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ABSTRACT 

Maria Moreno 

 

THE ROLE OF IONOTROPIC GLUTAMATE RECEPTORS IN THE 

DORSOMEDIAL HYPOTHALAMUS IN THE INCREASE IN CORE BODY 

TEMPERATURE EVOKED BY INTEROCEPTIVE AND EXTEROCEPTIVE 

STRESSES IN RATS 

 
 Brain responds to an array of diverse challenges that are defined as either 

exteroceptive stress, involving cognitive processing of sensory information from 

the external environment and or interoceptive stress, detected through sensory 

neural or chemical cues from the internal environment.  The physiological 

response to most stresses consists of autonomic responses that are essential for 

animal survival in the face of a threatening circumstance.  However, it is known 

that exposition to continuous situations of stress is involved in the development 

of a series of diseases such as hypertension, myocardial infarction and panic 

syndrome.  Several studies have shown that cells in a specific area of the brain, 

the dorsomedial hypothalamus (DMH), are involved in the response produced 

during emotional stress.  However, the role of glutamatergic transmission in the 

DMH in the increase in body temperature induced by experimental stress has not 

been examined.  Research findings thus far indicate that neurons in the DMH 

play a role in thermoregulation and that local glutamate receptors may be 

involved.  The hypothesis of this thesis is that activity at ionotropic glutamate 

receptors in the DMH is necessary for the thermogenic response induced 

by experimental stress.  In the present work, microinjections of kynurenate, an 
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excitatory amino acid antagonist, NBQX (2, 3-dihydroxy-6-nitro-7-sulfamoyl-

benzo[f]quinoxaline-2,3-dione), an AMPA/kainate receptor antagonist, DL-2-

amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, and a 

mixture of NBQX and APV, were delivered to the DMH before exposure to 

experimental stress.  The stress paradigms used include models for 

exteroceptive stress and interoceptive stress.  The results show that inhibition of 

both NMDA and non-NMDA receptors is necessary to abolish the thermogenic 

response produced by all stress paradigms tested.  Furthermore, there appears 

to be a difference in the degree of attenuation of the thermogenic response 

produced by either inhibition of NMDA receptors or non-NMDA receptors.  

Together these results support a definite role for ionotropic glutamate receptors 

within DMH region in the thermogenic response to stress.  These results also 

finally show that the DMH is involved in all the major physiological stress 

responses including increase in plasma ACTH, increase in heart rate, blood 

pressure and now temperature as well.    

 

             Joseph A. DiMicco, Ph.D., Chair 
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CHAPTER 1:  INTRODUCTION 

 

Temperature regulation is considered a “holistic” regulatory system 

because it involves the activities of all other physiological and behavioral 

processes (Boulant, 2000).  However, to date, it is not yet clear which area(s) in 

the brain mediate(s) the thermogenic response to stress.  Several studies 

suggest that cells in a specific area of the brain, the dorsomedial hypothalamus 

(DMH), are involved in a number of responses produced during emotional stress, 

including increases in heart rate and blood pressure as well as the release of 

adrenocorticotrophic hormone (ACTH), the neuroendocrine hallmark for stress.  

Furthermore, evidence suggests that glutamatergic transmission in this region 

may play a key role in at least some of these stress-induced changes.  However, 

the role of glutamatergic transmission in the DMH in the increase in body 

temperature induced by stress has not been examined or characterized.  

Understanding how this increase in body temperature is mediated can provide 

further insight into how neuronal signaling in the brain is involved in responses 

to stress and/or anxiety.  I suggest that neuronal activity in the DMH plays a role 

in the increase in body temperature seen in stress.  Specifically, I hypothesize 

that neuronal activation via ionotropic glutamate receptors in the DMH is 

necessary for the increase in body temperature induced by experimental 

stress.  The purpose of this research is to test this hypothesis and characterize 

the role of ionotropic glutamate receptors in the DMH in the thermoregulatory 

response to various types of stresses.  Not all stresses are alike and may be 
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broadly categorized as being either exteroceptive or interoceptive, both of which 

I examined.  Exteroceptive stress involves external cues, such as  noise or 

restraint, that evoke a stress response (Sawchenko et al., 2000).  Exteroceptive 

stress is thought of as an ‘‘emotional’’ stress and is often species and context 

specific, and may be determined or modified through experience (for reviews 

see Refs. DiMicco et al., 2002; DiMicco et al., 2006a).  Unlike exteroceptive 

stress, interoceptive stress, is a type of stressor detected through sensory 

neural or chemical cues from the internal environment; an example of such 

stress is a bacterial infection (Sawchenko et al., 2000).   

I. Thermoregulation in the rat 

Thermoregulation in mammals is a finely tuned mechanism that involves a 

coordinated response in various organ systems such as respiratory (increase 

heat evaporation through respiration, digestive (salivation as seen in rodents), 

cardiovascular (vasoconstriction and vasodilation), and muscular (shivering) 

(Gordon, 1990).  A constant body temperature is maintained in humans and 

other mammals throughout their lifetime within a narrow range of 36.8±0.7°C 

under normal conditions.  Any deviation from homeostasis is usually a foretelling 

sign of pathology in the body.  This is why body temperature is one of the four 

major vital signs used in medical exams to assess the most basic body functions.  

When patients develop or have a fever, this may be a sign of serious infection or 

organ dysfunction in the body.   

Mammals regulate body temperature using various thermoregulatory 

mechanisms, such as heat-producing, heat-conserving, and heat dissipating 



 

3 
 

responses that differ from species to species.  With regard to thermoregulation, 

vertebrates can be divided into two groups: bradymetabolic vertebrates which 

include reptiles, fish, amphibians and others, or tachymetabolic vertebrates which 

include birds and mammals (IUPS Thermal Commission, 2001).  Tachymetabolic 

animals are endothermic meaning that “their control of body temperature is 

dependent primarily on the generation of heat through metabolic processes”, 

while bradymetabolic animals are ectothermic meaning that their control of body 

temperature is “achieved behaviorally by controlling the transfer of heat between 

their bodies and their environment” (IUPS Thermal Commission, 2001).  Many 

endotherms, warm-blooded animals, are also homeothermic, maintaining a 

constant body temperature under most environmental circumstances.  Humans 

are homeotherms with a body temperature maintained within a narrow range of 

36.8-37.7°C (Mackowiak et al., 1992).  In this respect, the laboratory rat is similar 

to humans because a laboratory rat is homeothermic.  The Sprague Dawley rat 

was used in all experiments for this thesis and it has been used in various 

studies of thermoregulation.  Surprisingly, despite the obvious differences in size, 

rats and humans are similar with regard to several variables including core body 

temperature (37°C), skin temperature (rat, ~30°C; human, 33°C), preferred 

ambient temperature (28°C), and upper lethal core temperature (rat, 44°C; 

human, 43°C) (Gordon, 1993).  The rat has a large surface area-to-body mass 

ratio which means that it must maintain a relatively high rate of heat production to 

keep its core temperature at 37°C (Gordon, 1990).  It is important to be aware of 

this physiological difference, but despite this difference, the rat has proven to be 
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a useful and popular model for the study of thermoregulation.  A PubMed search 

suggests that about 65% of studies of thermoregulation use the rat, followed by 

studies in mice at 21% and 14% of studies that employed other rodents such as 

the guinea pig, hamster, or gerbil.   

Temperature in homeotherms is maintained within narrow limits by a 

mechanism thought to be similar to a thermostat that regulates according to 

reference temperature known as a set-point.  Set-point as described in the most 

recent edition of “Glossary of terms for thermal physiology” is “the value of a 

regulated variable which a healthy organism tends to stabilize by the processes 

of regulation” (IUPS Thermal Commission, 2001).  This term implies that a fixed 

value exists, and that a set-point temperature is a threshold temperature; thus, 

deviation from the set-point temperature would elicit a “corrective” effector 

response.  Romanovsky most recently suggested that the term set-point be 

phased out, as it is now understood and accepted that the thermoregulatory 

system is not a system that is unified and under control of one set-point 

(Romanovsky, 2007).  Rather, he suggests that the thermoregulatory system is 

made up of thermoeffector loops that work independently of each other and even 

though their actions may look coordinated, these effectors can have different 

thresholds (Romanovsky, 2007).  Thermoeffector loops as defined by 

Romanovsky consist of a circuit with both efferent and afferent pathways.  The 

efferent parts of the loops differ, because each effector has its own efferent 

pathway.  The afferent parts are also different because each effector receives a 

unique combination of signals from peripheral and central thermosensors 
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(Romanovsky, 2007).  Because of its connotation, the use of the term set-point is 

still subject to debate, leading some researchers to adapt the term balance point.  

The term balance point refers to a regulated level of core body temperature.  

Most importantly it allows for the possibility that the thermoregulatory system 

operates as a collaboration of independent thermoeffector loops in order to 

maintain thermal balance or normal body temperature (Briese, 1998; 

Romanovsky, 2007).  However, due to the lack of research to concretely defend 

the use of either set-point or balance point, set-point continues to be more 

customarily used. 

The thermoregulatory effectors that are used to maintain a stable body 

temperature over a range of environmental temperatures are different in rats and 

humans.  As mentioned earlier, a thermoregulatory system is one that integrates 

the functions of other systems in order to maintain a stable body temperature. In 

both hot and cold environments, homeotherms use both autonomic and 

behavioral responses to regulate body temperature.  One mechanism of 

autonomic thermoregulation is cutaneous vasomotor tone.  Dilating vessels 

increases heat loss via conduction. When humans are exposed to a warm 

environment, blood vessels of the skin dilate to allow greater convective and 

conductive heat loss.  Sweating also increases evaporative heat loss.  

Behaviorally, we may seek the shade, turn on the air-conditioner or take off our 

clothes to allow more efficient cooling.  Likewise, in the cold, blood vessels of the 

skin constrict to reduce heat dissipation, we generate heat through shivering, and 

we add layers of clothes and seek to be warm.  Rodents employ analogous 
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autonomic and behavioral responses.  However, they also have evolved several 

morphological and physiological adaptations that allow them to regulate body 

temperature more effectively than humans.   

In this thesis, I examined the role of ionotropic glutamate receptors in the 

DMH in the increase in temperature induced by stress in the rat.  The majority of 

studies of the thermoregulatory system have employed the rat as a model.  In 

order to facilitate the extrapolation of results from studies in rats to humans, it is 

important to understand the unique characteristics of the thermoregulatory 

system of the rat. 

A. Cutaneous vasomotor tone: Rat tail 

The vasomotor tone of the rat tail is crucial to conservation or loss of body 

heat. During heat stress, a stress induced by exposure to ambient temperatures 

that exceed body temperature, the vasomotor tone of the tail permits a high rate 

of blood flow to allow effective heat dissipation.  The tail lacks fur, and has a 

relatively high surface area to volume ratio, accounting for approximately 7% of 

the total surface area of the rat.  All of the described characteristics of the tail 

enhance the potential for dissipation of heat (Gemmell and Hales, 1977; Lin et al., 

1979; Little and Stoner, 1968).  Striker and Hainsworth (1971) showed that 

amputation of the rat’s tail reduced the rat’s heat tolerance and resulted in higher 

body temperature after exposure to a hot environment.  The vasomotor tone in 

the rat’s tail is also extremely sensitive to ambient temperatures.  The blood flow 

to the rat tail is near zero at standard room temperatures in the range of 20-25°C, 

and as the ambient temperature increases, blood flow to the rat tail increases as 
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well, allowing for increased dissipation of heat (for review see Gordon, 1990).  In 

fact, the tail can dissipate up to 25% of the rat’s metabolic heat at ambient 

temperatures ranging between 29-33°C  (Young and Dawson, 1982).  When the 

rat is exposed to cold ambient temperatures, blood flow in the tail decreases to 

minimize the dissipation of body heat.   

In conjunction with vasoconstriction in the tail, rats recruit metabolic 

processes to help maintain their body temperature.  When ambient temperature 

decreases to below 20°C, two heat-generating mechanisms are recruited, 

shivering and non-shivering thermogenesis.   

B. Shivering and nonshivering thermogenesis in the rat 

Thermogenesis falls into two types: obligative and facultative.  Obligative 

thermogenesis involves the basal metabolic processes that are sufficient to 

maintain thermal homeostasis when the organism is exposed to temperatures in 

the thermoneutral zone (TNZ).  TNZ is “the range of ambient temperature at 

which thermoregulation is achieved only by control of sensible heat loss, i.e., 

without metabolic heat production or evaporative heat loss” (IUPS Thermal 

Commission, 2001).  Facultative thermogenesis involves metabolic responses 

that are required to maintain normal body temperature as ambient temperature is 

reduced to below TNZ and consists of shivering and nonshivering thermogenesis 

(Gordon, 1990).  Shivering takes place in skeletal muscle, and rats like humans 

shiver to generate heat when exposed to cold temperatures.  However, during 

exposure to constant cold stress, the rat can rely on the activation of brown 

adipose tissue, an important adaptation.  Brown adipose tissue (BAT) is thought 
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to be the primary means by which rodents generate heat, and is responsible for 

nonshivering thermogenesis.  Nonshivering thermogenesis is a major component 

of facultative thermogenesis in many mammals.  In humans, BAT is seen in 

higher amounts during infancy and with time this tissue atrophies; active tissue is 

found only in restricted regions including main depots found in the 

supraclavicular and the neck regions with some additional paravertebral, 

mediastinal, para-aortic, and suprarenal localizations (Lean et al., 1986; 

Nedergaard et al., 2007).  In rodents, this tissue becomes the primary source of 

heat production when the animal is exposed to a cold environment (Cannon et al., 

1998; Foster and Frydman, 1978; Kuroshima, 1993).  The venous and arterial 

circulation of BAT is positioned to facilitate heat transfer from BAT to strategic 

organs including the spinal cord and heart (Smith and Horwitz, 1969).  BAT also 

serves other thermoregulatory functions in rodents including its apparent role in 

diet-induced thermogenesis; it provides the heat needed to elevate body 

temperature during a fever; and finally, it serves as a major source of heat during 

recovery from anesthesia-induced hypothermia, torpor or hibernation (Gordon, 

1993).  In the rat, BAT is found in distinct regions including the cervical, 

pericardial, intercostal, and perirenal sites with the highest concentration and 

most studied found in the interscapular region (Alexander, 1979; Gordon, 1990).   

Girardier and colleagues (1983) first recorded that under stimulation by 

catecholamines, BAT was able to generate heat at 400W/kg which is about 80 

times that of the basal metabolic rate for the rat.  BAT is able to produce a vast 

amount of heat because of its cellular and molecular makeup.  Brown fat cells 
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are densely packed with mitochondria, and the activity of uncoupling protein 1 

(UCP1) found in the inner layer of the mitochondria is key to efficient heat 

production.  In most tissues, mitochondria produce ATP through oxidative 

phosphorylation, which is driven by an electrochemical gradient across the 

mitochondrial inner membrane.  In BAT however, UCP1 allows an alternative for 

proton entry so that protons bypass the ATP synthase route of entry 

(Argyropoulos and Harper, 2002).  The transfer of protons across the 

mitochondrial membrane cause “uncoupling” of the electron transport chain and 

so a reduction in the amount of ATP produced per milliliter of oxygen consumed 

(Nicholls and Locke, 1984).  By uncoupling oxidative phosphorylation, UCP 

increases the electron transport and metabolic process in an attempt to maintain 

an electrochemical gradient sufficient to make adequate amounts of ATP.  This 

increases metabolic work and the energy of the electrochemical gradient is 

dissipated as heat (Smith and Horwitz, 1969).   

