
In presenting the dissertation as a partial fulfillment of 
the requirements for an advanced degree from the Georgia 
Institute of Technology, I agree that the Library of the 
Institute shall make it available for inspection and 
circulation in accordance with its regulations governing 
materials of this type. I agree that permission to copy 
from, or to publish from, this dissertation may be granted 
by the professor under whose direction it was written, or, 
in his absence, by the Dean of the Graduate Division when 
such copying or publication is solely for scholarly purposes 
and does not involve potential financial gain. It is under­
stood that any copying from, or publication of, this dis­
sertation which involves potential financial gain will not 
be allowed without written permission. 

7/25/68 



AN ANALYTICAL STUDY OF THE INTERIOR BALLISTICS 

PROBLEM, INCLUDING MOVEMENT OF SOLIDS AND 

WALL HEAT TRANSFER 

A THESIS 

Presented to 

The Faculty of the Division of Graduate 

Studies and Research 

by 

Pradip Sana 

In Partial Fulfillment 

of the Requirements for the Degree 
t «i ,. .' 

Master of Science!'in Mechanical Engineering 

Georgia Institute of Technology 

September, 1971 



AN ANALYTICAL STUDY OF THE INTERIOR BALLISTICS 

PROBLEM, INCLUDING MOVEMENT OF SOLIDS AND 

WALL HEAT TRANSFER 

Approved: 

Chairman 

/ 

Date approved by Chairman /•••**?/. z => 71 



11 

ACKNOWLEDGMENTS 

The author is deeply indebted to his faculty advisor, Dr. S. V. 

Shelton, for suggesting the problem and for continuous guidance and 

encouragement without which this work could not be finished. 

It gives the author a great pleasure to thank Drs. C. W. Gorton 

and A. E. Bergles for their sincere interest and constructive sugges­

tions in course of reviewing this work. The comments made by Dr. P. V. 

Desai on the boundary layer analysis are also appreciated. 

The author is grateful to the U. S. Air Force for financial aid 

and a few experimental data of great help. 

Many other persons, too numerous to list, helped the author both 

directly and indirectly during the period of execution of this work. 

Special thanks are to Mr. P. K.Raut for his help in various stages of 

computer programming. 

The author would like to dedicate this work to his parents for 

their immeasurable love, training and. constant encouragement in contin­

uation of his education. 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . ii 

LIST OF TABLES . . . . . . . . . . . . . . . . . v 

LIST OF FIGURES . . •'. . . . . . . . . vi 

NOMENCLATURE . . . . . . . . . . . . . . . . . . ... ix 

SUMMARY • . . xiv 

Chapter 

I. INTRODUCTION . . . . ,. , . . . 1 

Definition of the Problem 
Related Work 
Present: Investigation 

II. MATHEMATICAL ANALYSIS . . „ .. . 13 

One Dimensional Analysis Including Heat Transfer and 
Skin Friction 

Boundary Layer Analysis 
Heat Transfer Analysis 
Non-dimensionalisation 

III. SOLUTION PROCEDURE . . . . . . . . . . . . . 44 
9 . • 

Solution of Inteirior Points 
Solution of Boundary Points 
Determination of Wall Temperature 
Summary of the Procedure 

IV. RESULTS AND DISCUSSION . . . . . . . . . . . . 62 

Standard Conditions 
Parameter Variation 
Comparison with Other Work 

V. CONCLUSIONS . <( . . . . ' . 1 0 8 

VI. RECOMMENDATIONS 



IV 

TABLE OF CONTENTS (continued) 

Page 

APPENDIX . . . . ... . . . . . . . . . . . . . . 113 

A. Derivation of Conservation Equations 
Computation of Burning Surface 
Expressions for Enthalpies of Solids and Gases 

B. Derivation of Boundary Layer Momentum Equation 

C. Flow Chart for the Computer Program 

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . 145 



LIST OF TABLES 

Table ^ Page 

1. Pressure Vs. Burning Rate Data for the Propellant . . . . 64 

2. Comparison of Results for Two Limiting Cases of Solids 
Velocity . . . . . . . . . » . . 9 3 

3. Mass and Energy Balance for Case I and Case II . . . . . 94 

4. Results for Various Input Parameters . 106 

ii . i 



VI 

LIST OF FIGURES 

Figure Page 

1. Schematic of the Piston-Cylinder Arrangement . . . . . 3 

2. Numerical Scheme for Interior Points 46 

3. Scheme for End Points . . . . . 46 

4. Numerical Scheme for Determination of Tube Wall 
Temperature . . . . . . . . . 57 

5. Heat Balance for a Thin Circular Element at the Inside 
Surface of the Tube . . . . . . 57 

6. Assumed Initial Distribution of Solid Particles in 
Case II . . , . . ..•-". . . . . . . . . . . 65 

7. Piston Path for Case I . . . 67 

8. Variation of End Pressures, Piston Velocity and Mass 
Fracti on of Solids with Time (vCase I) ., . . . . . . 68 

9. Variation of Gas Densities and Temperatures at the Breech 
and Piston Base End*with Time (Case I) . . . . . . ̂ . 69 

10. Spacewise Distribution of Velocity at Various Times 
(Case I) . . . . . 70 

11. Spacewise Distribution of Pressure at Various Times 
(Case I) . . . . . . . . . . . . . . . . . 71 

12. Spacewise Distribution of Gas Temperature at Various 
Times (Case I) . 72 

13. Spacewise Distribution of Gas Density at Various Times 
(Case I) . . o o 73 

14. Spacewise Distribution of Volume Fraction of Solids at 
Various Times (Case I) . . • . . . . . . . . • 74 

15. Comparison of Piston Paths in Case I and Case II . . . . -j^ 

16. Comparison of End Pressures, Piston Velocities and Mass 
Fractions of Solids in Case I and Case II . . . . . . -,-, 



Vll 

LIST OF FIGURES (continued) 

Figure Page 

17. Spacewise Distribution of Gas Velocity at Various Times 
(Case II) . . . . • 78 

18. Spacewise Distribution of Pressure at Various Times 
(Case II) . . . . . . . . . . 79 

19. Spacewise Distribution of Gas Temperature at Various 
Times (Case II) . . . . •; . . . . . . . . . 80 

20. Spacewise Distribution of Gas Density at Various Times 
(Case II) . . . . . . . . . . . . •' . . . . 81 

i • ' 

21. Spacewise Distribution of Volume Fraction of Solids at 
Various Times (Case II) 82 

22. Boundary Layer Growth with Time (Case I) . . . . . • 84 

23. Spacewise Distribution of Heat Transfer Coefficient at 
Various Times (Case I) . . . .'" '•» 85 

24. Spacewise Distribution of Wall Surface Temperature at 
Various Times (Case I) . . . . . . . . . . . . 86 

25. Variation of Wall Temperature at a Particular Position 
with Depth at Various Times (Case I) 87 

26. Variation of Heat Transfer Coefficients at Certain Fixed 
Locations with Time (Case I) . . . 88 

27. Variation of Wall Surface Temperatures at Certain Fixed 
Locations with Time (Case I) 89 

28. Variation of Heat Fluxes at Certain Fixed Locations with 
Time (Case I) „ . . . . . . . . . . . . . . 91 

29. Comparison of Total Heat Losses to the Tube Wall in Case I 
and Case II . B . . . . . . . 92 

30. Variation of Breech Pressure and Piston Velocity with Time 
for Various Piston Start Pressures (Case I) 96 

31. Comparison of Boundary Layer Thickness and Heat Transfer 
Coefficient for Various Profile Shape Factors at 0.002337 
second (Case. I) . . . . . . . . . . . . . . 98 

32. Comparison of Total Heat Loss to the Tube Wall for Various 
Profile Shape Factors (Case I) . . . . 99 



viii 

LIST OF FIGURES (continued) 

Figure Page 

33. Comparison of Breech Pressure, Piston Velocity and Total 
Heat Loss to the Tube Wall for Various Tube Diameters 
with Same Loading Density and Same Piston Mass per Unit 
Area (Case I) •. , . . . . . . 100 

34. Comparison of Breech Pressure, Piston Velocity and Total 
Heat Loss to the Tube Wall for Various Propellant Charges 
(Case I) . . „ . . . . . . „, . . . . . . . 102 

35. Comparison of Breech Pressure, Piston Velocity and Total 
Heat Loss to the Tube Wall for Various Piston Masses 
(Case I) . . „ . . . . . < • . 103 

36. Comparison of Breech Pressure, Piston Velocity and Total 
Heat Loss to the Tube Wall for Various Web Thicknesses 
(Case I) . . ,. . . . . . o . . . . . . . . 105 

37. Schematic of Control Volume Chosen for the Derivation of 
Conservation Equations . . . „ ,„ 115 

38. A Typical Solid Particle Assumed in the Present Study . . 115 

39. Schematic of Boundary Layer Growth in a Tube with a Sliding 
Piston at One End . .;'' :: ,f'; ,. 132 



English 
In .• i notations 

NOMENCLATURE 

A coefficient in wall stieat stress expression (2.59) 

A cross-sectional area of tube p 

a sonic velocity in gas media 

a piston acceleration 
P 

B exponent of Reynolds number in (2.59) 

B function defined by Equation (2,,11) 

B function defined by Equation (2.,38) 

C ratio of boundary layer thickness and momentum thickness, 
1 6/6* 

C function defined by Equation (2,12) 

C function defined by Equation (2,39) 

C. local wall friction coefficient 

c specific heat of solids 
s 

c specific heat of gas at constant pressure 

c specific' heat of gas at constant volume 

D tube inside diameter 

D' function defined by Equation (2.78) 

D' function defined by Equation (2.79) 

Dj. function defined by Equation (3.21) 

E_ function defined by Equation (2.13) 

E ^ T function defined by Equation (2,40) 

E 1 function defined by Equation (2,77) 



English 
notations 

NOMENCLATURE (continued) 

e internal energy per unit mass 

Gf function defined by Equation (2.83) 

H profile, shape factor, 6 /6 

H?_ function defined by Equation (2.84) 

Hf function defined by Equation (2.94) 

h enthalpy per unit mass 
film heat transfer coefficient 

h mean heat transfer coefficient at the inner surface, 

(h.n + h.n+J)/2 
ij ij 

J mechanical equivalent of heat 

j axial position of a nodal point in finite difference 
grid 

L initial piston distance, fcom tube head end 
o . • • : . . . ' • • • " = > "• " - - . • . ' • ' • ; 

L piston distance from tubel head end at any instant p. . . f • 

L tube length 

M molecular weight of gas 

M piston mass .. 
; p 

m initial charge of propellant 
i 

n time in finite difference- grid 
reciprocal of exponent in power-law velocity profile 

P pressure 

Pr Prandtl number 

qff heat flux per unit area 

R tube inside radius 



NOMENCLATURE (continued) 

English 

notations 

R tube outside radius 
o . 

R gas constant, R /M 
g u 

R universal gas constant 
u & 

Re>. Reynolds number based on momentum thickness 

r radial distance from tube axis 

r, linear speed of burning 

S, total burning surface 
bt 

St Stanton number, (—-——-) 
* p.Uc 

f . P 
s entropy 

T one-dimensional gas temperature 

T explosion temperature 

T tube wall temperature 

T^ free stream gas temperature 

T.. film temperature, (T + T .)/2 
f r ' » w,i 

T . inner surface temperature of tube wall 
w,i 

t time 

U one-dimensional velocity 

U piston velocity 
p 

U free stream velocity 

u velocity within boundary layer 

v specific volume 

V initial chamber volume 
o 

v, volume rate of decrease of solids 
a 
s 



English 
notations 

NOMENCLATURE (continued) 

R T 
W potential of propellant per unit mass, / -. \ 

w initial web thickness of a solid particle 
Si 

x axial distance from tube head end 

Greek 
notations 

a thermal diffusivity 

8 coefficient of thermal expansion 

Y ratio of specific heats, c /c 
P v 

AE additional energy available per unit mass during 
conversion of solids into gases 

Af change of function f 

6 boundary layer thickness 

<5 displacement thickness 

r) covolume in Equation of state (2.6) 

x]9K characteristic directions corresponding to positive 
and negative value of A respectively 

0 function defined by Equation (2.61) 

0 momentum thickness 

K thermal conductivity 

A arbitrary multiplier to determine n, K characteristics 

y viscosity 

v volume fraction of solids s 

p one-dimensional gas density 
o 

p density of propellant material 



NOMENCLATURE (continued) 

Greek 
notations 

pf gas density at film temperature Tf 

p mixture density, [v p + (1-v )p ] m s s s g 

T wall shear stress w 

C characteristic direction along a particle path 

Subscripts 

f value at film temperature Tf 

g value for gas 

i value at inner surface of tube wall 

0 initial value 

p value at piston base 

s value for solids 

w value for wall material 

°° . free stream value 

Superscripts 

1 corresponding non-dimensional form 

Special 
notations 

( ) first estimated value of a function after time At1 

( ) second estimated value of a function after time At1 

( ). value at node n,j in time-space finite difference grid 



xiv 

SUMMARY = 

The objective of this thesis is to provide a mathematical model 

that can be used to predict the performance of devices, such as guns, 

which produce high pressure in an enclosed, but expanding volume by 

burning solid propellant. The propellaiit.is assumed to be in the form 

of solid particles and is burned in a closed cylindrical tube with a 

sliding piston at one end';' Due to the complexity in estimating the 

relative velocity between the gas phase and solid phase, two limiting 

cases of solids velocity are examined in the present work. These are: 

(a) assume the solids have the same velocity as the gases around the 

particle and (b) assume the solids have zero velocity, i.e. the solids 

remaining stationary at their initial positions. 

For both cases, the conservation of mass, momentum and energy 

results in a set of four coupled partial differential equations expressing 

volume fraction of solids, gas density, velocity and pressure as a 

function of axial distance from the tube head end and time. The equation 

of state of Noble and Abel, with constant covolume, is used for the 

combustion gas. The heat transfer to the tube wall and pressure drop 

due to skin friction have also been taken into consideration. 

A boundary layer analysis is carried out by deriving the boundary 

layer momentum integral equation for a non-steady, non-uniform, developing 

flow in a tube. The profile shape factor (ratio of displacement thickness 

and momentum thickness) is introduced and the Ludwieg-Tillmann friction 

coefficient is used. As a first approximation, the shape factor is 
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assumed to be constant and, as the flow is in the high Reynolds number 

region, the usual approximation of a thin boundary layer is made. 

The conservation equations together with the boundary layer 

equation are written In finite difference form and the MacCormack 

version of the Lax-Wendrbff method is used to calculate all the ballis­

tic properties, i.e. gas velocity, density, pressure, temperature, 

volume fraction of solids and boundary layer thickness at each of the 

interior points in the axial direction at every time step. For the two 

end points, namely the tube head end and the piston end, the method of 

characteristics is used. The film heat transfer coefficient is obtained 

by using Colburn's analogy between heat and momentum transfer. The wall 

temperature is also completely determined by solving the unsteady heat 

conduction equation for the tube wall with appropriate boundary condi­

tions . The calculation procedure is repeated until the piston reaches 

the end of the tube. 

Results are obtained for a set of ''standard conditions," for both 

of the limiting cases of solids velocity. Although the final piston 

velocity and time of travel are very close in both cases, the peak 

pressure in the case of stationary solid is approximately 10 to 15 

per cent higher than the corresponding value in the case of moving solids. 

There is also a large pressure gradient along the length of the tube and 

at the peak condition., the tube head end pressure can be 30 to 40 per 

cent higher than the piston base pressure. 

The maximum boundary layer displacement thickness is less than 

three per cent of the tube radius in the typical case with the shape 

factor equal to 1.2857,, i.e. with the one-seventh velocity profile. 
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Average values of the heat transfer coefficient and heat flux per unit 

surface area are found to be 50 kcal/m'"-sec- K and 50,000 kcal/ra -sec 

respectively. The tube inner surface temperature can reach a peak value 

of 800-1000 C during the first operation in an initially cold tube. 

The total heat loss to the tube wall is found to be five to six per 

cent of the input energy and has insignificant effect on the ballistic 

performance of the device. 

