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ABSTRACT 
 

Vibha Anand 
 

A PROBABILISTIC APPROACH TO DATA INTEGRATION IN BIOMEDICAL 

RESEARCH: THE IsBIG EXPERIMENTS 

Biomedical research has produced vast amounts of new information in the last 

decade but has been slow to find its use in clinical applications. Data from disparate 

sources such as genetic studies and summary data from published literature have been 

amassed, but there is a significant gap, primarily due to a lack of normative methods, in 

combining such information for inference and knowledge discovery.  

In this research using Bayesian Networks (BN), a probabilistic framework is built 

to address this gap. BN are a relatively new method of representing uncertain 

relationships among variables using probabilities and graph theory. Despite their 

computational complexity of inference, BN represent domain knowledge concisely.  In 

this work, strategies using BN have been developed to incorporate a range of available 

information from both raw data sources and statistical and summary measures in a 

coherent framework.  As an example of this framework, a prototype model (In-silico 

Bayesian Integration of GWAS or IsBIG) has been developed.  IsBIG integrates 

summary and statistical measures from the NIH catalog of genome wide association 

studies (GWAS) and the database of human genome variations from the international 

HapMap project.  IsBIG produces a map of disease to disease associations as inferred by 

genetic linkages in the population.  

Quantitative evaluation of the IsBIG model shows correlation with empiric results 

from our Electronic Medical Record (EMR) – The Regenstrief Medical Record System 
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(RMRS).  Only a small fraction of disease to disease associations in the population can 

be explained by the linking of a genetic variation to a disease association as studied in the 

GWAS.  None the less, the model appears to have found novel associations among some 

diseases that are not described in the literature but are confirmed in our EMR. Thus, in 

conclusion, our results demonstrate the potential use of a probabilistic modeling 

approach for combining data from disparate sources for inference and knowledge 

discovery purposes in biomedical research. 

 

 Mathew J. Palakal, Ph.D., Chair 
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Chapter 1 INTRODUCTION 
 
Opportunities for Informatics in Biomedical Research 

The past few years have witnessed major advances in the area of biomedical 

research due to rapid advances in technology like database management and the 

availability of open source software tools to name a few. Due to the latter, the research in 

this area has become increasingly collaborative and several major initiatives including the 

mapping of entire human genome have been successfully completed in the last decade. 

[1] 

Informatics, which is viewed as a science of information, is often studied as a 

branch of computer science and information technology relating to databases, ontology 

and software engineering and is primarily concerned with transformation of information 

by computation or communication; by machines or people. Health informatics or 

Biomedical informatics is an emerging discipline engaged in study, invention and 

implementation of structures and algorithms to improve understanding and management 

of medical information. The end objective of biomedical informatics is coalescing of 

data, knowledge and the tools necessary to apply the data and knowledge in the decision 

making process at the time and place that a decision needs to be made. 

Thus, in the post genome era the role of biomedical informatics has shifted from 

managing and integrating genetic sequence databases to discovering knowledge from 

biomedical databases. More recently integrating this knowledge from disparate sources 

such as from biological databases and clinical data from electronic medical records 

(EMR) for applications such as personalized medicine has received an increasing amount 

of interest from both the National Institutes of Health (NIH) and individual researchers.  
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Challenges for Informatics in Biomedical research 

However, in biomedical research, to make inferences based on data especially 

using traditional statistical methods, one requires a unified dataset, i.e. a dataset where all 

variables are measured on the same set of individuals. Furthermore, making new 

discoveries depends on having access to these original datasets. However, in the current 

research paradigm the variables of interest are being measured in separate studies and on 

different study populations. They are being stored in silos of specialized databases that do 

not relate to each other on an individual level. Therefore a significant gap exists in our 

ability to draw inference from these datasets in order to further our understanding of the 

outcomes of such research and its applicability for instance to clinical care.  

For example, Figure 1-1 on the next page shows a model for a common disease 

like asthma that is known to have many causes. To gain a full understanding of the 

disease and its management, one has to account for all the causes –environmental, 

clinical, genetic, socio economic and demographic factors along with any sub clinical 

symptoms (phenotypes) that may be presented. Thus asthma presents as a common but a 

complex disease involving many risk factors. To apply cutting edge research to this 

disease in a clinical application, for example, on how environment or genes may affect an 

individual’s disease status, one needs to integrate all such information in a coherent 

model and draw inference from it. Thus, finding methods to integrate information from 

disparate sources – biological databases, clinical databases, and published literature in a 

coherent model for purposes of prediction and eventually pre-emption of disease has 

become the goal of biomedical informatics researchers in this decade.  
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Figure 1-1 A complex dataset example 
 

However, at present no such coherent model can be built because data collected 

from disparate study populations reside in silos of biomedical databases, with each of 

them focused on one of a number of causes, for example, how environmental factors like 

tobacco smoke exposure may affect asthma. Due to lacking unified datasets, our best 

hope of linking information is by using informatics tools that employ non-traditional 

statistical methods, for example, to combine information from available datasets such as 

EMR with sources such as summary or statistical measures from published literature.  
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In this work, we approach the integration problem with probabilistic modeling 

tools. We outline a methodology to move beyond the boundary of a dataset that is limited 

by a set of variables.  Assuming independence of causal influences (ICI) among many 

causes that lead to a common effect, we strategically combine disparate sources of 

information with a Bayesian Network (BN) framework for identifying associations 

among the disparate datasets. Our approach uses available summary and statistical 

measures of correlations (r2) and odds ratio (OR) from published literature when no 

unifying dataset is present to build a model that integrates information in a systematic and 

normative form for further knowledge discovery.  Figure 1.2 outlines our conceptual 

model for data-information-knowledge discovery. 

 

Figure 1-2 In-silico Bayesian Integration – Conceptual Model 
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We demonstrate our approach by integrating information from at least two 

disparate sources in a coherent model - 1) statistical correlation on genetic linkages 

(associations) between Single Nucleotide Polymorphisms (SNP) in the human genome, 

and 2) data from multiple genome wide association studies (GWAS) where the 

magnitude of the association between a SNP and a disease phenotype is measured as an 

odds ratio (OR) in each GWAS.  SNPs and diseases are modeled as nodes in a BN and 

the edges that connect the nodes represent the strength of the relationship between nodes 

(i.e. SNP to SNP and SNP to disease). We demonstrate that as the effect of the SNP 

nodes from this model are averaged out, i.e. absorbed out, a disease to disease association 

map emerges as inferred from genetic linkages and discovered by the integration of these 

two disparate sources. We call the methodology In-silico Bayesian Integration and the 

model In-silico Bayesian Integration of GWAS (IsBIG).  

Thus, IsBIG combines information from various GWAS in a coherent model 

which otherwise is not available from a unified dataset. IsBIG therefore also presents a 

qualitative and quantitative structure that can be used for further knowledge discovery, 

for example, for generating new hypotheses for future studies associating diseases as 

inferred by genetic linkages.   

This thesis is organized into several major chapters. We first introduce the 

background of this research in Chapter 2. We describe existing methods for statistical 

analysis and modeling that have been employed for such research and their limitations. 

We then describe probabilistic modeling methods as a knowledge representation tool and 

give a brief literature review of their use in modeling healthcare data with emphasis on 

Bayesian networks.  
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In Chapter 3, we describe our data integration strategy using a series of 

experimental studies within the clinical domain. We learn BN from large clinical datasets 

and compare their performance with an expert’s version to assess the feasibility of this 

modeling technique. When the data available are sparse, we use the causal independence 

assumption using the Noisy-OR formalism to learn the conditional probability 

distributions in our model BN. We apply the above to a feasibility study in the area of 

childhood asthma case finding from our electronic medical record (EMR), the 

Regenstrief Medical Record System (RMRS), [2] and find that the results are comparable 

to an expert’s model in real world datasets. To model domain causal relationships, over 

and above causal independence, we test a recently published algorithm – Recursive Noisy 

OR (RNOR) and evaluate it with our previous childhood asthma case finding application. 

We find no statistically significant differences between the RNOR and causal 

independence approaches with this real world dataset. Therefore we stick to using the 

causal independence approach as a data integration strategy for successive experiments. 

In Chapter 4, we extend beyond our clinical domain to apply the causal 

independence assumption to an experimental study where data from our EMR for 

childhood asthma is integrated with statistical and summary data published in one study 

of asthma, linking a genotype and environmental tobacco smoke exposure to the risk of 

the disease. We develop this approach into a formal method – In-silico Bayesian 

Integration and demonstrate its applicability to generate a phenotype to phenotype map 

(IsBIG) from statistical and summary data on diseases and / or traits linked to Single 

Nucleotide Polymorphisms (SNPs) found in Genome Wide Association Studies (GWAS).   
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In Chapter 5 we empirically evaluate the IsBIG model using data derived from 

our EMR, the Regenstrief Medical Record System (RMRS) [2] and literature search. 

In Chapter 6, we summarize our work, discuss limitations of our approach as a 

knowledge representation tool and data integration strategy and outline some possible 

future directions. 
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Chapter 2  BACKGROUND 
 

This chapter introduces the background of our research, including a brief 

introduction on Bayesian Networks and their comparison to other statistical and machine 

learning techniques and their applicability to our research as a knowledge representation 

tool for building a probabilistic framework for biomedical research. 

Bayesian Networks (BN) 

Bayesian networks are a modeling and inference tool for problems involving 

uncertainty.  They have been shown to represent domain knowledge with natural 

perception of cause and effect. [3] A BN is a graphical model that both represents a 

qualitative structure and encodes quantitative parameters of the structure by defining a 

unique probability distribution. Because of their concise representation and their ability 

for belief propagation; BN have been widely used in many real world problems, [4] for 

example, in modeling probabilistic relationships in medical diagnoses. [5] 

Computational Methods of BN 

A Bayesian network is represented as a directed acyclic graph (DAG). The nodes 

within the DAG of BN denote relevant entities or random variables and the directed 

edges denote probabilistic relationships among them. For example, the DAG in Figure 2-

1 below models a structure encoding relationships between History of Smoking (H), 

Lung Cancer (L), Bronchitis (B), Fatigue (F) and Chest X-ray results (C), as described in 

[6]. The numerical values of these relationships are encoded as a joint probability 

distribution (JPD) over a set of these random variables. 
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Figure 2-1 A Directed Acyclic Graph (DAG) 
 

In probability theory, the notation P(X | Y) denotes the conditional probability of 

a variable X given (denoted by symbol “|”) another variable Y.  Two variables X and Y 

are independent if the probability of X given Y is the same as the probability of X 

occurring alone (i.e. P (X | Y) = P(X)) and vice versa, and when both events are known to 

occur with a certain probability, i.e. P(X) ≠ 0 and P(Y)  ≠ 0.  However there may be times 

when two variables are not independent by themselves but independent when conditioned 

upon a third variable, say Z, i.e., X and Y are conditionally independent given Z. A 

variable X is conditionally independent of Y given Z if  

0)|(0)|(),|()|(  ZYPandZXPwhenYZXPZXP   

 
i.e. if Z is given, the probability of X will not be affected by the discovery of Y. [3]  At 

the core of BN is this notion of conditional independence. For example, in the example 

above in Figure 2-1, the node Bronchitis (B) is conditionally independent of nodes Lung 

cancer (L) and Chest X-ray (C) given that we know about History of smoking (H). Table 

2-1 below gives other conditional independencies in this DAG. 
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Table 2-1 Conditional Independencies in Figure 2-1 
 

 

 

 

 

 
Another notion that BN model encodes is that of the Markov condition, also 

called the Markov independence assumption. This assumption says that each variable is 

conditionally independent of the set of all its non-descendents given the set of all its 

parents [3, 6], for example, Fatigue (F) is independent of History of Smoking (H) and 

Chest X-ray (C) given that we know about Bronchitis (B) and Lung Cancer (L). 

Under these two assumptions, i.e. conditional independence and Markov 

assumption, the factorization theorem as described by Pearl encodes a unique probability 

distribution for a graph G which is described by the following equation (1) [3]  

 )1()|(
1

),....,
1

( 


 G
iPaXP

n

i
nXXP i                

 

Where Pa
G

 are the parent nodes of the variables, Xi, in G. Equation (1) is called the chain 

rule for Bayesian Networks. [3] As an example, the graph structure G in Figure 2-1 of a 

BN encodes independence assumptions while the conditional probability distributions 

(CPD), of the form P(Xi | iPa ) where iPa  are parents of Xi, provide the quantitative 

parameters for the joint probability distribution (JPD) of the BN represented by this graph 

G. The JPD of the DAG shown in Figure 2-1 can be calculated as follows by equation (2) 

as follows – 

(L), (B) | (H)(H) L 

(F), (H, C) | (B, L)(B, L) F 

(B), (L, C) | (H)(H) B 

(C), (H, B, F) | (L)(L) C 

Conditional 
Independence

Parent Node 
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P (f,c,b,l,h) = P(f|b,l)*P(c|l)*P(b|h)*P(l|h)*P(h)           (2) 
 

In a BN, the DAG defines the structure and the CPD values for each variable are 

called the parameters. Inference refers to the query for finding the probability 

distribution score of a node (node in question) given values of a subset of nodes 

(instantiated nodes) in the DAG. For example in Figure 2-1, if we know a patient has 

history of smoking and positive chest x-ray, we may be interested in finding the 

probability of that patient having lung cancer, i.e. (P(l | h, c) and having bronchitis, i.e. 

P(b | h, c). Exact inference is a non-deterministic polynomial time hard (NP-hard) 

problem [7]. Algorithms developed earlier such as message passing [3] in DAG, 

Symbolic Probabilistic Inference (SPI) [8], arc reversal / node reduction operations [9-

10], and the Junction Tree algorithm, [11-12] all have NP hard computational complexity 

in a multiply connected DAG and can become intractable for inference [6] in large 

networks. Following this, Cooper [7] obtained a result that the problem of determining 

the conditional probabilities is tractable in multiply connected networks and belongs to 

the class of problems that is P – complete if the remaining variables in a BN are restricted 

to having no more than two states per node and no more than two parents per node but 

with no restriction on number of children per node, given that certain variables are 

instantiated. Therefore, approximate inference algorithms such as stochastic simulation 

and deterministic search [13], finding the most probable explanation also called abductive 

inference methods [7] have been developed by many researchers in the field. 

Besides the development of approximate algorithms for inference, approximate 

algorithms to learn the structure and parameters of BN from data have been developed as 

well. When the variable X or its parents are discrete valued (i.e. binary or multinomial), 
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to learn the CPD of a single variable, a beta density function or a dirichlet density 

function is used. In case of binary variables, a beta density function is used; in the case of 

multinomial variables, a dirichlet density function is used. [6] Unlike the case of discrete 

variables, when variable X or its parents are real valued, linear Gaussian conditional 

densities [14] or other appropriate density functions [6] are used to represent the 

underlying data for assessing CPD values. 

In case of discrete variables a conditional probability table (CPT) is defined to 

represent the probability of Xi conditioned on each of its parents Pai. Together, the CPTs 

of all variables and the DAG define the JPD. For example, if the number of parents of a 

node denoted by Pai consists of K binary variables, the table (CPT) for the node defines 

2K rows of distributions. Therefore, while a full table form can describe any discrete 

conditional probability distribution (CPD), the number of parameters required grows 

exponentially in the number of parents Pai.. [3] Therefore methods to reduce the 

complexity of parameter estimation for local CPTs have been developed.  These methods 

all involve independence of causal influence assumption (ICI). Below, we describe these 

methods in detail. 

Causal Independence and ICI models 

A major difficulty in model building using Bayesian networks (BN) arises when 

numerical parameters to quantify them for conditional probability tables (CPT) are 

needed [15]. The complete CPT for a binary variable with n binary predecessors in a BN 

requires 2n independent parameters [3]. Hence the number of parameters in a CPT grows 

exponentially with the number of parents and can become prohibitive for model building.  
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The BN however, does not constrain how a variable depends upon its parents; one 

interpretation is that the directed edges between parent and the child represent causal 

relationships [16]. Nonetheless, as shown previously by other researchers, there is some 

structure in the dependencies and probability functions of parents and child that can be 

exploited for knowledge acquisition and inference. The dependencies can be stated as 

rules [17], trees [18], multinets [19] or some form of binary operation that can be applied 

to values from each of the parent variables. Independence of Causal Influence (ICI) or 

Causal Independence [3, 20-21] is one such dependency and refers to the situation where 

multiple causes independently contribute to the common effect. An assumption of causal 

independence among the parent nodes that affect the child node greatly reduces the 

number of parameters required. 

Noisy-OR Model 

The Noisy-OR gate [3, 22], or distribution,  is a member of the ICI family. [21, 

23-24] The Noisy-OR model [3] makes this assumption and provides a logarithmic 

reduction in the number of parameters required relative to the CPT. This model has been 

shown to perform reasonably well in the field of medical diagnosis. [5] The word ‘noisy’ 

reflects the fact that the interaction among the cause(s) and the effect is not deterministic 

thus allowing the presence of the effect in presence or absence of any modeled causes. 

One can think of Noisy-OR as a probabilistic extension of the deterministic binary OR 

model.  In practice, it is often impossible to capture all the possible causes for an effect. 

To address this issue and help the domain experts in the knowledge engineering process, 

Henrion proposed an extension of the Noisy-OR by introducing the concept of “leak” or 
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background probability [23]. Leak can be formally considered as one of the causes of the 

effect.  

In Figure 2-2 below, the nodes Xi denote independent causes and Y is the 

common effect. The nodes Ui are called the inhibitor nodes [3] and encode individual 

effect (via their CPTs) of corresponding Ui on Y. A leaky Noisy-OR model can be 

described (Figure 2-2) using the following equations for several possible causes (X1, 

X2….Xn) of an effect Y under the two assumptions – 

(a) Each of the causes Xi has a probability of producing the effect in the absence of all 

other causes and (b) each cause is sufficiently independent of the presence of other 

causes – i.e. – 

                )3(       ),,...... ,|() |( 121 nniii xxxxxyPonlyxyPp   

 
 
 
 
 
 
 
 
 
 
 
 
 
                               Figure 2-2 A Noisy-OR model 
 

Using a deterministic mapping function such as Boolean OR, the CPT of Y 

defines how individual causes Xi interact to produce the effect Y.  Therefore, the 

probability pi as defined by equation (3) is also called the link probability and determines 

the causal strength between the cause, i, and the effect, Y, in the absence of all other 

X1 X2

U1 U2 Un

Y

Xn
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causes. It has been shown [3] that the probability of  Y = y given a subset Xp (xi present), 

i.e. a set consisting of causes that are present, is given by the following equation (4) –  

                           4)(                                 11     

 X x

)p(Xp)|P(y

pi

i



   

Under the assumption that causes produce the common effect independently, 

equation (4) can calculate the probability value for an effect solely based on the causal 

strength pi of each cause to the effect. Therefore using the assumption of causal 

independence, the number of values required for CPT elicitation of effect Y reduces from 

exponential to linear in number of causes. 

Further the leak probability p0 which models un-modeled causes can be defined as  

)5(                          ),,.........,...,|( 1210 nni xxxxxyPp   

Let p΄ define the probability that Y is present when xi is present and all other causes of Y 

including un-modeled causes (leak) are absent. From [3] for the leaky Noisy-OR model 

following is defined –  

(6)                                              ) 1( ) 1(  ́1 0p-p-p i   

(7)               00  pp´ - pp´  only)x|yP(  p ii   

The two ways of parameterization of CPD using Noisy-OR gate equation (4) is credited 

to Henrion [23] and Diez [22]. For calculating the link probability, the difference 

between the Henrion method and the Diez method lies in learning Noisy-OR parameters 

from equation 7. [15] The Henrion method seeks the pi parameter where as the Diez 

method seeks the p΄ parameter. 
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Among the studies in the past, where the Noisy-OR gate model  has been 

successfully applied are – reformulation of the rule based expert INTERNIST-1/QMR 

system into a probabilistic system by combining probabilities from disease profiles and 

hospital discharge statistics [5], deriving parameters from small data sets for converting 

from single-disorder to multiple-disorder liver disease diagnostic system (HEPAR-II) 

[15] and to an artificial domain for comparison of human expert’s judgment of 

parameters using the two ways of parameterization credited to Diez [22] and Henrion 

[23] in using [25] the Noisy-OR assumption.  The result of this last study [25] claims that 

the Henrion method is better at providing Noisy-OR parameters from data [15] when the 

underlying distribution follows the Noisy-OR assumption, and the Diez method is better 

when human experts provide the parameters. 

Thus the Noisy-OR model may be suitable for parameter estimation in large scale 

domains, such as medical diagnosis, where an observation such as a symptom can be 

triggered independently by a number of causes (diseases), or a number of causes can 

independently lead to a common complex disease. Similar to Noisy-OR, other forms of 

noisy deterministic functions (Noisy-AND, Noisy-MAX, Noisy-MIN, Noisy-ADD) [22-

24, 26-27] have been defined and proposed for assessing values for CPD in a BN using 

the assumption of causal independence. 

Other Related Models 

While these models greatly reduce the complexity of parameter estimation in CPT 

and can serve as a good first approximation (Chapter 3) for modeling, the conditional 

probability distributions (CPD) in themselves do not account for interactions among 

causes that lead to the common effect. Although all of the above models take into account 
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the probability of an effect given each single cause as an input, the interactions defined 

among causes (by virtue of the noisy deterministic function) are considered to be 

synergistic or reinforcing. [28] Therefore, when multiple causes are present, the causes 

may reinforce each other (i.e. making the effect more likely to be present) or may 

undermine the impact of each other (i.e. the effect becomes less likely when more causes 

are present). As pointed by Xiang et al, [28] all of the above distributions (Noisy-AND, 

Noisy-MAX, Noisy-MIN, Noisy-ADD) can only express one type of causal interaction in 

a model, i.e. reinforcing.  

To address the possibility of reinforcing interactions between causes, recently 

Lemmer and Gossink [29] proposed the Recursive Noisy-OR (RNOR) distribution which 

allows elicitation of probability parameters of the effect given subsets of causes as input.  

RNOR defines the concept of positive causality and how the dependent causes can work 

together as being either “synergistic” or “interfering.” The RNOR model can incorporate 

an expert provided probability distribution for an effect as well as a subset of values of 

causes given as input, wherever applicable and claims to be a generalization of Noisy-OR 

model. The RNOR model does not handle expert assertions of interference between 

causes.  If an expert-provided subset of values implies inhibitions or interference, and the 

causes are undermining, RNOR can produce probability values that are greater than one. 

[29] Its application to problem domains such as medical diagnosis looks promising 

because of its ability to represent a subset of causes but it needs empiric evaluation.  

More recently, Xiang and Jia have proposed a variation of this model. The non-

impeding Noisy-AND tree (or NIN-AND tree) model [28] can represent both types of 

causal interactions among a set of causes, some of which can be reinforcing and others 
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undermining.  However, this model also has limitations in expressing all possible causal 

interactions.  For example, to model grouped causes that can selectively reinforce and 

grouped causes that can selectively undermine. Druzdzel et al. [30] have proposed yet 

another theoretical model – Probabilistic Independence of Causal Influences (PICI) as an 

extension of ICI models that leads to more expressive parametric models that are able to 

cope with a combination of positive and negative influences. To the best of our 

knowledge, RNOR distributions, PICI and NIN-AND tree models have not been studied 

extensively in real world problems but hold promise for medical domain applications.  

BN Vs Other Methods 

Our decision to use a BN framework, as opposed to other methods, for this 

research is best explained if we compare BN with some of the other statistical and 

computational methods available for analysis and model formation. BN belongs to a class 

of generative models. Generative models differ from discriminative models in that a 

generative model contains a full probability distribution of all variables, whereas a 

discriminative model provides a model only of the outcome variable(s) conditioned on 

the observed variables. Therefore, BN models are both diagnostic and predictive at the 

same time. They offer several advantages when compared to other computational 

methods for knowledge representation such as Neural Networks or even traditional 

statistical methods such as linear regression models for data analysis.  We describe some 

of the differences briefly below. 

Artificial Neural Network (ANN) models need large numbers of complete cases 

for training to be used in prediction and classification problems. They often overfit the 

data to the problem and, unlike BN, lack explanation capabilities. Therefore, they have 
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limited use in a domain like biomedical research. BN models on the other hand are 

probabilistic and can take personal (expert) beliefs (using a subjectivist approach) for 

model building – they are well suited to derive prior probability values from small sample 

sizes and are able to handle missing data values reasonably well while avoiding over 

fitting of data to the model. [4] They model cause and effect in a normative way [3] and 

therefore provide a framework for incorporating all available information in a systematic 

manner for both model and parameter estimation to produce a predictive distribution.  

Linear regression models are non-parametric (distribution free) statistical models 

and can also be used for prediction and classification problems like ANN and BN.  

However, they do not handle missing data well in the input, and due to their susceptibility 

to noise in the data, their use for model building is limited, particularly in the biomedical 

domain where data are noisy. As with ANN, linear regression models lack normative 

explanation capabilities and also suffer from the “curse of dimensionality” i.e. an 

exponential increase in model space with addition of extra dimensions, as is the case in 

domains with large number of variables such as the biomedical domain.  

Other methods of knowledge acquisition such as systematic review and meta– 

analysis aim to more precisely estimate the true “effect size” from a group of studies as 

opposed to the less precise estimates derived in a single study under a given set of 

assumptions. But these are not computational methods to synthesize a prediction model.  

Therefore, despite the computational complexity of inference, BN methods offer 

several advantages over traditional methods of knowledge acquisition and representation. 

They have been shown to represent domain knowledge with conciseness and normative 

form. The product form of equation (1), i.e. the chain rule and the conditional 
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independence assumption makes the BN representation of the JPD compact. Their ability 

to handle missing data values and ability to calculate probability scores from small data 

sets is another reason to choose BN methods. Most of all, BN methods provide a strategic 

framework for our research to incorporate all available information in a systematic 

manner for both model and parameter estimation to produce a predictive distribution that 

can be used for inference and hypotheses generation. In this research we develop a 

methodology using the BN framework and summary and statistical measures from 

published studies for integration of information from disparate sources of data in the 

biomedical domain. 

Challenges for Knowledge Representation and Inference in Biomedical Domain 

To gain full understanding of the implications of the research thus far in the 

biomedical domain, we first need to understand how we could represent the existing 

information, derive knowledge and inference from it. In light of the data gathered from 

separate environmental and genetic studies and not on the same individual, a unifying 

model is desperately needed to represent such information perhaps in a computational 

model (In-silico). Such a model, once constructed could also be used for knowledge 

discovery or in clinical applications. 

For instance, it is believed that both genetic and environmental risk factors have 

an important role to play in most common diseases. [31-32] A 2003 review article titled 

“Genomics as a Probe for Disease Biology” in the New England journal of Medicine 

highlights the importance of understanding genetics together with the pathology of a 

disease in order to unravel the underlying disease processes. [33] Asthma, which is best 

considered as a cluster of related disorders, [34] is one such common complex disease. 



21 
 

The prevalence of asthma has risen dramatically in the last few decades, [35] suggesting 

that environmental risk factors have a key role to play together with genetic factors in 

developing a risk of the disease [35-37] in early childhood. As is the case with asthma, 

there is also evidence suggesting the role of environmental and genetic factors for most 

other common diseases such as diabetes, obesity and heart disease. [38-39] 

Recently, it has also been argued that the current classification of human disease 

has significant shortcomings as reflected in its lack of sensitivity in identifying pre-

clinical disease and lack of specificity in defining disease unequivocally. [40] Therefore, 

it has been proposed that an approach using network principles and linking phenotype or 

clinical data with the genotype and environmental data associated with the risk of 

disease, can lead to more accurate identification and classification of disease diagnostic 

and treatment options. [40] For example, in the field of cancer biology, bioinformatics 

methods that integrate diverse data (clinical and genotype) in their analysis for predicting 

survival rates have achieved higher accuracy than use of clinical data alone, even when 

the data analyzed are from different sources. [41-42] 

Given the example above, we believe that the challenges of knowledge 

representation and inference in this domain are three fold.  

