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SUMMARY

The'objecgive'bf this thesis is to provide a mathematical model
. tha.tl.-i:an be used to predict the perfo-rmant_:e of devices, sech as guns,
whieh pfo&uc_e_hig’h' pressure in an ='_enc10’aed, but expanding volume by
burning eolid_ﬁrepellant.: The_p?dpellaﬁt;iskaesuﬁed to be in the form
of solid-p&ftieies and is bureed in a closed cylindrieai tube with a
slidiné piston at one end* Due eo the cemplexit; in.estimating the
-relative ve10c1ty between the gas phaee and solid phase, two 1im1t1ng
cases of solids velocity are examined in the present work. These are:
{a) assume the solids have the seme -\#eloc':_i'ty as the gases around the

: parti’ci:-le and (B) '_asaume the solids have zero velocity, i.e. the solids
remaining stationary at their inictial positions.

‘For both cases, the coneervation-ef mass, .momentuﬁ and energy -
results in a set of four coupled partial differential equations expreesing '
volume fraction of solids, gas density, velocity and pressure as a
function of axial dietence frum the tube head end and time. The equatioﬁ
‘of state of Noble and Abel, with constant covolume, is used'for the
combustion gas, .The heat transfer to the tuPe wall and pressure drop
due te skin friction have-aleo been taken inte consideration;

A boundarf layer analysis is.carried.out by_deriving the boundary
layer momentum integrel eduatien for a non-steady, non-uniform, developing
floé in e.tube. The profile shape factor (ratie of displecemene thickness -
andimbmentem thickness) is introduced and the Ludwieg-Tillmaﬁn_friction

coeificient is used. As a first approximation, the shape factor is-




assumed to be constant and, as the flow is in the high Reynolds number
region, the usual approximation of a thin boundary layer is made.

‘The conservation equations together with the boundary layer

'equation are written. in’ flnite difference form and the MacCormack

yersion of the Lax—Wendroff.method is used to_caLculate all the ballis-

~tie properties, i;e;-geS'ﬁelOCity, density, pressure, temperature,

volume fraction of solids end bouadary layer thicknees at each of the

interior points in the axial direction at every time step. For the two

end points, namely the tube ﬂead,end‘end the piston end, the method of

charecteristics is used, The film heat transfer coefficient is obcained
by using Colburn's analogf'oetweenlheat and momentcm transfer. The wall
temperature is alsc completely deiermined'by solving the unsteady heat
conduction equation_for the tube wall with'appropriete bounoary condi-
tions.ﬁ The calculation procedure is repeated until the piston reaches

the end'of the tube.

‘Results are obtained for a set of “standard conditions," for both

of the limiting cases of solids velocity.} Although the final piston

velocity and time of travel are very close in:both cases, the peak

pressure in the case of-stationaryisolid is approximately 10 to 15

- per:cent higher than the corresponding value in the case of moving solids.

There is also a large pressure gradient along the length of the tube and

_at the.peak condition, the tube head end pressure can be 30 to 40 pef

cent highef than the piston base preeeore.
The maximum boundary leyer displacement thickness is less than

three per cent cf the tube radius in thentypical case with the shape

factor equal to 1.2857, i.e, with the one-seventh velocity profile.

,‘nj, T
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Average values of the heat transfer coefficient and heat flux per unit

surface area are found to be 50 kcal/mz—sec—oK and.S0,000 kcal/mz-sec

respectively, The tube inner surface temperature can reach a peak value

of 800—100000 during fhe_fitst operation in an initially col& tube.
The total heat loss to __l-:he tube wall is found to be five to six per:
cent of the input energy and has insignificaut effect on the ballistic
'perfofmance of the device. |

A study of paiameter variation shows that the initial chamber
pressure, i.e. the "piaton'starf pressure,” has little effect on the
‘ballistic éolu£ion. An increaée in propellant charge or piston mass,
or a reduction in initial web th%pknéss of the solids can improve the
'bglligtic efficiency of the_dévi%é; ﬁut thére.ig always an adverse
effect_of Higher peak pressure a&d higher wall témperature which put a
limit on such attempts. Thérefore, é.great deal of judgment and care
is needed-;p-determine the optimum condition for a particular applica-

tion, -




CHAPTER I

INTRODUCTION

Definition of the Problem
Devices which produce ﬁigh pressure in an enclpsed'but expanding
volume by burning combusfible mixfure of gases or solid propellant with
the objective of performing ﬁork are common in practice, Internal

ballistics of these devices, for examplé the problem of the gun, have
been solved experimentally since fourteenth‘ century when gunpowder first
_came intb uge [1]*. But surprisingly éﬁOugh,'an analytical solution
whiéh may be'ﬁsed to accurately predicﬁ the pefforqance of such devices
is yet to come. fhié.lack of a mathematical model compels a designer
‘to choose the comparatively expensive path of experimentation, although
onlf limited information can be obtained from these experiments. More=-

over, a large number-qﬁ-experiﬁents have to be performed before a set

of optimum design parameters can be determined for a particular purpose,

and.étill the final result remains in question as to whether a truly
optimum condition has been achievéd. | -
The problem of_interpal ballistics'requires a modeling of the
.fluid flow phenomena and heat transfer to tﬁe ﬁall inside the expanding
volume, For simplicity, throughout this work we shall restrict bursglves

to the special geometry of a closed cylindrical tube with a sliding piston

*
Number in [ ]refers to the references in Bibliography.
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at one end as shown in Figure 1. The combustible mixture is burnt

" inside the enclosed volume whefeby the preésure is increased and the

piston is set into motion. The products of combustion which flow down

the cyliﬁdef behind the pisten impaft a considerable amount of its

energy to the piston and a'fraétién is lost to the tube wall., This
cools the combustion gases and modifies the pressure and flow conditions.
While heat tfansfer has some effect on the ballistic ﬁrbpertigs,
this is probably'more iﬁportﬁnt with réspect to the material properties
of the tube. Since tﬁe combustion géses are usuglly at a temperéture
of 2000—3QOOOK, after repeated use of the device at high frequency tﬁe
wall temperaﬁure of the tubé ﬁaﬁfféééh'a value highzenough to cause
appreciébie-wear as the piston”éi;iéé-down tﬁe_tube._ A model of heat
transfer,‘which can be used to prediét the wall temperature, will help

a désigner to choose the optimum design parameters thcﬁ will minimize

the erosion rate,

The'pufbose of the preséﬁt research is, therefore, to provide #I
working analytical modél which shall be able to predict all the baliistic
pProperties, namely velocity, pressure, temperaturé and density of the
combustion gas miiture as a fﬁnctiqn of space and time. The ﬁégf;isés;
to the.tube wall shall be c;;sidered and the temperature distribution
at the wall shall be determined. This model will then allow study and

optimization of various parameters without expemsive trial and error

experimentation.
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Related Work

Théoreti;al'soiutions.to the problem of interior ballistics have.
been attempted since the dgys of Lagrange who in 1793 firstltried to.
determine thé spatial distribution of pressufe,'denéity and gas velocity

_ iﬁ the tube at all times after the cbmbustion."The work available until
now can be divided inte two broéd categories: |

1)- Seﬁiempirical solutions which may have practical utility in

the study of fﬁﬁiliér devices,

2) Exact theories which attempt to include the predominate
phehomena up to a certain order of magnitude by formulating a simple

mathematical model of the flow. - - i

Semiempirical Seclutions

- The majdf works in this area with special appliéation'to the
guﬁs ﬁsing'éolid ﬁropellaﬁt are déscribed in references {1] and [2].
The'méin purpdse:of.thése works is to obtain a solution which matches
with the experimental values of ﬁeak chamber pressure and muzzle velocity
of the projecéile. Only a few of ‘the number of sslutioné shall be

discussed here.

'-Isotherﬁal Solution. :fhe solutioh as desgrib;d by Corner_[Z] is
baéed_on the following a;suﬁﬁfiqﬁs;
| 1) The proPellaﬁt stayé in'the-éhémber burﬁing under the tube
head end (breech) piessure and the rate of burning is propoftional to
‘that pressure. |
2) During the period of burning of the:pfopeliant, the progres-
sive cooling of the combustioﬁ gases due to the work donme on ﬁhe projec;

tile can be approximated by taking a mean gas temperature over this time




interval, correspondiﬁé'té“aﬁﬁeffective'mean fdfce éonstant A

3) Uﬁjform gas densi;&.and,liheaf velocity distribution in the
space bet&een the tube head end and pisfon basge. |

4). Resistance to motion of the projectile'can be taken into
account by introducing an increased effective ﬁrojectile mass instead
of actual mass.

5) The covolume n (volume correcting term in the equation of .
state of the combﬁstion gas) is equal to the specific vdlume of the
propelléntlmaterial. - |

The expressions for breéch-preasﬁre P, prqjectile'vélocity v,
and projecfile.distahce ffom_bree¢h face x, are given as a function of

"convenient variable" f, the form:factor &, the force constant 1,

‘burning rate 8, and central ballistic parameter M. The central balliétic

.parameter M itself.ié a fundtionjé ;A?;B; initial mass and web size of

ss, and tube diameter. The form

propellant, effective projectile.u

_ Ol
factor & depends on the geometrical shape of the propellant and the

variable "f" goes from one to zero as the prOpeliant is burnt. Other

‘parameters, hamely Ay M and B are chosen foliowing a trial and ervor

procedure until good agreement is obtained with the experimental values
of peak pressure and muzzle velocity. The solution, however, does not

take into account the heat loss to theltube'wall.

Coppock’s Solution [2]. This is an extension to the isothe;mal
solution described above with the following modificétions:

1)' Instead of taking a mean gas témperéfure during burning, the
analysis takes into account the kinetic energy of the projectile and tha;

of the gases, assuming that the combustion gases are uniform in density

——— e - ——— LR
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between £he breech aﬁd thg projectile and that their veldcity at ahy
point is proportional to the distance from the bféech face, The total
heat loss to the tube_wall up -to a.pﬁyticular instance of time is
assumed to be a certain fraction of the tﬁtal kingﬁic energy of the |
projectile and the gases gt_that inStant. In practice, Fhe effect ofl
heat loss iswincorporatéd.iﬁ.the Energy éaﬁ;fion bf'a proper choice of
y (ratio of specific heats at codgtant pressure and constant voluﬁe).

'2) The gases have a constant covolume 1, not necessarily equal
to the specifiﬁ: volurﬁe of the propellant material.

From the observed peak pressure it is possibie to hack—célcﬁlate
the central ballistic parameter M, and thence the burning rate B,

The soclution is superior to the isothermal solution because there

is only one arbitrary parameter; namely the burning rate #, whose value

" is selected so that the peak pressure matches the experimental data.

Moreover, the model takes into account the heat loss to the tube wall,

though in a crude fashion.

Goldie's Solution [2]. The solution follows Coppock’s_solution

described above with the only modification that the projectile'ié assumed
to be motionless until a "shot-start pressure" is produced.inside the
chamber. If there is any resistance to motion at later timés, the effect
is simulated by a change in effective shot weight.

Aparﬁ'from these solutions, there are sdlutions which attempt to
use a better relationship beﬁween the buriing rate and the corresponding
pressure, But the solutions still need ﬁriél énd error of one or more
variables to match éxperimental data. Besides, there is no gua;antee'

as to how 360d the solutions will be when prediction of performance of




a new device is desired. Also,nd information regarding the ballistic
properties in between the breech face and the projectile is available

from any of these models. Even a recent publication [3] fails to pro-_

vide such informations.

Exact Theories

. As ﬁeﬁtioned éariier, Lagfhﬁge;took tﬁe initiative'to solve the
one—dimensionallp:oblem of interior_ballisticsfin 1793. He introduced
thé "Lagrange approximation" whicﬁ'aSsgmés that ﬁhe gés velocity at any
instant increases linearly with distance aléng the tube, from zero at
the tube head end to the full.projectiie'vélocity at the back of the |
piston. it is further assumea that all.the-propellant charge is in
gaseous form_from the start and at any time the gas density is the same
at all points. It-can be shown from the equation of continuity that if
gas density is independent of position, the velocity distribution is
linear; but the converse is not necessarily true.

In'othgr work, Hugoniot in 1889 used the theorylof waves of
finite amplitude develoﬁed by Riemann in-lB?@,”yﬁgh,;he-aSSumption that
all the propellant was completely burnt whe;itﬁé ﬁistdﬁ began to move.
He followed the resulting wave of rarefactioﬁ on its journey to the

tube head end, The method was extended by Gossot and Liouville to

follow the wave as it travels back tc the pilston after being reflected . .

~ from the tube head end., Finally, Love [4] carried the analysis as far

as the third wave traveling toward the breech and Pidduck [4] applied
Love's solution in the special case of internal ballistics. But all
these solutions, though completely analytical, hold good under two

Important assumptions:




a) Instantaneous comﬁustion.

b) Adiabatic expansion of each element of gas.

The assumptions may be applicablé for the devices which use gaseous fuel
as propellant; say automobile engineé, but for the devices using solid
propellant the assuﬁptions #re'far from the real-situ&tiﬁn. . In this
case, gradual burning of the ptdpellant nust be cﬁnsidered..

Analytical work based on most rgaliétic assumptibhﬁ has been'doné
by Cafriere [5]. For simplicity he assumed the propellant to be station-
ary in the combustion chamber at the time of burning which is a good
assmnptiqn_. for cast propellant in a roc’k_el:-motor. From the basic coﬁ-—'
cept of conservation of-mass, momeﬁtum-and'energy, he derived three
partiai differential equations exp;éssing gas density, gas velocity and
entropy as a function of time and distance. He transforﬁéd those
equations intd;:hrée_ordinary differential equations along three char-
acteristic directions in the time-space co~ordinate. Then with proper
choice of ﬁhe equation of séaté for the combustion gas, he followed whét
is commonly known as the "method of chﬁracteristibé"'to'deterﬁiné.the
gas properties at any time and.position. The effect of frictional losses
and heat loss to the tube wéil were disregarded ih the analysis.

The problem of heat loss to the tﬁﬁg'ﬁéil.ﬁas been studied by
Hicks and Thornhill in England. A fairlj elabo;ateldescription of their
method has been given in both refgreﬁch'[l] ahd-t2]. This work is also
based on the Lagrange approximatiﬁn of linéar veiocify distribution and
uniform gas density in'béfwéeﬁ the bréeﬁﬁ face'and the ﬁistoq.