A study of parameter variation shows that the initial chamber 

pressure, i.e. the "piston start pressure,'" has little effect on the 

ballistic solution. An increase in propellant charge or piston mass, 

or a reduction in initial web thickness of the solids can improve the 

ballistic efficiency of the device; but there is always an adverse 

effect of higher peak pressure and higher wall temperature which put a 

limit on such attempts., Therefore, a great deal of judgment and care 

is needed to determine the optimum condition for a particular applica­

tion. 
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CHAPTER I-

INTRODUCTION 

Definition of the Problem 

Devices which produce high pressure in an enclosed but expanding 

volume by burning combustible mixture of gases or solid propellant with 

the objective of performing work are common in practice. Internal 

ballistics of these devices, for example the problem of the gun, have 

been solved experimentally since fourteenth century when gunpowder first 

•' • ' r - i * came into use |_1 J . But surprisingly enough, an analytical solution 

which may be used to accurately predict the performance of such devices 

is yet to come. This lack of a mathematical model compels a designer 

to choose the comparatively expensive path of experimentation, although 

only limited information can be obtained from these experiments. More­

over, a large number of experiments have to be performed before a set 

of optimum design parameters can be determined for a particular purpose, 

and still the final result remains in question as to whether a truly 

optimum condition has been achieved. 

The problem of internal ballistics requires a modeling of the 

fluid flow phenomena and heat transfer to the wall inside the expanding 

volume. For simplicity., throughout this work we shall restrict ourselves 

to the special geometry of a closed cylindrical tube with a sliding piston 

Number in [ ] refers to the references in Bibliography. 
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at one end as shown in Figure 1. The combustible mixture is burnt 

inside the enclosed volume whereby the pressure is increased and the 

piston is set into motion. The products of combustion which flow down 

the cylinder behind the piston impart a considerable amount of its 

energy to the piston and a fraction is lost, to the tube wall. This 

cools the combustion gases and modifies the pressure and flow conditions. 

While heat transfer has some effect on the ballistic properties, 

this is probably more important with respect to the material properties 

of the tube. Since the combustion gases are usually at a temperature 

of 2000-3000 K, after repeated use of the device at high frequency the 

wall temperature of the tube may; reach a value high enough to cause 

appreciable wear as the piston slides down the tube. A model of heat 

transfer, which can be used to predict: the wall temperature, will help 

a designer to choose the optimum design parameters which will minimize 

the erosion rate. 

The purpose of the present research is, therefore, to provide a 

working analytical model which shall be able to predict all the ballistic 

properties, namely velocity, pressure, temperature and density of the 

combustion gas mixture as a function of space and time. The heat loss 

to the tube wall shall be considered and the temperature distribution 

at the wall shall be determined. This model will then allow study and 

optimization of various parameters without expensive trial and error 

experimentation. 
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Related Work 

Theoretical solutions to the problem of interior ballistics have 

been attempted since the days of Lagrange who in 1793 first tried to 

determine the spatial distribution of pressure, density and gas velocity 

in the tube at all times after the combustion. The work available until 

now can be divided into two broad categories: 

1) Semiempirical solutions which may have practical utility in 

the study of familiar devices. 

2) Exact theories which attempt to include the predominate 

phenomena up to a certain order of magnitude by formulating a simple 

mathematical model of the flow. 

Semiempirical Solutions 

The major works in this area with special application to the 

guns using solid propellant are described in references [l] and [2j. 

The main purpose of these works is to obtain a solution which matches 

with the experimental values of peak chamber pressure and muzzle velocity 

of the projectile. Only a few of the number of solutions shall be 

discussed here. 

Isothermal Solution. The solution as described by Corner \_2~\ is 

based on the following assumptions; 

1) The propellant stays in the chamber burning under the tube 

head end (breech) pressure and the rate of burning is proportional to 

that pressure. 

2) During the period of burning of the propellant, the progres­

sive cooling of the combustion gases due to the work done on the projec­

tile can be approximated by taking a mean gas temperature over this time 
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interval, corresponding to an effective mean force constant A. 

3) Uniform gas density and linear velocity distribution in the 

space between the tube head end and piston base. 

h) Resistance to motion of the projectile can be taken into 

account by introducing an increased effective projectile mass instead 

of actual mass. 

5) The covolume r\ (volume correcting term in the equation of 

state of the combustion gas) is equal to the specific volume of the 

propellant material. 

The expressions for breech pressure P, projectile velocity V, 

and projectile distance from breech face x,, are given as a function of 

"convenient variable" f, the form;;factor 6, the force constant A, 

burning rate 3, and central ballistic parameter M. The central ballistic 

parameter M itself is a function of A, 3, initial mass and web size of 

propellant, effective projectile mass, and tube diameter. The form 

factor 6 depends on the geometrical shaipe of the propellant and the 

variable "f" goes from one to zero as the propellant is burnt. Other 

parameters, namely A, M and 3 are chosen following a trial and error 

procedure until good agreement is obtained with the experimental values 

of peak pressure and muzzle velocity. The solution, however, does not 

take into account the heat loss to the tube wall. 

Coppock's Solution [2]. This is an extension to the isothermal 

solution described above with the following modifications: 

1) Instead of taking a mean gas temperature during burning, the 

analysis takes into account the kinetic: energy of the projectile and that 

of the gases, assuming that the combustion gases are uniform in density 
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between the breech and the projectile and that their velocity at any 

point is proportional to the distance from the breech face. The total 

heat loss to the tube wall up to a particular instance of time is 

assumed to be a certain fraction of the total kinetic energy of the 

projectile and the gases at that instant. In practice, the effect of 

heat loss is incorporated in the energy equation by a proper choice of 

Y (ratio of specific heats at constant pressure and constant volume). 

2) The gases have a constant covolume ri, not necessarily equal 

to the specific volume of the propellant: material. 

From the observed peak pressure it is possible to back-calculate 

the central ballistic parameter M, and thence the burning rate (E. 

The solution is superior to the isothermal solution because there 

is only one arbitrary parameter, namely the burning rate 3, whose value 

is selected so that the peak pressure matches the experimental data. 

Moreover, the model takes into account the heat loss to the tube wall, 

though in a crude fashion. 

Goldie's Solution [2]. The solution follows Coppock*s solution 

described above with the only modification that the projectile is assumed 

to be motionless until a "shot-start pressure" is produced inside the 

chamber. If there is any resistance to motion at later times, the effect 

is simulated by a change in effective shot weight. 

Apart from these solutions, there are solutions which attempt to 

use a better relationship between the burning rate and the corresponding 

pressure. But the solutions still need trial and error of one or more 

variables to match experimental data. Besides, there is no guarantee 

as to how good the solutions will be when prediction of performance of 
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a new device is desired. Alsot no information regarding the ballistic 

properties in between the breech face and the projectile is available 

from any of these models. Even a recent publication [3] fails to pro­

vide such informations. 

Exact Theories 

As mentioned earlier, Lagrange took the initiative to solve the 

one-dimensional problem of interior ballistics in 1793. He introduced 

the "Lagrange approximation" which assumes that the gas velocity at any 

instant increases linearly with distance along the tube, from zero at 

the tube head end to the full projectile velocity at the back of the 

piston. It is further assumed that all the propellant charge is in 

gaseous form from the start and at any time the gas density is the same 

at all points. It can be shown from the equation of continuity that if 

gas density is independent of position, the velocity distribution is 

linear; but the converse is not necessarily true. 

In other work, Hugoniot in 1889 used the theory of waves of 

finite amplitude developed by Riemann in 1858, with the assumption that 

all the propellant was completely burnt when''the piston began to move. 

He followed the resulting wave of rarefaction on its journey to the 

tube head end. The method was extended by Gossot and Liouville to 

follow the wave as it travels back to the piston after being reflected 

from the tube head end. Finally, Love [4 J carried the analysis as far 

as the third wave traveling toward the breech and Pidduck [4] applied 

Love's solution in the special case of internal ballistics. But all 

these solutions, though completely analytical, hold good under two 

important assumptions? 
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a) Instantaneous combustion, 

b) Adiabatic expansion of each element of gas. 

The assumptions may be applicable for the devices which.use gaseous fuel 

as propellant, say automobile engines,, but for the devices using solid 

propellant the assumptions are far from the real situation. In this 

case, gradual burning of the propellant must be considered. 

Analytical work based on most realistic assumptions has been done 

by Carriere [5]. For simplicity he assumed the propellant to be station­

ary in the combustion chamber at the time of burning which is a good 

assumption for cast propellant in a rocket-motor. From the basic con­

cept of conservation of mass, momentum and energy, he derived three 

partial differential equations expressing gas density, gas velocity and 

entropy as a function of time and distance. He transformed those 

equations into three ordinary differential equations along three char­

acteristic directions in the time-space co-ordinate. Then with proper 

choice of the equation of state for the combustion gas, he followed what 

is commonly known as the "method of characteristics" to determine the 

gas properties at any time and position. The effect of frictional losses 

and heat loss to the tube wall were disregarded in the analysis. 

The problem of heat loss to the tube wall has been studied by 

Hicks and Thornhill in England. A fairly elaborate description of their 

method has been given in both references [l] and [2], This work is also 

based on the Lagrange approximation of linear velocity distribution and 

uniform gas density in between the breech face and the piston. 

It can be shown that at high velocity, heat is mainly:transferred 

to the tube wall by convection. It is also evident that a boundary layer 
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is formed at the inner surface of the tube., The heat transfer rate per 

unit area through the boundary layer can be given as h(T -T ), where h, 
8 s 

T and T are the film heat transfer coefficient, temperature of the gas, 
g s 

and temperature of the inner surface of the tube respectively. All 

three quantities depend on time as well as position along the tube. 

Hicks and Thornhill considered the flow in the boundary layer 

to be the same as the flow over a flat plate. In internal ballistic 

applications the flow is in the turbulent region most of the time. 

Therefore, they used the analogy solution, as extended by Von Karman to 

cover Prandtl number other than unity, to obtain a relation between the 

heat transfer coefficient h and wall shear stress T . To get the wall 
w o 

shear stress they first found a "best" power law for the velocity profile 

(non-dimensionalized with respect to the shear velocity /T /p) inside 

the boundary layer which was capable of giving the local wall shear stress 

T within three per cent of the value that could be obtained by using 

more rigorous logarithmic form of the velocity profile when applied to 

steady and uniform flow situations. Then they used the boundary layer 

momentum integral, including the terms due to non-steady and non-uniform 

iiature of the flow, and used the "best" power law found earlier to obtain 

the local wall shear stress at all points. The heat transfer coefficient 

h is then easily calculated from the analogy solution. They, however, 

omitted one boundary condition that the boundary layer thickness at the 

base of the piston be zero at all times,, 

The heat transfer in the tube wall has been calculated by using 

the differential equation for unsteady heat conduction with proper 

boundary"conditions. For the case studied by Hicks and Thornhill, i.e. 
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the first round of firing from a cold gun, the curvature effect of the 

wall was neglected as the temperature rise was confined within one 

millimeter of the inside surface. Consequently, there was no heat loss 

from the outer surface of the tube which remained at ambient temperature. 

The heat conduction along the length of the barrel was also neglected. 

Knowing the tube material properties, namely thermal conductivity and 

diffusivity, it was possible to obtain the temperature distribution at 

the inner surface of the tube along the length at all times. The free 

stream values of the gas velocity, density and temperature were taken 

from the one-dimensional ballistic solution., 

It has been indicated in reference [,2 ] that frictional pressure 

drop is small compared to the inertia pressure drop needed to accelerate 

the gas. But no analysis until now indicate quantitatively the effect 

of skin friction on the ballistic properties. Even the heat transfer 

solution has not been fed back to study its effect ori the one-dimensional 

solution. 

Present Investigation 

In the light of available theories, it is clear that a good one-

dimensional solution is first required to replace the Lagrange approxi­

mation, or at least check its validity for the particular problem. The 

first and most formidable difficulty in writing down the one-dimensional 

continuity, momentum and energy equations during the burning of the solid 

propellant is due to the uncertainty of the relative velocity between 

the gas phase and the solid phase. It is extremely difficult to estimate 

the drag exerted on the burning solid particles by the accelerating 
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k 

combustion gases. Therefore, two limiting cases of the solids velocity 

have been considered in the present work: 

Case I. The solid particles move at the same velocity as the 

gas phase. 

Case II. The solid particles remain at their initial positions 

throughout the period of burning. 

For both cases the conservation of mass, momentum and energy 

results in four coupled partial differential equations expressing volume 

fraction of solid v , gas density p , gas velocity U, and pressure P as 
s g 

a function of axial distance x and time t. The heat release due to 

gradual burning of the propellant is taken into account. A special 

propellant geometry, namely a hollow cylinder, is considered whereby 

the total burning surface remains constant, although this assumption is 

not essential. 

The ballistic properties at the internal points are calculated 

from these equations after writing the same in finite difference form. 

But to obtain the properties at the two ends, namely the tube head end 

and the piston base, the equations are transformed into ordinary differ­

ential equations along the characteristic directions. The covolume of 

the gas is assumed to be constant, and experimental data for burning 

rate is used. As one of the initial conditions, it is assumed that the 

piston does not start until a certain specified pressure is reached 

inside the chamber and thereafter the piston does not experience any 

resistance to motion. 

The boundary layer momentum integral for a non-steady, non-uniform, 

developing flow inside a tube is derived. The profile shape factor H 
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(ratio between the displacement thickness <5 and momentum thickness 6) 

is introduced and the Ludwieg-Tillmann [6] friction factor is used. As 

a first approximation, the shape factor is assumed to be constant in 

the present work. The flow is in the high Reynolds number region for 

which the boundary layer thickness is small compared to the tube radius. 

It is therefore legitimate to replace the free stream values of gas 

density and velocity by the values obtained from the one-dimensional 

solution neglecting the boundary layer thickness. 

The local heat transfer coefficient h is calculated by using 

Colburn's analogy [7 ] between heat and momentum transfer. It covers 

Prandtl numbers other than unity and is simple to use. The values of 

viscosity and gas density at the film temperature are used. The heat 

transfer In the tube wall is computed from the unsteady one-dimensional 

(radial) heat conduction equation with appropriate boundary conditions. 

The wall temperature is also found as a function of axial distance and 

time. 

The heat loss term is entered into the one-dimensional energy 

equation and a comparison of ballistic properties is made with the solu­

tion without heat loss. Effect of wall shear stress is also included. 

The ballistic efficiency of the piston-cylinder arrangement is compared 

by varying different design parameters,. 
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CHAPTER II 

MATHEMATICAL ANALYSIS 

The mathematical analysis consists of two major parts: 

1) One-dimensional analysis with gradual burning of the solid 

propellant, including the effect of heat transfer and skin 

friction. 

2) Formulation of the boundary layer problem and determination 

of heat transfer to the tube wall. 

As outlined in the previous chapter, the present analysis is 

carried out for two extreme cases of solid velocity. In the first case, 

it is assumed that a burning solid particle moves with the same velocity 

as the combustion gases, In the second case, however, the solid particles 

are assumed to be stationary at their initial positions throughout the 

period of burning. Henceforth these two cases are referred as Case I 

and Case II, respectively. 

One-Dimensional Analysis Including 

Heat Transfer and Skin Friction 

Case I 

The assumptions, other than that regarding the solids velocity, 

which are made to simplify the model are as follows: 

1) At any instance of time, the linear speed of burning r ^s 

b 

same for all the solid particles and it is a function of the 
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average pressure in the chamber (space in between the tube 

head end and the piston base). 

2) The solid propellants are single perforated circular cylin­

ders in shape whereby the total burning surface remains 

constant during the whole period of burning. 

3) The burning rate is fast enough to consider that the temper­

ature of the remaining solids at any instance of time remains 

constant at the initial temperature. 

4) The propellant: material is incompressible and its coefficient 

of thermal expansion is negligible. 

5) The piston starts to move only when the chamber pressure 

reaches a certain value P , and thereafter the resistance to 
o 

its motion is negligible compared to the pressure force 

exerted on it by the combustion gases in the chamber. 