C. Evaporative heat loss and other thermoregulatory effectors 

Mechanisms for evaporative heat loss evolved in animals to aid in heat 

dissipation. As ambient temperature rises, the ability of the animal to transfer 

heat from the core to the environment diminishes and evaporation is a means 

that allows heat loss and helps maintain normal body temperature.  Evaporative 

heat loss can occur passively through normal respiration or through convection 

on the skin (both contribute minimally to evaporative heat loss), or actively via 

sweating, panting, and application of saliva, urine and other forms of moisture to 

the fur and skin (Gordon, 1993).   
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The thermoregulatory system also employs behavior as a means for 

temperature regulation.  For example, rodents will spread saliva over their fur 

and show increased grooming which allows them to dissipate their heat through 

evaporation (Hainsworth, 1967; Hubbard et al., 1982; Stricker and Hainsworth, 

1971).  Spreading saliva on their fur is thought to have an effect similar to that of 

sweating in humans because in both cases, exposed surfaces are covered with 

moisture, which during evaporation increases the level of heat loss and thereby 

minimizes elevations in body temperature (Gordon and Heath, 1986).  A rat will 

increase its grooming time as the ambient temperature rises above its TNZ 

(Hainsworth, 1967).  Rats surgically “desalivated” (salivary glands are removed) 

are highly susceptible to heat stress, much more so than tailless rats (rats 

subjected to surgical amputation of tail) (Stricker and Hainsworth, 1971).  Stricker 

and colleagues showed an 81% reduction in heat tolerance, a measure of the 

time it takes for the animal to reach a core temperature of 40°C, in surgically 

desalivated rats versus 8% reduction in heat tolerance in rats whose tails had 

been amputated (Stricker and Hainsworth, 1971).  A rat exposed to continuous 

heat stress will also show extension of the body which increases its surface area 

to body-mass ratio and allows for greater heat dissipation.   

D. Neural control of thermoregulatory effectors 

During the first half of the twentieth century, considerable progress was 

made in the search for the loci in the CNS involved in the regulation of body 

temperature.  By the 1930s the anterior/posterior hypothalamus and preoptic 

area had been established as key thermoregulatory sites (for historical review 
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see Lomax, 1979).  The thermosensitive nature of the preoptic area (POA) has 

also been well characterized in rats (Boulant and Dean, 1986; Boulant, 2000).  

Much of our understanding of the loci in the CNS that are potentially involved in 

thermoregulation comes from studies involving electrolytic lesions or knife cuts.  

Chen and colleagues (1998) showed that coronal transections caudal to the POA 

induced BAT thermogenesis.  Electrolytic lesioning of the POA evoked an 

increase in metabolism, stimulated shivering thermogenesis and activated 

cutaneous vasoconstriction all of which led to a hyperthermia (Szymusiak and 

Satinoff, 1982).  Therefore, evidence suggests that the POA is involved in 

thermoregulation and could be a key player in the increase in temperature 

induced by any type of stress.  It is also currently understood that the preoptic 

area tonically inhibits neurons in caudal brain regions.  In fact, inhibition of 

neurons in the preoptic area increases core body temperature, shivering, 

metabolism and heart rate (Osaka, 2004; Zaretsky et al., 2006).  However, we 

now know that a simple, long, inhibitory pathway from the POA to the medullary 

sympathetic premotor neurons that activate BAT thermogenesis is not the case.  

In fact, transections made in the midbrain caudal to the hypothalamus did not 

increase the basal levels of BAT  thermogenesis (Rothwell et al., 1983) and 

instead reversed increases in BAT sympathetic nerve activity (SNA) and 

thermogenesis evoked by PGE2 (Morrison, 2004; Rathner and Morrison, 2006). 

Therefore, observations from experiments involving transections of the neuraxis 

suggest that a hypothalamic input is necessary for BAT thermogenesis in 

response to the effects of PGE2 acting within the POA (Morrison et al., 2008).  
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Most recently the dorsomedial hypothalamus and the raphe pallidus have been 

suggested to play a key role in thermoregulation and together with the preoptic 

area are involved in a signaling pathway that regulates body temperature 

(DiMicco et al., 2006a; DiMicco and Zaretsky, 2007).  Disinhibition of the neurons 

in the DMH by microinjections of bicuculline methiodide (BMI), a gamma-amino 

butyric acid (GABA) receptor antagonist increased BAT SNA and thermogenesis 

(Cao et al., 2004b; Zaretskaia et al., 2002) further suggesting a tonic inhibitory 

input to the DMH that may originate in the POA.  Evidence for a signaling 

pathway from the POA to the DMH includes the observation of GABAergic axon 

swellings that make close appositions with DMH neurons that include those 

projecting to the raphe pallidus (Nakamura et al., 2005b).  Likewise inhibition of 

neurons in the DMH blocked 1) the febrile response to microinjections of PGE2 in 

the POA (Cao et al., 2004b; Nakamura et al., 2005b; Zaretskaia et al., 2003), 2) 

excitation of BAT SNA and thermogenesis induced by cold exposure and 3) 

shivering thermogenesis (Tanaka et al., 2001).  However, neurons in the DMH 

itself do not send direct projections to the sympathetic preganglionic neurons, but 

have been shown to project to the sympathetic premotor neurons responsible for 

thermogenesis including neurons in the raphe pallidus.  Neurons in the raphe 

pallidus are the putative sympathetic premotor neurons for BAT thermogenesis 

(Morrison et al., 2008).  In fact, evidence suggests that activation of glutamate 

receptors within the raphe pallidus is required for activation of the BAT SNA and 

BAT thermogenesis induced by disinhibition of neurons in the DMH (Cao and 

Morrison, 2006).  Sarkar and colleagues also observed that some neurons in the 
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DMH labeled by microinjection of a retrograde tracer into the raphe pallidus 

express FOS, a marker for neuronal activation, in response to endotoxin 

administration or stress (Sarkar et al., 2007).  Likewise neurons in the DMH that 

are labeled with a retrograde tracer from the raphe pallidus receive GABAergic 

appositions from neurons in the POA (Nakamura et al., 2005b).  The proposed 

model for a signaling pathway for thermogenesis from the DMH to the raphe 

pallidus also includes another region of interest, the periaqueductal gray area 

(PAG).  The PAG may be involved in transmitting a thermogenic signal from the 

DMH to the raphe pallidus.  Indeed, many neurons in the caudal PAG have been 

shown to project directly to the medullary raphe (Hermann et al., 1997).  Likewise 

Cano and colleagues have shown that neurons in the caudal PAG (cPAG) were 

labeled by microinjection of pseudorabies virus into BAT, and neurons within the 

cPAG expressed FOS in response to cold (Cano et al., 2003).  In addition, 

pretreatment with microinjection of muscimol into the cPAG attenuated the 

increase in body temperature induced by microinjection of bicuculline into the 

DMH (de Menezes et al., 2006).  This evidence places the cPAG as a likely 

player in the thermogenic signaling pathway as shown in Illustration 1.  However, 

there is still a need for further investigation of the pathways transmitting the 

thermogenic drive from the hypothalamus to the sympathetic premotor neurons. 
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II. Stress-induced hyperthermia: Brain mechanisms, function, and pharmacology 

Stress-induced hyperthermia is an acute increase in body temperature in 

response to exteroceptive stress.  The physiological response to emotional 

stress in mammals consists of changes in the activity of the autonomic nervous 

system that are intended to increase the probability of the animal’s survival in the 

face of a threatening circumstance.  This response is seen in a wide variety of 

vertebrate species, both warm and cold blooded, including humans, baboons, 

pigs, rabbits, rodents and even reptiles (for review see Bouwknecht et al., 2007).  

Thus, when a lizard is gently handled, a type of exteroceptive stress, it will move 

under an infrared lamp to increase its core body temperature (Cabanac and 

Gosselin, 1993).    

As mentioned, hyperthermia is evoked by a number of anxiogenic or 

stress-inducing stimuli.  Numerous case reports suggest that “psychological 

stress” or “emotional stress” in humans produces elevated core temperature 

(Oka and Oka, 2007).  Increases in temperature of 0.6° were reported in healthy 

adults before an examination compared to core temperature taken during a 

relaxed state (Briese, 1995; Marazziti et al., 1992).  The phenomenon of stress–

induced hyperthermia is also observed in laboratory animals in response to 

various exteroceptive stresses such as handling, where the rat is petted or 

manipulated (Bouwknecht et al., 2007; Briese and De Quijada, 1970; Pae et al., 

1985; Parrott et al., 1995) or restraint stress, in which, the rat’s movements are 

confined, usually by placing the rat in a tube (Beotra and Sanyal, 1982; Chung et 

al., 2000).  During foot shock, another exteroceptive stress, an electrical current 



 

16 
 

is applied to a rat’s foot (Bouwknecht et al., 2000; Millan et al., 1981; Pechnick 

and Morgan, 1987).  Rats also show an increased temperature when placed in a 

new cage (cage-switch) or when placed in a cage previously used by another rat 

(cage exchange) (Groenink et al., 2003; Oka et al., 2003; Olivier et al., 2003; 

Spooren et al., 2002; Watanabe et al., 1999).  Other exteroceptive stresses that 

have been shown to induce hyperthermia include fear-conditioning paradigms 

(Kiyokawa et al., 2004) as well as participation in resident-intruder paradigms 

(Bouwknecht et al., 2001; Chung et al., 1999).  Behavioral stresses such as 

introduction to novel environment (Akutsu et al., 2002; Amico et al., 2004; 

Groenink et al., 2003; Pattij et al., 2002), and open-field stress (Kluger et al., 

1987; Rowsey et al., 2002; Singer et al., 1986; Soszynski et al., 1998) also 

increase body temperature in rats.  Stress-induced hyperthermia is a parameter 

used to model some of the physiological symptoms associated with anxiety 

disorders and has proven to be reliable in predicting clinical efficacy of anxiolytic 

drugs (Rorick-Kehn et al., 2005).  A vital question concerning this effect of 

emotional stress is whether we are dealing with hyperthermia or fever.  There 

seems to be a consensus that fever is beneficial to the organism and that it might 

increase the likelihood of survival.  Likewise, animals have evolved to increase 

body temperature when stressed and this response may also have evolved to 

increase the probability of survival.   

A. Fever versus Hyperthermia 

Considerable debate exists about the differences between the 

mechanisms responsible for the increase in body temperature seen in fever and 
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the increase in body temperature seen with stress.  Fever is defined as being the 

result of raised “set-point temperature”, toward which the thermoregulatory 

system works to raise core body temperature (Gordon, 1990).  On the other hand 

hyperthermia is defined as an increase in body temperature above the “set-point” 

that does not require resetting of the temperature set point (Gordon, 1993).  

Fever is a response to a bacterial or viral infection seen in all mammals, and the 

hallmark of infection.  It is considered to be a centrally-regulated increase in core 

temperature that is due to a raised “set point”.  Exposure to endotoxins such as 

lipopolysaccharide (LPS), a component of the bacterial cell wall, induces the 

release of cytokines from macrophages (i.e. Kupffer cells or hepatocytes).  These 

cytokines are then thought to act centrally to produce fever (Kluger et al., 1995; 

Kluger et al., 1998).  One model suggests that cytokines cross from the blood 

into the brain through the organumvasculosum lamina terminalis (OVLT) (Blatteis, 

1992; Saper and Breder, 1992).  The OVLT is a circumventricular organ located 

near the region of the POA and most importantly, it is outside the blood brain 

barrier, and so neurons in this region can respond to factors that are present in 

the systemic circulation such as cytokines (Saper and Breder, 1992).  Cytokines 

act on the neurons of the OVLT to promote the synthesis and release of 

prostaglandin E2 (PGE2) (Blatteis, 1992).  The neurons in the OVLT project to 

the region of the POA and PGE2 diffuses from the OVLT to the region of the POA 

where PGE2 binds to prostaglandin E receptor subtype EP3 receptors in this 

region (Blatteis, 1992).  Following activation of the EP3 receptors in the POA, the 

brain orchestrates changes in the autonomic, neuroendocrine, and behavioral 
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thermoregulatory responses to increase heat-producing mechanisms and inhibit 

heat-dissipating mechanisms.  Microinjection of PGE2 in the POA is considered a 

reproducible and reversible experimental model for fever.  The POA is a region 

that contains thermosensitive neurons that not only receive somatosensory 

information from the skin and spinal thermoreceptors but also integrate central 

and periphery thermal information from these ascending neural pathways 

(Boulant and Dean, 1986; Boulant, 2000; Hori et al., 1988; Lipton and Clark, 

1986).   

According to the Commission for Thermal Physiology of the International 

Union of Physiological Sciences (IUPS Thermal Commission), hyperthermia is a 

core temperature above its range specified for the species at thermal neutral 

zone (TMZ) ambient temperature (2001).  Evidence suggests that stress-induced 

hyperthermia (cage-change, cage-exchange and open-field stresses) can be 

attenuated by pretreatment with indomethacin and sodium salicylate (Kluger et 

al., 1987; Singer et al., 1986; Stewart and Eikelboom, 1979).  This finding 

suggests that, like fever evoked by endotoxin, the stress-induced increases in 

core temperature are also dependent on the actions of PGE2 (Kluger et al., 1987; 

Morimoto et al., 1991; Oka et al., 2001; Singer et al., 1986).  Like endotoxin-

induced fever, open-field and cage exchange stress-induced increases in core 

temperature in rats seem not to be affected by ambient temperature (Briese and 

Cabanac, 1991; Long et al., 1990a).  Cage-switch stress also produces an 

increase in core body temperature, heart rate, blood pressure, levels of plasma 

adrenocorticotrophic hormone (pACTH) and locomotor activity similar to the 
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responses seen with endotoxin induced fever (Morimoto et al., 1991).  

Furthermore, the increase in core temperature of rats following cage exchange 

does not correlate with the associated increase in physical activity suggesting 

that the increase in temperature is not due to muscular activity (Long et al., 

1990b).   

Compelling evidence also indicates that the mechanisms involved in 

stress hyperthermia and fever are not identical.  Oka and colleagues (2003) have 

shown that in EP1 and EP3 receptor knockout mice the febrile response to 

systemic administration of lipopolysaccharide is suppressed but that stress-

induced hyperthermia caused by handling is unchanged.  Likewise, rats made 

tolerant to endotoxin do not exhibit an altered hyperthermic response to an open-

field stress (Soszynski et al., 1998).  Finally, lesions to the anteroventral third 

ventricle (AV3V), a region in the brain specifically shown to be involved in the 

production of fever, suppressed the febrile response to systemic administration of 

interleukin-1β, another experimental model for fever, but had no effect on the 

hyperthermic response to open-field stress or cage-switch stress (Hunter, 1997).  

This evidence suggests that the mechanisms involved in the production of fever 

and of stress hyperthermia may be different.   

B.  DMH and stress response 

A role for the DMH in thermoregulation was theorized by DiMicco and 

colleagues (2006a), following an evaluation of the role of the DMH in the 

sympathetically mediated tachycardia induced in mammals by acute emotional 

stress.  The DMH appears to mediate a broad range of physiological and 
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behavioral changes seen in stress, which include tachycardia and activation of 

the hypothalamic-pituitary adrenal (HPA) axis (DiMicco et al., 2006a).  Activation 

of the HPA axis is reflected by acute increases in pACTH levels and is a 

neuorendocrine marker for stress (DiMicco et al., 2002; Selye and Fortier, 1950).  

The increase in heart rate and pACTH are physiological changes associated with 

the fight-or-flight response which includes the most immediate changes in 

physiological and behavioral state seen in exposure to exteroceptive stress, and 

is centrally mediated (McDougall et al., 2005; Selye and Fortier, 1950).  

Microinjection of BMI, a GABA receptor antagonist into the region of the DMH in 

urethane-anesthetized rats, elicits a marked increase in heart rate and modest 

increases in blood pressure (DiMicco et al., 1986).  At baseline (unstressed), 

neurons in the region of the DMH are under tonic inhibition.  This can be 

demonstrated by the finding that microinjection of muscimol, a GABA agonist 

inhibitor in nearly all adult central mammalian neurons that produces acute 

reversible inactivation of neurons (Johnston et al., 1968), into the DMH has little 

or no significant effect on baseline heart rate or mean arterial pressure.  

Conversely removal of GABA tone with microinjection of BMI evokes increases in 

heart rate and mean arterial pressure (Samuels et al., 2002).  Likewise, 

microinjection of BMI into the DMH of anesthetized or conscious rats elicits 

increases in pACTH; (Bailey and Dimicco, 2001; Keim and Shekhar, 1996; 

Zaretskaia et al., 2002).  Microinjections of muscimol into the DMH abolishes the 

increase in heart rate, arterial pressure, and increases in pACTH seen in an air-

jet stress paradigm (De Novellis et al., 1995b; Lisa et al., 1989a; Stotz-Potter et 
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al., 1996a; Stotz-Potter et al., 1996b).  Neurons in the ventrolateral subregion of 

the DMH send direct projections to the parvocellular hypothalamic 

paraventricular nucleus (PVN) and are activated in experimental stress (Cullinan 

et al., 1996).  The PVN is a region that has been shown to mediate increases in 

pACTH levels evoked by stress or infection (Cullinan et al., 1996; Herman and 

Cullinan, 1997; Rivest and Rivier, 1991).  These studies suggest that the DMH 

through signaling to the PVN may be responsible for the increase in pACTH 

associated with stress.   