It can be shown that at high velocity, heat is maiﬁlyaﬁransferred

to the tube wall by convection. It is also evident that a boundary layer

PR




is formed at the inner surface of the tube. The heat tranéfer rate per
unit area through the boundary layer can be given as h(Tg—TS), where h,
Tg and-TS_are the film heat transfefvcoefficient, temperature of the gas;
and temperature of-the inner s#iface of the tube résPectively. All
three quantities depend oun timé.ééuwéli“és:posi;ion.along the tube.
'Hickg and Thormhill cohsi@ereg:thg'flow in the boundary layer
to be the;éame as the flow oﬁer'a.flatfplate. In_intérnal ballistic
applications the flow is in the ﬁurbﬁlent fegion most of the timg.
Therefore, ﬁhey used .the analogy'solutioﬁ; as extended by Von Karman to
cover Prandtl number other than un__’-ity‘,__‘tf:; obtain a relation between ‘the
heat transfer.coefficient h ‘and wall sﬂear_stress Tt To get the wall
shear stress they first found a "best" power law for the velocity profile
(non-dimensionalized with respect to the shear velocity J?;?E) inside
the bﬁundary layer which was capable of giving the local wall shear stress
Tw.within three per cent of the'valug that could be obtained by using

more rigorous logarithmic form of the veiogity profile when applied to

iﬁfeady and uniform flow situations. Then they used the boundary layer

ﬁomentum inﬁegral, including the terms due to ﬁon—steady and non=-uniform
i ) .

ﬁature of the flow, and used the "best" power law found earlier to obtain

-Ehe local wall shear stress at all points. The heat transfer coefficient

h is then easily calculated from the analogy solution., They, howevef,
omittea one Bouﬁdary condition that the boundary layer thickness at the
base of the piston be zero at all times.

The heat transfer in the tube wall ﬁas'been calculated by using
the differential equétion for unsteady heat conduction with Q;opé;

boundary ‘conditions. For the case studied by Hicks and Thormhill, i.e.
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. -the first round of firing from a cold gun, the curvature effect.of the
wall was neglected és the tempefature rise was confined within one
millimeter of the inside surfépe. Consequently, there was no heat loss
from the outer surface of theffdhevwhiCh~remained;at ambient temperature.
The ﬁeat_cbnduction'along the length of the barrel was also neglected,
Knowing tﬁe tube material frepe:tieé; namély thermgl_éonductivity and
diffusivity, it was possible to-oﬁﬁain the temperéfure distribution at
the inner surface of the tufe élbﬁg thé length at éil tiﬁés. The free
stream values of the gas veldcity, densipy and temperature were taken
from the one?dimensional ballistic solution.

It has beeﬁ indicated in reference [2]rthat frictional pressure
“drop is small compafed to the inertia presSure drop needed to accelerate
.the gas. But_no_analysis until now indicate quantitatively the effect
of ékin frittiqn on the ballistic-pfdperties. -Even the heat transfer
solution has not been fed back to study its effect on the one-dimensional

solutien.

. Pregent Investigation

In the light of available theories, it is clear thét a good one-
dimensional sointién is firét required to feplace the Lagfange approxi-
mation, or at least check its validity for the particular.proﬁlem, The
first and most formidable difficulty.in ﬁriting down the one~dimensional
continuity; momentum and energy equations &uring the'burning of the solid
propellant 1s due to the uncertainty of the relative velocity between
the gas phase and the solid phase. It is extremely &ifficult-to'estimate

the drag exerted on the burning solid particles by the accelerating

e o e
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conbustion gases. Therefore, two limiting cases of the solids velocity
.have been considered in the present wofk:
Case I. The solid particles move at the same velocity as the
' gas'phase.

"Case II. The solid particles remain a£ their initial positions

throughout the period of burning.

For boﬁh-cases the coﬁsérvation of mass, momentum and energy
results in four coupled partial differential equations expressing volume
fraction qf solid Vg 838 density pg, gas veleocity U, and pressure P as
a function of axial disfgnce x and time t. The heat release due to
gradual burning of the propéllant.is t;ken iﬁto écc6unt. A special
propellant geometry, namely a hollow cylinder, is considered whereby
the total burning su;fade'remains.constant, although this assumption is
not essential, | | |

" The ballistic properties at the internal points are calcuiated
from these equaﬁibns éffer-writing the same iﬁ3finite différence.form;
But to obtain the properﬁies at the two ends, namely the iube:heqd end
and the piston base, the equatioﬁs ate tfansﬁorﬁed into ordinary differ-
‘ential equations along the characteristic directions, The covolume of
the gas is assumed to be_cﬁnstaﬁt, and experiméntal data for burning
rate is used. As one of the initial conditions, it is assumed that the
pisﬁon does not start until a certain specified pressure is reached
ingide the chamber and théreaftef the piston does not experience any
.resistance to motion.

The boundary layer momentum integral for a'non—steadyé,non—unifdfmg

developing flow inside a tube is derived. The profile shape factor H
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(ratio between the.displacemenﬁ thickness G* and moﬁentum thickness 8)
is introduced-and thé Ludwieg-Tillmann [6]_friction factor is used., As
a first approximation, ﬁhe shape factor is assumed to be constant in
the present work. The flow is in the high Reynolds'number region for
which the.boundary layer thicknesé is small compared to the tube radius.
Il:. is tﬁe'refore legitimate to replacé the free stream values of gas
| deﬁsity and velo'cil:y'-'lsy' the values obtained from the one-dimensional B
solution neglecting the boundafyiia}er't@icknéSS.
. The local heat transfer coefficient h is caicul#ted by using

. Colburn's.analogy.[T]:between heat-éﬁd momeﬁtum ﬁransfer. It covers
Prandtl numbers :_:thér thahl unity and i;s"}siniﬁle to use. The values of
visco;ity and gas'denéify af fh; fiimléémpératdre afe used. The heat
transfer in tﬁe5tube wall is comﬁhtedzfram the unsteady one-dimensional
(radiél) heat conduction equation with appropriate boundary cbuditions;
The Wall.temperature is also found ;s a function 6f axial distance and
~time. | | |

The heat loss term is entered into the one;dimensional energy
equation-ahd a comparison of ballistic propefties ig made with the solu-
tion-Without heat loss. Effect of wall shear stress is also iﬁclu&ed} |
The ballistic efficiency of the pisto?-cylinder arrangement is.compared

by varying different design parameters.
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" CHAPTER II
MATHEMATICAL ANALYSIS

Tﬁe-ﬁéthematical analysis Eonsists of two major parﬁs:

_1) One—dimensionallanalysis with gradual burniqg of the solid
propellant, including ﬁhe effect of heat transfer and skin
friction,

'2) Formulation of the Boﬁndar§ layer problem and determination

: of heat transfer to thg tube wall.
_As outlined in the previqué chapter, the preseﬁt analysis is
carried out for two extreme cases of solia velocity. In the first case,
'it,is'assumed that a burning solid particle moves with the same vélocity
as the combusﬁion éases. In the second case, howe§er, the_solid3parti§1es
are assumed to be stationary at their initial positions th:oughout'thé
period of burning. .Henceforth these two cases are referre& as Case 1

and Case II, respectively.

One-Dimensional Analysis :Includinﬁ

Heat_Transfer and Skin Friction

- Case I-
The assumptions, other than that regarding the solids velocity,

which are made to 31mplify the model are as follows.
1) At any instance of time, the linear speed -of burning r qg

éame for all the solid particles and it is a function of the

oAl



2)

3)

4)

5)

The conservation equations are as follows (for derivation see .
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averagerﬁréssﬁfe in the chamber (space i&-between the tube
head end and the_pistéﬁ base).

The solid propéllants are single pérforated cireular cylin-
ders in shape whereby the total burning surface remains
constant during the whole period of burning.

The burning rate is fast enough to consider that the temper-
ature of the remaining éolids_at any instancé of time remains
constant at the initial temperature.

The propellant materiai is incompressible and its coefficient
of thermalﬂ expansion _izlsl negligible,

The piston starts to move only when the chamber pressure

‘reaches a certain value Po’ and thereafter the resistance to

_its motion iz negligible compared to the pressufehforce

exerted on it by the combustion gases in the chamber,

Appendix A):

Solid continuity:

Gas continuity:

Momentum:

avs Bvs U _ e

ot T T Vs T Ve T 0 (2.1)
W, . (pg=p.)
— B g U _ s .
at + Uax + (l—vs) Ix (l—usi vds (2.2)
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: ' 27 . :
au 3U _ 1 3 “Tw | _
ot + q-ax T T p_3x p. R ' (2‘3)
N m ’
Energy: _ .
~ Dh o pn,
\ 8 - p —B P
VePs TE T (l vg) Pg Dt T Dt
\ b 2,
= ps'(w'-"'B'; - hg’%‘f'd_:s "R T R 2.4)

where ﬁd is the volume rate of decrease of solids per unit cylinder
S : . ) . .
volume and is given by: ’

v .
v, {(x,t) = ( R AL : : (2.5)
. . 0 ‘

The equation of state of the gaé_ ?f

6r,

PG~ =) = R T | (2.6)
] g
g .
where the gas constant Rg is obtained from the ratio of the universal
gas constant Ru and the molecular weight of the gas M.
It Has been shown in Appendix A that under assumptions three and

four as étated eariier, the differential of enthalpy of solids per unit
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mass hs and the differential of enthalpy of gases per unit mass hg'can

" be given by:

dh_ = o ip . (2.?).
{y=np ) | P 1 -
dn_ = 5T dp - ?;:%35;2_dpg . (2.8)

- Substituting equations (2.7) and (2.8) into the energy equation (2.4):
A-v ) A-np ) o (l-va)?P Dp

. _________5__ja_.;_ - _&
(y-1 ‘Dt (=DLp_ Dt

=p (W+—-h_)v
-8 Pg g ds

ST (2.9)
' ']:j::.

v o . De
Using gas continuity, i.e. equation:(2.2) to replace BEE in equation

(2.9) the final form of the energy equation becomes:

(1=v_) (-np ) 'DP yP_ 3U YP(ps?p )

(y-1) bt * To-1) ox - (-1, 6ds
- | 2h |
P N i
B A T S Y

2t U
w

+ o
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Lor, ~
_ : o
P AP 3 » i
— — - r— -
et TG Ya_ Er g O T,1)
ZTQU _ _ '
+.'.EI -_R'_'-‘- - _ (2.10)
where
' vyP . . -
. B = .
I (v )(d-np) (2.11)
& &
'f YB(p ~p ) + (y=L)p_o_ (W + 2= = h )
| c . __E s B (2.12)
o S - {{I—v_)(@-ne )} . )
! | ..pg (1-v ) ( ne o)k
h = o 2.
_: B S G BT Y : o 13)
p 8 g
:
. The initial conditions of the conservation equations are:
é; Position of the piston, LP(G) - Lo
3 '
UG,0 =0 5 B0 =B i TG0 =T, ;
% and v _(x,0) = v at 0 < x < L
i 8 8 R -
i : _ : o
[ ' .
i where P_ is the pressure at which the piston starts to move, and T  is
¥ . | .
ﬂ the explosion temperatutre of the propellant. - By knowing Po'and Tb it
f is possible to determine pg from the equation of state (2.6):
H ' - Yo
|
llh | ;

S —

S o e



b 4 am e

Neglecting the initial mass of air in the chambér,

B = v Vops f (l-vS )Vop

5i o o) &,
or,
(msi/VO)-- p .
Vg T o_=n
° %
(ms /Vo) is called the "loading density."
' i . S : '
The boundary conditions are:
at x = 0, - U(0,t) = 0
and

at x = L ,.
p .
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(2.15)

a mass balance gives:

(2.16)

(2.17)

” U(Lpst)" Up(t)_

The piston velocity Up(t) is obtained from the'equatfbn.of motion

of the. piston, which undér'the assumption'five_tékes-the following form:

au P A .
—L = a =-EF
dt P Mp

The position of the piston is obtained from: -

(2.18)
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| —k =3 ' : {2.19)

The unknowns, and the corresponding eqﬁations from which they

\

can be c¢alculated are listed below:

Unknown . - Equation

Voluﬁé fraction of solids, v, | .Solid“continuity, (2.1)

Gas density, Py | Gas continuity, (2.2) |
Velocity, U - Momentum equation, (2.3)
Pressure, P | :. - Energy equation, (2.10)
Gas temperature, T _ . Equation of state, (2.6)

The conservatidn équations, i.e. (2;1), (2;2); {(2.3) and (2.10) are
written in finite~differenc§'form; #nd.a.numerical scheme which takes
into account Eotﬁ.forward and backward space derivatiVEs are used to
calculate the.correspondiﬁg'unkn&wﬁa,éi;e,.vs, pg, U and P; ét'éll the
intérior p0ints at an advanced time bf knowing the présgnt.vﬁlués at and
around those pointé._ The gas temperature, T, is then calculated from
the equaﬁion of state (2.6); The details of the solution technique
shall bé discussed in Chapﬁér ITI.

The above solution technique, howefér, is not applicable ﬁq the
bouhdary points, i.e. the piSﬁon base end and the tuBé head end, as space
deriﬁétives on both sides of these two pointé_are not available, This
necessitates the transformation of the.conServatibn equations to oréinary
‘differential equations along charadteristic directions, i.e. to foiiow

the "method of characteristics” [8].
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P-U Characte;istic; The"enéfgy equation'tZ.lO) iéﬁ

- 2h
it T U B G Yo B R Tl o)
2TWU
+ EI- R :

ﬂultiplying the momentum equation (2.3) by an arbitrary constant A:

'21 : :
A—S—E + Xp a u-- =~ A -2 . (2,20)

m Bt m x R

Adding equation (2.20) te equation (2.10):

[31’ + (U+}\) ———J + [Ap;n gg + (B, + o U ]

ot
Zh, 3
=G 4.~ B T8
ZTW ] g
el LU ;\J o - (2.21)

To obtain the characteristic directions,'the value of A'shall be such

that:
de . 1. _"m
dx  U+X - BI+}|.me
=. - . ' '
"-1,2 + fBI/pm | (2.22)

Tt
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Dividing equation (2.21) by Vl-i_-(U_-FA)? and using

1 3 .. Q) 3 __d
/AAOT % JrEmZz 0% e

where n corresponds to A; i.e, +ve sign of X
émd’l—;_ corresponds to A, i.e. -ve sign of A

the equation (2.21) becomes:

SO | S S [C\'r
dn,t - "1,2"m dn,k /EL+(U+A). 1 ds
2h1 ' _ 2Tw ;
- EI —R—(T-Tw’i) + T(EIU—}\)J {2.23)
Now,
tnyE = VBT ¥ GOZ = ac VIFGMIZ  (2.264)
Therefore,.al.on'g n~characteristic, i.e... %xE S S :
' U+ vB_/p
I'"m
_ 2,
AP + pm v'BI;pm AU = [lerds - EI X (T-Tw,i)
2TW 1 . _
+—R'.- (EIU - BI/pm)] At | (2..2_5)- :
" and along t-characteristic, i.e. e L,

. S [ R, ——— -
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o | -
+ —-l-,:?- (EU + v’BI/pm)]_ At | (2.26)

P-pg Characteristic, By rearranging equation (2.9)',_

o -
. (1"'11.0 ) . (h - — w) .
—£ + u—E _E....._.....E_. [3 " Ué!_] _|_.(Y---2L)p$p_E g Py

ox (T-v )P Va

Bp
at

(y=l)p. [2h, e
[ . _] (2.27)

b §
* - )vP L R (T-Tw,i) TR

Dividing this equétio'n by Y1+UZ and usilng,

1 3, U_ 2 .4
ot T @

and

Az = V@R FGEIZ = At VIFOZ

dt
dx

along a i:arti.cle path, fJei o— = .:l]-T .