The conservation equations are as follows (for derivation see 
Appendix A) : 

S o l i d c o n t i n u i t y : 

3v dx> 
T-S- + Ur-5- + V - - ' + V, = 0 ( 2 . 1 ) 
dt 9x s 3x• : d 

s 

Gas continuity: 

8pg 3pg p* 3U (ps"pg) 

3t 3x ^ (1-v ) 9x (1-v ) Vd U'Z) 

s S S 

Momentum: 
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M + u . i S . _ ^ 3 £ _ i V ( 2 3 ) 
9t 3x p 3x p R U " J ; 

m m 

E n e r g y : 

v P 

Dh Dh nTJ 

s , , , v g DP 
+ ( 1 - v ) p --r*3- - —— s r s Dt s g Dt Dt 

2h . 2T U 

- p s ( w + - - hgfti - -r<^,i) + - r - (2-4) 

s s 

where v, is the volume rate of decrease of solids per unit cylinder 
s 

volume and is given by: 

v, (,,t)- ^ r 4 ' i "- (2.5) 
s p / P 

v (x,t)dx 
s ' 

'o 

The equation of state of the gas isj 

P(v - n) = R T 
g § 

or, 

P(—- - n) = R T (2.6) 
Pg § 

where the gas constant R is obtained from the ratio of the universal 
O 

gas constant R and the molecular weight: of the gas M. 
° u 

It has been shown: in Appendix A that under assumptions three and 

four as stated earlier, the differential of enthalpy of solids per unit 
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mass h and the differential of enthalpy of gases per unit mass h can 

be given by: 

dh = — dP (2.7) 
S ps 

(Y-np ) P 

dh = , « dP - 7—f»;— 7 dp (2.8) 
g p (Y-D (Y-1)P Z g 

o o 

Substituting equations (2.7) and (2„8) into the energy equation (2.4) 

•(l-vs)(l-npg) D p (l-vs)VPDp 

Cy-1) Dt ™ TY-1>P Dt 
o 

= p (W + — - h )v . 
s ps g ds 

2h. 2T U 

--r^Vi^TT- (2-«) 

Using gas continuity, i.e. equation (2.2) to replace :=—•=- in equation 

(2.9) the final form of the energy equation becomes: 

(l-v ) (l-np ) D P _ ^ m TP(P.-P ) . 

(Y-D Dt (v-1) dx (Y-1)P„ de 
g s 

P 2hi 
= p (W + -- - h )v, - ~^(T-T ,) 

s p g d R w,i 
s ° s 

2T U 
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or 

i £ + u 3 £ + B M = c v - E S ( T _ T > 
3t ^ x I 3x I d I R U w,i ; 

s - ' 

2T. U 
+ JT-~- (2.10) 

where 

-nc . 
g 

Bl - O^Td-nP J ( 2 , 1 1 ) 

YP(PO-PCT) + (Y-l)p o <W + f- - h ) 
s g s g p g 

C « _ _ . . . ._s (2.12) 
i P { l-v ) ( i -np j} 

g s g. 

ET = — - i l = i i (2.13) 
I (1-VJ(1-T1P0) 

!:» g 

The initial conditions of the conservation equations are: 

Position of the piston, L (0) • L 
P ° 

U(x,0) = 0 ; P(x,0) = P ; T(x,0) - T ; •• po(*,;0)! = pa 
S OQ 

and v (x,0) = v at 0 < x < L 
s s — — o 

o 

(2.14) 

where P is the pressure at which the piston starts to move, and T is 
o o • ••-. 

the explosion temperature of the propellant. By knowing P and T it 

is possible to determine p from the equation of state (2.6): 
8o 
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• g ' - i r r 1 <2-15> 
0 -f-a + n 

Neglecting the initial mass of air in the chamber, a mass balance gives 

m = v V p + (1-v )V p 
s. s o s s o e 
:L O O &o 

or, 

(mc /V ) • - Qn s. o g 
v - (2.16) 
s p -p 

° s g 

(m /V ) is called the loading density. 
s. o 
i 

The boundary conditions are: 

at x = 0, U(0,t) = 0 

and (2.17) 

at x = L , U(L 9t) = U (t) 
P P P 

The piston velocit}^ U (t) is obtained from the equation of motion 

of the piston, which under the assumption five takes the following form: 

dU P A ... . . 
E = a = —EL.P- (2 18} 

dt ap M U-ltt; 

P 

The position of the piston is obtained from:: 
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A 
£ = a (2.19) 

dt2 ? 

The unknowns, and the corresponding equations from which they 

can be calculated are listed below: 

Unknown Equation 

Volume fraction of solids, v Solid continuity, (2.1) 

Gas density, p Gas continuity, (2.2) 

Velocity, U Momentum equation, (2.3) 

Pressure, P Energy equation, (2.10) 

Gas temperature, T Equation of state, (2.6) 

The conservation equations, i.e„ (2.1), (2.2)., (2.3) and (2.10) are 

written in finite difference form, and a numerical scheme which takes 

into account both forward and backward space derivatives are used to 

calculate the corresponding unknowns, i.e. v , p , U and P, at all the 
s 8 

interior points at an advanced time by knowing the present values at and 

around those points. The gas temperature, T, is then calculated from 

the equation of state (2.6). The details of the solution technique 

shall be discussed in Chapter III. 

The above solution technique, however, is not applicable to the 

boundary points, i.e. the piston base end and the tube head end, as space 

derivatives on both sides of these two points are not available. This 

necessitates the transformation of the conservation equations to ordinary 

differential equations along characteristic directions, i.e. to follow 

the "method of characteristics" [8]. 
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P-U C h a r a c t e r i s t i c . The e n e r g y e q u a t i o n ( 2 . 1 0 ) i s : 

8P . TT8P . •„ 8U 2 h j 

8 t Sx I 3x I d I • R •• w . i 

2T U 
+ E — ^ » 

I R 

Multiplying the momentum equation (2.3) by an arbitrary constant X: 

J S * \ S t ^ - l T <2'20> 

Adding equation (2.20) to equation (2.10): 

PT J. fi 3u | £ + ( U + A ) | | | + | X p | £ + ( B T + XpU)|S 
o t 3x J I m 3 t I ^m 8x 

2h. 
= c i \ - Ei TT (T-Tw,i} 

2T 

[v -x] <2-21> 

To obtain the characteristic directions, the value of X shall be such 

that: 

dt 1 Apm 
dx U+A BT+Xp U I m 

Al,2 " * "V'V (2-22> 



Dividing equation (2.21) by /l+(U+A)z and using 

1 9 , . (U+A) JL = 
/ I + O J ^ a t Vfe^u+xF 3x d n ^ 

where n corresponds to Xj i.e. +ve sign of X 

and £ corresponds to A2 i.e. -ve sign of A 

the equation (2.21) becomes % 

dp . , ; du 
+ X_ 0p dr,,5 1,2 m dn.C /]L+(U+A)2 Vd 

S 

2h. 2T 

EI -TT^w.i'J + -T^8!0-"] 

Now, 

An,£ = /(Ax)z +' ̂ At)z == At. /l+(U+X)z (2 

J *. -1 

Therefore, along ^-characteristic, i.e. -™-
U + /B /p 1 m 

_ r 2h. • 
AP + p / O p " AU = CTv. - E.r — - (T-T .) pm I ' m L i d - I R w , i 

+ -g* (ErU - / y ^ ) ] At 

, -, ,. , ' . . . dt 1 and along ^-characteristic, i.e. — -

(2 

dx U " ^lK 
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AP 
_ r 2h-

- V ^ m
A U = LVd " Ei TT (T-Tw,i} 

2T ^ 

+ - ^ (EjU + ̂ V^)J At (2.26) 

P- g Characteristic. By rearranging equation (2.9), 

3p 3p 
~ . "T U"T 

3t 3x yP 3t lit 

f . -. (h - — - W) 
+ (Y"DPsPg g Ps 

(l-vs)yP 

(Y-l)p T2h. 2T U 
+ _ -£L —i(T-T ) — 
+ (1-v )YP L R w.i • R 

(2.27) 

Dividing this equation by /l+U2 and using, 

L 9 + _ U .3 ... d 

/i+u7 dt /i+u Y 3x d£ 

and 

A? == /(Ax)z+(At)r == At /l+U2 

along a particle path, i.e. 
dt 
dx 

I. 
U X 

P ( l -np ) 
Ap = - a -_&- AP + 

Pg YP 

/ I N ' ( h - — 
^ - ^ P - s P s S ^ 

(1-v )yP 

- W) 

v . At a s 

+ 
(Y-DP g 

( l - V s ) Y P 

f 2 h . 2T 

I T (T-Tw,i> " TT0 I At (2.2.8) 
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v -P s g Characteristic. From equation (2„2): 

_3U 
ax 

(l-O fdP :3PC;I (PC~PJ 

3t dx p d 
g J g s 

(2.29) 

- 3U . 
Substituting this expression for -r— in solid continuity (2.1): 

3v 3v v (1-v ) 
-5- + V-1 _ * s 
dt dX p 

g 

3p 9p 
° -l_ u & 

I at 9x 

v p +(l-v )p i 
s s s g 

g 
V j = 0 (2.30) 
a 
s 

Proceeding in the same fashion as for the P~ g characteristic, one 

obtains: 

Along a particle path, i.e. -
dt 1 
dx U * 

v (1-v ) p 
A S S . Ill 

Av = Ap - — 
S Pg 8 pg 

v. At 
a (2.31) 

The procedure of solving the above characteristic equations are discussed 

in Chapter III. 

Case II 

In this case the solid propellant particles are assumed to be 

stationary at their initial positions throughout the period of burning. 

The linear speed of burning r, , is same for all the solid particles and 

is a function of the average pressure in the space between the tube head 

end and the initial position of the piston L . The rest of the assumptions 

are the same as those for Case I. 

The conservation equations in this case are (See Appendix A for 

derivation): 
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Solid continuity: 

9v 

JT~+ *d z" ° (2*32) 

s 

Gas continuity: 

3t ""^T Pg 9x (1-v,) d (1-v ) 9x 
s s s 

Momentum: 

Energy: 

P DP P U 
(1-v )p --& - (1-v )̂ r - p (W + -•- + -5- - h )v\ 

s g Dt s Dt s p 2 g d 
s s 

2h. 2T U 
-(T-T. .) + 

(2.33) 

M + T I ^ - 1 9P I Ps U . 2Tw 
3t ^ x " p 3x (1-v )p~ Vd " (1-v )p R U . W 

g : s/Kg s s/Kg 

R v ' w,i' R (2.35) 

As none of the solid particles moves beyond L ,' v can be expressed as 
s 

bt srb 
\ -̂ Tl—- < 2- 3 6> 

s P / ° 
v dx 
s 

'O 
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The same equation of state, i.e; equation (.2.6), is used and by succes­

sive use of equation (2.8) and (2.33) the final form of the energy 

equation (2.35) becomes: 

8P , T_3P • 9U 1 _ \ , BIIU 3vs 
3t U3x + BII 8x ~ CIIvd + (1-v ) 3x 

• , • s s 

2h. 2T U 

" *n-5T i,£'\i? + En -T- (2-37) 

where 

yP 
II (1-npJ 

(2.38) 

2 
P U 

YP(p -P ) + (Y-1)P P (W + P~ + 2~ " V 
C n P {(l-v )(l-np )> U , J y ; 

E = E = (Y-j-) -- (2.40) 
II I (l-vg)(l-^p ) 

The initial and boundary conditions axe the same as those for Case I. 

The characteristic equations are also required to calculate the ballistic 

properties at the two ends. 

P-U Characteristic. The procedure is exactly same as Case I. Multiplying 

the momentum equation (2.34) by an arbitrary constant A, and adding to 

the energy equation (2„37) one obtains: 
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ft+ <u+x>f \o f + (BII+Ap U)f 1 
_ g dt II g 9xJ 

BTTU 3v p U 
p , Ii s , rs . 

• c n v d + "(i-v v "^r • A a - v ) vd 
s s) s' s 

2h 2T 

" Exx -~(T~T .)+ -=£ 
II R v w,i' R L II (1-v ) 

s 

E_ U -
• < 

2.41) 

The characteristic directions are such that: 

d t 1 
Xp. 

dx U+A BT_+Xp U 
11 Kg 

+ /*E7 = + [_ YP = + 
X 2 " W P g " " J ^ ^ V 

(2 .42) 

From solid continuity, i.e. equation (2„32) 

3v 
s_ 

3t ~Vd 
(2.43) 

By adding and substracting 

equation (2.41): 

B U 
II 

3v 

(1-v )(U+A) 3t 
on the right hand side of 

"f + <u+x>f 'i + xpg [ f + <"+ x ) 3U' 
3x' 

B H U r av 
(1-v )(U+A) 

r 3v 3v -| 

L s r + <u+x)^rJ -
B U 3v 

I I s (1-v )(U+X) 3t 

P U 2h. 2T . .' _ 
+ C^v., - X T I — , v , - ET T -^i (T-T .) + — S E u - 7 - i — 

I I d (1-v ) d I I R w . i R IT (1-v )l 
S 

(2.44) 



27 

Dividing equation (2.44) by /l+(U+A)z and using 

1 • .3' (U+A) 3 d - + — 

/ I + T U ^ A F
 81 /i+Tt^F Bx dT1 •c 

y i e l d s t h e r e l a t i o n : 

dP , , dU 
+ A p. 

BTTU dv 
I I s 

dTi,C l , 2 K g dn,C ( l - v ) (U+A) dri,C 
s 

/T+cu+xT2" 

p UX B _ U 
{ c n " Ti=";r)+ (i-v )(U+A)} d̂ 

s s • s 

2h 2T 
v? (T-T .) + ~ {ETTU 

I I R v w , i / R I I ( 1 ̂ y > ] (2.45) 

Therefore, along n-character is tie, i.e. — «» ----- : 
dx U+a 

B U 
AP + p

g
 a AU - o=v~nu+aT A V 

p U B„U 
r . • s , I I i . + Lcn - a o^rr * o^oaffoJ vd At 

2h 
- E 

II R (T^i)At4.^[EiiU._^y] At (2. 46) 

, , . . . . dt 1 
and along ^-characteristic, i.e. -j— - yrj- : 
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BT U 
A P " pg a A U " (1-v )(U-a) Avs 

+ C 
p s U • B I I U 

am r + 
II (1-v ) (1-v )(U-a) 

s s 

vJ At d 
s 

2h 2T 
Eii^T-\,i )At+-/LEiiu+TI^)j At (2.47) 

P- g Characteristic. Using equation (2.8) in equation (2.35), an alter*-

native form of energy equation is s 

3p_ 3p p (1-np ) r 
4. TT £L — B __&-

3t 3x y? 
1 £ +• u2£" 
3t 3x 

.2 
(Y-l)p P (h - W - — - ~~) 

s g .g Pe 2 
• _ _ ^ _ _ _ _ ' s . 

(1-v )yP " Vd s s 

(Y-1)P„ 
+ JL_ 

(1-v )yP s 

f 2h. 2T U 
—-(T-T ) - - W 
R U w,i; R J 

(2.48) 

Proceeding in exactly the same manner as for Case I, along a particle 

dt 1 
path, i.e. — - - : 

.. , (Y-l)P P (h - W - — - — ) 
p (1-np ) sMg g p 2 

Ap = - S — ^ — 6 - AP + -7= -r-5-"—- v. At 
g YP (l-vs)YP dg 

(Y-DPe 
+ - 6 

2h. 2T U'l 
__i ('T_T ) _ _J£L 

(i-v )Y? I R w,r R 

At (2.49) 
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v at the piston base is always zero after the piston starts moving and s 

v at the tube head end can be obtained from equation (2.32) alone. 
s 

Boundary Layer Analysis 

The boundary layer part of the entire analysis did not receive 

much attention in the past because of the nonsteady and nonuniform 

nature of the free stream flow. The flow is generally in the turbulent 

region with pressure gradient in the direction of the flow and a large 

temperature difference across the boundary layer. Also, in Case I a 

gas-solid mixture flows down the tube; hence the analysis is more 

complicated. A number of attempts [9, 10, 11, 12 ] have been made in 

the past to model the mechanism of heat transfer in a gas-solid mixture 

with various solid particle sizes and loading ratios (w /w ). It has 
s g 

been found that the effect of the solids ori heat transfer is prominent 

for micron-size particles whereas for millimeter size the effect is not 

appreciable. The present problem deals with the solid propellant of 

millimeter size and most of the time it burns out completely long before 

the piston reaches the end of the tube. It has also been found from the 

study of Hicks and Thornhill [2 J that the boundary layer thickness is 

small compared to the tube radius. Therefore, to simplify the model, it 

is assumed that the solids always stay in the core of the flow and never 

enter into the thin boundary layer at the wall. 

In the present study, an integral approach is preferred to a 

differential approach to keep the model relatively simple and traceable. 