Evidence also suggests a role for the DMH in the increase in heart rate 

induced by stress that may be mediated through signaling to the raphe pallidus.  

Neurons in the region of the raphe pallidus were found to be heavily 

retrogradedly labeled following microinjection of pseudorabies virus (PRV), a 

transsynaptic viral tracer, into the stellate ganglion, the primary location of 

sympathetic neurons innervating the heart (Jansen et al., 1995).  In the same 

study, infected cells were also found in the dorsal area of the DMH known as the 

dorsal hypothalamic area (DHA).  Various exteroceptive stresses including 

restraint, swim stress, and noise stress, increased FOS expression or FOS 

mRNA in the raphe pallidus (Campeau and Watson, 1997; Cullinan et al., 1996).  

These anatomical studies suggested a possible role for the raphe pallidus in the 

cardiovascular response seen in stress.  Indeed, microinjections of BMI into the 

raphe pallidus produced marked sympathetically mediated increases in heart rate 

and arterial pressure in anesthetized and conscious rats (Cao and Morrison, 

2003; Morrison et al., 1999; Samuels et al., 2002; Zaretsky et al., 2003a).  
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Increases in heart rate, and arterial pressure produced by microinjection of BMI 

into the DMH of anesthetized rats were attenuated by microinjection of muscimol 

into the raphe pallidus (Cao et al., 2004b; Samuels et al., 2002; Samuels et al., 

2004).  These results were also confirmed in conscious rats (Zaretsky et al., 

2003b).  In conjunction, these studies suggest that neuronal activity in the raphe 

pallidus mediates the cardiovascular responses induced by disinhibition or 

activation of neurons in the region of the DMH.  Conversely, Zaretsky and 

colleagues showed that microinjections of muscimol into the raphe pallidus did 

not alter baseline heart rate but caused dose-related attenuation of the increase 

in heart rate associated with air-jet stress (Zaretsky et al., 2003c).  These studies 

showed that the projection from the DMH to the raphe pallidus plays a key role in 

stress-induced cardiac stimulation.  As mentioned earlier, these functional 

studies are supported by the already existing anatomical studies.  A more recent 

tracing study aimed to enhance the resolution of the area of the DMH most likely 

involved in the increases in heart rate evoked by disinhibition of neurons in the 

DMH.  Samuels and colleagues, using the retrograde tracer cholera toxin B, 

confirmed that neurons in the DHA of the DMH sent numerous projections to the 

raphe pallidus (Samuels et al., 2004).  Most importantly, the greatest increases in 

heart rate were produced by microinjections of BMI in this exact region in the 

DMH, the DHA, where the neurons projecting to the raphe pallidus are most 

densely localized (Samuels et al., 2004).  Taken together, these studies suggest 

that the DMH through signaling from the DHA to the raphe pallidus and through 

signaling through the PVN may be responsible for mediating different 
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components of the physiological responses to stress including the increases in 

heart rate and in pACTH, respectively.  Evidence suggests that the projection 

from the DMH to the raphe pallidus may also play a key role in the thermogenic 

response to stress, another physiological component of the stress response as 

described next.   

C. DMH and its role in thermoregulation 

Until recently the DMH was overlooked as a region of interest in 

thermoregulation and was instead mostly studied for its apparent role in 

metabolic regulation associated with ingestive behavior (Bernardis and Bellinger, 

1987), a behavior that is also related to thermogenesis (Himms-Hagen, 1995), 

1995).  Thermoregulatory research focused mainly on the nearby regions of the 

ventromedial hypothalamus (VMH) (Holt et al., 1987; Hugie et al., 1992; Kelly 

and Bielajew, 1991; Perkins et al., 1981) and the posterior hypothalamus (PH) 

(Thornhill and Halvorson, 1994).  However, in microinjection studies involving the 

VMH and PH, the lack of anatomical specificity due to large injection volumes 

used, or lack of appropriate anatomical control injections calls into question the 

role of these regions in thermoregulation.  Instead, functional studies with the 

appropriate anatomical controls singled out the region of the DMH as a region 

containing neurons likely to be involved in the signaling pathway for 

thermoregulation (DiMicco et al., 2006b).  Disinhibition of neurons in the DMH by 

blockade of GABAA receptors resulted in increases in core body temperature, 

brown adipose tissue (BAT) temperature, and BAT sympathetic nerve activity 

(SNA) (Cao et al., 2004b; Zaretskaia et al., 2002).  This evidence suggested a 
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possible role for neurons in the DMH in thermoregulation.  In addition, inhibition 

of neurons in the DMH blocked the febrile response to microinjections of PGE2 in 

the POA, cold-evoked excitation of BAT SNA and increase in BAT temperature, 

as well as shivering (Cao et al., 2004b; Morrison, 2004; Nakamura and Morrison, 

2007; Nakamura et al., 2005b; Tanaka et al., 2001; Zaretskaia et al., 2003).  

Neurons in the DMH do not project directly to sympathetic preganglionic neurons; 

however, these neurons may contribute to thermogenic sympathetic outflow by 

influencing the activity of the sympathetic premotor neurons found in the raphe 

pallidus responsible for BAT thermogenesis.  In fact, Sarkar and colleagues 

found that some DMH neurons that were retrogradedly labeled from the raphe 

pallidus also express FOS, a marker for neuronal activity, in response to either 

stress or systemic administration of LPS (Sarkar et al., 2007).  Furthermore, 

Nakamura and colleagues found that some neurons in the DMH that were 

labeled by microinjection of a retrograde tracer into the raphe pallidus receive 

close GABAergic appositions (putative synapses) from neurons in the POA.  This 

evidence suggests a possible role for a monosynaptic pathway from neurons in 

the DMH to the raphe pallidus in thermogenesis.    

The anatomical connections between the DMH and the medullary raphe 

pallidus are also consistent with a role for the DMH in thermoregulation. As 

shown using transsynaptic neuronal tracing studies, the raphe pallidus is the 

location of sympathetic premotor neurons that directly control sympathetic 

preganglionic neurons (SPNs) in the intermediolateral cell column (IML) of the 

thoracic spinal cord that innervate the interscapular brown adipose tissue (IBAT) 



 

25 
 

and thermoregulatory cutaneous blood vessels (Bamshad et al., 1999; Nakamura 

et al., 2004; Smith et al., 1998). Anterograde tracing studies have shown that the 

DMH sends direct projections to the raphe pallidus (ter Horst and Luiten, 1986).  

Retrograde tracing studies also show that these neurons that project to the raphe 

pallidus are concentrated in the DHA (Hermann et al., 1997; Hosoya et al., 1987; 

Hosoya et al., 1989).  Thus, anatomical evidence places the DMH at the 

crossroads of a thermoregulatory signaling pathway, downstream from the POA 

and upstream from the raphe pallidus.   

The region of raphe pallidus is a brain region that when chemically 

stimulated increases core body temperature in part through stimulation of IBAT 

temperature and regulation of cutaneous vasoconstriction.  Neurons in the raphe 

pallidus were infected following transsynaptic viral tracing from the IBAT, the 

primary thermogenic organ in rodents (Bamshad et al., 1999).  Also, cold 

exposure produced a dramatic increase in c-fos expressing neurons in the region 

of the raphe pallidus (Bonaz and Tache, 1994).  Together these anatomical 

studies identified the raphe pallidus as a region of interest in thermoregulation.  

In 1999, Morrison and coworkers reported that microinjections of BMI in the 

raphe pallidus of anesthetized rats produced dramatic increase in SNA to IBAT 

(Morrison et al., 1999).  Similarly Blessing and colleagues reported that 

microinjections of BMI into the raphe pallidus produced cutaneous 

vasoconstriction in the tail, a mechanism used for heat conservation (Blessing 

and Nalivaiko, 2001).  Electrical stimulation of neurons in the region of the raphe 

pallidus caused vasoconstriction in the ear pinna in rabbits, an important heat-
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conserving mechanism in this species (Blessing et al., 1999; Nalivaiko and 

Blessing, 2002).  In a similar study, electrical stimulation of, the DMH, evoked 

vasoconstriction in the ear pinna of rabbits, a response blocked by microinjection 

of muscimol into the region of the raphe pallidus (Nalivaiko and Blessing, 2001).  

This finding suggested a possible role for neurons in the region of the DMH that 

projected to the raphe pallidus in thermoregulatory cutaneous vasoconstriction.   

Neurons in the raphe pallidus and the DMH seemed to be cooperatively 

involved in stress-induced tachycardia.  Therefore, it seemed possible that the 

DMH and even the raphe pallidus could also be involved in stress-induced 

increases in body temperature.  In support of this idea, disinhibition of neurons in 

the DMH produced an increase not only in core body temperature but also in 

IBAT temperature (Zaretskaia et al., 2002).  In fact, the increase in IBAT 

temperature was greater than the increase in core temperature and preceded it 

as would be expected considering the role of IBAT as a thermogenic organ.  

These findings suggested that activation of neurons in the DMH produces 

increases in body temperature that are mediated, at least in part, by activation of 

IBAT.  These results were later confirmed when Morrison and coworkers 

reported increases in sympathetic nerve activity to IBAT, IBAT temperature and 

core body temperature following disinhibition of neurons in the DMH (Cao et al., 

2004b).  Most importantly these increases in both core and IBAT temperature 

were abolished when neurons in the raphe pallidus were inhibited (Cao et al., 

2004a).  This evidence supports a monosynaptic signaling pathway from the 

DMH to the raphe pallidus that may be involved in thermogenesis.   



 

27 
 

Neurons in the medial POA are also known to send direct neuronal 

projections to the DMH.  As mentioned earlier, neurons in the DHA send direct 

projections to the raphe pallidus, (DiMicco and Zaretsky, 2007; Jepson et al., 

1988; Morrison et al., 1999).  Activation of IBAT and cutaneous vasoconstriction 

are two mechanisms responsible for the increase in body temperature associated 

with bacterial infection (Fyda et al., 1991; Romanovsky and Blatteis, 1998).   

One of the prevalent hypotheses on how a bacterial infection 

(interoceptive stress) induces fever is that lipopolysaccharide (LPS), a 

component of the bacterial cell wall, binds to a CD14 receptor found on 

macrophages and other immune response cells and elicits the release of 

cytokines, such as TNF-α and IL-1 (Conti et al., 2004; Dinarello, 2004; Kluger et 

al., 1995; Kluger et al., 1998; Kozak et al., 1995; Kozak et al., 1997; Kozak et al., 

1998).  These cytokines are then thought to act on the brain to induce the 

synthesis of PGE2 in the POA (Boulant and Dean, 1986; Kluger et al., 1995).  

The release and activity of PGE2 on warm sensitive neurons in the POA is 

thought to be involved in resetting the temperature set-point to a higher body 

temperature, a critical role of the hallmark of febrile response seen in infection 

(Hori et al., 1988; Kozak et al., 1968; Kozak et al., 2000; Negishi et al., 1995; 

Oka et al., 1997; Romanovsky and Szekely, 1998; Romanovsky et al., 2000; 

Scammell et al., 1998; Simons et al., 1998; Szekely et al., 2000).  Microinjection 

of PGE2 in the medial POA of anesthetized and conscious rats elicits increases 

in body temperature that are accompanied by tachycardia and activation of the 
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HPA axis (Fyda et al., 1991; Malkinson et al., 1988; Morrison, 2003; Nakamura et 

al., 2002; Zaretskaia et al., 2003; Zaretsky et al., 2006).   

Interestingly, fever associated with infection is usually accompanied by 

tachycardia in mammals, and tachycardia is also reported following 

microinjection of PGE2 into the POA (Karjalainen and Viitasalo, 1986; Osborne 

and Kurosawa, 1994; Romanovsky et al., 1997; Xia and Krukoff, 2001). The 

response to an interoceptive stress such as a bacterial infection in mammals also 

includes increases in blood pressure and pACTH (Harris et al., 1987; Karjalainen 

and Viitasalo, 1986; Xia and Krukoff, 2001; Xia and Krukoff, 2003).  The central 

nervous mechanisms that mediate these changes have not been fully elucidated, 

and it is possible that more than one brain region may serve as a target for the 

action of cytokines.  Considering that disinhibition of neurons in the DMH evokes 

an increase in temperature, heart rate, blood pressure and pACTH, the DMH 

seems a logical target for investigation.   

Considering that the pathway from the DMH to the raphe pallidus appears 

to constitute a key relay mediating the increase in heart rate associated with 

“emotional stress,” this same relay could be responsible for the increase in body 

temperature associated with emotional stress (DiMicco et al., 2006a).  The 

evidence suggests that neurons in the region of the DMH may play a key role in 

thermogenesis generated by emotional stress.  In my studies, the temperature 

response to both interoceptive and exteroceptive stressors was studied, and I 

hypothesized that the increase in core temperature seen with either stress is 

mediated by neurons in the region of the DMH.  I examined specifically the role 



 

29 
 

of ionotropic glutamate receptors in the DMH in experimental fever 

(microinjections of PGE2 in the POA or microinjections of BMI in the DMH) and 

stress-induced hyperthermia (i.e. air-jet stress and cage-switch stress).  As 

discussed next, ionotropic glutamate receptors in the DMH seem to play a key 

role in thermoregulation.   

D. Glutamate as a neurotransmitter in the mammalian brain 

It was thought at one point that all central synaptic transmission in the 

brain was electrical and not chemical.  In the quest to understand brain function, 

the relationship between chemicals already known to exist in the brain and their 

role in brain mechanisms was examined.  Glutamate and similar compounds 

were known to be metabolites and precursors for other molecules such as GABA 

and glutamine (Johnson, 1972; Watkins and Jane, 2006).  Work spearheaded by 

Curtis and colleagues allowed for glutamate and other structurally similar 

compounds referred to as excitatory amino acids to be recognized as 

neurotransmitters (Curtis and Eccles, 1960; Curtis and Phillis, 1960; Curtis and 

Watkins, 1960; Curtis and Watkins, 1961; Hayashi, 1954).   

Early studies showed that L-glutamate and other naturally occurring acidic 

amino acids excited virtually all neurons in the mammalian central nervous 

system.  However, it was not until a review by Frode Fonnum that a case for 

glutamate as a neurotransmitter was widely accepted (1984).  In order to be 

considered as a neurotransmitter, glutamate had to satisfy four main criteria.  

Glutamate had to be  shown (1) to be localized presynaptically in specific 

neurons where it is stored and released from synaptic vesicles, (2) to be released 



 

30 
 

in calcium-dependent fashion by physiological stimuli in concentrations high 

enough to elicit post-synaptic responses, (3) to have pharmacologic identity of 

action with naturally occurring transmitter, including response to antagonists, and 

(4) to have reuptake mechanisms that rapidly terminate its transmitter action 

(Bennett et al., 1973; Fonnum, 1984; Stallcup et al., 1979).  

Both in vivo and in vitro preparations have been used to show that 

glutamate is present in and released from presynaptic terminals.  Storm-

Mathisen and colleagues used immunohistochemistry procedures to provide 

evidence that glutamate is localized to presynaptic plasma membrane (Storm-

Mathisen et al., 1983; Storm-Mathisen and Ottersen, 1990).  They suggested that 

the intraterminal concentration for glutamate is at least 10mM which is a 10,000 

fold concentration difference across the presynaptic plasma membrane (Ottersen 

and Storm-Mathisen, 1984; Ottersen and Storm-Mathisen, 1987).  Glutamate is 

released in a Ca2+ dependent manner from brain slices or synaptosomes 

(pinched off nerve endings) by electric field depolarization (De Belleroche and 

Bradford, 1972; Potashner, 1978) or high potassium concentration (Nadler et al., 

1977; Nadler et al., 1978).  

More than twenty years ago it was also demonstrated that some neurons 

contain synaptic vesicles that store glutamate (Storm-Mathisen et al., 1983).  

