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ABSTRACT 

Donghui Zhou 

THE MECHANISMS REGULATING THE TRANSCRIPTION FACTOR ATF5 AND 

ITS FUNCTION IN THE INTEGRATED STRESS RESPONSE 

Phosphorylation of eukaryotic initiation factor 2 (eIF2) is an important 

mechanism regulating global and gene-specific translation during different environmental 

stresses. Repressed global translation by eIF2 phosphorylation allows for cells to 

conserve resources and elicit a program of gene expression to alleviate stress-induced 

injury. Central to this gene expression program is eIF2 phosphorylation induction of 

preferential translation of ATF4. ATF4 is a transcriptional activator of genes involved in 

stress remediation, a pathway referred to as the Integrated Stress Response (ISR). We 

investigated whether there are additional transcription factors whose translational 

expression is regulated by eIF2 kinases. We found that the expression of the 

transcriptional regulator ATF5 is enhanced in response to many different stresses, 

including endoplasmic reticulum stress, arsenite exposure, and proteasome inhibition, by 

a mechanism requiring eIF2 phosphorylation. ATF5 is regulated by translational control 

as illustrated by the preferential association of ATF5 mRNA with large polyribosomes in 

response to stress. ATF5 translational control involves two upstream open reading frames 

(uORFs) located in the 5′-leader of the ATF5 mRNA, a feature shared with ATF4. 

Mutational analyses of the 5′-leader of ATF5 mRNA fused to a luciferase reporter 

suggests that the 5′-proximal uORF1 is positive-acting, allowing scanning ribosomes to 

reinitiate translation of a downstream ORF. During non-stressed conditions, when eIF2 

phosphorylation is low, ribosomes reinitiate translation at the next ORF, the inhibitory  
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uORF2. Phosphorylation of eIF2 during stress delays translation reinitiation, allowing 

scanning ribosomes to bypass uORF2, and instead translate the ATF5 coding region. In 

addition to translational control, ATF5 mRNA and protein levels are significantly 

reduced in mouse embryo fibroblasts deleted for ATF4, or its target gene, the 

transcriptional factor CHOP. This suggests that ISR transcriptional mechanisms also 

contribute to ATF5 expression. To address the function of ATF5 in the ISR, we employed 

a shRNA knock-down strategy and our analysis suggests that ATF5 promotes apoptosis 

under stress conditions via caspase-dependent mechanisms. Given the well-characterized 

role of CHOP in the promotion of apoptosis, this study suggests that there is an ATF4-

CHOP-ATF5 signaling axis in the ISR that can determine cell survival during different 

environmental stresses.  

 

 

 

Ronald Wek, Ph.D., Chair 
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INTRODUCTION 

1. Cellular stress responses: a gateway to life or death  

Environmental stresses, such as accumulation of misfolded protein in the 

endoplasmic reticulum (ER stress), nutrient deprivation, UV irradiation, and oxidative 

damage can trigger a variety of physiological and pathological responses. One example 

of this stress response pathway involves phosphorylation of eukaryotic initiation factor-2 

(eIF2). eIF2 phosphorylation is a well-characterized translational control mechanism, 

which is induced by a family of protein kinases that each respond to a unique set of stress 

conditions (Fig. 1) (1). This translation control process, which is described in detail 

below, can mitigate cellular damage and determine the threshold between cell survival 

and apoptosis.  

The eIF2 kinase stress response has three main parts. The first is the upstream 

stress signal that activates the eIF2 kinase response pathway. For example, heme 

deficiency in erythroid cells results in activation of the eIF2 kinase, Heme-regulated 

inhibitor (HRI). Unique stress signals also activate the other members of the eIF2 kinase 

family, including endoplasmic reticulum (ER) stress (PKR-like ER kinase, PERK), 

double stranded RNA produced during viral infection (Double-stranded RNA activated 

protein kinase, PKR), and nutrient deprivation (general control nonderepressible 2, 

GCN2) (Fig. 1) (2). The second part of the eIF2 kinase response is the system adaption to 

the underlying stress, which involves reconfiguration of gene expression. For example, 

ER stress elicits the unfolded protein response (UPR), involving induction of genes that 

facilitate the folding and transport of secretory proteins, ER-associated protein 

degradation (ERAD), and selected metabolic processes. As detailed further below, 
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phosphorylation of eIF2 reduces global translation coincident with preferential translation 

of ATF4, a transcriptional activator that can participate in the UPR during ER stress. The 

eIF2 kinase PERK and ATF4 function in conjunction with other UPR sensory proteins, 

including ATF6 (3, 4), a transcriptional activator that can bind ER stress response 

elements (ERSEs) in the promoters of UPR-responsive genes, and IRE1, which is an ER 

transmembrane protein kinase and endonuclease that facilitates cytoplasmic splicing of 

XBP1 mRNA (5, 6). XBP1 also encodes a transcriptional activator of the UPR (7, 8). The 

combination of gene expression directed by eIF2 phosphorylation and these UPR-specific 

regulators allows for the transcriptome to be tailored for the specific stress condition. 

The final part of the eIF2 kinase stress pathway involves resolution of the stress 

damage and cell survival, or alternatively apoptosis. PERK promotes cell viability in 

response to ER stress, and loss of PERK induces cell death in pancreatic β-cells (9), 

indicating that this eIF2 kinase contributes to survival during ER stress. The PERK/ATF4 

pathway can also induce the expression of CHOP, a transcription factor that can elicit 

apoptosis (10-13). This reflects the dual functions of the eIF2 kinase pathway in the stress 

context. Initially, this stress response pathway triggers adaption to restore the 

homeostasis. However, if the extent or duration of the stress is heightened, the eIF2 

kinase response can instead switch to the progression of cell death.   

 

2. eIF2 phosphorylation: a key regulator of protein synthesis in response to stress  

2A. eIF2 is essential for the initiation of translation 

eIF2 is composed of three subunits α, β, and γ, which forms a ternary complex 

(TC) with GTP and initiator Met-tRNAi
Met

 (14). The primary role of eIF2 in translation 
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initiation is to escort the initiator Met-tRNAi
Met 

to the translation machinery. The eIF2 

TC assembles with 40s ribosomal subunits, and participates in the ribosomal recognition 

of the AUG start codon (15, 16). This process proceeds with hydrolysis of eIF2-GTP to 

eIF2-GDP and Pi. AUG recognition allows the release of Pi and eIF2-GDP (17). Joining 

of 60s ribosomal subunit yields a translation-competent 80s ribosome with the start codon 

and associated initiator tRNA in the P site. To facilitate the subsequent rounds of 

translation initiation, the GDP bound form of eIF2 is subsequently recycled to eIF2-GTP, 

a process facilitated by a guanine nucleotide exchange factor (GEF), eIF2B (Fig. 2).  

 

2B. The recycling of eIF2 by eIF2B is a highly regulated step in protein synthesis 

eIF2B is heteropentameric complex that is composed of five subunits α, β, γ, δ 

and ε (18-20). eIF2B γ and ε share sequence homology and form a binary catalytic 

subcomplex that catalyzes the regeneration of eIF2-GTP. The α, β and δ subunits form 

the regulatory part that can facilitate inhibition of eIF2B GEF activity in response to 

stress conditions. During translation initiation, eIF2 is released from the ribosome in the 

GDP bound form. Since eIF2-GTP is required to deliver Met-tRNAi
Met

 to 40S subunits, 

eIF2-GDP must be converted to eIF2-GTP. As eIF2 has a higher affinity for GDP, eIF2B 

is required to catalyze guanine nucleotide exchange. Because eIF2B promotes the release 

of GDP from eIF2, modulation of the GEF activity of eIF2B is a key regulatory step for 

translation.  

The process of guanine nucleotide exchange by eIF2B is inhibited by the 

phosphorylation of the α subunit of eIF2 on serine 51(1). Phosphorylated eIF2α is 

thought to bind to the regulatory complex of eIF2B (α, β and δ subunits), leading to the 
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inhibition of the catalytic portion of the GEF (γ and ε subunits) (Fig. 2) (21). Because 

eIF2 is present at a much higher cellular concentration than eIF2B, only a portion of eIF2 

is required to be phosphorylated to significantly block the guanine nucleotide exchange 

activity of eIF2B. The resulting reduction of eIF2-GTP lowers general translation (15), 

thus allowing cells to conserve enough resources and providing additional time to 

reconfigure gene expression designed to alleviate the damage elicited as a consequence of 

the underlying stress. 

 

2C. Dephosphorylation of eIF2α and translational recovery 

Since sustained repression of protein synthesis by eIF2 phosphorylation can have 

negative consequences, cells have developed a strategy to feedback control this 

translational control response. Growth Arrest and DNA Damage-inducible 34 (GADD34) 

is involved in this feedback process. GADD34 is a regulatory subunit for the type 1 

protein phosphatase 1 catalytic subunit (PP1c) and is transcriptionally induced by ATF4 

during the eIF2 kinase response. As a consequence, enhanced levels of GADD34 bind to 

PP1c, facilitating its recognition and dephosphorylation of eIF2α (22, 23). This feedback 

mechanism would allow for a resumption of translation once the stress-related genes have 

been induced by ATF4. Interestingly, viruses also utilize a similar strategy to overcome 

the cellular response that down-regulates global translation and inhibits virus replication 

and spread in the host. γ134.5, a virulence factor of herpes simplex virus has sequence 

homology to GADD34, and recruits PP1c to preclude phosphorylation of eIF2α triggered 

by PKR during viral infection (24). Mutations that disrupt the interaction between γ134.5 

and PP1c inhibit both eIF2 dephosphorylation and viral replication. These results are 
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consistent with the function of GADD34 in the recovery of the shutoff of protein 

synthesis. Therefore, activation of GADD34 and the attendant dephosphorylation of 

eIF2α serve to provide a means for cells to attenuate the stress response once the stress 

damage has been alleviated. 

 

2D. eIF2 kinases regulate translation during different stress conditions 

A family of eIF2 kinases have been characterized in mammalian cells. As 

diagrammed in Fig. 3, these protein kinases each contain a conserved protein kinase 

domain, along with a unique regulatory region that allows for specific recognition and 

activation by different stresses. PERK (PEK/EIF2AK3) is an ER-resident transmembrane 

protein kinase, with its cytosolic portion containing the protein kinase domain, and the 

ER luminal part containing the regulatory elements for PERK. The regulatory elements 

facilitate dimerization and associate with the repressing protein, Glucose-regulated 

protein 78 (GRP78/BiP), a major ER chaperone whose expression is induced by UPR 

during ER stress (25-27).  

GRP78/Bip has an ATPase domain in its N-terminus, and a peptide binding 

domain in its C-terminus. GRP78 binds to the hydrophobic patches of nascent 

polypeptides in ER with its peptide-binding domain and uses the energy from the 

hydrolysis of ATP to promote proper polypeptide folding and to prevent aggregation (28-

30). GRP78 is also suggested to function as a regulator of the UPR by binding to ER 

stress sensors, such as PERK. In non-stressed cells, GRP78 associates with the luminal 

portion of PERK and blocks the dimerization of this eIF2 kinase; however, the 

overwhelming load of misfolded protein in ER stress is proposed to titrate GRP78 away  
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Figure 1. Protein kinases, PKR, HRI, PERK and GCN2 each respond to distinct 

stress conditions and phosphorylate the α subunit of eIF2 at serine-51. 

Phosphorylation of eIF2α inhibits the function of the guanine nucleotide exchange factor, 

eIF2B, which is required for the exchange of eIF2-GDP to eIF2-GTP. The resulting 

reduction in eIF2-GTP levels block translation initiation, leading to a lowered global 

protein synthesis. 
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Figure 2. eIF2 associates with initiator Met-tRNAi
Met

 and GTP, and participates in 

the ribosomal selection of the start codon. The eIF2-GTP combines with initiator Met-

tRNAi
Met

 and via additional translation initiation factors associates with the small 40S 

ribosome, resulting in a 43S complex. This ribosomal complex then combines with the 

5’-cap structure of mRNAs consisting of the 7’methyl guanosine cap of the mRNA and 

associated cap-binding protein, eIF4F. The 40S ribosome and associated eIF2 TC then 

scans processingly 5’- to 3’- along the mRNA until an AUG initiation codon is 

recognized. The initiation codon bound to initiator tRNA are situated in the P site, and 

then the 60S ribosome joins to form the competent 80S ribosome, allowing for the 

elongation phase of protein synthesis to follow. Prior to this joining of the ribosomal 

subunits, eIF2 which has been hydrolyzed to eIF2-GDP and Pi are released, completing 

the cycle. A family of protein kinases phosphorylates the α subunit of eIF2 at serine-51 in 
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response to different environmental stresses. Phosphorylation of eIF2α converts this 

translation factor from a substrate to an inhibitor of eIF2B. The resulting reduction in 

eIF2-GTP levels lowers general translation, allowing cells sufficient time to correct the 

stress damage, and selectively enhance gene-specific translation that is important for 

stress remediation.  
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from PERK, facilitating PERK dimerization, which leads to auto-phosphorylation and 

activation of PERK. Reduced translation during ER stress is accompanied by the UPR 

that enhances the expression of genes involved in assembly and processing of secreted 

proteins. For example, PERK phosphorylation of eIF2α induces ATF4 translation by a 

mechanism of delayed ribosomal reinitiation (see Figure 4). ATF4 functions in 

conjunction with ATF6 and XBP1 to direct the UPR genes. Enhanced ATF4 translation is 

suggested to improve β cell survival in mice (31, 32), and PERK deletions lead to 

Wolcott Rallison Syndrome in humans, which features loss of insulin-secreting β cells 

(33). Since PERK is abundantly expressed in the secretory cells, and overload of insulin 

over time causes chronic ER stress that is proposed to lead to β cell loss, these findings 

suggest that PERK has an important role in proliferation and viability of secretory cells, 

especially pancreatic β cells. 

