 

features are completely removed. Comparison of figures 5.C and 5.D results in the 

difference between the aph-pc(λ) and aph(λ) with the latter showing phycobilins (PC and 

PE) absorptions and the former not. The shapes of retrieved CDM and phytoplankton 

absorption coefficients overall tally with the actual ones of measured absorption 

coefficients shown in Fig. 3.3, albeit some differences exist. 

Comparison between estimated and measured absorption values at featured bands 

(Fig. 3.6) shows that the proposed algorithm succeeds in separating aph(λ) and acdm(λ) 

with relatively high accuracy. acdm(443) is commonly used as proxy of CDM 

concentration, and the estimated and measured acdm(443) fit well with R2=0.844 and 

rRMSE=30.6%. Small underestimation is observed for six samples with acdm(443) 

ranging between 3.6 m-1 and 4.6 m-1. While slight underestimation for aph(620) happens 

(R2=0.795, rRMSE=34.3%) but no overestimation or underestimation is observed for 

aph(443) (R2=0.785, rRMSE = 23.1%) and aph(675) (R2=0.847, rRMSE=21.5%). In 

general, the estimation at all compared featured bands are accurate with estimated 

aph(675) at the best accuracy. 
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Fig. 3.5. A: retrieved acdm+pc(λ) which includes absorption of CDM, PC, PE. PE is not 

soluble in acetone either. B: modeled acdm(λ) from A. The absorption peaks of pigments, 

those not soluble in acetone are eliminated. C: modeled aph-pc(λ) using equation 4 with 

GTM-estimated aph-pc(675). D: estimated aph(λ) which contains absorption features of all 

pigments. 



 

61 
 

 

Fig. 3.6. Comparison between measured and estimated absorption coefficients for 

featured bands. A: estimated acdm(443) vs. measured acdm(443); B: estimated aph(443) vs. 

measured aph(443); C: estimated aph(620) vs. measured aph(620); D: estimated aph(675) vs. 

measured aph(675). Dash line represents 1:1 line. 

3.2. Estimation of PC concentration 

Dividing apc(620) with PC specific absorption coefficient )620(*
pca =0.0043 m2 (mg 

PC)-1 gives rise to estimated PC concentration. The correlation between estimated and 

measured PC is shown in Fig. 3.7.A with R2=0.798, rRMSE=30.6% and mean RE=40.1%. 
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The samples evenly distribute around the 1:1 line, and significant overestimation does not 

present for samples with low PC (PC≤50 mg m-3). Using the semi-empirical algorithm 

developed by Simis et al. (2005) resulted in consistently overestimated PC for samples 

with PC less than 50 mg m-3 as indicated by the intercept 25.406 mg m-3 of the regression 

line between estimated and measured PC (Fig. 3.7.B), which is close to the intercept 29 

mg m-3 observed by Simis et al. (2005). The mean RE for estimated PC (40.1%) with the 

algorithm proposed in this study is much lower than 82.0% for the semi-empirical 

algorithm by Simis et al. (2005 & 2007). 

 

Fig. 3.7. Comparison between measured and estimated PC concentrations. A: by 

approach in this study; B:by semi-empirical algorithm developed by Simis et al. (2005). 

Dash line represents 1:1 line, and solid line is regression line. 

4. Discussion 

4.1. Absorption partitioning methods for inland waters 

It is aforementioned that several methods (e.g. C06, O07 and W09; see section 2.5 for 

their brief description) are available to partition at-w(λ) into aph(λ) and acdm(λ). All of them 

were originally developed for coastal and ocean waters and their feasibility for inland 
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waters were tested. Specially, Chl-a concentration for C06 come from the estimation of 

GAM (Fig. 3.8) but not the laboratory-measured Chl-a concentrations. The reason why 

the estimated Chl-a was chosen as input of C06 is to examine if C06 could be used to 

automatically derive aph(λ) and acdm(λ) from remote sensing reflectance without using 

laboratory measured data. Thereafter their performances for samples collected in three 

sites in Indiana, the highly eutrophic inland waters, are examined by correlating modeled 

and measured absorption coefficients, and compared with the performance of this study. 