The boundary layer momentum integral for the nonsteady and nonuniform 

compressible flow inside a tube as derived in Appendix B is: 



30 

3_ 
3t ; : , p (U_-u)r dr 

R-6 

+ 3x 

R 
TpuCÛ -û ir dr 

R-6 

+ J p(Uoo-u)r dr 

R-6 
3.x 

2 \ 
R 6 - f 

3P 
3U 3U 

-r— + p_ —"— + p£U -r— 
3x f 3t f °° 3x 

+ T R 
w 

(2.50) 

Defining 6 = Displacement thickness 

and G = Momentum thickness 

such that, 

f °° 

..R 

R-6 

2iTr dr = j p2irr(Uoo-u)dr 

R-6 

o r , 

PfU^RS (1 
R 

pr(U - u ) d r 

R-6 

(2.51) 

and 

pfUoo /" 2ur dr = { p 2ITI: u(Um-u)dr 

R-G R-6 

or, 

r 
P f ufR9( l - | ^ ) = J p u r(Uo o-u)dr 

R 
P 

R-6 

(2.52) 

and using the definition of the profile shape factor H = — , and for 

r rS fl 

a thin boundary layer — « 1, -z? « 1, ̂ :~ « 1, the momentum integral 

equation (2.50) becomes, 
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! T F P * U RHe] + |~r p .u 2 Re 
3t|_ f °° • J 3x|J f a> 

8U 
CX' 

+ (PfU^RHG)— 

a D 3U 3U 1 
„ , , 3 P oo cci 
R6 h~- + p £ - — + p J J - — 

'3x wf 9 t Hf « 8x 
+ T R 

w 

or, 

3fi 3H ^Uoo d P f 9 S f l 

p.U^RH-^ + p U R & ~ + p , R H 6 - — + U RHfcr-^ + P - l T l £ 2 . 
I °° d t f ° ° d t f 3 t °° d t f °° 3x 

3 1 ^ ' 3p 3Uo 

+ 2p _U R G - — + U R G r — + p. -U RH9r-^ 
f °° dX °° dX ' f oo 3 X 

= R6 
'ar> d U 

_ J ° 
8x p f 3 t 

3U 1 
00 

+ Pfu-ar 
T R 

w 
(2.53) 

Dividing equation (2.53) by p U^RHB : 

i ao T a u ~ i d U i d P * U ™ o d U U d P * d U 

±. JL§. 4. J: H i J. :L_ •' °° | •• 1 f :°° c>_6 2 °° °° f ___° 
9 3t H 3t U 3t 'p£ 3t H0-'3x~ H 8x p^H 3x 3x 

« • f f 

p£u He f °° 

'a-o d U 

3P , ° 
3U 1 

+ .PrU 
f °° 3x 

w 
p £U H9 f °° 

(2.54) 

From the study of steady compressible turbulent boundary layers by 

Reshotko and Tucker [13],, it is likely that for moderate Mach number 

flow encountered in this problem (M < 1.5), the percentage change in 

1 8H 
the shape factor, i.e. — r r > is small compared to the percentage change 

n. d t 
1 9 fi 

in momentum thickness, 7 7 7 . As a first approximation, therefore, the 
a d t 

shape factor, H, is assumed to be a constant:,. A more rigorous approach 

would be to derive another auxiliary equation, say moment of momentum 
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integral 14 to obtain an expression for ~ . However, derivation of 
L J clt 

such an equation for the nonsteady case is extremely complicated and 

therefore neglected in the present work. 

For thin boundary layers, U - U ; T - T and the film 

temperature, 

T 4 T • . • • 

Tf = — f * ± (2,55) 

The gas density at the film temperature, pf, can be evaluated from the 

equation of state (2.6),, and the final form is: 

pf l +nPg(|- -ft] 
(2.56) 

Equation (2.54) finally becomes: 

86 _ U 80 Tw 

at H ax p.uH 
i _ ^ 1 +. ]L —f + i l + (H+2) _8U 
p 3t ' p"fH 3x"~ U 3t H 3x 

+dH[I+p ff+p f€] 
f 

The initial condition is: 6(x,0) = 0. 

The boundary condition at the piston end is 9(L ,t) = 0, which is 
P 

obvious from the fact that all the particles at the piston base are at 

the full piston velocity all the time. The condition at the tube head 

end shall be established later. 

It is assumed that the entire flow is in the turbulent region 

and the wall shear stress can be obtained from the Ludwieg-Tillmann 
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friction factor [6], which was developed from a series of experiments 

with all types of pressure gradients. The original expression which 

holds good for incompressible flow with small temperature differences 

across the boundary layer is: 

r Tw n 0/> Vn"°-678H /^~Vo.268 , . 
f = H U z' = °*246 x 1 0 '"""T—) (2.58) 

^ 0 0 OC) 00 

In the present work, the expression is slightly modified by using 

the fluid properties (p, y) at the film temperature, Tf, instead of the 

free stream temperature, T^, to take into account the effect of property 

variation across the boundary layer. The expressions for local friction 

coefficient. C,., and local shear stress at the tube wall, T , used in 
f . w 

the present work are: 

Cc = 2A
 1 

f <*-/ 

? 1 
T = A p£U 

(2.59) 

where 

» -' <«.,)» 

0 123 Pf U 8 

A = ^ M B •> B = °- 2 6 8 5 R e 9 = — 

Using the above expression for wall shear stress in equation (2.57), and 
•p 

multiplying equation (2.57) by (1+B)9 ; 
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30 
at - i i+^fV 1 - 1 0 

- (1+B)0 
3t 

U 
3p 

p£H 3x r 

f 1 3U (H+2) _3U 
U 3t H 3x 

+ (1+B) C1Q i <w_ i w , m 
,pfU 3x U 3t 3x (2.60) 

where 

0 = 9 
(1+B) orf-'-e---:eW-

and, (2.61) 

C l = 5* 

At the tube head end, U != 0 and the equation (2.60) becomes 

30 

il 
= - (1+B) 0 1_ ^1 + JL. ̂ 1 + I i£ + (H+2) _au 

pf 3t pfH 3x" U 3t H 3x 

+ (1+B) 0 C. 
1 _3J? 1 3U 3U 

LP U 3x U 3t ' ,3x" 
(2.62) 

and at t = 0 , 0 = 0. This implies that at the tube head end, 9, i.e. 

momentum thickness or boundary layer thickness is zero at all times. 

The equation (2.60) is applicable to both Case I and II for 

computing momentum thickness 9, and thence the friction coefficient, 
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Cf, at each station in the axial direction at each time step. 

Heat Transfer Analysis 

As the flow is in the turbulent region, the analogy between the 

momentum transfer and the heat transfer provides the easiest way to 

determine the heat transfer coefficient, h., at the tube wall. Because 

of its simplicity, Colburn's analogy [?] has been used for Prandtl 

numbers other than unity as follows: 

2/3 Cf 
St Pr2/3 = / 

or, 

C 
h, = pfUc (~)/Pr2/3 (2.63) 

• • y -c 

where Pr = ( B ?). . 
K : -

g 

The heat transfer in the tube wall is considered as a one-

dimensional (radial) unsteady heat conduction problem in a hollow 

cylinder. Longitudinal heat conduction is neglected because the tem­

perature gradient in the radial direction is expected to be steeper 

by several order of magnitude than in the axial direction. The differ­

ential equation can be written as [l5j: 

9T 
w _ 

3t: w 

82T , 9T 
w 1 w 

. 2 r 3r 
dr 

(2.64) 

The boundary conditions are 
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a t r = R, q. === h . (T - T .) == - K -5-=-
* n i i v 00 w , i w 3 r r=R 

„ ST 
a t r = R , q « h (T - T , ) = - K -r-^ (2.65) ' 

o o o w,o amb w 3r r=R o 

a t t = 0 , T( r ) « T , 
amb 

It is possible to solve equation (2.64) numerically and obtain the 

temperature at the inner surface of the tube T . at each station along 
r w,i ° 

the length of the tube at each time step. The local heat transfer rate 

to the wall per unit surface area is given by h.(T-T . ) , and integrating 

over the entire surface, and the time, the total heat transfer to the 

tube wall can be determined» The values of local wall shear stress T , 
w 

heat transfer coefficient h„. and inner surface temperature T . as 
1 w,i 

calculated from (2.59), (2.63) and (2.64) are used in the one-dimensional 

analysis for the subsequent time step. 

Non-dimensionalization 

Before proceeding to the solution technique that can be applied 

to solve the equations derived so far, it is advantageous to non-

dimensionalize the equations to obtain a general solution for the geo­

metrically similar devices with the same initial conditions. The non-

dimensionalized parameters arex 

Axial distance, x' = ~ 
Lt 

Pressure, P» = p/p 
0 

Temperature, T1 = T/T 
0 
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Density, 

Velocity, 

Time, 

Linear speed of 
burning, 

i _. 

It can be noted that: 

p/p P 

u'r = u/u 

t'r 

g, 

U t o 

U = /P /p ° o Kg/ 

r ' = :: r . / U b o (2.66) 

b - V rK 

L1 " 
I dx' 

s 

U 

L t d l 
(2.67) 

r ~ p f ( Y _ n P g P g } 

o i -

P ' (Y-1) 
hf 

g 
(2 .68) 

W 
R T P 

g o _ J?_ 
(Y-1) P' ' 

! = >o 

g R T 
° g o 

P (y-1) o 
W» (2.69) 

w 
A - / o S ^ " Po ^ " ' ( R ^ (2 .70) 

and, np is a constant non-dimensional quantity. 
So 

Finally, non-dimensional form of the conservation equations are: 

Case I 

Continuity of solids: 

8v 8v 
ar 

8tf 8xf s 8xf d 
s 

(2.71) 

Continuity of gases: 



(i-v ) ax' (i-v ) 
s s s 

Momentum: 

Energy: 

9P' . TT'UL. -4- R '.ML. - r ' r̂ ' 
¥P"+ u ^ T r + B i al7 c i vd 

P / U ' 3 

2 i w.i' 1 ( }B 

where, 

, i / . i .« . u ^ _ i u • . . . ( » r + — - V ) 

g s gQ g 

i _ ( Y - D 
( l - v e . ) ( l - n p a PQ

f ) 
8 o s 
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3p ' 3 p ' P ' aTT , <P ' " P ' ) • 
•S + u ' — &_. + S _ JSL =I -_..s § A i . / 2 72) 

at ' u ax' (i-v ) ax' (i-v ) vd u , / ^ ; 

au' , TT, au« _ l ap' _ , pf ,u ' l ,0 7~v 
I P - + U ^xT = " — a?r" Di T 1 " T R ^ F ( 2 ' 7 3 ) 

m m 6 

D ' E ' h . d - T . J + D / E 1 — -^ (2.74) 

V = TI^s)d-npe P77 (2 '75) 

S 8 o 8 

,.• + * . 
Y P ' C P ^ - P • ) + ( Y - l ) P e

, P p ' A " P ' "8 
r ' = s g -«JL_J3 . s , (2 16) 
c i p ' { ( l - v ) ( i - n p _ P ' ) > u , / b ; 

(2 .77) 

V = V̂̂  (2,78) 

V - 2 0 Fir (2'79) 

o o 



Equation of state: 

Tt = 

p f (1-nS ) 
8 8o 

(2.80) 

Characteristic equations: 

dt» 
Along n , 5 characteristic, i.e. -7—5- = 777-- — 

dx U tj-jj^ , i m 

AP f ± p V B - V p ' MJ1 = C ' v , ' At - D 'E'h.CT-T .)At f 

m I "m I d 2 1 w , i 

+ v EVU" '4/b''/p f 

I m 

P f ' U ' 2 

(ReJ B 
Atf (2 .81) 

Along a particle path, i.e. -:—j- := jry- , 

Ap f = Gf APf + HT
fv., fAt* + D0

f 

g I ds 2 (i-vs)"Y ip r h.(T-T .)Atf 
1 w.x 

V 
r (Y-DP • 

g 

IT'OYP1" 
s 

p fUf3 

_s 
(ReJ B 

Atf (2.82) 

where, 

G* = 

p '(l-np P ') 
8 g0 8 (2.83) 

V" 
/ i\ 1 t(h f -- W» 