More recently, two vesicular transporters VGLUT1 and VGLUT2 were found to 

be responsible for the uptake of glutamate into vesicles (Bellocchio et al., 2000; 

Takamori et al., 2000; Varoqui et al., 2002).  The uptake mechanism for 

glutamate is electrogenic, requiring two sodium ions for the uptake of one 
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glutamate molecule, and thus is driven by the ion gradients of K+ and Na+ 

(Bennett et al., 1973; Fonnum, 1984; Stallcup et al., 1979).  Using 

autoradiographic studies of isolated glial cells (Henn and Hamberger, 1971), or 

primary cultures of astrocytes (Hertz, 1979) or rat brain slices (Balcar and 

Johnston, 1972) high affinity uptake of glutamate was verified.  Likewise, glial 

cells in the hippocampus were also preferentially labeled following intracerebral 

injection of [3H] glutamate (Hokfelt and Ljungdahl, 1972).  It is now known that 

glutamate is taken up into neurons by excitatory amino acid carrier 1 EAAC1 (or 

excitatory amino acid transporter, EAAT3), EAAT4, and EAAT5 (Danbolt, 2001).  

This glutamate uptake system plays an important role in terminating the 

excitatory effect of exogenous glutamate, an important criterion for classification 

of glutamate as a neurotransmitter.   

The mechanism of action for the central excitatory transmitter(s) has 

proven to be the more difficult criterion to prove.  Cotman and coworkers showed 

that glutamate was release from slices of the dentate gyrus in a Ca+2 dependent 

manner.  Furthermore, this release and the high affinity uptake of glutamate were 

diminished following lesions of the major input to the dentate gyrus (Cotman, 

1995).  In fact, the discovery of specific agonists and glutamate analogues such 

as N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid (AMPA), D- and L-homocysteate, and kainate, has been important 

in the characterization and identification of multiple glutamate receptors (Curtis et 

al., 1961; Curtis et al., 1972; Curtis, 1974; Evans et al., 1979; Krogsgaard-Larsen 

et al., 1980; McLennan et al., 1968; Watkins et al., 1981; Watkins and Evans, 
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1981).  However, it was with the development and use of highly selective NMDA 

receptor antagonists that the existence of glutamatergic synaptic transmission in 

the central nervous system was unequivocally established (Biscoe et al., 1977a; 

Biscoe et al., 1977b; Davies et al., 1981a; Davies et al., 1981b; Davies et al., 

1982; Evans et al., 1979; Evans and Watkins, 1981; Evans et al., 1982; 

Olverman et al., 1984).   

E. Ionotropic glutamate receptors in the DMH 

Ionotropic glutamate receptors in the DMH have been shown to play a role 

in stress-induced tachycardia and experimental fever.  Dose-related increases in 

heart rate and arterial pressure were seen after microinjection of excitatory amino 

acids NMDA, AMPA and kainic acid (KA) into the DMH (Soltis et al., 1991a; 

Soltis et al., 1992; Soltis et al., 1991b).  Furthermore, co-injection of kynurenate, 

a non selective glutamate receptor antagonist that blocks excitation, into the 

DMH blocked or reversed the increases in heart rate and blood pressure induced 

by microinjection of BMI into the DMH of anesthetized rats (Soltis et al., 1991b).  

This suggests that the disinhibition of neurons in the DMH by bicuculline 

produces sympathetic responses similar to those seen with stress that are also 

dependent on excitation at glutamate receptors in the DMH.  Microinjection of 

kynurenate in the region of the DMH also reduced the increases in heart rate and 

blood pressure seen in experimental air-jet stress (Soltis et al., 1992).  

Collectively, these studies suggest that glutamate receptors in the region of the 

DMH play a key role in these same effects evoked by stress.  Microinjection of 

kynurenate into the DMH of anesthetized rats also attenuates increases in body 
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temperature induced by microinjection of PGE2 into the POA (Madden and 

Morrison, 2004).  However, the role of glutamate receptors in the DMH in the 

increase in body temperature induced by air stress or other exteroceptive or 

interoceptive stresses in conscious rats has not been studied.     

III. Ionotropic glutamate receptors 

A. Receptor mechanism 

Understanding the function and regulation of glutamate and other 

excitatory amino acids was further advanced by the identification, 

characterization and localization of their receptors.  L-glutamate is a major 

neurotransmitter in the brain that acts through both ligand-gated ion channels 

(ionotropic) and G-protein coupled receptors (metabotropic).  Because of its 

abundance and role as a major neurotransmitter, glutamate receptors play a vital 

role in excitatory synaptic transmission.  So far two main types of glutamate 

receptors have been identified which include the ionotropic glutamate receptor 

subtypes, and the metabotropic glutamate receptor subtypes (Cooper, 2003).  

Although an important part of the glutamate story, for the purpose of this thesis, 

metabotropic receptors will not be further discussed in detail.   

The ionotropic receptors on binding glutamate that has been released 

from a companion cell, allow charged ions such as Na+ Ca2+ and K+ to pass 

through a channel in the center of the receptor complex.  This flow of ions 

produces a depolarization of the plasma membrane.  The ionotropic glutamate 

receptors can be separated further into three groups, 1) NMDA receptors, 2) 

AMPA receptors, and 3) kainate receptors, based on the sequences of receptor 
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subunits and the agonist activity of several ligands.  The agonists NMDA, 

ibotenate, kainate and AMPA differentially activate at each receptor.  Until 

recently these receptors were only subdivided into either NMDA or non-NMDA 

receptors, but the development of selective agonists and antagonists has helped 

characterize these receptors further (Cooper, 2003).  Even though these 

receptors share a similar mechanism of action, they are diverse in structure and 

agonist activity.   

Ionotropic glutamate receptors are made up of multimeric assemblies of 

four or five subunits, and like other ligand-gated ion channels share a common 

structure including four transmembrane domains (TMI-IV) (Cotman and 

Monaghan, 1986; Cull-Candy, 2002).  Unlike other receptor subunits, the TMII 

forms a re-entrant loop giving these receptors an extracellular N-terminus and an 

intracellular C-terminus (Cotman and Monaghan, 1986).  The diversity in the 

ionotropic glutamate receptors actually stems from the extensive splice variation 

at the C-terminus.  It is this extensive splice variation at the C-terminus that gives 

each of the ionotropic glutamate receptors its unique pharmacological qualities 

that have helped differentiate each receptor.  Their unique qualities and agonist 

activity are described below.  By far, the NMDA receptor is the best characterized 

of the ionotropic glutamate receptors and accumulating evidence suggests that it 

may play a role in a wide range of both physiological and pathological functions 

from memory acquisition, to epilepsy, neurotoxic effects of brain ischemia, 

Alzheimer’s disease and schizophrenia (Bergink et al., 2004; Follett et al., 2000; 

Hertz, 2006; Javitt, 2004; Kehne et al., 1991).  
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B. NMDA receptor complex:  Distribution, mechanism and pharmacology 

NMDA receptor is widely distributed in the mammalian brain and spinal cord.  

According to van den Pol (1990) and colleagues their evidence suggested that 

glutamate accounted for the majority of excitatory synapses in the hypothalamus.  

Using in situ hybridization and Northern blots, the ionotropic subtypes of the 

glutamate receptor in the rat hypothalamus were studied and widespread 

expression of AMPA, kainate, and NMDA receptor RNA was found in the 

hypothalamus with the transcripts the same size and number as found in other 

regions of the brain (van den Pol et al., 1994).  Anatomical distribution of L-[3H] 

glutamate-binding sites displaced by NMDA was found throughout the CNS and 

within the hypothalamus they (Monaghan and Cotman, 1985).  Various 

techniques have been used to verify the existence of ionotropic glutamate 

receptors within the hypothalamus.  Receptor autoradiography confirmed the 

widespread presence of all major ionotropic glutamate receptor subtypes within 

the hypothalamus with the greater regional density found in the ventral and 

dorsomedial hypothalamus (Monaghan et al., 1983).  Likewise, subtype 

expression varied regionally, with rostral hypothalamic and preoptic regions 

having proportionally higher levels of non-NMDA vs. NMDA binding (Monaghan 

et al., 1983; Monaghan et al., 1984; Monaghan et al., 1985).  More recently in 

situ hybridization was used with 35S-labeled cRNA probes for the different 

ionotropic glutamate receptor subunits, including those for AMPA, kainate, and 

NMDA receptor subtypes, and results showed that all three glutamate receptor 

subtypes and their subunits were distributed widely but were most abundant in 

the hypothalamus (Eyigor et al., 2001).   



 

36 
 

Two distinctive features of the NMDA receptor are its voltage-gated block 

by Mg2+ ion, which is present under physiologic conditions at resting membrane 

potential, and its need for glycine as a co-agonist (Cooper, 2003).  The voltage-

dependent block suggests that fast transmission is mediated mainly by non-

NMDA receptors and this is reflected in the two component time course of many 

synaptic currents (Cooper, 2003).  The NMDA receptor’s voltage block keeps it 

from opening during the initial depolarization.  Only after the post-synaptic cell is 

depolarized is the voltage-dependent block relieved allowing this receptor to 

function as a “coincidence receptor” (Silver et al., 1992).  Early on in the study of 

excitatory amino acid receptors it was observed that magnesium cations 

produced a selective depression of excitatory amino acid depolarizations (Ault et 

al., 1980).  This observation was further verified using spinal cord neurons where 

it was shown that as theorized magnesium ions do selectively block NMDA 

receptor activity at depolarized potentials (Mayer and Westbrook, 1984).  Since 

then other divalent cations have also been found to modulate NMDA receptor 

activity.  While some cations act like Mg+2 ions, others do not.  In fact, Ni+2, Co+2 

and to a lesser extent Mn+2 mimic the effects of magnesium ions (Ascher and 

Nowak, 1988) while Ba+2, Cd+2, Sr+2 and Ca+2 do not (Ascher and Nowak, 1988).  

The difference in how these cations work is thought to be due to their 

hydrophilicity (Ascher and Nowak, 1988; Mayer and Westbrook, 1987).  The 

Mg+2-like ions are more hydrophilic and thus water exchange occurs less rapidly 

delaying their permeation into the cell and allowing these cations to act as 

inhibitors (Ascher and Nowak, 1988; Mayer and Westbrook, 1987; Nowak et al., 
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1984).  Breakthroughs in understanding the structure of the receptor lead to 

better understanding of its function. 

The NMDA receptor is composed of two subunits, NR1 and NR2, which 

can be encoded by four different gene variants, and expression of both protein 

subunits is necessary for functional channels (Cull-Candy, 2002).  To further add 

to the complexity, the NMDA receptor has at least six pharmacologically distinct 

sites through which compounds can alter the activity of this receptor (1) a binding 

site for L-glutamate, NMDA and related agonists, (2) a strychnine-insensitive 

glycine-modulatory site, 3) a binding site for phencyclidine (PCP site) and other 

related non-competitive antagonists such as ketamine, (4) a voltage-dependent 

Mg2+-binding site, (5) a divalent cation site near the mouth of the channel that 

binds Zn2+ to produce a voltage-independent block, and (6) a polyamine 

regulatory site that is activated by spermine and spermidine and facilitates NMDA 

receptor-mediated transmission (Cooper, 2003). 

i. NMDA receptor agonist binding sites 

Binding of L-[3H] glutamate to NMDA receptors was described using 

quantitative autoradiographic techniques.  Because of the development of more 

specific agonists and antagonists, researchers were able to distinguish other 

functional binding sites on the receptor, each with its own ligand-binding domain.  

These other ligand-binding domains thus can alter the activity of this receptor.  

Furthermore, the transmitter binding site itself is known to have two distinct sites 

with one that is agonist-preferring and one that is antagonist preferring 

(Monaghan and Cotman, 1985). 
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a. Glycine binding site 

Glycine binding is required for binding of L-[3H] glutamate or NMDA and 

other agonists to the NMDA receptor.  Johnson and Asher (1987) first postulated 

that NMDA receptor activation required occupation of a positive allosteric site by 

low micromolecular concentrations of glycine.  The glycine binding site is 

strychnine-insensitive and studies of the NMDA receptor expressed in Xenopus 

oocytes indicate that the presence of glycine is an essential pre-requisite for 

NMDA receptor function (Kleckner and Dingledine, 1988).  Experiments carried 

out by Johnson and Archer (1987) showed that glycine is required for binding of 

the agonist but has no action itself.  Furthermore, these studies showed that 

glycine increases the frequency of the channel opening and not the amplitude, or 

period of time that the channel is open (Johnson and Ascher, 1987).  The 

observations regarding channel opening were made with outside-out patch clamp 

preparations suggesting that glycine did not require an intracellular second 

messenger but rather facilitated excitatory transmission in the brain through an 

allosteric activation of the NMDA receptor.   

Given that the glycine binding site is intimately related to the action of the 

transmitter site, it is not surprising that its distribution was found to correlate 

highly with that observed for the NMDA receptor.  Some antagonists actually 

inhibit the action of NMDA receptors by competitively inhibiting the glycine 

binding site, and kynurenate is one such antagonist (Ganong and Cotman, 1986).  

Kynurenate is a drug used in this thesis because of its non-specific antagonism 

at all three ionotropic glutamate receptor subtypes and will be discussed below 

(see Section III. D. i.).  Another antagonist used in thesis is 2-amino-5-
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phonsphonovalerate (APV), which unlike kynurenate acts as a potent and 

selective antagonist at the glutamate binding site of the NMDA receptor.   

b. Phencyclidine binding site (PCP) 

Both ketamine and PCP are known to act as selective antagonists that 

can completely block NMDA receptor function without affecting responses at the 

AMPA or kainate receptors (Anis et al., 1981; Duchen et al., 1985).  Other similar 

compounds such as MK-801 (dibenzocyclohepteneimine) and TCP are more 

potent and selective than PCP with MK-801 being the most potent and selective 

(Vignon et al., 1983; Wong et al., 1986).  These compounds act as 

noncompetitive antagonists at the NMDA receptor by blocking the cation channel 

gated by the NMDA recognition site and not at the NMDA-binding site itself 

(Martin and Lodge, 1985; Wong et al., 1986; Woodruff et al., 1987).  Using 

whole-cell techniques, Huettner and colleagues discovered that recovery from 

MK-801 blockade was voltage-dependent being faster at more positive potentials 

(Huettner and Bean, 1988).  We now know that the PCP binding site is found 

proximal to the ion channel and that the presence of magnesium ions inhibits 

blockade of MK-801 at negative potentials (Huettner and Bean, 1988; Loo et al., 

1986).  Several studies also suggest that the PCP-binding is directly related to 

the simultaneous binding of L-glutamate and glycine.  Binding of glutamate and 

glycine has been shown to enhance stimulation of [3H] TCP or [3H] MK-801 

binding (Benavides et al., 1988; Thomas et al., 1988).  A proposed explanation 

for this phenomenon is that binding of agonists at the glutamate and glycine sites 

allow a conformational change within the receptor that exposes the ion channel 
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and provides access of ligands to the PCP binding site (Kloog et al., 1988; 

Monaghan et al., 1989).   

c. Polyamine regulatory site 

Polyamines including spermidine and spermine are found in high 

concentrations in mammalian tissue.  As mentioned previously, [3H] MK-801 

binds specifically to the activated state of the NMDA receptor at a site perhaps 

within the ion channel of the receptor.  Likewise, divalent cations have been 

shown to block [3H] MK-801 binding.  Besides these interactions, it has also been 

shown that the polyamines spermidine and spermine increase the affinity of the 

NMDA receptor for [3H] MK-801 binding (Ransom and Stec, 1988).  Later, it was 

shown that both spermidine and spermine potentiate the binding of [3H] MK-801 

at maximally effective concentrations of L-glutamate and glycine (Williams et al., 

1989).  Other polyamines such as putrescine and cadaverine were shown to 

inhibit binding of [3H] MK-801 in the presence of spermine, L-glutamate and 

glycine but not in the presence of L-glutamate and glycine alone, suggesting that 

both putrescine and cadaverine are antagonists at the polyamine site (Williams et 

al., 1989).  Unlike glycine, spermidine and spermine are not required for NMDA 

receptor activation.  However, under pathological conditions, concentration of 

polyamines increases, which suggests a role for these compounds in mediating 

or potentiating the excitotoxic mechanisms responsible for the neuronal damage 

produced (Cooper, 2003).  A study in vivo using neonatal rats found that 

polyamines decreased NMDA-induced neurotoxicity which suggests that 



 

41 
 

polyamines or related compounds may have important therapeutic potential as 

neuroprotective agents (Munir et al., 1993). 

C. Non-NMDA receptor complex (AMPA and Kainate): Distribution, mechanism, 
and pharmacology 

It is known that excitatory amino acid depolarizations appear to be 

mediated by NMDA, AMPA and kainate receptors, and these receptors are found 

in similar distributions throughout the brain.  Using autoradiography, Monaghan 

and colleagues quantified AMPA and KA binding sites by analyzing displacement 

of [3H] AMPA binding and [3H] KA binding respectively (Monaghan and Cotman, 

1982; Monaghan et al., 1984).  Both AMPA and KA receptors are widely 

distributed ubiquitously in the brain and follow a distribution pattern similar to that 

of NMDA receptors.   