GCN2 (EIF2AK4) functions to regulate translation from yeast to mammals, 

Phosphorylation of eIF2α increases the translation of ATF4 in mammals, and GCN4 in 

yeast Saccharomyces cerevisiae in response to deprivation for amino acids (34, 35). 

GCN2 contains a partial kinase domain, a protein kinase domain, a histidyl-tRNA 

synthetase-related region (HisRS), and a C-terminal region required for ribosome binding 

and dimerization (Fig. 3). The HisRS-related domain monitors the availability of amino 

acids, while the C-terminus facilitates GCN2 dimerization and ribosome association (36). 

The C-terminus of GCN2 has also been suggested to play an auto-inhibitory role by  



10 

 

Figure 3. eIF2 kinases have different regulatory elements that facilitate recognition 

of unique stress conditions. Diagram of GCN2, HRI, PKR and PERK (PEK). Each eIF2 

kinase has a conserved protein kinase domain represented by a black box, flanked by a 

divergent regulatory domain that participate in the recognition of diverse stress 

conditions. GCN2 contains a HisRS-related domain that monitors amino acid availability 

by binding to uncharged tRNAs that accumulate during nutrient deprvation, and a C-

terminal region that provides for GCN2 ribosome association and GCN2 dimerization. 

HRI has two heme-binding domains that mediate HRI repression when heme is readily 

available in erythroid cells. The two dsRNA-binding domains (dsRBD) of PKR are 

involved in activation of the eIF2 kinase by dsRNA produced during viral infections. The 

PEK regulatory elements include a signal sequence (SS) important for its entry into the 

ER, an ER transmembrane (TM) region, and an ER lumenal region that regulates PEK 

dimerization and association with ER chaperones, such as GRP78/BiP (37, 38). The 

resulting phosphorylation of eIF2α during ER stress reduces protein synthesis, lowering 

the influx of nascent polypeptides into the stressed ER.  
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binding to the protein kinase domain (39). Amino acid starvation leads to accumulation 

of uncharged tRNAs, which bind to the HisRS-related domain of GCN2, eliciting a 

conformational change that is proposed to release the association between the kinase 

domain and C-terminus domain, thus enhancing the eIF2 kinase activity(40). GCN2 also 

functions to control translation upon treatment with UV irradiation or with exposure to 

drugs that inhibit the proteasome (41-43). 

There is also cross-talk between GCN2 and other stress response pathways. The 

target of rapamycin (TOR) is a serine/threonine protein kinase and a sensor of cellular 

nutritional status in yeast and mammalian cells. Rapamycin, an inhibitor of TOR, induces 

eIF2 phosphorylation by GCN2 in yeast (44, 45). Decreased phosphorylation of 4E-BP 

and S6K1, two regulators of translation initiation controlled by mTOR, is blocked after 

leucine starvation in the liver of GCN2 knockout mice (46). These findings indicate that 

GCN2 is integrated with the mTOR pathway to control protein synthesis.   

In addition to preferential translation of ATF4, GCN2 phosphorylation of eIF2α 

can lower the synthesis of IB in response to UV irradiation, which is an inhibitory 

protein of NF-B (47). NF-B plays a key role in immune responses, the control of 

cellular proliferation, and apoptosis (48-50). The lowered synthesis of IB, coupled 

with its rapid turnover, releases the inhibitor from NF-B, which then is transported into 

the nucleus. After nuclear translocation, NF-κB binds at DNA elements in the promoters 

of its target genes, including those involved in mitigation of stress damage and regulation 

of apoptosis. Loss of GCN2 or the RelA/p65 subunit of NF-B enhances activation of 

Caspases 3 and 8, thus increasing apoptosis in response to UV irradiation (47). These 



12 

findings support the idea that GCN2 regulation of NF-B is important for signaling 

apoptosis.   

As noted above, GCN2 recognizes stresses other than nutritional deprivation, 

namely UV irradiation and proteasome inhibition (41-43). In response to UV irradiation, 

GCN2 enhancement of NF-B activity is suggested to have a pro-survival function, 

whereas GCN2 activation by proteasome inhibition can facilitate a pro-apoptotic 

pathway. Therefore, while different stress arrangements induce GCN2 phosphorylation of 

eIF2α, this stress response can play different roles in cell survival. These findings suggest 

that GCN2 functions in conjunction with additional stress response pathways to induce a 

program of gene expression to modulate the stress damage. 

HRI (EIF2AK1) is a heme-binding protein expressed predominantly in erythroid 

cells (51, 52). HRI contains two heme-binding sites, one in the N-terminus, and a second 

located in an insert region in the middle of the protein kinase domain (Fig. 3). Heme 

binding inhibits HRI kinase activity, and in response to heme deficiency, heme 

dissociates from the heme-binding site, leading to activation of HRI (53). The resulting 

phosphorylation of eIF2α down-regulates globin synthesis, the predominant synthesized 

polypeptide in reticulocytes. In this way, HRI serves to balance the globin synthesis and 

heme availability. Hemoglobin is composed of α-globin, β-globin, and heme strictly at 

the ratio of 2:2:4; and imbalance of this ratio is harmful. Iron is the main component of 

heme. In iron deficiency and low level of heme, the main adaptive response of wild-type 

mice is to prevent the globin synthesis through HRI phosphorylation of eIF2α, this is 

characterized by the red blood cell hypochromia and microcytosis; but in HRI deficient 

mice, globin devoid of heme aggregates improperly, characterized by hyperchromia, 
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compensatory erythroid hyperplasia and accelerated apoptosis (52, 54). Together, these 

findings illustrate that HRI not only maintains the balance between globin synthesis and 

heme availability, but also is required for erythroid survival upon iron deficiency. 

PKR (EIF2AK2) is ubiquitously expressed in all cells at low abundance. As an 

integral part of anti-viral infection system, PKR is transcriptionally induced by interferon, 

and this eIF2 kinase is activated on binding to double-stranded RNA (dsRNA) created 

during viral replication (55, 56). The anti-viral effect is achieved by blocking protein 

synthesis, both cellular and viral, as a result of induced PKR phosphorylation of eIF2α. In 

the N-terminal portion of PKR are two dsRNA-binding domains (dsRBDs), while the 

protein kinase domain is located at the C-terminus. During virus invasion, binding of 

double-strand RNA to the dsRBDs brings two PKR molecules in close proximity to form 

dimers, and induces PKR autophosphorylation and activation, thereby inhibiting cell 

growth and viral replication.  

Interestingly, viruses have developed several strategies to counteract the PKR 

mechanism. As discussed above, Herpes simplex virus γ134.5 is homologous to 

GADD34, and recruits PP1c to preclude phosphorylation of eIF2α triggered by virus 

infection (24). EBERs (Epstein-Barr Virus Small RNA) are noncoding RNAs expressed 

by Epstein-Barr virus that binds to PKR. EBERs are thought to have a similar affinity for 

PKR as dsRNA, which activate PKR; thus EBERs can compete for the dsRBDs of PKR 

and prevent PKR dimerization and activation (57). The human immunodeficiency virus 

type 1 evades the human immune system. One strategy is through its transcription 

regulatory protein, TAT, which is thought to act as the substrate homologue for PKR, 

competing with eIF2 for PKR phosphorylation (58). The block of PKR phosphorylation 
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of eIF2α would allow the virus protein synthesis to proceed. Finally, PKR is also reported 

to be involved in p53-mediated tumor suppression. As a target gene of p53, PKR is 

suggested to have an important effect in tumor-suppressor function of p53 (59).  

 

3. Target genes regulated by eIF2α phosphorylation 

3A. Phosphorylation of eIF2α induces translation of ATF4 mRNA 

Together with reduced protein synthesis, phosphorylation of eIF2α also increases 

the preferential translation of specific mRNAs. An important example of such 

preferential translation is ATF4 in mammals, and GCN4, a transcriptional activator in the 

yeast Saccharomyces cerevisiae. ATF4 is a basic zipper (bZIP) transcription activator 

that is important for directing the expression of genes involved in metabolism, the redox 

status of cells, and apoptosis. Decreased protein synthesis conserves energy and provides 

sufficient time for ATF4, and other stress-responsive transcription factors, to reconfigure 

gene expression that would block or ameliorate damage elicited by the underlying stress. 

Enhanced ATF4 expression during stress-induced eIF2 phosphorylation occurs primarily 

by translational control, as illustrated by increased association of ATF4 mRNA with 

polysomes (60). Central to ATF4 translational control is the 5’-leader of the ATF4 

mRNA, which encodes two upstream open reading frames (uORFs) that have opposing 

functions. ATF4 translation begins with the 40S ribosomal subunit bound to eIF2/GTP 

/Met-tRNAi
Met

 scanning from the 5′-end of the ATF4 mRNA and initiating translation at 

the positive-acting uORF1. Following uORF1 translation, ribosomes are thought to retain 

association with ATF4 mRNA and reinitiate translation at a downstream coding region. 

(61-63). In non-stressed cells, when eIF2 phosphorylation is low and there is abundant  
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Figure 4. ATF4 translational control by its leader sequences. Illustration of the 

model for ATF4 translational control. In the 5’-leader of the ATF4 mRNA are two 

uORFs that function differently in the regulation of ATF4 translation. The regulatory 

mechanism begins with translation of uORF1, which allows for retention of ribosomes 

and reinitiation at a downstream ORF. In nonstressed conditions, eIF2-GTP is available 

at high levels, and scanning ribosomes rapidly reinitiate translation at the next available 

ORF, uORF2. After translation of the inhibitory uORF2, ribosomes dissociate from the 

ATF4 mRNA; thus there is low expression of ATF4. Cellular stress and the ensuing eIF2 

phosphorylation lower the levels of eIF2-GTP, which delays translation reinitiation and 

allows for scanning ribosomes to bypass the uORF2 initiation codon. With the bypass of 

the uORF2 initiation codon, the scanning ribosomes have additional time to reacquire 

eIF2/GTP/Met-tRNAi
Met

 and begin translation at the ATF4 coding region.  



16 

eIF2-GTP, ribosomes scanning downstream from uORF1 readily reinitiate translation at 

the next available ORF, the inhibitory uORF2. Following translation of uORF2, 

ribosomes are suggested to dissociate from the ATF4 transcript, leading to lowered 

translation of the ATF4 coding region. During stress conditions, elevated phosphorylation 

of eIF2α reduces eIF2-GTP levels, thus increasing the time required for scanning 

ribosomes to become competent to reinitiate translation. Following translation of uORF1, 

delayed reinitiation would allow for a portion of the ribosomes to bypass the uORF2 

initiation codon, and instead translate the ATF4 coding region (Fig. 4). Elevated 

expression of ATF4 would lead to enhanced binding of ATF4 to the promoters of the 

target genes and increased transcription. 

 

3B. uORFs regulate GCN4 mRNA translation 

The central feature of the delayed ribosome reinitiation controlling translation of 

ATF4 mRNA in response to eIF2 phosphorylation is shared with the bZIP transcriptional 

regulator GCN4 in yeast Saccharomyces cerevisiae (34). GCN4 is the “master regulator” 

in the general amino acid control (GAAC) pathway (64). In the GAAC, amino acids 

starvation induces by GCN2, the only eIF2 kinase in this yeast. As sensor of amino acid 

depletion, activation of GCN2 requires the accumulation of uncharged tRNAs, which 

bind to the HisRS-related domain of GCN2 (Fig. 5). GCN2 phosphorylation of eIF2α 

reduces its activity, and the resulting lowered global translation allows cells to conserve 

resources and provides time to reconfigure the transcriptome to alleviate nutrient stress. 