(Y-DP S pg g 
~~~~ (1-v )yPT 

Pf 
r) 

(2.84) 
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Again along a particle path, i.e. -r-— = rry , 

v (l-v ) p ' 

A v = .J! ^_ Ap t „ _EL ^ v A t v ( 2 > 8 5 ) 
s p g p d 

g 8 s 

Case III 

Continuity of solids: 

& + V -'° (2-86) 

s 

Continuity of gases: 

3p ' 9p * T̂Ti (P "-P ') P 'U1' 3v 

9 v + u , H p , ( } v + } , U.B/; 

Momentum: 

» T T » - » T T l ^ 

3P" + U 3x» " '" p » 8x» " (l-^)p. » ydc.
 Dl (l-v )p »(Refl)B V-»»> 

Energy: 

^ + U»-^- + B »--J-- " C »v » + - ^ » ~ ^ 
8tf + U 8x» + BII 9x» " CII Vd + (l-v ) 3xV 

Pf'U»
3 

- D 'Efh.(T-T .)+D/E f-- (2.89) 
2 i. w,x 1 B 

where, 
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! _ 
ypt 

'ii (l-np P •) 
g0 g 

(2.90) 

,2 

YP •(P '-P •) + (Y-I)P 'P „ ' ( w ' + 77 + V" V* 
r ' = s g - • s g 2  
LII " p'{(]"> )('l-np p ').} 

g s gQ g 

(2.91) 

E!, D1
!, and D f are given by equations (2.77), (2.78), (2.79), respec­

tively. The equation of state for the gas is also same as equation 

(2.80). 
Characteristic equations; 

d*' 
Along n , E, characteristic, ±i&. -j-!j 

d x U'±/BTT'/p
 f 

II g 

AP'+p '/B'/p ' AUf = — — i i — — Av 
8 8 (1-v )(U,±/B77r^",> S 

£ II g 

p "U1 B fUf 
II 

CTT"+/BTT/p ,, ., , 
I I I I g U-o ) - ( 1 ) ( U . ± A . / p .) 

i _ N S II g / _ l 

- D 'E'h.(T-T .)At: 
2 l w,i 

+ D ' E . u - + T r ^ . ^ ' / P ' 
P f 'U ' 2 

(ReJ B 
At* (2.92) 

J •, u 4 dt" 1 
Along a par t i c le path, i . e . -r—r = TTT » 
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Ap ' = Gf APf + H ' v , ' At ' + D ' 
g I I d 2 

s 
< l ~ ) Y P f 

•» Ei — 

h.(T-T .)At f 

1 w , i 

V 
(Y-1)P ' 1 p J U ' 3 

(1-v ) Y P ' s 
^ A t f 

( R e J B 
(2 .93) 

where 

hi-
t -v , , (h ' - W 
( Y - l ) P s

f p g
f g 

Pf U 
,2 

( I - V ) Y P 1 

s 
(2.94) 

Boundary Layer Equation 

- ; . . ji. -.. . -: • A 

Using the non-dimerisional momentum thickness, 0f = — and all 

the non-dimensionalized parameters listed in (2.66), the boundary layer 

equation (2.60) becomes: 

80f 

8t' 

u' 30f 4.Vi+u^Aw. 
" H" " ^ + ( 1 + B J H ( R " ) V^IT~R' "P~7 B 

y B ,(1-B) 

8 ° 5o 

- (1+B)0f 
1 3pf • , Uf 8 pf' 1_ j:>Û  H+2 8U? 

p » 8t* pf'H Sx" Uf 3tf H 8xf 

+ (1+B)C 0f 1 9PJ_ • 1_ jTUj_ 8U? 

» + TT» ^4-» + 

p fU" 3x' U' 3t' 3x» 
Lrf 

(2.95) 

where 

G' = e •i-(l+B) or ef = o 

l 
,1+B 

(2.96) 
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Now U1, p ' and P1 are taken from the one-dimensional solution 
• g 

and p ' is obtained from the non-dimensional form of equation (2.56), 

i.e.: 

2T 
'T+T 

W,:L 
g 

i+™ p •(• 2T. 

*o * Mw,l 
1) 

(2.97) 
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CHAPTER III 

SOLUTION PROCEDURE 

Solution of Interior Points 

As there is no analytical solution to the set of coupled non­

linear partial differential equations derived in the previous chapter, 

numerical techniques have been used to solve the conservation equations 

along with the boundary layer momentum integral equation and the equation 

of state of the combustion gas. The differential equations are written 

in finite difference form and MacCormack's version [16]] of Lax-Wendroff 

two step method. [17 J' is followed. The procedure is shown by an example 

below: 

Let, 

IF = - C^ (3-1} 

where c;is a constant. 

Equation (3.1) can be written as., 

-n+1 n. At , n n, 
u, = u. - c — (u... - u.) 
j j Ax j+1 j 

sn+1 n At ,~n+l ~n+lN 
u. = u. -- c -7— (u. - u. . ) 
J j Ax j j-1' (3.2) 

and finally, 

n+1 i u = h -n+1 , =n+l 
u. + u. 
J J 
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where u. and u. are the first and second estimated value of u. , 
J J J 

The integer n, and j denote the time and axial position of a nodal point 

~ ~ 11 
shown in Figure 2. If c is a variable, i.e. c(u), c(u). is used in 

_ 11 

the second estimation of u. . It can be recognized that both forward 

and backward space derivatives have been taken into account. 

Case I 

Using the MacCormack scheme, thei non-dimensionalized conservation 

equations, i.e. (2.71) through (2.74) can.be written as: 

~ n + 1 n T T . n A t 1
 f- n n% n A t 1

 / T T t n TTfn>. 
v = v - U ? . -7—7- (v - v ) - v T — r (U . . , - U f . ) 

S. 8 j J AX; 8 J + 1 S. 8 j AX; J+1 J 

v J " l n At1 (3 .3) v d H- At ' 
s J . 

~ ,n+l ,n TT,n At" / fn „ 
P~ = P ' " U \ TTT (P. - P 

n 
S i 8 j j K 8

j + l 8 j } 

,n / t tn\ 
P ' ( p s p e } 

8 j A_t_' • « " S g * - 1 - ¥T 0 ' * , - U ' n ) + 1 - Tv, ' ] n At ' (3 .4) 
n ) A x o J + 1 J (1-v n ) L d s J (1-v ") 

v s . s . 
J J 

u'f 1 = u ' n - u ' n ^ r (u'n
+1 -u ' n ) 

At- ' At' . ^ .n ^ , I L TTT„ n f«t T ^ T (P'Vi., - p •) - U L F " At ' (3 .5) 
P ' AX; j + 1 j j 

j 

can.be
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t1 

> i» 1> 

i—.iH-i- , ^ _ > 

4J 

< n <• 

• I - < > ' > 

1 ) - C l . 

< I — — — H i l 

j-1 J J+l 
I ' i 

k-AxU-Ax'-J 

L' 
o 

7 
Piston Path 

Unknown Layer 

Known Layer 

Figure 2. Numerical Scheme for Interior Points 

V characteristic f»Ax* 

. nf characteristic 
*- x 

Figure 3. Scheme for End Points. 
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ffn+l . p,n _ u»n Atl (p,n ,n}._ , n Atj. ( fn ,n 
J J J AxJ j+1 j 1 Ax^ j+1 j 

+ CI n v ' n At" - Ef n D» q" n At* 
1 J d J 2 x i 

j s J J 

+ Ef n PGF ? At" (3.6) 

where, 

St t b|- Vb 
v, ' = T-~ T,

S b (3.7) 
d A 
s P { P. v dx' 

s 

o 

4" = MT-T ,) (3.8) 
1 W, 1 

p f U ' 2 1 
ULF = D' - ^ T — - — (3.9.) 

1 Pm (Ren)
B 

P^U'3 

PGF « D]| -~ (3.10) 
1 (ReJB 

Thus, for all the nodal points (except the last point adjacent to the 

piston base) the first estimation regarding the ballistic properties 

after a time increment At' is made by knowing the present values of the 

properties at the point of interest and at its forward nodal point. The 

second estimation is done as follows: 
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* n+1 n f j t n + l A t ^ (~ n+l_~ n + l } 
V s = V s 3 Ax" ^ s . V .,; 

SA 1 J O J J - - L 

- n+1 A t ' /f}»n+l_ J , n + l v _ A i n
 A t » 

s . 
J 

( 3 . 1 1 ) 

~ tr i+ l 
= P 

, n _ ~ , n + l A t ! ( ~ , n + l _ g . n + I j 
g j

 U j Ax V P -§3 8 J - 1 

P ^ 1 ^ ^ 
si_At; «;n+1- rt +—r^r^ - r (U. - IT . 7 

/ n - n+l N Ax' v j J - l 
( 1 - v ) o 

s . 
3 

( 1 - v ) 
s . 

J 

* • ' n At' 

d 
s . > 

3 

( 3 . 1 2 ) 

S.-i.D.-rfi.f l±C(5.f-*•£> 

1 A t ' / p t n + 1 
~ , n + l Ax' j 

^fH+lv 
P J - l } 

n ULF . A t ' 
3 

m. 
3 

jit n+1 - P » n - U « n + 1 A t ; ( P » n + 1 - P ' ^ h 
- P j U j Ax' j J - l 

( 3 . 1 3 

- • B 
.' T*l & Y u ' n + 1 - U f t t f b + ' C I - n + 1 v • n A t ' 
I . Ax' V j J " 1 X j s , 

3 ° J 3 

i ' n + 1 D ^ q" * A t ' + E» ^ + 1 PGF ^ A t ' 
( 3 . 1 4 ) 

and f i n a l l y , 

n+1 
s . 

3 

- n+1 , ~ n+1 
v + v 

s . s., 
L J J . 

( 3 . 1 5 ) 
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,n+l 1 

p' - h 
p' n + 1+ p*»n+1 

L g3 83 
(3.16) 

utn+l 

J 
U » n + 1 + ft»n+1 

J J 
(3.17) 

P'n+1 = * 
j.D+1 + |,D+1 (3.18) 

From the equation of state (2.80): 

T1 . 
J 

,n+l (l-np p*n ) 

,n+l 
i 

(l-np ) 
g0 

(3.19) 

Similarly, to calculate the momentum thickness at a nodal point after 

increment AtV, equation. (2.95) is written as: 

.n(l-B) 

~,n+l m Q f n _ 

J J 

u' n 
At 1

 / n l n ,n, 
U' n 

„ T-f •(Q ,V.1- e»V) +.D' V ^ 1 

H Ax1 i + l i J ^ 
0 J J 

ptn-I B 

u- j J 

At* 

n 
U1 n 

(1+B) 0 » . 
J 

1 ' ~ , n + l ' .nN . j At* / , n .nN 

— (pf. - p f „ > +:;;;^ S F (p
f - p

f ? 
p} j :i Hp^ o j + i j 

"j J • 

u , n J 

J 

U'n) +:M 
1 n. 

V AxV^V j+ i u y 
o J J . 

+ (1+B) Q ' n — \ - 4i;. ( P - ^ - P ^ ) 
j o ! .V n Axo J + 1 

(3.20) 

V J 



where 

n „ 

D..(1«)A^)(_L) 
So ° 

(3.21) 

taking 

T f m 

i-̂  = y (T^-) 
f g T 6o o 

(3.22) 

m being a suitable constant. 

The densities pi and p' are calculated from equation (2.97) 

' 3 J 
with the assumption, 

~ n+1 
(if-) 

i f . 
J 

T n 

e-o 
f . 

j 

aga in , 

| . n + l 
U ' n + 1 (U'"* 1 ) 

(1-B) 

= s'n - - 4 - r v » , n + 1 - e,n^> + DJ ' . 
j H Ax1 j 1-1 3 . - j n + l . B 
J o J J ( p i ) 

A t 1 

f . 
J 

- (i+B) a ' n + 1 
u'n+1 

— L - ^ ' n + 1 - p ? n ) + - J — ( p , n + 1 - D ? n + 1 ) 
•< tn+l C P f . P f / ^ - . n + l A x ' ^P f . P f . / 
Pf J J H Pf o J J - l f . 

J 

( l -O . ) . .-
+ ^—f- (u'n+1 

u'n+1 J 
u ' n ) + {-H^ 

3 H V ^ (W'£> 

+ (1+B) 9 ,n+l At| ( J ,n+l 
j - r n + l g . n + l Ax; j *'£> (3 .23) 

t . 
3 
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f i na l l y , 

n + 1 .. n-H * i i -H 
(3.24) e'n+1 = h 

3 
g f n + l + g . t t f l 

and, 

^n+1 = 

J 

• n (1+B) 

0 . n + l 
J . 

(3.25) 

The heat transfer coefficient after time'At", h. can be calculated 
i. 
J 

using equation (2.59) and (2.63). The new inner surface temperature 

T . is obtained from the solution of equation (2.64) using the mean 
9 3 

heat transfer coefficient,, 

, n n+1 
h. + h. 

h J - ^ — - 1 — 
m 2 

The same procedure is followed for Case II starting with appro­

priate conservation equations, namely equations (2.86) through (2.89), 

same equation of state'(2.80) and boundary layer momentum equation (2.95), 

The only points of differences are: (1) no solid particles beyond Lf 

and (2) the burning rate r, is chosen corresponding to the average 

pressure in the space between the tube head end and L . 

Solution for Boundary Points 

It has been stated earlier that to calculate the ballistic proper­

ties at the tube head end and at the piston base end, one needs the 

characteristic equations. Typical characteristic directions are shown 

in Figure 3. Let, at any time tf, the piston be at position 1 with 
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velocity Uf ... Its position and velocity after time At' can be calcu-
p,l ' 

lated by using equations (2.18) and (2.19) as follows: 

and 

p,2 p,,l U Q p 

AL* = ~ 
P L4 

U - At 4- Jg a (At) 
P,l P 

,2 
(3.26) 

where, 

P A 
i 

r 
p 

r a. 
a = - E A S ~ - E (P is mean of P ' and P j P . M. p ,m 1 2 

Then the n'-characteristic is traced back using the appropriate expres­

sion: 

for Case I: Ax" = (U'+v^lTp7)" At' 
I m 

(3.27) 
for Case II: Ax' = (U'+ZB^/p1) At' 

The point X is thus determined and all the properties are interpolated 

between the nodal points in each side. Pressure at point 2 is calculated 

by applying equation (2.81) for Case I, and equation (2.92) for Case II, 

for Case I, P- = P^ - P ; / £ - (UJ -l^) .+ Cj v/ Af 
J m J s 

- DlE'h.CT-T .)At! + D' 2 i w,i 1 •'"'IKK 
p'fV'2 

» ' < R e / 
At1 

(3.28) 
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for Case II, P- = P^ - p- / B £ 7 P ^ (n^-DJ) 

+ 

+ 

B1 U1 
II 

(i-v ) ( U ' + / B ; T / P ' ) S » 2 S » X 

s II g 

"ii-Wfei* 
p'U1 B'U1 

s II 

sJ ( I - V ) ( U ' + / B ; T / P M 
s 11 8 

V j
 fAtf 
a 
s 

DiE'h.CT-T .)Atf + Dn
f 

2 i w,i 1 EfUf -
(1 kr^W 

! J _ Af 
(ReQ)

B 
(3.29) 

The gas density and volume fraction of solids at the new base point 2 

are determined from characteristic equations along a particle path as 

follows: 

for Case I and II, 

»i,2-^ fl
 + G,.(P2-Pl):hHI,I^d 

(3.30) 

for Case I, 

v 0 = v .. s ,2 s,l 

v (1-v ) 
+ — py8- <"i.2-p;;i> 

o 

m -T v, ' At' 
pf d Kg s 

(3.31) 

for Case II, 

v = 0 
s,2 

(3.32) 
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For both points 1 and 2, the momentum thickness is zero, which implies 

that both friction factor and film heat transfer coefficient at point 

1 and 2 are infinitely large. Therefore, the last two terms of 

equations (2.82) and (2.93) have been deleted while writing the 

equation (3.30). For the same reason, in equations (3.28) and (3.29) 
PfU?2 

the values for h,(T-T .) and -rr—nr are taken corresponding to the 
iv w,.i" (ReQ)

B v. 5 

nodal point adjacent to the first base point 1. All the coefficients 

used in equations (3.27) through (3.31) are mean values between point 

2 and X or point 2 and 1 depending on the characteristic used. The 

properties at point 2 are first assumed to be the same as point 1 and 

then iteration is carried on until the values converge within the 

specified limit. 

For the tube head end, 

Ujf = Û ff = 0 (3.33) 

and the momentum thickness and heat transfer coefficient are also zero. 

The £?-characteristic is traced by using, 

for Case I: .Ax* = (U,-V/B!7P17 Atv 

I m 

(3.34) 

for Case II: Ax" = (U'-ZiT^r'T At' 

By knowing the properties at Xf and lf, properties at point 2r are 

obtained in the following manner: 

Case I 
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Z A m I m Ux'rf) + Cl v., ' A t ' - DIE' h . (T-T . )A t ' X I d 2 1 w . i 
s 

+ Di 
r . o P.cUf 

EfU? + / B l / p ' >——-r At' 
I , r m 

(3.35) 
( R e J 

Pi.2- - Pi.l ' + G' ( P 2 - - P i » ) + H i V f At? (3.36) 

v (1-v ) 

,2- - v * ~̂ x̂ " ^ .^L^ -4 v, f At1 (3.37) 
P d 

g s 

Case I I 

Pf 
r 2 f p i - + p g ^ I (°-ux^ + 

B I I U ' 
. < v

s 2 ' ~ V s l f ) 

( l - v ) ( U ' - / B ' / p ' ) S , Z S , ± 

s I I g 

p'U' 
s c ; T '+• / B ; T / P . ' T | — v - + 

B i iu ' 
' I I I I / K g (1-v J s ; (1-v ) ( D W B ' / p f ) 

S I I 2 -I 

v J ' At* a s 

DlE'h.(T-T . )A t ' + D' 
. 2 , 1 w, l 1 E'U1 + -rr^r- &!Tjpr 

( l - v ) : i r r g 

P£U'2 

( R e J 
B 

At1 (3.38) 

and from ( 2 . 8 6 ) , 

v o l = v . , - v , f At1 

s ,2T s , l ' dg 
(3 .39) 

The express ion for p1 _r i s obta ined by r ep l ac ing Hi by H' i n equa t ion 
g» 2 J- J-J-

( 3 . 3 6 ) . 
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The iteration procedure for the tube head end is the same as 

that for the piston base end stated earlier,, 

The properties at: the nodal point(s) adjacent to the base point 

(shown by *. in Figure 3), which cannot be calculated from the Lax-Wendroff 

method are determined by linear interpolation between the piston base 

point and the nearest point where properties have been calculated from 

the Lax-Wendroff method. 

It is noted that the spatial interval Ax1 is fixed for the entire 

solution and can be chosen arbitrarily depending upon the desired 

accuracy. But, for the stability of the Law-Wendroff solution, the time 

At1 

interval At1 must be chosen such that -r—r nowhere exceeds the slope of 
Ax' r 

o 
any characteristic [l7J„ This implies that at every time step, 

Ax'' 
( 

~ |U'|+^T7PI 

AtI < 2 — — f0r case I 

I# Km 
(3.40) 

Ax û • At» < J:> — _ for Case II 

u« I + / B > ^ 

Therefore, before selecting a new time interval, the right hand side of 

(3.40) is calculated at each nodal point (including the end points) and 

then the lowest value is chosen as the next time step. 

Determination of Wall Temperature 

The differential equation (2.64) In finite difference form can 

be written as (see Figure 4 for notations): 
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Figure 5. Heat Balance for a Thin Circular Element at the Inside 
Surface of the Tube 
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T n + 1 - Tn 

wyj "" wiJ 
At = a 

w 

„n .+T n -2T n 
gjuttj- wyj- 1 , wii 

(Ar)2 

Tn -Tn 

+ 1- w,j+l 'w,J-l 
r. 2Ar 
J 

or. 

cn+l 1 -
2a At H w 

(Ar)2 

2a At 

(Ar)-" L 
+ 

Ar_ 
4r. 
3. 

w,J+l 

+ 
2a At 
w 

(Ar)2 L 
k-

Ar 
4r7 
J J 

,n 
w,j-l 

(3.41) 

Therefore, the temperature at any interior point in the tube wall after 

a time interval At can be calculated from the knowledge of present tem­

peratures at and around the point of interest. For boundary points, 

however, a heat balance as described below is required: 

Inner Surface; With reference to the Figure 5: 

8T 
2TTR -r- p C . 

2 w w 3t 
Vii = 2lTR h.(T -T .) 

1 °° W,l 

9T 
2r,(R-fr)(-Kw-g7 

r=R-
Ar 

or, 
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In finite difference form, 

.n+1 
Lw,j 

1 -
2a At 
w 

(Ar) , w 

h Ar A 
_JL_ + i + £r 
K 2R 

L 
w.i 

2a At h Ar 2a At 
-i- w / m x „n w n Ar, n + 7772 ( T " ) a« + 7772 (1 + 2R} Tw,i+1 

(Ar) w (Ar) ' 

(3.42) 

Similarly, for the outer surface, 

rn+1 

W,0 

2a At / h Ar 
1 - w 

(Ar) 2 
K 

\ W 

+ i - AL-
2R o 

2a At h Ar 2a At 
+ -2-j (-2-0 T . + S - - . (1 