The results are presented in table 3.5. For deriving acdm(443) and aph(443), W09 and O07 

perform neither as well as the method proposed in this study nor well as C06. The poor 

performance of W09 can be attributed to its use of band 443 nm where aph(λ) exhibits 

high variability, and many previous investigations using this band show the similar 

results (e.g. Hoge & Lyon, 1999; Hoge et al., 1999; and references therein). For O07, two 

pairs of fixed ratios (i. e., aph(510)/aph(412)≈0.435 and aph(555)/aph(630)≈0.98) may not 

be valid for inland waters, at least for three sites investigated in this study, which results 

in degradation of its performance for estimating acdm(443) and aph(443). Nevertheless, 

when taking into account the changes of aph(λ) with Chl-a, e.g. this study and C06, the 

performances of algorithms increase significantly. Therefore, it is evident that the 

variability of aph(λ) has strong effects on retrieval of acdm(443) and aph(443). Although the 

performances of different methods on estimating acdm(443) and aph(443) vary, derivations 

of aph(675) by all four methods generate consistent results. This is attributed to the 

decreased and insignificant effect of acdm(λ) with increased wavelength and acdm(675) 

contributes little to aph(675), leading to aph(675)≈at-w(675), as suggested by Simis et al. 

(2005 & 2007). With respect to derivation of aph(620), errors induced by CDM 
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absorption have some influences but not strong as on aph(443), which is the reason why 

C06, O07 and this study achieved comparable accuracies for aph(620), but W09 estimates 

less accurately because W09 estimates acdm(443) worst. In conclusion, both C06 and 

method in this study are suitable for automatically partitioning at-w(λ), which is estimated 

from remote sensing reflectance, into aph(λ) and acdm(λ) in eutrophic inland waters, even 

no laboratory measured Chl-a concentrations available for C06. 

Table 3.5. The comparison of the partitioning methods. C06=Ciotti & Bricaud et al. 

(2006), O07=Oubelkheir et al (2007) and W09=Wang et al. (2009). 

Parameter 
W09 C06 O07 This study 

R2 rRMSE R2 rRMSE R2 rRMSE R2 rRMSE 
acdm(443) 0.460 90.2% 0.823 36.6% 0.823 51.5% 0.844 30.6% 
aph(443) 0.563 73.8% 0.749 27.6% 0.731 46.8% 0.785 23.1% 
aph(620) 0.639 69.8% 0.761 32.3% 0.753 32.0% 0.795 34.4% 
aph(675) 0.848 25.6% 0.846 21.1% 0.846 21.1% 0.847 21.4% 

 

 

Fig. 3.8. Evaluation of the accuracy of GTM-estimated Chl-a vs. measured Chl-a. Dash 

line represents 1:1 line, and solid line is regression line. 

However, the proposed method based on asol(λ) has advantages over C06. The 

advantages come from the observation that some pigments, typically phycobilins (PE and 
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PC), are not soluble in organic solvent. These pigments have very weak absorption even 

at its maximum, and their absorption usually overlaps with those of other pigments, e.g. 

Chl-a, chlorophyll-b (Chl-b), chlorophyll-c (Chl-c), etc. (Simis et al., 2007). In fact, it is 

difficult to determine the contribution of each pigment to total aph(λ), but using the 

method proposed in this paper can at least determines the absorption maximums of water-

soluble and acetone-soluble pigments. For example, Fig. 3.5.A shows the absorption 

peaks due to PE and PC after removing the absorption of acetone-soluble pigments, and 

the corresponding depression features on rrs(λ) are shown in Fig. 3.1. Furthermore it is 

successful to use apc(620) extracted from acdm+pc(λ) for estimation of PC concentration, 

and it might be feasible to estimate the concentrations of more accessory pigments, if 

individual pigment absorption is represented by a function of its absorption maximum so 

that aph-pc(λ) can be further decomposed into individual components for different 

pigments. 