The GCN4 transcript has four uORFs in its 5’-leader sequence, each contributing to 

translational control. The uORF1 serves as a positive-acting element, allowing ribosomes 
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Figure 5. GCN2 protein kinase activity is enhanced by uncharged tRNA that 

accumulates during amino acid starvation. Upon nutrient depletion, accumulating 

uncharged tRNAs are proposed to bind to the HisRS-related domain of GCN2, eliciting a 

conformational change that results in GCN2 autophosphorylation and activation of GCN2 

kinase activity. GCN2 phosphorylation of eIF2α converts the translation initiation factor 

into a potent inhibitor of the guanine nucleotide exchange factor eIF2B, which reduces 

translation initiation. 
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to reinitiate at a downstream uORF. uORFs 2, 3, and 4 function as inhibitory elements, 

and translation of one of these inhibitory uORFs is thought to facilitate dissociation of 

ribosomes from the mRNA, and thus lower translation of the GCN4 coding region (65). 

Upon amino acid starvation, with elevated phosphorylation of eIF2α and low eIF2-GTP 

levels, ribosomes would translate the 5’-proximal- uORF1. Following translation of the 

positive-acting uORF1, ribosomes would resume scanning, but there is delayed 

translation reintiation. With this delay, the ribosomes would scan through the inhibitory 

uORFs 2, 3, and 4. During the interval between uORF4 and the GCN4 coding region, the 

scanning ribosomes would reacquire the eIF2 ternary complex and translate the GCN4 

coding region (Fig. 6) (66-68). Increased GCN4 protein levels would then enhance the 

transcription of the hundreds of genes subject to the yeast GAAC. 

  

3C. Role of ATF4 in response to diverse cellular stresses 

Induction of ATF4 mediates the integrated stress response (ISR) initiated by 

phosphorylation of eIF2α, which can protect cells against metabolic consequences of ER 

stress. ATF4 can form homodimers or heterodimers with other bZIP transcription factors, 

and elevated ATF4 synthesis directly contributes to increased binding of this 

transcription activator to the promoters of targeted genes. Activation of ATF4 induces 

many ISR target genes, including GADD34, which as described above facilitates 

feedback dephosphorylation of eIF2α. Microarray studies utilizing PERK
-/-

 and ATF4
-/-

 

mouse embryo fibroblast (MEF) cells reported that of the genes requiring PERK 

activation and eIF2 phosphorylation for their induction in response to ER stress, about  
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Figure 6. Model for GCN4 translation in amino acid starvation. In nonstressed cells, 

ribosomes completing translation of the 5’-proximal uORF1 reinitiate at a downstream 

uORF, uORFs 2, 3, and 4, which function as inhibitory elements. Translation of one of 

these inhibitory uORFs facilitates dissociation of ribosomes from the mRNA, and thereby 

lowers translation of the GCN4 coding region. During amino acid starvation, uncharged 

tRNA activates GCN2 phosophorylation of eIF2. The resulting low levels of eIF2-GTP 

allows for the 40S ribosomes to scan through the inhibitory uORFs 2, 3, and 4 located in 

the 5'-leader of the GCN4 mRNA. In the interval between ORF4 and the GCN4 coding 

sequences, scanning ribosomes associate with eIF2-GTP and initiate translation at the 

GCN4 coding sequences. Increased levels of GCN4 then enhances the transcription of 

genes subject to the GAAC. 
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half required ATF4 function (69). These results suggest that there may be additional 

transcription factors that are important for directing the eIF2 kinase pathway and are 

subject to translational control. 

 

4. Integration of ATF5 into the eIF2 kinase stress response 

4A. General properties of ATF5   

As noted above, four different eIF2 kinases have been identified in mammals, 

each participating in a complex network of stress-related gene expression. In addition to 

ATF4, other targets of preferential translation are thought to facilitate regulation of gene 

expression by eIF2 kinases. One candidate is ATF5, a bZIP transcriptional regulator that 

is encoded by an mRNA that contains two uORFs with analogous proximity to that 

described for the ATF4 transcript (Fig. 7). 

ATF5 belongs to the activating transcription factor ATF/cAMP response-element 

binding protein (CREB) family. When the original ATF5 cDNA clone was isolated and 

characterized, it was named differently as ATFx (70). ATF5 was first determined to be a 

binding partner of G-CSF gene promoter element 1-binding protein (GPE1-BP) and was 

classified as a member of the ATF4 subgroup due to its 55% sequence identity with the 

ATF4 protein. As an ATF4 subfamily member, ATF5 contains a C-terminal leucine 

zipper that directs homophilic dimerization (71). Additionally, ATF5 has a central 

proline-rich domain for DNA transactivation (72). 

The human ATF5 gene is 5.2-kb in length, and is placed in chromosome 19 at the 

cytogenetic band: 19q13.3 at 50,431,974-50,437,192 bp (Chormosome accession: 

NC_000019.9, RefSeq Accession: NM 012068). ATF5 has two mRNA isoforms (ATF5α 
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and ATF5β) that encode the same protein, with different 5’-leader sequences (72).  

ATF5α is predominant during development and in the adult with the highest levels 

present in liver, while ATF5β mRNA is secondary, with expression restricted to 

development (71); however, due to the unavailability of a satisfactory antibody, ATF5 

protein expression has not been detected reliably. As described further in the Results 

section, our laboratory produced ATF5 antibody and we have been able to reliably detect 

ATF5 protein by immunoblot analysis.  

Examination of the 5’-leader sequence of ATF5αmRNA revealed two uORFs 

that are conserved among many different vertebrates, including human, mouse, rat, cow, 

and frogs (Fig. 7). The 5′-proximal uORF1 encodes a polypeptide that is only three amino 

acid residues in length, Met-Ala-Leu, that is conserved among the different ATF5 

orthologs. The downstream uORF2 encodes a polypeptide ranging from 59 residues in 

length in human and cow, to 53 residues in the frog ATF5 mRNA. In each example, the 

uORF2 overlaps, out of frame, with the ATF5 coding region. Based on the similarity of 

5’-leader structure and protein level between ATF4 and ATF5, ATF5 is a potential target 

for uORF-mediated translational control. Although our understanding of the biological 

function of ATF5 is limited and fragmentary, ATF5 has recently emerged as a key player 

in cell differentiation, cell survival and apoptosis (73-81). It is likely that the 

characteristics of ATF5 function are cell-type-dependent and context-dependent, and this 

transcription factor is a central subject of this thesis.     
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4B. Functional role of ATF5 in nervous system   

The main focus of published research on ATF5 concerns its functions in 

neuroprogenitor cells. ATF5 transcript was first detected in olfactory epithelium and 

vomeronasal organ of the nasal cavity during mouse embryonic development, suggesting 

its role in olfactory sensory neuron differentiation (72). Comparisons between PC12 

pheochromocytoma cells before and after a 9 days of NGF exposure suggested that ATF5 

is involved in neuronal differentiation (77). NGF promotes PC12 differentiation rather 

than proliferation. Before NGF exposure, ATF5 transcripts are highly expressed in the 

cells, compared to a 25-fold decrease in ATF5 mRNA levels after NGF treatment. 

Constitutive expression of ATF5 was reported to block NGF-induced neuron 

differentiation, and knock-down of ATF5 using RNAi enhanced NGF-promoted neurite 

outgrowth (77). These findings led to the idea that ATF5 serves as a negative regulator of 

neuronal differentiation. This function for ATF5 is further supported by its presence in 

the ventricular zone of the E12, E14, and E17 rat telencephalon; such an expression 

pattern is not detected on the surface of the developing cortex, where the neuronal 

marker, Tubulin bIII (TUJ1) is expressed. ATF5 is also suggested to block the 

differentiation of the neuroprogenitor cells to astrocytes (82) and oligodendrocytes (83). 

Based on these findings, appropriate expression of ATF5 is proposed to be critical for 

neural differentiation.  

 

4C. ATF5 and cell survival 

Apart from its role in neuroprogenitor cells, ATF5 is also suggested to have a role 

in cell survival. Repression of ATF5 mRNA has been reported to correlate with the 
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induction of apoptosis in response to growth factor deprivation in multiple cell lines and 

primary cells (84). Ectopic expression of ATF5 suppresses apoptosis induced by cytokine 

deprivation in an IL-3 dependent cell line. Further supporting the role of ATF5 in cell 

survival, high expression of ATF5 was detected in glioblastoma cells, and interference 

with ATF5 function resulted into glioma cell death (82). High abundance of ATF5 was 

also found in other neoplasms, leading to speculation that ATF5 provided an advantage in 

cell proliferation and survival (74). Finally, a role of ATF5 in cell survival is also 

suggested by its ability to upregulate the level of MCL1, an antiapoptotic B cell 

leukemia-2 (BCL2) family member, and to block the p53-dependent apoptosis induced 

by ionizing irradiation (78, 85). Aside from these target genes, early growth response 

factor 1 (Egr-1), a transcription factor that promotes cell survival, is also upregulated by 

ATF5 (79).  

By contrast, Wei and his colleagues suggested that ATF5 facilitated cisplatin-

induced apoptosis. Although the precise mechanisms for the ATF5-mediated apoptosis 

are not clear, it is suggested that ATF5 can up-regulate transcription of cyclin D3 during 

cisplatin treatment (86). Furthermore, it was suggested that ATF5 protein degradation 

through the E3 ligase, Cdc34, mediates is blocked by cisplatin (87). These findings 

suggest that ATF5 may have diverse functions that can regulate cell survival in response 

to stress. Whether ATF5 plays a pro-survival or pro-apoptotic functions may depend on 

the precise stress arrangement and the cell types. 
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4D. ATF5 and its target genes 

Limited information is known about the downstream gene targets for ATF5. 

Several reports suggested that ATF5 binds to CRE elements and represses their activation 

by CREB (88). However, overexpression of ATF5 was reported to increase the levels of 

HSP27 transcripts in H9c2 cells partly via a CRE site and loss of ATF5 function inhibits 

HSP27 expression. These data suggest that ATF5 function in CRE-containing promoters 

may be dependent on cellular context. Overexpression of ATF5 is also reported to induce 

CYP2B6, Cyclin D3 and MCL1, although the exact mechanisms are not clear (80, 85, 86). 

Considering the sequence similarity between ATF4 and ATF5 proteins, as well as the 

possible association of ATF5 with the eIF2 kinase network, it is reasonable to consider 

the role of ATF5 in the cellular stress context in conjunction with other signaling 

pathways. Deciphering the regulatory mechanisms of ATF5 expression is central for 

understanding the role of ATF5 in survival and differentiation. 

 

5. Role of eIF2 phosphorylation in disease  

Translational control by eIF2 phosphorylation is associated with several 

medically related stress conditions, including anemia, viral immunity, stroke, cancer, 

neurological dysfunctions, and diabetes. One of the best illustrated examples is a rare 

autosomal recessive disease, Wolcott-Rallison Syndrome (WRS) that results from 

mutations in the PERK (PEK/EIF2AK3) gene (33, 89, 90). WRS patients present with 

neonatal insulin-dependent diabetes, but do not display auto-antibodies diagnostic of type 

I diabetes. WRS patients can also have epiphyseal dysplasia, osteoporosis and growth 

retardation. Frequently, afflicted patients suffer from multisystemic pathologies, 
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including hepatic and renal complications, cardiovascular disease and mental retardation.  

Interestingly, mice deleted for PERK present with the characteristic diseases described in 

WRS patients (91, 92). This includes dysfunction in both endocrine and exocrine tissues 

in the pancreases, and deficiency in osteoblast differentiation and maturation, with 

PERK-deficient mice being severely osteopenic. The trafficking and secretion of collagen 

I is compromised and collagen I is abnormally retained in the ER. Loss of PERK in 

tumor cells also results in impaired regeneration of intracellular antioxidants and 

accumulation of oxidative DNA damage induced by reactive oxygen species (ROS) (93). 

This has led to the proposal that PERK plays an important role in the progression of solid 

tumors (93).  