Existence of silos of datasets  

First, data are being amassed in silos of biomedical databases. Currently, there are 

major initiatives underway by the National Institutes of Health (NIH) to address the rise 

in common diseases (like asthma and diabetes) by studying their genetic linkages and 

disease-environment interactions [43-47] in Genome Wide Association Studies (GWAS) 

and Environment Wide Association Studies (EWAS) respectively.   Due to the interplay 
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of environment, lifestyle and small effects of many genes, researchers have focused on 

very different aspects, for example pharmacogenetics / pharmacogenomics, [37, 48-49] 

gene-environment interaction [47, 50] and clinical environmentally focused [51-52] 

studies. Despite their best efforts, researchers find it hard to conduct unbiased studies in 

well defined populations that have sufficient power to detect small effects attributed to 

genetic or environmental factors. [49, 53-54]  Therefore, to date these studies are being 

conducted in sub populations and patient level data are being collected and stored within 

the individual institution’s repository.  

Access Rights 

Second, due to lack of data sharing agreements among institutions and patient 

privacy concerns, [55-56] the data are not accessible in their raw form to outside entities 

like researchers in other institutions for any secondary analysis. The only publicly 

accessible results from these studies are published summary and statistical results. Thus, 

if any form of computational model needs to be developed to unify the information it 

most likely will have to use the published results. 

Inference in Patient’s Context 

Third, there is a big gap in application of knowledge gained from biomedical 

research and its use in patient’s context, for example from an EMR. Research that applies 

to clinical management of diseases and many rare disorders which are governed by 

straightforward Mendelian rules of inheritance have been known for some time. 

However, teasing out the genetic and environmental components for complex disorders 

such as diabetes, heart and lung disease, autoimmune and psychiatric disorders and their 

clinical management remains challenging [33] due to this application gap.  
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Therefore, there are many practical challenges for application of existing research 

in the biomedical domain. In the next chapter we discuss how, based on our background 

research, we can use BN for building a probabilistic framework for knowledge 

representation and inference in this domain. We specifically develop strategies using this 

framework to incorporate all available knowledge in a coherent model from various 

sources for example as presented in Figure 1-1 – environmental, genetic, demographic, 

socio-economic and clinical phenotypes. 

Our hypothesis in building such a model is to 1) find associations across the  

domain that are not apparent in the silos of datasets and 2) confirm these associations by 

testing – a) against data from our EMR and b) by evaluating against what has been 

published in the literature so far. We are interested to know how much of explanation is 

provided by a subset of data, for example how well genetic associations can explain the 

risk of a complex disorder like asthma or diabetes.  

To test our model we use Area under the Curve (AUC) of Receiver Operator 

Characteristics (ROC) curves as a performance measure. We describe the ROC 

performance measure below. 

Receiver Operating Characteristic (ROC) Curve  

A ROC curve is a plot of pairs of true positives (Sensitivity) vs. false positives (1 

– Specificity) for various cut points of a binary classifier as its discrimination threshold is 

varied. The ROC curve has its roots in Signal Detection Theory from World War II and 

since then they have been extensively applied as an analysis tool in areas of medicine, 

radiology [57], and many other fields. [58] 
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Since ROC curve analysis is a non-parametric method and does not rely on the 

underlying distribution, their use as an analysis tool is particularly attractive to the 

machine learning community; especially for use as a model comparison tool to select an 

optimal model given the data. The area under the curve (AUC) of an ROC curve is equal 

to the probability that a classifier will rank a randomly chosen positive instance higher 

than a randomly chosen negative one [58] and therefore measures the performance of the 

model. A ROC with AUC of 0.5 score has no predictive value and is as good as chance. 
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Chapter 3 EXPERIMENTAL STUDIES on BNs and ICI MODELS 
 

A Bayesian approach to represent domain knowledge  

 
Based on our background research on Bayesian Networks and the breadth of the 

challenges involved in building a coherent model in the biomedical domain, we evaluate 

the use of a probabilistic framework, combining BN fundamentals of conditional 

independence and the Markov condition to encode domain knowledge both qualitatively 

and quantitatively.  We then evaluate the use of the Independence of Causal Influence 

(ICI) assumption as a potential data integration strategy.  In this chapter, we describe our 

experiments in the clinical domain using data on childhood asthma from our EMR, the 

Regenstrief Medical Record System (RMRS) [2] and another independent test data 

source from our pediatric decision support system in practice – Child Health 

Improvement through Computer Automation (CHICA) system [59] described below. 

In experiment 1, we compare performance of a data derived DAG to a domain 

expert’s model DAG by testing it on the same test datasets to evaluate the sensitivity of 

the BN function to the structure of the DAG with real world datasets. 

In experiment 2, we test the validity of the Independence of Causal Influence 

(ICI) assumption in particular the Noisy-OR model using the same datasets from 

experiment 1. To model domain causal relationships, over and above causal 

independence, we test the validity of Recursive Noisy-OR (RNOR) rule.  
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Experiment 1: Bayesian Networks from Electronic Medical Records 

 
Probabilistic Asthma Case Finding - A Pilot Study using the CHICA system [60] 
 

Introduction 

One of the most useful characteristics of BN is the ability to construct DAG 

models based on expert knowledge of causal relationships or entirely empirically, using 

large datasets.  In fact, this feature makes BN ideally suited for our goal of merging 

information from different sources.  However, the comparability of DAGs derived in 

these different ways has not been tested.  In this series of experiments, we use Bayesian 

Networks as a strategy for modeling patients’ clinical status with the goal of comparing 

two DAGs: the one developed by the domain expert with the one mined from data.  A 

large retrospective cohort consisting of 16,187 children having wheezing prior to age two 

was mined from data to derive a DAG to predict asthma after age five.  We compare the 

predictive power of this mined network with a domain expert’s DAG using two test 

scenarios – (a) using a test dataset from our EMR and (b) using an independent dataset 

from our clinical decision support system (CDSS).  

Methods 

Our goal is to derive these BNs from data in our clinical data repository. To 

achieve this we considered two possibilities 1) use a clinical expert to define the nodes 

and arcs in the BN and train the resulting BN to derive parameters using data or 2) use 

data mining techniques to derive the BN structure and parameters from data.  In this 

chapter we describe an experiment in which we compare these approaches in the domain 

of childhood asthma.  Pediatric Asthma cases and controls were identified from RMRS 

and from the CHICA system [59] for an independent test set.  CHICA is a Clinical 
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Decision Support System (CDSS) used in our Pediatric Primary Care (PCC) practice in 

conjunction with RMRS, [2] and we briefly describe it below.   

CHICA Overview 

The CHICA system went live on Nov. 5th, 2004 at the Pediatric Primary Care 

Center (PCC) of Wishard Hospital, Indianapolis, Indiana, and now has data from over 

25,000 patients.  The system provides decision support for well child care and 

management of common childhood problems.  The user interface consists of scannable 

paper forms called adaptive turnaround documents (ATD). [61]  Data collected on ATDs 

are used to generate questions to the patient and reminders to physicians at the point of 

care.  CHICA uses a knowledge base encoded as Arden Syntax medical logic modules 

(MLM) [62] and patient data from the RMRS [2] and CHICA databases to generate 

dynamic content on the ATD forms.  The MLMs are prioritized using a global priority 

scheme to address the most relevant questions and reminders on the ATD. [59, 63] The 

CHICA system electronically receives a record of all clinical observations from the 

RMRS database for every patient visit.   

We analyzed data for all children over 5 years of age in our system.  Children 

were classified as cases or controls based on the presence of an ICD-9 code for asthma 

(493.*) or more than two prescriptions of an asthma medication.  From the filtered set we 

were able to extract the variables listed in Table 3-1 to get an “Asthma Status,” sex and 

race for each patient (ages 5 years or older) who had a visit to the PCC clinic. The 

CHICA system in its current state has been described in detail in previous manuscripts. 

[59, 64-66]  
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Model  

We used Netica software [67] (Norsys Software Corporation, Vancouver BC, 

www.norsys.com) to construct BN for our expert model and WinMine toolkit [68] 

(http://research.microsoft.com/~dmax/WinMine/Tooldoc.htm) for mining a directed 

acyclic graph (DAG) from data.  Netica allows network construction and parameter 

learning from data. The WinMine toolkit provides software for learning a DAG from 

data. Table 3-1 below lists the data variables used for modeling expert BN and data 

mining the DAG.  

Data  

To compare the two DAGs – expert BN and mined BN we compared the 

performance of the BNs on two datasets.  First, the data from 16,187 cases from 

Regenstrief Medical Record Systems (RMRS) were split randomly into 2/3 of cases for a 

training set and 1/3 for a test set.  For the second dataset, the CHICA system 

electronically receives a record of all clinical observations from the RMRS database for 

every patient visit.  We filtered these observations and preprocessed them to extract the 

data variables listed in Table 3-1. These data were collected for children ages 5 and 

above to predict childhood asthma.  At the time of the study, the CHICA system had data 

for 1984 cases. Table 3-2 lists the baseline characteristics of the datasets used in these 

experiments. 
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Table 3-1 Data Variables for Model – Experiment 1 
 

Variable Values 

Race White, Black, Hispanic, Other, Unknown 

Sex Male, Female 

Eczema True, False 

Wheeze ICD9 or clinic billing diagnosis before age 2 (True, False) 

Asthma ICD9 (493.*) or any clinic billing diagnosis after age 5 or at 
least 3 drugs from a specified list within 12 months after age 
5 (True, False) 

X-ray Chest x-ray before age 2 (True, False) 

Drug  

 

Drugs from a specified list before (True, False) 

Wz_hosp Inpatient admission with hospital ICD9 as wheezing (True, 
False) 

Wz_er Any ER visit with billing ICD9 as wheezing (True, False) 

Ins_cat Insurance category - first available insurance in the same 
year of the first wheezing diagnosis (True, False) 
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Figure 3-1 Expert’s BN trained with data from RMRS 
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    Table 3-2  Baseline characteristics of training and test sets 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables 

         Training Set  from  
                   RMRS 
                   (n = 11,000) 

Test Set from 
RMRS 
(n = 5,187) 

Test Set from  
CHICA 
(n = 1,984) 

  # % # % # % 

Race        
 Hispanic   98 1% 373 7% 429 22% 
 Unknown   115 1% 220 4% 24 1% 
 Black      6859 62% 3116 60% 1156 58% 
 White      3806 35% 1385 27% 327 16% 
 Other      122 1% 93 2% 48 2% 

Sex        
 Female      5357 49% 2503 48% 916 46% 
 Male          5641 51% 2684 52% 1068 54% 

Eczema        
 True 4021 37% 2021 75% NA NA 
 False 6979 63% 3166 61% NA NA 

Wheeze        
 True 1661 15% 1431 28% 187 9% 
 False 9339 85% 3756 72% 1797 91% 

Asthma        
 True 1561 14% 548 11% 536 27% 
 False 9439 86% 4639 89% 1448 73% 

X-ray        
 True 4015 37% 1900 37% 1529 77% 
 False 6985 64% 3287 63% 455 23% 

Drug        
 True 3013 27% 1488 29% 529 27% 
 False 7987 73% 3699 71% 1455 73% 

Wz_hosp        
 True 433 4% 247 5% 159 8% 
 False 10567 96% 4940 95% 1825 92% 

Wz_er        
 True 102 1% 98 2% 143 7% 
 False 10898 99% 5089 98% 1841 93% 

Ins_cat        
 Medicaid   4762 43% 4051 78% 1631 82% 
 Unknown   5276 48% 182 4% 64 3% 
 Private    844 8% 893 17% 160 8% 
 Self-pay    118 1% 61 1% 0 0% 

rsv_pos        
 True 244 2% 114 2% 17 1% 
 False 10756 98% 5073 98% 1967 99% 
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Expert’s Design of BN with training using Netica 

Using the predictor data variables of Table 3-1 as nodes and the domain 

knowledge for joining them with arcs, the domain expert (SMD) created a BN as shown 

in Figure 3-1. This BN was trained with the training set and compiled using Netica 

software.  In Figure 3-1 the BN shows marginal probabilities of each node with an 

asthma prior probability of 18.6%. 

BN Derived using Data Mining Techniques  

The training set from RMRS data was used to derive the DAG for this approach.  

The software from WinMine toolkit was used to preprocess the data from raw format 

(excel tab delimited) to WinMine XML format, which was then used for creating and 

editing a plan file to instruct the learning algorithm to model each predictor variable 

based on a) the role of each variable – input (used to predict other variables), output 

(predicted by other variables) and input-output (both predicted and used to predict) or 

ignored (not used); b) the model distribution used for each variable – specifies the tree 

versus the table representation and the local distribution of the variable, the 

representation chosen in this case is tree for discrete variables and the distribution chosen 

is binary multinomial to accommodate missing values; c) Model-as-binary information 

(missing vs non-missing values for binary variable or one state vs all other states for 

discrete variables.).  Figure 3-2 shows the roles, the distributions used and model-as-

binary information for each of the predictor variables for our model in the WinMine 

toolkit. 
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Figure 3-2 Plan file for deriving the WinMine model 
 

We replicated the DAG derived by the WinMine software in Netica.  This DAG is 

shown in Figure 3-3.  We then trained this BN using the same training set as the expert 

BN and compiled it to get the prior probabilities for each node in the model.  The asthma 

prior probability in this model was 13.9%. 
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Figure 3-3 BN mined and trained with data from RMRS 
 
Testing the Two Models 

The two BN models were evaluated, first, using data from our test set from 

RMRS data (1/3 split from the large cohort study) and, second, using the CHICA data set 

derived from CHICA database.  

Netica provides an interface to test the BN using a case file of test data.  The 

node(s) of interest for prediction are treated as “unobserved nodes”.  Asthma was used as 

an unobserved node in our tests.  The software reports several measures for each 

unobserved node.  We chose to use the quality of test results, which gives a performance 

measure in the form of a table for sensitivity, specificity, positive predictive value and 

negative predictive value.  

We compared BNs using Receiver Operating Characteristics (ROC) curves [57].  

The area under the curve was used as a measure of overall test performance.  The ROC 
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curve was obtained by plotting pairs of true positive rate (sensitivity) and false positive 

rate (1 - specificity).  

Results 

We had 5188 cases in our RMRS test set and 2000 cases in the CHICA test set. 

Both the Expert and the Mined BN were tested using these sets, the results of which are 

listed below in Table 3-3, Figure 3-4 and Table 3-4, Figure 3-5 for RMRS and CHICA 

test sets respectively. 
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                                                 Using RMRS Test Set 

  Table 3-3 Operational Characteristics with RMRS test set 
            (* Expert BN                + Mined BN ) 

Sensitivity 
(%) 

Specificity
(%) 

Predictive
(%) 

Predict-Neg 
(%) 

1 - specificity
(%) 

*84.77 *38.11 *16.28 *94.63 *61.89 

*63.31 *68.4 *22.15 *92.92 *31.6 

*50.07 *78.8 *25.12 *91.74 *21.2 

*36.03 *88.05 *29.99 *90.65 *11.95 

*15.76 *95.6 *33.71 *88.88 *4.4 

*6.89 *96.82 *23.53 *87.98 *3.18 

*1.99 *99.53 *37.5 *87.73 *0.47 

     

+82.38 +44.51 +17.41 +94.68 +55.49 

+53.91 +77.16 +25.11 +92.18 +22.84 

+43.71 +83.97 +27.92 +91.31 +16.03 

+26.09 +93.38 +35.88 +89.89 +6.62 

+10.86 +98.34 +48.24 +88.6 +1.66 

+0.93 +99.68 +29.17 +87.63 +0.32 

 

 
                                  Figure 3-4 ROC curves using test data from RMRS 

ROC Curve - Test Data Set from RMRS
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                                              Using CHICA Test Set  

Table 3-4 Operational Characteristics with CHICA test set 
Sensitivity 

(%) 
Specificity 

(%) 
Predictive

(%) Predict-Neg (%) 
1-Specificty 

(%) 

*75.56 *38.05 *31.11 *80.79 *61.95 

*56.53 *64.3 *36.95 *79.98 *35.7 

*48.69 *73.69 *40.65 *79.51 *26.31 

*30.04 *90.81 *54.76 *77.81 *9.19 

*25.56 *93.99 *61.16 *77.33 *6.01 

*1.31 *99.93 *87.5 *73.23 *0.07 

     

+77.43  +27.97 +28.46 +77 +72.03 

+44.59 +76.66 +41.42 +78.89 +23.34 

+40.11 +80.18 +42.83 +78.34 +19.82 

+26.87 +89.92 +49.66 +76.86 +10.08 

+15.49 +97.24 +67.48 +75.66 +2.76 

+5.97 +99.65 +86.49 +74.11 +0.35 

* Expert BN    + Mined BN  
 

             
    Figure 3-5 ROC curves using test data from CHICA 
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Discussion 

The results of AUC for the ROC for both BNs using the same test set are 

comparable.  Both the expert BN and the mined BN performed better with the test set 

from the RMRS data set when compared with the CHICA data set.  We attribute 

degraded performance when testing with CHICA data set due to our less stringent 

inclusion criteria in the CHICA test set.  For example, any chest x-ray observation will 

satisfy the inclusion criteria for CHICA data, where as for the RMRS test set only a chest 

x-ray finding before age 2 will satisfy the inclusion criteria. 

Similar performance of each BN in each test scenario suggests that the mined BN 

has a predictive value similar to the DAG derived by the expert.  Furthermore, the two 

compared BNs in this experiment were derived from two different data sources – a 

subjective model based on a clinical expert’s judgment and from data from our EMR.  

The data derived BN was as good as the subjective model suggesting the BN method 

presents a knowledge representation and inference tool where subjective decisions can be 

incorporated to approximate the domain knowledge.   
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Experiment 2: Strategies for Learning BN parameters 

Probabilistic asthma case finding: A Noisy-OR reformulation [69] 

 

An Empirical Validation of Recursive Noisy-OR (RNOR) Rule  
for Asthma Prediction [70] 
 
Introduction 

Development of a BN to represent the relationships between GWAS results and 

gene disequilibrium data requires assumptions about independent causal associations.  As 

a preliminary evaluation, we wanted to evaluate the Noisy-OR and Recursive Noisy-OR 

formalisms by comparing the predictive power of BN developed using these methods to a 

“gold standard” BN trained on clinical data. 

Noisy-OR: In combining disparate data sets in which one data set describes the 

relationship between some causes or risks and their consequences, and another data set 

describes the relationship between other causes or risks and the same consequences, there 

are no cases from which to infer the combined effect causes recorded in the different 

datasets.  One approach to this challenge is to assume causal independence among 

predecessors (parents) of a given node.  In this case, it may be reasonable to apply a 

Noisy-OR calculation [3] to estimate the probability of the child node given a particular 

combination of values for the parents [22-24].  By assuming these variables have 

independent causal effects, the Noisy-OR allows us to assign posterior probabilities 

conditioned on causes from these different sets.  However, the validity of the 

independence assumption is rarely tested.  We wanted to test this assumption by applying 

the Noisy-OR to combinations of conditioning variables for which we knew the joint 

probability distributions.   
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RNOR:  To test the Noisy-OR model against a “gold standard,” we need a BN 

trained on a data set that represents the joint probability distributions.  Several, 

algorithms have been developed for training BN by learning their conditional probability 

distributions (CPD) from such datasets. [27, 71]  However, a challenge arises when the 

training data set has no cases representing a particular combination of values for variables 

that condition a particular CPD. This is a common problem in complex BN even when 

large training sets are available. [22] A common strategy in this situation is to assign a 

uniform (uninformed) distribution to the dependent variable, conditioned by this 

combination of variables.  For example, when the probability of asthma is conditioned on 

the sex, race, insurance and past wheezing history of a patient, there may be no cases in 

the training data that are male, white, on Medicaid and with a positive history of 

wheezing.  Under the uniform distribution strategy, the probability of asthma would have 

a 50-50 distribution. 

The ideal strategy would retain posterior distributions for combinations of parent 

node values that exist in the training set while applying the Noisy-OR rule when there are 

no cases representing a combination of conditioning variables.  In 2004, a potential 

solution to this problem was published by Lemmer and Gossink. [29] The Recursive 

Noisy-OR (RNOR) rule described by these authors was intended to incorporate expert 

estimates of probabilities conditioned on more than one node while applying the Noisy-

OR rule when these higher order conditional probabilities were not available.  We 

reasoned that the RNOR algorithm might be a successful strategy for training a BN from 

a data set that did not contain cases representing all combinations of variables 

conditioned on a given node.  We hypothesized that this RNOR approach would produce 
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a BN with better predictive power than either a Noisy-OR formulated or traditionally 

trained BN.  This chapter describes the development and evaluation of this strategy. 

Methods 

We constructed a BN in the domain of asthma prediction in children, using expert 

knowledge to derive a directed acyclic graph (DAG) and applied a commercially 

available software package to learn the CPDs (parameters) from a large clinical dataset. 

This empiric BN has been described before in Chapter 3 (Figure 3-1). [60] For this study, 

we reformulated the CPDs in our domain expert’s BN using both Noisy-OR and the 

RNOR rule. Our empiric BN, Noisy-OR BN and RNOR BN were tested against two 

independent clinical data sets described below.  

EMR Data and Variables 

Clinical data for this study were derived from two datasets – RMRS and CHICA 

as described in experiment 1 in Tables 3-1 and 3-2.  

Bayesian Network and Noisy-OR model 

We took the Expert’s BN from Figure 3-1 and reformulated it as a Noisy-OR 

model (Figure 3-6). The expert BN was trained with data to derive a CPT for each node. 

Since the Noisy-OR model inherently assumes binary causes (absent / present; true/false), 

we dichotomized the non-binary nodes i.e. race and, insurance category) into “true” and 

“false” condition by assigning “true” to the state that minimized the global leak (p0) when 

all the other nodes are in a “false” state.  Thus, because boys were more likely to have 

asthma, male sex was coded as the “true” state. Similarly, race = Black and ins_cat = 

Private were coded as “true” states. The marginal probabilities of all the causal nodes 

(sex, eczema, wheeze, xray, drug, rsv_pos, wz_er, wz_hosp) remain the same from our 
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expert BN. For the study, we only wished to compute the local CPT of the node asthma 

using the Noisy-OR parameters.  

 

Figure 3-6 BN with Noisy-OR parameters 
 
Obtaining Noisy-OR Parameters from Data 

To derive the leak parameter for the network in Figure 3-6, we set all the nodes in 

the network that had an arc to the node asthma to a state false. The resulting posterior 

probability for the node asthma was our leak parameter, p0 (0.014). Using this leak 

probability, we calculated the parameter pi (the causal strength when no other cause is 

present) of each node (node = True) to the effect (asthma). 

We used Netica to compute the posterior probability pi of the effect given only 

one of the causes at a time.  This is equivalent to eliciting the Henrion parameter which 

includes the leak parameter in the posterior probability. From there, we were able to 

derive the probability p΄ (Diez parameter) for each cause alone, using equation (7) in 

chapter 2.   
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Netica provides an interface to input Noisy-OR parameters for a given node and is 

able to calculate the conditional probability distribution for the node from these input 

parameters – effect node’s leak, individual link probabilities of causes.  We used this 

feature to calculate the CPD for the asthma node. This Noisy-OR calculation is achieved 

with the function in Figure 3-7. The link parameters are listed in Table 3-5. 

P (asthma | sex, eczema, wheez, drug, xray, rsv_pos, wz_er, wz_hosp, race, ins_cat) =  

NoisyOrDist (asthma, 0.014, sex == M, 0.022, eczema, 0.048, wheez, 0.17, drug, 0.117, 

xray,0.072, rsv_pos, 0.4, wz_er, 0.37, wz_hosp, 0.104,  race == Black, 0.042, ins_cat == 

Private, 0.058) 

 

The prior probability of the node asthma computed is slightly different in the two 

BNs - Noisy-OR reformulation vs. the Expert BN (16.8% Vs 18.6%). 

Testing of Noisy-OR model 

The two BN models – Expert (empiric) BN (Figure 3-1) and Noisy-OR 

Reformulation (Figure 3-6) were evaluated, first, using data from our test set from RMRS 

data (1/3 split, 5187 cases ) and, second, using the CHICA data set derived from the 

prospectively collected CHICA database (1984 cases).  Netica provides an interface to 

test the BN using a case file of test data.  The node(s) of interest for prediction are treated 

as “unobserved nodes”.  Asthma was used as an unobserved node in our tests. We 

compared the sensitivity, specificity, positive predictive value and negative predictive 

value of the Noisy-OR and the expert BN.  

We compared the BNs using Receiver Operating Characteristic (ROC) curves. 

[57]  The ROC curve was obtained by plotting pairs of true positive rate (sensitivity) and 

  Figure 3-7 Calculation of Noisy-OR parameters
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false positive rate (1–specificity). The area under the curve (AUC) was used as a measure 

of overall test performance. AUCs were compared using the methods of Hanley, J.A. and 

B.J. McNeil. [72] 

Results of Noisy-OR Reformulation 

We had 5187 cases in our RMRS test set and 1984 cases in the CHICA test set.  

The empiric BN and the Noisy-OR reformulation of the empiric BN were tested using 

these sets.  Results for these tests are plotted in Figures 3-8 and Figure 3-9 respectively. 

When comparing the BN that utilized the Noisy-OR assumption to the BN with 

the fully data derived CPD (empiric BN), we saw a modest decrement in the AUC (0.697 

vs. 0.726) when applied to the evaluation dataset from RMRS. When applied to the 

prospectively collected CHICA dataset, the decrement was about the same as before 

(0.612 vs. 0.637). However, neither BN (empiric or Noisy-OR reformulated) was 

particularly effective with the independent CHICA dataset. 

Bayesian Network and Recursive Noisy-OR (RNOR) model 

From experiment 1, the Expert (empiric) BN (Figure 3-1) had an 18.6% marginal 

probability of asthma. On examining the CPD of asthma in this empiric BN, we found the 

majority of its rows contained uninformed priors (i.e., uniformly distributed probability 

score – asthma = 50-50). We attributed this to the lack of cases satisfying the particular 

combination of causes in the training set (e.g., race = Other, Sex = male, Ins_cat = 

selfpay, Eczema = true, Wz_hosp = true). We hypothesized that by using the RNOR rule 

(described below) to calculate conditional probability for the CPD row value for asthma 

in such cases, the RNOR reformulated BN will outperform the empiric BN.                                
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Recursive Noisy-OR Rule 

In 2004, a rule for estimating complex probabilistic interactions was published. 

[29] The rule builds upon the Noisy-OR equation (4) in Chapter 2, to accommodate non-

independent causes of an effect for calculating RNOR probability pR(x). Interested 

readers are encouraged to refer to the original paper [29]. The RNOR rule is a 

generalization of Noisy-OR and reduces to Noisy-OR in cases where |x| = 1, i.e. a subset 

of a single cause is provided by the expert pE(x). Furthermore, the rule preserves certain 

ratios (synergies and interference, see below), and the authors claim a major advantage of 

the rule is that it allows for arbitrary causally dependent subsets of probability scores to 

be incorporated in the estimation of pR(x), the probability score of effect.  

The rule states that as long as the expert provided values for a subset of causes do 

not imply inhibition (i.e. abides positive causality, see synergy and interference below) it 

can be applied. Expert provided values implying inhibition among a set of causes will 

cause RNOR to produce probability scores greater than one, rendering the rule 

inapplicable.  The RNOR rule is summarized in the following equation 1– 

(1)otherwise ,         
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Synergy and Interference  

To judge the rule for semantic correctness (i.e. the numbers produced make 

sense), the authors introduce the notion of positive causality. Positive causality refers to 

the idea that additional causes always increase the probability of achieving an effect. 