Despite the general trend for similar distributions of all three ionotropic 

glutamate receptors, some differences in distribution are known.  For example, 

unlike NMDA and KA receptor sites, AMPA receptor sites are more enriched in 

the molecular layer of the cerebellum with lower levels in the granule cell layer.  

Unlike AMPA binding sites, KA sites are found in high concentrations in the deep 

layers of the neocortex, caudate-putamen, and stratum lucidum of hippocampus 

(Chittajallu et al., 1999; Monaghan and Cotman, 1982; Monaghan et al., 1984).  

Besides these differences in distribution, for the most part both AMPA receptors 

and KA receptors are found in very similar distribution patterns to each other 

(Monaghan and Cotman, 1982; Monaghan et al., 1984).  However, finding 

regions in the brain that contain higher concentrations of either AMPA receptors 

or kainate receptors has become easier thanks to more advanced visualization 
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techniques (Barrera et al., 2008; Chittajallu et al., 1999; Fisahn, 2005; Jane et al., 

2009). 

Because AMPA receptors and KA receptors are voltage-independent, 

unlike NMDA receptors, these receptors mediate the fast excitatory synaptic 

transmission (Cooper, 2003).  Kainate was first discovered and purified from the 

algae Digenea simplex (kainate) and quisqualate from seeds of a plant 

Quisqualis fructus (AMPA).  These compounds are potent glutamate agonists 

and early on it was theorized that these two agonists acted on a specific subset 

of receptors (Watkins, 1981; Watkins et al., 1981; Watkins and Evans, 1981).  

Both AMPA and kainate receptors are also found throughout the region of the 

DMH and inhibition of these receptors in the DMH has been shown to attenuate 

the increase in temperature induced by microinjections of PGE2 in the POA of 

anesthetized rats (Madden and Morrison, 2004).  Furthermore, inhibition of these 

receptors by microinjections of 6-cyano-7-nitroquino-xaline-2,3-dione (CNQX) in 

the DMH also attenuates the increase in heart rate induced by stress (Soltis and 

DiMicco, 1992b). 

AMPA receptors are composed of subunits GluR1-4, products from 

separate genes.  GluR subunits have an extracellular N-terminus and an 

intracellular C-terminus, and the ligand binding domain is made up from N-

terminal regions, and like the NMDA receptor, it is possible that the binding site is 

spread across more than one subunit.  Native AMPA receptor channels are 

impermeable to calcium, a function controlled by the GluR2 subunit.  This, along 
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with the interactions with other intracellular proteins, makes GluR2 perhaps the 

most important AMPA receptor subunit (Isaac et al., 2007).   

Kainate receptors share many of the same structural characteristics with 

NMDA receptors and AMPA receptors; nonetheless, kainate receptors constitute 

a group of proteins distinct from AMPA and NMDA receptors.  Watkins and 

coworkers first described the kainate receptor as a unique and distinct receptor 

from the binding sites activated by NMDA and AMPA.  Mainly, they reported that 

kainate produced selective depolarization of isolated dorsal root fibers (Davies 

and Watkins, 1981; Watkins, 1981).  Early studies based solely on 

pharmacological and radioligand binding assays (Monaghan et al., 1989; 

Verdoorn et al., 1989), did support the existence of a separate class of molecules 

selective for binding kainate.  However, the fact that a given neuron could exhibit 

a rapidly desensitizing response upon the application of AMPA and a non-

desensitizing response to kainate was interpreted as an indication that each 

ligand was acting on a separate molecular entity.  It was cloning of glutamate 

receptor subunits, specifically of the kainate receptor subunits, which led to the 

unequivocal discovery that kainate receptors indeed showed a strong preference 

for kainate over AMPA (Dingledine et al., 1999; Hollmann and Heinemann, 1994). 

Like the other ionotropic glutamate receptors, kainate receptors have an 

extracellular N-terminus that helps form the ligand binding domain and a re-

entrant loop that forms the lining of the pore region of the ion channel.  Because 

of the lack of kainate receptor-selective agonists, research into kainate receptors 

has lagged behind that for AMPA and NMDA receptors.  To date, five kainate 
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receptor subunits have been identified which include GluR5-7 and KA1 and KA 2 

(Jane et al., 2009).  These kainate receptor subunits are subject to both 

alternative splicing and RNA editing which increase the number of subunit 

isoforms (Chittajallu et al., 1999; Huettner, 2003).  However, it was the discovery 

and use of specific antagonists at the AMPA and kainate receptors that helped 

clarify this receptor’s function.  

In 1982, McLennan, studied the action of six different antagonists of the 

ionotropic glutamate receptors and found that glutamic diethyl ester (GDEE) 

blocked depolarizations produced by AMPA but did not affect KA-induced 

responses (McLennan, 1982a; McLennan, 1982b).  Likewise, several 

compounds affect KA activity but have less effect on AMPA activity (Monaghan 

et al., 1989).  Until recently, there were not specific antagonists that could clearly 

separate KA and AMPA responses and thus these two receptors were often 

referred to collectively as non-NMDA receptors.  However, the availability of 

specific agonists and antagonists for the KA receptor now permits investigation 

both in vivo and in vitro of possible physiological roles for this receptor (Pinheiro 

and Mulle, 2006).  For this thesis work, a non-NMDA receptor antagonists was 

used, 6-nitro-7-sulfamoylbenzoquinoxaline-2, 3-dione (NBQX), a potent and 

competitive antagonist at both AMPA and kainate receptors (Honore et al., 1988; 

Honore, 1989; Verdoorn et al., 1989).  NBQX was either microinjected alone or 

mixed with APV, the NMDA competitive antagonist, into the DMH of conscious 

rats to investigate the role of these receptors in the increase in temperature 

produced by stress.  All of these ionotropic glutamate receptor subtypes have 
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been observed in the region of the DMH and are targets for the study of the role 

of the DMH in the thermogenesis produced by stress. 

D. Ionotropic glutamate receptor antagonists used: Kynurenate, APV and NBQX 

i. Kynurenate 

Kynurenate is a general ionotropic glutamate receptor antagonist, and one 

of the drugs used in this thesis to inhibit ionotropic glutamate receptors in the 

region of the DMH.  Kynurenic acid or kynurenate is an endogenous metabolite 

of tryptophan degradation.  The products of tryptophan metabolism via the 

kynurenine pathway include both quinolinic acid and kynurenic acid (Heyes, 

1993).  Evidence for nonspecific blockade by kynurenate of excitatory amino acid 

sensitivity on some neurons was confirmed by work in the spinal cord, 

hippocampus, neocortex, and caudate nucleus (Curry et al., 1986; Peet et al., 

1986a; Peet et al., 1986b) in which kynurenate was shown to be capable of 

antagonizing responses to quinolinic acid, NMDA, kainate, and AMPA.  Since the 

recognition of kynurenate as a non-specific excitatory amino acid antagonist, it 

has become a popular agent because of its ease of use, efficacy and 

inexpensiveness.  However, the use of kynurenate to antagonize ionotropic 

glutamate receptors nonspecifically is an accepted and widely used technique. 

Kynurenate has complicated actions on the NMDA receptor complex.  Low 

concentrations act selectively at the glycine site, whereas high concentrations act 

directly at the NMDA recognition site (Ganong and Cotman, 1986).  It has been 

observed that kynurenate’s mode of action is not simple competitive antagonism 

at the NMDA receptor.  Birch and colleagues (1988a; 1988b) first observed that 



 

46 
 

kynurenate acts as a competitive antagonist of kainate and AMPA receptors 

without any selectivity but acted as an insurmountable antagonist of NMDA in the 

rat hemisected spinal cord.  They also reported that the insurmountable 

antagonism could be reversed by superfusion with L-serine or glycine, and in the 

presence of these agents, kynurenate then acted only as a weak or competitive 

antagonist (Birch et al., 1988a, b).  In fact, in some situations in which glycine 

does not enhance basal NMDA sensitivity, glycine can reverse the kynurenate-

inhibition of the NMDA receptor suggesting that it acts as a competitive 

antagonist at the glycine site (Pralong et al., 1992; Stone, 1991).   

On postsynaptic receptors, kynurenate exhibits a dual mode of action, 

partly blocking NMDA by an action at its receptor recognition site on the receptor 

and partly by displacing glycine from its allosteric modulatory site associated with 

the receptor (Ascher et al., 1988; Evans et al., 1987; Kemp et al., 1988; Mayer et 

al., 1988).  Using patch-clamp technique in cortical cultures, NMDA responses 

were antagonized noncompetitively by kynurenate with an IC50 of 70µM, whereas 

kainate response were antagonized competitively at higher concentrations (ID50 

500µM) (Bertolino et al., 1989).  Binding studies suggested that kynurenate was 

able to displace glutamate binding at NMDA receptors (IC50 184 µM) and AMPA 

binding (IC50 101µM), but it was less effective at displacing kainate binding (IC50 

2082 µM).  However, in the same study, Kemp and colleagues (1988) confirmed 

that kynurenate antagonized electrophysiological responses to kainate, 

suggesting that perhaps kynurenate antagonizes kainate by acting at a site other 

than the ligand-binding site.  Overall, kynurenate has been proven to be an 



 

47 
 

effective excitatory amino acid receptor antagonist, and many studies have 

proven its efficacy, including work in our lab that has helped establish the 

importance of the use of this drug in microinjection studies.   

Microinjections of kynurenate 10nmol/100nL (0.1 M) into the DMH have 

shown that blockade of glutamate receptors in the region of the DMH attenuates 

the cardiac response to either stress or to disinhibition of neurons in the DMH 

(Soltis and DiMicco, 1991a, 1992).  Similarly, microinjections of kynurenate into 

the DMH abolished the increase in temperature produced by microinjection of 

PGE2 in the POA of anesthetized rats (Madden and Morrison, 2004).  For this 

thesis, kynurenate was employed as one of the antagonists to study the role of 

ionotropic glutamate receptors because of its previous utility.  Likewise, using this 

antagonist in conscious and freely moving rats specifically would permit direct 

comparisons with results published using this same antagonist in the 

anesthetized rat (Madden and Morrison, 2004).   

ii. 2-amino-5-phosphonopentanoic acid (APV) 

In 1979, Davies was the first to describe APV as a potent and selective 

NMDA receptor antagonist.  APV blocked L-aspartate and dorsal root-evoked 

excitation of spinal neurons, but it had no effect on the cholinergic excitation of 

Renshaw cells evoked by exogenous acetylcholine or ventral root stimulation 

(Davies and Watkins, 1979; Davies et al., 1981b).  Microinjections of APV have 

been used previously in our lab at a dose of 100pmol/100nL (1mM) and shown to 

specifically inhibit increases in heart rate induced by microinjection of NMDA into 

the DMH (Soltis and DiMicco, 1991a; Soltis and DiMicco, 1992b).  This same 
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dose of APV was shown to effectively attenuate the increase in heart rate 

induced by air-jet stress (Soltis and DiMicco, 1992b).  APV has also been 

microinjected into the raphe pallidus at a dose of 300pmol/60nL (5mM) and 

shown to effectively inhibit the increase in temperature induced by disinhibition of 

neurons in the DMH (Cao and Morrison, 2006).   

iii. 6-nitro-7-sulfamoylbenzoquinoxaline-2, 3-dione (NBQX) 

Some of the most selective and potent non-NMDA antagonists available 

are a series of dihydroxyquinoxaline derivatives which include 2,3-dihydroxy-6-

nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione 9 (NBQX), 6-cyano-7-nitroquino-

xaline-2,3-dione (CNQX), and 6,7-dinitroquinoxaline-2,3-dione (DNQX).  These 

drugs are potent antagonists that competitively block both AMPA and KA 

receptors as was shown in electrophysiological and binding studies in rat cortical 

membrane (Honore et al., 1988).  NBQX was shown to block responses of spinal 

neurons in vivo to kainate, quisqualate, and AMPA in parallel but had little effect 

on responses to NMDA (Lodge et al., 1991).  This drug has been microinjected 

into various regions of the hypothalamus at doses as high as 20mM (Busnardo, 

2009; Deolindo et al., 2008; Jardim and Guimaraes, 2004).  Recently, de 

Menezes and colleagues showed that microinjection of a combination of the 

glutamate receptor antagonists APV and NBQX at a dose of 1mM into the caudal 

lateral/dorsal lateral PAG decreased stress-induced increases in heart rate (de 

Menezes et al., 2006).  For this thesis, the dose used was 100pmol/100nL (1mM) 

microinjected into the DMH.   
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IV. Thesis Goals 

The studies in this thesis investigated the role of ionotropic glutamate 

receptors in the of the region of the DMH in the thermoregulatory response to 

stress.  Stress can be categorized as either interoceptive or exteroceptive and 

there is no consensus about how these two apparently different types of stresses 

are mediated by the central nervous system.  Compelling evidence supports the 

idea that the DMH plays a key role in the physiological responses to both 

exteroceptive and interoceptive stress, including the increase in temperature.  

However, whether the DMH mediates thermoregulatory responses to different 

types of stress has not been studied.  The work presented here can lead to better 

understanding of the hypothalamic mechanisms involved in the central control of 

not just the increase in body temperature but of the other physiological 

responses to stress.  A better understanding of the central control of these 

responses can lead to new drug discovery and perhaps better treatments or 

prevention of stress-related illnesses.  Therefore the specific aims of this thesis 

are 

1) To determine the role of ionotropic glutamate receptor subtypes in the 

DMH play in the thermoregulatory response to exteroceptive and 

interoceptive stresses in the conscious rat  

2) To differentiate the role of NMDA and non-NMDA receptor subtypes in 

the thermoregulatory response to exteroceptive and interoceptive 

stresses in the conscious rat. 
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CHAPTER 2: METHODS 

 

For this thesis, I studied the role of ionotropic glutamate receptors in the 

DMH in the temperature response to both interoceptive and exteroceptive 

stressors in conscious untethered rats.  Most of the techniques used in this study 

were previously used in our lab and/or adapted for use in conscious untethered 

rats.  All of the surgical and experimental procedures were approved by the 

Indiana University’s Institutional Animal Care and Use Committee (IUACUC).   

I. Animals 

Male Sprague-Dawley rats (270-330g, Harlan Industries, Indianapolis, IN) 

were individually housed under controlled temperature, humidity and light 

periodicity (12 hour light-dark cycle with the lights turning on at 0700 hr) with free 

access to rat chow and water in the university’s Laboratory Animal Resource 

Center (LARC).  All experiments were carried out between 9am and 2pm to 

reduce the effects of circadian rhythm variation.  On days of surgery or 

experimentation, the rats were transferred within-building to the laboratory and 

returned to LARC thereafter.  

II. Experimental Design 

In order to study the role of ionotropic glutamate receptors in the DMH in 

the temperature response to stress, I designed experiments that studied the 

thermogenic response to both exteroceptive and interoceptive stresses.  The 

three major subtypes of ionotropic glutamate receptors have been defined 

pharmacologically and are named for the relatively selective agonists NMDA, 
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AMPA, and kainate.  Of all three, NMDA receptors are the best characterized 

pharmacologically.  AMPA and KA receptors are not as well characterized 

because of the lack of selective agonists that can differentiate sufficiently 

between the AMPA and KA receptor-mediated responses.  For this reason, 

NBQX, an AMPA/KA receptor antagonist, and APV, an NMDA receptor 

antagonist, were used.  Kynurenate a non-specific ionotropic glutamate receptor 

antagonist was also used. 

Previous studies in conscious animals indicated that under the 

experimental conditions used, 2-amino-5-phosphonopentanoic acid (APV) is a 

selective antagonist for the NMDA receptor.  Similarly, the dose of 6-nitro-7-

sulfamoylbenzoquinoxaline-2,3-dione (NBQX), a selective antagonist of AMPA 

and KA receptors, was chosen based on the results of preliminary experiments.  

For each experiment described, animals served as their own control, so that 

each animal received all treatments (control and experimental) in random order 

on alternate days. 