4.2. Factors influencing the estimation of PC 

As indicated above, the contribution of acdm(620) to aph(620) can leads to significant 

overestimation of low PC (PC≤50 mg m-3) (see Fig. 3.7, section 1 and section 3.2). 

Particularly, the mean RE for estimated PC (40.1%) in this study is much lower than RE 

(82.0%) observed for the semi-empirical algorithm by Simis et al. (2005 & 2007). This 

improvement by this study evidently suggests that the influence of acdm(620) on the PC 

estimation is effectively eliminated, and thus CDM becomes not significant for PC 

estimation by our algorithm. 

In addition to the effect of the CDM absorption, the ratio of PC to Chl-a (PC:Chl-a) 

can also interfere the estimation of PC because Chl-a and accessory pigments (Chl-b and 
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Chl-c) all contribute to the absorption at 620 nm (Simis et al., 2007). Both Fig. 3.9.A and 

Fig. 3.9.B show when PC:Chl-a is less than 0.5, RE (equation 15) for estimated PC 

increases significantly, which is due to failure of using fixed fraction 0.24 in 

apc(620)=aph(620)-0.24aph(665) and was also observed by Hunter et al. (2010). In this 

study, the aph-pc(λ) measurement of was conducted for water samples collected through 

three different seasons from April to October and having a wide range of Chl-a from 1.85 

mg m-3 to 136.95 mg m-3 and PC from 1.46 mg m-3 to 146.10 mg m-3. The pigment 

composition found in these water samples may be expected to be representative for 

natural inland waters. Based on the high correlation between estimated and measured PC, 

it is concluded that the approach in this study evidently removes the contribution of the 

Chl-a, b and c absorptions to the PC absorption at 620 nm. In addition, RE of estimated 

PC by this study for most samples with PC:Chl-a≤0.5 (Fig. 3.9.A) is generally lower than 

that (Fig. 3.9.B) resulting from the method by Simis et al. (2005). This is important 

because a PC:Chl-a value less than 0.5 indicates that cyanobacteria are not dominant 

(Hunter et al., 2010). The improved accuracy for prediction of PC at a low concentration 

significantly benefit the purpose of issue early warning for the presence of cyanobacterial 

blooms, which is important to protect animal and human health (Hunter et al. 2009). 
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Fig. 3.9. The relationship between relative error (RE; equation 15) and PC:Chl-a. A: RE 

for the estimation by approach in this study; B: RE for the estimation by semi-empirical 

algorithm developed by Simis et al. (2005). 

4.3. Application on simulated MERIS reflectance 

The MERIS image spectra were simulated by resampling field measured reflectance 

spectra (Fig. 3.10.A). Fig. 3.10.B and Fig. 3.10.C show the estimated acdm(λ) and aph(λ) 

from simulated MERIS image spectra shown in Fig. 3.10.A. Fig. 3.10.D indicates that PC 

is accurately estimated though reducing spectral resolution from 1 nm to 10 nm results in 

a slightly lower R2 (=0.754) and higher rRMSE (=32.6%) comparing to Fig. 3.7.A. The 

estimation for PC≤50 mg m-3 is still accurate. The revisit period of the MERIS satellite is 

3 days, which is enough temporal resolution for tracking the dynamics of PC as well as 

cyanobacterial biomass growth. The algorithm described in this paper shows the 

capability to estimate low PC, and will be tested with the time-series of MERIS imagery 

to construct a cyanobacterial blooms warning system. 
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Fig. 3.10. Results based on simulation of MERIS reflectance from hyperspectral 

measurements. A: simulated MERIS remote sensing reflectance; B: estimated acdm(λ); C: 

estimated aph(λ); D: estimated PC vs. measured PC. 