46 
 

Synergy of causes satisfies positive causality and produces an effect (probability) greater 

than the Noisy-OR calculation. Interference of causes also satisfies positive causality but 

produces an effect less than the Noisy-OR calculation. However, inhibition, in contrast to 

interference, violates positive causality and will produce probability scores greater than 

one.  Therefore, the “information on the probability of an effect from a combination of 

causes provided by an expert (or derived from data) can be represented as a scalar 

multiple of the regular Noisy-OR.” This can be represented using equation (2) as defined 

in the original paper. [29] 

                            )2())(1)(()( -1 xpxxp
NR    

where pR(x) represents the probability from a RNOR estimation and pN(x) represents the 

standard Noisy-OR estimation. The factor δ(x) represents a scalar gain or attenuation 

coefficient between the two estimates. If δ(x) is less than one then it represents a biased 

amplifying coefficient of the probability and hence synergy.  Conversely if δ(x) is greater 

than one then it represents a biased attenuating coefficient and hence interference. 

Finally, if it is equal to one then an independent product combination could hold 

implying causal independence. 

Application of RNOR rule to the Asthma case finding BN 

We took the expert’s BN from Figure 3-1 and calculated the CPD of the asthma 

node using the RNOR rule as follows.  

Deriving link probabilities for RNOR rule  

To apply the RNOR rule to the network for CPD computation of asthma, we 

individually calculated the link probabilities (p’) of each cause of the effect (asthma)  

This was a two step process – (a) reduce the network by absorbing all nodes (see below 
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node absorption) except the node in question (e.g. eczema), looking up the “true” 

conditional probability score of the effect given the cause (i.e. asthma = True given 

eczema =True), then looking up its “false” conditional probability score to find leak p0 

for this reduced network and (b) using equation (7) in Chapter 2 as before to find the 

Diez probability (p’) in absence of all un-modeled causes including the leak calculated in 

(a). We repeated this two step process for all causal nodes for asthma thus first deriving 

the Henrion parameter (pi) which includes the leak parameter in the posterior probability. 

From there, we derived the link probability p΄ (Diez parameter) for each cause alone. 

Table 3-5 lists the values for each link probability (p΄) to asthma.  

     Table 3-5 Link probability of each node to asthma 
 

P(eczema=True)=0.048 P(drug= True) = 0.117 

P(rsv_pos=True) = 0.4 P(wheez=True) = 0.17 

P(wz_er=True) = 0.37 P(ins_cat=Private)= 0.058 

P(wz_hosp=True)=0.104 P(race=Black)=0.042 

P(xray=True) = 0.072 P(sex=Male) = 0.022 

 
Node absorption  

Node absorption is a network transform which removes nodes from a BN and 

makes any necessary adjustments to the resulting network.  Also known as averaging out 

or “summing out a variable”, this transform leaves the full joint probability distribution 

of the remaining nodes unchanged. 

Node absorption is part of the network transform for solving decision problems 

using influence diagrams (Bayesian networks with decision nodes) and is described in 
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detail in Shachter’s algorithm [9-10]. Shachter’s algorithm involves three simple 

reductions. First, any nodes that have no direct successors or “barren” nodes are removed 

as their value do not influence the successors and are irrelevant to the decision problem 

at hand, second, the propagation of the deterministic node, i.e. if any direct successor j of 

a node i  has a CPD for which node i  is a conditioning variable, that function is 

substituted in the distribution of  j and in the process, node i is replaced as a conditional 

predecessor to node j by the conditional predecessors of the node i, i.e. node i  is 

absorbed out.  This may introduce new directed edges or links if not present between the 

predecessors of node i and node j. Third, arc reversal – if there is an arc or a directed 

edge from i to j, it is possible to transform the net into an arc from j to i instead and both 

i and j inherit each other’s conditional predecessors. The CPD for node i is found by 

summing out and the new CPD for node j is calculated from Bayes theorem. 

Applying RNOR rule using link probabilities 

Using the Java programming language and the Netica application programming 

interface, we programmed the RNOR algorithm as defined in [29].  Appendix A.8 details 

the code. The algorithm calculated the probability score of asthma in each row of the 

CPD using equation (1). An example combination – (s)ex = Male, (r)ace = White, 

(w)heez = True is given  here – 

)3(
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In the example above (equation 3), the RNOR algorithm calculated the row value 

for the CPD by first calculating each of the subsets, multiplying them and subtracting 
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from 1.  For this experiment, the probability score for asthma for each combination of 

conditioning variables was calculated in three different ways–  

Using RNOR rule 

The algorithm recursively calculated the probability score for successive 

combinations; using the original scores, pE(x), from data learnt CPD wherever they 

existed (i.e., not 50-50), using equation (3).  For example, if P (Wheez, Sex) was non-

uniform (i.e., not 50-50) in the original data learnt CPD of asthma (from the empiric 

BN), it was used in successive calculations for higher order combinations.  When the 

resulting probability was negative or exceeded 1, suggesting inhibition, the CPD row 

was left with 50-50.   

Noisy-OR approach  

Starting with link probabilities listed in Table 3-5, the algorithm recursively 

calculated a probability score of asthma for successive combinations of conditioning 

variables without using any values from the original data learnt CPD from the empiric 

BN. This essentially reduced the model to a Noisy-OR model. 

Adaptive Noisy-OR approach  

As with the RNOR calculations, the algorithm computed CPD values recursively 

using pE(x) where applicable.  However, for those scores resulting in negative values, 

instead of leaving a uniform distribution, we used the Noisy-OR value, reasoning that it 

would be a better approximation than the 50-50 value in the CPD row.  We termed this 

“Adaptive Recursive Noisy-OR” or Adaptive RNOR (ARNOR). 

BNs with probability tables calculated from these three methods were used in two 

separate tests, comparing their predictive abilities in the two test sets.  
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Testing the Models  

The BN models were evaluated, first, using data from our original test set of 

RMRS data (1/3 split from the large cohort study 5187 cases) and, second, using the data 

set derived from the prospectively collected CHICA database (1982 cases), utilizing 

Netica’s test interface.  We compared the sensitivity, specificity, positive predictive 

value, and negative predictive value using Receiver Operating Characteristic (ROC) 

curves. [57] The ROC curve was obtained by plotting pairs of true positive rate 

(sensitivity) and false positive rate (1 - specificity).  The area under the ROC curve 

(AUC) was used as a measure of overall test performance.  AUCs were compared using 

the method of Hanley and McNeil [72] which specifically accounts for comparing ROC 

derived from same cases.  

Results of RNOR rule Reformulation 

We had 5187 cases in our RMRS test set and 1984 cases in the independent test 

set (CHICA).  Results for the tests are shown in Figures 3-8 and 3-9 respectively.  There 

were no statistically significant differences between the predictive ability of the RNOR 

or Adaptive RNOR and that of the empirically trained BN.  Both RNOR and Adaptive 

RNOR had larger AUC than the Noisy-OR BN in both RMRS and CHICA datasets but 

the difference did not reach statistical significance (Figures 3-8 and 3-9 respectively and 

Table 3-6).  
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                  Figure 3-8 Evaluation using test data from RMRS 

 

 

 
Figure 3-9 Evaluation using test data from CHICA 
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                         Table 3-6 Statistical comparison of models 
 
 
 

 

 

 

 

 

 

 

 

Discussion 

In case of Noisy-OR reformulation, the predictive power of the BN decayed 

significantly when applied to another dataset (CHICA), it did not decay as much when 

we made the Noisy-OR assumption in the original dataset. This is somewhat surprising 

since we wouldn’t necessarily expect the predecessors to the asthma node (xray, drugs, 

wheeze) to be independent causes (or even causes at all).  Nonetheless, the relatively 

small decrement in AUC suggests that the Noisy-OR may be a robust assumption to 

make in an array of situations, even if BNs trained in one setting may be less effective in 

another.  We believe that the Noisy-OR formalism provides sound theoretic background 

for combining a number of causes leading to a common disease manifestation if the 

underlying distribution follows the assumptions.   

In case of RNOR rule reformulation, we had anticipated that the RNOR would 

perform better than the empirically trained BN.  The RNOR retains the higher level 

Dataset AUC1 AUC2 P-value 

RMRS Empiric BN RNOR 0.956 

RMRS Empiric BN ARNOR 0.968 

CHICA Empiric BN RNOR 0.620 

CHICA Empiric BN ARNOR 0.625 

RMRS Noisy-OR RNOR ~1.0 

RMRS Noisy-OR ARNOR ~1.0 

CHICA Noisy-OR RNOR ~1.0 

CHICA Noisy-OR ARNOR 0.851 



53 
 

posterior distributions that can be extracted from the data, but in the absence of cases in 

the data, the RNOR estimates posterior distributions that are more reasonable than a 

uniform distribution.  This is especially true for a variable like asthma where the 

posterior probability would never be expected to reach 50%.  We observed such a trend, 

but the differences were not statistically significant. 

In our application of the RNOR we ignored any negative probability scores that 

are produced (as a result of recursive calculations in the algorithm).  We believe these 

negative scores are produced where inhibition exists between subsets of dependent causes 

and the scores produced by the algorithm are greater than one.  One such example is – sex 

= Male, drug = True, xray = True – inhibition between drug and xray (subset 

score=1.0034) and sex and drug (subset score = 1.03), though x-ray and sex subset has a 

score within bound (subset score = 0.969).   

The implication is that the domain chosen for this study may not be an ideal 

application of the RNOR strategy but the RNOR algorithm can be used to detect 

inhibition in large datasets. Additionally, we have evaluated conditions in our dataset 

which render the RNOR rule inapplicable and discussed our use of Noisy-OR 

calculations in such situations.  

For our domain, the Noisy-OR formalism produced results comparable to the 

empirically trained BN.  Surprisingly, the RNOR did not contribute significantly more 

predictive power than the Noisy-OR.  Therefore, we conclude that the Noisy-OR 

approach to combine information can serve as a satisfactory strategy for merging data in 

the IsBIG experiments described in the next chapter. 
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Chapter 4 PROBABILISTIC INTEGRATION: IsBIG EXPERIMENTS  
 

Using causal independence and statistical measures  

In this chapter, we describe experiments that extend the use of causal 

independence assumption, using the Noisy-OR approach to link disparate sources in a 

normative form. In the absence of complete datasets of all the domain variables, we 

present a methodology using summary and statistical measures and the causal 

independence assumption.   

In experiment 3, we apply the concept of linking disparate data sources for 

knowledge representation and inference with BN, again in the domain of childhood 

asthma.  We combine data from our EMR (RMRS) with published data on the interaction 

of genotype and smoking to the risk of asthma using the causal independence assumption. 

Our aim is to leverage the BN representation and causal independence assumption 

beyond the use case of learning conditional probability distributions from independent 

causes. We use causal independence as a data integration strategy to learn and inference 

from disparate sources, for example, for testing genetic hypotheses in large clinical data 

sets from an EMR.  We demonstrate this use case using an experimental study where data 

from RMRS and CHICA system are combined with statistical and summary data 

published in one study linking a particular genetic variant and an environmental variable 

(tobacco smoke exposure) to asthma in an integrated model. We evaluate the integrated 

model against our EMR data using a “goodness of fit” metric as a performance measure. 

Our aim in experiment 4 is to integrate several published studies. For the purposes 

of this research, we choose the domain of genome wide association studies (GWAS) 

where findings link a genetic variation of Single Nucleotide Polymorphism (SNP) type 



55 
 

with a disease or a trait. However, as discussed in the background chapter (chapter 2), we 

have no publicly accessible primary data source for these studies to link with each other 

or with a data source like an EMR.  

Therefore, in experiment 4, in the absence of any primary data source in the 

domain of genome wide association studies, we extend our methodology to integrate 

statistical measures of correlations and effect sizes from published studies to incorporate 

all available information in a data integration framework – In-silico Bayesian Integration 

as previously described in Figure 1-2.  Using statistical measures of correlation, we learn 

conditional probability distributions of disparate BNs; these BNs are linked to each other 

by effect size of common nodes.  The common nodes are then “absorbed” because they 

are hidden and not the primary variables of interest. The result of the transformation of 

absorbing nodes is that it preserves the joint probability distribution of the BN but may 

introduce new edges to preserve its quantitative structure. Therefore the integrated BN 

may find new relationships which otherwise may be hidden knowledge. 

We believe this approach has three main advantages: 1) It can incorporate all 

available information across boundaries of individual datasets by either learning directly 

from data or assuming certain independencies in the dataset or from secondary sources 

such as summary and statistical measures. 2) Once a model is built, it can make 

inferences in context, for example, from patient data from an EMR. 3) It creates the 

capacity to keep adding more information as it becomes available using the same 

framework.  

We hypothesize that this approach will discover hidden associations across silos 

of biomedical data, for example predictive distributions which are otherwise unknown.  
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We also believe that this approach can demonstrate the state of the current research by 

putting it in context with the patient data, for example, from our EMR. This would allow 

us to quantify from a domain like GWAS, for example, how much risk of common 

disease(s) is explained by genetic linkages. With this aim of linking disparate studies, we 

conduct experiment 4 detailed in following pages. 
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Experiment 3: Integrating Published and EMR Data 
 

In-Silico Testing of Genotype-Phenotype Associations with Electronic Medical Records [73] 

 

Introduction 

In recent years, several published studies have reported associations of a given 

genetic polymorphism with a particular common complex disease.  In separate clinical 

studies these associations are also stratified by various demographic, racial, ethnic and 

environmental factors. However, due to the challenges discussed in the Chapter 2, the 

two separate sources of information are almost never combined for use in clinical 

practice. Therefore, informatics methods are needed to integrate them with clinical data, 

for example, from an EMR to a) validate findings in larger populations and b) generate 

higher order hypotheses to study separately and c) for future use in data from an EMR for 

application in patient’s context.   

In this experiment, we developed a BN methodology to integrate summary and 

statistical data from full-text published biomedical literature with records identified from 

our EMR system RMRS to test genotype-phenotype associations in our clinical 

population. Here we report our results with the methodology in the domain of asthma 

risk. 

With the advent of microarray technologies, clinical effects can be predicted 

based on functional effect(s) of a gene. [40]  It has been shown that DNA mutations in 

coding regions effect the function or the efficiency of the protein that the gene encodes, 

which can lead to physiologic effects that are clinically relevant. [33]  Therefore, 

strategies applied to genetic diseases like sickle cell anemia (a pure genetic disease) can 
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also be applied to common diseases like asthma, but the task is more complex due to 

gene-gene and gene-environment interactions. [33]  However, for complex diseases like 

asthma, genetics studies can contribute to better healthcare outcomes in one or more 

ways. 

A considerable number of studies point to a lack of consensus on asthma clinical 

subtypes. [40]  Therefore a classification of asthma based on genetics and environment 

could provide more accurate clinical subtypes. [33, 40]  Genetic classification can 

provide improved prognostic information including identification of patients who are at 

highest risk for severe life threatening episodes of asthma.  In addition, a more detailed 

understanding of the pathophysiology of the disease can lead to a more precise definition 

of the environmental modifications which can most likely reduce the risk of asthma. 

Finally, such studies could lead to genetic testing to predict a patient’s response to a drug 

or development of new drug therapies. [74]  

We report our experimental findings for an asthma case finding application that 

integrates summary and statistical data derived from the full-text biomedical literature 

and RMRS.  The published paper details the association of asthma with the Beta 2 

Adrenergic Receptor (β2AR, also referred to as ADRB2 genotype) gene polymorphism 

and cigarette Smoking. [50]  Our methods utilize Bayesian Networks (BN) to integrate 

disparate data sources – a) summary data from literature b) pediatric data from RMRS 

and c) self reported smoke exposure data by families from CHICA system.  We use a 

“goodness to fit” metric [75] as a measure to compare our integrated  model with a 

clinical only model.  
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Methods 

Pediatric Asthma cases and controls were identified from the RMRS and the 

CHICA system, [59] a Clinical Decision Support System (CDSS) used in our Pediatric 

Primary Care (PCC) practice in conjunction with RMRS. An overview of CHICA system 

is described in Chapter 3, experiment 1. 

Data  

The CHICA system electronically receives a record of all clinical observations 

from the RMRS database for every patient visit.  For this study, we analyzed data for all 

children over 5 years of age in our system.  Children were classified as cases or controls 

based on the presence of an ICD-9 code for asthma (493.*) or more than two 

prescriptions of an asthma medication.  From the filtered set we were able to extract the 

variables listed in Table 4-1 to get an “Asthma Status,” sex and race for each patient 

(ages 5 years or older) who had a visit to the PCC clinic. We combined these data with 

the self reported data on environmental tobacco smoke exposure collected from the 

CHICA pre-screener form (PSF), a computer generated questionnaire that is given to the 

patient family to complete in the waiting room.  The combined data set is used to build 

our clinical model using a Bayesian Network (Figure 4-1). Table 4-2 details the 

characteristics of the dataset used to build the model. 

Table 4-1 Data Variables – Experiment 4 

Variable Values 

Race White, Black, Hispanic, Other, Unknown 

Sex Male, Female 

Asthma ICD9 (493.*) or any clinic billing diagnosis for asthma 
after age 5 (True, False) 

Smoke 
Exposure 

“Does anyone in [your child’s] home smoke” (yes, no) 
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    Figure 4-1 Clinical Model (with limited nodes) 
 
 

Table 4-2 Baseline Characteristics – Clinical model 
Variables          Training Set  (n = 2609) 

                                                                  #                                
% 

Race Hispanic (H)  597 23% 
  Spanish (S) 89 3% 
  Asian (X) 29 1% 
  Islander (I) 3                   <  1% 
  Unknown (U) 6 0% 
  Black (B)    1408 54% 
  White (W)   382 15% 
  Other (O)  95 4% 
   
Sex Female (F)        1246 48% 
  Male (M)   1363 52% 
   
Asthma True (T) 666 26% 
  False (F) 1943 75% 
   
Smoke Exp True (T) 579 22% 
  False (F) 2030 78% 
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Bayesian Network for Clinical Model 

We used Netica software [67] (www.norsys.com) to construct BN for our clinical 

model (Figure 4-1). Netica allows network construction and parameter learning from 

data.  The model parameters were obtained using data from the CHICA database as 

specified in the data section.  At the time of this experiment the CHICA system provided 

data on both asthma and smoke exposure status for about 2600 patients.  The baseline 

characteristics of the cohort for the training set are shown in Table 4-2.  The prior 

probability of asthma from this model is 26% (Figure 4-1). 

Bayesian Network for the Genetic Model  

We used a published case-control study – “Association of Asthma with Beta 2-

Adrenergic Receptor (β2AR) Gene Polymorphism and Cigarette Smoking” [50] to build 

a genetic model linking genotype to smoke exposure and asthma.  The study reported an 

interaction between cigarette smoking and β2AR-16 genotype. It showed a synergistic 

relationship between tobacco smoke exposure and the Arg-16 homozygous genotype with 

respect to asthma.  When compared with Gly-16 homozygotes who never smoked, the 

smokers who were Arg-16 homozygotes had a significantly increased risk of asthma 

(Odds ratio = 7.81).  We used summary data from this study, adjusted for our 

population’s asthma prevalence (26%), in our clinical model.  Since the study reported 

128 cases, our experiment required 364 controls (for a total of 492 subjects, resulting in a 

26% prevalence).  Therefore, we multiplied the number of controls in each genotype and 

smoking status group by a factor*** (f = 2.68) (Table 4-3).  We constructed a BN using 

Netica software and learnt its parameters using the summary data in Table 4-3.  This 

constituted our genomic BN (Figure 4-3). 
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Table 4-3 Literature Summary data adjusted for Asthma prevalence 
     (From our EMR) 
 

β2AR-16 
genotype 

Smoking Status Cases 
(n) 

Controls 
(n) 

Adjusted 
Controls (Asthma 
prevalence = 26%) 
*** 

GG Never-smokers 16 28 75.04 
AG Never-smokers 43 52 139.36 
AA Never-smokers 30 33 88.44 
GG Ever-smokers 6 6 16.08 
AG Ever-smokers 11 12 32.16 
AA Ever-smokers 22 5 13.4 
Total   128 136 364 

 
***

68.2
)136( #

)364( #
)(

364)  (? controls # Total  128) (n  cases #

128)(n  cases # 
26.0












ncontrols

ncontrolsTotal
ffactor

 

 

The prevalence of β2AR-16 allele frequencies in the genomic network from this cohort is 

Arg-16 (A) – 56.4% and Gly-16 (G) – 43.6% (Figure 4-4).  

Integration of the two models 

 The β2AR genotype can be considered a risk factor or hidden node affecting 

asthma for the clinical model; specifically accounting for the effect of smoke exposure.  

In order to integrate this genetic relationship into a clinical model, we needed an 

observable proxy for genotype status.  For this experiment, race was considered as a 

surrogate for the β2AR genotype in absence of actual genotype data for the patient.  
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  Figure 4-2 Genomic Model (Genotype) 

 

 
     Figure 4-3 Genomic Model (Alleles) 

 
 
               Table 4-4 Allele Distribution by Race from public sources 
 

Race Allele A (%) Allele G (%) 
White (W) 34.0 66.0 
Black (B) 45.0 55.0 
Hispanic (H) 44.0 56.0 
Other (O)* 50.0 50.0 
Spanish (S) 44.0 56.0 
Asians (X) 55.0 45.0 
Unknown (U)* 50.0 50.0 
Islander (I)* 50.0 50.0 

  *Uniform distribution assumed since no info found 
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Table 4-4 lists the distribution of alleles A and G by race for β2AR genotype. We 

obtained this distribution from publicly available databases – ALFRED 

(http://alfred.med.yale.edu), PharmGKB (http://www.pharmgkb.org) and entrez SNP 

(http://www.ncbi.nlm.nih.gov/snp) databases.  Using this observable proxy, we did three 

things to integrate as follows – 

We first inserted the two explicit nodes for β2AR alleles (Figure 4-3) in the 

clinical model (Figure 4-1) and used the distribution described in Table 4-4 to obtain the 

conditional probability distribution (CPD) of allele1 and allele2 given race.  

Second, since the CPD of asthma in the genetic model reflects the findings that 

are reported in the presence or absence of smoke exposure in the study, we used the 

adjusted published distribution (i.e. Figure 4-3) to replace the CPD of the asthma node in 

our clinical model (Figure 4-1.).  In the integrated model, we kept the CPD for smoke 

exposure node from the clinical model since this is our population of interest. 

Third, we compiled the integrated model using Netica’s compilation tool.  This 

operation creates a “junction tree” for “belief updating” and also calculates the full joint 

probability distribution (JPD) of the resulting network – our integrated model is shown in 

Figure 4-4. 
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Figure 4-4 Integrated model – Clinical and Genomic 
 

The resulting prior probabilities of β2AR-16 alleles in this integrated model are – 

Arg-16 (A) – 43.4%, Gly-16 (G) – 56.6%.  They are different from the prevalence found 

in the published study (A - 56.4% and G - 43.6%) and reflect the inferred distribution in 

our population based on racial distribution. The network also compiled a resulting prior 

probability of asthma (25%); quite close to the marginal prevalence in our clinical model 

(26%), suggesting that the relationship between race and asthma could be mediated by 

β2AR-16 genotype.  In order to compare the two models – clinical with integrated, we 

absorbed the allele nodes in the integrated model (Figure 4-5). 
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Figure 4-5 Model (with Allele nodes absorbed) 
 

Also known as “averaging out” or “summing out a variable,” a node absorption 

transform leaves the full joint probability distribution of the remaining nodes unchanged 

and results in the final integrated model (Figure 4-5) that could be used for comparison. 

 Comparing the two models 
We compared the CPD of asthma node for the clinical and integrated models to 

see how well the two distributions match.  Our hypothesis was that associations between 

genotype and phenotype could explain, at least in part, the clinical findings that we 

observed in our population, specifically as the relationship between asthma and tobacco 

smoke exposure. Table 4-5 lists the distribution of the asthma node in both models. 

Goodness of fit Metric 

We used a “Goodness of fit” as the comparison metric. [75] This metric is based 

on the Chi-square distribution and the method of least squares. [75] The chi-square test 

compares the observed frequencies with the expected frequencies, giving the probability 

of observed differences under the null hypothesis (there is no difference). [76]  The 

method of least squares is built on the hypothesis that the optimum description of a set of 
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data is one which minimizes the weighted sum of squares of deviations of data (yi) from 

the fitting function y(xi). [75]   The variance of the fit s2, which is an estimate of the 

variance of data σ2, characterizes this sum for v = N – n – 1 number of degrees of 

freedom, where n coefficients fit to N data. Variance of fit s2 is also characterized by the 

statistic χ2 as described in equation 1 below. Equation 2 describes the reduced chi-square 

χ2
v  
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where σ2 in equation 2 is the weighted average of individual variances.  However, the 

estimated variance of fit s2 is also a characteristic of both the spread of the data and the 

accuracy of the fit. [75]  Therefore its definition as a ratio of the estimated variance s2 to 

the parent variance σ2 (times the number of degrees of freedom) from equation 2 makes it 

a convenient measure of the “goodness of fit.”  If the fitting function is a good 

approximation to the parent function, the estimated variance s2 should agree well with the 

parent variance σ2 and the value of the reduced chi-square should be approximately unity 

χ2
v = 1. [75]  Furthermore, the Q-Statistic defines the probability that a function Q(χ2/ν, 

v) for a set of deviations obtained by randomly sampling N observations from normal 

distribution would exceed the value for χ2/ν that was obtained by the fitting function. [75] 
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Results 

Table 4-5 CPD of Asthma node in clinical and integrated models 
 

Smoke 
Exposure Race 

     
Clinical 

Model 
y(xi)

                    Integrated 
                     Model 

(yi)

 
Chi Square 

F W 27.21 21.68 0.71
F H 19.00 22.52 0.29
F S 14.59 22.52 1.45
F B 30.70 22.60 1.52
F O 23.75 22.99 0.01
F U 22.61 22.99 0.00
F I 36.94 22.99 4.50
F X 24.63 23.35 0.04
T W 21.59 31.86 2.44
T H 25.80 34.32 1.68
T S 36.94 34.32 0.16
T B 27.49 34.61 1.17
T O 31.92 36.17 0.42
T U 42.04 36.17 0.80
T I 42.04 36.17 0.80
T X 30.45 37.91 1.29

   Variance (σ2) =   43.25           Х2  =  17.28

  

v = # of 
degrees 
of 
freedom

v = N – n – 1  
   = 16 - 2 - 1 = 13

Х2
v =  Х2 /v  =  1.33 

 
 

We calculated the value of reduced chi-square χ2
v = 1.33, (p-value = 0.187) for 13 

degrees of freedom (N = 16 for n = 2 coefficients- race and smoke exposure) and Q(χ2/ν, 

v) to be 0.10 < Q < 0.20. A p-value of 0.187 suggests the two distributions for clinical 

and integrated models may be similar.  Q is “small” (0.10 < Q < 0.20) therefore the fit is 

“poor”.  Only 10–20 % of large number of trials would result in a chi-square value as 

large as observed.  Therefore, β2AR genotype (ADRB2 status), as inferred by race, 

explains only a fraction of the risk of asthma association with smoke exposure in our 

suggested integrated model. 
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Discussion 

Our results are consistent with a minor contribution of the β2AR gene to the 

association between asthma and smoke exposure observed in our EMR.  One explanation 

is that the association between the genotype (ADRB2 or β2AR) and the clinical condition 

(asthma) in the literature was reported with “active smoking” in an adult population.  Our 

experiment models these associations for a pediatric population where the children are 

exposed to environmental tobacco smoke or “passive smoking.”  Asthma is also thought 

to have a multigenic etiology.  The incorporation of other associated genes into the model 

is likely to improve its predictive power.  Finally, the data associating race with genotype 

is crude and incomplete.  Therefore, race (the only surrogate available to us) is a poor 

surrogate for genotype. A better surrogate would be helpful.   