The first two sets of studies were designed to assess the role of ionotropic 

glutamate receptors in the DMH in the thermogenic response to an exteroceptive 

stress.  The first experiment examined the role of ionotropic glutamate receptors 

in the DMH in the effect of air-jet stress on body temperature.  Air-jet stress is a 

stress paradigm that has been used in stress studies in a number of variations 

(Blanc et al., 1991; Lam et al., 1995; Martin et al., 1996).  The particular 

paradigm for air-jet stress that I employed has been previously used in stress 

studies in this laboratory (Lisa et al., 1989b; Morin et al., 2001; Sarkar et al., 
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2007; Soltis and DiMicco, 1992a).  Because of the unexpected finding that this 

paradigm might be complicated by cold stress, I employed cage-switch stress as 

my experimental paradigm for the remainder of my studies of exteroceptive 

stress.  Cage-switch stress paradigm does not have the cold stress confound 

discovered in the air-jet stress paradigm.  In addition to employing kynurenate as 

a non-selective glutamate antagonist in these experiments, I also used a 

combination of ionotropic glutamate receptor antagonists NBQX and APV.  I 

hoped that this would allow me to differentiate the role of specific glutamate 

receptor subtypes, AMPA/kainate versus NMDA receptors, in the changes noted.  

Also, these agents are effective at much lower concentrations than kynurenate 

which, because of the high concentration needed for effective blockade of 

glutamate receptors, is much more likely to produce non-specific effects.  Thus, 

the second set of experiments was designed to determine the effect of 

microinjection of a combination of NBQX and APV into the DMH on the 

thermogenic response to cage-switch stress.   

The third and fourth set of experiments were designed to study the role of 

ionotropic glutamate receptors in the DMH in the thermogenic effect of 

microinjection of PGE2 in the POA, a well known model for experimental fever, or 

effect of microinjection of BMI in the DMH.  Both experimental paradigms have 

been used extensively with reproducible results in our lab and by others (Cao et 

al., 2004a; Madden and Morrison, 2004; Morrison, 2004; Nakamura et al., 2005b; 

Zaretskaia et al., 2002; Zaretskaia et al., 2003; Zaretsky et al., 2006).  For each 
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paradigm, I examined the effects of microinjections of NBQX and APV, both 

individually and in combination.   

A. Chronic studies:  Effects of microinjection of ionotropic glutamate receptor 
antagonists into the DMH on increases in temperature produced by 
exteroceptive stress 

The experiments described here were all conducted in conscious and 

freely moving rats using the microinjection technique developed in our lab.  For 

these experiments, both air-jet stress and cage-switch stress were used as 

models for exteroceptive stress.  All animals for the exteroceptive stress 

experiments were implanted with telemetric probes for the real-time monitoring 

of core body temperature.  After at least three days of recovery, bilateral guide 

cannulas targeting the DMH were implanted.  Finally, all rats were allowed at 

least three days of recovery before experimentation.   

On the day of the experiment, the rats were brought to the testing facility 

and placed in their home cages inside the experimentation rooms.  Their cages 

were placed on telemetric receiver plates, and dummy wires were removed from 

the guide cannulas.  The rats were then left undisturbed for at least two hours to 

establish resting baseline parameters.   

i. Effects of microinjection of kynurenate into the DMH on stress hyperthermia 
produced by air-jet stress 

Microinjection of kynurenate has been used in our lab effectively to inhibit 

ionotropic glutamate receptors in the DMH.  Bilateral microinjection of kynurenate 

into the DMH of conscious rats was shown to attenuate the tachycardia evoked 

by  air-jet stress (Soltis and DiMicco, 1992a).  Considering that both tachycardia 
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and increase in temperature are physiological responses evoked by stress, the 

goal of this experiment was to investigate the hypothesis that the increase in 

body temperature seen in this paradigm was also mediated by ionotropic 

glutamate receptors in the DMH.  Seven rats were used, each serving as its own 

control.  In unstressed trials, the rat remained in its home cage and the only 

manipulation or interaction that occurred was during the microinjections.  During 

microinjections, the dummy wires were unscrewed and the microinjectors were 

then placed into the cannula.  The rat was not restrained or held at any point 

during the microinjections.   

ii. Effects of microinjections of ionotropic glutamate receptor antagonists into the 
DMH on stress hyperthermia produced by cage-switch stress 

The goal of these experiments was to assess the role of ionotropic 

glutamate receptors in the DMH in the thermogenic response known to be 

induced by cage-switch stress.  Cage-switch stress involves removing a rat from 

its “home” cage and placing it in a new clean cage with new bedding.  The novel 

environment appears to constitute a mild stress that has been shown to produce 

an increase in core temperature (Kluger et al., 1987; Rowsey et al., 2002; Singer 

et al., 1986; Soszynski et al., 1996).  Cage-switch stress, unlike air-jet stress, 

does not involve a cold-stress (see Results), and therefore is the stress-paradigm 

used for all other studies of effects of exteroceptive stress.  

Rats were placed in the experimental rooms and left undisturbed for at 

least two hours to establish a resting baseline for core temperature.  The cage-

switch stress paradigm consisted of quickly removing the rat from its home cage 

and placing it in an identical cage with fresh bedding.  Once the rat was switched 
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to a new cage it remained in it for the remainder of the experiment.  In 

unstressed trials, the rat remained in its home cage and the only manipulation or 

interaction that occurred was during the microinjections.  Animals were 

pretreated five minutes before the cage-switch stress with bilateral 

microinjections into the DMH of either 1) kynurenate (10pmol/100nL), 2) 

combination of NBQX (100pmol/100nL) and APV(200pmol/100nL), 3) NBQX 

(100pmol/100nL) alone, or 4)APV (200pmol/100nL) alone.   

The pretreatment of animals with microinjections of NBQX alone or APV 

alone in the DMH followed by exposure to cage-switch were included to study the 

role of NMDA and non-NMDA receptor subtypes in the thermogenic response to 

cage-switch stress.  The assumption is that all ionotropic glutamate receptors are 

required for the thermogenic response to stress.  If so, then blockade of either 

NMDA or non-NMDA receptors alone would produce less attenuation of the 

thermogenic response to cage-switch compared to the attenuation seen when all 

ionotropic glutamate receptors are inhibited.    

iii. Effects of microinjection of ionotropic glutamate receptor antagonists into the 
DMH on increases in body temperature produced by interoceptive stressors 

Microinjections of PGE2 in the POA and bilateral microinjections of BMI 

into the DMH have been shown to produce an increase in body temperature.  I 

hypothesized that microinjection of glutamate receptor antagonists would 

attenuate increase produced by either of these interventions.  As mentioned in 

the introduction of this thesis, microinjections of PGE2 in the POA produce an 

increase in temperature that is abolished by microinjections of muscimol in the 

DMH, suggesting a vital role for the DMH in the neural signaling pathway for the 
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thermogenic response to this interoceptive stressor.  The main goal of the 

studies described below was to determine whether ionotropic glutamate 

receptors in the DMH are involved in the increase in temperature evoked by 

either microinjection of PGE2 in the POA or unilateral microinjection of BMI in the 

DMH. 

All animals for these experiments were implanted with telemetric probes 

for the real-time monitoring of core body temperature.  After at least three days of 

recovery, bilateral guide cannulas targeting the DMH and a single cannula 

targeting the POA were implanted.  Finally, all rats were allowed at least three 

days of recovery before experimentation.   

On the day of the experiment, the rats were brought to the testing facility 

and placed in their home cages inside the experimentation rooms.  Their cages 

were placed on telemetric receiver plates, and dummy wires were removed from 

the guide cannulas.  The rats were then left undisturbed for at least an hour to 

establish resting baseline parameters. 

In order to understand the role of ionotropic glutamate receptors in the 

DMH in the thermogenic response to an interoceptive stress, either a 

combination of NBQX and APV or saline vehicle was microinjected into the DMH 

five minutes before microinjection of PGE2 in the POA in conscious and freely 

moving rats.  Rats served as their own controls and each rat received all four 

treatments in random order: 1) bilateral microinjection of vehicle (aCSF) in the 

DMH followed by a microinjection of vehicle (aCSF) in the POA; 2) bilateral 

microinjection of vehicle in the DMH followed by microinjection of PGE2 in the 
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POA; 3) bilateral microinjection of the combination of NBQX and APV in the DMH 

followed by microinjection of vehicle in the POA; 4) bilateral microinjection of 

NBQX and APV in the DMH followed by microinjection of PGE2 in the POA.  In 

order to differentiate effects mediated by NMDA and non-NMDA receptor 

subtypes, two other sets of animals were microinjected with either NBQX alone 

or APV alone followed by microinjection of PGE2 in the POA in a similar 

experimental design.  

Finally, to investigate whether ionotropic glutamate receptors in the DMH 

play a role in the increases in body temperature produced by the disinhibition of 

neurons in the DMH, a set of rats received the following treatments in random 

order and on alternate days: 1) unilateral microinjection of aCSF in the DMH 

followed by unilateral microinjection of BMI into the same side of the DMH five 

minutes later or 2) unilateral microinjection of NBQX or APV followed by 

unilateral microinjection of BMI in the DMH five minutes later.  The goal of this 

experiment was to determine the role that NMDA and non-NMDA glutamate 

receptors play in the thermogenic effect seen with microinjection of BMI in the 

DMH.   

III. Chronic Preparations:  Studies in conscious rats 

A. Anesthesia 

Animals were anesthetized using a combination of ketamine/xylazine (80 

mg/kg ketamine, 11.5 mg/kg xylazine; i.p.; supplement as needed) in 

preparation for all of the surgical procedures performed.  After the surgical 

procedure, the rats were placed in their home cage atop a heating plate in order 
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to support their core temperature until they recovered from the anesthesia.  

Animals undergoing multiple surgical procedures were allowed at least three 

days of recovery between procedures.   

B. Stereotaxic Surgery: Implantation of chronic guide cannula targeting specific 
brain regions 

The purpose of implanting chronic guide cannula is to allow acute delivery 

of drug solutions to specific brain regions.  This technique of implanting chronic 

guide cannulas has been used successfully and extensively in our laboratory 

(Bailey and Dimicco, 2001; De Novellis et al., 1995a; Shekhar et al., 1990; Stotz-

Potter et al., 1996a; Stotz-Potter et al., 1996b; Zaretsky et al., 2006).   

In preparation for the surgery, the top of the head and nape of the neck 

were shaved, and Betadine was then applied to the shaved areas.  The 

anesthetized rat was then placed in a sterile stereotaxic apparatus (Kopf).  To fix 

the rat on the apparatus, the metal bars were inserted firmly into the bony 

processes of the ear canal creating an imaginary line between the two ear bars, 

known as the inter-aural line.  The inter-aural line was used as a line of reference 

to determine appropriately the position of the head in space.  Next, the rat’s skull 

was further fixed and aligned by positioning the upper incisor bar behind the rat’s 

incisors and the rat’s nose is held firmly down against the bar.  The position of 

the incisor bar determined the vertical-horizontal angle of the skull and thus the 

angle at which the guide cannula entered the brain at time of implantation.  The 

choice of angle was dependent on the experimental design; therefore, the incisor 

bar was positioned at 3.3 mm below the inter-aural line for implantation of guides 
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targeting the DMH or 5.0 mm above the inter-aural line for implantation of the 

guides targeting the POA.  

The skin overlying the dorsal surface of the skull was cut with a scalpel 

and retracted, and soft tissue was removed from the exposed surface.  Cotton 

swabs wet with hydrogen peroxide were used to clean out any remaining 

connective tissue or fascia covering the skull and the dorsal surface of the skull 

was rinsed off with sterile saline.  The use of hydrogen peroxide not only clears 

away remaining tissue but it makes the suture lines more visible.  Using the tip of 

a 23 gauge needle, bregma, the point of intersection between the frontal-sagittal 

and coronal suture lines, was marked.  Determination of the coordinates for both 

the DMH and the POA was determined using established atlases of the rat brain  

(Paxinos, 2007).  Using bregma as a reference point for all coordinate 

measurements, a sterilized 26 gauge guide cannula (Plastics One Inc., Roanoke, 

VA, USA) was mounted in the arm of the stereotaxic device.  For placement of 

guide cannula targeting the DMH, the arm was angled at 10° from the sagittal 

plane.  The arm was lowered to the skull until the tip of the guide was centered 

on bregma.  The coordinates for this position were taken and target coordinates 

were calculated.  The arm was moved to the calculated coordinate position and 

lowered on to the skull.  A pencil was used to mark the position of the guide at 

the specified coordinate.  After all markings were made, the arm with the guide 

cannula was moved up and away to allow room to drill the hole in the skull.  A 

Dremel drill with a carbide bur (Miltex) was used to bore a 3-5 mm diameter hole 

in the skull at the approximate position where the guide would enter the brain.  
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To prevent the drill bit from becoming too hot, saline was continuously applied to 

the skull.  Using the same drill bit, additional small holes were placed in the 

frontal and parietal bones for the insertion of anchoring stainless steel screws 

(Plastics One, Inc.). 

The guide cannula was then placed above the predetermined coordinate 

positions and lowered into the brain.  For targeting the DMH, two guide cannulas 

targeting the right and left side of the DMH were positioned for microinjection 

targeting sites 3.1 mm posterior, 2.0 mm lateral, and 7.2 mm ventral with respect 

to bregma.  The tip of the guide cannula was positioned 1 mm above the desired 

targeted region.  The microinjector itself extended exactly 1 mm beyond the 

guide cannula to target the exact region of interest.  For some experimental 

protocols implantation of three guide cannulas was required including bilateral 

guide cannulas targeting the DMH and a single guide cannula targeting the POA.  

For these animals, two guide cannulas were placed in the DMH first at the 

coordinates described above.  Three sterilized stainless steel screws were 

placed on the right and left side of the exposed posterior skull behind the two 

guide cannula and one on the right side of the drilled hole made for the 

implantation the guide to the POA.  Vetbond tissue adhesive (3M, Inc.) and 

dental acrylic (Lang Dental Manufacturing Co., Inc) were then added to the 

posterior region of the skull surrounding the guide cannula and the two screws to 

fix and anchor the two guide cannulas.  Once the two guide cannulas were firmly 

anchored, the incisor bar initially set at 3.3 mm below the inter-aural line, was 

moved to 5.0 mm above the inter-aural line.  Using bregma as a reference point, 
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a single guide cannula was inserted at a 10° angle from the sagittal plane and 

targeted to 1.9 mm anterior, 1.9 mm lateral, and 6.9 mm ventral coordinates.  

The guide was then secured with Vetbond and dental acrylic.  Dummy cannulas 

were then inserted to seal the guide cannulas and prevent clogging.  The animals 

were removed from the stereotaxic frame and allowed to recover from anesthesia 

in their individual cages set on a warm plate.   

C. Implantation of telemetric probes 

For this thesis, a Dataquest telemetry system (Data Sciences, MN, USA) 

was used for measurement of core body temperature and locomotor activity. 

(Locomotor activity is calculated from changes in strength of the transmitter 

signal over time, where an activity unit is approximately equivalent to movement 

of 1 cm s-1).  Telemetric probes allow monitoring of physiological parameters via 

radio transmission in the undisturbed, conscious animal.  Rats were 

anaesthetized (see Section III.A) and their abdomen was shaved and then 

painted with Betadine solution.  A one-inch incision was made in the abdomen 

along the linea alba with scissors exposing the peritoneal cavity.  The body of a 

telemetric probe (PhysioTel® TA-F40, Data Sciences Int.) previously sterilized 

with Cidex solution (Advanced Sterilization Products) and flushed clean with 

sterile saline was placed into the peritoneal cavity.  The abdominal muscle wall 

was then closed with 3-0 suture followed by suturing of the abdominal skin.  

Animals were allowed to recover from anesthesia in their individual cages set on 

a warm plate.   
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D. Post-operative care 

 Per the training guidelines and survival surgery protocols established by 

the Institutional Animal Care and Use Committee (IACUC), all animals were 

closely monitored for their well-being before and after any surgical procedure.  

Following any surgical procedure, an analgesic was administered (buprenorphine, 

0.02 mg/kg, s.c.) while the rats recovered on a warming plate to minimize 

hypothermia caused by the anesthesia.  The animals were monitored throughout 

the recovery period and only after they regained consciousness were the animals 

returned to LARC.  The animals were weighed daily until the day of 

experimentation and then every other day during experimentation.  Their well 

being was assessed every day until the first day of experimentation.  Rats that 

were deemed unhealthy were excluded from experimentation.  Persistent weight 

loss (i.e. 20 grams of weight loss daily over a period of three days), inflammation 

or infection of surgical incisions, or changes in behavior warranted exclusion from 

experimentation and euthanasia.  Before experimentation, dummy wires were 

moved in and out of the guide cannulas to prevent clogging of the guide as well 

as to habituate the animal to this manipulation before microinjection experiments.  