.- PO ' . . - P .
p_(1-np ) (y=Le p_"8 o0
ap = BB Ap+ S B -8 v At
8 1 .(1—\JS)TP

(y-1)p 2h, 27 I | _
T o= i%F_[:' - (T-Tg,10 ~ "§¥” bt - (2.28)
8 LA i _
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v =P

g Characteristic. From\edﬁatidn (2;2):

Ay [P - ¥ (o.-p )
CL P 1 [—3 + Ue=h ] + by (2.29)
.Bx .pé at- x pg ds _

Substituting this ‘expression for ﬁg in solid éontiﬁdlty-(Z.l)z

3
v v v {(1~v )} [f9p 3p° v p +(1=v )p.
.8 _ s s : g s g’ .
=+ U - [_&at + Bx'] +[ o —EJ Ya 0 (2.30)

Proceeding in the same fashion as for the P-pg characteristic, one

obtains: -
Along a particle path, i,e;'§£-=n% '3
v _(1=-v_ ) 0
,ﬂvs = _E_E__E_ ﬂpg - EEE_ @a_ At - (2.31)
B g 5

The-procéddré of solving the above characteristic equaﬁions-are_discussed

in Chapter III.

Case 11

In this case the_solid propellantfpafticles are assumed to be
stationary at their initial positions throughout the period df-burning.
The linear speed of burning Yoo is same for all the solid particles and

is a function of the average pressure in the space between the tube head .

end and the initial position of the piston Lo' The rest of the assumptions -

are the same as those for Case I,
The comservation equations in this case are (See Appendix A for

derivation):




Solid continuity: -

Gas continuityi'-

(psfp ) . e U By

ap 9p : :
—& 4+ p—£ 83U . *____§h o 8
at + 9x * pg PX (1—-\:S vdS + (1-vs) ox .

Momen tum:
LI W S
t Ix £ 9x (;uvs)pg ds (l—vs)pgR
Energy:
Dh . ' 2
_ D ST ) A E o U uye
A-ve, 5o = @ "s_-)m p (W + o * g - b)Y,
o, 2 U
"R ) YR
As none of the solid particles moves beyond Lo’ Gd can be
8
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(2.32)

(2.33)

(2.34i

8

(2.35)

expressed as:

(2.36) -
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The same equation of state, i.e. equation (2,6), is used and by succes-
sive use of equation (2.8) and (2.33) thé'final'fbrm of the energy

equation (2.35) becomes:

- - B0 av
9P 9P au . 11 Vs
5t * Ubx | I 9x | CIIVHS T

1

-2hi . 2'1'wU '
- EII-_ji- (T-Iw’i)'+ B R (2.37)
where
- yP__ ' : :
Bt = ey - (2.38)
g
' 2
P U :
— — -
YP(ps’fg) + (Y*l)pspg(w + g, 2 hs)
Cry = — - ' (2.39)
B 8 § o pg{(l vs)(l npg)} - N
E_ =E (y-1) o S (2.40)

g 7 S =)o)

The initial and bouhdary-conditions are the same as those for Case I,

The characteristic equations are also reqﬁired to calculate the ballistic

properties at the two ends.

P-U Characteristic, The procédure is exactly same as Case I. Hultiplying

the momentum equation (2,34) by an arbitrary conétant A, and adding to

the energy equation (2.37) one obtains:




"
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[ + (U+A) J + [kpg Y + (B +Ang)g£J

_;.C. i+ BIIU avs . pSU. .
II ds (3= s) X (l—vs) 'ds

- 2hi ZTw : 3
- By T, ) (B - ) 26

The characteristic directions are such that:

., | |
pg(l*ﬂpg) *a (2.42)

aus . N
Eradadied : . (2.43)

| B,.U v -
By adding and substracting (1-31)(U+A) Bts on the right hand side of
CME :

equation (2.41):

3P " :
[a: + (U+A)—-—:| [_,, + U+ A)—]
B.. .U v v B._U v
I1 s '8 11 [
Iy [ * (”“)3:?‘] " v, (07) Tt

ir'a_ " (l—v )Y d =By L) YR [EI-IU (1-\)5)]

(2.44)




Dividing equation (2.44) by V1+(U+1)? and using

1 2, _ (k) o _d
AR Z 0t o 0% 9
yields the relation:
o au B0 dy,

CanE T, PganE T ) @) dn,E

N
DSU B, .U

1 .
+ w—{C__~ +
/m[ 11 (1-\:3) (1—vs) (qﬂ)

2h 2T .

i W A
- B (T, )+ (gl - (1—\)3)}]

Therefore, along n—charécteristic, i.e. dx - s ¢

BrpY

@T-v_) (Gra) v

it

ﬂP +p_ a ﬁﬁ
g

p U ' B..U .
8 I1 .
+[°11“'a (1-\J)+(l-v)(U+a)] Vg Bt
_ 8 8 8
2h, 2t
i . W _ a
- EII R (T-Tw’i)ﬁt 4 R [EIIU - ?E:;;T] At
d along E-characteristic, f.e. S& = =i
and along ¢&-characteristic, i.e. ax ~ U-a :

il } vy
8
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(2.45)

(2.46)

Do
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BIIU

AP - )
Pg 2 8 T TS @ s

6 U B._ U .
- S II -
+ [op * N (l—vs)(U_a)] Ya_ ¢

. Zhi . 2t a
- B(T-T, bt + - [EIIU + -(-1:"_37] At (2.47)

P-?ﬁ Characteristic. Using equation (2.8) in equation (2.35), an alter=-

native form of energy equation is:

2 3 1-np )
% it . Eafﬁ_jhaP[BP 3P]

at L) 4 YP ot ax
. 2
o (-1 h = W= = =
_(Y )psag(_g Ay 2)
+ v
(l-ys)yP dS
(v=p [ 2h, - 21 ﬁ}
£ O -V
+ eV [ == (T 'I‘w’i) = . (2.48)

Proceeding in exactly the same manner as for Case I, along a particle

. dt 1,
path, i,e, polal T

P U
S (v=1)p p (h - W - - 3)
e_(l-np.) s'gh g p 2

g YP (l—vs)yP

At

=0

(-D)p- [2h, ZTWUJ | o
T ESYE [T (T-T, ) - & ot (2.49)

e




v, at the piston base is always zero alter the pistoh starts moﬁing and

Ve at the tube head end can be obtained from equation (2.32) alone.

Boundary Layver Analysis

The boundary layer part of the entire analysis did not receive

much attention in the past because of the nonsteady and nonuniform

'{ﬁatﬁré of the free stream flow. The flow is generally in the turbulent

.fegion with.preéaure gradient in the direction of the flow and a' large

temﬁerature difference across the boundary 1ayerf Also, in Case I a
gas-solid mixture flows down the tube; hence the analysis is more
complicated, A number of attempts [9, 10, 11; 12]’héve been made in
the past to modei the'mechanish of ﬁeat transfer in a gas-solid'mixture
wifh various'solid particle sizes and loading ratios (ws/wg). It has
been found that the effect'éflﬁﬁe'sbiids:on ﬁéat transfef is prominent
for ﬁicron—size particles.whereaé_fqr millimeter sizg.the effect is not
appreciable. The present'pfoblem dedls_with.the.éolid ﬁropellant of
millimeter size and most of the time it burns out completely long before
the piston reaches the end.of“ﬁhé tube; It h;s also been found from the
study of Hicks and Thermhill [2] that the'boundary layer thickness is

small compéred to the tube radiuvs. Thetefore, to_simplify the model, it

is assumed that the solids always stay in the core of the flow and never

‘enter iqto the thin boundary layer at the swall,

In the present study, an integral approach is preferred to a
dif ferential approach to keep the model relatively simple anﬁltracehble.
The boundafy layer momentum integral for the nonsteady and nonuniform

compressible flow inside a tube as derived in Appendix B is:

R S
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R )

T [ fp(Um—u)r dr] + T [ fpu(Um-u)r dr:] + fp (U_-u)r dr e
R=& R=4& . - R-6
: ' 2 . 3w . W
8 9P . o o
e = (R - T}[ﬁ teer Y Pela WJ
+ 1R . - (2.50)

. o
Defining § = Displacement thicknesa
and © = Momentum thickness

such that,

prﬁo ' fR'ZTrr dr = prTrr(Um-u)dr
§%.

R=- _ R-§
or,
% 05* K _
008" (1 = 3 = fpr(Um-g)dr (2.51)
R~5 .
and
) R R
pf'u&, f 2rr dr = fp 2rr u(U_-u)dr
R=6 . R=&
or, |
. 2 9 R . - N )
prmRG(.I_ - -Z_E) - fp u r(U_-u)dr | - {(2.52)
R-¢ :
: . . : LA
‘and using the definition of the profile shape factor H = il and for
: 3
A 8 6 . T .
a thin boundary layer: 3R << l., T3 << 1, R << 1, the momentum integral

equation (2.50) becomes, .



in momentum thickness,

‘3

ou -

—[ RHeJ + ——[ U Re] + (0 U RHE)=—

| U U
= RS [31: + Pf 3t prw ?x—'] + TWR

or,

BU _ 9p :

33 oH f 2.96
fURH——-'I- RB?E +prHB-§'E—+URH9'—+prm <

W, ., do, | U
+ 2pr RB—""‘+ u RB—E'}— + pr RHB-a—-—
3U 11
ap a .
= RS ,:'— o st DfUm—a—'-] + T R (2.53)

Dividing equatioﬁ (2.55) by p U RHE :

10, 10m, 1 P 1 We Yoge o2, U Pop U,
69t THOt T, 3t ' p; 9t T Ho ox T HOx ' ogHIx T O%
Y 3U T
__ 8 or o . W
" o U_He [ax""’f 5o+ el 8x] +_prmHB (2.54)

From the stﬁdy of éteady compressible1turbulent'boundary layers by
Reshotko and Tucker [1_3], it is likely that for moderate Mach number

flow encountered in this problem (M < 1.5), the percentage change in

Lom |
ot
90

3t .. As a first approximation, therefore, the

the shape factor, i.e. » is small -comparecl- to the percentage change

H
1
0
shape factor, H, is assumed to be a constant. A more rigorcus apptroach

would be to derive another auxiliary equation, say moment of momentum

M
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1ntegral [14] to obtain an expression for 32.. However, derivation of

such an equation for the nonsteady case is-extrémely complicated and
therefore neglected in the present work.
 For thin boundary layers, Um = U 3 Tm-=:T'_ and the film

temperaturé,

p om ¥l = (2.55)

The gas density at the film temperature, Pgs can be evaluated from the

equation of state (2.6), and the final form is:

T
% -
Pe 5 F T (2.56)
_ [l +np S(TE -_-_.L)] |

Equation (2.54) fihélly becomes:-_

P T 3p ap ..
g __U38 ., _w _ |1 £, U £,1230 H+228U
ot H3x p.UH p. ot p H ox U 3t
. f f P
& 8P au EIU]
fUH P 5t el (2.57)

The initial c'o;i‘dflltion‘i..x‘a: 6(x,0) = 0.

The bound;ry conditiﬁp-at th§ pistdﬁ en§-is*B(Lp,t) = 0, which is
obvious from the fact-phat’all the pérticlgs-at the piston base are at
the full piston ye1qcity ail tﬁe_time.. The condition at the tube head
end shall be estabiishéd lﬁter. | |

it is assumed that the entire flow is in the turbulent regibn

and the wall shear stress can be obtained from the Ludwieg-Tillmann

o mn e — I UL R ——
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friction factor [6], whiéh.ﬁaszaebeloped from a series of experiments
with all types of pressure gradients. The original expression which
holds good for incompfeséible.flowlwith small temperature differences

across the boundary layer is:

T,

_ - w - sr: L da—QB7BH et =0,268
Cf W 0.246 x 10 (_']"m ) (2.58)

In the present work, the expreésion is slightly modified by using

the fluid properties (p, p) at the film temperatufe, Tf, instead of the

free stream temperature, T_, to take into account the effect of property
variation across the boundary lﬁyér. The expressions for local friction

coefficient, Cf, and local shear stress at the tube wall, T2 used in

the present work are:

C, = 24 1 x
(Rea)
(2.59)
Ao UJ 1
T = -
where
p U8

0.123 : f

As ——mr B = (0.268; Re, =
.- 100.678H 8 He

‘Using the above expression for wall shear stress in equation (2.57), and

multiplying equation (2.57) by (1+B)9B :
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”f (i—a)

- (1+B)o [—1— £, 0 £, 130, (H+2) 30

+ = = =
£ at \ pr 9x ) ;p Bt..‘ ﬂ 9x
1 BP 13 au
+ (1"'3) c 9[ b0 3x U a ax] (2.60)
where
o = g¢1B) or, &= o (1+B)
and, (2.61)
5
C B iy
~ At the tube head'énd, U = 0 and the equation (2.60) becomes :
- ap ty . OP
a8 1 %P w %Ps . 1au (w2) U
e o - (14B) 9[;f e T 5 A Bx i T H Bx]-
11 1l au , aU ’
+ (1+B) © C, [pr wTiset ax:l : (2,62)

and at t = 0, © = 0. This implies that at the tube head end, 0, 1.e.
momentum thickness or boundary layer thickness is zero at all times.
The equation (2.60) is applicable to both Case I and 1I for

computing momentum thickness 8, and thence the friction coefficient,
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Cf, at each station in the axial direction at each time step.