Conclusion 

We have developed and demonstrated a methodology for integrating a published 

data source with a primary data source – EMR. This methodology can be useful for 

testing genetic hypotheses in large clinical data sets. The approach is applicable to a wide 

range of genotypes that are associated with two or more clinically observed phenomena 

(in this case asthma and smoke exposure).  We believe this approach is worth 

investigating for other common diseases like diabetes and obesity and their associations 

with genomic and environmental findings. 
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Experiment 4: Integrating Disparate Sources of Summary Data  

 
In-silico Bayesian Integration of GWA Studies (IsBIG) 

Introduction 

Our aim for this research is to develop probabilistic methods to integrate disparate 

sources of data to form a coherent model even when no primary data are available using 

secondary sources of information such as published summary and statistical measures for 

knowledge discovery.  In the last experiment, we demonstrated integration of genetic, 

clinical and environmental sources using both data and published data summaries. To 

demonstrate how this approach can be used to link secondary sources of data, we choose 

the domain of genome wide association studies (GWAS). Using the NIH compiled 

catalog of GWAS (www.genome.gov) and the database of human genome variations 

from the international HapMap project (www.hapmap.org), we combine information 

from these two secondary sources using BN framework as described in our previous 

experiments. We call this model – In Silico Bayesian Integration of GWAS or IsBIG. In 

this experiment we describe the methodology and report our preliminary results. In the 

next chapter we formally evaluate the IsBIG model using data from our EMR and 

published literature identified in the Pubmed database.  

Genome Wide Association Studies (GWAS) 

Genome Wide Association Studies (GWAS) have become the standard to report 

associations of a genetic variation type – Single Nucleotide Polymorphism (SNP) with a 

particular disease such as diabetes, heart and lung disease, autoimmune and psychiatric 

disorders. It is only in very recent years with the advent of microarray technology and the 

mapping of the variations of human genome (http://www.hapmap.org) [77-78] that the 
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tools to conduct genome wide scans for finding associations of gene to disease have 

become available.  The first results of the genome wide scans started to appear in 2005 

[79] and since have become increasingly sophisticated in the number of gene loci that 

they can address.  Since the genome wide scans follow a specific methodology, they are 

now known as Genome Wide Association Studies (GWAS).  

At the heart of any GWA study is a cohort of individuals with a known disease or 

trait status and a comparable control group without the disease or trait.  Their whole 

genome is genotyped for known variations of Single Nucleotide Polymorphism (SNP). 

Such SNP variations have been cataloged among diverse populations in the international 

HapMap [78] project.  The results from the GWAS are analyzed for strong statistically 

significant (below p < 5 x 10-8) associations between each SNP and the disease or trait 

status of interest.   

Thus, GWAS differ from traditional genetic linkage studies of the past where a 

hypothesis driven candidate gene approach was being used.  GWAS, to date, have 

amassed large datasets linking genotype to phenotype and have provided many useful 

insights [80] into certain diseases such as specific forms of cancer [81] and drug 

metabolism, for example warfarin. [82]  However, they are resource intensive and require 

large sample sizes to detect even modest effect sizes, and yet their applications for 

defining new therapies or preventive measures are largely unknown. [83]  This is mainly 

because the influence of the genetic variation to the phenotype is unclear and there is a 

need to point to the causal variants; to move beyond the process of gene identification. 

[84]   
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But as GWAS (often conducted by individual groups) reported ever more 

potential etiologic and functional implications for similar diseases or traits [85-88], there 

was a need to share the results beyond publication. Therefore, summary and statistical 

results from these studies have been cataloged as an online resource for future 

investigations at http://www.genome.gov/gwastudies [83] at NIH.  

This catalog contains the following details on each study – population 

characteristics, initial sample size, sub population type, strength of statistical association 

as odds ratio (OR) or a beta coefficient (Beta), and the frequency of the risk allele in the 

study. [83]  However, to the best of our knowledge no secondary use of this catalog has 

been reported. 

In this catalog, the risk allele is the marker for the SNP that is found to be strongly 

associated with the disease or trait. Additionally, from previous knowledge, the reported 

SNPs in GWAS are known to follow non-random patterns of association between alleles 

from different markers. [89] This is also known as linkage disequilibrium (LD) [90], 

which we describe below. 

Linkage Disequilibrium (LD)  

LD is non-random association between SNP alleles from different markers, i.e. 

SNP loci on the same or different chromosomes.  Different geographic populations have 

different allele frequencies, and therefore, LD differs between them.  Thus the non-

random pattern of allele associations varies by sub populations – for example European 

descent, Japanese ancestry, etc. [89, 91] LD is measured using correlation coefficient (r2) 

[90] and varies between 0-1.  Two alleles have a high LD score if the r2 value between 

them is greater than 0.5 meaning that they are associated with each other in the population. 
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The international HapMap consortium (http://www.hapmap.org) [77] has developed a 

haplotype map of the human genome, the HapMap, describing common patterns of human 

DNA sequence variation.  It has enabled LD data to be readily cataloged and available in 

sub populations. Thus LD data quantitatively associates SNPs with other SNPs and can be 

measured in a sub population using a tool such as SNP annotation and proxy search 

(SNAP). 

The SNAP tool, [92] available from Broad Institute at 

(http://www.broadinstitute.org/mpg/snap) computes LD scores (r2) between SNPs up to 

500 kilo base pairs apart and takes as input a list of SNPs of interest, a threshold value for 

r2 above which to search the database and the sub population of interest.  The output of the 

tool is a paired list consisting of the input SNP and another SNP henceforth called “proxy” 

SNP that exists in a non-random association above the given threshold cutoff value of r2 in 

the HapMap database for the desired sub population.  

Disparate Sources of information 

We reasoned if diseases can be linked with SNPs and SNPs with one another, 

then it should be possible to predict associations among diseases that could be mediated 

through linked genetic determinants. Predicting quantitatively the associations among 

diseases and traits that would be predicted by genetic patterns alone would allow us to 

undertake three novel studies: (1) Validate the associations among diseases and traits 

with electronic health record data (2) quantify the amount of variation among disease 

linkages that can be explained by currently cataloged GWAS and linkage studies, (e.g. 

heart disease and obesity) and (3) predict novel associations among diseases that could be 

tested in future genetic studies. 
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In this experiment, we build a computational model (IsBIG) to integrate the two 

disparate sources – 1) results from the studies cataloged in the NIH catalog [83] linking 

SNPs to diseases or traits and 2) HapMap (www.hapmap.org) data associating SNPs to 

other SNPs. With the IsBIG model, we hoped to find a disease map linking diseases to 

other diseases that would be similar to what one would find in a clinical database such as 

our EMR. 

Methods 

In-silico Bayesian Integration of GWAS (IsBIG) model  

The IsBIG model was assembled in the following four steps.  1) Extract Gene-

Disease associations from the NIH catalog for a sub population to form a model catalog; 

2) for the SNPs listed in this model catalog, compute genome wide LD scores (r2) from a 

comparable sub population from the HapMap database to form a SNP-SNP (proxy) 

association dataset; 3) for the SNPs linked by LD in the SNP-SNP (proxy) dataset, find 

diseases or traits linked to each other pair wise as a result of LD. This formed the SNP-

SNP-Disease-Disease dataset for input to the IsBIG algorithm described in the following 

sections. 4) Using this input, the IsBIG algorithm computes a BN with two separate 

components in steps – a) SNP-SNP BN using LD (r2) to calculate CPDs. b) SNP-Disease 

BN, using OR to calculate CPDs. Finally, the algorithm absorbs the SNP nodes (as 

described below) to compute the disease-disease BN or the output of disease map.  The 

algorithm is coded using Java API and a commercially available software package for 

modeling Bayesian networks – Netica’s API (www.norsys.com) [67].  The details of each 

step are listed as follows. 
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Extract Gene-Disease Association  

A copy of the GWAS catalog from the http://www.genome.gov/gwastudies/ 

website was downloaded on 12-28-09. The GWAS catalog contains information from a 

wide range of GWAS studies associating specific SNPs to diseases or traits.  From the 

variables included in the catalog we chose the variables listed in Table 4-6 for the 

experiment.  Table 4-7 lists sample studies from the GWAS catalog.  Appendix A.1 

gives a summary of the studies from the GWAS catalog we used. 

Table 4-6 Variables for Model Catalog  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4-7 Sample Studies in GWAS catalog 
 

Disease 
/Trait 

Risk 
Allele 

SNP Risk Allele 
Freq 

OR
  

Initial Sample 
Size 

Type 1 
diabetes G rs4900384 0.29 1.09

7,514 cases, 
9,045 controls

Type 2 
diabetes C rs4607103 0.76 1.09

4,549 cases, 
5,579 controls

Multiple 
sclerosis 

A rs1335532 0.87 1.28 1,618 cases 
3,413 European 
ancestry controls

 
We planned to evaluate the model disease map with data from our EMR, the 

RMRS [2]. Therefore we decided to use only those studies from the downloaded catalog 

DISEASE/TRAIT  Disease or trait examined in study 

SNPS Strongest SNP 

INITIAL SAMPLE SIZE Sample size for Stage 1 of GWAS, population subtype 

RISK ALLELE 
FREQUENCY 

 Reported risk allele frequency associated with strongest   
SNP 

OR or BETA  Reported odds ratio or beta-coefficient associated with 
strongest SNP risk allele 
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where the initial population originated from European ancestry.  Thus, we filtered studies 

where the initial sample size variable did not contain population from European descent 

(i.e. Japanese, Chinese, Korean, Gambian and other sub populations in the NIH catalog).  

Where the sub population was not defined, we assumed it to be of European ancestry.   

2564 GWAS studies consisting of 1708 unique SNPs from the GWAS catalog 

were downloaded (in Dec. 2009). Of these 807 GWAS studies (Appendix A.1) qualified 

as conducted in population with European ancestry.  These studies contributed 182 

unique disease traits and 850 unique SNPs in this sub population for our Model Catalog. 

Gene (SNP) – Gene (SNP) Association  

We extracted gene-gene associations from linkage disequilibrium data in the 

HapMap database. [77] Since we decided to use studies with European ancestry 

population, we used the HapMap CEU dataset (phase 3 release r2). Using the SNAP tool 

[92] we derived LD between SNPs reported in our Model Catalog and other SNPs present 

genome wide.   

For our experiment, we used a LD score (r2) cutoff threshold value of 0.3.  This 

threshold was chosen empirically to capture weaker associations between SNPs and yet 

keep our SNP to SNP (proxy) dataset computationally tractable. Higher and lower values 

of cutoff threshold brought in fewer and more SNPs with stronger and weaker associations 

respectively.  However, empirically, this threshold (r2 = 0.3) provided an optimum set for 

this experiment. Table 4-8 gives a snippet of the output from the SNAP tool for our input 

SNP (e.g. rs2191566). 
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Table 4-8 Sample output from SNAP tool 
 

SNP  SNP (proxy) Distance r2 

rs2191566 rs7255512 63311 0.616 

rs2191566 rs8104605 77627 0.604 

rs2191566 rs4803675 78327 0.561 
 

Pair wise disease-disease associations using LD   

When we searched in the HapMap phase 3 release 2 CEU dataset using the SNAP 

tool, the 850 unique SNPs were in LD (r2 >= 0.3) with more than 16,000 proxy SNPs.  

From these 16,879 proxy SNPs, we were only interested in the proxy SNPs that were also 

reported in our Model Catalog and their associated diseases or traits.  Therefore, we 

imported the proxy SNP data produced by the SNAP tool and our Model Catalog in a 

database.  From there, we were able to do association mining to obtain SNPs that were 

both in our model catalog and had a LD >= 0.3 with another SNP (proxy) in the Model 

Catalog and obtain its associated disease or trait.  

This resulted in 397 unique SNP to SNP pair-wise associations and their 

associated disease or trait relationships (Appendix A.6) where LD between SNPs was < 1 

(i.e. r2≠1). The lowest LD found in this association mining step was 0.302 and the highest 

LD was 0.983 between two SNPs. Association mining with LD data from HapMap 

provided us the ability to examine the model GWAS catalog beyond the pair wise single 

SNP to disease or trait association. Table 4-9 shows some associations found between 

diseases or traits using the LD scores of correlations (r2) derived from HapMap.   
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      Table 4-9 Pair wise associations from GWAS catalog (by association mining) 
 

Disease or Trait associated 
with a SNP 

Disease or Trait associated 
with a SNP (proxy) 

r2 

Coronary Disease Glioma 0.384 
Rheumatoid arthritis Inflammatory bowel 

disease 
0.389 

Celiac disease Schizophrenia 0.400 

Schizophrenia Celiac disease 0.400 
Primary biliary cirrhosis Systemic lupus 

erythematosus 
0.425 

Type 1 diabetes Rheumatoid arthritis 0.796 

      
However, traditional statistical methods like correlation can only examine pair 

wise relationships, and additionally carry the burden of identifying the actual functional 

relationships (in this case between the SNP and the proxy SNP) and suffer from multiple 

testing issues as well. Therefore, for analyzing functional relationships between common 

diseases studied in GWAS, we need methods that handle complexity beyond the pair 

wise paradigm. This is where Bayesian methods are useful – they compute the probability 

of hypotheses rather than probability of committing an error [93] and model multiple 

random variables whose probability distributions can be factorized into smaller 

conditional probability distributions (CPD). [21] 

We use this property of BN, to compute CPDs from available subsets of data, i.e. 

from statistical data reported in the GWAS and from LD measure of correlations from 

HapMap database, to form smaller BNs which, on absorbing the SNP nodes, combine in 

one large BN – our disease map. We describe the In-silico Bayesian Integration of 

GWAS (IsBIG) algorithm below. 
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In-Silico Bayesian Integration of GWAS (IsBIG) Algorithm (Figure 4-10) 

We used the BN approach and causal independence assumption described in 

Chapter 2 to draw a DAG of the SNP to SNP and SNP to disease or trait relationship. 

The qualitative structure of this model is assembled from the input SNP-SNP-

Disease-Disease dataset (formed from association mining as described above) as 

follows. The complete table is listed in Appendix A.6. 

A directed edge connecting a SNP to another SNP (proxy) node is drawn 

programmatically (using Netica API) if the SNPs are correlated (LD correlation) in 

the input dataset. They assume a parent-child relationship from SNP to SNP (proxy). 

Similarly a directed edge connecting each SNP to one or more diseases or traits is 

drawn if they are correlated in the input GWAS data. Please note that in this dataset, 

there are several SNP to SNP links, and therefore, there are N way interactions 

because each SNP may be correlated with several others. Similarly, multiple SNPs 

can be correlated with a disease. These multiply connected SNPs present a problem in 

computing the conditional probability distributions (CPD) of the nodes that have 

more than one parent because the data sources only describe one to one association 

metrics. We address this problem of multiply connected SNPs with the method of 

partial correlations described below. 

Figure 4-6 below depicts the DAG of the model GWAS catalog constructed for 

this study. In this figure S1, S2… Sn are the SNPs in the Model Catalog, they are in 

LD (r2) with each other (from HapMap data) and have been shown to have strong 

associations in GWAS with their respective diseases or traits (e.g. S2 to asthma). The 

odds ratio (OR) quantifies the strength of each of the relationships between the SNP 
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and the disease as derived from a GWAS.   In this figure, SNP S3 is multiply 

connected with S1 and S2 as parents and the disease Psoriasis has both SNPs S4 and S5 

as parents. However, each of these represent separate BNs derived from individual 

pieces of information and combined into a single BN.  The IsBIG strategy for 

deriving the parameters follows –  

 

 
Figure 4-6 Model DAG of SNP-Proxy SNP-Disease 
 
Computation of SNP – SNP BN Parameters 

 The task at hand is to compute the CPD of each SNP – we need to calculate the 

CPD of a SNP that has no parent (S1), 1 parent (S2) or many parents (S3). As shown in 

Table 4-7, the GWAS catalog lists a risk allele (RA) frequency (RAF) for each SNP to 

disease or trait association.  The normal allele (NA) frequency (NAF) is the complement 

of RAF, i.e. – (1-RAF). Therefore, for a SNP that has no parent (e.g. S1 in Figure 4-6), 
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the two cells in CPD of S1, i.e. P(S1 = RA) and (P(S1 = NA) is simply the prevalence of 

the RA, i.e. RAF and its complement (1-RAF).   

For a SNP like S2 that has S1 as a parent, i.e. S2 | S1, (Figure 4-6), the CPD can be 

constructed using the RAF and NAF of both SNPs and the correlation coefficient (r2), the 

linkage disequilibrium measure between the SNPs.  We need to compute the four cells 

for the CPD of S2, i.e. P(S2 = RA | S1 = RA), P(S2 = NA | S1 = RA),   P(S2 = NA | S1 = 

RA) and P(S2 = NA | S1 = NA).  By definition of LD (Table 4-10), if T1 and T2 are RAF 

for S1 and S2 from the catalog, the four cells in the CPD of S2 given S1 i.e. S2 | S1 can be 

computed by calculating the deviation measure (D) between the two SNPs.  D is a 

measure of deviation from linkage equilibrium which is a random association of the two 

SNP alleles and is calculated by equation 1. [90]. 

 

 

 

 
Table 4-10 CPD from Linkage Disequilibrium and Risk Allele Frequency 

 

    P (S2 | S1)     Risk Allele (RA)             Normal Allele (NA)           Total 
RA X = T1* T2 + D Y = T1* (1-T2) -  D T1 

NA V = (1 – T1) * T2 - D W = (1 - T1) * ( 1- T2) + D 1- T1 

 T2 1-T2 1 

 

For multiply connected SNP nodes, e.g. S3 in figure 4-6 which has 2 parents, S1 

and S2, we cannot use the simple approach as described above because of the SNP-SNP 

triangulations formed as in Figure 4-7. In such situations, we use partial correlations to 

first assess the strength of the relationship between SNP pairs as described below. 
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Computation of CPD for multiply connected SNP 

 

 
Figure 4-7 SNP-SNP Triangulations 

 

Partial correlation quantifies the correlation between two variables x and y when 

conditioning on one or several other variables [94], for example z.  The 0th order 

correlation is the regular correlation.  The 1st order partial correlation between variables 

x, y and z in Figure 4-7 is given by equation 2 below. For example, rxy-z is the correlation 

between parts of x and y that are uncorrelated with z.   

 

 

For calculating the CPD of a multiply connected SNP (e.g. S3 in Figure 4-6 which 

has 2 parents, S1 and S2), the 1st order partial correlations are computed, ignoring the 

directionality of the link to first assess whether the strength of the relationship between 

the pairs S1-S2, S2-S3 and S1-S3 are above a predetermined threshold value. If the partial 

correlation is below this threshold value (for example, 0.5), the link that has low partial 

correlation value in the S1-S2-S3 triangulation is removed thus breaking the triangulation.  

If no links are removed, we use partial correlation coefficients (r13-2, r23-1) for S1-S3 and 

S2-S3 links to calculate two deviation measures (D) in equation, one for each parent, i.e. 

P(S3| S1) and P(S3| S2). Now we have two sets of CPDs (four cells) for S3, one from each 
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parent that we need to combine. Since these are independent linkages, i.e. S1-S3 and S2-

S3, we can combine them assuming causal independence using a Noisy-OR calculation as 

described in Chapter 3.  We can apply the same calculations for more than two parents, 

however in our Model Catalog, the links were pruned and we rarely needed to calculate 

beyond the single deviation measure. 

Thus, applying partial correlations to our scenario pruned the links between SNPs 

when there were triangulations of SNPs present and reduced the computational 

complexity of calculating the CPDs of multiply connected SNPs. Specifically, links that 

were weaker than a predetermined threshold value of partial correlation coefficient were 

removed.  For our experiment, we used a threshold value of 0.2 for 1st order partial 

correlation.  As we show later in the results, the threshold of partial correlations defined 

how sparsely or densely the resulting network connected. 

 Computation of SNP – Disease BN Parameters 

For each SNP-disease association to be modeled from a GWAS, the only data that 

are available are the odds ratio (OR).  Given a prior probability (aka disease prevalence) 

of a disease or trait and the strength of the relationship (OR) from the GWAS, a posterior 

probability (CPD) can be derived. 

To derive a CPD from the prevalence P(Di), and an odds ratio, P(Di) must first be 

converted to the prior odds (Oprior) of the disease according to equation 3.  From there, the 

posterior odds of the disease Oposterior can be calculated using prior odds and the odds ratio 

reported in the GWA study (Ogwa) as in equation 4. [95]  
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From posterior odds of disease (or trait) we can find the probability Pi of the disease 

given the SNP, i.e. P(Di | SNP)  by equation 5 below. 

 

 

 

Pi is the link probability [27] of the SNP to the disease or trait node in absence of any 

other cause.  For disease or trait nodes that have multiple links from SNPs (e.g. S4 to IBD 

and Psoriasis in Figure 4-6), we assume causal independence of SNP to disease (as in the 

GWAS). Therefore, in those situations, we calculate the CPD of the disease given the 

SNPs, i.e. P (D | S1, S2…) using the Noisy-OR equation below (equation 6). 
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The disease or trait’s prevalence P(Di) measure can either be specified by a 

domain expert or from data, for example, from an EMR. Since in this experiment we are 

developing the methodology, we arbitrarily assumed certain prevalence of common 

diseases. For a formal evaluation of the IsBIG model in the next chapter, we used 

prevalence measures from RMRS, our EMR. 
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Deriving Disease – Disease Map 

We have constructed two components of a BN: SNP to SNP and SNP to disease 

from two separate sources of information. Our goal in the next chapter will be to evaluate 

the predictive power of this BN against clinical data from the RMRS.  To do this, we 

wish to reduce the BN to a disease map by absorbing out the SNP nodes which are 

unobserved in clinical data. Node absorption is a network transform and is described in 

the experiments in Chapter 3. 

Results 

Our preliminary results show that from the data in our model catalog, the IsBIG 

model linked clinically related nodes of diseases or traits on absorbing the SNP nodes. 

For example, testicular germ cell tumor was linked to testicular cancer, and chronic 

obstructive pulmonary disease was linked to lung cancer, which was also linked to lung 

adenocarcinoma. Similarly, coronary disease was linked to early myocardial infarction. 

Some of the diseases the model linked are given in Table 4-11.  

Table 4-11 Disease linkage patterns from GWAS catalog 
 

Diet–Environment  Obesity, Type 2 diabetes 

Autoimmune1  Type 1 diabetes, Celiac disease, Inflammatory bowel disease 

Autoimmune2  Psoriasis, Crohn’s Disease, Inflammatory Bowel Disease 
Celiac Disease, Multiple Sclerosis 

Cardiac  Coronary Disease, early Myocardial infarction, Intracranial 
Aneurysm, LDL cholesterol

Lung  Lung cancer, Lung adenocarcinoma, Chronic obstructive 
pulmonary disease

Cancer  Colorectal cancer,  Prostate cancer

Traits  Blond vs Brown hair color, Skin sensitivity to sun, Freckles, 
Red vs non-red hair color, Melanoma  
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We conducted normative evaluation of the IsBIG model. We used two part 

criteria by varying the following network parameters – 1) LD threshold between SNPs 

and 2) Partial correlation threshold used for pruning the SNP links and their effect on the 

number of nodes and connectivity in the network.  

Linkage Disequilibrium Threshold  

LD threshold (r2) was chosen as r2 >= 0.1, r2 >= 0.3, and r2 >= 0.5, corresponding to 

weak and strong associations between SNPs.  Based on the LD threshold value used, we 

expected the number of SNPs brought in the model from the HapMap dataset to increase 

or decrease.  As a result of this variation, the number of disease pairs that became part of 

the model changed as well.  Table 4-12 below details the number of SNP-SNP pairs and 

disease pairs that entered the model based on the choice of LD threshold. 

As can be seen in Table 4-12 (from Disease Pairs column) changing the network 

parameter for linkage disequilibrium (LD) threshold between SNPs changes the number 

of disease nodes that become part of the model.  The number of disease nodes that 

entered the model varied inversely to the LD threshold value chosen. 

 
Table 4-12 Effect of LD Threshold on network size 

 

LD (r2) Threshold  SNP-SNP Pairs From HapMap  Disease 

Pairs  

High / Low 

LD 

>=0.5 9416 134 0.982/0.505 

>=0.3 16879 397 0.982/0.303 

>=0.1 41485 518 0.982/0.101 
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Partial Correlation Threshold  

Next we changed the partial correlation threshold values determining which links 

were pruned between the SNPs when the triangulations existed (Figure 4-7).  We 

expected the network to become sparse when the partial correlation threshold was set 

high ( >= 0.5) and to become dense when it was set low ( >= 0.2).  Figure 4-8 shows a 

sparsely connected DAG computed by IsBIG when 1st order partial correlation threshold 

is set at r2 = 0.8.  Figure 4-9 shows a computed DAG when 1st order partial correlation 

threshold is set at r2 = 0.2 and when the SNP nodes are absorbed.  

Discussion 

We outlined a methodology that we call “In-silico Bayesian Integration” and 

applied it to the domain of GWAS to build a model – In-silico Bayesian Integration of 

GWAS or IsBIG. The IsBIG model is able to find relationships qualitatively and 

quantitatively between various diseases or traits as inferred by the linked genetic 

determinants of the disease or traits in the GWAS catalog.  We made a few assumptions: 

1) Where the population was not defined in the catalog, we assumed European descent. 2) 

The strength of association between the SNP and the disease or trait (given by odds ratio) 

is assumed for a single copy of the allele; the GWAS catalog does not detail about the 

haplotype effect. 3) We focused on GWAS with discrete outcomes for diseases or traits 

(i.e. absent / present). A majority of studies in the GWAS catalog list discrete outcomes 

as opposed to the studies that describe change in a continuous trait like diastolic blood 

pressure measured as mm Hg increase / decrease and where the strength of the 

association is reported as a beta coefficient. 4) Lastly, we assumed independent causal 
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independence among SNPs affecting a disease or trait. This allowed us to combine the 

individual effect using a Noisy-OR gate as described before. 

Additionally, we made some empirical observations about the correlation 

thresholds.  These thresholds were chosen to keep the computational model tractable – 

values below these thresholds (i.e. LD threshold value below 0.3 and partial correlation 

threshold below 0.2) resulted in many more SNP nodes which had weaker associations. 

However when they were included, the algorithm generated out of memory exceptions 

when trying to absorb many more nodes due to the physical memory addressing 

limitation of the Java Virtual Machine (2GB on a 32 bit operating system.) Exploring this 

methodology on systems with greater memory addressing capacity was beyond the scope 

of this exploratory research. 

In Chapter 5 we evaluate our model quantitatively using data from our EMR, the 

RMRS to quantify the amount of variation among disease linkages that can be explained 

by studies currently cataloged in the domain of GWAS and to report any novel 

associations the model finds.  
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Figure 4-8 IsBIG DAG (SNP-SNP r2 = 0.3, 1st order partial r2 = 0.8) 
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Figure 4-9 IsBIG DAG (SNP-SNP r2 = 0.3, 1st order partial r2 = 0.2) 

 
 
Table 4-13 Effect of Partial LD Threshold on network connectivity 
 
Partial 
correlation 
LD(r2) 
Threshold 

# of 
triangulations  

# of cycles 
removed  

# of edges 
removed  

# of SNPs 
with > 1 
parent  

>=0.1  28  7  17  18  

>=0.2  28  6  30  13  

>=0.35  28  6  41  9  
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  Figure 4-10 In-silico Bayesian Integration of GWAS Algorithm  

Find unique SNP-Proxy Pairs order by descending r2 value in set M.  

Associate each SNP to its list of disease/traits and Proxy SNP to its list of disease 
trait in a hash map data structure D 
 
DrawDAG(): For each SNP in M  

Make SNP a parent node p(i) and Proxy a child node c(i), if the nodes do not 
already exist in DAG. Draw a link from p(i) to c(i) 

 Triangulate(): For each SNP-Proxy pair in M  

If SNP-Proxy have common child c(i)- mark it as a triangulation in set T 

RemoveCycles(): For each SNP-Proxy pair in M  

If proxy SNP has a child node c(i) that has the gwas SNP as a parent node p(i), 
reverse the link between c(i) and p(i) 

Prune(): For each traingulation in T  

Compute 1st order partial correlation of each pair. If 1st order partial correlation > 
defined threshold, keep the link otherwise mark it for removal in set R. Remove all 
links in set R, this results in SNP map DAG 

DrawDAG_DiseaseTraits(): For each SNP in M  

Make SNP a parent node p(i) and disease/trait a child node c(i), if the nodes do not 
already exist in DAG. Draw a link from p(i) to c(i) 

Compute_CPD(): For each SNP-Proxy pair in M  

Use known MAF of each SNP – Proxy duo from GWAS and LD (r2) value from 
HapMap data to compute P(S2|S1) as described using equation (1) and (2) 

ComputeCPD_Disease (): For each SNP-Proxy pair in M and each SNP-Disease 
pair in D 

Use equation (3)-(5) to compute P(D|Si). In cases where P(D|S1,S2), use Noisy-OR 
calculations using equation (6)  

CompileNet(): Netica builds a “junction tree” for fast belief updating. 