(Ar)2 Kw ** (Ar)2 

W,0 

Ar s mn 
—) T 

2R J w,o-l 

(3.43) 

The stability conditions [l8, 19] for the equations (3.41) through (3.43) 

are, respectively: 

2 
At < 

_(Ar) 
2a 

(3.44) 

w 

At < 
(Ar) 

2a 
w 

- h Ar , • 
m + 1 + AF-
K 
w 

2R 

(3.45) 

and 

At < 
(Ar) 

2 a 
rh Ar 
_o 
K w 

+ i - -^L_ 
2R 

oj 

(3.46) 
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Very small values of Ar (0.05 millimeter) are taken, and the selected 

At is the least of the values calculated from the right hand side of 

(3.44), (3.45), and (3.46)'. 

For a thick wall and initially cold tube, the temperature wave 

does not generally reach the outer surface and, therefore, equation 

(3,43) can be disregarded. 

Summary of the Procedure 

Once the piston-cylinder arrangement, the initial conditions and 

all other input parameters are chosen, the solution proceeds according 

to the following steps: 

1) The time interval Atf is determined in accordance with 

expression (3.40) and the. burning rate is taken corresponding to the 

average burning pressure., 

2) The new piston position and its velocity are calculated, 

and using the appropriate characteristic equations as indicated earlier 

the new ballistic properties at both the piston base end and the tube 

head end are determined. 

3) The interior points are solved either by the Lax-Wendroff 

method or by linear interpolation as discussed earlier. 

4) The new heat: transfer coefficient is determined from the new 

ballistic properties and the momentum thickness at all the nodal points. 

The new wall temperature is also calculated using the mean heat transfer 

coefficient. 

5) All the calculated values are stored as the present values 

and reused for the next time step,. 
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Thus the solution proceeds until the piston reaches the desired 

position. A computer program for the entire solution procedure was 

written in FORTRAN V and was run to obtain all of the results presented 

in the following chapter. The flow chart for the program has been 

shown in Appendix C. The computation time is approximately four minutes 

for the typical cases run in UNIVAC 1108 machine. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Standard Conditions 

A set of realistic, but somewhat arbitrary, conditions is chosen 

as the input data to the computer program, and results are obtained 

for both cases of solid velocities. These conditions will be referred 

to as "standard conditions." They are: 

Tube length, L 2 m 

Tube inside diameter, D 3 cm 

Piston mass. M 0.326 kg 
P 

Initial conditions: 

Piston position, L 25 cm 

Chamber pressure (piston 
start pressure), P 200 atm 

o 
Gas temperature (explosion 

temperature), T 3000°K 

Charge of propellant, m' 0.172 kg 
i 

Propellant properties: 

3 
Density, p 1670 Kg/m 

Initial web thickness, w 0.711 mm 
S-. 

: ' I 

Type: M-10, single perforated 

Gas properties: 

Molecular weight, M 24 
Ratio of specific heats, y 1.252 
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Covolume, n 0.00095 ni/kg. 

Specific heat at constant 
pressure, c 

P 

Viscosity (at 3000°K), y 
8c 

Thermal conductivity (at 
3000°K), K 

8o 
Tube material properties:; 

Thermal diffusivity, a 
w 

Thermal conductivity, «•' 

Initial tube temperature, 

amb 

0.412 kcal/kg- K 

0.00007 kg/m-sec 

0.000034 kcal/m-sec-°K 

2 
0.126 cm /sec 

0.0138 kcal/m-sec-°K 

300°K 

The initial gas density p as calculated from equation (2.15) is 

3 8° 
19.14 kg/m and the potential of the propellant is: 

R T 
W (Y-D 

985.66 kcal/kg 

The burning rate versus pressure data for the propellant has 

been taken from reference [20] and is presented in Table 1. Linear 

interpolation is used to determine the burning rate at the desired 

pressure. To ensure the convergence of the solution, a single iteration 

on the burning rate is performed in. each time step as shown in the flow 

diagram in Appendix C. 

For Case I, the solid particles are initially assumed to be 

evenly distributed in the chamber. But, in Case II, a specific initial 

distribution, namely a constant value up to the second nodal point from 

the piston 

avoid the d 

6. 

and then linearly to zero at the piston base, is chosen to 

iscontinuity at x equal to L . This has been shown in Figure 
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Table 1. Pressure vs Burning Rate Data for the Propellant. 

Pressure X 10 Burning rate, r. 
2 

Newton/m' m/sec 

20.68 0.00330 

34.46 0.00508 

48.25 0.00711 

68.93 0.00965 

103.39 0.01320 

137.86 0.01727 

172.32 0.02057 

206.78 0.02438 

275.71 0.03048 

344.64 0.03683 

413.57 0.04369 

551.43 0.05588 

689.28 0.06858 

1378.57 0.11684 

2067.86 0.17018 

2757.14 0.21082 

3446.43 0.24384 

4825.00 0.30988 

6892.86 0.40132 

13785.71 6.63500 
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1 

The general power-lav velocity profile, i.e. — = (•*?•) yields 
00 

the following relationships [2l]: 

L. = n+1 . 1 - (n+l) (n+2) 
6*

 n t l > 6 ~ n " (4.1) 

and shape factor, H = — — 
i";' n -

The one-seventh profile has been used quite extensively in the past to 

compute the turbulent boundary layers with favorable pressure gradients 

[22, 23]. The same profile is assumed under the "standard conditions" 

and the corresponding value for the shape factor, i.e. 1.2857, is taken 

for the boundary layer computation. 

The viscosity of the combustion gas is assumed to be proportional 

to the square root of the absolute temperature which implies that the 

value of m in (3.22) is 0.5. The same relation is assumed between the 

gas conductivity and its absolute temperature. These yield a constant 

value of 0.8482 for the Prandtl number of the gas. 

One-Dimensional Solution 

Case I. The results of the one-dimensional analysis have been 

presented in Figures 7 through 14. Comparison with the solution neglecting 

the heat transfer and skin friction shows insignificant effect of these 

phenomena on the ballistic properties of the piston-cylinder arrangement. 

But the following observations can be made from these results: 

1) The Lagrange approximation of linear velocity distribution 

and constant gas density is not a good approximation of the real situation. 

It can be noted frpm Figure 10 that: a considerable amount of time 
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(approximately one-third of the total time) is elapsed before the 

velocity distribution along the length of the tube becomes linear. 

The gas density, on the other hand, has always a drooping character­

istic from the breech end to the piston base end (Figure 9 and 13). 

The same characteristic is observed for the volume fraction of solids, 

v (Figure 14). 
s 

2) The gas pressure varies -'considerably along the length of 

the tube, and at the peak pressure, the difference between the pressures 

at the two ends is as high as 20 per cent of the breech pressure 

(Figures 8 and 11). The heat transfer to the tube wall reduces the 

pressure at all points, whereas the skin friction reduces the piston 

base pressure as the piston reaches the end of the tube. These two 

effects together reduce the final piston velocity to some extent. 

3) The gas temperatures at the breech and the piston base are 

of the same value all the time except for a. short period in the beginning 

(Figure 9). There is, however, a sag in between the two end points due 

to the heat loss to the tube wall (Figure 12). 

Case II. Similar results for Case II have been presented in 

Figures 15 through 21. A comparison with Case I reveals that the final 

values of piston velocity and total time of travel do not differ much 

from those in Case I. But the peak breech pressure can be 10-15 per 

cent higher than the corresponding pressure in Case I. This causes the 

propellant to burn faster. The piston base pressure, however, remains 

very close to the corresponding; pressure in Case I except for a short 

period towards the end,, This accounts for the slight variation in the 

final piston velocity between the two cases. 
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A couple of interesting phenomena are observed in this case of 

stationary solids: 

1) Just after the propellant is completely burnt, the breech 

pressure falls rapidly and finally becomes less than the piston base 

pressure. The same phenomenon was also observed by Carriere [5]. 

This happens because of the fact that all the solid particles are assumed 

to stay near the breech end all the time, whereas there are no solids 

at the piston base. Therefore, when the solids are completely burnt, 

no sudden change in the pressure slope occurs at the piston base as it 

is observed at the breech. 

2) Due to the rapid change in the volume fraction of solids v 

near x equal to L , a pressure difference sufficient to produce a local 

gas velocity higher than the piston velocity is created (Figure 17). 

The gas having higher velocity slams at the back of the piston and thus 

increases the temperature (Figure 19). But this large temperature rise 

is confined within a thin layer at the piston base and does not affect 

the. rest of the gas. The oscillations observed in Figures 19 and 20 

are not due to the numerical instability, but most probably due to the 

sudden area change near x equal to L » 

Boundary Layer and Heat Transfer Solution 

The results showing the boundary layer thickness, heat transfer 

coefficient, and the wall temperature for moving solids, i.e. Case I, 

are presented in Figures 22 through 27. As the time increases, the 

boundary layer thickness increases to a maximum value of approximately 

20 per cent of the tube radius when the piston reaches the end of the 

tube. This implies that the maximum value of the displacement thickness 
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is less than three per cent of the tube radius and, therefore, the 

assumption of a thin boundary layer is valid,,, 

The order of magnitude of the heat transfer coefficient is 

extremely high due to high gas density and velocity (Figures 23 and 

26)• The surface temperature of the tube wall reaches as high as 

1100 K and it occurs at the initial piston position (Figures 24 and 

27). The total time is so short that in spite of a very steep radial 

temperature gradient and high thermal diffusivity of the tube material, 

the temperature wave cannot penetrate more than one millimeter into 

the tube wall (Figure 25). This justifies the exclusion of equation 

(3.43) from the computer program. 

The heat flux, h.(T-T .) at certain fixed positions along the 
' I w,i r ° 

length of the tube are shown in Figure 28. Although the maximum value 

2 
of heat flux could be as high as 350,000 kcal/m -sec, these type of 

fantastically high values last only for one or two microseconds. The 

2 
average value of heat flux would be around 50,000 kcal/m -sec. 

The same type of results were also obtained for Case II, and the 

total heat losses for both the cases are compared in Figure 29. It 

shows that the heat loss in Case II is about ten per cent higher than 

that in Case I. This is mainly due to the higher gas velocity in the 

initial period of Case II,. After this initial period, the heat transfer 

coefficients in the two cases are quite close. 

The important results of both the cases are tabulated in Table 

2. A mass and energy balance detailed in Table 3 shows that the compu­

tation error is less than 0.5 per cent. The ballistic efficiency, i.e. 

the ratio of final kinetic energy of the piston and the propellant energy, 
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Table 2. Comparison of Results for Two Limiting Cases of Solids 
Velocity 

Case I Case II 
(solids moving) (solids stationary) 

Time of travel 0.002465 0.002448 
(second) 

Final piston velocity 1242.3 1271.3 
(m/sec) 

Peak breech pressure 6450 7200 
(atmosphere) 

Peak surface temperature 1067 1270 
(°K) 

Ballistic efficiency 35.47 37.14 
(%) 

Total heat loss 8.64 9.60 
(kcal) 

Heat loss in percentage 5.10 5.66 
of input energy (%) 



Table 3. Mass and Energy Balance for Case. I and Case II. 

Case I Case II 

Initial Conditions: 

Propellant charge 
(kg) 

0.172 0.172 

Propellant energy 
(kcal) 

169.53 169.53 

Final Conditions: 

Total gas mass (kg) 0.1716 0.1713 

Gas internal energy 
(kcal) 

90.10 87.63 

Gas kinetic energy 
(kcal) 

9.90 8.56 

Piston kinetic energy 60.13 62.96 
(kcal) 

Heat loss (kcal) 

Total energy (kcal) 

Error in Mass Balance (%) 

Error in Energy Balance (%) 

8.64 9.60 

168.77 168.75 

-0.233 -0.407 

-0.450 -0.460 
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has also been presented. The total heat loss to the tube wall is found 

to be five to six per cent of the input energy and about 15 per cent 

of the final piston kinetic energy. 

Parameter Variation 

Because of the large number of independent design parameters, 

no general correlation is attempted here. Only a few important 

parameters are varied for Case I to study their effect on the ballis­

tic as well as heat transfer solution, and the important results are 

presented in Table 4. 

Initial Chamber Pressure, P 
: • «--—o 

The selection of initial chamber pressure, i.e. "piston start 

pressure" is quite arbitrary as it is very difficult in practice to 

determine the exact pressure at which the piston starts to move. 

Therefore, two different initial chamber pressures, 100 atmosphere 

and 300 atmosphere, other than the "standard" 200 atmosphere are 

considered and the solution neglecting the heat transfer and skin 

friction is presented in Figure 30. The peak breech pressure and the 

final piston velocity are very much the same for all the three cases 

of different piston start pressures. Only the time of travel is prolonged 

as the initial pressure decreases. It is obvious that the heat transfer 

solution would be very close for all the three initial pressures because 

of close ballistic properties. This implies that the piston start pres­

sure has insignificant effect on the overall performance of the device. 
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Profile Shape Factor, H 

In the present work the profile shape factor, H, is assumed to 

be a constant throughout the entire solutionj however, this may not 

be true in the real situation. For non-uniform steady flow, a favor­

able pressure gradient lowers the value of H [24] whereas in uniform 

steady flow an increase in flow Mach number increases H [13]. In the 

present case, however, it: is difficult to predict its probable variation. 

Therefore, two different values of' shape factor, 1.4 and 1.2222, 

corresponding to the one-fifth and the one-ninth velocity profile, are 

taken and the results are -compared with those for H equal to 1.2857. 

It is clear from Figure 31 that lower values of H cause higher values 

of boundary layer thickness and heat transfer coefficient, i.e. the 

viscous effect of the fluid is higher. Because of this, the total 

heat loss to the tube wall and the peak inner surface temperature go up 

as the shape factor decreases. However,, at H equal to 1»2222, these 

values do not exceed the corresponding values for the "standard conditions" 

by more than ten per cent. The total heat losses to the tube wall for 

the three different values of shape factor are compared in Figure 32. 

Tube Inside Diameter, D 

The tube inside diameter is varied keeping the loading density 

(m /V ), and the piston mass per unit area (M /A ) constant. Two tube 
s. o P P 
l 

diameters, namely 2 cm and 4 cm, are selected with appropriate propellant 

charge m and piston mass M . The results are shown in Figure 33. It 
i 

can be noted from Table 4 that although an increase in tube diameter 

means an increase in the total heat loss, the heat loss per unit input 