" Heat Transfe: Aﬁalysis

- As the flow is in the turbulent region, thelanélogy between tlie
momentum transfer and the heat transfer provides fhe easiest way to
determine the heat transfer coefficient, hi’ at the tube wall., Because
of itﬁ simpliqity;'Colburn's anaIOgy [?] haé been uged for Prandtl

numbers other than unity as follows:

2/3

: C..
_ S
5t Pr 3

by = egle Gh/etd (269

ﬁheréiPr = (EEEIQ. “
The hea% transfer in the tube wall_is_cpﬁéidered as alﬁné-
dimensional (radial) unéteady he;f coﬁdﬁcﬁiﬁu problem.in_a"hollow
cyligdéf: .Lﬁnéitudinal heat conduction is neglected because the tem-
.petagure gfadient in the radial direction is expected to be steeper

by several order of magﬁitude.than in the axial direction, The differ-

ential equation can be written as [15]:

2 .
oT 2 T aT

W w1l w '
at " 52 * '(2°§4)

The boundary conditions zre:
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. _ t ' 3Tw.
at r=R, § =h(T =T, )=k 57|
. , =R
1" . ) aTw .
at r =R, § = hQ(TW.0 =T =~ %57 | . (2.65)
o
at t = 0, jT(r) = Tamb

It 18 possible to solve equation (2.64) numerically and obtain the
temperature at the inner surface of the tube Tw i
b »

the length of the tube at each time step. The local heat transfer rate

at each station along

to the wall per unit surface area is given'by hi(T—Tw i)’ and integrating
4 »

over the entire surface and the time, the total heat tramsfer to the:

tube wall can be_détermined. The wvalues of local wall shear stress T

as

heat transfer cOefficient'hi,'and inner surface temperature Tw i
' . . ’

calculated from (2.59), (2.63) and (2.64) are used in the one-dimensional’

analysis for the subsequent time step.

Non-dimensionalization

Before proceeding to the solution technique that can be.applied
to solve the-eéuations derived so far, it is ﬁdvantageous to non-
dimensionaliie the equations to obtain a general solution for the geo-
metrically similar devices with the same initial conditioms, .The non=-
dimenéipnalized parameters are: |

Axial distaﬁce,_ %! = =

Pressure, P’ =

[
b
]

La-
o

Temperature, B T/TD

Selscav.aw 53T

—a |



Density, : p' = p/p _
g, o
Velocity, U' = y/u U =P /Jp
. U t° ° ° &
0
Time, : t' = —
L . 1
t
. Linear speed of '
. et =
burning, Ty rb[Uc

It can be noted that:

S '
dg Lo | ar R L, 4
jﬁ B dx'
8
8]
L IF s
Po P'(y npgopg) Po
Bg ' " -1 o P
P p!(y-
8 g, 8 - g,
t RT Pe P
W =—ELo = 0 o _0 =--9-— w"
(yv=1) ¢ P (y-1) p
g0 ¢ gO

IR S ves2 1
o - Apgl (Res)B L ApfU (Ree)B -

' and, np ig a constant non-dimensional quahtity.

Finally, non-dimensional form of the conservation equations are:

Case 1

Continuity of sblids:

a-u . av _. T e
8 t S S * 1o
5e7 T UV sxt ¥ V% o + ?ds 0

Continuity of gases:

e——— e e— B L T TP, E— . e el r——— —_——
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(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

- (2.71)




] * - ’ .t ._
ap +U' EL p BU' - (ps pg-l‘} '
ot! ax! (1-v ) ax' 1-v ) ds
Momentum:?
: 2
. . BRIt
FUARN | LN W LN S
ot' T ax!' p ' oax’ 1 pm' (Re )P
Energy:
sR' P! BUY e
5er T U e T BT = G Va,
. 1U!3
- DZ'E'hi(T-T ) + Dl E'—f—
(Re, )P
~ where,
B e RI¢ Srurne)
: -VS -npgopg
. P
: +3—-Hh
YR (p_"mp ")+ (y-1)p 'p OH P g
c.! = 1 S _ B 3}
I ' " (Lmv i- !
oy (. vd ( nagopg )
El - )(I-l) ')
: 1- -
{ Vg { npgopg
L
e
| P
D, 2A(R )
L

v .t J
D," = 2(3 ) PU
[a )

[

s

(2.72)

_(2.?3)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

s ————




Equation of state:

1-np ")
. o ( nﬂgopg
T' = 7
p (1-np_ )
g 8o
Characteristic equations:
' dt' _ 1

- Along n','E' ¢characteristic, i.e. ’

v tlf_'__-t T t = LE A | - Tt - *
AP' #* P BI }pm Al CI \Z At D2 E hi(T '1‘w i)At

s

. o o 'U'2=

1 . I m B

(Rey)
. ' : - t .
__Along_a particle path, i;e_”%if ?'%T ,
o : ' o [ O=De,t '
T - ] t [ JE] . .

Aog = G' AP _+ Hy vds at' + D, (1-VS)YP ) hi(T Tw’i)At

[ (y-L)p * Jp 'ur3
-Dn."' ;
1 (luus)vP i (Ree)B

where,

o o g g, 8
ye'
- . Pl
Rt W - =)
"'l i ] '( p
e (v )pS Py 8 s
T _(l-VS)YP'

.3?

(2.80)

(2.81)

(2.82)

irilm, J— _




40

. 1
- Again along a particle path, i.e.‘%ET =‘%T s
v_(1-v_) p !
3 s . )
_A\)s - '—'—5—}—'— Apg - E—T Vd At . (2.85)
éésﬂ§1i=' 
Continuity of solids:
—+ v, '=10 o ' (2.86)
at ds .
Continuity of gases:
3p " 3p,_ ! N G- TR p U dv
- u __"s . g
et U T Ppax T vy vd, TS (2.87)
- Momentum:
5
: . o Ayt 'yt
CUARSNS VAN ) v s " -p. eV
at’ ax" "pg';ag‘f Ilﬁﬁs)qgﬁ a0 1 (1-?3)08'(Re3)3
Enérgy: o
o | B :Ui v
P! ,OP! 1A va b 11 8
BT TURME - 3 T S AT 6 =
tpt _ : th_ -
- - D,JE'R (T Iw,i) + Dy "B (2.89)
2t ) ) (Ree)
where,

(2.88)
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_ . YP' .

0 S =) (2.90)

: 8, 8

P' .U
: '4++—4+——-0'

c ) YE (o "=p,") + (y=Lo e o P’ 2 hg )

S YIT e {{d-v Y([d-np K
pg( s)( npgopg )1 |
(2.91)

E', Dl',-aﬁd Dé' are given by eqﬁations_(2;7?),_(2.78),'(2.?9), respec—

tively. The equation of state for the'gas is also same as equation

(2.80),
Characteristic equations: - b
AiOng n', &' characteristit, L.e. de! R
» g s, lsie. o e .
BT -
- L T -
: . B .l'-ut
o't VB /ey AU = = by

RCERICIE I B

1y
11V

' j'x‘rd TAL?
'(1-vs)(U'1VEII'/pg') 8

o lut B

SR T &
+'[CII B/, -~y *

- e _ ' '
| D2 E hi(T Tw’i)ﬁt

T e
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' ' ' (v-1)p _
A ' TOAPY | -] L] LI LI IR - ._ : '
pg G \ P HII Vds At D [ hi(? Tw’i)&t

2 (l-vs)yP'
. ' 3 . . .
[ (y=1)p p 'U'
- D' | | B At - (2.93)
— 71 | {1-v )yP B
s . (Ree) .
where .
2
.P' .Ul _
' (Y-l)ps'pg' (h,* - Wt - o " "__2_) _ : .

Boundary Layer Eguation _"'

' Using the non—dihedsiedal?méméntuﬁ ?hickness, 6! ='% and all
the non-dimensionalized parametéiszlisied in (2.66), the boundary layer

equation (2.6Q) beéomé#:

o s L o hg o By QoB)
50" u' 29" £ By |
3eY - T H ax' T (1+B) ( )(p T R) b B

2]

ap " | '
1 £! i £ 1 3o H+2 3U!
- " ' + + = LA el
(1+B)@ [:pf' at!t pf'H ax* TR * R '

: . 1 ] A 1 su'  aU!
+ (1+B)cle [—-—pf,u, T + T |---—-x, (2.95)
where
L _
ol ='Bﬁ(1+B) or ot ='O'1+B (2.96)
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Now U', pg' and P' are taken from the one-dimensional seolution

and-pf' is obtained from the non-dimensional form of equation (2.56),.

i.e.:

(T%T _-)pg'

L - Wpl @ .

& [1_+n.o p '(ﬁ%T - 1)] 2.97)
& 5 w,1

L

e e i D =g o
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CHAPTER III

SOLUTION PROCEDURE

Solution of Interior Points
As ‘there is no analytical solution to the set of coupled non-
linear partial differentiallequat;oﬁs deriVé& in the-preﬁious chapter,

numerical techniqués have been used “t¢ solve the conservation equations

; ' of state qf the combustion gas. --'l_:he_:-- diL’ff:erential equations are written_
i ' in finite differenée form and Macéd:ﬁack's version [16] of Lax-Wendroff
two step method :[17] 1s followed. The procedure is shown by an example
I - below: . |

Let,

Ju - au o
TS -C v | , (3.1)
wﬁere c.is ‘a constant. :
Equation (3.1) can be written as, ?
-n+1 _.n. At n n
uj -uj ¢ T (uj+l uj)
h | b Ax h| j-1 _
(3.2)

and finally, .

un+1 =1 [agﬂl + 331+1:| _

il . Rl v e —— e [ P T

along with ‘the. boundary layer momentum integ'ral. equation and the equation




5 =14 . . -+
where un+1 and un 1 are the first and second estimated value of us 1.

i 3 3

The integer n, and j demote the time and axial position of a nodal point

n+l

shown in Figure 2. If cis a variable, i.e. c(u), c(u) is used in

the:sécond'estimation of u +l. It can be recognized that both forward

]

and backward space derivatives have been taken into account,

Case 1

Using the MacCormack scheﬁe; the non-dimenéion31ized conservation

.

equations,-i.e. (2.71) through (2.74) can be written as:

~ ol _ o nAt' ., n n n n n
v -’ v = v ) - v (U' -u')
sj sj 3 E;c'g Sj+1 sj_ j Ax j+1 3
- I n
" J
~ bl R0 oAt 1 e
=p U (v -0
g 4 8 Joxy TE g4y By
'og'n CH .
- A2 W urh) +—-——-J—[ t' (3.4
‘1““sn) Axé jHLT (1_v J
h|
~yntl yT AL oy i
Uj -U'1 urjax(.)(uj_k1 Uj)
1 ac' n 0y n,. ., '
_T nx; (P' 4" F j) U.LFj At | (3.5)
y _

.



can.be

P

[ o+l

.j{ Unkrown Layer

lacr
t
I .

Known Layer

“ J IR

| R -

‘—Ax vhax '~|
ol o

- ﬂ Lt
o

L

Figure 2, 1Numerical Scheme for Interior Points

' l a+l 2°

At!

T T ] T
Z . T

) - ¥
_E characderistif_ fﬂxd4

. .'L" . -

Figure 3, - Scheme for End Points.

Hl

U [ - e - a . -

46

)/ Piston Path

characteristic
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Thus, for all the modal poihts (except the last point adjacent to the.

'piston base) the first estimafion’regérding'the ballistic-prOperties_

properties at the point of interest and at its forward nodal point. The

!
? ~ after a time increment At' is made by knowing the presént values of the
E second estimation 1is doﬁe as follows:

| | -

!

cmenFl _ yn .n At' oyn ,n!; ,'n &t % U ,n.
P 3 = P § - U 3 Ax' (P 41 -P j) BI ) U (U 41 U J)
P D ey Ty oy By oA Ty
+ CI ; vds At E j D2 q p At
' 3
+ E''™ poF T ag? - - (3.6)
R, | j :
| ﬁhe;e,
f )
- b, vz : - . :
s s P Py dx’ -
. I . . 8
! . o
i M gmo | . ' '
f .
o .2
| | | gl 1 |
¢ . U]-IF = Di ¥ B . . . (3.9)
" : °n (Re.) - '
' 8
p'U'3 _ . _ : .
PGF = ni' £ = ' _ _ {3.10)
7 (Re,) :
8




3;14'1 - \’sn _ ﬁ';ﬁl i;' ({',Sn'i'l._gstﬁ'l)
3 ' o i j=1
- ~ I'H“l it' (U‘n+l U,I‘H'l) - '\.F [] n At'
3-1 d
jo o &
J
~ 1
pém )
j-1
y_~entl
. o O P )
- 4. At (Un+l U,1:1.-!-1 + : »
(l—G n+1) &x j-1 (1-3 n&l) vds
. s
. %3 h|
) _
2 ool n ~ 1+l At! o+l n+l, -
e =y, - Ut u' - v’
3 3T Axg e @ j 3-1
_ 1 A" mentl =gkl n,.
Py ax (p y P 3-1) ULF j At
™3
%,n+l < pth_ ~ o+l At At' ,n+l = o+l
3 p* j U 3 &x (P P 3= 1)
- ALY o~ '
- B oL AEL el '“"'l) PR AL AR
j Xo ki i-1 Ij . .8
h|
- ol L e n ——— i n
o g Wlpy g Toaer + EY T BGF At
! 3 2 %3 - 3
and finally,
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(3.1

(3.13

(3.14)

(3.15)
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p1 ™ =1~s[6;‘“+a;’“] (3.16)
h i h
gt =li[fi'“+1+f’1"‘+1 (3.17)
3 i .
o+l ntl n+1_
p' - P’ .|.p' 3,18
E -“[ 3ty (.18
From the equaﬁioﬁ oé state (2.80):
Lt Qeme, ot
n+l' P_'] So gJ )
T' = = g (3019)
S o1l (l-npg)
E. o

J

Similarly;tto calculate the momentum thickness at a nodal point after
increment At', equation (2.95) is written as:

. Uin Uln( ) o
érn-l'l. . e,n _ __ﬁl é__ (6' elljl]} + D! [ j] — ALt

i i AX j+1 73 I:p-%ﬁ] B
. 3

' : ' . 1ﬁ )
- (14B) 6'? = (o'n+l '“) + _JE i‘; (p - 0™
. Ps £ Hog o fie1
- LTE . _ § | .
(l;cl) ol I H+2 Ae' . .n ;n
-I-—F u', Uj) + (== 1]’ a’.\x' ;U j+1Uj)]
o _
. cl r . . . ~
+ (1+B) e'“ . AL (p® pt™y (3.20)

tnut ﬂxo' jr hi




50

-whepe
n
A e ‘e,
' = ] ]
D} = (B)FES) ) (3.21)
g ©
o
taking
Tf m
He. = H (—) 3 (3‘22)
£ -3 T0

m being a suitable constant.