AbsorbSNP(): Absorb out all the SNP nodes in the compiled DAG 

WriteDAG(): Serialize the compiled and absorbed DAG 
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Chapter 5  VALIDATION AGAINST PRIMARY EMR DATA 
 

Introduction 

In this chapter we present our evaluation of the unified BN constructed using the In-

silico Bayesian Integration methodology described in the previous chapter. In particular 

we evaluate the In-silico Bayesian Integration of GWAS, hence forth called the IsBIG 

model (or I-Model) with data from our EMR, the Regenstrief Medical Record System 

(RMRS). [2] 

We evaluate the IsBIG model with the following hypotheses –  

1) IsBIG can discover disease-disease associations that are valid. These associations 

can be confirmed and quantified meaningfully by testing against a) data from our EMR 

and b) by evaluating against what has been published in the literature.  

2) IsBIG can discover novel disease-disease associations. These associations do not 

exist in the literature.  

3) Genetic data can only explain a small fraction of the risk of the disease. IsBIG 

model can quantify the proportion of risk of disease that can be explained by linked 

genetic determinants. 

Below we describe our methods to test the above three hypotheses. We believe 

this study is novel as it quantifies the degree of associations found among diseases 

determined by genetic linkages alone and compares it to a real world EMR.  

Methods 

For evaluation of disease-disease associations (hypothesis 1), we construct a 

mixed model (M-Model) where the structure of the IsBIG DAG remains the same but its 

conditional probability distributions (CPDs) are derived from our EMR, the RMRS. We 
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test the I-Model against this M-Model and PubMed searches. For evaluation of novel 

disease-disease associations (hypothesis 2), we evaluate I-Model against published 

literature in the PubMed database. To evaluate the proportion of the risk attributed to 

linked genetic determinants (hypothesis 3), we evaluate I-Model against a purely clinical 

model (C-Model) derived from RMRS. Below we describe each of these models but first 

we describe the dataset derived from RMRS that is used for this evaluation. 

EMR Data for evaluation  

With IRB approval we obtained de-identified data from the Regenstrief EMR 

(RMRS) for 169,711 individuals for 89 diseases. These diseases or proxies of these 

diseases were also listed in our Model Catalog described in the previous chapter. 

Extraction of these data was sought before the disease-disease relationships for I-Model 

were known. The data obtained for each patient were extracted from the last 15 years of 

the individual’s medical record, and for each disease each individual was coded as a case 

or control using the ICD-9 diagnostic codes. The ICD-9 diagnostic codes were selected to 

match the diseases in the GWAS catalog by a Regenstrief data core expert physician. 

Thus, in this dataset the same individual can be a case for one or more diseases and a 

control for others. The dataset had no missing values and henceforth is referred to as the 

“Regenstrief dataset”. We randomly split the Regenstrief dataset into 2/3 training set 

(112,829 records) and 1/3 test set (56,882 records) for our evaluation.  Next, we describe 

construction of each of the models, i.e. learning the parameters of the M-Model and 

deriving the DAG and parameters of the C-Model from the Regenstrief training set. 
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I-Model Construction 

The IsBIG model (I-model) was built using software developed by the author, 

using Java and Netica software [67] APIs. The software implements the IsBIG algorithm 

as described in Chapter 5 and produces a network file (.dne) suitable for representation 

and inference by Netica software. The Java code for the algorithm is included in 

Appendix A.9. The input for computing the model consisted of the following network 

parameters – LD threshold value of r2 >= 0.3 for SNP to SNP correlation and partial 

correlation threshold values = 0.2. These network parameters were chosen empirically to 

keep the computational model tractable and yet include weaker correlations of SNPs to 

test with a real world sub population using RMRS data. The pre– processed input (from 

the GWAS catalog and HapMap data) for the IsBIG algorithm is detailed in Appendix 

A.6, and its pre processing (association mining) is described in Chapter 5. The prevalence 

data for the modeled diseases was derived from our EMR. (Appendix A.7) 

M-Model Construction 

The mixed model retained the network structure that was derived from the IsBIG 

algorithm, i.e. the DAG structure of the I-Model. Using Netica’s “case file” interface, the 

2/3 training set was used to learn the conditional probability distributions (CPD) of each 

node (disease) in the I-Model DAG. Netica resets any CPDs to uninformed priors (50-50) 

for each of the nodes before a case file is incorporated. Thus, incorporating the training 

set transformed the IsBIG model (I-Model) to the mixed model (M-Model) with network 

structure derived from the GWAS and SNP data and conditional probability distributions 

learnt from the clinical data from RMRS. Similar to the I-Model, the M-Model was also 

evaluated for its discriminative power using the same test dataset from RMRS. 
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C-Model Construction 

Using the Winmine toolkit [68] and the 2/3 split training set (same as above), we 

mined the structure of a DAG that represents the clinical model or the C-Model (Figure 

5-1). In this DAG, 42 of the 89 diseases or traits from the initial dataset were connected 

by an edge with another disease or trait. The rest of the diseases were either disconnected 

or, because in the GWAS catalog they listed as a continuous trait, they could not be 

evaluated by the discrete Winmine algorithm.  

Winmine uses a greedy algorithm to mine the best structure for the DAG, given the 

data. This mined DAG was then implemented using Netica [67] Bayesian Network 

software. The conditional probability distributions for this DAG were learnt from the 

same 2/3 split training set from which the structure was mined. Thus this model 

represented the DAG structure and parameters; both learnt from clinical data and became 

our clinical model (C-Model). Similar to the other two models, the C-Model was 

evaluated for its discriminative or predictive power using the same test dataset from 

RMRS. 



96 
 

 

Figure 5-1 DAG Structure of C-Model learnt from RMRS Training set 
 
Performance measure 

We use Area Under the Curve (AUC) of Receiver Operating Characteristic 

(ROC) curves [57] as a performance measure for evaluating the discriminative power of 

the three BNs.  The ROC curve performance measure is described before in Chapter 2. A 

ROC with AUC of 0.5 score has no predictive value and is as good as chance. 

Computing Area under the Curve (AUC)  

We used Netica’s “test interface” and the randomly split 1/3 test set from RMRS 

to evaluate the performance for discrimination of cases and controls for each disease by 

calculating the AUCs for each of the 42 diseases or the subset of them in each of the 

DAGs.   

Testing for statistical significance  

We did a test of hypothesis for each model constructed above as follows. For each 

disease node, we tested whether the BN had statistically significant predictive power (i.e., 
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AUC significantly greater than 0.5) using the Hanley and McNeil method described in 

[96] for calculating the standard error from which z-scores can be calculated without 

distributional assumptions (i.e. based on the count of normal and abnormal cases in the 

test set). The results of these tests are listed in Appendix A.2 to A.4 and described below. 

Additionally, to compare the predictive power of the M-Model and the C-Model, 

we used the Hanley McNeil method for ROC derived from same cases [72] to compare 

ROCs for the same disease. Please note the that both these models differ in structure, but 

the conditional probability distributions were learnt from the same training set and they 

were tested using the same test set.  

Evaluation of IsBIG Compared to Published Literature 

To evaluate the I-Model, we evaluated direct pair wise associations (Appendix 

A.4) between diseases that the IsBIG algorithm found against – 1) PubMed database 

searches, 2) direct pair wise associations between diseases in C-Model, i.e. DAG derived 

from EMR and 3) against both of the above combined. We searched the PubMed 

database for articles linking the diseases found to be associated in the IsBIG DAG by 

searching for one disease as a keyword with a boolean AND condition to the second 

condition, for example – Primary Biliary Cirrhosis AND Crohn’s Disease. These 

searches were conducted in May 2010. The number of articles meeting these simple 

criteria was counted for our measure. 

Results 

I-Model Evaluation with Test set 

29 of the 42 diseases (Appendix A.2) from Regenstrief EMR were included in the 

I-Model construction by the IsBIG software with the chosen network parameters 
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described above.  With the 1/3 randomly split test set, the I-Model predicted 5 (17%) of 

the 29 diseases or traits with an area under the curve (AUC > 0.5, p < 0.05). In other 

words the network had the discriminative power to differentiate cases from controls from 

our EMR test set for 17% of diseases. The diseases that were predicted with statistical 

significance in I-Model are listed in Table 5-1 below and highlighted in Appendix A.2.  

Table 5-1 Discriminative power in IsBIG (I-Model) 
 

  Node  AUC p‐value 

1  Coronary Disease  0.6856 0

2  Lung cancer  0.6263 0

3  LDL Cholesterol (Elevated) 0.5823 0

4  Type 2 Diabetes  0.5431 0

5  Obesity  0.5192 4.73E‐09

 

M-Model Evaluation with Test set 

As described before, the I-Model was parameterized for its 29 nodes using the 2/3 

randomly split training set. This parameterization transformed the I-Model into the M-

Model. Using the same 1/3 test set (as before), the M-Model predicted 12 (41%) of the 29 

diseases or traits with an area under the curve (AUC > 0.5, p < 0.05). The diseases that 

were predicted with statistical significance in M-Model are listed in Table 5-2 below and 

highlighted in Appendix A.3.  

Table 5-2 Predictable diseases in Parameterized IsBIG (M-Model) 
 

  Node  AUC p‐value 
1  Myocardia l Infarction Early 0.937 0

2  Coronary Disease  0.7318 0

3  Psoriasis  0.6343 0

4  Lung cancer  0.6263 0

5  Systemic Lupus Erythematosus 0.5947 2.08E‐06

6  LDL Cholesterol Elevated 0.5945 0

7  Rheumatoid Arthritis 0.5871 0

8  Chronic Obstructive Pulmonary Disorder 0.533 1.2E‐10
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9  Asthma  0.5274 0

10  AIDS Progression  0.522 0.029809

11  Obesity  0.5192 4.73E‐09

12  Type 1 Diabetes  0.5098 0.038912
 

C-Model Evaluation with Test set 

We used the same test set (randomly 1/3 split from RMRS data) to evaluate the 

performance of the clinical model (C-Model). Please note that the structure of the C-

Model DAG was independently derived from the 2/3 training set. With the same test set, 

the C-Model predicted 31 (74%) of 42 disease or trait nodes with an area under the curve 

(AUC > 0.5, p < 0.05). The diseases that were predicted with statistical significance in 

this model are listed and highlighted in Appendix A.4.  

Comparing the I-Model to the M-Model  

Since the only difference between the I-Model and the M-Model is the conditional 

probability distributions of each node; (the I-Model contains the genetic linkage 

representation where as the M-Model contains both the genetic and clinical 

representation, therefore we compared the statistical significance of the I-Model with the 

M-Model. This enabled us to evaluate our hypothesis that the associations discovered by 

IsBIG model can be validated in our EMR. Table 5-3 below gives the counts of the 

number of diseases that were statistically significant in each model.  
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Figure 5-2 IsBIG Model performance, statistical significance denoted by  
 

Table 5-3 Number of statistically significant diseases predicted by each model  
 

    +   -  
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- 8 16 

 
Predicted diseases denoted by + 

Of the 29 diseases, 5 were predictable by the I-Model and 12 were predictable by 

the M-Model (AUC > 0.5, p < 0.05). There were 4 diseases common to both the I-Model 

and the M-Model, i.e. the I-Model is 33% sensitive when compared to M-Model. There 
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were 17 diseases not predictable by the M-Model, of those, 16 were common to both the 

models i.e. I-Model is 94% specific when compared to the M-Model. The details of the 

disease nodes marked with a colored dot for statistical significance are in Figure 5-2 

above. 

Of the 4 diseases predictable by the I-Model and the M-Model, the networked 

performed the same for Obesity and Lung Cancer i.e. AUCs did not change on 

computation of conditional probability distributions (parameterization) of the nodes. For 

the other diseases, there was a modest gain (1 to 14%) in the discriminative power of the 

IsBIG DAG on parameterization with the EMR data i.e. in the M-Model (Figure 5-3).  

 

Figure 5-3 Change in IsBIG AUC on parameterization 
 

There were a few exceptions though, most notably for early detection of 

Myocardial infarction. The M-Model’s discriminative power (AUC) increased by 44%, 
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other hand, the M-Model’s discriminative power decreased for Type 2 diabetes by 4% on 

parameterization with the clinical data.  

Compare the IsBIG Models (I-Model and M-Model) to the C-Model 

As expected, overall the C-Model derived from clinical data from our EMR 

outperformed the IsBIG models (Figure 5-4). The C-Model was able to discriminate 31 

diseases when compared to 5 and 12 diseases in the I-Model and the M-Model 

respectively. Furthermore, the AUCs of the C-Model were much bigger (p < 0.05) for all 

but one of the statistically significant diseases common in both the IsBIG models. The C-

Model had the same AUC for Systemic Lupus Erythematosus (or SLE) as in the M-

Model (p = 0.4095). Interestingly, the difference in AUCs for the early Myocardial 

infarction node between the M-Model and the C-Model was very small (~0.02) but it was 

statistically significant (p = 5.3 x 10-6), i.e. the discriminative powers of the two DAGs 

were very different.  

 

Figure 5-4 AUC comparison of models 
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Compare the I-Model against PubMed Literature searches 

We evaluated 117 direct pair wise (parent-child) associations (Appendix A.4) in the 

I-Model against the PubMed database literature searches. Twenty (17%) of the pair wise 

associations in the I-Model had no references in the literature and can be possibly 

considered novel. At least 1 of these associations (Rheumatoid Arthritis with Systemic 

Lupus Erythematosus) was also found in direct pair wise associations in the C-Model 

(Table 5-4).   
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Table 5-4 Novel Associations in IsBIG Model (I-Model)  
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

 

 

*** Also found in clinical model (C-Model) 

Compare I-Model pair wise associations to C-Model pair wise associations 

Of the 117 direct pair wise disease associations in the I-Model, 27 (23%) 

associations were also found in direct pair wise disease associations in the C-Model 

Table 5-5 below lists these associations. 

  

   Disease Node 1  Disease Node 2

***1  Rheumatoid arthritis  Systemic lupus erythematosus 

2  AIDS progression  Crohn’s disease

3  Glioma  Crohn’s disease

4  Glioma  Primary biliary cirrhosis

5  Glioma  Myeloproliferative neoplasms 

6  Intracranial aneurysm Crohn’s disease

7  Intracranial aneurysm Inflammatory bowel disease 

8  LDL cholesterol (Elevated) Crohn’s disease

9  Myeloproliferative neoplasms Colorectal cancer

10  Myeloproliferative neoplasms Crohn’s disease

11  Myeloproliferative neoplasms AIDS progression

12  Myeloproliferative neoplasms Primary biliary cirrhosis

13  Myeloproliferative neoplasms Asthma

14  Myocardial infarction  early  Crohn’s disease

15  Primary biliary cirrhosis Crohn’s disease

16  Primary biliary cirrhosis Colorectal cancer

17  Primary biliary cirrhosis Prostate cancer

18  Systemic lupus erythematosus Crohn’s disease

19  Systemic lupus erythematosus Primary biliary cirrhosis

20  Systemic lupus erythematosus Myeloproliferative neoplasms 
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Table 5-5 Associations common in IsBIG Model with C-Model  
(with literature reference count) 
 

   Disease Node 1  Disease Node 2
PubMED 
Ref count

1  Rheumatoid arthritis Systemic lupus erythematosus  0 

2  Coronary disease  Crohn’s disease 1 

3  LDL cholesterol (Elevated) AIDS progression 4 

4  Coronary disease  Glioma 5 

5  Asthma  AIDS progression 6 

6  Myocardial infarction  early  AIDS progression 9 

7  LDL cholesterol (Elevated) Glioma 11

8  LDL cholesterol (Elevated) Inflammatory bowel disease  12

9  Glioma  Asthma 24

10  Crohn’s disease  Ulcerative colitis 32

11  Inflammatory bowel disease Crohn’s disease 33

12  LDL cholesterol (Elevated) Psoriasis 33

13  LDL cholesterol (Elevated) Myocardial infarction  early   35

14  Myocardial infarction  early  Inflammatory bowel disease  38

15  Coronary disease  AIDS progression 50

16  Chronic Obstructive Pulmonary Lung cancer 51

17  Coronary disease  Inflammatory bowel disease  51

18  Coronary disease  Psoriasis 66

19  LDL cholesterol (Elevated) Coronary disease 160

20  Multiple sclerosis  Asthma 233

21  Asthma  Psoriasis 261

22  Inflammatory bowel disease Ulcerative colitis 262

23  Asthma  Inflammatory bowel disease  271

24  Obesity  Type 2 diabetes 320

25  Rheumatoid arthritis Asthma 894

26  Schizophrenia  Type 1 diabetes 931

27  Myocardial infarction  early  Coronary disease 54128

 

Literature Ref count of pair wise associations in I-Model (also found in C-Model) 

Of the 27 pair wise disease associations in the I-Model that were also found in the 

C-Model, 1 (4%) association had no literature reference, 5 (19%) had up to 10 references. 

These disease associations can be possibly considered as worth exploring further in future 
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studies. Additionally, 9 (33%) associations had only up to 50 references. The details are 

listed in Figure 5-4 below and Table 5-5 above.  

  

Figure 5-5 Reference count of IsBIG associations also found in C-Model 
 
Discussion 

We have described our IsBIG methodology and applied it to combine statistical 

correlations between SNPs and GWAS to generate a disease map of common diseases, 

the IsBIG model as inferred from genetic underpinnings. We evaluated the model against 

both raw clinical data and published literature.  

Our results show that IsBIG discovered disease-disease associations are valid.  

We tested this by training the IsBIG DAG with RMRS data and found that IsBIG 

correctly found 33% of the diseases in the M-Model; and of the associations found by 

IsBIG, 80% of them were confirmed in the M-Model. This essentially means that for the 

4 diseases or traits (Coronary Disease, Elevated LDL Cholesterol, Lung Cancer and 

Obesity) predictable by IsBIG, there is discriminative power in the model as inferred by 

genetic variations alone in the population. We also found that the IsBIG model has the 

same discriminative power for early detection of Myocardial Infarction as the same 

model trained on clinical data (i.e. M-Model).  

# of Associations in both PubMED 
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IsBIG can discover novel disease-disease associations that have not been 

described.  We compared disease-disease associations to the PubMed database and found 

that many had never been described.  We believe these associations can be considered as 

hypotheses for future studies. Furthermore, we were able to confirm some of them in the 

clinical model (C-Model). At least one pair wise disease association (Rheumatoid 

arthritis and Systemic lupus Erythematosus) found by IsBIG had no reference in the 

literature and can be considered novel, and further, it can be confirmed by the C-Model 

derived from our EMR data. 

Finally, our results show that probabilistic methods can extract data from 

disparate sources and combine them in a normative way such that it correlates with what 

we may empirically find in an EMR.  Only a fraction of associations among diseases 

found in an EMR can be explained by genetics of SNP to disease linkage. We compared 

the AUCs of IsBIG and the C-Model and found that the C-Model AUCs were much 

bigger. Therefore, genetic data alone can only explain a small fraction of the risk of a 

disease.   

 



108 
 

Chapter 6  DISCUSSION 
 

Summary of findings 

In this work, we formed a methodology which we call In-silico Bayesian 

Integration, to integrate data from disparate sources using probabilistic modeling 

methods, specifically the Bayesian Network framework. We demonstrated that this 

methodology can combine information in a normative way and that the results can be 

validated against real world datasets from our EMR. Additionally, we demonstrated that 

the model built using this methodology discovers new knowledge that can be used as 

hypotheses for future studies.   

As an example of our approach, we combined two disparate sources – the genetic 

linkages (associations) found between Single Nucleotide Polymorphisms (SNP) in the 

human genome and the effect size linking a SNP with a disease or a trait found in 

Genome Wide Association Studies (GWAS). We call this model In-silico Bayesian 

Integration of GWAS (or IsBIG). IsBIG produces a map of disease-disease associations 

as inferred from their genetic underpinnings.  

Seventeen percent of disease-disease associations found by the IsBIG model are not 

described in the literature and can be considered novel, with at least one association 

confirmed in our EMR. Furthermore, our results show that IsBIG finds meaningful 

associations that can be empirically validated against our EMR. The IsBIG model is 33% 

sensitive, 94% specific and has a positive predictive value of 80% when we evaluate its 

discriminative power compared to our EMR data. We found from this evaluation that 

GWA studies in the domain of Obesity, Type 2 Diabetes, elevated LDL Cholesterol trait, 

Lung cancer and Coronary Disease have signal to detect effect of genetic variations to 
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disease likelihood in our clinical population and may have potential clinical applications. 

By generating a predictive distribution of disease-disease associations, the IsBIG model 

has also quantified that the simple linking of genetics to a disease only explains a fraction 

of the risk of disease in our EMR. 

Summary of contributions 

Applying Bayesian Networks to the real world task of integrating data from 

disparate sources required the use of causal independence assumptions (Independence of 

Causal Influence models, ICI) particularly the Noisy-OR model. Our empiric evaluations 

of the BN framework with ICI model using large datasets from our EMR produced 

comparable results to that of an expert. Therefore, in this research we have demonstrated 

that ICI models provide a successful strategy for computing conditional distributions of a 

large BN with many linked nodes in a tractable way. We believe the use of ICI models, 

particularly the use of Noisy-OR model seems to be robust under a broad range of 

conditions. To the best of our knowledge, this has not been demonstrated before, 

especially in the biomedical field.  

Additionally, we have also shown that the use of Noisy-OR model provides a 

successful strategy for combining disparate sources, where individual conditional 

distributions can be computed from effect sizes and statistical correlations. We have 

demonstrated it by utilizing odds ratios and correlation and partial correlation coefficients 

as strategies to translate genetic data from published GWAS into conditional probability 

distributions for disease associations. This has not been demonstrated before to the best 

of our knowledge. 
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There is no analytic method, to the best of our knowledge, which computationally 

combines disparate source of both raw data and summary measures in a quantitative 

framework. Applications of text mining using ontology [97] and more recently 

applications of semantic web technology coupled with graph algorithms [98] have been 

used to find associations between biological entities from different sources of 

information. However, they rely on purely qualitative associations; i.e. subject-predicate-

object relationships, for example, drug A may cause symptom B sometimes is 

represented by a triplet such as <A causes B>. However this representation does not 

account for the uncertainty (“may”) in the assertion.  The knowledge that the relationship 

between A and B exists say 2% of the times is not represented in this framework. Such 

frameworks lay out a graph of the associations but do not produce predictive distributions 

of these associations. On the other hand, quantitative methods such as meta-analysis of 

studies are able to give more precise estimates of the effect size by pooling effect sizes 

from a number of studies under assumptions, but they are not a computational model that 

can be used for future inference. They also do not permit for additional information to be 

incorporated as it becomes available. Other quantitative methods, in particular data 

mining methods which are computational and can generate predictive distributions, 

require a large numbers of cases for model building, training and testing. These datasets 

seldom exist in the biomedical domain for use in hypotheses generation tools. 

Therefore, due to the lack of these original datasets, in this work, we have 

developed a quantitative method using Bayesian Networks framework to combine both 

raw data and summary measures in a computational model. The method is able to 

discover new associations from disparate sources and is able to produce predictive 
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distributions for these associations. It is also able to incorporate new information as it 

becomes available.  Our evaluation of this method shows correlation to large real world 

datasets.  

On Use of Causal Independence Assumption (Noisy-OR) 

The Bayesian network framework does not constrain how a variable depends 

upon its parents. One interpretation is that the directed edges or arcs represent causal 

relationships among the parent and the child.  Thus the local structure encodes the 

dependencies and probability distributions of parent and child (conditioned upon 

parents). The probability distribution of the child node can be approximated assuming 

causal independence among the parents using a boolean function such as OR, but since 

the parent-child relationship is probabilistic, the relationship is “noisy”.   

The underlying assumption in this situation is that each parent acts independently 

as a cause to the child (effect) with an independent mechanism of action, and each parent 

can sufficiently cause the effect. In the absence of any parent, there is no effect, unless 

we assume a leaky model.   

Without the causal independence assumption, we had no way of combining the 

SNP’s effect size to a disease. These assumptions allowed us to combine the contribution 

of each existing cause (SNP) to the effect (disease) with fewer calculations then the 

calculations for full conditional probability distribution. Additionally they allowed the 

flexibility of tractably adding new causes in the future. It is these capabilities of Noisy-

OR that we exploited in this research to combine information (data or statistical 

summaries) in a causal (normative) way.  
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Limitations 

One of the limitations of our methodology is the approximation of the underlying 

data – we modeled only discrete variables. This assumption allowed us to compute 

conditional probability tables (CPTs) using a boolean function such as OR in the Noisy-

OR calculations. For this research, the boolean function “OR” and discrete data fitted our 

assumption of the real world datasets but may not hold true for other datasets. In future 

studies, there may be disparate sets that may need combinations of other boolean 

functions such as AND or XOR, besides OR. Nonetheless, similar methodology can be 

applied in such situations by replacing the Noisy-OR calculations with the one that fits 

the datasets. For example, if we make the assumption that both genetics and environment 

lead to a disease status, we may want to model it using a Noisy AND. For modeling 

continuous variables, methods similar to Monte Carlo simulations [99] assuming a-priori 

probability distributions can be applied. 

Another assumption in this study is that effect sizes or correlations are defined for 

one variable to the outcome variable. When using effect sizes (such as odds ratio) to link 

two different BNs to calculate CPTs, we are assuming the effect is attributable to a single 

variable.  For example, for the IsBIG study, it is the odds ratio or strength of association 

of single allele to the disease or trait in the study.  There may be situations, where this 

assumption does not hold true.  The effect size could result from more than one variable.  

For example, two copies of a specific allele may produce more than an additive effect as 

is the case in recessive traits.  In those situations, assuming causal independence between 

the two causal variables (for e.g. between alleles) and the outcome variable will not be 

justified.  
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Lastly, though the IsBIG study illustrated how disparate datasets, summary or 

statistical measures from different sources can be combined. However, the information in 

both the sources belonged to a similar population (i.e. European Ancestry).  We propose 

that as a variable, such as the LD measure, varies by a sub-population, this should be 

accounted for in the model when disparate sources are combined. 

Future Directions 

We believe our methodology has been successfully applied in integrating sub 

domains, especially in the biomedical domain and has many practical applications. We 

envision that using this method secondary data sources such as summary and statistical 

data from published sources can be merged with data from primary sources such as 

electronic health records to provide a  more normative and quantitative evaluation of the 

domain.  