There is also a connection between dysfunction of the other eIF2 kinases and 

disease. A “knock-in” mouse with an alanine substituted for the phosphorylation site, 

serine-51, in eIF2α (A/A) dies within 12 to 48 hours of birth due to apparent metabolic 

conflicts, including severe hypoglycemia (94). GCN2
-/-

 mice fed on a leucine deprived 

diet show a marked loss of skeletal muscle mass compared to their wild-type littermates 

(95), with about 40% of the GCN2
-/-

 mice expiring within three days of the nutrient stress 

(96). GCN2-deficient mice also have been reported to develop hepatic steatosis and 

exhibit reduced lipid mobilization when fed a leucine-deprived diet (97). HRI disruption 

exacerbates the microcytic and hypochromic consequences during iron-deficient anemia 

(51), and PKR-deficient mice display a differential virus sensitivity, with for example 

PKR
-/-

 mice being more permissive for vesicular stomatitis virus infection than its wild-

type counterpart (98-100). The active form of PKR is overexpressed in the brain of 
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patients with Alzheimer's disease, suggesting that this eIF2 kinase participates in the 

neurodegeneration process (101). 
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Figure 7. Two uORFs are present in the 5′-leader of the ATF5 mRNA from different 

vertebrates. Representative cDNAs encoding ATF5 orthologs, including human 

(GenBank™ accession number AB073613), mouse (AF375475), rat (BC061786), cow 

(DV917530), and frog, Xenopus tropicalis (BC076876), indicate that each mRNAs 

contain a similar 5′-leader configuration with two uORFs. In each of the panels, the dark-

colored boxes represent the two uORFs, and the white box overlapping uORF2 represents 

the 5′-portion of the ATF5 coding region. The number of nucleotides between uORF1 and 

uORF2, and between the first residue of uORF2 and the ATF5 coding region, is indicated 

on the top of each panel. The numbers indicated below each panel highlight the number 

of amino acid residues encoded by each uORF. The uORF1 in each of the ATF5 

transcripts encodes a three residue polypeptide, Met-Ala-Leu.  
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MATERIALS AND METHODS 

1. Expression of Recombinant ATF5 and ATF4 and Antibody Production 

A cDNA encoding human ATF5 was inserted between the BamHI and XhoI 

restriction sites of plasmid pET28, yielding p834 that encodes an N-terminal 

polyhistidine-tagged version of full-length ATF5 expressed from an inducible T7 

promoter. This plasmid was introduced into Escherichia coli (E. coli) strain BL21(DE3) 

(F
-
 ompTrB

-
 containing lysogen DE3), and bacterial cells were grown at 37 °C with 

shaking in Luria-Bertani medium supplemented with 100 µg/ml ampicillin until an A600 

of between 0.4 and 0.6. One mM IPTG was added to cultures to enhance ATF5 

expression from the T7 promoter, and after further incubation at 37 °C for 6 h, cells were 

collected by centrifugation. The cell pellet was suspended in Buffer A solution (20 mM 

Tris [pH 7.9], 500 mM NaCl, and 10% glycerol) containing 10 mM imidazole and lysed 

using a French press. Proteins in the soluble and insoluble portions of the lysates were 

separated by SDS-PAGE and visualized by staining with Coomassie R-250. The majority 

of recombinant ATF5 protein was found to be in the insoluble fraction. The soluble lysate 

portion was applied to nickel-nitrilotriacetic acid-agarose (Qiagen) equilibrated with 

Buffer A and incubated at 4 °C. The agarose was washed with Buffer A solution 

containing 50 mM imidazole, and the ATF5 protein was eluted with buffer A solution 

containing 200 mM imidazole. The purified recombinant ATF5 protein was Mr ~ 35,000 

and was specifically recognized by antibody (Santa Cruz) recognizing the polyhistidine 

tag.   

Cloning and expression of human ATF4 in E. coli was performed in the similar 

strategy. Amplified products were cleaned using QIAquick Gel Extraction Kit 



29 

(QIAGEN), digested with BamHI and XhoI, and ligated with appropriately digested 

pET28. Recombinant plasmids were transformed into competent E. coli DH5α. 

Individual clones were isolated from transformants, and sequenced to confirm nucleotide 

identity. The resulting plasmid p842 encodes ATF4 with an N-terminal polyhistidine-tag. 

Then, freshly transformed cells of E. coli strain BL21(DE3) harboring p842, were grown 

in 1 liter of LB supplemented with 100 µg/ml ampicillin until an A600 of between 0.4 and 

0.6. To induce protein expression, freshly prepared IPTG was added to the culture to a 

final concentration of 0.5mM and growth was continued for a further 6 hours at 37 °C. 

Cells were harvested by centrifugation and stored at −20 °C until further processing. The 

cell pellets were then washed and re-suspended in Buffer A solution containing 10 mM 

imidazole and lysed using a French press. Proteins in the soluble and insoluble portions 

of the lysates were separated by SDS-PAGE and visualized by staining with Coomassie 

R-250. The soluble lysate portion was applied to nickel-nitrilotriacetic acid-agarose 

(Qiagen) equilibrated with Buffer A and incubated at 4 °C. The agarose was then packed 

into a disposable column. The column was eluted with 10 column volumes of Buffer A 

solution containing 50 mM imidazole to remove contaminating proteins, and the ATF4 

protein was eluted with 3-4 ml buffer A solution containing 200 mM imidazole. The 

purified recombinant ATF4 protein was Mr ~ 55,000 and was specifically detected by 

anti-His antibody.  

To prepare ATF5 and ATF4-specific antibodies, the recombinant proteins ATF4 

or ATF5 were separated by SDS-PAGE respectively, and the ATF5 and ATF4 protein 

were sliced from the polyacrylamide gel and injected into rabbits. The antisera of ATF5 

or ATF4 that were generated were affinity-purified using recombinant protein. The 
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purification involved the transfer of the recombinant protein onto nitrocellulose by 

electrophoretic transfer, staining of the protein by Ponceau S, and slicing the band 

corresponding to the recombinant proteins from the filter. The antisera were incubated 

with the filter slices overnight at 4 °C. The antibodies were then eluted from the filter 

band with 0.1M glycine-HCl [pH 2.7], neutralized with 1/10 volume of 2 M Tris (pH 

8.0). As described further below in the immunoblot analyses, the ATF5- and ATF4-

specific antibody preparations recognized purified recombinant ATF5 and ATF4 protein, 

respectively, and the specific transcription factor in mouse and human cell lines that was 

induced by different stress conditions. 

  

2. Cell Culture and Stress Conditions 

Mouse embryo fibroblast (MEF) cells that were derived from S/S (wild type 

eIF2α) and A/A (mutant eIF2α-Ser51A) mice were previously described (94, 102).  

ATF4
-/-

 and CHOP
-/-

 MEF cells, and their wild-type counterparts, were reported 

previously (103). MEF cells knocked down for ATF5 expression by shRNA, as further 

described below. MEF cells were cultured in Dulbecco's modified Eagle's medium 

supplemented with 1 mM non-essential amino acids, 100 units/ml penicillin, 10% fetal 

bovine serum, and 100 μg/ml streptomycin. ER stress was elicited in MEF cells by the 

addition of either 0.1 μM or 1 μM thapsigargin to the medium, as indicated, followed by 

incubation for up to 6 h. Alternatively, 20 μM arsenite or 1 μM of the proteasome 

inhibitor, MG132, was added to the culture medium, and the MEF cells were cultured for 

up to 24 h, as indicated. 
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3. shRNA Lentivirus Knock-Down of ATF5 

To establish MEF cell lines with stable knockdown of ATF5. pLKO.1-puro 

Control plasmid and five pLKO.1 plasmids (Sigma Mission shRNA) containing ATF5 

lentiviral shRNAs TRCN0000075553 (CCGGCCCTCCATTCCACTTTCCTATCTC 

GAGATAGGAAAGTGGAATGGAGGGTTTTTG), TRCN0000075554: (CCGGCC 

TGCTAATTGAGGTGTATAACTCGAGTTATACACCTCAATTAGCAGGTTTTTG), 

TRCN0000075555 (CCGGAGTACGTGAAGGACCTGCTAACTCGAGTTAGCAGG 

TCCTTCACGTACTTTTTTG, TRCN0000075556 (CCGGGCGGGAGATCCAGTACG 

TGAACTCGAGTTCACGTACTGGATCTCCCGCTTTTTG) and TRCN0000075557 

(CCGGTGACGGCTTCTCTGATTGGATCTCGAGATCCAATCAGAGAAGCCGTCA

TTTTTG), targeting the ATF5 coding sequence or 3’-UTR were separately transduced 

into 293T cells along with Lentiviral Packaging Mix, consisting of an envelope and 

packaging vector (Sigma) to produce lentivirus packed with shRNA cassettes using the 

standard procedure. Viruses were harvested from the media on day 3 by centrifugation at 

3000 × g for 15 min at 4 °C. 

MEF cells (at 1×10
4
 well

-1
) were seeded in 96-well plates with 120 L fresh 

medium for overnight. Puromycin was added at concentration of 0, 0.5, 1.0, 1.5, 2.0, 2.5, 

3, 5, 7, 10, 15 and 20 μg/ml. Cells viability was examined every two days. The medium 

containing puromycin was replaced every 3 days. The minimum concentration of 

puromycin that causes complete MEF cell death was 3µg/ml. 

MEF cells were then incubated with viral supernatant in the presence of 10 µg/ml 

of polybrene. After 1 day of incubation, the medium was changed to DMEM. Puromycin 

was added 2 days after transduction at 3 µg/ml to select for the transduced cells. 
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Transduced cells were cultured until all the non-transduced cells were dead in 2 days. 

Puromycin-resistant colonies were isolated and expanded. Each clone was assayed for 

knockdown of ATF5. 

 

4. Preparation of Protein Lysates and Immunoblot Analyses 

MEF cells cultured in stressed or non-stressed conditions were washed two times 

with chilled phosphate-buffered solution, and lysed in a solution containing 50 mM Tris-

HCl (pH 7.9), 150 mM NaCl, 1% Nonidet P-40, 0.1% SDS, 100 mM NaF, 17.5 mM β-

glycerolphosphate, 10% glycerol supplemented with protease inhibitors (100 µM of 

phenylmethylsulfonyl fluoride, 0.15 μM aprotinin, 1 μM leupeptin, and 1 μM of 

pepstatin) and sonication for 30 seconds. Cell lysates were clarified by centrifugation to 

remove the pellet, and protein content was determined by the Bio-Rad protein 

quantitation kit for detergent lysis following the manufacturer's instructions. Equal 

amounts of each protein sample were separated by SDS-PAGE, and proteins were then 

transferred to nitrocellulose filters. Polypeptide markers of known molecular weights 

(Bio-Rad) were included to determine the size of proteins identified in the immunoblot 

analysis. Transferred filters were then incubated in TBS-T solution containing 20 mM 

Tris-HCl (pH 7.9), 150 mM NaCl, and 0.2% Tween 20 supplemented with 4% nonfat 

milk, followed by incubation with TBS-T solution with antibody that specifically 

recognized the indicated proteins. ATF5 and ATF4 polyclonal antibodies were prepared 

against the recombinant human protein, as described above.  Cleavaged-Caspase-9 

(#9509) and Cleavaged-Caspase-3 (#9664) were from Cell Signaling Technology. CHOP 

(sc-7351) antibody was obtained from Santa Cruz Biotechnology, and β-actin 
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monoclonal antibody (A5441) was purchased from Sigma. Polyclonal antibody that 

specifically recognized phosphorylated eIF2α at Ser-51 was purchased from BioSource 

(44-728G). Monoclonal antibody that recognizes either phosphorylated or 

nonphosphorylated forms of eIF2α was provided by Dr. Scot Kimball (Pennsylvania 

State University, College of Medicine, Hershey, PA). Filters were then washed three 

times in TBS-T, and the protein-antibody complexes were visualized using horseradish 

peroxidase-labeled secondary antibody and chemiluminescent substrate. Autoradiograms 

shown in the figures are representative of three independent experiments. 

 

5. RNA Isolation and Analyses 

Northern analyses were carried out as previously described (98-100). Total 

cellular RNA was isolated from S/S, A/A, CHOP
-/-

, and ATF4
-/-

 MEF cells treated with  

1 μM thapsigargin, 20 μM sodium arsenite, or no stress, for the indicated number of 

hours using the TRIzol reagent (Invitrogen) following the manufacturer's instructions. 10 

μg of total RNA from each sample preparation was separated by electrophoresis using a 

1.2% agarose gel and visualized by using ethidium bromide staining and UV light. RNA 

was transferred onto nylon filters and hybridized to 
32

P-labeled-DNA probes specific for 

the indicated genes. Filters were washed using high stringency conditions and visualized 

by autoradiography. Levels of ATF5-luciferase mRNA expressed in S/S and A/A MEF 

cells transfected with the ATF5-Luc fusion constructs were treated with 0.1 μm 

thapsigargin for 6 h, or no stress. A 
32

P-labeled probe complementary to the luciferase 

reporter gene was used in a Northern blot analysis to measure ATF5-Luc transcripts. 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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Quantitative RT-PCR was carried out by two-step protocol (Roche). Total cellular 

RNA was isolated from S/S, CHOP
-/-

, and ATF5 KD MEF cells treated with 1 μM 

MG132, 20 μM sodium arsenite, or no stress, for the indicated number of hours using the 

TRIzol reagent following the manufacturer's instructions. The samples were then treated 

for 0.5 hr at 37 °C with DNase I using a DNase kit to ensure complete removal of the 

DNA (Promega), followed by the addition of DNase inactivation reagent. In the RT step, 

cDNA was synthesized using reverse transcription kit (Roche), and then the PCR step 

was carried out with gene specific probes (Applied Biosystems) for detection of target 

genes. 