The densities pfn and pf ohl

ave calculated from equation (2,97)

3
with the assumption, :
‘AI:' n+1. o n
) = &)
f £,
b 3
agéin; :
' ' . L  (1-B)
~ kL - (@t
:"ﬂ"l‘l = |n - B At' "'l'l“'l 'n+l ] i [ ]
ej aj ———j—H "y (G:I E}jl)+D3 TSN At
o (Pf )
3
: : ~antl
~ o+ ' = n+l At +1 +1
- @) 8T e ™ - o ¢ =L i Gy~ ™
B D S h| Hog o j j-1
k| ] :
. (A-C,) . |
1’ %, ntl o H+2 = ontl ,n+l
+ e (U j -U ) + {— cl} ﬂ AL (U -U 1)
k|
" (143) 5ritl € At' oymHl P,n+1) | 1(3 23)
. 3 ,n+1U nt+l ﬁx j .
Pe. ' ‘
3 h|

% .
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finally,
¢IFl = i yortl 2yl : ' ' .
o'y %[éj .+ o'y } : (3.24)
and, ’
T (1+B)
. _9,3&1 - (@'?-1] - | (3.25)

' _ o o+ '
The heat transfer coefficient after time At', hin 1 can be calculated .

i

using equation (2.59) and (2.63). The new inner surface temperature

Tw in+l is obtained from the solution'of'equation'(2.64) using the mean
1 ]

_ heat transfer coefficient,

h.n +.h n+l

1, i
h = __;LTE__;L-

m

The same pfocedure is followed for Case IIL startiné'with appfo—

priate conservation equations, namely Equations (2.86) through {(2.89),

same equation of state (2.80) and boundary layer momentum equation (2.95).
The only points of differences areé: (1) no solid particles beyond L;
and (2) the burning rate T, is chosen corresﬁonding to the average

preséure in the space between the tubé head end and Lo’

Solution for Boundary Foints

It has been stated earlier that to calculate the ballistic proper-

ties at the tube head end and at the piston base end, one needs the

characterisﬁic equations., Typical Charatteristic directions are shown

in Figure 3. Let, at any time t', the piston be at position 1 with

A
B

[ & BT R [T [ R

S | O S S Lol
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ﬁelocity U; 1 Its pasition.and vélocity after time At' can be ¢alcu-
lated by using equations (2.18) and (2.19) as follows:

i

Ul = U+ 3 (a At

P2 psl UL (2 40)
and - ,-

1 2] - _

ALY = At + 2 - |

Lp_ 1 [UP’]_ . a (at) ] | _ (3.26)
where,

P A _
ap = -MMP (P , is mean of Pl _an_d P2)

Then the n'-~characteristic is traced back using the appfopriate expres—

sion:

for Case I: ax' = (U'+¢B{7p$) At
(3.27)

for Cage II: Ax' = (U'+/§;;7E;T At'

The point X is thus determined and all the properties are interpolated
between the nodal points in each side. Pressure at point 2.15 calculated

By applying equation (2.81) for Case I, and.equation (2.92) for Case 1I,

(U _-Ut) + C! vl oat!

'
for Case I, P2 P,270x I ds

R . L £ o
- Nt " ] ¥ v _fprgor | A t
D2E hi(T Tw,i)&t + Dl [% U {Bllpm] B At
. (Ree)

(3.28)

—




P! =

for Case II, 2

o+

- | ' .
PR +-[CII v}/

The gas density and
are determined from
follows:

for Case I and II;

' -t tpi_ply 4 g! .
pg,2 p + G (Pz Pl) + H

for Case I,

Vo =y 4

for Case II,

53 -

'_!l/l_-?i [ Y
PX pg BII_pg (Up,Z UX)

i'- :
BIIU

- - v L)
(1—vs)(u'+JE§;75;j' 8,2 8,X

B F T | ' . Y IRy | .

_ Pl BV : . s

P 1) + : _ v, At
B A @WELD |

tor _ v r.cr_ 1 W ¥
DiE"hy (T-T, ,)4t' + D} [E.U a0 JBII/Qg:]

2
LEER]
pr At

(Re,)

(3.29)

volume fraction of solids at the new base point 2

characteristic equations along a particle path as

'oate! 3.30
g,1 I,II"d3 (3.30)
'--\J. (1=v ) ’ .'p' ; oo
£L__5 LI - = v A 3.31
pé (pg,z g,l) "pé _Vds ( )
v, =0 | O (3.32)

’ -
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For both points l and 2 the momentum thickness is zero, which implies
that both friction factor and film heat transfer coefficient at point

1 and 2 are infinitely 1arge.' Therefore, the last two terms of

' equations (2.82) and (2.93) have been deleted while writing the

enuation (3.30), For the same reason, in equations (3.28) and (3 29)
. tul
the values for h'(T—T ) and ?g——jg- are taken corresponding to the

W,l

. nodal point adjacent to the first base point 1. All the coefficients

used in equations (3.2?)_through (3.31) are mean values between point
2 and X or point 2 and 1 depending on the characteristic used. The
prOpertiee at point 2 cre first assumed to'be.the same as point 1 and
then iteration is carried on until the valnes converge within the
3pec1fied llmit.

For the tube head end,

' =
Upe = Us

=0 | | (3.33)

and the momentum thickness and heat transfer coefficient are also zero.

- The £'—charactefistic is traced by using,
for Case I: Ax' = (U'—#Bi?pé} ac’
for Case II: AX' = (U'-VB ) At?

By knowing the properties at X' and 1', properties at point 2' are
obtained in the following manner:

Case 1

(3.34)

hapras
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pt = pt . _t__l‘/ T B Y £ 01 & Y Art - DIET 1 _ 1
Py = Py ol BI/pm o UX..) +Cy vds_. At DJE' h (T Tw’i)z‘.\t

H . .; : = 2 .

. . pluT S - :
+ D} [E"U' + /B_i'?EIJ £ = AT | (.
s - (Rey) |
: R =t + Gt' pt _ P! + H 4. ' oae' .
- Pg2t TP T o - 1) * 8 "ds. -G

vs(l-va)

g - 8 8

Case II
B"U'
. I1 -
PL, = B!y + o'VBT Jpo! (0-UL,) + . (Vo 5=V, 14)
: 8 Il'"g _
. - . D'U‘ ' B! Ul
+ l:ch '+-¢B{I/p' (i-—v 3 + 13 — 'd ' oAt
_ g s (1-v) (U'—/Bi-ITp;)' s

-D

i r- _ ' ' * l _
ZE_ hi(_T Tw’i)l.‘.t + Dl [E Ut +

and from .(2‘. 86),

") =y - %, ¥V oac! (3.

35)

36)

_ 1 .
_ - ; ' ! oy o M o. '
v t Us,l' + —— (pg,z' pg’ll) - Vd At _ (3.37)

39)

The expression for pé 2t is obtained by replacing Hi by HiI in e'quation
»

(3.36). _ o

. 1Tl I e L —_

S —




56

The iteration procedure for the tube head end i3 the same as
that for the piston base end stated earlier.

The properties at the nodal point(s) adjacent to the base point

(shown by * in Figure 3), which camnot be calculated from the Lax-Wendroff

mgthod.éré determined by linear interpolafion betﬁeen the piston base
pdiﬁt and_the néarest point where properties ha§e been calculated-from
the Lax~Wendroff method.

It is noted that the spatial interval hx; is fixed for the entire
solution and can be chosen arbitrarily depending upon the desired

accuracy. But, for the stability of the Law-Wendroff solution, the time

interval At' must be chosen such that %ET nowhere exceeds the slope of

any characteristic [17]° This implies that at every time step,

Ax!
At’! i——g-—-—- for Case I
L] J []
. |u ]—h’ﬁ!I/pm _
, (3.40)
: Ax _ .
At' < > ' for Case II

o [+/BT 70T

11’9

Thefefore, before selecting a new time intéfval, the right hand side of
(3.40) is calculated at each nodal point (including the end points) and

then the lowest walue is chosen as the next time step.

Determination of Wall Température-

The differential equation (2.64) in finite difference form_cén-

be written as (see Figure 4 for notations):

ST
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-l n 21 ™ o

n+l n-
Tayi = Ry B R o T o i R % 1 W
At . w (Ar)2 rj 2hr
or,
Tn+1- - [1 B Zaw&t Tn_ . Zawﬁt !i N -A_r J Tn | :
w,j, . (ﬁr)z W, (ﬂr)z 4rj W,y i+l
20 At o ' : ' .
W Ar n
+ ¥ iy A o (3.41)
_ (Ar)z [ 4:& J Wwyj=1 o ) )

Therefore, the .temperatura a;t. any interior point 111 the .t'ube wall af ter
a time interval At can be calculated from thé knowledge of present tem—
peratﬁres at and around the pdint_of interest. For boundary points,
 howéver,-5 heat balance as described below is required: |

Inner Surface: With reference to the Pigure 5:

Ar T4 ’ ' A T
2R 7 PuCe 3T 2R hi(Tw Tw,i) 2ﬂ(R+§—)(-nwar
paR4+EL
2
or,
ST .. %h - | 2 o 5T
L 7Y S | _ w Ar. W
at p ¢ _Ar (Tm Tw,i) + ¢ c R AT (® + 2 ) or
oW wow .

T T
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In finite difference form,

h Ar . Ar

ntl T 20 At n
T = - - +i1+=||T
W, j [ (ﬁr)z Ky 2R } w,l
2o At .h Ar " 2uwﬁt Ar. n
o+ (—) T +——= (L +32) T _ (3.,42)
o (&r)z KW | (&r)2 2R Tw,itl f
Similarly,.fbf-the cuter surface,
n+1 Zawﬂt hoar b ) n
T. = [1-~- -+ 1 - o T
W50 (&r)z K ZRb Ww,0
20 At h Ar 23 At '
_ W fa) _Ax n
+ 2 ( K ) Tamb + 2 a ZRo) Tw,o-l (3.43)

(A1) W (A1)

The stability-conditions [18, 19] for the equations (3.41) through (3.43)

are, respectively:

. 2 : .
o
at s —8E (3.45)
m Ar
20 [ X + 1 + 23]
and B
2
At < h(ﬁi) (3.46)
[s) AT .
2a [ X + 1 - Eﬁ:}

b Tl s
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Very small values of Ar (0.05 millimeter) are takén, and the selected

At is the least of the values calculated from the right hand side of

(3.44), (3.45), and (3.46),
I'For a thick wall and initially cold tube, the temperature wave

does not generally reach the outer surface and, therefore, equation

(3.43) can be disregarded.

Summary of the Procedure

Once the piston~cylinder arrangement, the initial conditions and
all other input parameters are chosen, the solution proceeds according

to the foilowing steps:

1) The time interval At' is determined in accordance with
expression (3,40) and.thé burning rate is taken corresponding to the
average burning pressure,

_ 2) The neﬁ'piston positioh and its velocity are calculated,
and using the appropriate characteristic equéfions as indicated earlier

the new ballistic properties at both'the piston base end and the tube

head end are determined.

3) The intefior pointé are solved either by the Lax~Wendroff

method or by linear interpolation as discussed earlier,

- 4) The netheaf transfer coefficient is determined from the new.
ballistdic prdpertieS'and the momentum thickness at all the nodal points.

The new wall temperature is also calculated usihg the mean headt transfer

‘coefficient,

5) All the.calculated valueé*are-storedﬁas’the present values

and reused for the next time step.
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Thus the solution proceeds until the piston reaches the desired :
position. A computer prograﬁ'fo: the entire.éold:ion.procedure was

written in FORTRAN V and was run to obtain all of the results presehted

in the following chapger{- Thé_flow chart for'tﬁefprdgram has been

shown in Appendix C. The computation time is approximately four minutes

for the typical cases run in UNIVAC 1108 machine.
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CHAPTER IV

RESULTS AND DISCUSSION

Standard Conditions

- A set of realistic, but somewhat arbitrary, conditions is chosen

{Iathhe input data to the computer program, and results are obtained

'fqr both cases of solid velocities. These conditions will be referred

to as "standafd conditions.," They are:

Tube leagth, Lt _ ‘2 m
Tube inside diameter, D 3 cm
Piston mass, Mp | 0.326 kg

Initial conditions:

Piston position, L_ 25 cm.
Chamber pressure (piston
start pressure), P0 - 200 atm
Gas temperature (explosion o .
temperature}, To_ 3000°K
Charge of propellant, m 0.172 kg
i .

Propellant properties:.

Density, GO 1670 K;g/m3

Initial web thickness, w, 0,711 mm

Type: | | 'H? | M-10, single perforated -
Gas properties: |

Mqlegulaf weight, M o Y

Ratio of specific heats, y . 1,252

T o ———
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Covolume,'ﬁ : _ 0.,00095 m3/kg.
Specific heat at constant - _ o

pressure, c? 0.412 kecal/kg- K
Vigcosity (at BOOOOK), ug .0.00007_kg/m—sec

o

.Therma% conductivity (at . o

3000°L), ;% ) 0.000034 kcal/m=sec- K

' o .
Tube material properties:

Thermal diffusivity, dw 0.126 cmzfsec
Thermal conductivity,w:'w © 0.0138 keal/m-sec-CK
Initial tube temperature, : o

T ' 3007K

amb

' The initial gas density % as calculated from equation (2.15) is
o . : _
19.14 kg/m3 and the potential of the propellant is:

RT
W= -(-5_—%)— =~ 985,66 keal/kg

The burning rate versus pressure data for the'propellant has
been taken from reference [20] and is presentgdfin Table'i. Linear
interpolation is used to determine the burhing rate at the desired
pressure, To ensufe.thé_coﬁvergence oflthe éblufion, a siﬁgle itérAtion
‘on the Burninngate"is perfofmed in each.tiﬁe stép as shown in the flow
diagram in Appendix C. |

For Case 1, the solid particles are initially assumed to be
.avenly diétributed-in the chamber., But, iﬁ Case II, a specific iniﬁial
distfibut;op, namely a constant value up to the second nodal point from
.the piston ﬁnd then linearly to zero at the piston Base,'is chosen to
avoid the discontinuity at xequal to Lo' This has been shown in Figuré'

6.

I e ITIAT
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Table 1. Pressure vs Burning Rate Data for the Propellant,

Pressure X 10 ° Burﬁing rate, r,
. I*lem't:or:L/m2 " _ m/sec
20,68 o 0.00330
34,46 | 0.00508
48.25  o.00711
68.93 = 0.00965
103.39 - ~0.01320
137.86 - 0.01727
172.32  0.02057
206,78 | 0.02438
275.71 - . 0.03048
‘34b.6k - 6.03683I
413,57 | 0.04369
551,43 0.05588
689.28  0.06858
1378.57 ' © 0.11684
2067.86 0.17018
275714 © 0.21082
446,43 0.24384
4825.00 | . 0.30988.
6892.86.‘ - ' 0.40132
13785.71 . - . 0.63500
4
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o and shape factor, H=L<
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1
The general power-law velocity profile, i, e.-a— = (lb yields
- -
the following relatlonships [21].
8 _ o .8 (o¥D)(@+2) |
Gewn g feRED @

nﬂ2
.

The one-seventh profile has bééﬁ used quite extensively in the past to

cdmpute the turbulent boundqry.layers with favorable pressure gradients
[22, 23]. The same.érofile is assumed under the "standard conditions"
and the cdrresponding value for the shape factor, i.e. 1.2857, is taken
for the boundary layer computation,

The viscosity Qf the combustion gas is assumed to be.proporfional

to the square root of the absolute temperature which implies that the

‘value of m in (3.22) is 0.5. The same relation is assumed between the

gas conductivity and its absoiute temperature. These yield a constant
value of 0.8482 for the Prandtl number of the gas.