Animals with clogged guide cannulas were excluded and euthanized.   

Post-operative care was imperative to ensure that each rat used in the 

experimentation protocols was healthy.  After the last surgical procedure, the 

animals were allowed to recover for at least three days before undergoing any 

experimental protocols. 
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IV. Experimental Techniques 

A. Testing facilities 

All experimentation took place inside two isolated rooms within the 

laboratory that were temperature controlled (21-25°C).  The rooms were 

equipped with video cameras that allowed continuous monitoring of the rats in 

their cages during the experimentation process.  The telemetric receivers were 

kept inside these rooms and configured in such a way that the real-time reading 

from the telemetric probes was received in the central processing units (CPUs) 

kept outside the rooms.  This configuration was optimal in that the rats could be 

left completely undisturbed by persons walking into the lab, noise, or smells.  

Each room could accommodate up to six rat cages comfortably, which allowed 

me to run experiments for all groups in each experimental protocol at the same 

time.   

B. Telemetric monitoring 

All animals were instrumented with telemetric probes that were vital for the 

results presented in this thesis.  I used a Dataquest telemetry system (Data 

Sciences Int.) to monitor both temperature and motor activity of the rat.  Data 

was transmitted via radio signal from the implanted probe (PhysioTel® TA-F40, 

Data Sciences Int.) to a receiver plate (RPC-1, Data Sciences Int.) placed under 

the home cage of the animal.  The receiver plate transferred the data via a data 

cable to the hard drive of a central processing unit (CPU) located outside of the 

testing room.  The accompanying Dataquest software converted the signal from 
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the receiver into a real time readout that recorded the parameters, in this case 

the minute-by-minute change in temperature or motor activity of the animal.   

C. Microinjection technique 

On the day of the experiment, rats were placed in their home cages on the 

telemetry receiver plates.  When a stable baseline of core body temperature had 

been attained (1-2 hours), dummy cannula(s) were then removed, the 

microinjector(s) (33 gauge, Plastics One Inc.) connected to a 10 μl Hamilton 

syringe with Teflon FEP tubing (i.d. = 0.12 mm; o.d. = 0.65 mm; BAS, USA) was 

inserted into the guide cannula(s).  The Hamilton syringes were loaded with 

appropriate solutions for microinjection.  All solutions for microinjections 

contained 4% fluorescent microspheres used to mark sites of injection.  The 

Hamilton syringe was mounted in an infusion pump (Sage, Boston, MA, USA) 

that was used to deliver a volume of 100 nL/side of injectate over 30s.  At the 

end of the infusion, the microinjector was left in place for 1 min.  The 

microinjection was considered successful if, immediately after removal of the 

microinjector, flow appeared within 5 s after the pump was reactivated, indicating 

that the injector was not clogged and that injectate had been successfully 

delivered. 

V. Stress Paradigms 

A.  Air-jet stress 

The air-jet stress paradigm is an experimental procedure that has been 

described previously and used in our laboratory (Stotz-Potter et al., 1996a,b; 

Zaretsky et al., 2003).  I learned from the results of this experiment that the 
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continuous stream of air significantly dissipates body heat, meaning that the air-

jet stress paradigm may have a potentially confounding effect of a “cold stress”.  

Therefore, the air-jet stress paradigm includes a combination of both restraint 

and cold-stress.   

The air-jet stress paradigm consists of placing the rats to be stressed in a 

Plexiglas tube (21 cm in length, 7 cm in diameter), sufficiently restrictive as to 

prevent them from reversing direction, with an aperture (1 cm) at one end of the 

cylinder connected by latex tubing to an air-jet so that a stream of air at a 

constant and specific flow rate (40 L/min) was directed at the rat’s face.  The 

aperture was placed approximately 5 cm in front of the rat’s head.  The stream of 

air was delivered for a period of 10 min, starting 5 min after the microinjection.  At 

the end of the 10-min period, the air was turned off and the rat released from the 

tube into its home cage and continuously monitored for 120 min.  In unstressed 

trials, the rat remained in its home cage and the only manipulation or interaction 

that occurred was during the microinjections. 

B.  Cage-switch stress 

The cage-switch stress paradigm consisted of quickly removing the rat 

from its home cage and placing it in an identical cage with fresh bedding.  Once 

the rat was switched to a new cage it remained in the new cage for the remainder 

of the experiment.  In unstressed trials, the rat remained in its home cage and the 

only manipulation or interaction that occurred was during the microinjections 

(Groenink et al., 2003b; Oka et al., 2003; Olivier et al., 2003; Spooren et al., 2002; 

Watanabe et al., 1999).  
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VI. Drugs 

Stock solutions of all drugs used in the experimental protocols were 

prepared ahead of time.  Aliquots of the stock solutions were stored at −20°C, 

until the day of the experiment.  Enough stock solution of each drug needed was 

made so that the same drug solution(s) were used for each trial of any of the 

experimental protocols described above minimizing any effect due to differences 

in drug makeup.  In addition, to help with verification of site injection, all 

solutions used in the microinjections contained different colored fluorescent-

embedded, polystyrene microspheres (4% v/v, Molecular Probes).  For each 

treatment I used a different color of fluorescent microspheres.  I then used 

fluorescent microscopy to look at brain slices and verify drug delivery to the 

targeted regions.  Because of the different colors used, I could also verify the 

delivery of each treatment.   

A. Artificial cerebrospinal fluid (aCSF) 

For some controls artificial cerebrospinal fluid was used as a vehicle for 

the microinjection of APV, BMI, NBQX and PGE2.  The aCSF solution (122 mM 

NaCl, 4.7 mM KCl, 1.3 mM CaCl2, 1.2 mM MgSO4, 20 mM NaH2PO4, 11 mM 

C6H12O6 in deionized water; Osmolality 300 mOsm/kg) was sterilized with a 22 

µm sterile filter (Millipore) and stored at −20°C in sterilized Eppendorf tubes for 

up to one year. 
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B. Kynurenate and vehicle for kynurenate 

Kynurenic acid (1 g; Sigma Aldrich, Cat no K3375) was first dissolved in 

10 mL of 1 N NaOH and pH was adjusted to 7.4 by adding acid 4N HCl.  Finally, 

0.9% sterile saline was added gradually to a final concentration of 0.1 M.  The 

pH was checked continuously and adjusted to a final pH 7.0-7.4.  The solution 

was then sterilized with a 22 µM sterile filter (Millipore).  The solution was stored 

in 1mL aliquots at −20°C to ensure stability of the solution.  On the day of the 

experiment frozen kynurenate aliquot was thawed and then microinjected at 

10nmol/100nL.  The vehicle control for kynurenate was prepared as just 

described without the drug.   

C. APV, NBQX, and APV+NBQX combination solution 

A 25 mM stock solution of D-2-Amino-5-phosphonovaleric acid (APV; 

Sigma Aldrich, Cat no. A-8054) was prepared with aCSF as the solvent.  The 

stock solution was stored in 20µL aliquots at −20°C.  On the day of the 

experiment, the stock solution was reconstituted and diluted with aCSF to a final 

concentration of 2 mM or 200 pmol/100nL.  Similarly, a 50 mM stock solution of 

2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX; Tocris 

Biosciences, Cat no. 1044), was  dissolved in aCSF, aliquoted, and stored at -

20°C.  It was later diluted to a final concentration of 1 mM or 100 pmol/100nL.  A 

combination of both APV and NBQX was prepared in aCSF so that the final 

solution contained 200 pmol APV/100pmol NBQX in 100nL.  Artificial CSF was 

used as the vehicle control for APV, NBQX and the combination of the two. 
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D. Bicuculline methiodide (BMI) 

A 4 mM stock solution of (-)-bicuculline methiodide (BMI; Sigma Aldrich, 

Cat no: B6889) was prepared ahead of time.  BMI has a molecular weight of 

509.3g/mol with 20mg/1mL solubility in water.  The stock solution was prepared 

using aCSF, previously prepared (see Section IV. A.), as the diluent.  The stock 

solution was aliquoted into sterile microcentrifuge tubes and stored at −20°C 

until the day of the experiment.  On the day of the experiment the stock solution 

was reconstituted and diluted further with aCSF to a final molar concentration of 

200 µM or 20 pmol/100nL. 

E. Prostaglandin E2 (PGE2) and vehicle for PGE2 

Prostaglandin E2 (PGE2)-dinoprostone (Cayman Chemicals, Cat no: 

14010) was first dissolved in 1-methyl-2-pyrrolidinone (0.15% v/v, Sigma-

Aldrich).  It was then stored in 2µL aliquots in 6x50 mm glass tubes under argon 

gas.  On the day of the experiment, the stock solution was further diluted with 

aCSF to a final molar concentration of 1.5 mM or 150 pmol/100nL.   

VII. Histological Procedures 

A. Perfusion and in situ fixation of brain tissue 

Rats were deeply anesthetized with pentobarbital (100 mg/kg, i.p.).  Rats 

were then subjected to transcardial perfusion.  A 60 mL syringe containing 50mL 

of 0.9% normal saline and 15,000 U/I heparin sulphate was placed above the 

animal to allow gravity to set the speed of perfusion.  The syringe was connected 

to a 2 foot plastic tube connected to a blunt 14 ga needle.  After cutting open the 

pleural cavity, a small cut was made at the apex of the heart and the needle was 
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quickly threaded into the left ventricle and clamped in place with a pair of 

hemostats.  Following perfusion with 50 mL of 0.9% normal saline and heparin, 

the animals was perfused with 120 ml of ice cold 4% buffered paraformaldehyde 

in 0.1M phosphate-buffered saline (PBS).  The brain was then removed, and 

post-fixed in 4% buffered paraformaldehyde in 0.1M phosphate buffer overnight 

at room temperature, then transferred to 30% sucrose in 0.01M PBS solution and 

stored overnight at 4°C until saturation.  Afterwards, brains were quick-frozen 

with dry ice and store at −80°C.   

B. Preparation of brain sections for histology 

Frozen brains were removed from −80°C storage and allowed to thaw to 

−20°C.  Coronal sections (45μmicrons) in the region of hypothalamus and POA 

were cut on a cryostat.  The sections were collected in 96 well plates filled with 

0.01 M phosphate buffer (pH7.4).  Afterwards the sections were mounted on 

glass slides and air dried overnight.     

C. Verification of sites of microinjection 

All solutions microinjected into the brain contained fluorescent-embedded, 

polystyrene microspheres (5% v/v, Molecular Probes) which facilitated locating 

the sites of injection with precision.  Using a Leica microscope equipped with 

different absorbance filters for detection of fluorescence, the sites of injections 

were identified as the locations with the most intense fluorescence.  The location 

of these intensely fluorescent sites was approximated using the atlas of Paxinos 

and Watson (2007) as reference.   
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VIII. Statistical Analysis 

Results are expressed as means ± standard error of the mean (SEM).  

Data were analyzed by repeated measure One-way ANOVA (Fisher’s LSD test 

used for post hoc analysis) or student t-test.  Level of significance was set at 

P < 0.05.  The baseline values for temperature and motor activity were calculated 

by taking the average of 20 minutes prior to the first microinjection.   
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CHAPTER 3: RESULTS 

 

I. Role of ionotropic glutamate receptors in the DMH in increases in body 
temperature produced by exteroceptive stressors: Air-jet stress and cage-
switch stress 

The stress paradigms used for the following experiments are examples of 

exteroceptive stress paradigms.  Both air-jet stress and cage-switch stress have 

been shown to produce significant increases in core body temperature.  The 

following are the results of studies that address the potential role of ionotropic 

glutamate receptors in the DMH in the hyperthermia produced by exteroceptive 

stress in rats.   

A. Pretreatment with kynurenate attenuates the increase in body temperature 
caused by exposure to air-jet stress  

Microinjections of ionotropic glutamate receptor antagonists into the DMH 

attenuate the increase in heart rate and blood pressure produced by 

experimental stress (Soltis and DiMicco, 1992a).  Experimental stress also 

produces an increase in core body temperature.  In the following series of 

experiments, I examined the hypothesis that ionotropic glutamate receptors are 

involved in the increase in body temperature evoked by stress.  Sprague Dawley 

rats were instrumented with bilateral guide cannulas targeting the DMH and a 

telemetric probe as described in the methods.  In these experiments, either 

100nL of vehicle or 10nmol/100nL of kynurenate was microinjected bilaterally 

into the DMH five minutes before exposure to a period of ten minutes of air-jet 

stress (experimental) or to no stress with rats left undisturbed in their home cage 
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(control; N=7 rats).  Real time temperature changes were observed for a period 

of two hours.  Statistical analysis was done for the average change in 

temperature during the 20 minute period immediately following stress or the 

same time period during which control rats were left undisturbed in their home 

cage and this period is depicted in all graphs with a gray box.  

The average body temperature at baseline for all rats for which data are 

reported was 36.96°C±0.13.  In vehicle treated animals, average body 

temperature at baseline was 36.88°C±0.07, and compared to control, exposure 

to air-jet stress produced a significant increase in body temperature (average = 

0.66±0.11°C) over the 20 minute period after stress, with an average peak of 

1.04°C ±0.11 (Figure 1). Temperature did not return to baseline levels for the 

duration of the observation period.  This increase in temperature began almost 

immediately after exposure to the air-jet stress.   

Microinjections of kynurenate into the DMH of control rats produced a 

decrease in temperature that was not significantly different from baseline but 

significantly different from the response to vehicle in control rats.  However, the 

most dramatic and unexpected effect observed was the hypothermia seen during 

and after exposure to air-jet stress in rats microinjected with kynurenate in the 

DMH.   

After microinjection of kynurenate into the DMH air-jet stress produced a 

dramatic and significant average decrease in temperature (−0.92±0.10°C) with a 

peak decrease of −1.12±0.09°C over the twenty minute period after stress. 

Temperature gradually returned to baseline levels during the observation period.    
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FIGURE 1A.  Real time temperature response to pretreatment with kynurenate (10nmol/side) into the
DMH followed by exposure to air-jet stress. Time zero indicates point of microinjection of kynurenate.
White box depicts exposure to air-jet stress.

FIGURE 1B.  Effects of bilateral microinjection of kynurenate (10 nmol/side) into DMH on
hyperthermia induced by air-jet stress. Results are expressed as means ± S.E.M of the 20 minute period
following stress period (gray box).  (α) Significant difference between VEH/No Stress and VEH/Air Stress.
() Signi-ficant difference between VEH/No Stress and KYN/ No Stress.  (δ) Significant difference between
VEH/Air Stress and KYN/Air Stress.  (β) Significant difference between KYN/No Stress and KYN/Air Stress.
The same set of animals was used for all trials serving as their own control and was randomly treated every
other day.  Significant differences determined using One-Way ANOVA and Fisher's LSD post-hoc test.
Limits of probability considered significant were 5%.
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 Temperature tended to increase in unstressed rats treated with vehicle in 

this study, suggesting that experimental manipulation that includes placement of 

the guide cannula for the microinjection and the microinjection of vehicle itself 

may elevate body temperature.  Therefore, I tested this hypothesis by examining 

the effect of (1) experimental manipulation, which involves placement of the 

guide cannula alone, and (2) experimental manipulation followed by injection of 

vehicle (Figure 2A, B).  Experimental manipulation produced a significant change 

in temperature from baseline, an effect sustained during the first twenty minutes 

following the manipulation (5-20min, +0.20±0.08°C).  After manipulation plus 

bilateral microinjection of vehicle into the DMH, a greater increase in body 

temperature (5-20min, +0.48±0.12°C) was generated and temperature remained 

significantly elevated during the subsequent 20 minute observation period (20-

40min, +0.40±0.10°C; see Figure 2A, B).   

B. Effect of microinjection of kynurenate in the DMH on hyperthermia produced 
by cage-switch stress 

 In the animals pretreated with kynurenate and exposed to air-jet stress, a 

dramatic decrease in temperature was seen.  Pretreatment with kynurenate may 

block the animal’s ability to generate a thermogenic response to the cooling 

effect of the stream of air resulting in a significant decrease in temperature.  