  

6. Plasmid Constructions and Luciferase Assays 

For ATF5 luciferase reporter, PCR was used to generate a HindIII-PagI fragment 

DNA encoding the full-length ATF5 mRNA leader and ATF5 initiation codon, which was 

inserted between HindIII and NcoI restriction sites in a derivative of plasmid pGL3. The 

resulting plasmid contains the 5′-portion of the ATF5 coding sequence fused to the 

luciferase reporter gene downstream of a minimal TK promoter. The ATG initiation 

codons in each of the uORFs in the ATF5 mRNA were mutated individually or in 

combination to AGG using the site-directed mutagenesis kit (Stratagene), following the 

manufacturer's instructions. All mutations were sequenced to ensure that there were only 

the desired changes. Plasmid transfections were performed using the S/S and A/A MEF 

cells grown to 40% confluency and the FuGENE 6 transfection reagent (Roche Applied 

Science). Co-transfections were carried out in triplicate using wild type or mutant 

versions of the ATF5-Luc fusion plasmids and a Renilla luciferase plasmid serving as an 
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internal control (Promega, Madison, WI). 24 h after transfection, MEF cells were treated 

with 0.1 μM thapsigargin for 6 h, or with no ER stress. Dual luciferase assays were 

carried out as described by the Promega instruction manual. Values are a measure of a 

ratio of firefly versus Renilla luciferase units (relative light units) and represent the mean 

values of three independent transfections. Results are presented as means ± S.E. that were 

derived from three independent experiments. The Student's t test was used to determine 

the statistical significance. 

 

7. Transcriptional Start Site of ATF5 Transcripts 

The cDNAs corresponding to the 5′-ends of the ATF5-Luc transcripts expressed 

in S/S MEF cells treated with 0.1 μM thapsigargin, or no stress, were amplified using a 

RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE kit, Ambion) 

following the manufacturer's instructions. Alternatively, there was amplification of 

cDNAs corresponding to the 5′-ends of ATF5 mRNA prepared from human HepG2 

hepatoma cells treated with this ER stress condition, or no stress. Briefly, 10 μg of total 

RNA was treated with calf intestinal phosphatase, resulting in the removal of free 5′-

phosphates from RNAs other than mRNAs containing intact 5′-cap structures. The RNA 

preparations were then treated with tobacco acid pyrophosphatase to remove the cap 

structure, leaving a 5′-monophosphate that was ligated using T4 RNA ligase to a 45-base 

RNA adapter oligonucleotide that was supplied in the kit. A random-primed reverse 

transcription (RT) reaction and nested PCR were then carried out to amplify the 5′-end of 

endogenous ATF5 transcripts, as well as transfected thymidine kinase-minimal promoter 

driven ATF5-Luc mRNAs. The primers corresponding to the 5′-RACE adapter sequence 
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were provided by the manufacturer. The sequences of the two nested antisense primers 

specific to endogenous ATF5 mRNA were the outer primer 5′-TTCCCATAGTCTA 

CGAGCCATCCC-3′ and inner primer 5′-ACATGGCTGTAGCACAGGTGCT-3′. The 

outer primer used for amplifying the 5′-ends of ATF5-Luc transcript was 5′-CCATCTT 

CCAGCGGATAGAA-3′, which was combined with the same inner primer described 

earlier. A portion of the amplified DNA products were analyzed by agarose gel 

electrophoresis, and the DNA was visualized by ethidium bromide staining and UV 

irradiation. The major DNA band was excised from the gel and sequenced. The 

transcriptional start site was determined as the first nucleotide residue that was 3′- to the 

adapter sequence that was ligated to 5′- of the cDNA. 

 

8. Polysome Analysis of ATF5 Translational Control 

S/S cells were cultured in Dulbecco's modified Eagle's medium, as highlighted 

above, in the presence of 1.0 μM thapsigargin, or to no stress, for 6 h. 10 μg/ml 

cycloheximide was added to the medium prior to collection and analysis. Cells were 

washed in cold phosphate-buffered-saline solution supplemented with10 μg/ml 

cycloheximide, and then lysed with ice-cold lysis buffer containing 20 mM Tris-HCl (pH 

7.5), 5 mM MgCl2, 100 mm NaCl, 0.4% Nonidet P-40, and 10 μg/ml cycloheximide. The 

extracts were passed through a 23-gauge needle for proper lysis of cells, incubated for 10 

min on ice, and insoluble material was collected by microcentrifugation at 10,000 rpm for 

10 min at 4 °C. The resulting supernatant was then applied onto a 15-45% sucrose 

gradient containing 20 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 100 mM NaCl, and 10 

µg/ml cycloheximide, and subjected to centrifugation for 2 hours at 40,000 rpm in a 
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Beckman SW-41Ti rotor. Following centrifugation, the gradients were fractionated, and 

the absorbance of cytosolic RNA at 254 nm was recorded by an in-line UV monitor. 

Total RNA was isolated from a portion of each fraction using TRIzol reagent as 

described by the manufacturer's instructions (Invitrogen). The mRNAs from fractions 

collected were amplified using RT-PCR kit (Invitrogen) and the following primers: ATF4 

forward (5′-TCACGAAATCCAGCAGCAGTG-3′), ATF4 reverse (5′-CAAGCCAT 

CATCCATAGCCG-3′), ATF5 forward (5′-CTACCCCTCCATTCCACTTTCC-3′), 

ATF5 reverse (5′-TTCTTGACTGGCTTCTCACTTGTG-3′), β-actin forward (5′-

TTCTTTGCAGCTCCTTCGTTGCCG-3′), and β-actin reverse (5′-TGGATGG 

CTACGTACATGGCTGGG-3′). For RT-PCR analysis of cytosolic mRNA levels, equal 

volumes were reverse transcribed using oligo(dT), then 50 ng of cDNA from each 

fraction was amplified with Bullseye R-Taq (MIDSCI). PCR was carried out for 25, 27, 

30, 33, and 35 cycles to determine the linear range of amplification. In this study, 25 

cycles were used for PCR for ATF4, and 27 cycles for ATF5 and β-actin. Densitometry 

was performed using the software provided with Quantity One imaging system (Bio-

Rad). 

 

9. Cellular survival assays 

Wild type, CHOP
-/-

 and two ATF5 knockdown MEF cell lines were used for a 

CellTiter 96® Non-Radioactive Cell Proliferation Assay (Promega G4001). This 

colormetric assay is based on the living cell conversion of a tetrazolium salt [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] of the Dye solution into  

formazan product. This assay was performed in a 96 well plate format and read on a 96 
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well plate reader at a wavelength of 570 nm. 5,000 cells were plated in 50 µl DMEM 

supplemented with 10% FBS, penicillin (100 international units/ml) and streptomycin 

(100 µg/ml). After overnight incubation when cells adhered to the bottom of the wells, a 

final concentration of 1 µM MG132 or media control was added to each well. Cells were 

incubated in the presence of the MG132 for 1, 3, 6, 12, or 18 hours, or no treatment. At 

the indicated times, the media containing MG132 was removed by gentle aspiration with 

a 0.5-10 µl pipet tip, and cells were then washed with warm media and subject, recovery 

to 24 hours from the time of the treatment with MG132. For example, the cells treated 

with MG312 for 1 hour, were washed and then cultured in the absence of this stress agent 

for 23 hours. After 24 hours, 15 l of the dye solution was added to a final volume of 

115 l, and then incubated with the cells for 4 hours followed by the addition of 100 l 

solubilization solution, as described by the manufacturer’s protocol. The absorbance of 

the solution was then measured at 570 nm using a (Spectra Max 340 96-well plate reader 

from Molecular Devices. 
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RESULTS 

1. Phosphorylation of eIF2 is required for increased ATF5 protein levels in 

response to diverse stress conditions 

The ATF5 mRNA has two uORFs that are conserved among many different 

vertebrates, including human, mouse, rat, cow, and frogs (Fig. 7). The 5′-proximal 

uORF1 encodes a polypeptide that is only three amino acid residues in length, Met-Ala-

Leu, that is conserved among the different ATF5 orthologs. The downstream uORF2 

encodes a polypeptide ranging from 59 residues in length in human and cow, to 53 

residues in the frog ATF5 mRNA. In each example, the uORF2 overlaps, out of frame, 

with the ATF5 coding region (Fig. 7). Given the importance of uORFs in ATF4 

translational control in response to eIF2α phosphorylation, we addressed whether the 

levels of ATF5 protein were increased in response to environmental stresses by a 

mechanism requiring eIF2α phosphorylation. Wild-type MEF cells, designated S/S, and a 

mutant version containing alanine substituted for the serine-51 phosphorylation site in 

eIF2α, termed A/A, were exposed to three different stress conditions known to activate 

eIF2α phosphorylation and its downstream target, ATF4. The first stress arrangement 

involved treatment of these MEF cells with thapsigargin, a well-characterized ER stress 

agent that specifically activates the eIF2 kinase PERK (62, 104). The second was 

oxidative stress that was elicited by arsenite exposure. Arsenite appears to activate 

multiple eIF2 kinases, because deletion of any one eIF2 kinase gene in MEF cells does 

not block phosphorylation of eIF2. The third stress involved treatment with MG132, a 

potent inhibitor of proteasome function that preferentially activates GCN2 

phosphorylation of eIF2 in MEF cells (43). Each of these three stress conditions 

http://www.jbc.org/content/283/11/7064.full#F1
http://www.jbc.org/content/283/11/7064.full#F1
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Figure 8. Phosphorylation of eIF2α is required for increased levels of ATF5 protein 

in response to diverse stress conditions. Wild-type S/S MEF cells, and A/A cells 

containing an alanine residue substituted for the phosphorylated serine-51 in eIF2, were 

treated with 1 M thapsigargin (A, TG), 20 M arsenite (B, ARS), or 1M MG132 (C, 

MG) for 1, 3, or 6 hours, or to no stress (0 hour), as indicated. Alternatively, PEK
-/-
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(PERK
-/-

) and GCN2
-/- 

MEF cells, and their wild-type counterparts, were treated with 

1µM thapsigargin (D, TG), or 1µM MG132 (E, MG) for 3 or 6 hours, or to no stress (0 

hour), as listed. Protein lysates were prepared from the cultured cells, and the levels of 

ATF5, ATF4, CHOP, phosphorylated eIF2α, total levels of eIF2, and β-actin were 

measured by immunoblot analysis using antibody specific to each protein. In F, a similar 

immunoblot analysis was carried out using lysates prepared from human HepG2 

hepatoma cells treated with either arsenite (ARS) or thapsigargin for up to 6 hours, or to 

no stress (0 hour). Each panel is representative of three independent experiments.
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activates the eIF2 kinase pathway in S/S cells, with enhanced eIF2α phosphorylation and 

increased ATF4 protein levels within 1-3 hours of treatment (Fig. 8, A-C). As expected, 

in the A/A cells there was no measurable phosphorylation of eIF2α and minimal ATF4 

protein. Importantly, there were increased ATF5 protein levels in S/S cells in response to 

each of the stress treatments. Upon thapsigargin exposure, ATF5 expression was induced 

after 1 hour, with high levels of this bZIP transcriptional activator within 3 hours of the 

onset of ER stress (Fig. 8A). Arsenite and MG132 treatments also showed robust 

increases in ATF5 expression, although high levels of ATF5 protein were detected only 

after 6 hours of the stress treatments (Fig. 8, B and C). No ATF5 protein was detected in 

the A/A MEF cells, which are devoid of eIF2α phosphorylation, in response to each of the 

three stress conditions.  

These central observations were extended to other MEF cells and to human 

HepG2 hepatoma cells that have been well studied for regulation of the eIF2 

kinase/ATF4 pathway (103, 105, 106). PEK
-/-

 MEF cells, and its wild-type counterpart, 

were exposed to thapsigargin for up to 6 h. ATF5 expression was increased in the PEK
+/+

 

cells after 3 hours of ER stress, coincident with elevated eIF2 phosphorylation and 

increased levels of ATF4, and its target gene CHOP (Fig. 8D). By contrast in the PEK 

deficient cells, there was lowered ATF5 expression, along with reduced eIF2α 

phosphorylation and downstream targets ATF4 and CHOP. In response to MG132, loss 

of GCN2 blocked both eIF2 phosphorylation and induced ATF5 expression, supporting 

the essential role of the eIF2 kinase pathway for increased ATF5 levels in response to 

proteasome inhibition (Fig. 8E). Finally, human HepG2 hepatoma cells have been 

reported to display a robust eIF2 kinase stress response during different stress 

http://www.jbc.org/content/283/11/7064.full#F2
http://www.jbc.org/content/283/11/7064.full#F2
http://www.jbc.org/content/283/11/7064.full#F2
http://www.jbc.org/content/283/11/7064.full#F2
http://www.jbc.org/content/283/11/7064.full#F2
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Figure 9. Deletion of eIF2α phosphorylation, or its target gene ATF4, reduces the 

levels of ATF5 mRNA. Wild-type, A/A or ATF4
-/-

 MEF cells were treated with 1 M 

thapsigargin (A, TG), or 20 M arsenite (B, ARS), for 1, 3, or 6 hours, or to no stress (0 

hour), as indicated. RNA was prepared from the cultured cells, and the levels of mRNAs 

encoding ATF5, ATF4, CHOP, and β-actin were measured by Northern analyses using 

radiolabeled probes specific to each gene. The panels are representative of three 

independent experiments.
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Figure 10. Increased ATF5 expression involves transcriptional and post-

transcriptional regulation in response to arsenite stress. A, ATF4
+/+

 and ATF4
-/-

 MEF 

cells were treated with 20 µM arsenite (ARS) for 1, 3, or 6 hours, or to no cellular stress 

(0 hour). Protein lysates were prepared from the cultured cells, and the levels of ATF4, 

ATF5, and β-actin were measured by immunoblot analysis. B, wild-type MEF cells were 

treated with 20 µM arsenite (ARS) for 3 or 6 hours, or to no cellular stress (0 hour). 