One~Dimensional Solution

Case I. The results of the one~dimensional énalysis.have been

presented in Figures 7 through 14, Comparison with the solution neglecting

the heat transfer and skin friction shows insignificant effect of these
phenomena on the ballistic properties of the piston—cylinder arréngement.
But the following observations can be made from these results:

1) The Lagrange appfoximation of linear velocity distribution

and constant gas density is not a good approximation of the real situation,

It can be noted from Figure 10 that a considerable amount of time o
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{(approximately one~third of the tofal ﬁimg) is elapsed before the
velocity distribution aiqng:the length of tﬁe tube becomes linear.
The gas density, on thé other hand; has always a drooping character-
istic from the breech end go the piston basé éﬁé (Figure 9 and 13).
The same characteristic is observed for the volume fraction of solids,
v, (Figﬁre 14). |

2) The gas pressure varias-considerébiy aldng the 1éngth of
the tube, and at the peak pressure, the.differencé betwgen.the pressdres
at the two ends is as high as 20 per cent of the breech pressﬁre
{Figures é and 11), The heat transfer to the tﬁbe wéll reduces the-
pressure at all points, whereas the skin frictian reduces the piston

base pressure as the piston reaches the end of the tube., These two

. effects together reduce the final piston velocity to some extent.

3). The gas temperéfﬁréé at:thq'bréééh ana.the piston base are
of the same vg;ue_all the time:except fqr.g,shbrﬁ period in the beginning
(Figure 9). There.is, howeﬁer! a sag in.betéeen the tﬁo end points due
to the heat loss to the tube wall (Figure 12).

Case II. Siﬁilar results for Casé.II.h;ve been presented in
Figures 15 through 21. A‘compérison with Case I reveals that the finai
valueszof piston velocity and total time of travel do not.differ much
from those in Case I. But the peak breech pressure can be 10-15 per

cent higher than the corresponding pressure in Case I. This causes the'

~ propellant to'burn faster. The piston base pressure, however, remains

very close to the corresponding pressure in Case I except for a short

period towards the end, This accounts for the slight variation in the

final piston velocity between the two cases.

e
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A cduple of interggtfhg phéﬁdmena are observed in this case of
stationafy golids:
1) Just after the propellant is cpmpléteiy'burnt, the breech

pressure falls rapidly and finélly becomes less than the piston base

 pressure. The -same pﬁéhoheﬁoﬁfwas;alsb:oBsérved by Carriere [5].

This happens because of the fac;_;hat all the solid particles are assumed

to stay near the breech eénd all the time, whereas there are no solids.
at the piston base, Therefore, when thé.soiids_are completely bﬁrnt,
no sudden change in the pressure slope occurs at the piston base as it
is obsér\ze,.d' at the b.reec..h.

2) Dﬁg to the fapid change_in the voiume fraction of solids v;
near X equal t6 Lo, a pressufe &iffétence sufficient to produce a local
gas.velocity-higher than the piston velocity is created (Figure 17).
The gas having higher veleocity slams at. the back of the piston and thus
increasés the'tembératﬁre (Figﬁre 19). But this large temperaturé rise

is confined within a fhin-layer at the piston base and does not affect

'the;rést of the gas. The oscillations observed in Figures 19 and 20

are not due to the nuﬁérical instability, but most probabiy due to the

‘sudden area change near x equal to L,»

‘Boundary Layer and Heat Transfer Solution

The résults showing the boundary'iayerjthickness, heat_transfer
coefficient, and thé wall temperature for moviné solids, i.e. Case I,
are presented in Figures 22 through 27. As the time increases, tbe
boundary léyer thickness increases to a maximum value of apprbximately .
20 per cent of the.tﬁbe ra&ius when the piétqh'reaches the end of the .

tube., This implieé that the maximum value of the displacement thickness

»

— e L - T . e = 4 e o—e o -

[ H e e e mm—— [ - — -
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is less than three per cent of the tube radius and, therefore, the

" 27y, ‘The total time is so short that in spite of a very steep radial :

90

assumption of a thin boundary layer is valid.

' The order of magnitude of the heat transfer ccéfficient is
extremely ﬁigh due to high gas density and vélocity (Figures 23 anﬁ_ _ i
26). The Burféée temperature of the tube wall reaches as high.as

1100°k and it otcurs at the initial piston position (Figures 24 and

temperature gradieﬁt and.high;therhél:diffﬁsivity-of the tube material,

the temperature wave cannot penetrate more than one millimeter into

the tube wall CFigure-25);_l This qutifiéstthe exclusion of equation
(3.43) from the comﬁuﬁer pédgraﬁ.ﬁ |

The héét flux;'hi(T—Tw;ij af éértéin fixed positions along the
length of the tube are showﬁ_iﬁ'F%guge 28. Although the maximﬁm value
of_he#t flux could be as high as 350,000 kcalkmz—sec, these type of
fantastically high wvalues last only for one or twb microseconds. The
averagé vélue'of heat fiux wduld.be'around 50,000 kcal/mz—sec._

The same.type of resulté were also obtained for Case 1I, and the
total héat losses for both the casés are compared in Figure 29, It
shows that the heat loss in Case II is about ten per cent higher than
that in Case I, This is maiﬁly due to the higher gas velocity in the
initial pericd bf Case II. After this initial period,.the heat transfer
coefficients in the two cases are quite close, |

The.important results of both the cases are tabulated in Tﬁblé
2. A mass énd energy b&lance.detailed in Table 3 shows that the dompu-
tation error is less than 0.5 per cent. The ballistie efficiehcy, i.e.

the ratio of final kinetic energy of the piston and the propellant energy,

N | AR
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Table 2. Comparison of
Velocity

93

Regults for Two Limiting Cases of Solids

Case II

. Case I o
(solids moving) : (solids stationary) -
Time of travel 0.002465 0.002448
(second) :
Final piston velocity 1242.3 1271.3
(m/sec) :
Peak breech pressure 6450 7200
{(atmosphere)
Peak gurfate temperéture 1067 1270
("K)
Ballistic efficiency 35.47 37.14
(%) '
Total heat loss 8.64 9.60
(kcal)
Heat loss in percentage 5.10 5.66

of input energy (%)

_—t RS
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Table 3. Mass and Energy Balance-for Case I and Case II,

Error in Energy Balance (%)

Case I Case II
Initial Conditions:
-Propellant charge 0,172 0.172
(kg) .
Propellant anergy 169,53 169,53
(keal) . :
* Final Conditions:
Total gas mass (kg) 0.1716 10,1713
Gas internal éﬁergy 90.10 87.63
(kcal) '
Gas kinetic energy 2.90 8.56
(keal) '
Piston kinetic-énergy 60,13 62,96
(keal) o
Heat losé.(kcal) 8,64 9.60
Total energy (kcal) 168,77 168.75
Error in Mass Balance (%) . =0,233 '-0.&07_
~0.450 | ~0.460

_ ISR N R
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‘has also been presented. The.total heat loss to the tube wall is found

to be five to six per cent of the input energy and about 15 per cent

of the final piston kinetic energy.

Parameter. Variation

Because of the lérge number of indeﬁendent design.parameters,
no general correlation is QttempteQ'here. Only g few impoftaut
parameters are varied for Case I:to stﬁdy their effect on the ballis-
tic as well as heat transfer solution, and the important results.a;e

presented in Table 4.

Initial Chamber Pressure, P

The selection of initial chamber préssure, i.e. "piston start
pressure’ is quite arbitrary as:it is very difficult in practice to
determine the exact pressure at which the piston starts to move.
Therefore, two different 1nitial'ch§mber pressnfes; 100 atmosphere
and 300 atmosphere, other.than the ”étagdard" 200 atmosphere are

considered and the solution neglecting the heat transfer and skin

‘friction is presented in Figure 30. The peak breech pressure and the
final piston velocity are very much the same for all the;hhfee cases

of different piston start preésures. Only the time of travel is prolonged

as the initial pressure-decreaées. It is obvious that thé heat transfer

sclution would be very close for all the three initial pressures because

" of close ballistic'properties. Thie implies that the piston start pres-—.

sure haes insignificant effect on the overall perfofmancg of_the device,

[P
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Profile Shape Factor, M
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In the present work thé prdfile shape factor, H, is assumed to
be a constant throughout the entire solution; however, this ﬁay not_ 
be true.in the real situation. For.non—uniforﬁ steady flow, a favor- §
able pressure gradient lowers the value of H [24] whereas iﬁ uniform
steady flow an increase in flow Mach number.increases H [13]; In the
presgnt'case, however,:it is difficult to predict its probable'vafiation.
Therefore, two different values ofhéﬁaﬁe'faét0r5 1.4 and 1.2222,
éorresponding to the one-fifth and the one—nipth_ﬁgloc}ty profile, are\
taken and _thé results are_‘compar‘ed with t:};nose for H equal to .1.2357.

It is clear from Figure 31 that-lowgr values of H cause higher values
of boundary 1ayer_tﬁickﬁeéé*and heéﬁ'ﬁrahsféf CGéffiéient, i.e. the
viscous effect of the fluid is higher;. Because of';his, the total

heat loss to the tube wall and the péak inner surface temperature go up

as the shape factor decreases. Hb&: r, at H equal to 1,2222, these

values do not exceed the correspohd;@g values for the "standard conditions”
by more than ten per cent, The total heat losses to the tube wall for
the three different values of shape factor are compared in Figure 32,

Tube Ingide Diameter, D

The tube inside diameter is varied keepiﬁg the loading density’
(msi/Vo), aﬁd the piston mass per unit areg.(MP/Ap) consfaht. Two tube
diameters, namely 2 ¢cm and 4 cm, are selected with appropriate propellant
charge msi and piston mass Mp. The results are shown in figure 33.-:It
can be noted from Table.4 that glthough an increase in tube diameter

means an increase in the total heat loss, the heat loss per unit input

energy decreases with larger tube diameter, This is due to decrease in
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‘the surface to volume ratio., In other words, for ballistically similar

devices, the increase in tube diameter reduces the heat loss per unit.
mass of gas and this accounts for the slightly better ballistic results |

obtainéd for the 4 cm diameter tube.

-Pfépellant Charge, m_

- 1 o
Two different values of the propellant charge, namely 0.15 kg

and 0,19 kg afe chosen apart from the "standard" value of 0,172 kg and
the resulté ére presented in Figure 34. It is obvibus.that an increase
in propellént chﬁrge improves the ballistic efficiency of the device.
But at th€ same time this increases the peak préssure, heat transfer -
coefficient and the peak surface temperature which put a limit on the

propellant charge.

Piston Mass, MH

Piston mass plays an importaﬁt role in the problem of iﬁternal
balliétics.. Therefofe, besides the standard mass of 0.326 kg‘two other
pistons having masses equal to 0.2 kg and 0.5 kg are considered. The“.
results are shown in Figure 35. -Thgfheavieyyfhggpigpgq, the slower it

moves thereby leaving less room for the combéétiqn gaé to expand, which

' causes an increase in the peak pressure. kiﬁﬁouéh'the heavier piston

moves éloﬁer, the ballistic efficiency of the device is improved and

_therefore suitable for the application where energy conversion is of

prime interest. But if higher velocity is desired a lighter piston would.-
be chosen. The surface temperétufe is also lower in the case of a
lighter piston due to lower pressures which lead to lower heat transfer

coefficients.
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e P

ﬁeb'TBickness, qai

Although the web thickness is only a geometriéal property of the
solid_p#rticleé, it is importantlbecause it determines the total
burning surface for é given propellant charge.  For thinner ﬁebs more
surface is available for burning and consequently the pressure rise is
more rapid, This aspect is clear from Figure 36 where results of three
different web thicknesses, namely 0.5mm, 0.711 mm (standard), and 0.9 mn
are presented. A rapid pressure rise napufally accelerates the piston

faster and thus improves the ballistic effiéiency._ But this gain is

neutralized by a much higher peak pressure and wall surface temperature.

Comparison with'Othef Work

No anélytical.work in the past considered the movement of the
solid particies’in the one-dimensional ballistic solﬁtiqn. Although
Carriere [5] s;udied the problem of infgfhal ballisfics assgming,the
solids to be st&tion#ry, it was not poésibl; to determiﬁe fﬁe input data
and final results from his publicafﬁon; 'Théteforé, a quantitative - _.
comparison could not bé made; Howeﬁer; an ex;elient qualitatife agrée-
ment is observed betweeﬁ his results showihg_thé pistcn path, piston

veloclty and end pressures, and the results obtained from the present

analysis for the case of stationary solids. Unfortunately, no work until

now shows the spacéwise distribution of the ballistic properties and,
therefore no comparison can be made.

The boundary layer and heat transfer anaiyéis of Hicks.and
Thornhiil [2](assumed the "Lagrange approximafion" and omitted the zero

bounﬂéty layer thickness cquition at the piston base, The values of
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Table 4. Results for Various Input Parameters.

Parameter H D Mgy Wg
Item 1.2222| 1.40 2.0cm | 4.0cm 0.15%kg 10.19kg | 0.2kg | O.5kg | O0.5mm | O.%mm
Time of travel 2.467 | 2,462 | 2.484 2,456 | 2.840 | 2.196 | 2.292 | 2.680 | 2,047 | 2.876
{millisecond) . L :
Peak breech pressure 6440 6460 6400 .6500_ 4470 8840 4660 8900 12000 | 4380
(atmosphere) ' g e
Peak surface temper- 1114 991 105§.u 1071 985 1127 1008 1099 1180 984
ature ( K) : _ : . : . .
Ballistic efficiency f 35,371 35.63 | 34.52 | 35.94 | 32.86 | 37.68 | 27.11 | 41.85 | 42.83 | 28.10
‘Total heat loss 9:09 | 7.87 | 5.70 | 11.60 | 8.69 | 8.44 | 8.85 | 8,241 7.13| 9,43
(kcal) A . .
Heat loss in pércen— : c :
tage of input 5.36 4.65 7.58 3.85 5.88 4,5 5.21 4,86 4,21 5.56
energy (%) '

9201
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heat ;:ransfer coefficieﬁt.for a i:ypiéa_l case (i_nput data not indicated)
presented in reference [2], are iowef than the vélues obtained for the
typical caée in the present study, roughly by a factor of two. The
reaéon could be dué to entirely different input data and different
.bou'ﬁdar& layer thickness condition at the_piston base. However, the
value of peak surface femperature and the location where it occurs, are
- in good agfeémeﬁt with the study.of Hicks and Thornhill.