We are envisioning one such application of this method for dynamic prioritization 

of the reminder prompts in our CHICA system. [59] CHICA’s static, global prioritization 

scheme limits the flexibility of the system by evaluating the predetermined prompts for 

primary care alerts from a set of guidelines for a specific age group.  At present there are 

many such guidelines and recommendations. [100-104] We plan to use Bayesian 

networks (BN) as a strategy for modeling a patient’s clinical status with the idea of 

calculating the expected value of making alternative recommendations to physicians in 

order to tailor prioritization to the patient, [63] using the research in this thesis. 
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APPENDICES 

Appendix A.1 Summary of Studies from GWAS Catalog  

Disease/Trait  Number of Studies 

Type 2 diabetes 67

Type 1 diabetes 62

Crohn's disease  61

Bipolar disorder  43

Multiple sclerosis  41

Prostate cancer 37

Amyotrophic lateral sclerosis  28

Rheumatoid arthritis  24

Schizophrenia  24

Ulcerative colitis  19

Acute lymphoblastic leukemia (childhood) 17

Breast cancer  16

Lung cancer  16

Colorectal cancer  15

Parkinson's disease  14

Smoking behavior  14

Obesity (extreme)  13

Psoriasis  12

Response to treatment for acute lymphoblastic 
leukemia  12

Systemic lupus erythematosus 12

Coronary disease  11

Celiac disease  10

Myocardial infarction (early onset) 9

Nonsyndromic cleft lip with or without cleft palate 9

Inflammatory bowel disease  8

AIDS  7

Alzheimer's disease  7

Glioma  7

Response to citalopram treatment 7

Alcohol dependence  6

Chronic lymphocytic leukemia 6

Drug‐induced liver injury (flucloxacillin) 6

Melanoma  6

Restless legs syndrome  6

Testicular germ cell tumor  6

Type 2 diabetes and other traits 6
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Atrial fibrillation  5

Blond vs. brown hair color  5

Hypertension  5

Lung adenocarcinoma  5

Obesity  5

Primary biliary cirrhosis  5

Stroke  5

Blue vs. green eyes  4

Coronary artery disease  4

Freckles  4

Inflammatory bowel disease (early onset) 4

Intracranial aneurysm  4

Autism  3

Exercise (leisure time)  3

Glioma (high‐grade)  3

Male‐pattern baldness  3

Skin pigmentation  3

Skin sensitivity to sun  3

Alzheimer's disease (late onset) 2

Arthritis (juvenile idiopathic)  2

Asthma  2

Atrial fibrillation/atrial flutter  2

Basal cell carcinoma (cutaneous) 2

Chronic Obstructive Pulmonary Disease 2

Kawasaki disease  2

Knee osteoarthritis  2

Left ventricular mass  2

Nicotine dependence  2

Response to Hepatitis C treatment 2

Thyroid cancer  2

Urinary bladder cancer  2

Age‐related macular degeneration 1

Age‐related macular degeneration (wet) 1

AIDS progression  1

Asthma (childhood onset)  1

Atopic dermatitis  1

Atopy  1

Bladder cancer  1

Blue vs. brown eyes  1

Burning and freckling  1

Crohn's disease and Sarcoidosis (combined) 1
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Diabetic nephropathy  1

Disease/Trait  1

End‐stage renal disease  1

Essential tremor  1

Follicular lymphoma  1

Gallstones  1

Glaucoma (exfoliation)  1

Height  1

Ischemic stroke  1

Kidney stones  1

LDL cholesterol  1

Major depressive disorder  1

Myeloproliferative neoplasms 1

Myocardial infarction  1

Narcolepsy  1

Neuroblastoma  1

Neuroblastoma (high‐risk)  1

Neuroticism  1

Obesity (early onset extreme) 1

Osteonecrosis of the jaw  1

Otosclerosis  1

Ovarian cancer  1

Pancreatic cancer  1

Parkinson's disease (familial)  1

Periodontitis  1

QT interval prolongation  1

Red vs. non‐red hair color  1

Red vs. non‐red hair color  1

Renal function and chronic kidney disease 1

Response to antipsychotic treatment 1

Response to statin therapy  1

Response to ximelagatran treatment 1

Testicular cancer  1

Venous thromboembolism  1

  807
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Appendix A.2 AUC and p-values in IsBIG model (I-Model) 

  Node  AUC p‐value 

1  Coronary Disease  0.6856 0 

2  Lung cancer  0.6263 0 

3  LDL  0.5823 0 

4  Type 2 Diabetes  0.5431 0 

5  Obesity  0.5192 4.73E‐09 

6  AIDS Progression  0.4917 0.234547 

7  Psoriasis  0.4976 0.351112 

8  Asthma  0.4998 0.470214 

9  MI_Early  0.5 0.5 

10  SLE  0.5 0.5 

11  Type 1 Diabetes  0.5 0.5 

12  Prostate Cancer  0.5 0.5 

13  RA  0.5 0.5 

14  COPD  0.5 0.5 

15  Ulcerative Colitis  0.5 0.5 

16  Testicular cancer  0.5 0.5 

17  Schizophrenia  0.5 0.5 

19  Primary Biliary Cirrhosis  0.5 0.5 

19  Myeloproliferative Neoplasms 0.5 0.5 

20  Melanoma 0.5 0.5 

21  Intracranial Aneurysm  0.5 0.5 

22  Inflammatory Bowel Disease 0.5 0.5 

23  Crohn’s Disease  0.5 0.5 

24  Colorectal cancer  0.5 0.5 

25  Celiac Disease  0.5 0.5 

26  Autism  0.5 0.5 

27  Atrial Fibrillation  0.5 0.5 

28  Multiple Sclerosis  0.5 0.5 

29  Glioma  0.4703 0.13301 
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Appendix A.3 AUC and p-values in Mixed model (M-Model) 

  Node  AUC p‐value 
1  Myocardial Infarction Early 0.937 0 
2  Coronary Disease  0.7318 0 
3  Psoriasis  0.6343 0 
4  Lung cancer  0.6263 0 
5  Systemic  Lupus  Erythematosus 0.5947 2.08E‐06 
6  LDL Cholesterol Elevated  0.5945 0 
7  Rheumatoid Arthritis  0.5871 0 
8  Chronic Obstructive Pulmonary Disorder 0.533 1.2E‐10 
9  Asthma  0.5274 0 
10  AIDS Progression  0.522 0.029809 
11  Obesity  0.5192 4.73E‐09 
12  Type 1 Diabetes  0.5098 0.038912 
13  Type 2 Diabetes  0.5025 0.30807 
14  Prostate Cancer  0.5012 0.476679 
15  Ulcerative Colitis  0.5 0.5 
16  Testicular cancer  0.5 0.5 
17  Schizophrenia  0.5 0.5 
18  Primary Biliary Cirrhosis  0.5 0.5 
19  Myeloproliferative Neoplasms 0.5 0.5 
20  Melanoma  0.5 0.5 
21  Intracranial Aneurysm  0.5 0.5 
22  Inflammatory Bowel Disease 0.5 0.5 
23  Crohn’s Disease  0.5 0.5 
24  Colorectal cancer  0.5 0.5 
25  Celiac Disease  0.5 0.5 
26  Autism  0.5 0.5 
27  Atrial Fibrillation  0.5 0.5 
28  Multiple Sclerosis  0.4987 0.479927 
29  Glioma  0.4958 0.438703 
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Appendix A.4 AUC and p-value in Clinical Model (C-Model)  

 Node AUC p-value 
1 Crohn’s Disease 0.9985 0 
2 Ulcerative Colitis 0.9969 0 
3 Myocardial  Infarction Early 0.9568 0 
4 Coronary Disease 0.8906 0 
5 Type 1 Diabetes 0.8766 0 
6 Schizophrenia 0.862 0 
7 Type 2 Diabetes 0.8581 0 
8 Atrial Fibrilliation 0.8577 0 
9 Asthma 0.853 0 
10 LDL Cholesterol Elevated 0.8392 0 
11 Bipolar 0.8268 0 
12 Chronic Obstructive Pulmonary Disorder 0.8192 0 
13 Obesity 0.8034 0 
14 Nicotine Dependence 0.8013 0 
15 Psoriasis 0.7947 0 
16 Lung cancer 0.788 0 
17 Breast cancer 0.7805 0 
18 Ischemic Stroke 0.7603 0 
19 Autism 0.7501 0 
20 AIDS Progression 0.7423 0 
21 Venous thromboembolism 0.7239 0 
22 Colorectal Cancer 0.7051 0.001966 
23 Knee osteoarthritis 0.7003 0 
24 Rheumatoid Arthritis 0.6908 0 
25 Prostate Cancer 0.6702 0 
26 Glioma 0.6546 2.29E-08 
27 Restless Leg Syndrome 0.6241 0.000132 
28 Testicular cancer 0.6139 0.001118 
29 Systemic Lupus Erythematosus 0.6 5.93E-07 
30 Intracranial Aneurysm 0.5884 0.006792 
31 Pancreatic Cancer 0.5757 0.005877 
32 Follicular Lymphoma 0.5526 0.122542 
33 Myeloproliferative Neoplasms 0.5433 0.111934 
34 Melanoma 0.5268 0.173608 
35 Acute Leukemia 0.5 0.5 
36 Otosclerosis 0.5 0.5 
37 Celiac Disease 0.5 0.5 
38 Chronic Leukemia 0.5 0.5 
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39 IBD 0.5 0.5 
40 Multiple Sclerosis 0.5 0.5 
41 Parkinson 0.5 0.5 
42 Primary Biliary Cirrhosis 0.5 0.5 
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Appendix A.5 Relationships evaluated in IsBIG Model (I-Model) 

   Disease Node 1  Disease Node 2

Lit 
Ref 
 count 

RMRS 
Eval

1  Rheumatoid arthritis  Systemic lupus erythematosus  0  Yes

2  AIDS progression  Crohn s disease 0  No

3  Glioma  Crohn s disease 0  No

4  Glioma  Primary biliary cirrhosis 0  No

5  Glioma  Myeloproliferative neoplasms  0  No

6  Intracranial aneurysm  Crohn s disease 0  No

7  Intracranial aneurysm  Inflammatory bowel disease 0  No

8  LDL cholesterol (Elevated) Crohn s disease 0  No

9  Myeloproliferative neoplasms Colorectal cancer 0  No

10  Myeloproliferative neoplasms Crohn s disease 0  No

11  Myeloproliferative neoplasms AIDS progression 0  No

12  Myeloproliferative neoplasms Primary biliary cirrhosis 0  No

13  Myeloproliferative neoplasms Asthma 0  No

14  Myocardial infarction  early  Crohn s disease 0  No

15  Primary biliary cirrhosis Crohn s disease 0  No

16  Primary biliary cirrhosis Colorectal cancer 0  No

17  Primary biliary cirrhosis Prostat cancer 0  No

18  Systemic lupus erythematosus Crohn s disease 0  No

19  Systemic lupus erythematosus Primary biliary cirrhosis 0  No

20  Systemic lupus erythematosus Myeloproliferative neoplasms  0  No

21  Coronary disease  Crohn’s disease 1  Yes

22  Asthma   Crohn’s disease 1  No

23  Intracranial aneurysm  Psoriasis 1  No

24  Intracranial aneurysm  AIDS progression 1  No

25  Myeloproliferative neoplasms Psoriasis 1  No

26  Primary biliary cirrhosis AIDS progression 1  No

27  Psoriasis   Crohn’s disease 1  No

28  Glioma  AIDS progression 2  No

29  Myeloproliferative neoplasms Prostat cancer 2  No

30  Myeloproliferative neoplasms Ulcerative colitis 2  No

31  AIDS progression  Ulcerative colitis 3  No

32  Glioma  Psoriasis 3  No

33  Myeloproliferative neoplasms Inflammatory bowel disease 3  No

34  LDL cholesterol (Elevated) AIDS progression 4  Yes

35  Glioma  Ulcerative colitis 4  No

36  Glioma  Inflammatory bowel disease 4  No

37  Intracranial aneurysm  Ulcerative colitis 4  No
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38  Rheumatoid arthritis   Crohn’s disease 4  No

39  Coronary disease  Glioma 5  Yes

40  Colorectal cancer   Crohn’s disease 5  No

41  Intracranial aneurysm  LDL cholesterol (Elevated) 5  No

42  Asthma  AIDS progression 6  Yes

43  Colorectal cancer  AIDS progression 6  No

44  Myocardial infarction  early  Glioma 7  No

45  Systemic lupus erythematosus AIDS progression 8  No

46  Myocardial infarction  early  AIDS progression 9  Yes

47  Prostate cancer  AIDS progression 10  No

48  LDL cholesterol (Elevated) Glioma 11  Yes

49  Asthma  Primary biliary cirrhosis 11  No

50  Colorectal cancer  Psoriasis 11  No

51  Glioma  Systemic lupus erythematosus  11  No

52  Intracranial aneurysm  Prostat cancer 11  No

53  LDL cholesterol (Elevated) Ulcerative colitis 11  No

54  LDL cholesterol (Elevated) Inflammatory bowel disease 12  Yes

55  AIDS progression  Psoriasis 12  No

56  AIDS progression  Inflammatory bowel disease 12  No

57  Prostate cancer  Psoriasis 15  No

58  Celiac disease  Type 1 diabetes 17  No

59  Multiple sclerosis  Systemic lupus erythematosus  17  No

60  Primary biliary cirrhosis Psoriasis 19  No

61  Prostate cancer  Ulcerative colitis 23  No

62  Glioma  Asthma 24  Yes

63  Prostate cancer  Inflammatory bowel disease 28  No

64   Crohn’s disease  Ulcerative colitis 32  Yes

65  Inflammatory bowel disease  Crohn’s disease 33  Yes

66  LDL cholesterol (Elevated) Psoriasis 33  Yes

67  Multiple sclerosis  Primary biliary cirrhosis 33  No

68  LDL cholesterol (Elevated) Myocardial infarction  early  35  Yes

69  Myocardial infarction  early  Inflammatory bowel disease 38  Yes

70  Intracranial aneurysm  Colorectal cancer 41  No

71  Myocardial infarction  early  Ulcerative colitis 47  No

72  Coronary disease  AIDS progression 50  Yes

73  Chronic Obstructive Pulmonary Lung cancer 51  Yes

74  Coronary disease  Inflammatory bowel disease 51  Yes

75  Multiple sclerosis  Rheumatoid arthritis 58  No

76  Coronary disease  Psoriasis 66  Yes

77  Celiac disease  Asthma 66  No

78  Celiac disease  Multiple sclerosis 68  No
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79  Glioma  Colorectal cancer 68  No

80  Schizophrenia  Celiac disease 71  No

81  Inflammatory bowel disease Psoriasis 80  No

82  Myocardial infarction  early  Psoriasis 82  No

83  Celiac disease  Primary biliary cirrhosis 86  No

84  Celiac disease  Systemic lupus erythematosus  96  No

85  Type 1 diabetes  Primary biliary cirrhosis 100  No

86  Intracranial aneurysm  Coronary disease 104  No

87  Intracranial aneurysm  Glioma 110  No

88  Intracranial aneurysm  Myocardial infarction  early  117  No

89  Primary biliary cirrhosis Inflammatory bowel disease 117  No

90  Intracranial aneurysm  Type 2 diabetes 137  No

91  Glioma  Prostat cancer 138  No

92  Primary biliary cirrhosis Ulcerative colitis 145  No

93  Coronary disease  Ulcerative colitis 151  No

94  LDL cholesterol (Elevated) Coronary disease 160  Yes

95  Intracranial aneurysm  Systemic lupus erythematosus  166  No

96  Celiac disease  Rheumatoid arthritis 178  No

97  Systemic lupus erythematosus Inflammatory bowel disease 182  No

98  Rheumatoid arthritis  Primary biliary cirrhosis 184  No

99  Psoriasis  Ulcerative colitis 201  No

100  Systemic lupus erythematosus Ulcerative colitis 207  No

101  Multiple sclerosis  Asthma 233  Yes

102  Asthma  Ulcerative colitis 238  No

103  Asthma  Psoriasis 261  Yes

104  Inflammatory bowel disease Ulcerative colitis 262  Yes

105  Asthma  Inflammatory bowel disease 271  Yes

106  Obesity  Type 2 diabetes 320  Yes

107  Systemic lupus erythematosus Psoriasis 521  No

108  Prostate cancer  Colorectal cancer 882  No

109  Rheumatoid arthritis  Asthma 894  Yes

110  Type 1 diabetes  Systemic lupus erythematosus  894  No

111  Schizophrenia  Type 1 diabetes 931  Yes

112  Colorectal cancer  Ulcerative colitis 1019  No

113  Type 1 diabetes  Multiple sclerosis 1032  No

114  Type 1 diabetes  Rheumatoid arthritis 1990  No

115  Intracranial aneurysm  Myeloproliferative neoplasms  4126  No

116  Colorectal cancer  Inflammatory bowel disease 37538  No

117  Myocardial infarction  early  Coronary disease 54128  Yes
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Appendix A.6 Input to the IsBIG Algorithm for constructing I-Model 

  SNP1   SNP2

LD 
(r2)

SNP1 
OR

SNP2 
OR

SNP1 
RAF 

SNP2 
RAF 

1  rs564398  rs1412829 0.983 1.13 1.42 0.56  0.39 

2  rs11190140  rs10883365 0.983 1.2 1.18 0.48  0.48 

3  rs11190140  rs10883365 0.983 1.2 1.2 0.48  0.48 

4  rs10883365  rs11190140 0.983 1.18 1.2 0.48  0.48 

5  rs10883365  rs11190140 0.983 1.2 1.2 0.48  0.48 

6  rs1412829  rs564398 0.983 1.42 1.13 0.39  0.56 

7  rs4263839  rs6478109 0.982 1.22 1.36 0.68  0.69 

8  rs6478109  rs4263839 0.982 1.36 1.22 0.69  0.68 

9  rs6074022  rs4810485 0.977 1.2 1.15 0.25  0.25 

10  rs4810485  rs6074022 0.977 1.15 1.2 0.25  0.25 

11  rs13277113  rs2736340 0.976 1.39 1.19 0.23  0.24 

12  rs2736340  rs13277113 0.976 1.19 1.39 0.24  0.23 

13  rs3135388  rs9271366 0.974 2.75 2.78 0.22  0.15 

14  rs3135388  rs9271366 0.974 1.99 2.78 0.23  0.15 

15  rs9271366  rs3135388 0.974 2.78 2.75 0.15  0.22 

16  rs9271366  rs3135388 0.974 2.78 1.99 0.15  0.23 

17  rs2981582  rs1219648 0.966 1.26 1.2 0.38  0.4 

18  rs7931342  rs10896449 0.966 1.19 1.1 0.51  0.52 

19  rs2241880  rs10210302 0.966 1.45 1.19 0.55  0.48 

20  rs10210302  rs2241880 0.966 1.19 1.45 0.48  0.55 

21  rs1219648  rs2981582 0.966 1.2 1.26 0.4  0.38 

22  rs10896449  rs7931342 0.966 1.1 1.19 0.52  0.51 

23  rs1335532  rs2300747 0.964 1.28 1.3 0.87  0.88 

24  rs2300747  rs1335532 0.964 1.3 1.28 0.88  0.87 

25  rs4506565  rs7901695 0.96 1.36 1.37 0.32  NR 

26  rs7901695  rs4506565 0.96 1.37 1.36 NR  0.32 

27  rs6931514  rs7756992 0.958 1.25 1.2 NR  0.26 

28  rs7756992  rs6931514 0.958 1.2 1.25 0.26  NR 

29  rs3197999  rs9858542 0.956 1.2 1.17 0.27  0.29 

30  rs3197999  rs9858542 0.956 1.2 1.09 0.27  0.28 

31  rs9858542  rs3197999 0.956 1.17 1.2 0.29  0.27 

32  rs9858542  rs3197999 0.956 1.09 1.2 0.28  0.27 

33  rs9941349  rs1121980 0.95 1.48 1.66 0.43  0.41 

34  rs907092  rs2872507 0.95 1.29 1.12 0.45  0.47 

35  rs2872507  rs907092 0.95 1.12 1.29 0.47  0.45 

36  rs1121980  rs9941349 0.95 1.66 1.48 0.41  0.43 
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37  rs11755527  rs3757247 0.949 1.13 1.13 0.47  NR 

38  rs3757247  rs11755527 0.949 1.13 1.13 NR  0.47 

39  rs477515  rs2395185 0.948 1.38 1.52 0.69  0.67 

40  rs2395185  rs477515 0.948 1.52 1.38 0.67  0.69 

41  rs2903692  rs12708716 0.941 1.54 1.19 0.62  0.65 

42  rs2903692  rs12708716 0.941 1.54 1.23 0.62  0.68 

43  rs12708716  rs2903692 0.941 1.19 1.54 0.65  0.62 

44  rs12708716  rs2903692 0.941 1.23 1.54 0.68  0.62 

45  rs2201841  rs10889677 0.94 1.13 1.29 0.3  0.3 

46  rs10889677  rs2201841 0.94 1.29 1.13 0.3  0.3 

47  rs3764021  rs11052552 0.933 1.57 1.49 0.47  0.49 

48  rs11052552  rs3764021 0.933 1.49 1.57 0.49  0.47 

49  rs3828309  rs2241880 0.932 1.25 1.45 0.53  0.55 

50  rs2241880  rs3828309 0.932 1.45 1.25 0.55  0.53 

51  rs10210302  rs3828309 0.932 1.19 1.25 0.48  0.53 

52  rs8050136  rs1421085 0.932 1.3 1.39 NR  0.4 

53  rs8050136  rs1421085 0.932 1.17 1.39 0.38  0.4 

54  rs8050136  rs1421085 0.932 1.23 1.39 0.4  0.4 

55  rs8050136  rs1421085 0.932 1.15 1.39 NR  0.4 

56  rs3828309  rs10210302 0.932 1.25 1.19 0.53  0.48 

57  rs1421085  rs8050136 0.932 1.39 1.3 0.4  NR 

58  rs1421085  rs8050136 0.932 1.39 1.17 0.4  0.38 

59  rs1421085  rs8050136 0.932 1.39 1.23 0.4  0.4 

60  rs1421085  rs8050136 0.932 1.39 1.15 0.4  NR 

61  rs2814707  rs3849942 0.931 1.22 1.23 0.23  0.23 

62  rs3849942  rs2814707 0.931 1.23 1.22 0.23  0.23 

63  rs7903146  rs4506565 0.921 1.38 1.36 0.3  0.32 

64  rs7903146  rs4506565 0.921 1.31 1.36 NR  0.32 

65  rs7903146  rs4506565 0.921 1.49 1.36 NR  0.32 

66  rs7903146  rs4506565 0.921 1.71 1.36 NR  0.32 

67  rs7903146  rs4506565 0.921 1.34 1.36 0.18  0.32 

68  rs7903146  rs4506565 0.921 1.38 1.36 0.26  0.32 

69  rs7903146  rs4506565 0.921 1.65 1.36 0.3  0.32 

70  rs7903146  rs4506565 0.921 1.37 1.36 NR  0.32 

71  rs7903146  rs4506565 0.921 1.48 1.36 0.27  0.32 

72  rs4506565  rs7903146 0.921 1.36 1.48 0.32  0.27 

73  rs4506565  rs7903146 0.921 1.36 1.38 0.32  0.3 

74  rs4506565  rs7903146 0.921 1.36 1.31 0.32  NR 

75  rs4506565  rs7903146 0.921 1.36 1.49 0.32  NR 

76  rs4506565  rs7903146 0.921 1.36 1.71 0.32  NR 

77  rs4506565  rs7903146 0.921 1.36 1.34 0.32  0.18 
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78  rs4506565  rs7903146 0.921 1.36 1.38 0.32  0.26 

79  rs4506565  rs7903146 0.921 1.36 1.65 0.32  0.3 

80  rs4506565  rs7903146 0.921 1.36 1.37 0.32  NR 

81  rs7901695  rs7903146 0.919 1.37 1.34 NR  0.18 

82  rs7901695  rs7903146 0.919 1.37 1.38 NR  0.26 

83  rs7901695  rs7903146 0.919 1.37 1.65 NR  0.3 

84  rs7901695  rs7903146 0.919 1.37 1.37 NR  NR 

85  rs7901695  rs7903146 0.919 1.37 1.48 NR  0.27 

86  rs4474514  rs995030 0.919 3.07 2.55 NR  0.8 

87  rs4474514  rs995030 0.919 3.07 2.69 NR  0.83 

88  rs995030  rs4474514 0.919 2.55 3.07 0.8  NR 

89  rs995030  rs4474514 0.919 2.69 3.07 0.83  NR 

90  rs599839  rs646776 0.917 1.29 1.19 0.23  0.81 

91  rs599839  rs646776 0.917 0.95 1.19 0.24  0.81 

92  rs646776  rs599839 0.917 1.19 1.29 0.81  0.23 

93  rs646776  rs599839 0.917 1.19 0.95 0.81  0.24 

94  rs2981579  rs1219648 0.916 1.17 1.2 0.41  0.4 

95  rs1219648  rs2981579 0.916 1.2 1.17 0.4  0.41 

96  rs1000113  rs11747270 0.905 1.54 1.33 0.07  0.09 

97  rs11209026  rs11465804 0.905 2.92 2.5 0.92  0.93 

98  rs11209026  rs11465804 0.905 2.56 2.5 0.94  0.93 

99  rs11209026  rs11465804 0.905 3.84 2.5 0.93  0.93 

100  rs11209026  rs11465804 0.905 1.79 2.5 0.93  0.93 

101  rs11465804  rs11209026 0.905 2.5 2.92 0.93  0.92 

102  rs11465804  rs11209026 0.905 2.5 2.56 0.93  0.94 

103  rs11465804  rs11209026 0.905 2.5 3.84 0.93  0.93 

104  rs11465804  rs11209026 0.905 2.5 1.79 0.93  0.93 

105  rs11747270  rs1000113 0.905 1.33 1.54 0.09  0.07 

106  rs1121980  rs1421085 0.902 1.66 1.39 0.41  0.4 

107  rs6983267  rs10505477 0.902 1.24 1.17 0.48  0.5 

108  rs6983267  rs10505477 0.902 1.27 1.17 0.49  0.5 

109  rs6983267  rs10505477 0.902 1.42 1.17 0.49  0.5 

110  rs6983267  rs10505477 0.902 1.26 1.17 0.5  0.5 

111  rs6983267  rs10505477 0.902 1.28 1.17 0.53  0.5 

112  rs1421085  rs1121980 0.902 1.39 1.66 0.4  0.41 

113  rs10505477  rs6983267 0.902 1.17 1.24 0.5  0.48 

114  rs10505477  rs6983267 0.902 1.17 1.27 0.5  0.49 

115  rs10505477  rs6983267 0.902 1.17 1.42 0.5  0.49 

116  rs10505477  rs6983267 0.902 1.17 1.26 0.5  0.5 

117  rs10505477  rs6983267 0.902 1.17 1.28 0.5  0.53 

118  rs4977574  rs1333049 0.9 1.29 1.36 0.56  0.47 
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119  rs4977574  rs1333049 0.9 1.29 1.47 0.56  0.47 

120  rs1333049  rs4977574 0.9 1.36 1.29 0.47  0.56 

121  rs1333049  rs4977574 0.9 1.47 1.29 0.47  0.56 

122  rs8034191  rs1051730 0.899 1.4 1.31 0.33  0.35 

123  rs8034191  rs1051730 0.899 1.29 1.31 NR  0.35 

124  rs8034191  rs1051730 0.899 1.3 1.31 0.34  0.35 

125  rs8034191  rs1051730 0.899 1.3 1.31 NR  0.35 

126  rs8034191  rs1051730 0.899 1.38 1.31 NR  0.35 

127  rs8034191  rs1051730 0.899 1.29 1.35 NR  NR 

128  rs8034191  rs1051730 0.899 1.3 1.35 0.34  NR 

129  rs8034191  rs1051730 0.899 1.3 1.35 NR  NR 

130  rs8034191  rs1051730 0.899 1.38 1.35 NR  NR 

131  rs8034191  rs1051730 0.899 1.4 1.35 0.33  NR 

132  rs1051730  rs8034191 0.899 1.31 1.4 0.35  0.33 

133  rs1051730  rs8034191 0.899 1.35 1.4 NR  0.33 

134  rs1051730  rs8034191 0.899 1.35 1.29 NR  NR 

135  rs1051730  rs8034191 0.899 1.35 1.3 NR  0.34 

136  rs1051730  rs8034191 0.899 1.35 1.3 NR  NR 

137  rs1051730  rs8034191 0.899 1.35 1.38 NR  NR 

138  rs1051730  rs8034191 0.899 1.31 1.29 0.35  NR 

139  rs1051730  rs8034191 0.899 1.31 1.3 0.35  0.34 

140  rs1051730  rs8034191 0.899 1.31 1.3 0.35  NR 

141  rs1051730  rs8034191 0.899 1.31 1.38 0.35  NR 

142  rs17221417  rs2076756 0.892 1.29 1.71 0.29  0.27 

143  rs2076756  rs17221417 0.892 1.71 1.29 0.27  0.29 

144  rs2981582  rs2981579 0.884 1.26 1.17 0.38  0.41 

145  rs2981579  rs2981582 0.884 1.17 1.26 0.41  0.38 

146  rs9941349  rs1421085 0.884 1.48 1.39 0.43  0.4 

147  rs9941349  rs8050136 0.884 1.48 1.3 0.43  NR 

148  rs9941349  rs8050136 0.884 1.48 1.17 0.43  0.38 

149  rs9941349  rs8050136 0.884 1.48 1.23 0.43  0.4 

150  rs9941349  rs8050136 0.884 1.48 1.15 0.43  NR 

151  rs1421085  rs9941349 0.884 1.39 1.48 0.4  0.43 

152  rs8050136  rs9941349 0.884 1.3 1.48 NR  0.43 

153  rs8050136  rs9941349 0.884 1.17 1.48 0.38  0.43 

154  rs8050136  rs9941349 0.884 1.23 1.48 0.4  0.43 

155  rs8050136  rs9941349 0.884 1.15 1.48 NR  0.43 

156  rs4975616  rs401681 0.882 1.15 1.15 NR  NR 

157  rs401681  rs4975616 0.882 1.15 1.15 NR  NR 

158  rs8050136  rs1121980 0.87 1.3 1.66 NR  0.41 

159  rs8050136  rs1121980 0.87 1.17 1.66 0.38  0.41 
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160  rs8050136  rs1121980 0.87 1.23 1.66 0.4  0.41 