5. Conlusions 

A new absorption coefficients partitioning method, by the aid of absorption 

coefficients of acetone-extracted pigments, is proposed to derive phytoplankton and 

CDM absorption spectra from GAM-estimated at-w(λ). Accurate estimation is achieved 

for the partitioned acdm(λ) and aph(λ) through the quantitative evaluation at several 

featured bands, e.g. R2=0.844 for acdm(443), R2=0.785 for aph(443), R2=0.795 for aph(620) 
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and R2=0.847 for aph(675), respectively. Meanwhile, PC absorption at 620 nm was 

derived by considering it as an independent component in the partitioning process, and 

then PC concentrations were retrieved from apc(620) with R2=0.798 and rRMSE=30.6%. 

Particularly, no significant overestimation was observed for samples of low PC 

concentration (e.g. PC≤50 mg m-3), which is commonly the case of semi-empirical 

algorithm. The improvement is evidently due to elimination of CDM absorption and 

consideration of pigment composition. In addition, both Chl-a and PC concentrations 

span a range from ~1.5 mg m-3 to ~150 mg m-3 usually observed in eutrophic inland 

waters in different seasons. Therefore, the method is suggested to be suitable for 

detection of PC in inland waters unless algal scum emerges on the water surface, and it is 

not necessary that cyanobacteria are the dominant phytoplankton species. Particularly, 

accurate estimation based on simulated MERIS reflectance spectra implies the feasibility 

of routinely surveillance of cyanobacterial biomass dynamics in the future, based on 

which a system can be established to warn potential risks of cyanobacterial population 

growth to the public. 
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IV. CONCLUSIONS 

In this thesis, a bio-optical model was developed to retrieve inherent optical 

properties based on Chl-a and PC concentrations. The results show that the predicted at-

w(440) and at-w(675) fit very well with measured ones, while at-w(550) is significantly 

underestimated, which is probably due to negligibility of the quadratic term of reflectance 

model in Gordons et al. (1988). Because acdm(λ) has only minor impacts on at-w(λ) at long 

wavelengths, Chl-a concentration was calculated using laboratory-derived Chl-a equation 

(Ritchie, 2008) based on GAM-estimated at-w(λ) and was accurately retrieved for all 

study sites. In fact, the successful application of equation in Ritchie (2008) is primarily 

due to the stability of )665(*
pha  over global case 2 waters, because accuracy of Chl-a 

estimation is mainly determined by estimation of aph(665). Both Gons et al. (2008) and 

this study observed the same )665(*
pha  (=0.016 m2 (mg-1 Chl-a)) which should be 

suitable for global inland waters. The establishment of a common value for )665(*
pha  in 

global inland waters will drive the development of algorithms for Chl-a, e.g. equation 24 

enables the routine retrieval of Chl-a concentration using MERIS imagery. 

Unlike Chl-a, PC absorption is significantly influenced by CDM and other pigments, 

and thus PC concentration cannot be estimated from at-w(λ). An innovative method, based 

on the fact that PC is not soluble in acetone while other pigments are, was developed to 

separate acdm(λ) and aph(λ) and to derive apc(620). It demonstrates that acdm(λ) and aph(λ) 

were successfully and accurately predicted from GAM-estimated at-w(λ). Subsequently, 

apc(620) and PC concentration were estimated for a data set collected from three 

reservoirs in Indiana, 2010. Although relative errors are still relatively high when 

cyanobacteria do not dominate phytoplankton species, the accuracy is dramatically 
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improved compared to the most widely used semi-empirical model developed by Simis et 

al. (2007). Further improvements are required to enable its use for an early warning 

system for cyanobacterial population growth in the early stages. 

To investigate the spatial and temporal transferability, the model was applied to data 

sets collected both spatially and annually without specific calibration. It evidently 

supports that GAM performs equivalently well in each site and each season, except for a 

slight underestimation for some samples collected from Australia, 2009. Therefore, GAM 

shows good spatiotemporal transferability for estimating Chl-a and PC concentrations. 

This actually indicates the strong capability of GAM for routinely monitoring 

cyanobacterial blooms. 
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