A irery recent analysis on convective heat ﬁfansfer in gun barrels
[2‘5], which is also based on the "Lagrange approximation,” indicates
that the heat flux a;-thguip§id§ surface éf'the barrel can be as high
 as 2.?x105k¢a1/m2—sec. This vélue is qqife close to the expected maxima

shown in Figuré 28 for the”typiéaIECasé.
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. CHAPTER V
' CONCLUSTONS

The following conclusions can be drawn in the context of the

- resulits presented in the previous chapter:

1. The "Lagrange approximation" of linear velocity distribution
and uniform gas density along the length of the tube iz not a good
representation 6f the reai'casé. It takes a considerable amount of
total time before the velocity d:[.s:tributi;n can be linear. Furthef—-
more, the gas density cannot'bé'célled ?uniform“ at any time.

2. There is a large préssﬁre gradient along the length of the

‘tube and at the peak condition thé difference between the pressures at

the two ends can be as high as.20?£o 30 per cent of the maximum'pressure.

3. As'the.piston moves, ;he gas temperature continuously decreases
with'almos't a uniform spacewise distribution., For the case of stationary
solids, however, a.steep séacewise tempérapnre ;i§§ is qbserved,at the
back of the ﬁiston. | | R

4. While the fimal ballistic feéults aré ﬁ;ré or less the same
for thé ﬁwo extreme cases of solids velocity, theffeak-pressure in the
case of stationarf solids 1s about 10 to 15 per cent higher than in the -

case of moviﬁg solids.

5. The maximum boundary layer thickness can be on the order of 20

‘per'cent-of the tube radius in typical cases., For ballistically

similar devices the ratio of the maximum boundary layer thickness to

the tube radius increases as the tube diameter is reduced. Therefore
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the ‘assumption of a thin_'%b%pp;ai‘i’a%y layergfgﬁaigg%,iOt hold go.od for very small

-diameter tubes.

6. The order of magnitude of the heat transfer coefficient and

the.heét flux at the inner surféce of the tube is extremely high.

Aveféée values of 50 ycal/mz-Sec-oK and 50,000 kcal/mz—sec for the heat
tfansfer coefficienﬁ and the heat flux, respectively, can be expected |
er typical éases. The maximum values can be five to six tiﬁes higher
than fhe average values; but the maxima do not last for more than a

few microseconds,

7. The tube imner sufface temparaﬁure can reach 1000°C for typical
cases and it occurs near the initial piston'position.l The time of travel
is so shoft that even with the extremeiy high values of heat fluxes and
high fhermalsprdperties 6f tubé—material the temperature wave cannot
penetrate mofe thaﬁ one millimeter 1n£o the_tube.wéll.

8{ The total heat loss to the tubé wall is five to six per:cent
of the input energy for typical cases and'haé only a minor effect on
the final ballistic results, Thé.same cﬁnclusion is valid for the skin
fraction,

9, The piston start pressure, although difficult to determine
in practice, does mot pose any real problem'due to its insignificant
effect on the ballistic solution.

10. Improvement'in'ballistic efficiéncy'can be brougﬁt about by
increasing the propellant charge, the piston mass, or by reducing the
"web thickness, But in each of these cases, there exists an adverse

effect of higher peak pressure and higher wall temperature, Therefore,




a great care should be taken in order to obtain the optimum design

conditions.
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CHAPTER VI
RECOMMENDATIONS

1. Sinceucohsiderable.differences in peak pressure and tube
wall tempéfature ére observed in two limiting cases of solids velocity,
a'rigorous'analysié including thé.correct solids velocity ﬁould be of
help in predicting peak pressure and wall temperature,

2, The'aséumption of constant burning surface and uniform
burning rate for all the solid particles at any instance of time can
be relaxed to make the amalysis more general."kelaxation of the latter
assumption would increase the difference between the end pfessures, as
the burning rate at the tube head end wauld be higher than that at the
ﬁistdn base end. | |

3. More'eﬁperimental as well as theoretical studieé'on fhe wall
shear stréss:and shape factor should be carried out for non-steady
turbulent flow with favorable pressure gradient td'improve the present
boundary layer analysis. One immediate step, however, would be to

include an auxiliary equation for %% .

4, The analogy between heat and momentum transfer can be replaced

by the boundary layer énergy equation for more accurate evaluation of

the heat transfer coefficient,

‘5. The present analysis only provides a way to determine the -
tube wall temperature during the first operation of the device. This

should further be extended to evaluate the méximum wall temperature when

mmm— — L



the device is operated repetitively

devices.

at high frequency as practical
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APPENDIX A

Derivation of Conservation Equations

A coutrol volume approach has beéen taken for the derivation of
the conservation equations. In Figure 37 a control volume having a
cross-sectional area Ap and length Ax has been shown. The volume

fraétian of solids per unit length is Voo or in the other words, Vg is

~ the fraction of the total cross-sectional area AP occupied by the solids.

Therefore, (1—vs) is the fractional area occupied by the gases at any

- position and time,

~Due to the assumptions regarding the bﬂrning rate of the solids
(samg'for all the particles at a particular instant) and the constant

total burning -surface Sb , it is easy to_estimate'the.burning surface
¢ - . .

available in the chosen control vdlﬁﬁe,

(A.1)

Therefore, the rate of gas produced (by1maéé9 from the solids (or, rate

of decrease of solids by mass) within the ééntrol volume isfgiven by,

psSLrb
_ﬁ Ax f .
= ps'sb 5 b (A.2)
t P
) usdx
o f

—
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Solid particle

//////////////////////////////

7,
éﬂﬂoooaeoop’u ¢e o e a8 o
éﬂoouaoa:o l°°°- oooooo
/1 o.’ocod‘.{ ooooooo
;'/.-ou PR a=o‘¢: e 6 52 & goe | —
ﬂ,, - w| la.a.o..oc\\
o 4 i e s e Piston Area A
) -] o -
/ J P
/ g

. |
Y Sl /// //////// i
-_——-xmm—-1 Ax :
- _:jiiji::f:\\“ Fixed Control Volume

Figure 37. Schematic of Control Volume Chosen for the
' Derivation of Conservation Equations.

AL

— - -

T e

Figure 38, A Typical Solid Particle Assumed in the Present .
.Study.
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Case-I'(Solid particles moving at gas velocity)

Continuity of solids,

Rate of increase of Rate of solid ‘Rate of solid Rate of gas

solid mass in c,v.  flowing in ~  flowing out ~ produced in c.v.
] : _ vs rb&x
— (p A v Ax) = = (p.UAv) - (pUAW ) -p 8
3t s p s = sB8ps | 56 P 8 ) 1dx B bt 2 ax

' S s
“o
or, _ _
Ap [ac +—-—-(\:U)] + p sbt--[T-—--———--o
B ax
o 8
o
with U =U =,
B, N av_ _
Bt "'U.ax.""’sax fe“" =0
or’ ‘
av v C oo
s s LU R
-3t U ax + Vs 3% * vdS 0 (4.3)

Continuity of Gases.

Rate of increase of _ Rate of gés _ Rate of gas Rate of gas
mass of gas in c¢.v. flowing in flowing out produced in c.v.
0 .
— [ (1-v A Ax 1~ [l—u +
e [( P A, :' [( v )pg . g:] (1=v)p A g] +pg

_ X xtdx '

0T,
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.. . '_' Sboovon
- %—' [(1-\)5)9:’ [1—\) Yp Ug:’ = by (& t) 8 b
? - @g A
Using equition (A.3) and U = U = U: - a
Ps Tx 3x (p -pg) \'rds
or,
% 3 o (o -p.) |
Bey—B4 B M _ 5 & L (A
ot x . (Q-v_ )ox  (1=v.) 'd _ S -
MR AR T s
P i; e ‘H: . -

A general equat}on of continuity, an

SEE SR L

solid mixture as :a whole which gives,

Rate of: incrgase'af . Rate of gas-solid Rate of gas-solid
mass of gas-Solid =~ = mixture flowing - mixture flowing
mixture in c.v. in out - 5

2 - : : o ' _
= - = UA -+ (1-
Y [yspsApﬂx + Fl Us)DgApa%]q I?[bsps Ap (1 vs)ngAp
S : I,
e L - B [“SQE-UAP tUmvgde U
B T : wHdx
. g D
or,
LI p_ + (1=v_)p ] +3—- [v p U (1-v_ e U:l = 0 . (A.5)
at s s s gl ox | g7s U sthgl T S
Momentum Equation.
Rate of increase of + Momentum flux _ Momentum flux - 7. Exte¥nal
momentum in c.v. out - in forces
SRR __ i T
RIS | £ TRINCT IFACONIN S Y /£ 3% NS - S § | 11133

1
! L -

/A




or,

3 _ a_ - -2
T [{\,sps + (1 us)pg.}U] + 5= [{vsp.sul-i- (1 vs)psU_}UJ TR

Using equation (A.5):

o AU U | P
[vsps + (l-vs)pg][:at +U 3xﬁJ T T e

Now, mixture density P, = vsbs + (1-vs)pg_

U au 1 3P W

— U — - e e ——

at ax pm ox me
Energy Equation.
Rate of increase =' Energy flux _ Energy flux
of energy in c.v. flowing in flowing out

Rate of work done
by the gas-solid mixture

or,

118

27
R

{A.6)

Rate of increase of
energy due to con-
version of solids
into gases in c.v.

4

Rate of heat loss
to the tube wall
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; SRR "'Eﬁi
e [{vsps (ns:S + T) + (1—-\.1‘3)981(3g + 5 )}Ap .ﬁx:l
= | {vsps(es + ----2----)1.1Ei + (1-\}5)9_8(%8 + 5 )Ué?Ap]

| xdx

| g2 L 2 .
. s .
_[[usg%:(gs -_F_Z-)Us + (1--\Js)pg(eag + —%—-)Ug}ApJ

v rbﬂx ' |
+p 8§ =2 AE—[A{ pU(—)+(1-v)oU(—)

sb P sssp ggp
fpvdx .
o . '

A, {-"sps"s ‘E" + (1-v )pgugc—?} |

lx-l-dx

2

J-— 2nR Qx hi(T_Tw

X

where, AE = Additional enérgy release per unit mass due to convefsibn~
of solids intec gases,

‘@ e¢T ~c¢T =W=-¢T ' ' (A.7)
Vv o 5 5 s 5

Using the definition of enthalpy for éolids and gas, i.e.

3F l:usps_(hé-'- B_) + (l—\)s)p-g(hg - pg:l + [u phU + (l-\J Jo h U]

s ax 8888 g g8
_+ Bt _Usps"f_ * (l_vs)pg 2
, [ u2 - ¥ 2 Sp, usrl')&'z
— re— - -—E—— .. )
3| VsPs 2 Us + @ vs)pg 2 Ug ps(A g" '
- ' 24 pusdx
: Zhi _
" ® LY | °



Using Us = Ug =1,

a_
3
LS
2 3t
R
2 3%
= ps vd

Using the general e

(A.6):

I '
It ,:Uspshs + (1-\.'s

On diff erential:ipn. '

of gases (A.4):

.3h,  8h]
VsPs|. 3t +U 9x

Using the notation

and

R

-8
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0

~— |v p_h +(1-u)phJ _ 3¢ 3 -
t [s 8 8 88 g T + e USpShSU +(1: vs)pgth

o 73U
v tnin] « [t ] o8

o o 2 3U
| I:\_}SFISU + (lh-us)ngJ + [vsps + (1-us)pg] U e
oy
AR - (0T )

quation of continuity (A.3) and the momentum equation

% 3 - P | 3P
)pghg] + % [\)Bpshsu + (l—\)s)pgth} —. St + U %
- d»  nU

=pg Vg BB - 5T, ) YR

s

and by use of continuity of solids (A.3) and contimnuity

oh dh '
_ T8 oLy & | B g2R
+Q vs)pg{at * Uax :| at + v %
- | omy 2 U
= g vds (4E + h_ - _hg) - (_T-Tw,i) +
3 3
P T >

h oweT +i~ | finally:
g8 s S ps




VsPe Dr =+ (-v, )p

Case II.jSolid particles stationagy at

121

) - 2h
(W + o hg) 2 (T_Tw,i

)
(A.8)

their initial positions)

Continuity of Solids.

Rate of.increase of

Rate of solids _

solid mass in c.v. flowing in
2;(9 A v AX) = 0
dt s p s : : -
of,_
5 .
aus - bt) V¥
ot~ " CAp L
;[- v dx
_ s
_ ()
Continuity of Gases.
Rate of increase of Rate of gas _
mass of gas in c.v, flowing inm

3 . '
3t [(1—\) JA pgﬁx} = [(1_vs)Apngg]

or,

x.

Rate of solids
flowing out

Rate of gas

CuVe
v T, AX
- 0 -0 8§ s b
P /p
v _dx
s
)
==Yy (A.9)
s
Rate of gas Rate of gas

flowing out preduced in c.v.

- [(1—v YA Py u “
P_ x+dx

vs rb Ax

g b =
tjr Py dx
s

o]

VT I

produced in
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.Sb .. ..V_.xr

%?-l}l—vs)pg] +-2— {?l—v )ngg] =p {- t) s.b ¥ (A.lO).

g A LP = ps dS
P vxdx_

o

Putf@hg Ug = U and using equation (A.9):

(L-v_) .'"g'ax +u 2+ Py 3;;} Fo, Vg me U =Y

ox o g 9x | s dS
or,
3p dp_ -  (oi-p ) e U By o '
—E —E _@_y_._, .- N A g B
ot +u 9% + pg 9%, (1=v_) vd + (1-v ) 3% (A.11)

3 | ) 27y . _ [ 2
3= El—vS)APngg&xil [(1 v )App.gUg ] L&dx _ [(1 v 8,00, J

Momentum Equation, As the solids are at rest, the free éas volume in
tﬁe control volume shown in Figure 37 1s taken as the new control.volume
in the following derivation. It is assuﬁed that the éolids_are at #he
core of the flow and thé skin friction at the surface of the solid _
particles is.negligible. |

Rate of.increase - Momentum _ Momentum _ 2, External-
of momentum in c.v. flux cut - flux in forces”

X

- (l—.)APJ [(1— )A P]
[ -vs P X ’ Ix+dx '

a(l-v. ) .,

+P A AX ————S = IMRAK T
P Ix w

or,

e
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%— [{(1-\) Yo }U} +—— [{(1-\; )p U }u :l - —g; j:(l-usjr]

o 3(1—vs) ) er
ox R

Using equation (A.10) and putting Ug = 1],

". 2t
au 1) N oP w
(1-vgde [at UE‘{] thg Vg U O - x

or,
3y o _ _ 1 9P _ ?3. . oW .
it + U 9% pg ax ]__'.vs pg Vds Z‘l"_"v's')pg._R_ (A.12)

 Energy Equation. The same control volume as used in the derivation of
momentum equation is taken,
Rate of energy = Energy flux Energy flux Rate of energy increase
increase in c.v, flowing in flowing cut due to gas coming into
the c.v. from the sclids
Rate of work Rate of heat
- done by the - loss to the
flowing gas tube wall

oz,




U
2| (1= £
T _|:(1 vglap (e, + =) )&X] |
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2 | u 2
— I I-L. i
[(l Ve g% 2 )]

2

' i
- 5
l:(l.\JS)J!LPQSUg(F_-.g + 5 )]

x+dx

v AX T
S s . b W

+p
g b
thpvdx
g

o)

- .[{’(;"Vs)Appsug(i')} (x+dx

» &

s {(l-vs)Apngg(p-g) } ] 20R 8% hy (T-T_ ;)

1%

or,

. u 2 3 _ o U 2 .