161  rs8050136  rs1121980 0.87 1.15 1.66 NR  0.41 

162  rs1121980  rs8050136 0.87 1.66 1.3 0.41  NR 

163  rs1121980  rs8050136 0.87 1.66 1.17 0.41  0.38 

164  rs1121980  rs8050136 0.87 1.66 1.23 0.41  0.4 

165  rs1121980  rs8050136 0.87 1.66 1.15 0.41  NR 

166  rs1701704  rs2292239 0.851 1.25 1.28 0.35  0.34 

167  rs2292239  rs1701704 0.851 1.28 1.25 0.34  0.35 

168  rs3135388  rs3129934 0.847 2.75 3.3 0.22  NR 

169  rs3135388  rs3129934 0.847 1.99 3.3 0.23  NR 

170  rs3129934  rs3135388 0.847 3.3 2.75 NR  0.22 

171  rs3129934  rs3135388 0.847 3.3 1.99 NR  0.23 

172  rs2943641  rs2943634 0.843 1.19 1.21 0.63  0.65 

173  rs2943634  rs2943641 0.843 1.21 1.19 0.65  0.63 

174  rs774359  rs2814707 0.831 1.19 1.22 0.25  0.23 

175  rs2814707  rs774359 0.831 1.22 1.19 0.23  0.25 

176  rs2872507  rs7216389 0.826 1.12 1.45 0.47  0.52 

177  rs7216389  rs2872507 0.826 1.45 1.12 0.52  0.47 

178  rs9271366  rs3129934 0.824 2.78 3.3 0.15  NR 

179  rs3129934  rs9271366 0.824 3.3 2.78 NR  0.15 

180  rs401681  rs31489 0.821 1.15 1.12 NR  0.59 

181  rs31489  rs401681 0.821 1.12 1.15 0.59  NR 

182  rs3849942  rs774359 0.811 1.23 1.19 0.23  0.25 

183  rs4788084  rs8049439 0.811 1.09 1.14 0.42  0.37 

184  rs8049439  rs4788084 0.811 1.14 1.09 0.37  0.42 

185  rs774359  rs3849942 0.811 1.19 1.23 0.25  0.23 

186  rs907092  rs7216389 0.808 1.29 1.45 0.45  0.52 

187  rs7216389  rs907092 0.808 1.45 1.29 0.52  0.45 

188  rs947474  rs4750316 0.796 1.1 1.14 0.19  0.2 

189  rs4750316  rs947474 0.796 1.14 1.1 0.2  0.19 

190  rs258322  rs1805007 0.783 1.67 2.34 0.09  0.08 

191  rs258322  rs1805007 0.783 1.67 4.37 0.09  0.05 

192  rs258322  rs1805007 0.783 1.67 12.47 0.09  NR 

193  rs258322  rs1805007 0.783 1.67 2.94 0.09  0.06 

194  rs1805007  rs258322 0.783 2.34 1.67 0.08  0.09 

195  rs1805007  rs258322 0.783 4.37 1.67 0.05  0.09 

196  rs1805007  rs258322 0.783 12.47 1.67 NR  0.09 

197  rs1805007  rs258322 0.783 2.94 1.67 0.06  0.09 

198  rs7193343  rs2106261 0.776 1.21 1.25 NR  0.174 

199  rs2106261  rs7193343 0.776 1.25 1.21 0.174  NR 

200  rs31489  rs4975616 0.74 1.12 1.15 0.59  NR 



129 
 

201  rs4975616  rs31489 0.74 1.15 1.12 NR  0.59 

202  rs7501939  rs4430796 0.734 1.41 1.22 0.57  0.49 

203  rs7501939  rs4430796 0.734 1.41 1.19 0.57  0.52 

204  rs7501939  rs4430796 0.734 1.41 1.18 0.57  0.54 

205  rs4430796  rs7501939 0.734 1.22 1.41 0.49  0.57 

206  rs4430796  rs7501939 0.734 1.19 1.41 0.52  0.57 

207  rs4430796  rs7501939 0.734 1.18 1.41 0.54  0.57 

208  rs4977756  rs1412829 0.724 1.24 1.42 0.6  0.39 

209  rs1412829  rs4977756 0.724 1.42 1.24 0.39  0.6 

210  rs7756992  rs7754840 0.722 1.2 1.12 0.26  0.31 

211  rs7756992  rs7754840 0.722 1.2 1.12 0.26  0.36 

212  rs7754840  rs7756992 0.722 1.12 1.2 0.31  0.26 

213  rs7754840  rs7756992 0.722 1.12 1.2 0.36  0.26 

214  rs4712523  rs7756992 0.722 1.2 1.2 0.32  0.26 

215  rs10946398  rs7756992 0.722 1.18 1.2 NR  0.26 

216  rs10946398  rs7756992 0.722 1.16 1.2 0.32  0.26 

217  rs7756992  rs4712523 0.722 1.2 1.2 0.26  0.32 

218  rs7756992  rs10946398 0.722 1.2 1.18 0.26  NR 

219  rs7756992  rs10946398 0.722 1.2 1.16 0.26  0.32 

220  rs564398  rs4977756 0.71 1.13 1.24 0.56  0.6 

221  rs4977756  rs564398 0.71 1.24 1.13 0.6  0.56 

222  rs2201841  rs11805303 0.7 1.13 1.39 0.3  0.68 

223  rs11805303  rs2201841 0.7 1.39 1.13 0.68  0.3 

224  rs6931514  rs4712523 0.688 1.25 1.2 NR  0.32 

225  rs6931514  rs10946398 0.688 1.25 1.18 NR  NR 

226  rs6931514  rs10946398 0.688 1.25 1.16 NR  0.32 

227  rs4712523  rs6931514 0.688 1.2 1.25 0.32  NR 

228  rs10946398  rs6931514 0.688 1.18 1.25 NR  NR 

229  rs10946398  rs6931514 0.688 1.16 1.25 0.32  NR 

230  rs7754840  rs6931514 0.688 1.12 1.25 0.31  NR 

231  rs7754840  rs6931514 0.688 1.12 1.25 0.36  NR 

232  rs6931514  rs7754840 0.688 1.25 1.12 NR  0.31 

233  rs6931514  rs7754840 0.688 1.25 1.12 NR  0.36 

234  rs10758593  rs7020673 0.674 1.13 1.14 NR  0.5 

235  rs2292239  rs11171739 0.674 1.28 1.34 0.34  0.42 

236  rs7020673  rs10758593 0.674 1.14 1.13 0.5  NR 

237  rs11171739  rs2292239 0.674 1.34 1.28 0.42  0.34 

238  rs6932590  rs13194053 0.653 1.16 1.28 0.78  0.82 

239  rs6932590  rs13194053 0.653 1.16 1.22 0.78  0.86 

240  rs13194053  rs6932590 0.653 1.28 1.16 0.82  0.78 

241  rs13194053  rs6932590 0.653 1.22 1.16 0.86  0.78 
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242  rs10889677  rs11805303 0.649 1.29 1.39 0.3  0.68 

243  rs11805303  rs10889677 0.649 1.39 1.29 0.68  0.3 

244  rs12722489  rs2104286 0.626 1.25 1.16 0.85  0.73 

245  rs12722489  rs2104286 0.626 1.25 1.15 0.85  0.76 

246  rs2104286  rs12722489 0.626 1.16 1.25 0.73  0.85 

247  rs2104286  rs12722489 0.626 1.15 1.25 0.76  0.85 

248  rs11171739  rs1701704 0.618 1.34 1.25 0.42  0.35 

249  rs1701704  rs11171739 0.618 1.25 1.34 0.35  0.42 

250  rs4598195  rs4730276 0.614 1.23 1.22 0.54  0.39 

251  rs4730276  rs4598195 0.614 1.22 1.23 0.39  0.54 

252  rs2076756  rs5743289 0.612 1.71 1.46 0.27  0.17 

253  rs5743289  rs2076756 0.612 1.46 1.71 0.17  0.27 

254  rs4977574  rs1333040 0.603 1.29 1.29 0.56  0.55 

255  rs1333040  rs4977574 0.603 1.29 1.29 0.55  0.56 

256  rs2180439  rs1160312 0.602 1.82 1.6 0.43  0.43 

257  rs1160312  rs2180439 0.602 1.6 1.82 0.43  0.43 

258  rs9888739  rs11574637 0.556 1.62 1.33 0.13  0.19 

259  rs11574637  rs9888739 0.556 1.33 1.62 0.19  0.13 

260  rs1333049  rs1333040 0.555 1.36 1.29 0.47  0.55 

261  rs1333049  rs1333040 0.555 1.47 1.29 0.47  0.55 

262  rs1333040  rs1333049 0.555 1.29 1.36 0.55  0.47 

263  rs1333040  rs1333049 0.555 1.29 1.47 0.55  0.47 

264  rs4730276  rs4730273 0.551 1.22 1.22 0.39  0.7 

265  rs4730273  rs4730276 0.551 1.22 1.22 0.7  0.39 

266  rs17221417  rs5743289 0.546 1.29 1.46 0.29  0.17 

267  rs5743289  rs17221417 0.546 1.46 1.29 0.17  0.29 

268  rs7014346  rs10505477 0.541 1.19 1.17 0.18  0.5 

269  rs10505477  rs7014346 0.541 1.17 1.19 0.5  0.18 

270  rs477515  rs9272346 0.512 1.38 5.49 0.69  0.61 

271  rs9272346  rs477515 0.512 5.49 1.38 0.61  0.69 

272  rs9465871  rs7756992 0.509 1.18 1.2 0.18  0.26 

273  rs7756992  rs9465871 0.509 1.2 1.18 0.26  0.18 

274  rs17696736  rs653178 0.505 1.22 1.21 0.42  0.48 

275  rs17696736  rs653178 0.505 1.34 1.21 0.42  0.48 

276  rs653178  rs17696736 0.505 1.21 1.22 0.48  0.42 

277  rs653178  rs17696736 0.505 1.21 1.34 0.48  0.42 

278  rs9272346  rs2395185 0.497 5.49 1.52 0.61  0.67 

279  rs2395185  rs9272346 0.497 1.52 5.49 0.67  0.61 

280  rs2412973  rs5753037 0.493 1.15 1.1 0.46  0.39 

281  rs5753037  rs2412973 0.493 1.1 1.15 0.39  0.46 

282  rs7014346  rs6983267 0.488 1.19 1.42 0.18  0.49 
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283  rs7014346  rs6983267 0.488 1.19 1.26 0.18  0.5 

284  rs7014346  rs6983267 0.488 1.19 1.28 0.18  0.53 

285  rs6983267  rs7014346 0.488 1.24 1.19 0.48  0.18 

286  rs6983267  rs7014346 0.488 1.27 1.19 0.49  0.18 

287  rs6983267  rs7014346 0.488 1.42 1.19 0.49  0.18 

288  rs6983267  rs7014346 0.488 1.26 1.19 0.5  0.18 

289  rs6983267  rs7014346 0.488 1.28 1.19 0.53  0.18 

290  rs7014346  rs6983267 0.488 1.19 1.24 0.18  0.48 

291  rs7014346  rs6983267 0.488 1.19 1.27 0.18  0.49 

292  rs4763879  rs11052552 0.484 1.09 1.49 0.37  0.49 

293  rs11052552  rs4763879 0.484 1.49 1.09 0.49  0.37 

294  rs6897932  rs1445898 0.467 1.12 1.12 0.75  0.55 

295  rs6897932  rs1445898 0.467 1.18 1.12 0.75  0.55 

296  rs6897932  rs1445898 0.467 1.12 1.12 0.71  0.55 

297  rs1445898  rs6897932 0.467 1.12 1.12 0.55  0.75 

298  rs1445898  rs6897932 0.467 1.12 1.18 0.55  0.75 

299  rs1445898  rs6897932 0.467 1.12 1.12 0.55  0.71 

300  rs4763879  rs3764021 0.451 1.09 1.57 0.37  0.47 

301  rs3764021  rs4763879 0.451 1.57 1.09 0.47  0.37 

302  rs10038113  rs4307059 0.45 1.33 1.19 0.59  0.61 

303  rs4307059  rs10038113 0.45 1.19 1.33 0.61  0.59 

304  rs4977756  rs4977574 0.446 1.24 1.29 0.6  0.56 

305  rs4977574  rs4977756 0.446 1.29 1.24 0.56  0.6 

306  rs9296249  rs3923809 0.442 1.67 1.9 0.76  0.66 

307  rs3923809  rs9296249 0.442 1.9 1.67 0.66  0.76 

308  rs10484554  rs2395029 0.432 2.8 3.47 0.15  0.03 

309  rs12191877  rs2395029 0.432 2.64 3.47 0.15  0.03 

310  rs12191877  rs2395029 0.432 2.64 45 0.15  0.05 

311  rs10484554  rs2395029 0.432 2.8 45 0.15  0.05 

312  rs10484554  rs2395029 0.432 2.8 4.1 0.15  0.03 

313  rs12191877  rs2395029 0.432 2.64 4.1 0.15  0.03 

314  rs2395029  rs10484554 0.432 3.47 2.8 0.03  0.15 

315  rs2395029  rs10484554 0.432 45 2.8 0.05  0.15 

316  rs2395029  rs10484554 0.432 4.1 2.8 0.03  0.15 

317  rs2395029  rs12191877 0.432 4.1 2.64 0.03  0.15 

318  rs10974944  rs10758669 0.477 3.1 1.12 NR  0.35 

319  rs10758669  rs10974944 0.477 1.12 3.1 0.35  NR 

320  rs9465871  rs6931514 0.473 1.18 1.25 0.18  NR 

321  rs6931514  rs9465871 0.473 1.25 1.18 NR  0.18 

322  rs6897932  rs1445898 0.467 1.12 1.12 0.75  0.55 

323  rs6897932  rs1445898 0.467 1.18 1.12 0.75  0.55 
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324  rs6897932  rs1445898 0.467 1.12 1.12 0.71  0.55 

325  rs1445898  rs6897932 0.467 1.12 1.12 0.55  0.75 

326  rs1445898  rs6897932 0.467 1.12 1.18 0.55  0.75 

327  rs1445898  rs6897932 0.467 1.12 1.12 0.55  0.71 

328  rs4763879  rs3764021 0.451 1.09 1.57 0.37  0.47 

329  rs3764021  rs4763879 0.451 1.57 1.09 0.47  0.37 

330  rs10038113  rs4307059 0.45 1.33 1.19 0.59  0.61 

331  rs4307059  rs10038113 0.45 1.19 1.33 0.61  0.59 

332  rs4977756  rs4977574 0.446 1.24 1.29 0.6  0.56 

333  rs4977574  rs4977756 0.446 1.29 1.24 0.56  0.6 

334  rs9296249  rs3923809 0.442 1.67 1.9 0.76  0.66 

335  rs3923809  rs9296249 0.442 1.9 1.67 0.66  0.76 

336  rs10484554  rs2395029 0.432 2.8 3.47 0.15  0.03 

337  rs12191877  rs2395029 0.432 2.64 3.47 0.15  0.03 

338  rs12191877  rs2395029 0.432 2.64 45 0.15  0.05 

339  rs10484554  rs2395029 0.432 2.8 45 0.15  0.05 

340  rs10484554  rs2395029 0.432 2.8 4.1 0.15  0.03 

341  rs12191877  rs2395029 0.432 2.64 4.1 0.15  0.03 

342  rs2395029  rs10484554 0.432 3.47 2.8 0.03  0.15 

343  rs2395029  rs10484554 0.432 45 2.8 0.05  0.15 

344  rs2395029  rs10484554 0.432 4.1 2.8 0.03  0.15 

345  rs2395029  rs12191877 0.432 4.1 2.64 0.03  0.15 

346  rs2395029  rs12191877 0.432 3.47 2.64 0.03  0.15 

347  rs2395029  rs12191877 0.432 45 2.64 0.05  0.15 

348  rs6010620  rs2315008 0.428 1.28 1.36 0.23  0.69 

349  rs6010620  rs2315008 0.428 1.52 1.36 0.77  0.69 

350  rs2315008  rs6010620 0.428 1.36 1.28 0.69  0.23 

351  rs2315008  rs6010620 0.428 1.36 1.52 0.69  0.77 

352  rs10488631  rs12537284 0.426 1.52 1.54 NR  0.13 

353  rs12537284  rs10488631 0.426 1.54 1.52 0.13  NR 

354  rs2187668  rs9272219 0.4 7.04 1.14 0.14  0.72 

355  rs9272219  rs2187668 0.4 1.14 7.04 0.72  0.14 

356  rs660895  rs477515 0.389 3.62 1.38 0.21  0.69 

357  rs477515  rs660895 0.389 1.38 3.62 0.69  0.21 

358  rs2158836  rs4598195 0.388 1.21 1.23 0.35  0.54 

359  rs4598195  rs2158836 0.388 1.23 1.21 0.54  0.35 

360  rs9465871  rs10946398 0.385 1.18 1.18 0.18  NR 

361  rs9465871  rs10946398 0.385 1.18 1.16 0.18  0.32 

362  rs9465871  rs4712523 0.385 1.18 1.2 0.18  0.32 

363  rs9465871  rs7754840 0.385 1.18 1.12 0.18  0.31 

364  rs9465871  rs7754840 0.385 1.18 1.12 0.18  0.36 
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NR – Not Reported – assume RAF = 0.5 
 
Disease /Trait associated with each SNP (from above) 

  SNP1 - Disease SNP2 - Disease
1  Type 2 diabetes Glioma (high‐grade)

2  Crohn's disease Crohn's disease

3  Crohn's disease Crohn's disease

4  Crohn's disease Crohn's disease

365  rs7754840  rs9465871 0.385 1.12 1.18 0.31  0.18 

366  rs7754840  rs9465871 0.385 1.12 1.18 0.36  0.18 

367  rs4712523  rs9465871 0.385 1.2 1.18 0.32  0.18 

368  rs10946398  rs9465871 0.385 1.18 1.18 NR  0.18 

369  rs10946398  rs9465871 0.385 1.16 1.18 0.32  0.18 

370  rs1333049  rs4977756 0.384 1.36 1.24 0.47  0.6 

371  rs1333049  rs4977756 0.384 1.47 1.24 0.47  0.6 

372  rs4977756  rs1333049 0.384 1.24 1.36 0.6  0.47 

373  rs4977756  rs1333049 0.384 1.24 1.47 0.6  0.47 

374  rs660895  rs2395185 0.381 3.62 1.52 0.21  0.67 

375  rs2395185  rs660895 0.381 1.52 3.62 0.67  0.21 

376  rs4730273  rs4598195 0.374 1.22 1.23 0.7  0.54 

377  rs4598195  rs4730273 0.374 1.23 1.22 0.54  0.7 

378  rs9929218  rs1728785 0.368 1.1 1.17 0.29  0.76 

379  rs1728785  rs9929218 0.368 1.17 1.1 0.76  0.29 

380  rs17594526  rs9960767 0.35 1.44 1.23 0.03  0.06 

381  rs9960767  rs17594526 0.35 1.23 1.44 0.06  0.03 

382  rs660895  rs6457617 0.344 3.62 2.36 0.21  0.49 

383  rs660895  rs6457620 0.344 3.62 2.55 0.21  0.5 

384  rs6457617  rs660895 0.344 2.36 3.62 0.49  0.21 

385  rs6457620  rs660895 0.344 2.55 3.62 0.5  0.21 

386  rs9272346  rs9271366 0.331 5.49 2.78 0.61  0.15 

387  rs9271366  rs9272346 0.331 2.78 5.49 0.15  0.61 

388  rs3135388  rs9272346 0.322 2.75 5.49 0.22  0.61 

389  rs3135388  rs9272346 0.322 1.99 5.49 0.23  0.61 

390  rs9272346  rs3135388 0.322 5.49 2.75 0.61  0.22 

391  rs9272346  rs3135388 0.322 5.49 1.99 0.61  0.23 

392  rs9272346  rs3129934 0.315 5.49 3.3 0.61  NR 

393  rs3129934  rs9272346 0.315 3.3 5.49 NR  0.61 

394  rs11805303  rs7517847 0.314 1.39 1.61 0.68  0.56 

395  rs7517847  rs11805303 0.314 1.61 1.39 0.56  0.68 

396  rs11228565  rs10896449 0.303 1.23 1.1 0.2  0.52 

397  rs10896449  rs11228565 0.303 1.1 1.23 0.52  0.2 
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5  Crohn's disease Crohn's disease

6  Glioma (high‐grade) Type 2 diabetes

7  Crohn's disease
Inflammatory bowel 
disease

8 
Inflammatory bowel 
disease  Crohn's disease

9  Multiple sclerosis Rheumatoid arthritis

10  Rheumatoid arthritis Multiple sclerosis

11 
Systemic lupus 
erythematosus Rheumatoid arthritis

12  Rheumatoid arthritis
Systemic lupus 
erythematosus

13  Multiple sclerosis Multiple sclerosis

14  Multiple sclerosis Multiple sclerosis

15  Multiple sclerosis Multiple sclerosis

16  Multiple sclerosis Multiple sclerosis

17  Breast cancer Breast cancer

18  Prostate cancer Prostate cancer

19  Crohn's disease Crohn's disease

20  Crohn's disease Crohn's disease

21  Breast cancer Breast cancer

22  Prostate cancer Prostate cancer

23  Multiple sclerosis Multiple sclerosis

24  Multiple sclerosis Multiple sclerosis

25  Type 2 diabetes Type 2 diabetes

26  Type 2 diabetes Type 2 diabetes

27  Type 2 diabetes Type 2 diabetes

28  Type 2 diabetes Type 2 diabetes

29  Crohn's disease Crohn's disease

30  Crohn's disease Crohn's disease

31  Crohn's disease Crohn's disease

32  Crohn's disease Crohn's disease

33  Obesity (extreme)
Obesity (early onset 
extreme)

34  Primary biliary cirrhosis Crohn's disease

35  Crohn's disease Primary biliary cirrhosis

36 
Obesity (early onset 
extreme)  Obesity (extreme)

37  Type 1 diabetes Type 1 diabetes

38  Type 1 diabetes Type 1 diabetes

39 
Inflammatory bowel 
disease  Ulcerative colitis
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40  Ulcerative colitis
Inflammatory bowel 
disease

41  Type 1 diabetes Type 1 diabetes

42  Type 1 diabetes Type 1 diabetes

43  Type 1 diabetes Type 1 diabetes

44  Type 1 diabetes Type 1 diabetes

45  Psoriasis  Ulcerative colitis

46  Ulcerative colitis Psoriasis

47  Type 1 diabetes Type 1 diabetes

48  Type 1 diabetes Type 1 diabetes

49  Crohn's disease Crohn's disease

50  Crohn's disease Crohn's disease

51  Crohn's disease Crohn's disease

52  Type 2 diabetes Obesity

53  Type 2 diabetes Obesity

54  Type 2 diabetes Obesity

55  Type 2 diabetes Obesity

56  Crohn's disease Crohn's disease

57  Obesity  Type 2 diabetes

58  Obesity  Type 2 diabetes

59  Obesity  Type 2 diabetes

60  Obesity  Type 2 diabetes

61 
Amyotrophic lateral 
sclerosis 

Amyotrophic lateral 
sclerosis

62 
Amyotrophic lateral 
sclerosis 

Amyotrophic lateral 
sclerosis

63  Type 2 diabetes Type 2 diabetes

64  Type 2 diabetes Type 2 diabetes

65  Type 2 diabetes Type 2 diabetes

66  Type 2 diabetes Type 2 diabetes

67  Type 2 diabetes Type 2 diabetes

68  Type 2 diabetes Type 2 diabetes

69  Type 2 diabetes Type 2 diabetes

70  Type 2 diabetes Type 2 diabetes

71 
Type 2 diabetes and 
other traits  Type 2 diabetes

72  Type 2 diabetes
Type 2 diabetes and other 
traits

73  Type 2 diabetes Type 2 diabetes

74  Type 2 diabetes Type 2 diabetes

75  Type 2 diabetes Type 2 diabetes

76  Type 2 diabetes Type 2 diabetes
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77  Type 2 diabetes Type 2 diabetes

78  Type 2 diabetes Type 2 diabetes

79  Type 2 diabetes Type 2 diabetes

80  Type 2 diabetes Type 2 diabetes

81  Type 2 diabetes Type 2 diabetes

82  Type 2 diabetes Type 2 diabetes

83  Type 2 diabetes Type 2 diabetes

84  Type 2 diabetes Type 2 diabetes

85  Type 2 diabetes
Type 2 diabetes and other 
traits

86  Testicular cancer Testicular germ cell tumor 

87  Testicular cancer Testicular germ cell tumor 

88 
Testicular germ cell 
tumor  Testicular cancer

89 
Testicular germ cell 
tumor  Testicular cancer

90  Coronary disease
Myocardial infarction 
(early onset)

91  LDL cholesterol
Myocardial infarction 
(early onset)

92 
Myocardial infarction 
(early onset) Coronary disease

93 
Myocardial infarction 
(early onset) LDL cholesterol

94  Breast cancer Breast cancer

95  Breast cancer Breast cancer

96  Crohn's disease Crohn's disease

97  Crohn's disease Crohn's disease

98 
Inflammatory bowel 
disease  Crohn's disease

99 
Inflammatory bowel 
disease  Crohn's disease

100  Ulcerative colitis Crohn's disease

101  Crohn's disease Crohn's disease

102  Crohn's disease
Inflammatory bowel 
disease

103  Crohn's disease
Inflammatory bowel 
disease

104  Crohn's disease Ulcerative colitis

105  Crohn's disease Crohn's disease

106 
Obesity (early onset 
extreme)  Obesity

107  Colorectal cancer Colorectal cancer

108  Colorectal cancer Colorectal cancer
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109  Prostate cancer Colorectal cancer

110  Prostate cancer Colorectal cancer

111  Prostate cancer Colorectal cancer

112  Obesity 
Obesity (early onset 
extreme)

113  Colorectal cancer Colorectal cancer

114  Colorectal cancer Colorectal cancer

115  Colorectal cancer Prostate cancer

116  Colorectal cancer Prostate cancer

117  Colorectal cancer Prostate cancer

118 
Myocardial infarction 
(early onset) Coronary disease

119 
Myocardial infarction 
(early onset) Coronary disease

120  Coronary disease
Myocardial infarction 
(early onset)

121  Coronary disease
Myocardial infarction 
(early onset)

122 
Chronic Obstructive 
Pulmonary Disease Lung adenocarcinoma

123  Lung cancer Lung adenocarcinoma

124  Lung cancer Lung adenocarcinoma

125  Lung cancer Lung adenocarcinoma

126  Lung cancer Lung adenocarcinoma

127  Lung cancer Lung cancer

128  Lung cancer Lung cancer

129  Lung cancer Lung cancer

130  Lung cancer Lung cancer

131 
Chronic Obstructive 
Pulmonary Disease Lung cancer

132  Lung adenocarcinoma
Chronic Obstructive 
Pulmonary Disease

133  Lung cancer
Chronic Obstructive 
Pulmonary Disease

134  Lung cancer Lung cancer

135  Lung cancer Lung cancer

136  Lung cancer Lung cancer

137  Lung cancer Lung cancer

138  Lung adenocarcinoma Lung cancer

139  Lung adenocarcinoma Lung cancer

140  Lung adenocarcinoma Lung cancer

141  Lung adenocarcinoma Lung cancer

142  Crohn's disease Crohn's disease
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143  Crohn's disease Crohn's disease