Alternatively, the MEF cells were treated with 10 M actinomycin D (AD) alone, or in 

combination, with arsenite (ARS+AD), and immunoblot analyses were carried out to 

measure the levels of ATF5, CHOP, phosphorylated eIF2α (eIF2α-P), total eIF2α, and β-

actin. 
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conditions (105, 106). We treated the HepG2 cells with thapsigargin or arsenite for up to 

6 hours and found that ATF5 levels were increased in a time frame similar to that of 

ATF4 in response to both stress conditions (Fig. 8F). Levels of the ATF4 target, CHOP, 

were increased later, after about 6 hours of each stress. These results indicate that ATF5 

expression is induced by a diverse range of environmental stresses by a mechanism 

requiring eIF2αphosphorylation.  

 

2. Phosphorylation of eIF2α and ATF4 are required for high Levels of ATF5 mRNA 

The eIF2 kinase pathway can increase both translational and transcriptional 

expression in response to cellular stress. To determine whether ATF5 mRNA levels 

change in response to stress, we carried out Northern analyses using RNA prepared from 

S/S and A/A MEF cells treated with thapsigargin or arsenite. There were increases in 

ATF4 mRNA levels in S/S cells treated with thapsigargin or arsenite treatment for up to 6 

h (Fig. 9, A and B). No ATF4 mRNA was detected in ATF4
-/-

 MEF cells that were treated 

with either stress agent, confirming the identity of the transcripts in the Northern 

analyses. In these studies, ATF4 mRNA levels were reduced, albeit measurable, in the 

A/A cells treated with thapsigargin or arsenite (Fig. 9, A and B). The lowered levels of 

ATF4 transcripts in the MEF cells devoid of eIF2α phosphorylation could result from 

decreased transcription or increased decay of the ATF4 mRNA that was inefficiently 

translated. These experiments suggest that regulation of ATF4 expression during stress 

can involve both the well characterized translational control and changes in mRNA 

levels. ATF4 binds to the CHOP promoter, increasing CHOP transcription in response to 

different cellular stresses (105, 107, 108). Consistent with this premise, our Northern 

http://www.jbc.org/content/283/11/7064.full#F2
http://www.jbc.org/content/283/11/7064.full#F3
http://www.jbc.org/content/283/11/7064.full#F3
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analysis showed that CHOP mRNA levels are significantly increased in response to 

treatment with either thapsigargin or arsenite (Fig. 9). Minimal CHOP expression was 

detected in the stressed ATF4
-/-

 cells, or the A/A cells, which expressed low levels of 

ATF4 protein. The levels of ATF5 mRNA were virtually unchanged in S/S MEF cells in 

response to thapsigargin treatment. By comparison, there was an increase in the amount 

of ATF5 mRNA following 3 hours of arsenite stress, although ATF5 transcripts were 

readily measurable in non-stressed condition. Interestingly, there was a significant 

decrease in the amount of ATF5 mRNA in the ATF4
-/-

 and A/A cells, including lowered 

transcript levels in the basal conditions, and no detectable increase upon stress treatment. 

These results suggest that the eIF2 kinase pathway, specifically the transcriptional 

activator ATF4, is responsible for elevating ATF5 mRNA levels in both the basal and 

stressed conditions. As will be highlighted further in the Discussion section, some eIF2 

kinase target genes are regulated by both translational and transcriptional control 

mechanisms. ATF5 is a candidate for such an arrangement given the important role of 

ATF4 in increased ATF5 mRNA levels, and the fact that ATF5 protein is measurable in 

the S/S MEF cells only following environmental stress, despite the availability of ATF5 

mRNA.  

 

3. Expression of ATF5 is regulated by post-transcriptional control mechanisms 

We next wished to address the importance of post-transcriptional regulation in the 

induction of ATF5 expression in response to stress. Comparison of ATF5 protein levels  

 

http://www.jbc.org/content/283/11/7064.full#F3
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Figure 11. Sequence of the 5’-leader of ATF5 mRNA fused to the luciferase reporter 

gene. Top panel, DNA was derived by 5’-RACE using RNA prepared from S/S MEF 

cells expressing the ATF5-luciferase (ATF5-Luc) reporter that were treated with 0.1µM 

thapsigargin (TG) or no stress. As a control, 5’-RACE was also carried out using RNA 

preparations from HepG2 treated with the ER stress agent, or no stress condition. ATF5 

indicates 5’-RACE products prepared from the endogenous ATF5 mRNA, and ATF5-Luc 

indicates products derived from the ATF5-reporter. DNA size markers listed to the left 

are indicated in base pairs. Bottom panel, the sequence of the 5’-leader of the ATF5 

mRNA, with boxes indicating the uORF1 and uORF2 sequences upstream of the ATF5-
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Luc coding region. Note the uORF2 sequence overlaps, out of frame, with the ATF5-Luc 

reporter sequence. A HindIII restriction site was engineered into the ATF5 DNA. The 

major transcription start site of the ATF5 gene, as determined by sequencing of 5’-RACE 

products, is indicated by an arrow. The initiation codons in uORF1 and uORF2 were 

substituted to AGG, as indicated below the sequences. 
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between ATF4
+/+

 and ATF4
-/-

 MEF cells subjected to arsenite stress confirmed that 

induced ATF5 expression required ATF4 (Fig. 10A). Although ATF5 protein was fully 

increased following 3 h of treatment of arsenite exposure, there was minimal ATF5 

protein in the stressed ATF4
-/-

 cells. This requirement for ATF4 was comparable to that 

found for CHOP, which has been shown to require ATF4 transcriptional activation in 

response to several different stress conditions, including arsenite treatment (Fig. 9, A and 

B)(60, 69, 108, 109) 

To begin to delineate the role of transcriptional regulation from post-transcription 

modes of control, we pretreated the wild-type MEF cells with actinomycin D, a known 

inhibitor of transcription, prior to arsenite stress. ATF5 protein levels were increased in 

response to the combined actinomycin D and arsenite treatment, supporting the idea that 

post-transcriptional mechanisms significantly contribute to induced ATF5 expression in 

response to environmental stress (Fig. 10B). It is noted that ATF5 levels were reduced in 

the combined actinomycin D and arsenite treatment compared with arsenite alone, 

suggesting that transcriptional mechanisms are a contributor to ATF5 expression. 

Interestingly, an additional higher molecular weight version of the ATF5 protein was 

readily detected in the combined treatment preparation, suggesting that ATF5 may be 

subject to post-translational modification(s), such as protein phosphorylation (Fig. 10B). 

This higher molecular weight form of ATF5 was also found in cells treated with arsenite 

alone, although not as prevalent as when cells were first pretreated with actinomycin D. 

Finally, there was minimal ATF5 protein in the MEF cells exposed to only actinomycin 

D, indicating that this treatment regimen alone did not lead to enhanced ATF5 expression 

(Fig. 10B). 

http://www.jbc.org/content/283/11/7064.full#F4
http://www.jbc.org/content/283/11/7064.full#F3
http://www.jbc.org/content/283/11/7064.full#F3
http://www.jbc.org/content/283/11/7064.full#F4
http://www.jbc.org/content/283/11/7064.full#F4
http://www.jbc.org/content/283/11/7064.full#F4
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4. uORF1 and uORF2 differentially regulate translation of ATF5 mRNA 

To address the role of translational control in ATF5 expression in response to 

stress, we constructed a luciferase reporter system that included the ATF5 mRNA leader 

sequence and initiation codon that were inserted upstream of a luciferase reporter gene 

(Fig. 11). Given that this region of the ATF5 mRNA is well conserved among mammals, 

we elected to use the human ATF5 version for this reporter construct. The ATF5-

luciferase fusion was expressed downstream of a minimal thymidine kinase promoter in 

the S/S and A/A MEF cells. The major transcriptional start site of the ATF5-Luc reporter 

gene was analyzed by 5′-RACE and DNA sequencing and found to be identical to that of 

the endogenous ATF5 expressed in HepG2 cells (Fig. 11). The 5′-leader sequence is 315 

nucleotides in length and includes the two uORFs preceding the ATF5 coding region. 

This leader configuration was unchanged in response to ER stress, with the same major 

ATF5 transcription initiation site in the ATF5-luciferase reporter or endogenous 

transcript. ATF5-luciferase was measured in the S/S and A/A MEF cells treated with 

thapsigargin for 6 h, or no stress. There was a 5-fold increase in ATF5-luciferase activity 

in the S/S MEF cells in response to thapsigargin treatment (Fig. 12). By comparison, the 

activity of ATF5-luciferase in the A/A cells was minimal, even during ER stress. 

Measurements of the ATF5-luciferase mRNA revealed minimal differences in transcript 

levels in the transfected S/S and A/A cells (Fig. 13). These results support the idea that 

ATF5 expression is subject to translational control by a mechanism involving the 5′-

leader of the ATF5 mRNA and eIF2 phosphorylation. 

http://www.jbc.org/content/283/11/7064.full#F5
http://www.jbc.org/content/283/11/7064.full#F5
http://www.jbc.org/content/283/11/7064.full#F6
http://www.jbc.org/content/283/11/7064.full#F7
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Figure 12. uORF1 functions as activator and uORF2 as an inhibitor in the 

mechanism regulating the ATF5 translation. The wild-type and different mutant 

versions of the 5’-leader sequences of the ATF5 mRNA fused to luciferase are shown to 

the left of each luciferase measurement. The box represents the wild-type versions of 

uORF 1 and uORF2, and an “X” indicates a mutation in the initiation of the uORF, 

rendering it non-functional. Wild-type S/S and mutant A/A MEF cells were co-transfected 

with the listed ATF5-Luc plasmid and a control Renilla luciferase plasmid. The 

transfected cells were treated with 0.1 M thapsigargin (TG), or no stress agent, as 

indicated in the figure legend. For clarity, the histograms are represented in two different 

scales. Numbers presented are means ± S.E. derived from three independent experiments. 
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To delineate the roles of uORF1 and uORF2 in the mechanisms regulating ATF5 

translation, the start codons for each uORF were mutated to AGG, rendering them non-

functional for translation initiation. The ATF5-luciferase reporter containing the uORF1 

and uORF2 mutations individually, or in combination, were then introduced into the S/S 

and A/A MEF cells and assayed for expression in the presence or absence of ER stress. 

The uORF1 mutation resulted in only low levels of ATF5-luciferase activity in the S/S or 

A/A cells, independent of thapsigargin treatment (Fig. 12). This result defines the 5′-

proximal uORF1 as a positive-acting element in ATF5 translational control. By 

comparison, the uORF2 mutation led to an over 35-fold increase in ATF5-luciferase 

activity in both S/S and A/A cells, as compared with the repressed version of ATF5-

luciferase reporter containing both uORF1 and uORF2 intact (Fig. 12). It is noteworthy 

that this elevated ATF5-luciferase activity was constitutive, occurring during either 

stressed or non-stressed conditions. Constitutively high levels of ATF5-luciferase were 

also seen when the uORF1 and uORF2 mutations were combined into the ATF5-

luciferase reporter (Fig. 12). Northern analyses of the different mutant versions of ATF5-

luciferase mRNA in the S/S and A/A cells indicated that changes in transcript levels were 

not a significant contributor to the differences in ATF5-luciferase expression (Fig. 13). 