— - B — [ (1= : +—+ 2|

ot [(1 vs)pg(eg + = )] + y [(l v_s)ngg(eg oy 5 )]
5
b v T 2h

t s b . R P
"ps(A')r — W= (T )
P pusdx
- P o .
Put U = Uand h- = e_+—,
g Og

'3 P P - 3 [, 2
5t [(J.-va)p:g(hg - -5;)] + 3% [(1-vs)pgth:| +% =7 [(l—vs)pgll ]

1 —a-—- ’ ..I ' | 2 - - ¥
TR [{(1 vg) 0 U } °s Ya_ W
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Using equations (A.lO)'.and (A.12):

3t _[(1'“s)°ghg] + [(1-.\’5)0-3113111 - 5% |:('1-vS)P} + o, vds >

. - - ZTw. : :
IERARCE S5 JRTR
=] S
h ' L. . . -
R (T-Tw,i) '

Using equation (A.9)

3 — 3 Y - (1- 9P P
at I:(l vs)pghg] * '[(l ?s'-)?gygu:l_ 1 vs) l:a: +u ax]

2 - 2h o 2t U
N P 1] i W
"= Py vn:lﬁ(W M Py * 37 ) R (T_Tw,i) X

or,

- My E&} 3 (1 : el
(1—vs)pg[at + U2y T hg_[?E {(l-vs)pg} + ﬁ_{(l-US)DgUU

2
| -, o 3P . P, US,
f - (1—\)3) 9t + U Bx:l Ps Ya o+ o t3 )
: . s . 8
2hi 2t
o A R U
Usi sation (A,10) and notation D 3. 4+vu 2 finally :
sing equatio . ot = 3t 5% :




126

Dh

2 o »
v )p B~ 1oy ) 2P o . P : . o
(1 vs)pth (; us) Dt . vds (W+'°s +2 hg) o : "!
2h o2t
! w _
-3 (T-Tw,i) + A U {(A.13)

Computation of Burniqg Surface -

A typical solid particle, a single perforated cyllnder in shape,
is shown in Figure 38,

Les,

H
ll

initial inner radius gf the particle

4

f the particle

2]
]

initial outer radiuf

s
it

length of the_partisle

h = total number of the particles 1ﬁ the_chamber
.Therefdre, total 1nitia1 burning surface = 2ﬂ(ri+ro) ln. Itis
assumed that combustion gas is produced from both inner and outerx cylih—
_drical surfaces of a psrticie but not from two ends, If fb'is the lipnear
‘speed of . burning, which is assumed to be same for all the partlcles at
a particular instant, the total burning surface after time At is

2n [(ri+rb At) + (I:Q—r:b :lt)] in

= 2% (ri+r°)1 n

Therefore, it is clear that for hollew cylindrical particles the total

burning surface is constant and can be given by :
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%t _ - (A.14)

initial mass of scolids

=
]

solid mass density

o
[

g
I

initial web thickness of a solid particle

Expressions for Enthalpies of Solids and Gases

For aﬁy pure substance, h = h(P,T)

dh, . . 3h S | - -
dh = (35) dp + (BT)_ dT | (A.15)
_ b

From thermodynamics, dh = Tds + vdP

Again from Gibb's form of first law of thermodynamics,

dG = -5 4T + v dP - (A.17)

As Gibb's function G 1s a property of the sjstem,dG must be an exact

differential
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'(Bs) -(av) ' ' - o
Prafteey = .-- s p— t AO]-S)
ap T BT_P' .
N : ' 13w
Now, coefficient of thermal expansion, B -:;(sf)
. : P
7. Equation (A.16) becomes,
(%%) = - Ty + v = v(l—TB)
T
.;2 Equatioﬁ {A.15) becomes,
dh = vQ-TE) AP+ e AT (A.19)

Solids
For-solidé,lcé is'equal tb té and it has Eeen assumed that the
temperéture of the solids_TS remains constant throughout the pericd of

burning

- 1.
dhy = 5= (-T,8)) P

It has also beeﬁ assumed that.the coefficient of expanSioﬁ for solids

8_ 1s negligible.

-+ dn_ = 42 ' o '(A'.'ZO)
o s 5 _
8
d . - T 4 .Ii.. ' .. (A.21)
an s Cs's 0 . _ '

=3
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Gases

The equation of state for the combustion gas at high pressure

" can be taken as,

P(v,~n) - R T | | 4.22) -

where, the covolume 1 is a constant.

Now, -
)
P r| hR
AT /p | g
1 3V R.
R T
L ) . v .
8 Y P g
From equation (4.19):
- "RT ' _
- dh =v |1 -~ ldP + ¢ -dT
g 8L VgP P
or, : ) -
dk =n dP+c_ dT | o (A. 23
g =M > R (a.23)
'Now; the specifiélheat.at constant pressure, cp =I;§T R.g
 dh =n dP.+ Ix R_dT | (A2
S dhy = =T R | (A.24)

Differentiating equation (A.22) and using vg = l/pg:

: 1 P
R dT = (— - dP - ~—d
(p n) . pg

8 g g
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Equation (A.24) becomes,.

dn *';—::(:—i% dp - ﬁ%;—z doy (A.25)
Froﬁl equation (A.23),
hg =n P+ cp T
_=ﬂP+—(i£59 G==m

(y=ne ) .

- (A.26)
(y l)pg
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-fiDerivation of Bound,ary Layer Momenttm Equa'tion

I

th.:;ough surface AB CD

Rate of;.::lj.nerease Rate of nass flow : Rate of mass flow
of mass in c.v. = jnto the c.v. e - out through surface .

Rate of mass flow
4+ into the ¢c.v.
: through surface BC

.R:_

R R ~ R
s o e : -
3T fﬁlnr-ax p dr = fZﬂr poudr || - [2nrpudr
R-6 L Jlx LR-8 xhdx
i. Y, (B.1)
."J "'._I
Momentum Equation (:E'fdirectionaf'].)
Rate of increa's"e_:" © Momentum- - Mementum _ Z External
of momentum in. .~ flux in + flux out = forces
CoVe - .
R R | SR R _
2 | omp axpudr - U - | (2°F Zar |1+ -] 2ee 0 vla
ot AN R T B I
R=8 S L/r-s X 5
. L. R

x R-6

+ 2m (R—G)(%% AX)P - 2nR ax'fw

- (2'” P dr

ohdx

(8.2)

to: Figure 39, the boundary 1ayer momentum integral

x+dx




7 .
;J-H] fj } i
P
|7 s b N
A A A,

Control
Volume _

Figure 39, Sbhématic_of-Boundary Layer Growth in a Tube With a Sliding‘Piston at one End.

LT
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Using the expression for ﬁBC from equation (B.l), equation (B.2)

becomes,
R - : R
s [ ,
FTY (pu r)dr - U, -a-;:— (pr)dr - U_ ——- (pu r)dr + _[(pu r)dr
R~§ _ R-§ R-§
o o : 28
\ o (P r)dr + (B-8)P i TR (B.3)
R-4

‘Now, for thin boundary layer, radialICOmbonent of veloéity is very

small and consequently,

P _ | | |
Also, as U_ # £(r),
o [ s [ LS _
3T | U pr dr = UQ-EE pr dr + pr dr el - (B.5)
R=6 - . R-6 JR-8 | ' -
and
. U”, R
U (pur)dr =U_ -~ pur dr ur dr. 5 - (B.6)

R..

Using relations (B.4), (B.55, (B.6) finélly: _
R N R eu
3 p(U ~u)r dr + 2 pu(U —u)f-dr': pr dr| —
ot o T ¥ax | PV e O at

W

3P ' ,
'] 3x_+ TR . (B’?)
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now,

R.. 52.
rdr = RS --2—'

R-§
énd.usiﬁg Pgs i.e. gas density'cprresponding to the film temperatufe;_

as the average density in the boundary layer, the equation (B.7) Become.s,

: - S - : — _=
T p(U_-u)r dr + o pu(U_~uw)r dr +| [p{U_-u)r dr .
R-6 : R~§ ' —§ :
: 2 ol au
& ar o = '
= (RS - 5-) [-a—; MTETE | + .prw % ] +r R (B.8)

The equation (B—S) is the required momentum integral equation for a

nonsteady, nonuniform, and developing compressible f£low in a tube.

L
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APPENDIX C

Flow Chart for thé'CdmpuEer Prqgrém

Read input data and calculate
all the non-dimensionalizing
and other constants

pressure, total unburnt solids

Calculate the average chamber .

by volume and by mass °

Determine the new time'ingrement

At' by applying (3.40)

l

KP=1

Burning pressure = Average chamber

pressure

Calculate the burning rate
corresponding to the burning
pressure from Table 1

Calculate the piston displacement

and velocity after time At'

i1

Call subroutine BP to determine
the ballistic properties at the
piston base after iime At'

135
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|+ present value at time t)

Average base pteséure =
% (calculated value at t+it

Calculate the piston displace~
ment and velocity based on
average base pressure

Replace old
values of

‘new values

piston position
and velocity by

No

Is percentage difference
between the new and the old
value of the piston displace=-
ment less than 0.0001?

Yes

‘mine the ballistic properties

Call subroutine WP to deter=-

at the tube head end

Calculate the first estimated .

values of v_, o', U, P' at all
the nodal p3int& at time t'+at’
using (3.3), (3.4), (3.5) and

(3.6) for Case I and corresponding

expressions. for Case I

Calculate the second estimated
values using (3.11), (3.12),
(3.13) and (3.14) for Case I
and similar equations for Case

Average the two estimated values
to obtain the final values at
time t'+At'

Find free stream femperature T
using the equation of state (2.6)

136
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Interpolate between the
base point and the nearest
nodal point to determine ' ]
the properties at the point(s)
where finite difference. scheme
could not be applied

KP=2

Burning pressure =
Y (average chamber
pressure at t+it
average pressure at
t)

Calculate average chamber
pressure at t+it from

the calculated pressures
at all points '

<:;EsiKP equal to 2?':} No y—e ]

# : fes

Calculate momentum thickness:
at all the nodal peints using
(3.20), (3.23), (3.24) and
(3.25) and interpolate the
point(s) adjacent to the base
point

Calculate the friction coefficient
and the heat transfer coefficient
at all points at time t'+4it' using
(2.59) and {(2.63)

Compute heat 1688-§D'the tube
wall during the time interval
At' based on the conditions at
. time t

Call subroutine HIW to calculate
the wall temperature at time t'+At'
using the average value of heat
transfer coefficient

S
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Replace the old values of time,

1 piston pesition, ballistic properties,
f : momentum thickness and heat transfer
coefficient by new values

o - Has the pisfon reached the end
_ of the tube?

| Yes

Calculate the ballistic efficiency
and write the final results

| Stop l

. e R
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Subroutine BP

The purpose of the subroutine is to calculate the ballistic
proﬁerties at the piston base at time t'+At' knowing the propérties
at all the pointé atutime t', and the velodity and the position of

the piston at time t'+it'. The following flow-diagrém should be

~read along with Figure 3.

Except the velocity at point 2,
assume all the properties at
point 2 and point X to be same
as point 1

Determine the position of point

‘X using (3.27) and calculate the
properties at that point by linear
interpolation '

Calculate the mean values of all
the coefficients of (3.28) or
(3.29) in between points 2 and

X

A | Calculate the pressure at poiﬁt
2 using (3.28) or (3.29)

Determine the mean values of all
the coefficients of (3.30) and
{3.31) in between points 1 and 2

Calculate the gas density and
the volume fraction of solids
at point 2 uging (3.30) and (3.31)




i

Replace the old values
of the properties at
point 2 by the new values

Is percentage difference between
the old and the new values for
the pressure and the gas density
‘at point 2 less than §,00017

Yes

Is difference between the old

X and the new values of the volume
fraction of solids at point 2
less than 0,00001?

Y_es

Caleulate the temper:
point 2 from the eg
state (2.6) '

140
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| This subroutine is called Eo calculate the.pfoperties at the

| ' tube head .end at time t'+it'. Theslogic is same as that for subroutine

BP and tﬁe o diagram should dlso be read along with Figure 3.

Assume all the propertiee at points
2" and X' to be same as point 1’

Determine the position of point X'
:: jusing (3.34) and find the properties
- |.at that point by interpolation

3 Calculate the pressure, gas density,
' ahd volume fraction of solids at
oo point 2' using (3.35), (3.36) and

' (3.37) for Case I and (3.38), (3. 36)
and (3.39) for Case I

Replace the old values
of the properties at

point 2% by the’ new
values

Ie percentage dlfferenee between »
old and the new values.for the ‘presgire.
and gas density at point 2’ less ‘than -
0.00017?

pe=---HNo

¥ Yes

Is difference between the old and the
'L-*'No new values of the volume fraction of
solids at point 2' less than 0.00001?

Yes

-m.dl..,._t.nl'_ el n . . T}




o

,
.f

-

Calculate the temperature at
point 2' using the equation of
state (2.6)

(o)
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Subroutine HIW

The ﬁurpose of the subroutiné-is to calculate the wall
teﬁpeféture at a particular station-aiong'the length of the tube
at time t#ﬂt, kn&wing the ﬁemperature &istributiqn at the present
time t, and the mgah ﬁeat ;ransfer coefficient Qn over the t;me
iptervél.ﬂt. In-the'féllawing flow diagram, At is the time step
selected:in the main ﬁrogram whereas AT is the time step’selécted'

in accordance with the stability condition for the temperature calcu-

lation.

Select At from (3.45) or (3.46)
. —r .

NQ**4<:IS At less than (at-IIMl){>>

Replace At by (At-TIM1) 1
T '

Yes

Calculate TNEW(l),-i.e;;hew_
Ainner surface temperature after
the time Interval At using (3.42)

K=2"
[
(=~

‘Calculate TNEW(K), i.e. new
temperature for subsequent layers
using (3.41) _ :

ABCD=THEW (K -1) ~TNEW (K)




L ——

Py .

Yes

Is ABCD less No R
than 0.1? ™1 K=K+1

Yes-

TIM1 = TIMI+AE '

i

Replace the old values of the
wall temperatures by the
calculated values

_ﬁ\\‘Is TIM1 less than A; %j:)

Ko -

 Return i
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