144  Breast cancer Breast cancer

145  Breast cancer Breast cancer

146  Obesity (extreme) Obesity

147  Obesity (extreme) Type 2 diabetes

148  Obesity (extreme) Type 2 diabetes

149  Obesity (extreme) Type 2 diabetes

150  Obesity (extreme) Type 2 diabetes

151  Obesity  Obesity (extreme)

152  Type 2 diabetes Obesity (extreme)

153  Type 2 diabetes Obesity (extreme)

154  Type 2 diabetes Obesity (extreme)

155  Type 2 diabetes Obesity (extreme)

156  Lung cancer Lung cancer

157  Lung cancer Lung cancer

158  Type 2 diabetes
Obesity (early onset 
extreme)

159  Type 2 diabetes
Obesity (early onset 
extreme)

160  Type 2 diabetes
Obesity (early onset 
extreme)

161  Type 2 diabetes
Obesity (early onset 
extreme)

162 
Obesity (early onset 
extreme)  Type 2 diabetes

163 
Obesity (early onset 
extreme)  Type 2 diabetes

164 
Obesity (early onset 
extreme)  Type 2 diabetes

165 
Obesity (early onset 
extreme)  Type 2 diabetes

166  Type 1 diabetes Type 1 diabetes

167  Type 1 diabetes Type 1 diabetes

168  Multiple sclerosis Multiple sclerosis

169  Multiple sclerosis Multiple sclerosis

170  Multiple sclerosis Multiple sclerosis

171  Multiple sclerosis Multiple sclerosis

172 
Type 2 diabetes and 
other traits  Coronary disease

173  Coronary disease
Type 2 diabetes and other 
traits

174 
Amyotrophic lateral 
sclerosis 

Amyotrophic lateral 
sclerosis
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175 
Amyotrophic lateral 
sclerosis 

Amyotrophic lateral 
sclerosis

176  Crohn's disease Asthma

177  Asthma  Crohn's disease

178  Multiple sclerosis Multiple sclerosis

179  Multiple sclerosis Multiple sclerosis

180  Lung cancer Lung adenocarcinoma

181  Lung adenocarcinoma Lung cancer

182 
Amyotrophic lateral 
sclerosis 

Amyotrophic lateral 
sclerosis

183  Type 1 diabetes
Inflammatory bowel 
disease (early onset)

184 
Inflammatory bowel 
disease (early onset) Type 1 diabetes

185 
Amyotrophic lateral 
sclerosis 

Amyotrophic lateral 
sclerosis

186  Primary biliary cirrhosis Asthma

187  Asthma  Primary biliary cirrhosis

188  Type 1 diabetes Rheumatoid arthritis

189  Rheumatoid arthritis Type 1 diabetes

190  Melanoma  Blond vs. brown hair color 

191  Melanoma  Freckles

192  Melanoma  Red vs non‐red hair color

193  Melanoma  Skin sensitivity to sun

194 
Blond vs. brown hair 
color  Melanoma

195  Freckles  Melanoma

196 
Red vs non‐red hair 
color  Melanoma

197  Skin sensitivity to sun Melanoma

198  Atrial fibrillation Atrial fibrillation

199  Atrial fibrillation Atrial fibrillation

200  Lung adenocarcinoma Lung cancer

201  Lung cancer Lung adenocarcinoma

202  Prostate cancer Prostate cancer

203  Prostate cancer Prostate cancer

204  Prostate cancer Prostate cancer

205  Prostate cancer Prostate cancer

206  Prostate cancer Prostate cancer

207  Prostate cancer Prostate cancer

208  Glioma  Glioma (high‐grade)

209  Glioma (high‐grade) Glioma
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210  Type 2 diabetes Type 2 diabetes

211  Type 2 diabetes Type 2 diabetes

212  Type 2 diabetes Type 2 diabetes

213  Type 2 diabetes Type 2 diabetes

214 
Type 2 diabetes and 
other traits  Type 2 diabetes

215  Type 2 diabetes Type 2 diabetes

216  Type 2 diabetes Type 2 diabetes

217  Type 2 diabetes
Type 2 diabetes and other 
traits

218  Type 2 diabetes Type 2 diabetes

219  Type 2 diabetes Type 2 diabetes

220  Type 2 diabetes Glioma

221  Glioma  Type 2 diabetes

222  Psoriasis  Crohn's disease

223  Crohn's disease Psoriasis

224  Type 2 diabetes
Type 2 diabetes and other 
traits

225  Type 2 diabetes Type 2 diabetes

226  Type 2 diabetes Type 2 diabetes

227 
Type 2 diabetes and 
other traits  Type 2 diabetes

228  Type 2 diabetes Type 2 diabetes

229  Type 2 diabetes Type 2 diabetes

230  Type 2 diabetes Type 2 diabetes

231  Type 2 diabetes Type 2 diabetes

232  Type 2 diabetes Type 2 diabetes

233  Type 2 diabetes Type 2 diabetes

234  Type 1 diabetes Type 1 diabetes

235  Type 1 diabetes Type 1 diabetes

236  Type 1 diabetes Type 1 diabetes

237  Type 1 diabetes Type 1 diabetes

238  Schizophrenia Schizophrenia

239  Schizophrenia Schizophrenia

240  Schizophrenia Schizophrenia

241  Schizophrenia Schizophrenia

242  Ulcerative colitis Crohn's disease

243  Crohn's disease Ulcerative colitis

244  Multiple sclerosis Multiple sclerosis

245  Multiple sclerosis Multiple sclerosis

246  Multiple sclerosis Multiple sclerosis

247  Multiple sclerosis Multiple sclerosis
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248  Type 1 diabetes Type 1 diabetes

249  Type 1 diabetes Type 1 diabetes

250  Ulcerative colitis Ulcerative colitis

251  Ulcerative colitis Ulcerative colitis

252  Crohn's disease
Inflammatory bowel 
disease

253 
Inflammatory bowel 
disease  Crohn's disease

254 
Myocardial infarction 
(early onset) Intracranial aneurysm

255  Intracranial aneurysm
Myocardial infarction 
(early onset)

256  Male‐pattern baldness Male‐pattern baldness

257  Male‐pattern baldness Male‐pattern baldness

258 
Systemic lupus 
erythematosus

Systemic lupus 
erythematosus

259 
Systemic lupus 
erythematosus

Systemic lupus 
erythematosus

260  Coronary disease Intracranial aneurysm

261  Coronary disease Intracranial aneurysm

262  Intracranial aneurysm Coronary disease

263  Intracranial aneurysm Coronary disease

264  Ulcerative colitis Ulcerative colitis

265  Ulcerative colitis Ulcerative colitis

266  Crohn's disease
Inflammatory bowel 
disease

267 
Inflammatory bowel 
disease  Crohn's disease

268  Colorectal cancer Colorectal cancer

269  Colorectal cancer Colorectal cancer

270 
Inflammatory bowel 
disease  Type 1 diabetes

271  Type 1 diabetes
Inflammatory bowel 
disease

272  Type 2 diabetes Type 2 diabetes

273  Type 2 diabetes Type 2 diabetes

274  Type 1 diabetes Celiac disease

275  Type 1 diabetes Celiac disease

276  Celiac disease Type 1 diabetes

277  Celiac disease Type 1 diabetes

278  Type 1 diabetes Ulcerative colitis

279  Ulcerative colitis Type 1 diabetes

280  Inflammatory bowel  Type 1 diabetes
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disease (early onset)

281  Type 1 diabetes
Inflammatory bowel 
disease (early onset)

282  Colorectal cancer Prostate cancer

283  Colorectal cancer Prostate cancer

284  Colorectal cancer Prostate cancer

285  Colorectal cancer Colorectal cancer

286  Colorectal cancer Colorectal cancer

287  Prostate cancer Colorectal cancer

288  Prostate cancer Colorectal cancer

289  Prostate cancer Colorectal cancer

290  Colorectal cancer Colorectal cancer

291  Colorectal cancer Colorectal cancer

292  Type 1 diabetes Type 1 diabetes

293  Type 1 diabetes Type 1 diabetes

294  Multiple sclerosis Type 1 diabetes

295  Multiple sclerosis Type 1 diabetes

296  Type 1 diabetes Type 1 diabetes

297  Type 1 diabetes Multiple sclerosis

298  Type 1 diabetes Multiple sclerosis

299  Type 1 diabetes Type 1 diabetes

300  Type 1 diabetes Type 1 diabetes

301  Type 1 diabetes Type 1 diabetes

302  Autism  Autism

303  Autism  Autism

304  Glioma 
Myocardial infarction 
(early onset)

305 
Myocardial infarction 
(early onset) Glioma

306  Restless legs syndrome Restless legs syndrome

307  Restless legs syndrome Restless legs syndrome

308  Psoriasis  AIDS progression

309  Psoriasis  AIDS progression

310  Psoriasis 
Drug‐induced liver injury 
(flucloxacillin)

311  Psoriasis 
Drug‐induced liver injury 
(flucloxacillin)

312  Psoriasis  Psoriasis

313  Psoriasis  Psoriasis

314  AIDS progression Psoriasis

315 
Drug‐induced liver 
injury (flucloxacillin) Psoriasis
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316  Psoriasis  Psoriasis

317  Psoriasis  Psoriasis

318 
Myeloproliferative 
neoplasms  Crohn's disease

319  Crohn's disease
Myeloproliferative 
neoplasms

320  Type 2 diabetes Type 2 diabetes

321  Type 2 diabetes Type 2 diabetes

322  Multiple sclerosis Type 1 diabetes

323  Multiple sclerosis Type 1 diabetes

324  Type 1 diabetes Type 1 diabetes

325  Type 1 diabetes Multiple sclerosis

326  Type 1 diabetes Multiple sclerosis

327  Type 1 diabetes Type 1 diabetes

328  Type 1 diabetes Type 1 diabetes

329  Type 1 diabetes Type 1 diabetes

330  Autism  Autism

331  Autism  Autism

332  Glioma 
Myocardial infarction 
(early onset)

333 
Myocardial infarction 
(early onset) Glioma

334  Restless legs syndrome Restless legs syndrome

335  Restless legs syndrome Restless legs syndrome

336  Psoriasis  AIDS progression

337  Psoriasis  AIDS progression

338  Psoriasis 
Drug‐induced liver injury 
(flucloxacillin)

339  Psoriasis 
Drug‐induced liver injury 
(flucloxacillin)

340  Psoriasis  Psoriasis

341  Psoriasis  Psoriasis

342  AIDS progression Psoriasis

343 
Drug‐induced liver 
injury (flucloxacillin) Psoriasis

344  Psoriasis  Psoriasis

345  Psoriasis  Psoriasis

346  AIDS progression Psoriasis

347 
Drug‐induced liver 
injury (flucloxacillin) Psoriasis

348  Glioma 
Inflammatory bowel 
disease

349  Glioma (high‐grade) Inflammatory bowel 
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disease

350 
Inflammatory bowel 
disease  Glioma

351 
Inflammatory bowel 
disease  Glioma (high‐grade)

352  Primary biliary cirrhosis
Systemic lupus 
erythematosus

353 
Systemic lupus 
erythematosus Primary biliary cirrhosis

354  Celiac disease Schizophrenia

355  Schizophrenia Celiac disease

356  Rheumatoid arthritis
Inflammatory bowel 
disease

357 
Inflammatory bowel 
disease  Rheumatoid arthritis

358  Ulcerative colitis Ulcerative colitis

359  Ulcerative colitis Ulcerative colitis

360  Type 2 diabetes Type 2 diabetes

361  Type 2 diabetes Type 2 diabetes

362  Type 2 diabetes
Type 2 diabetes and other 
traits

363  Type 2 diabetes Type 2 diabetes

364  Type 2 diabetes Type 2 diabetes

365  Type 2 diabetes Type 2 diabetes

366  Type 2 diabetes Type 2 diabetes

367 
Type 2 diabetes and 
other traits  Type 2 diabetes

368  Type 2 diabetes Type 2 diabetes

369  Type 2 diabetes Type 2 diabetes

370  Coronary disease Glioma

371  Coronary disease Glioma

372  Glioma  Coronary disease

373  Glioma  Coronary disease

374  Rheumatoid arthritis Ulcerative colitis

375  Ulcerative colitis Rheumatoid arthritis

376  Ulcerative colitis Ulcerative colitis

377  Ulcerative colitis Ulcerative colitis

378  Colorectal cancer Ulcerative colitis

379  Ulcerative colitis Colorectal cancer

380  Schizophrenia Schizophrenia

381  Schizophrenia Schizophrenia

382  Rheumatoid arthritis Rheumatoid arthritis

383  Rheumatoid arthritis Rheumatoid arthritis
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384  Rheumatoid arthritis Rheumatoid arthritis

385  Rheumatoid arthritis Rheumatoid arthritis

386  Type 1 diabetes Multiple sclerosis

387  Multiple sclerosis Type 1 diabetes

388  Multiple sclerosis Type 1 diabetes

389  Multiple sclerosis Type 1 diabetes

390  Type 1 diabetes Multiple sclerosis

391  Type 1 diabetes Multiple sclerosis

392  Type 1 diabetes Multiple sclerosis

393  Multiple sclerosis Type 1 diabetes

394  Crohn's disease
Inflammatory bowel 
disease

395 
Inflammatory bowel 
disease  Crohn's disease

396  Prostate cancer Prostate cancer

397  Prostate cancer Prostate cancer
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Appendix A.7 Disease prevalence from RMRS data 

Disease / Trait (listed in GWAS) Prevalence (%) in RMRS 

Acute_lymphoblastic_leukemia_ 0.0002 

AIDS_progression 0.01 

Amyotrophic_lateral_sclerosis 0.0006 

Asthma  0.29 

Atrial_fibrillation  0.0374 

Atrial_fibrillation_atrial_fl 0.0374 

Autism  0.0004 

Biochemical_measures 0.01 

Bipolar_disorder  0.19 

Black_vs__red_hair_color 0.01 

Blond_vs__brown_hair_color 0.01 

Body_mass_index 0.01 

Breast_cancer  0.017 

C_reactive_protein 0.1 

Celiac_disease  0.0004 

Cholesterol__total 0.01 

Chronic_lymphocytic_leukemia 0.00001 

Chronic_Obstructive_Pulmonary 0.06 

Colorectal_cancer 0.0004 

Coronary_disease 0.13 

Crohn_s_disease  0.0064 

Cutaneous_nevi  0.01 

Diastolic_blood_pressure 0.1 

Drug_induced_liver_injury__fl 0.01 

F_cell_distribution 0.01 

Folate_pathway_vitamin_levels 0.1 

Follicular_lymphoma 0.01 

Freckles  0.01 

Glioma  0.0002 

Glioma__high_grade_ 0.00002 

HDL_cholesterol  0.01 

Height  0.1 

Hematocrit  0.01 

Hemoglobin  0.1 

Hemoglobin_levels 0.1 

Inflammatory_bowel_disease 0.01 

Inflammatory_bowel_disease__e 0.01 

Intracranial_aneurysm 0.0012 
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Ischemic_stroke  0.024 

Knee_osteoarthritis 0.027 

LDL_cholesterol  0.18 

Lung_adenocarcinoma 0.00015 

Lung_cancer  0.015 

Male_pattern_baldness 0.01 

Mean_corpuscular_hemoglobin 0.01 

Mean_corpuscular_volume 0.01 

Melanoma  0.002 

Menarche__age_at_onset_ 0.1 

Multiple_sclerosis 0.0024 

Myeloproliferative_neoplasms 0.0014 

Myocardial_infarction__early_ 0.04 

Nicotine_dependence 0.23 

Nonsyndromic_cleft_lip_with_o 0.01 

Obesity  0.16 

Obesity__early_onset_extreme_ 0.0016 

Obesity__extreme_ 0.0016 

Obesity_related_traits 0.0016 

Other_metabolic_traits 0.01 

Otosclerosis  0.0035 

Pancreatic_cancer 0.0018 

Parkinson_s_disease 0.00025 

Plasma_eosinophil_count 0.01 

Plasma_level_of_vitamin_B12 0.01 

Plasma_levels_of_liver_enzyme 0.01 

Primary_biliary_cirrhosis 0.00035 

Prostate_cancer  0.0037 

Psoriasis  0.04 

Pulmonary_function_measures 0.01 

Quantitative_traits 0.01 

Recombination_rate__females_ 0.01 

Recombination_rate__males_ 0.01 

Red_vs_non_red_hair_color 0.5 

Restless_legs_syndrome 0.01 

Rheumatoid_arthritis 0.01 

Schizophrenia  0.067 

Serum_iron_concentration 0.01 

Serum_markers_of_iron_status 0.01 

Skin_sensitivity_to_sun 0.01 

Systemic_lupus_erythematosus 0.01 
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Systolic_blood_pressure 0.01 

Testicular_cancer 0.01 

Testicular_germ_cell_tumor 0.01 

Triglycerides  0.01 

Type_1_diabetes  0.05 

Type_2_diabetes  0.064 

Type_2_diabetes_and_other_tra 0.0006 

Ulcerative_colitis  0.0035 

Venous_thromboembolism 0.02 

Waist_circumference_and_relat 0.01 

Weight  0.01 
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Appendix A.8 Java code for RNOR Subroutine 

 
public Float calculateRNORTrue(NodeList nList, int[] pStates, Node 
nodeForRNOR) 

    { 
     Float retValTrue = 0.0f; 
     Node n1, n2; 
     Float f1,f2,probScoreTrue; 
     NodeList subtractList, numeratorList, denominatorList; 
      
     float[] cptRow = {0.0f, 0.0f}; 
     float [] vecp = {0.0f, 0.0f};  
      
     try {   
      if(nList.size() == 1) 
      { 
       n1 = (Node) nList.get(0); 
       vecp = nodeForRNOR.getCPTable(pStates, null); 
       if(vecp[0] == 0.5) 
       { 
        retValTrue = linkProbsTrue.get(n1.getName()); 
       } 
       else 
       { 
        retValTrue = vecp[0]; 
       } 

       linkProbsTrue.put(nList.toString(), 
retValTrue);        // also save it for further calculations 

printProbsTrue.put(getParentStateName(pStates), 
retValTrue); 

      } 
      else if(nList.size() == 2) 
      { 
        n1 = (Node) nList.get(0); 
        n2 = (Node) nList.get(1); 
        f1 = linkProbsTrue.get(n1.getName()); 
        f2 = linkProbsTrue.get(n2.getName()); 
         
        vecp = nodeForRNOR.getCPTable(pStates, null); 
        if(vecp[0] == 0.5) 
        { 

retValTrue = retValTrue = 1 - ( (1 - f1)* (1 - 
f2)) ;  

        } 
        else 
        { 
        retValTrue = vecp[0]; 
        }  
                

linkProbsTrue.put(nList.toString(), retValTrue);    
// also save it for further calculations 
printProbsTrue.put(getParentStateName(pStates), 
retValTrue); 

      } 
 

/************************* RNOR Algorithm ************************/ 
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         else 
      { 
       subtractList = new NodeList(tempNet); 
       Node nodeToSubtract, nodeToSubtractPlusOne; 

ArrayList<Float> resultProbs = new 
ArrayList<Float>(); 
ArrayList<Float> resultProbsTrue = new 
ArrayList<Float>(); 

        
       for(int i=0; i< nList.size(); i++) 
       { 
        nodeToSubtract = nList.getNode(i); 
        subtractList.clear(); 
        // Numerator 
        numeratorList = new NodeList(nList); 
        subtractList.add((Node) nodeToSubtract); 

 setSubtract(numeratorList, subtractList);  
//After the call numeratorSet = nList - subtractList 

         
        // Denominator 
        subtractList.clear(); 
        denominatorList = new NodeList(nList); 
        subtractList.add((Node) nodeToSubtract); 
        if((nList.size() - i) == 1)   

// Are we at the end of the list, then the plus 
one subtract node needs to be wrapped 

        { 
nodeToSubtractPlusOne = nList.getNode(0); 

        } 
        else 
        { 

nodeToSubtractPlusOne = 
nList.getNode(i+1); 

        } 
subtractList.add((Node) nodeToSubtractPlusOne); 
setSubtract(denominatorList, subtractList);  
//After the call denominatorSet = nList - 
subtractList 

         
probScoreTrue = 
calculateTrueProbScore(numeratorList, 
denominatorList, pStates, nodeForRNOR); 

        resultProbsTrue.add(probScoreTrue); 
               
       } 
        
 

// Now mulitply indivdual scores and subtract from 1 
       retValTrue = resultProbsTrue.get(0); 
       for(int i=1; i < resultProbsTrue.size(); i++) 
       { 

retValTrue = retValTrue*resultProbsTrue.get(i); 
       } 
       retValTrue = 1 - retValTrue; 
        
       if(retValTrue == 0) 
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       { 
        retValTrue = 0.0f;  
       } 
       else if(retValTrue == 1) 
       { 
        retValTrue = 1.0f; 
       } 
        
       //if(retValTrue >= 0.0f && retValTrue <= 1.0f)      
  
 { 

if(!linkProbsTrue.containsKey(nList.toString()))   // we store it 
for future calculations if needed 

 { 
linkProbsTrue.put(nList.toString(), retValTrue);    // also save 
it for further calculations 

     
 printProbsTrue.put(getParentStateName(pStates), retValTrue); 
 } 
 } 
 //else 
 if(retValTrue < 0.0f || retValTrue > 1.0f)     
 { 
  try { 

writerError.write("Combination -VE or +VE for:" + 
getParentStateName(pStates) + ":" + retValTrue.toString()); 

  writerError.write("\n"); 
   
  for(int i=0; i < resultProbsTrue.size(); i++) 
  { 

writerError.write("val_" + i + ": "  + 
resultProbsTrue.get(i)); 

   writerError.write("\n"); 
          
  } 
 } catch (IOException e) { 
  

// TODO Auto-generated catch block 
  try { 
   writer.write(e.toString()); 
  } catch (IOException e1) { 
  // TODO Auto-generated catch block 
   e1.printStackTrace(); 
  } 
   e.printStackTrace(); 
  } 
 
      } 
      } 
       
     } catch (NeticaException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  }   
  return retValTrue; 
    } 
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Appendix A.9 Java code for IsBIG Subroutine 
 
public void processRequest (String filename_org, String filename_other, 
String filename_trait_prevalance, Double threshold)  
{ 
       
      logBuf = ""; //resets log 
   
      assocFileName = filename_org; 
      outputFileName = filename_other; 
      initTraitPrevalance(filename_trait_prevalance); 
      partialAssociationElement.setThreshold(threshold); 
       
      try{     
          //-- Do Netica stuff 
          try { 
       if (env == null) { 
           env = Environ.getDefaultEnviron(); 
           if (env == null) { 
        String errMsg = initSession(); 
        if (env == null) { 
            System.out.println( errMsg ); 
            return; //no point in continuing 
        } 
           } 
       } 
      } catch (Exception e) { 
    System.out.println( e.getMessage() ); 
      } 
 

totalSNPs = 0; 
      totalTraits = 0; 
      parseAssocFile(assocFileName); 
      if(printDebug) 
      { 

System.out.println("/********************************************
****************/"); 
      System.out.println("Total Duplicate Associations Found for input: 
" + myAssociations.getDuplicateAssociation()); 
      System.out.println("Total Associations Found: " + 
myAssociations.getTotalAssociation()); 
      Iterator<Map.Entry<String, associationElement>> assocIterator = 
myAssociations.getIterator(); 
      while(assocIterator.hasNext()) 
    { 
       System.out.println(assocIterator.next().getKey()); 
    } 
System.out.println("/**************************************************
**********/"); 
      } 
       
      drawDAG(); 
      System.out.println("Writing to File Total SNPs: " + totalSNPs); 
       

String  fn = outputFileName.substring(0, 
outputFileName.indexOf(".")); 
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      Streamer os1 = new Streamer(fn + "_SNP.dne" ); 
 tempNet.write(os1); 
 triangulate(); 
      prune(); 
       
      System.out.println("Writing to File Pruned SNPs Network: "); 
       
      Streamer os2 = new Streamer(fn + "_PrunedSNP.dne" ); 
 tempNet.write(os2); 
  
   Iterator<snp> snpListIterator= snpListByRSquare.iterator(); 
   if(printDebug) 

  { 
       while(snpListIterator.hasNext()) 
     { 
        System.out.println(snpListIterator.next().getName()); 
     } 

System.out.println("/**************************************
**********************/"); 

        } 
        drawDAG_traits(); 
        System.out.println("Total Traits: " + totalTraits); 
   Iterator<String> traitListIterator= traitList.iterator(); 
   if(printDebug) 
        { 
    while(traitListIterator.hasNext()) 
     { 
        System.out.println(traitListIterator.next()); 
     } 

System.out.println("/**************************************
**********************/"); 

         } 
 removeCyclesBeforeCPT(); 
      computeCPT(); 
      computeCPTofTraits(); 
       

boolean compiled = false; 
      while(!compiled)  
      { 
      try{ 
      
       tempNet.compile(); 
       compiled = true; 
   } catch(NeticaException e) 
   { 
     if(e.getMessage().contains("is a cycle (containing link")) 
        { 
         String [] msg = e.getMessage().split("->"); 
         String [] n = msg[0].split("link"); 
         String [] msgg = msg[1].split("\n"); 
         String c_name = msgg[0].trim(); 
        String n2 = c_name.substring(0,c_name.length()-1); 
         Node child = (Node) tempNet.getNode(n2); 

   Node parent = (Node) tempNet.getNode(n[1].trim()); 
       removeCycles(parent, child); 
        } 
   else if(e.getMessage().contains("doesn't have a CPT table")) 
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        { 
         String [] msg = e.getMessage().split("node"); 
         String [] n = msg[0].split("rs"); 
         String [] msgg = msg[1].split("\n"); 

String c_name = 
msgg[0].substring(2,msgg[0].indexOf("doesn't")-2); 

          
         Node Odd_n = (Node) tempNet.getNode(c_name); 
         int size = Odd_n.getParents().size(); 
         float[] cptRow = new float [size*2*2]; 
         for(int i=0; i<cptRow.length; i++) 
         { 
          cptRow[i] = 0.5f; 
         } 
         Odd_n.setCPTable(cptRow); 
         } 
        else 
        { 
         System.out.println(e.getMessage()); 
        } 
      } 
     } 
      double size = tempNet.sizeCompiled();   

System.out.println("Total compiled size: " + 
Double.toString(size)); 

      double memSize = tempNet.getEnviron().getMemoryUsageLimit();  
System.out.println("Total memory size: " + 
Double.toString(memSize)); 

      Streamer os = new Streamer(outputFileName); 
 tempNet.write(os); 
    
   Net netToAbsorb = new Net(new Streamer (outputFileName)); 
    
  //Absorb nodes 
   NodeList nodes = new NodeList (netToAbsorb); 

  Iterator<snp> snpNodeListIterator= 
snpListByRSquare.iterator(); 

 while(snpNodeListIterator.hasNext()) 
 { 
        snp thisSNP = snpNodeListIterator.next(); 
        String name = thisSNP.getName(); 
         
        nodes.add(netToAbsorb.getNode(name)); 
 }  
  netToAbsorb.absorbNodes (nodes); 
   
 Streamer os_mod = new Streamer(fn + "_absorbed.dne"); 
 netToAbsorb.write(os_mod); 
 netToAbsorb.finalize(); 
   
 tempNet.finalize(); 
 tempNet = null; 
       }  

catch (Exception e) { 
      

System.out.println( e.getMessage() ); 
     }    
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