energy decreases with larger tube diameter. This is due to decrease in 
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the surface to volume ratio. In other words, for ballistically similar 

devices, the increase in tube diameter reduces the heat loss per unit 

mass of gas and this accounts for the slightly better ballistic results 

obtained for the 4 cm diameter tube. 

Fropellant Charge, m 
i 

Two different values of the propellant charge, namely 0.15 kg 

and 0.19 kg are chosen apart from the "standard" value of 0.172 kg and 

the results are presented in Figure 34. It is obvious that an increase 

in propellant charge improves the ballistic efficiency of the device. 

But at the same time this increases the peak pressure, heat transfer 

coefficient and the peak surface temperature which put a limit on the 

propellant charge. 

Piston Mass, M — — i — p 

Piston mass plays an important role in the problem of internal 

ballistics. Therefore, besides the standard mass of 0.326 kg two other 

pistons having masses equal to 0.2 kg and 0.5 kg are considered. The 

results are shown in Figure 35. The heavier ,the piston, the slower it 

moves thereby leaving less room for the combustion gas to expand, which 

causes an increase in the peak pressure. Although the heavier piston 

moves slower, the ballistic efficiency of the device is improved and 

therefore suitable for the application where energy conversion is of 

prime interest. But if higher velocity is desired a lighter piston would 

be chosen. The surface temperature is also lower in the case of a 

lighter piston due to lower pressures which lead to lower heat transfer 

coefficients. 
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Web Thickness, w 
z—s . 

X 

Although the web thickness is only a geometrical property of the 

solid particles, it is important because it determines the total 

burning surface for a given propellant charge. For thinner webs more 

surface is available for burning and consequently the pressure rise is 

more rapid. This aspect is clear from Figure 36 where results of three 

different web thicknesses, namely 0.5mm,, 0.711 mm (standard), and 0.9 mm 

are presented. A rapid pressure rise naturally accelerates the piston 

faster and thus improves the ballistic efficiency. But this gain is 

neutralized by a much higher peak pressure and wall surface temperature. 

Comparison with Other Work 

No analytical work in the past considered the movement of the 

solid particles in the one-dimensional ballistic solution. Although 

Carriere [5 J studied the problem of internal ballistics assuming the 

solids to be stationary, it was not possible to determine the input data 

and final results from his publication. Therefore, a quantitative 

comparison could not be made. However, sin excellent qualitative agree­

ment is observed between his results showing the piston path, piston 

velocity and end pressures, and the results obtained from the present 

analysis for the case of stationary solids. Unfortunately * no work until 

now shows the spacewise distribution of the ballistic properties and, 

therefore no comparison can be made. 

The boundary layer and heat transfer analysis of Hicks and 

Thornhill ['2 ] assumed the "Lagrange approximation" and omitted the zero 

boundary layer thickness condition at the piston base. The values of 
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Table 4. Results for Various Input Parameters. 

"̂"•\̂ ^ Parameter 

Item "̂Vs-̂ _ 

H D Itto. M 
P 

w S i "̂"•\̂ ^ Parameter 

Item "̂Vs-̂ _ 1.2222 1.40 2. 0cm 4.0cm 0.15kg 0.19kg 0.2kg 0.5kg 0.5mm 0.9mm 

Time of travel 
(millisecond) 

2.467 2.462 2.484 2.456 2.840 2.196 2.292 2.680 2.047 2.876 

Peak breech pressure 
(atmosphere) 

6440 6460 6400 6500 4470 8840 4660 8900 12000 4380 

Peak surface temper-
ature ( K) 

1114 991 1059 1071 985 1127 1008 1099 1180 984 

Ballistic efficiency 
(%) 

35,37 35,63 34.52 35.94 32.86 37.68 27.11 41.85 42.83 28.10 

Total heat loss 
(kcal) 

9109 /. b / q i n 
_* • / \J 11 f-.n 8,69 8e44 8,85 8e24 7.13 9*43 

Heat loss in percen­
tage of input 
energy (%) 

5.36 4.65 7.58 3.85 5.88 4.5 5.21 4.86 4.21 5.56 
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heat transfer coefficient: for a typical case (input data not indicated) 

presented in reference |_2j, are lower than the values obtained for the 

typical case in the present study, roughly by a,factor of two. The 

reason could be due to entirely different input data and different 

boundary layer thickness condition at the piston base. However, the 

value of peak surface temperature and the location where it occurs, are 

in good agreement with the study of Hicks and Thornhill. 

A very recent analysis on eonvective heat transfer in gun barrels 

[25], which is also based on the "Lagrange approximation," indicates 

that the heat flux at the inside surfaces of the barrel can be as high 

5 2 as 2.7x10 kcal/m -sec. This value is quite close to the expected maxima 

shown in Figure 28 for the typical >case,, 
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CHAPTER V 

CONCLUSIONS 

The following conclusions can be drawn in the context of the 

results presented in the previous chapters 

1. The "Lagrange approximation" of linear velocity distribution 

and uniform gas density along the length of the tube is not a good 

representation of the real case. It takes a considerable amount of 

total time before the velocity distribution can be linear. Further­

more, the gas density cannot be called "uniform" at any time. 

2. There is a large pressure gradient along the length of the 

tube and at the peak condition the difference between the pressures at 

the two ends can be as high as 20 to 30 per cent of the maximum pressure. 

3. As the piston moves, the gas temperature continuously decreases 

with'almost a uniform spacewise distribution. For the case of stationary 

solids, however, a steep spacewise temperature rise is observed, at the 

back of the piston. 

4. While the final ballistic results are more or less the same 

for the two extreme cases of solids velocity, the peak pressure in the 

case of stationary solids is about 10 to 15 per cent higher than in the 

case of moving solids. 

5. The maximum boundary layer thickness can be on the order of 20 

per cent of the tube radius in typical cases. For ballistically 

similar devices the ratio of the maximum boundary layer thickness to 

the tube radius increases as the tube diameter is reduced. Therefore 
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the assumption of a thin .bpurfdary layer* mayg'not hold good for very small 

diameter tubes. 

6. The order of magnitude of the heat transfer coefficient and 

the heat flux at the inner surface of the tube is extremely high. 

O O 

Average values of 50 kcal/m -sec- K and 50,000 kcal/m -sec for the heat 

transfer coefficient and the heat flux, respectively, can be expected 

for typical cases. The maximum values can be five to six times higher 

than the average values; but the maxima do not last for more than a 

few microseconds. 

7. The tube inner surface temperature can reach 1000 C for typical 

cases and it occurs near the initial piston position. The time of travel 

is so short that even with the extremely high values of heat fluxes and 

high thermal properties of tube material the temperature wave cannot 

penetrate more than one millimeter into the tube wall. 

8. The total heat loss to the tube wall is five to six per cent 

of the input energy for typical cases and has only a minor effect on 

the final ballistic results. The same conclusion is valid for the skin 

fraction. 

9. The piston start pressure, although difficult to determine 

in practice, does not pose any real problem due to its insignificant 

effect on the ballistic solution. 

10. Improvement in ballistic efficiency can be brought about by 

increasing the propellant charge, the piston mass, or by reducing the 

web thickness. But in each of these cases, there exists an adverse 

effect of higher peak pressure and higher wall temperature. Therefore, 
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a great care should be taken in order to obtain the optimum design 

conditions. 
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CHAPTER VI 

RECOMMENDATIONS 

1. Since considerable differences in peak pressure and tube 

wall temperature are observed in two limiting cases of solids velocity, 

a rigorous analysis including the correct solids velocity would be of 

help in predicting peak pressure and wall temperature. 

2. The assumption of constant burning surface and uniform 

burning rate for all the solid particles at any instance of time can 

be relaxed to make the analysis more general. Relaxation of the latter 

assumption would increase the difference, between the end pressures, as 

the burning rate at the. tube head end would be higher than that at the 

piston base end. 

3. More experimental as well as theoretical studies on the wall 

shear stress and shape factor should be carried out for non-steady 

turbulent flow with favorable pressure gradient to improve the present 

boundary layer analysis,, One immediate step, however, would be to 

go 

include an auxiliary equation for — . 

4. The analogy between heat and momentum transfer can be replaced 

by the boundary layer energy equation for more accurate evaluation of 

the heat transfer coefficient. 

5. The present analysis only provides a way to determine the 

tube wall temperature during the first operation of the device. This 

should further be extended to evaluate the maximum wall temperature when 
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the device is ope 

devices. 

rated repetitively at high frequency as practical 
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APPENDIX 
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APPENDIX A 

Derivation of Conservation Equations 

A control volume approach has been taken for the derivation of 

the conservation equations. In Figure 37 a control volume having a 

cross-sectional area A and length Ax has been shown. The volume 

fraction of solids per unit length is v , or in the other words, v is 
S S 

the fraction of the total cross-sectional area A occupied by the solids 
p 

Therefore, (1-v ) is the fractional area occupied by the gases at any 

position and time. 

Due to the assumptions regarding the burning rate of the solids 

(same for all the particles at a particular instant) and the constant 

total burning surface S, , it is easy to estimate the burning surface 
't 

available in the chosen control volume,, 

v,. A Ax 

SL* V l ^ " ^ " ' (A,1) 

t / P , 
/ v A dx 
I s p 
o 

Therefore, the rate of gas produced (by mass) from the solids (or, rate 

of decrease of solids by mass) within the Control volume is given by, 

s L b 

(A. 2) 
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Case I (Solid particles moving at gas velocity) 

Continuity of solids. 

Rate of increase of 
solid mass in c.v. 

Rate of solid Rate of solid 
flowing in flowing out 

Rate of gas 
produced in c.v, 

7T (PA v=A x ) 

at S p S 

(p. U. A v ) 
s s p s 

(p U A v ) 
s s p s 

x+dx 
Ps \ 

v r. Ax 
s b 

1 ' V* 
o r , 

rox> 
A p S +4- (v U ) 

p s |_3t dx s s ' 
+ p

s V 7 L — 
t / e dx 

- 0 

w i t h U = U = U, 
s g 

av 

Tt 

dv 

•ISx" 

s TT s au . tv s b n 
+ U T + V - r - + ( - ) s q - = 0 s 3x X dx 

s 

o r , 

3v av . . . 
S _L TT S J_ OU . A r r - + U T — + v -r— + v A = 0 

9 t 3x s ax d 
s 

(A. 3) 

Continuity of Gases 

Rate of increase of _ Rate of gas 
mass of gas in c.v. flowing in 

Rate of gas Rate of gas 
flowing out produced in c.v, 

at ["(l-v )p A Ax] = L s g"p J 
(l-v )p A U 

s/Kg p g 

x 

L s g p gj + ps Sb 

v r. Ax 
s b 

x+dx t / P v dx 
s 

or, 
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_3__. 
at a--v:) p 

s • g 
f 4 - (1-v ) P U = p (—£)• 
3x [_ s Kg g j ^s A 

b 

P / P 

o 

v r s b 

v dx 
s 

Using^equlftion (A.3) and U = U = U: 

dp 8p 

if4 
8U ('1-Vq)r^ + (1-v ) U — & + p | £ - (p -p ) v 

S dt S <3x e <3x - S 2 8 d 

or, 

9P 9P P T̂T (P ~P ) 

3t 9x (1-v ) dx (1-v) d 
S ' I S? : S 

(A. 4) 

A general equation of continuity/can be obtained by considering the gas-

solid mixture as a whole which gives 

Rate of increasei'of Rate of gas-solid Rate of gas-solid 
mass of gas-isolid = mixture flowing - mixture flowing 
mixture in c.v. in out 

— v p A Ax + (1-v )p A Ax = 
3t L s s p s g p J , 

v p UA + (1-v )p UA ' 
_ s' s p s Kg p 

v p UA + (1-v )p UA 
L s s P s g P 

x+dx 

or, 

i i-

d__ 
at 

v p + (1-v )p 
s s s . g 8x 

p U.S+T(1-V )p U| = 0, (A.5) 
I1 S •' •' S g J 

Momentum Equation. 

Rate of increase of 
momentum in c.v. 

Momentum flux 
out 

Momentum flux 
in 

T, External 
forces 
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i | r fv
 P

 u + (l-v )p u \ a t L 8 A s ' H
g J 

^ _a 
A Ax + 

P 
v p U2 + (1-v )p U2 

. s*s s Kg j 
x+dx 

- fv p- U2 +• (1-v )p U21 A 
. L s s . s g J i 

X 

•**:>•> * "-fev 
= P A - P A - 2TTR AX T 

x+dx w 

or, 

k fv sp s + (l-v8)p }U | - f{v p U + (1-v )p U}lT| 
3x L s s s g J 

3P W 
3x " ' R 

Using equation (A.5): 

[ v p + (1-v )p 
s^s s Kg at ax 

ap w 
ax " R 

Now, mixture density p = v p + (1-v )p 
J m s s s g 

au au —^ + u ~ at ax 

2T 

i ap w 
p 3x p R 
m m 

(A. 6) 

Energy Equation, 

Rate of increase 
of energy in c.v. 

Energy flux 
flowing in 

Energy flux Rate of increase of 
flowing out energy due to con­

version of solids 
into gases in c.v. 

Rate of work done 
by the gas-solid mixture 

Rate of heat loss 
to the tube wall 

or, 
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3 _ 
a t 

2 2 
U U 

{ V s ( e s + - f - ) + ( l " V s ) P g ( e g + - f - ) } A p Ax 

u 2 u 2 

{ v s p
s

( e s : + - r ) u s + ( 1 - v s ) p
g

( e g + i-)ugH x 

r u 2 u 2 

- { u p (e + -§~)U + ( l - v ' ) p (e + -§ - )U }A s -s, s 2 s s Kg g 2 g p 
x+dx 

v r,Ax r 
+ p s, —^-2 AE - A ^ 

s b rL P 
U P v d x L 

v p U (---) +• ( l - v )p U £ - ) 
s s s p s g g p 

s g x+dx 

A J v p 
p V s s U (^-) + ( l -v )p.U (—) 1 "I 

s p s • s g s V g M . J - 2TTR AX h . (T-T . ) 
i w . i / 

where, AE = Additional energy release per unit mass due to conversion 

of solids into gases, 

- c T - c T = W - c T 
V O S S S S 

(A. 7) 

Using the d e f i n i t i o n of enthalpy for s o l i d s and g a s , i . e , 

h = e + — 
s s p 

h = e •+ - • 
g 8 P, 

JL 
3t 

v p (h - — ) + ( l - v )p (h - •—) s V v s p ' s Kg g p 
s g — 

+ 3x 
v p h U + ( l - v ) p . h U s"s s s s Kg g g 

3t L_ 

2 2 -1 
U . U ^ 

Vs-f-+ (1"V
S

)pg-f-

+ k 
U 2 U 2 

V-P U + ( l - v )p - ~ | - U 
sKs 2 s N s ' K g 2 

tr v r.AE 
/ tN s b 

= P„fe—); svA r L 
p / p 

2h. 

I T (T"T
w.i> 

v dx s 
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Using U * U - U, s g » 

8 
a! 

v p h + (1-v )p h I 3P ,.-8 
s s s s g e - *- -r— 

5 6 1 3t 8x 

v p h U +(l-v )p h U 
8 S S S g g 

sl^ 
2 3t 

H 5 < L 
2 8x 

v p + (1-v )p + v p + (1-v )p 
R R S g [ | S S S g "f 
v. p U + (1-v )p U 
,shs s g 

2h. 

v p + (1-v )p I U2 |S. 
s s s g I 8x 

= p v, AE - - ~ (T-T .) 
s d R w,i 

s 

Using the general equation of continuity (A* 5) and the momentum equation 

(A,6): 

at v p h + (1-v )p h 
s s s s g | ax 

v p h U + (1-v )p h U 
s s s s g g at ax 

= p v, 
s d 

2h. 2x U 
vA AE - —-»(T-T .) + - ~ -A R w,i R 

On differentiation and by use of continuity of solids (A.3) and continuity 

of gases (A.4): 

v p 
s s 

ah ah 

at ax 
+ (1-v )p 

s g 

ah ah r 
__JL JL TT_—Hi. 
at ax 

2£ + u5£ at ax 

2h. 2T U 
= p v, (AE + h - h ) —(T-T ..) + - ~ -
^s d s g R w,i' R 

Using the notation — =- ~— + U -r— 6 Dt 3t ax 

and h =:: c T + — , finally: 
s s s p 

s 
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D h D h TIP P 2 h-
v_p„ ̂ ~'+ (l-v )p T-& - £r - P v3 (w + — - h ) - -rr (T-T .) s's Dt s ^g Dt Dt Ks d g R w.i 