These results indicate that uORF2 functions as an inhibitory element in ATF5 

translational control. Only after uORF2 is removed is uORF1 dispensable for ATF5 

expression (Fig. 12). We conclude that uORF1 and uORF2 have opposing functions in 

the regulation of ATF5 translation, with uORF1 enabling ribosomes to overcome the 

inhibitory affects of uORF2. 

http://www.jbc.org/content/283/11/7064.full#F6
http://www.jbc.org/content/283/11/7064.full#F6
http://www.jbc.org/content/283/11/7064.full#F6
http://www.jbc.org/content/283/11/7064.full#F7
http://www.jbc.org/content/283/11/7064.full#F6
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Figure 13. The levels of wild-type and mutant versions of the ATF5-Luc reporter 

mRNA are similar in the MEF cells. Total RNA was prepared from S/S and A/A MEF 

cells transfected with the wild-type or mutant versions of the ATF5-luciferase (ATF5-

Luc) reporter plasmids, and Northern blots were carried out to measure the mRNA levels 

for the ATF5-Luc reporter and β-actin. The MEF cells were treated with 0.1 M 

thapsigargin (+) or no stress agent (-), as indicated. Wild-type indicates that both uORF1 

and uORF2 were present in the 5’-leader of the reporter mRNA. ∆uORF1 and ∆uORF2 

indicates that the reporter transcript contains a mutation in the initiation codon of the 

specified uORF, rendering this reading frame nonfunctional for translational control. The 

combined ∆uORF1 and ∆uORF2 highlights that there were mutations in initiation codons 
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of both reading frames. The top panel illustrates the Northern analysis of RNA prepared 

from transfected S/S cells. The bottom panel was derived from A/A cells, and for 

comparison purposes RNA from S/S cells expressing the wild-type reporter from S/S 

cells was included in this panel. In this lower panel, the A/A and S/S Northern lanes were 

derived from the same Northern blot experiment. 
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5. ATF5 mRNA is preferentially translated in response to stress 

The ATF5-luciferase reporter assays indicated that ATF5 mRNA is preferentially 

translated in response to stress. To directly address this idea, we measured the efficiency 

of mRNA association with translating ribosomes by polysome profile analyses. In this 

technique, sucrose gradient centrifugation is used to separate free ribosomal subunits and 

monosomes from polyribosomes (110-112). Transcripts that are efficiently translated are 

bound to multiple ribosomes, or large polysomes, whereas those mRNAs that are weakly 

translated localize to monosomes or disomes. In the non-stressed S/S cells, β-actin 

mRNA was bound to large polyribosomes (Fig. 14, fractions 12-14). By comparison 

ATF4 mRNA, which is poorly translated in the absence of stress, was associated with 

fewer ribosomes (Fig. 14, fractions 7 and 8). 

Upon ER stress, total protein synthesis is reduced due to PEK phosphorylation of 

eIF2. The resulting lowered eIF2-GTP levels leads to reduced polysomes and 

accumulation of free ribosomal subunits in the polysome profile (Fig. 14, top panels). 

This stress arrangement led to a shift in the ATF4 mRNA to the larger polysome fractions 

(Fig. 14, fractions 7-11). By comparison, there was some lowering in the number of 

ribosomes associated with actin mRNA. Our analysis of ATF5 mRNA in the polysome 

profiles revealed a pattern that paralleled that described for ATF4. In the non-stressed 

condition, when protein synthesis is plentiful, the ATF5 mRNA was associated with 

fewer ribosomes, as compared with the large polysomes associated with actin mRNA. In 

response to ER stress, ATF5 mRNA was readily detected in the larger polysome 

fractions, consistent with the idea that ATF5 mRNA was bound to multiple ribosomes 

and was more efficiently translated. These results further support the idea that 

http://www.jbc.org/content/283/11/7064.full#F8
http://www.jbc.org/content/283/11/7064.full#F8
http://www.jbc.org/content/283/11/7064.full#F8
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Figure 14. Cellular stress triggers enhanced ATF5 mRNA association with 

polysomes. Wild-type S/S MEF cells were treated with 1.0 µM thapsigargin (Stress) or 

no stress condition (No Stress) for 6 hours, and cell lysates were preparedand subjected to 

sucrose gradient centrifugation. Gradients were then fractionated, and RNA was 

monitored by absorbance at 254 nm. Arrows indicate peaks corresponding 40 S and 80 S 

ribosomal fractions,and polysomes are highlighted. Levels of ATF5, ATF4, and β-actin 

mRNA were measured by RT-PCR in each fraction. PCR products corresponding to the 

indicated transcripts were separated by electrophoresis, stained with ethidium bromide 

for visualization using UV light, and imaged electronically. 
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translational control is an important underlying reason for increased ATF5 expression 

during environmental stress. 

 

6. CHOP is required for full induction of ATF5 protein levels in response to diverse 

stresses 

Phosphorylation of eIF2 promotes translation initiation of ATF4, leading to 

transcription of the ATF4 downstream target CHOP. To determine whether CHOP is 

required for induced ATF5 expression in response to stress, CHOP
-/-

 MEF cells and their 

wild-type counterparts were exposed to thapsigargin, arsenite, or MG132 for up to 6 

hours (Fig. 15). As expected, there were increased ATF5 protein levels in wild-type cells 

in response to each of these stress treatments, consistent with the increased levels of 

ATF4 and CHOP. However, there was lowered ATF5 protein expression in CHOP
-/-

 

cells, along with the absence of CHOP expression in response to each of these stress 

conditions (Fig. 15). This requirement of CHOP for induced ATF5 protein in response to 

these different stress conditions suggests that CHOP is upstream of ATF5 in the ISR.  

Next we measured ATF5, CHOP and ATF4 mRNA levels in wild-type and CHOP
-/-

 cells 

subjected to arsenite exposure (Fig. 16, A, B and C). While ATF4 mRNA was induced 

upon stress, ATF5 transcript levels remained low in the CHOP
-/-

 cells. These findings 

suggest that CHOP is a direct or indirect activator of ATF5 transcription in the ISR. 
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Figure 15. Expression of ATF5 in wild-type and CHOP
-/-

 MEF cells. (A) CHOP
+/+ 

and 

CHOP
-/-

 were treated with 1 µM thapsigargin (TG), 20 µM arsenite (ARS), or 1 µM 

MG132 (MG) for 3 or 6 hours, or to no stress (0 h), as indicated. Protein lysates were 

prepared from the cultured cells, and the levels of ATF5, ATF4, CHOP and β-actin were 

measured by immunoblot analysis using antibody specific to each protein.  
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B 
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C

 

 

Figure 16. CHOP is required for increased ATF5 mRNA in response to arsenite 

stress. Wild type and CHOP
-/-

 MEF cells were treated with 20 M arsenite (ARS) for 3 

or 6 hours, or to no stress (0 hours). Total RNA was isolated from samples and the levels 

of ATF5, ATF4 and CHOP mRNA normalized to 18S rRNA were measured by qRT-

PCR. Values were plotted compared to the no treatment control, and the panel is 

presented as averages ± SD of three indepenedent experiments, with each measurement 

performed in triplicate (* P<0.05).  
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7. Assessment of ATF4 and ATF5 protein turnover 

ATF4 has been shown to be an unstable protein with a half-life of less than 30 

minutes (113). Considering the similarity between ATF4 and ATF5, posttranslational 

regulation by protein degradation can be a crucial mechanism regulating ATF5 

expression. Therefore, to compare the half-lives of ATF4 and ATF5, after 5 hour of 

exposure to arsenite, we monitored the decay of ATF4 and ATF5 proteins following 

inhibition of new protein synthesis. ATF5 had a longer half-life (more than 2 h). By 

contrast, ATF4 decayed rapidly (half-life about 30min) (Fig. 17), consistent with the 

previously reported lability of ATF4.  

 

8. Assess the function of ATF5 in cell survival  

We next addressed the role of ATF5 in the cell survival, and the functional 

consequences of the absence of induced ATF5 expression. Lentivirus containing small 

hairpin ATF5 RNA (shRNA/ATF5) was introduced into the MEF cells. The levels of 

ATF5 mRNA and protein in the knock-down cells were significantly reduced compared 

with wild-type cells and the cells transfected with nontarget vector control virus (Figs. 18 

and 19). Proteasome inhibition triggered apoptosis has been shown to be facilitated by 

cleavage and activation of a cascade of caspase proteases (42). Cleavage of caspase 9 was 

measured by immunoblot and found to be significantly enhanced in the wild type MEF 

after 18 hours of the MG132 treatment. By comparison, cleavage of this caspase was 

significantly reduced in the two different cloned MEF cells knockdown for ATF5 

expression. Cleavage of PARP, another measure of apoptosis, was also detected to be at a 

lowered level in ATF5-deficient cells treated with MG312 compared with the wild type  
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A

  

B 

 

Figure 17. Measurements of ATF5 and ATF4 protein turnover during arsenite   

stress. (A) Wild type MEF cells were exposed to 20 M arsenite (ARS) for 5 hours, and 

then 10 g/ml cycloheximide (CHX) was then added, and the cultures were incubated for 

the indicated length of time. Immunoblot analyses for ATF4, ATF5 and -actin were 
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carried out using whole-cell extracts and antibodies specific to the indicated proteins. (B) 

The intensity of the protein bands were quantified using ImageJ software and plotted as 

the percentage of protein remaining versus time following cycloheximide treatment. 
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Figure 18. Levels of ATF5 mRNA in wild-type and ATF5 knock-down MEF cells. 

Total RNA was isolated from MEF cells expressing scrambled shRNA or ATF5-specific 

shRNA (KD1--KD6). The levels of ATF5 mRNA, normalized for 18S rRNA, were 

measured by qRT-PCR. Values from ATF5 knock-down cells were presented compared 

to the control, and the panel indicates the averages ± SD derived from three independent 

experiments (* P<0.05).  
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cells (Fig. 19). These data support a role for ATF5 for eliciting apoptotic pathways in 

response to stress conditions that block proteasome function. 

To address whether ATF5 depletion alters cell survival in response to stress, we 

conducted the CellTiter 96® Non-Radioactive Cell Proliferation Assay that provides a 

rapid and convenient method to determine viable cell number in proliferation. Wild type, 

two ATF5 knockdown cells (KD1 and KD2) and CHOP
-/-

 MEF cells were subjected to 

proteasome inhibition for up to 18 h. We found that proteasome inhibition significantly 

reduced survival of wild type MEF cells as judged by the Cell Proliferation Assay. As a 

pro-apoptotic factor and positive control, CHOP expression has a negative consequence 

following MG132 treatment. Deletion of CHOP restored cell survival in response to 

proteasome inhibition (Fig. 20). Importantly, loss of ATF5 enhanced MEF cell survival 

during this stress treatment. These results indicate that ATF5, which is downstream of 

CHOP, enhances cell death in response to proteasome inhibition. 
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Figure 19. ATF5 facilitates cleavage and activation of caspase proteases. Wild-type 

MEF cells, and ATF5 knockdown cells were treated with 1µM MG132 for 6, 12, 18, or 

24 hours, or to no stress (0 hours) as indicated. Protein lysates were prepared from the 

cultured cells, and the levels of ATF5, ATF4, CHOP, cleavage of caspase-3(C-CASP3), 

cleavage of caspase-9 (C-CASP9), PARP and β-actin were measured by immunoblot 

analysis using antibody specific to each protein.  
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Figure 20. Knockdown of ATF5 increases survival after treatment with MG132. 

WT, CHOP
-/-

, ATF5 KD1 and ATF5 KD2 MEF cells (at 5×10
3
 well

-1
) were seeded in 96-

well plates and allowed to adhere overnight. Cells were treated with 1µM MG132 for 1, 

3, 12, 18 hours, or to no stress (0 hour), as indicated. The MG132 was then removed and 

then cells were incubated culture medium in the absence of the stress agent for a total of 

24 hours from the onset on the stress induction. Optical density representing viable cells 

was then determined by the CellTiter 96® Non-Radioactive Cell Proliferation Assay. 

Results are calculated as percentage of viable cells compared with control cultures that 

were not treated with MG132 (mean ± SD, n = 3). 
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DISCUSSION 

1. Phosphorylation of eIF2 is required for ATF5 expression 

Phosphorylation of eIF2 induced in response to diverse environmental stress 

conditions elicits translational and transcriptional regulatory mechanisms to direct the 

expression of genes that alleviate cell damage, or alternatively induce apoptosis. eIF2 

phosphorylation represses general protein synthesis coincident with preferential 

translation of select of stress-related genes. Translational control of the ATF4 gene is the 

best studied example of selective translation by eIF2α phosphorylation in mammalian 

cells. In this study, we showed that eIF2 phosphorylation is also required for enhanced 

expression of the bZIP transcriptional regulator ATF5 in response to each of three 

different stress conditions: ER stress, arsenite exposure, and proteasome inhibition  

(Fig. 8). ATF5 is subject to translational control. There was minimal expression of ATF5 

protein in non-stressed conditions, despite the availability of ATF5 mRNA (Figs. 8 and 

9). only in response to stress conditions and enhanced eIF2α phosphorylation, was there a 

significant increase in ATF5 protein (Fig. 8). In fact, increased levels of ATF5 protein 

during stress occurred even in the presence of actinomycin D, indicating that 

transcription is not obligatory for the enhanced ATF5 expression during stress (Fig. 10B). 

ATF5 mRNA was preferentially associated with large polysomes in response to ER 

stress, directly supporting the idea that there is increased translation of ATF5 mRNA. 