+ 
2 U 
w 
R 

(A. 8) 

Case II (Solid particles stationary at their initial positions) 

Continuity of Solids. 

Rate of increase of Rate of solids Rate of solids Rate of gas 
solid mass in c.v. flowing in flowing out produced in 

c.v. 

TT(P A v Ax) 
dt S p S 

~ PoSK S D 

v r, Ax 
s b 

t / P v dx 
s 

or, 

8v 

It 

Continuity of Gases 

b b 

<ir> 
s b 

v dx 
s 

= - v (A.9) 

Rate of increase of 
mass of gas in c.v. 

Rate of gas Rate of gas Rate of gas 
flowing in flowing out produced in c.v, 

at (l-v )A p Ax 
s P g 

(l-v )A p U 
s P g g 

(l-v )A p U 
s p g g 

x+dx 

+ p S 
v r, Ax 
s b 

s b„ /~L 
t / p 

v dx 
s 

or, 
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_3_ 
at Q-VjPa S g + 3x 

(1-v )paUo 
s g g 

b v r 
= pc(T"~) /-L S = p« *H (A-10) 

s A / ^ s d 
P I P J

 s 
lf ' v dx 

x 

Puttjing U = U and using equation (A.9) x 

(l-vs) 
r 9 p 3p ~TT-

_ i . + B _ j . + p M 
9x 3x g 3x 

3v 
+ P., v, - p U s _ P 

g dVi g 3x s d 

or, 

3p 3p 
—S- + U — 2 -
at ax 

+ 3U. ( ^ - P g
) . 

U 3v 
& s 

1-v ) 3x s 
(A.11) 

Momentum Equation. As the solids are at: rest, the free gas volume in 

the control volume shown in Figure 37 is taken as the new control volume 

in the following derivation. It is assumed that the solids are at the 

core of the flow and the skin friction at the surface of the solid 

particles is negligible. 

Rate of increase Momentum Momentum _ X External 
of momentum in c.v. flux out flux in forces-

. (1-v )A p U Ax 
3t |N s p g g 

(1-v )A p U " 
s' p g g 

x+dx 
(1-v )A p U 
L s P 8 8 

21 

(1-v )A P 
s p 

- (1-v )A P 
I \ g/ p x+dx 

a (i-v) 
+ P A Ax 

P 
-r-" 2TTR Ax T 

3x w 

or, 
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at {(l-v>.}Uo s g g 
+ ~- {(1-v )p U }U 

3x I s g g g - - h jf1-Vp] 

+ P 
3(1-v ) 2T 

s w 
3x " R~ 

Using equation (A.10) and putting U = U, 
O 

< i - . ) p 8 
_3U , 3U 
at d* 

+ p v, U 
s d 

s 
•- (1-v ) —-

S dX 

2T 
w 
R 

or. 

3t 3x 
?.* J_. 3P __ _______ A 

p 3x (1-v )p d 
g: s Fg s 

2T 
w 

(1-v Jp^R 
s g 

(A.12) 

Energy Equation. The same control volume as used in the derivation of 

momentum equation is taken» 

Rate of energy _ Energy flux _ Energy flux Rate of energy increase 
increase in c.v. flowing in flowing out due to gas coming into 

the c.v. from the solids 

Rate of work Rate of heat 
- done by the - loss to the 

flowing gas tube wall 

or, 
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3_ 
at 

2 u 
(1-v )A p (e . + -f")Ax v s y p H g v g 2 

U 
(1-v )A p U (e + - f - ) 
v s- p g g g 2 

U 2 „ 

(1-v )A p U (e + H H 
S ]? g g g x+dx 

v Ax r, 
S • D TT 

s b /L 
H P v dx 

s 

( ( 1 - v )A P U (—) 
r sy p g g p a x+dx 

- | ( l - v )A P If„(|~) I 
\K sJ p g g P j 

- 2TTR Ax h , (T-T . ) 
1 W , X 

o r , 

8__ 
3 t 

U 

L 

( 1 -Vs ) pg ( eg + "t")J + ^ 
(1 -v )p U ( U (e + T - + -4-> 

g 
s " " g " g " g P 2 

b v r. 2h_. 
- P <T-^> ^ ~ - — - - K - - ^ (T-T ) s A /L , R w , i 

P [ P ^ s
d * 

Pu t U = U and h_ = e + —- , 
g o B 

at 
( 1 - v ) p (h - — ) , 

s ^ g g p g J 
+ 8x d-v^PgV, 

+ *it (1-V.V 
21 

dX 
{ ( 1 - v ) p U}U' 

s Hg 
= p v . W ws d 

2h. 
- - (T-T . ) 
R w , i 
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Using equations (A.10) and (A.12): 

9 ru-v>„hJ + h 9t s' g g 

+ U 

(1-v )p h U i - a4. v s'Kg g I 3t 

p v, U - (1-v ) -r— 
s d_ s 9x 

(l-Vs)P| + Ps vd y 

2x ,l 
w 
R 

= p v, W 
• s d s 

2h. 
_ -_i(T--T .) 

R ' w,i 

Using equation (A.9): 

3 
9 t 

( 1 - v )p h + . v s g g 3x 
(1 -v )p h U V S g; g - (1-V 9t 3x 

T T 2 2h. 
P , U . i 

2T U 
w 

- Ps *d (W + f" + 2"° ~ T' (T"Tw,i ) + R s s s 

o r , 

d-v s )P g 

9h 3h-t 

* + U 
3t 9x J g 

+ h M(1-vpg} + fel(l-w 
- <1"V F+ u f-' 

91 3x 

P U \ 
= p v , (W + — + T~) H s d PD 2 

s s 

2h 2x 
w 1 > W TT 

_ — i ( T - T .) + - r - U 
R v w , i R 

D 9 _•_ TT 2 _ f i n a l l v 
Us ing e q u a t i o n (A.10) and n o t a t i o n — - -^• + U ^ , t i n a y 
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a~\\^ - <x-v f • >s \ (w + rs *T - y 

2h. 2T.. 

TT ^"V* + -ru (Aa3) 

Computation of Burning {Surface 

A typical solid particle, a single perforated cylinder in shape, 

is shown in Figure 38. 

Let, 

r. - initial inner radiusrof the particle 
1 ;u \ V '•• 

r = initial outer radius*! of the particle 
o 

1 = length of the particle 

n = total number of the particles in the chamber 

Therefore, total initial burning surface = 27r(r.+r ) I n . It is 

assumed that combustion gas is produced from both inner and outer cylin­

drical surfaces of a particle but not from two ends. If r, is the linear 
b 

speed of burning, which i s assumed to be same for a l l the pa r t i c l e s at 

a par t i cu la r ins tan t , the t o t a l burning surface af ter time At i s 

2TT (r.+r. At) + (r -r . At) l b o b 1 n 

= 2TT ( r .+r )1 n v l o 

Therefore, it is clear that for hollow cylindrical particles the total 

burning surface is constant and can be given by • 
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o r 2 2M Mr o-r,)lnp s 

V ' b (rn-r.) 
t s o 1 

2m 
Si (A.14) 

p w 
s s . 

1 

where 

m = initial mass of solids 
s. 
i 

p = solid mass density 
s 

w = initial web thickness of a solid particle 
s. r 

l 

Expressions for Enthalpies of Solids and Gases 

For any pure substance, h = h(P,T) 

dh = (||) dp + (||) dT (A. 15) 

T P 

From thermodynamics, dh = Tds + vdP 

i ) T = T(f!)i + v (A.16) 

Again from Gibbfs form of first law of thermodynamics, 

dG = - s dT + v dP (A.17) 

As GibbTs function G i s a property of the system,dG must be an exact 

d i f fe ren t ia l 
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Zs\ _ f 8v 

9P/T V S^ P 

(A.18) 

Now, coefficient of thermal expansion, 3 = """("̂ 7/ 

.'. Equation (A. 16) becomes, 

(ft) = " T3v + V = V<1"T|3> 

.'. Equation (A. 15) becomes, 

dh = v(l-TB) d P + c dT (A.19) 

Solids 

For solids, c is equal to c and it: has been assumed that the 
P H s 

temperature of the solids.T remains constant throughout the period of 

burning 

1 
dh = — (1-T 3 ) dP 

s p s s 
s 

It has also been assumed that the coefficient of expansion for solids 

3 is negligibly. 

• dh = ̂  (A. 20) 
"' s ps 

and h = c T + --- (A. 21) 
s s s p^ 
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Gases 

The equation of state for the combustion gas at high pressure 

can be taken as, 

p(v -n) = R T 
g g 

(A.22) 

where, the covolume ri is a constant. 

Now, 

/3v \ 

PfenP
 = \ 

, , .3v 
1 '• A 

•• ' g v g u x , p 

R 

v P 
g 

From equation (A.19): 

dh = 
r R T -i 

v 1 - - 8 -
8 L V 

dP + c dT 
P 

or, 

dh = n dP + c dT 
g P 

(A. 23) 

Now . the specific heat: at constant pressure, c = —Lr- R 
' . p Y-l g 

,\ dh = n dP. + -*•=- R dT 
g Y-l g 

(A.24) 

Differentiating equation (A.22) and using v = l/p : 
o o 

E d ! = (— - n) dP - ~ dp 
g Pg Pg2 g 
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Equation (A.24) becomes, 

(Y-HPJ 
dh = 

g P.CY-1) & 
IT- dP - Jl 

T^i)?7dpg 
(A.25) 

From equation (A.23), 

h - TI P + c T 
g P 

= ̂ +(H)PtM) 

(•y-npj 
-Jz P 

(Y-DP g 

(A. 26) 
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ij* 

f-siii 11 

APPENDIX B 

p ^ i v a t i p ^ i i l ^ o u ^ ^ 

^ tr Figure 39, the boundary layer momentum integral 
With reference to Figure J?, 

equation is derived as Hollows: 
i i 

'Equation of Continuity 
i '" c-i "Rate of mass flow 

R a t e ofUncrease Rate of mass tl°» _ * ^ ^ s u r £ a c e 

o f — i n c v . - ^ ° u ^ ; c e A B CD 

Rate of mass flow 
+ into the c.v. 

through surface BC 

R 

-L- : 2-rrr Ax :p d r « 
9 t ' 

' R - 6 

R 

r 
2iTr p u d r 

-*R-6 

x 

,_ ^R 

2iTr p u d r 

R-6 
x+dx 

•+ • m 
(B. l ) 

lBC 

MnmP.ntum Equation (x-directional) 

Rate of increase 
of momentum in 
c.v. 

Momentum Momentum X E ? ; t e r n a l 

-• f l u x i n + fltix- o u t f o r c e s 

x+dx 

.36 
f 2 T T ( R - 6 ) ( £ A X ) P - 2 T T R A X T W 

'3x 

(B .2 ) 



Control 
Volume 

rt 

< \/i V . j ' 
' s s s yyy / • / s s s s s s s v s f\s s s s • s s s / / / s • s * s ~s s s s x i 

/////// A// / /-/// A 
A 

Ax D 

Figure 39. Schematic of Boundary Layer Growth in a Tube With a Sliding Piston at one End. 



133 

Using the expression for mDr, from equation (B.l), equation (B.2) 

becomes, 

R R 

~ \ (pu r)dr - Uw ~ | (pr)dr - U^ |- / (pu r)dr + / (pu2r)dr 

R-6 J R-6 1-6 R-6 

|- (F r)dr + (R-6)P ~ - T R 
dx 9x w 

R-6 

(B.3) 

Now,, for thin boundary layer, radial component of velocity is very 

small and consequently, 

I~-° (B.4) 

Also, as Uw ̂  f(r), 

R .R 

JL 
8t 

U.Pr d r - U. H / Pr d r + 
'R-6 R-6 

pr dr 

L 'R-s 

3U 
c 

"3T 
(B.5) 

and 

|- / U. (pur)dr = U f 
3x j :«° « ax 

vRj5-

R 

pur dr + 

'R-6 

•R 

pur dr 

L/R-6 

3U 
e 

17" 
(B.6) 

Using relations (B.4), (B.5), (B.6) finally: 

R -R 
3_ 
3t 

p(U -u)r dr + -— pu(U -u)r dr -
oo c)X I °° 

R-6 R-6 _ 

pur dr 

L> R-6 

3U 
0 

R 

r dr 

'-/R-6 

R 

pr dr 

i--'R-6 -J 

3U 

3t 

f +TR 
3x w 

(B.7) 
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now, 

•R 

r dr = R6 - j ~ 

R-<5 

and using p_, i.e. gas density corresponding to the film temperature, 

as the average density in the boundary layer, the equation (B.7) becomes, 

j^W^xdr+fj 
'R-6 

-R 

pu(U - u ) r dr + 

R--6 
2 

R 

pCU^-oOr dr 

<= (R6 -• ~ ~ ) 
8P 

c)U 8U 

Sk + pf TT + pfu~ "§7 

o 

Jx 

+T R 
w 

(B.8) 

The equation (B-8) is the required momentum integral equation for a 

nonsteady, nonuniform, and developing compressible flow in a tube. 



Main Program 

APPENDIX C 

Flow Chart for the Computer Program 

Start 

Read, input data and calculate 
all the non-dimensionalizing 
and other constants 

Calculate the average chamber 
pressure, total unburnt solids 
by volume and by mass 

Determine the new time increment 
At' by applying (3.40) 

KP=1 

Burning pressure « Average chamber 
pressure 

Calculate the burning rate 
corresponding to the burning 
pressure from Table 1 

Calculate the piston displacement 
and velocity after time At1 

Call subroutine BP to determine 
the ballistic properties at the 
piston base after time At1 



Average base pressure = 
^ (calculated value at t+At 
+ present value at time t) 

Calculate the piston displace­
ment and velocity based on 
average base pressure 

Replace old 
values of 
piston position 
and velocity by 
new values 

Is percentage difference 
between the new and the old 
value of the piston displace­
ment less than 0.0001? 

Yes 

Call subroutine WP to deter­
mine the ballistic, properties 
at the tube head end 

Calculate the first estimated 
values of v U1, Pf at all 
the nodal points at time t^At1 

using (3.3) , (3.4) ,,, (3, 5) and 
(3.6) for Case I and corresponding 
expressions.for Case II 

Calculate the second estimated 
values using (3.11), (3.12), 
(3.13) and (3.14) for Case I 
and similar equations for Case 
II 

Average the two estimated values 
to obtain the final values at 
time t'+At5 

Find free stream temperature T 
using the equation of state (2.6) 
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Interpolate between, the 
base point and the nearest 
nodal point to determine 
the properties at the point(s) 
where finite difference scheme 
could not be applied 

Is KP equal to 2? >- .No 

KP=2 

Burning pressure = 
^ (average chamber 
pressure at t+At 
average pressure at 
t) 

Calculate average chamber 
pressure at t+At from 
the calculated pressures 
at all points 

Yes 

Calculate momentum thickness 
at all the nodal points using 
(3.20), (3.23), (3.24) and 
(3.25) and interpolate the 
point(s) adjacent to the base 
point 

Calculate the friction coefficient 
and the heat transfer coefficient 
at all points at time tf+Atf using 
(2.59) and (2.63) 

Compute heat loss to the tube 
wall during the time interval 
At1 based on the conditions at 
time t 

Call subroutine HTW to calculate 
the wall temperature at time t'+At' 
using the average value of heat 
transfer coefficient 



Replace the old values of time, 
piston position, ballistic properties, 
momentum thickness and heat transfer 
coefficient by new values 

Has the piston reached the end 
of the tube? 

Yes 

Calculate the ballistic efficiericy 
and write the final results 

Stop 
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Subroutine BP 

The purpose of the subroutine is to calculate the ballistic 

properties at the piston base at time t:'+Atf knowing the properties 

at all the points at time t1, and the velocity and the position of 

the piston at time tr+Atf. The following flow diagram should be 

read along with Figure 3. 

Start 

—, J 
Except the velocity at point 2, 
assume all the properties at 
point 2 and point X to be same 
as point 1 

_ ; saw. 

Determine the position of point 
X using (3.27) and calculate the 
properties at that point by linear 
interpolation 

Calculate the mean values of all 
the coefficients of (3„28) or 
(3.29) in between points 2 and 
X 

Calculate the pressure at point 
2 using (3.28) or (3.2.9) 

Determine the mean values of all 
the coefficients of (3.30) and 
(3.31) in between points 1 and 2 

Calculate the gas density and 
the volume fraction of solids 
at point 2 using (3.30) and (3.31) 
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Replace the old values 
of the properties at 
point 2 by the new values 

Jio_ 

Is percentage difference between 
the old and the new values for 
the pressure and the gas density 
at point 2 less than 0.0001? 

Yes 

.No 

Is difference between the old 
and the new values of the volume 
fraction of solids at point 2 
less than 0.00001? 

,r Yes 

Calculate the temperature at 
point 2 from the equation of 
state (2.6) 

( Return j 
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Subroutine WP 

This subroutine is called to calculate the properties at the 

tube head end at time tf+At'. The1logic is same as that for subroutine 

BP and the flow diagram should also be read along with Figure 3. 

Start 

Assume all the properties at points 
2' and X1 to be same as point 1? 

Determine the position of point X' 
jisirig (3.34) and find the properties 
$£ that point by interpolation 

Calculate the pressure, gas density, 
and volume fraction of solids at 
point 2f using (3,,35), (3.36) and 
(3.37) for Case I and (3.38), (3.36) 
and (3.39) for Case;II 

Replace the old values 
of the properties at 
point 2 r by the new 
values 

•No-

Is percentage differencei .between; thei n 
old and the new values for the pressure 
and gas density at point 2'less than 
0.0001? 

Yes 

Is difference between the old and the 
new values of the volume fraction of 
solids at point 21 less than 0.00001? 

1 Yes 

itt.f'. !v 
> " I * -i — tiii 
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Calculate the temperature at 
point 2f using the equation of 
state (2.6) 

Return 
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Subroutine HTW 

The purpose of the subroutine is to calculate the wall 

temperature at a particular station along the length of the tube 

at time t+At, knowing the temperature distribution at the present 

time t, and the mean heat transfer coefficient h over the time 
m 

interval At. In the following flow diagram, At is the time step 

selected in the main program whereas At: is the time step selected 

in accordance with the stability condition for the temperature calcu­

lation. 

Start 

TIM1 

s 
Select At from (3..45) or (3.46) 

No Is At less than (At-TIM1)?^> 

Replace At by (At~TIMl) 

L Yes 

Calculate TNEW(l)„ i.e. new 
inner surface temperature after 
the. time interval At using (3.42) 

K=2 

Calculate TNEW(K) , i.e., new 
temperature for subsequent layers 
using (3.41) 

ABCD=TNEW(K-1)-TNEW(K) 
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Yes 

\ . 

I s ABCD l e s s 
than 0.1? No K=K+1 

Yes 

TIMl = TIMl+At 

Replace the old values of the 
wall temperatures by the 
calculated values 

Is TIMl less than At ? 

No 

) 
Return 
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