Analysis of an ATF5-luciferase reporter demonstrated that the 5′-leader of the ATF5 

mRNA directs ATF5 translational control. The underlying mechanism involves a 

positive-acting uORF1 that allows reinitiating ribosomes to bypass an inhibitory uORF2 

in stressed conditions (Figs. 11 and 12).  
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2. The mechanisms by which eIF2 phosphorylation enhances ATF5 expression 

The key features of ATF5 translational control share those described for ATF4 

(61). The regulatory mechanism begins with translation of uORF1, which allows for 

retention of ribosomes and reinitiation at a downstream ORF. In non-stressed conditions, 

eIF2-GTP is readily available, allowing for scanning ribosomes to rapidly reinitiate 

translation at the next ORF, uORF2. Following translation of the inhibitory uORF2, 

terminating ribosomes would be positioned downstream of the start codon of the ATF5 

coding region, and thus incapable of ATF5 expression. Furthermore, upon translation of 

uORF2, terminating ribosomes may dissociate from the ATF5 mRNA. Therefore, 

translation of the inhibitory uORF2 would lead to lowered synthesis of the ATF5 

transcription regulator. This central feature of the model, in which uORF2 plays an 

inhibitory role in ATF5 translational control, is also suggested in a report by Watatani et 

al. (114). In response to stress, the reduced levels of eIF2-GTP that occur during eIF2 

phosphorylation delay reinitiation, allowing for scanning ribosomes to bypass the uORF2 

initiation codon. Ribosomes scanning the interval between the initiation codon of uORF2 

and the ATF5 coding region would reacquire eIF2/GTP/Met-tRNAi
Met 

and begin 

translation at the ATF5 coding region. Elevated levels of ATF5 protein would then be 

available to regulate transcription of targeted genes. 

A second mechanism contributing to ATF5 expression involves accumulation of 

ATF5 mRNA. Although in wild-type MEF cells there was minimal increase in ATF5 

transcript levels following up to 6 hours of ER stress, there was some elevation in ATF5 

mRNA levels during arsenite treatment. This increase in mRNA levels during this 

oxidative stress condition may contribute to the increased synthesis of ATF5 protein. 
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Interestingly, in A/A MEF cells, ATF4
-/-

, and CHOP
-/-

 cells there was a significant 

lowering in ATF5 mRNA (Fig. 9, A and B, Fig. 16, A). This suggests that ATF4 and 

CHOP, downstream targets of eIF2 phosphorylation, contributes directly or indirectly to 

increased ATF5 transcription. Importantly, the requirement of ATF4 or CHOP for 

accumulation of ATF5 mRNA is visible even during non-stressed conditions, suggesting 

that there is a basal level of ATF4 or CHOP protein that directs elevated ATF5 mRNA 

levels. ATF4
-/- 

cells were reported to be sensitive to oxidative stress, requiring reducing 

agents in the medium (69). This observation suggests that ATF4 can have critical 

functions in cells even in the absence of treatment with stress agents. In this case, there 

may be physiological stresses that trigger modest, transient increases in ATF4 levels. 

These results suggest that translational control and ATF4 regulation of ATF5 mRNA 

function together to enhance ATF5 expression in response to different stress conditions. 

This suggests that there is a cascade of activated transcription factors, 

ATF4>CHOP>ATF5, that direct each downstream effector via transcriptional control. 

Therefore, a combination of transcriptional regulation and translational control is central 

for ATF5 function in the ISR. 

In order to identify potential ATF4 binding sites in the ATF5 promoter, we 

analyzed the 5-kb sequence of ATF5 gene and flanking promoter sequences using a 

number of software programs that identify potential binding sites for transcription factors 

(rVISTA, ConSite, and TFSEARCH). This analysis was performed on the ATF5 

promoters from different species and we did not detect an identifiable ATF binding site. 

It has been reported that C/EBP/ATF site is located within the intron responsible for 

transcriptional regulation of the SNAT2 gene (115). Considering the complexity of 
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regulatory elements, to maximize the identification of functional sites, we also scanned 

the sequences of the 5’-leader of the ATF5 mRNA, introns, ATF5 coding region, 3’-UTR 

of the ATF5 mRNA, and 1-kb downstream of the ATF5 gene. There was no identifiable 

ATF site in these regions as well. This suggests that ATF4 functions indirectly to induce 

ATF5 mRNA in response to stress, through another transcription factor directly under its 

control, e.g. CHOP. We found a predicted CHOP_01 binding site in the ATF5 promoter 

(-2529-2541). These results suggest that translational control and direct CHOP regulation 

of ATF5 mRNA expression can function together to enhance ATF5 activity in response to 

different stress conditions.  

These key features of combined translational and transcriptional mechanisms 

have also been described for GCN4 orthologs in fungi, such as Candida albicans, 

Neurospora crassa, and Aspergillus nidulans (35, 116-118). In each of these cases, 

increased synthesis of mRNA was suggested to be important for insuring maximal 

expression of these GCN4-related transcriptional activators. Transcriptional expression of 

these GCN4 orthologs is suggested to be coupled to translational control mechanisms 

involving uORFs and translation reinitiation that is delayed by eIF2α phosphorylation. 

However, it is noteworthy that, although a single “master regulator” directs the eIF2 

kinase pathway in these fungi (64), this report shows that mammals have multiple 

transcriptional regulators subject to translational control in response to eIF2α 

phosphorylation.  
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3. ATF5 functions in the ISR pathway ATF4/CHOP/ATF5 

Given that translational control has the most immediate effect on gene expression, 

this combination of transcriptional and translational regulation suggests that the 

translational induction of ATF5 is invoked first in stressed cells, while transcription 

regulation would facilitate further enhancement of ATF5 protein levels in the longer term. 

The adaptive function  of the UPR during ER stress have been viewed as being directed 

by enhancing the preferential stabilities of mRNAs and proteins that facilitate adaptation 

versus those that lead to cell death (13). ATF4 and CHOP are unstable at the mRNA and 

protein levels, and as a consequence the pro-apoptotic CHOP accumulates only during 

prolonged stress. By contrast, key stress adaptive proteins, such as chaperones, are more 

stable during stress insults (13). ATF5 protein appears to be stable (Fig. 17) and the half-

life of ATF5 mRNA is 11 h (119). Thus elevated expression level of ATF5 would extend 

significantly beyond the period of stress, resulting in a scenario where ATF5 remains up-

regulated, while ATF4 and CHOP do not. This may be significant for determining the 

patterns of gene expression during stress conditions and the resulting cell survival. 

 

4. A Possible Mechanism of Adaptation  

Given the well-characterized role of CHOP in stress-induced apoptosis, it is 

reasonable to propose a significant pro-apoptotic function for ATF5 in MEF cells. 

MG132 can induce caspase-dependent apoptosis. We demonstrated that depletion of 

ATF5 in MEF cells conferred resistance to cell death induced by MG132. Such 

protection from apoptosis is associated with the reduced cleavage of caspase-9 and 

caspase-3, as well as PARP (Fig. 19). This was accompanied by increased cell survival as 
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measured by a 96® Non-Radioactive Cell Proliferation Assay in ATF5 knock-down cells 

(Fig. 20). Disruption of ATF5 was effective in diminishing key apoptotic markers and 

preventing cell death, thus indicating the importance of ATF5 in stress-induced MEF cell 

death. These data suggest that ATF5, as a downstream target of CHOP, is a key mediator 

of CHOP-induced apoptosis. 

How might ATF5 mediate apoptosis in MEF cells? Our results suggest that the 

induction of ATF5 is an intermediate event in stress-induced apoptosis and that it is not 

downstream events of caspase activation. It was also reported that ATF5 represses CRE-

dependent transcription (88), and CREB and its associated factors play a role in cell 

survival (120, 121). These findings indicate that repression of CRE transcription could be 

one of the mechanisms inducing apoptosis that is promoted by ATF5. 

Other mechanisms of ATF5 actions are also possible. For example, ATF5 can 

also heterodimerize with ATF4 and C/EBP factors (122). Other gene promoters are likely 

to bind ATF5 containing heterodimers whose transcriptional products may induce 

apoptosis during stress. It is noteworthy that CHOP also has downstream targets linked to 

apoptosis, such as Dr5, GADD34 and Bcl2. These genes might also be the target genes of 

ATF5. GADD34 is CHOP-dependent, and directly activated by CHOP (123), and a 

conserved ATF binding site was also found in the GADD34 promoter (23). ATF4 was 

reported to directly bind to the GADD34 promoter in a ER-stress dependent manner (23). 

As an ATF4 subfamily member, ATF5 might also bind to the GADD34 promoter at the 

same ATF site. For example, interaction among ATF4, ATF5 and CHOP may 

collectively contribute to the regulation of GADD34.  
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CHOP also sensitizes cells to ER stress by down-regulating Bcl2 expression. 

Overexpression of Bcl2 protects cells from ER stress-induced cell death (124). However, 

no CHOP binding site has been located in the Bcl2 promoter. An alternative explanation 

is that ATF5, as a downstream effecter of CHOP, regulates Bcl2 expression.  ATF and 

CREB binding site were also located in Bcl2 promoter. Given the role of a repressive 

action on CRE sites, ATF5 expression may contribute to the downregulation of Bcl2, 

which can promote cell death. 

 

5. Future directions 

Prior studies on ATF5 have largely focused on ATF5 mRNA expression, the role 

of ATF5 in neural differentiation, and the potential role of ATF5 in cancer progression 

(72, 77, 82, 83, 125). Our findings that ATF5 expression is induced by stress by 

mechanisms requiring eIF2 phosphorylation may be integral to each of these research 

topics. Concerning ATF5 expression, two versions of ATF5 mRNA, derived from 

alternative splicing, were reported to be expressed in humans and mice (72). ATF5α 

mRNA, the major form studied in this thesis, is expressed during early mouse 

development and in adult tissues, with highest levels in liver and certain neural tissues 

(72). Given our findings that ATF5 is subject to translational control, ATF5 transcript 

levels are not necessarily an accurate measure of ATF5 protein and activity. A second 

version of ATF5 mRNA, designated ATF5β, is present at much lower levels, and was 

reported to be restricted to early mouse development (72). Interestingly, ATF5β shares an 

identical ATF5 coding region with ATF5α, differing only in the 5′-leader region of the 

mRNA. Three uORFs are present in the ATF5 transcript, each differing from that 
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described for the ATF5α version. Like the ATF5α transcript, the 3′-proximal uORF in 

ATF5 is longest, encoding a 63-amino acid residue polypeptide that overlaps out-of-

frame with the ATF5 coding region. It is inviting to speculate that this alternative 5′-

leader configuration in the ATF5 mRNA may change important features of translational 

control as compared with the ATF5α transcript. For example, the 5′-leader of ATF5 

mRNA may alter the efficiency of ribosome scanning and change the timing of 

translation reinitiation, thus altering the sensitivity of translational control to eIF2α 

phosphorylation. 

Another area that needs to be considered is the function of homo- or hetero-

dimerization of ATF5 in transcriptional regulation of the ISR. The structural similarity of 

ATF4 and ATF5 suggests dimerization between ATF5 and ATF4, or other b-ZIP 

transcription factors. Differential binding to bZIP partners may provide for unique 

binding elements in target promoters, enhancing the diversity of transcription during 

stress conditions.  

In addition to its role in the activation of transcription, ATF5 was also reported to 

regulate proliferation and differentiation of neuroprogenitor cells. In PC12 cells, ATF5 

transcripts, which were highly expressed prior to NGF exposure, fell 25-fold following 

NGF treatment (77); however, our preliminary immunoblot data demonstrated that the 

transient induction of ATF5 in PC12 cells in response to proteasome inhibition, support 

the idea that expression of ATF5 is also inducible in these neural cells, rather than being 

constitutively expressed. Further experiments to address the regulation mechanism of 

ATF5 in neuroprogenitor cells versus differentiated neurons may shed light on the role of 

ATF5 in neural development. 
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6. Summary 

We are only beginning to understand the biological functions of ATF5. Recent 

studies suggest that ATF5 is highly expressed in neural progenitor cells, and lowered 

ATF5 mRNA expression is a prerequisite for differentiation into neurons and glia (77, 82, 

83, 125). Illustrating this point, overexpression of ATF5 in rat PC12 cells repressed 

neurite outgrowth in response to NGF, while expression of a dominant-negative version 

of ATF5 accelerated neuritogenesis (77). In keeping with the idea that ATF5 represses 

differentiation of neural progenitor cells and facilitates proliferation, it was observed that 

ATF5 is expressed in a number of different human glioblastomas (82). In fact, the 

presence of ATF5 mRNA has been suggested to be a good prognostic marker in 

histopathologic examinations (126). The finding that ATF5 expression is integrated into 

the eIF2 kinase response suggests that this pathway may be a factor in neural 

differentiation and cancer, and that stress-induced ATF5 may alter these processes. 

Understanding the complex regulation of ATF5 leading to cell death or survival may 

allow the identification of novel molecular targets and facilitate the design of therapeutic 

strategies to specifically target tumor and neurodegenerative diseases. 
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