Therefore, it was important to find another stress paradigm that did not produce 

this confounding element of cold-stress.  Therefore, a cage-switch stress 

paradigm was adapted instead.  Cage-switch stress has been reported to 

produce an increase in body temperature of 0.75°C to 1°C.  Cage-switch stress 

has also been shown to evoke an increase in heart rate, blood pressure and 
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pACTH levels, all physiological components of the response to stress (Morimoto 

et al., 1991).  As in the protocol used in the air-jet stress studies, all rats received 

all four treatments in random order including pretreatment with either bilateral 

microinjections of vehicle 100nL or microinjections of 10nmol/100nL of 

kynurenate in the DMH.  Five minutes after the second microinjection, rats were 

exposed to either cage-switch stress or to no stress (i.e. left undisturbed in their 

home cage). 

 Core body temperature was significantly increased compared to control 

over the twenty minute period following cage-switch ( = +0.82±0.17°C; see 

Figure 3).  Microinjection of kynurenate into the DMH of unstressed rats left 

undisturbed in their cage abolished the increase in temperature seen in 

unstressed rats pretreated with vehicle.   

 Microinjection of kynurenate into the DMH completely abolished the 

increase in body temperature produced by cage-switch stress, generating an 

average temperature change ( = −0.43±0.16°C) that was not significantly 

different from baseline.  In the following experiments, I examine the specific 

subtypes of ionotropic glutamate receptors that were responsible for this effect. 

C. Effect of bilateral microinjection of NBQX and APV in combination in the DMH 
on the hyperthermia produced by cage-switch stress 

 The lack of hyperthermic response to the cage-switch stress after 

microinjection of kynurenate into the DMH suggests that ionotropic glutamate 

receptors in the region play a role in the increase in body temperature evoked by 

experimental stress.  In order to examine which specific subtypes of ionotropic 
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FIGURE 2B.  Effect of experimental manipulation and bilateral microinjection of vehicle into DMH
on body temperature. Results are expressed as means ± S.E.M of the 15 min interval 5 minutes after
the exposure to the stress and means ± S.E.M of the 20min period after 20 minutes of the stress
exposure (gray box and dark gray box, respectively). *Significant difference from baseline. **Significant
difference between manipulation and aCSF in DMH.  The same set of animals was used for all trials and
were randomly treated serving as their own control and treated every other day.  Significant differences
on mean temperature change over the two periods were determined using student t-test.  Limits of
probability considered significant were 5%.

FIGURE 2A.  Real time temperature response to rats exposed to manipulation alone or
manipulation followed by microinjection of vehicle into DMH. Time zero indicates point of
exposure to either paradigm.  Light gray box is the 15 minute time period following either paradigm
and dark gray box depicts a 20minute time period, 20 minutes after exposure.
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glutamate receptors mediate this response, I decided to use two drugs, NBQX, 

an AMPA and kainate receptor antagonist, and APV, an NDMA receptor 

antagonist, first in combination and then individually.  As with previous 

experiments, exposure to cage-switch stress evoked an increase in temperature 

of +0.72±0.06°C in animals microinjected into the region of the DMH with aCSF, 

an effect significantly greater than that seen in animals under control conditions 

(Figure 4).  The mean change in body temperature in control rats pretreated with 

aCSF in the DMH ( = +0.40±0.12°C) versus the mean change in body 

temperature in rats pretreated with NBQX and APV under control conditions   

( = +0.08±0.06°C) was significantly different as determined using One-Way 

Anova and LSD post-hoc test.  As with kynurenate, microinjection of NBQX and 

APV into the DMH of rats when exposed to cage-switch stress, completely 

abolished the increase in temperature seen in vehicle treated animals exposed to 

cage-switch stress.  The change in body temperature in animals pretreated with 

NBQX and APV after cage-switch (−0.07±0.14°C) was not significantly different 

from baseline.  These results suggest that activity at ionotropic glutamate 

receptors in the DMH is required for the increase in temperature produced by 

cage-switch stress, an exteroceptive stressor.   

D. Effect of bilateral microinjection of NBQX or of APV individually in the DMH on 
the hyperthermia produced by cage-switch stress 

 To characterize the role of specific ionotropic glutamate receptor subtypes 

in the DMH in the hyperthermic response produced by cage-switch stress, I 

studied the effects of bilateral microinjections of either APV or NBQX alone.  The  
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FIGURE 3B.  Effects of bilateral microinjection of kynurenate (10 nmol/side) into DMH on
hyperthermia induced by cage-switch. Results are expressed as means ± S.E.M of a 20 minute interval
15 minutes after cage-switch stress (gray box). (α) Significant difference between VEH/NCS and VEH/CS.
(ε) Significant difference between VEH/NCS and KYN/NCS.  (δ) Significant difference between CSF/CS
and KYN/CS.  The same set of animals was used for all trials and were randomly treated serving as their
own control and treated every other day.  The same set of animals was used for all trials serving as their
own control and was randomly treated every other day.  Significant differences determined using One-Way
ANOVA and Fisher's LSD post-hoc test. Limits of probability considered significant were 5%.

FIGURE 3A.  Real time temperature response of rats either unstressed  (control) or exposed to
cage-switch stress following pretreatment with either vehicle or kynurenate into DMH. Time zero
indicates point of microinjections.  Light gray box is the 20 minute time period that was analyzed statistically.
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3B.
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FIGURE 4B. Effects of bilateral microinjection of NBQX (100pmol/side) + APV (200pmol/side) into
DMH on hyperthermia induced by cage-switch stress. Results are expressed as means ± S.E.M of a 20
minute interval 15 minutes after cage-switch stress (CS; gray box) or no cage-switch stress (NCS) (left
undisturbed in their home cage).  (*) Significant difference from baseline.  ( ε) Significant difference
between Vehicle/NCS and Vehicle/CS.  (α) Significant difference between Vehicle/NCS and Cocktail/NCS.
(δ) Significant difference between Vehicle/CS and NBQX/CS. The same set of animals was used for all trials
and were randomly treated serving as their own control and treated every other day.  The same set of
animals received all treatments in staggered manner each serving as its own control and were treated every
other day.  Significant differences determined using One-Way ANOVA and Fisher's LSD post-hoc test.
Limits of probability considered significant were 5%.

4A.

4B.

FIGURE 4A.  Real time temperature response of rats either unstressed  (control) or exposed to
cage-switch stress following pretreatment with either vehicle or NBQX+APV into DMH. Time zero
indicates point of microinjections.  Light gray box depicts the 20 minute time period that was analyzed
statistically.
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microinjection procedure and experimental protocol used were identical to those 

used for the microinjection of the combination of these agents.  The increase in 

body temperature seen after treatment with vehicle followed by cage-switch was 

not significantly different from that seen after treatment with APV 

(200pmol/100nL) followed by cage-switch ( = +0.79±0.11°C vs. = 

+0.55±0.08°C; Figure 5), although increases tended to be smaller after APV.   

 I also studied the effects of bilateral microinjections of NBQX 

(100pmol/100nL) into the DMH on the increase in body temperature induced by 

cage-switch.  As seen in Figure 6, after microinjection of vehicle, body 

temperature after cage-switch stress (+0.94±0.14°C) was significantly greater 

than that seen under control (unstressed) conditions.  After microinjection of 

NBQX the increase in body temperature produced by cage-switch (+0.40±0.12°C) 

was significantly less than that seen after microinjection of vehicle.  In fact, the 

increase seen after microinjection of NBQX and cage-switch was similar to that 

seen after microinjection of vehicle in the control (unstressed) group 

(+0.36±0.10°C).  

 Microinjection of the combination of both antagonists completely abolished 

the increases in body temperature produced by cage-switch, and also attenuated 

the increase in body temperature seen after vehicle injection under control 

conditions.  As indicated in Figure 7, these results suggest that both NMDA and 

non-NMDA receptors in the DMH play a role in the increase in body temperature 

produced by cage-switch stress, an exteroceptive stress paradigm.   
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FIGURE 5B.  Effects of bilateral microinjection of APV (200pmol/side) into the DMH on increase in
body temperature induced by cage-switch. Results are expressed as means ± S.E.M of a 20 minute
interval 15 minutes after cage-switch stress (CS; gray box) or no cage-switch stress (NCS) (left undisturbed
in their home cage). (*) Significant difference from baseline.  ( α) Significant difference between
Vehicle/control and vehicle/CS. (β) Significant difference between APV/control and APV/CS.  The same set
of animals received all treatments in staggered manner each serving as its own control and were treated
every other day.  Significant differences determined using One-Way ANOVA and Fisher's LSD post-hoc
test.  Limits of probability considered significant were 5%.

FIGURE 5A.  Real time temperature response of rats either unstressed  (control) or exposed to
cage-switch stress following pretreatment with either vehicle or APV into DMH. Time zero indicates
point of microinjections.  Light gray box depicts the 20 minute time period that was analyzed statistically.

5A.

5B.
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FIGURE 6B.  Effects of bilateral microinjection of NBQX (100pmol/side) into the DMH on increases in
body temperature induced by cage-switch. Results are expressed as means ± S.E.M of a 20 minute
interval 15 minutes after cage-switch stress (CS; gray box) or no cage-switch stress (NCS) (left undisturbed
in their home cage). (*) Significantly different from baseline. (α) Significant difference between Vehicle/NCS
and Vehicle/CS. ( δ) Significant difference between CSF/CS and NBQX/CS. The same set of animals
received all treatments in staggered manner each serving as its own control and were treated every other
day.  Significant differences determined using One-Way ANOVA and Fisher's LSD post-hoc test. Limits of
probability considered significant were 5%.

6A.

6B.

FIGURE 6A.  Real time temperature response of rats either unstressed  (control) or exposed to
cage-switch stress following pretreatment with either vehicle or NBQX into DMH. Time zero
indicates point of microinjections.  Light gray box depicts the 20 minute time period that was analyzed
statistically.
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 Figure 7 summarizes the results of experiments above involving effects of 

microinjection of NBQX and APV alone and in combination into the DMH on body 

temperature under baseline conditions and after cage-switch.  Microinjection of 

APV alone did not produce a significant effect on the increase in body 

temperature produced by cage-switch, whereas microinjections of NBQX in the 

DMH attenuated these increases. 

II. Role of ionotropic glutamate receptors in the DMH in increases in body 
temperature produced by microinjection of PGE2 in the POA and BMI in the 
DMH 

 Interoceptive stress is detected through sensory neural or chemical cues 

from the internal environment such as the stress caused by a bacterial infection.  

Microinjection of PGE2 into the POA is considered a model for experimental fever.  

It has been shown that during the course of a bacterial infection, PGE2 is 

released in the POA which is thought to initiate the febrile response in mammals 

(for review see Blatteis and Sehic, 1998).  Therefore, microinjection of PGE2 into 

the POA is an experimental model for interoceptive stress.  Microinjection of BMI, 

a GABAA receptor antagonist, into the DMH produces an increase in temperature 

of at least 1°C or higher, a response similar to that produced by microinjection of 

PGE2 in the POA, and the increase in temperature induced by PGE2 in the POA 

is mediated through the DMH.  Activation of neurons or disinhibition of neurons in 

the DMH seems to be a key component of the thermogenic response seen not 

only to microinjection of PGE2 in the POA, but to stress in general.   
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FIGURE 7.  Summary of effect of microinjection of subtype-specific 
ionotropic glutamate receptor antagonists into the DMH on increases in 
body temperature evoked by cage-switch stress.  Results are expressed as 
means ± S.E.M.  (*) Significant difference from baseline.  (**) Significant 
difference between Vehicle/NCS and NBQX+APV/NCS.  (***) Significant 
difference between Vehicle/NCS and Vehicle/CS.  (^) Significant difference 
between Vehicle/CS and NBQX+APV/CS. (^^) Significant difference between 
Vehicle /CS and NBQX/CS.  The same set of animals received all treatments in 
staggered manner each serving as its own control and were treated every other 
day.  (Data representing changes seen after treatment with vehicle have been 
pooled for graphic representation in this figure.  Significant differences 
determined using One-Way ANOVA and Fisher's LSD post-hoc test.  Limits of 
probability considered significant were 5%.  
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The following results address the question of whether ionotropic glutamate 

receptors in the DMH play a role in the increase in temperature produced by 

microinjection of PGE2 in the POA, an interoceptive stress, or microinjection of 

BMI into the DMH, directly disinhibiting the signaling pathway thought to be 

involved in the thermogenic response to both interoceptive and exteroceptive 

stress.   

A. Effect of microinjection of combination of NBQX+APV in the DMH on the 
increase in body temperature produced by microinjection of BMI in the DMH 

 For this study either vehicle or combination of NBQX+APV (NBQX 

100pmol/side and APV 200pmol/side) was microinjected unilaterally into the 

DMH five minutes prior to microinjection of BMI (10 pmol/100 nL) at the same 

site.  The statistical analysis for the experiments described was done for the 

average change in temperature in the 20 minute period starting five minutes after 

microinjection of either vehicle or BMI in the DMH.  Unilateral microinjection of 

BMI significantly increased body temperature over baseline in animals pretreated 

with vehicle, (+0.88±0.09°C; see Figure 8).  After pretreatment with NBQX+APV 

the increase in temperature produced by BMI was significantly attenuated 

(+0.28±0.08°C).   

B. Effect of prior microinjection of APV or NBQX alone on the increase in body 
temperature produced by microinjection of BMI in the DMH 

 In the next set of experiments the goal was to study the effect of 

pretreatment with NBQX or APV alone using the same experimental protocol.  As 

mentioned above, the statistical analysis for these experiments was done for the 

average change in temperature in the 20 minute period starting five minutes after 
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FIGURE 8B.  Effects of microinjection of NBQX (100pmol/side) and APV (200pmol/side) on increase
in body temperature evoked by unilateral microinjection of BMI (10pmol/side) into the DMH. Results
are expressed as means ± S.E.M of a 20 minute interval 5 minutes after treatment(gray box). (*) Significant
difference from baseline.  (**)Significant difference between CSF/CSF and aCSF/BMI.  The same set of
animals was used for all trials serving as their own control and was randomly treated every other day.
Significant differences on mean temperature change over the two periods were determined using student
t-test.  Limits of probability considered significant were 5%.

FIGURE 8A.  Real time temperature response of rats pretreated with either vehicle or NBQX+APV
unilaterally in the DMH followed by unilateral (same side) microinjection of vehicle or BMI in the
DMH. Time zero indicates point of microinjections. Solid line depicts microinjection of BMI in the  DMH.
Light gray box is the 20 minute time period that was analyzed statistically.
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microinjection of either vehicle or BMI in the DMH.  Either APV (200pmol/side) or 

NBQX (200pmol/side) was microinjected into either the right or left side of the 

DMH five minutes prior to microinjection of BMI (10pmol/100nL) at the same site.  

The increase in temperature seen in the vehicle-vehicle treated animals 

(+0.41±0.09°C) was not significantly different from that seen in the APV-vehicle 

treated animals (+0.22±0.07°C).  The increase in temperature produced by 

microinjection of BMI after pretreatment with APV (+0.98±0.06°C, N=6) was not 

significantly different from the increase in temperature produced by microinjection 

of BMI after pretreatment with vehicle (0.75±0.17°C, N=6; see Figure 9).   

 The increase in core body temperature evoked by microinjection of BMI 

after pretreatment with NBQX (0.79±0.19°C, N=5) was not significantly different 

from the increase in temperature evoked by microinjection of BMI following 

pretreatment with vehicle (0.76±0.18°C, N=5; Figure 10).  The increase in body 

temperature observed after vehicle-vehicle treatment (0.23±0.20°C, N=5) was 

not significantly different from the increase in temperature observed after NBQX 

followed by vehicle (0.03±0.09°C, N=5).   

 Collectively, these results suggest that blockade of both NMDA and non-

NMDA subtypes of ionotropic glutamate receptors in the region is required to 

attenuate the increase in temperature evoked by microinjection of BMI into the 

DMH (see Figure 8 and Figure 9).   

C. Effect of microinjection of NBQX and APV in the DMH on experimental fever 
produced by microinjection of PGE2 in the POA 

 In a final set of experiments, I examined the role of ionotropic glutamate 

receptors in the DMH in the experimental fever produced by microinjections of 
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PGE2 into the POA, another model for interoceptive stress (Figure 11).  At t=0 

min, rats were pretreated with a bilateral microinjection of either vehicle (aCSF) 

or drug (NBQX and APV in combination, NBQX alone or APV alone) into the 

DMH, and this was followed by a unilateral microinjection of either vehicle or 

PGE2 in the POA at t=5min.  Rats were then left undisturbed in their respective 

home cages and observed for a period of two hours.  Increases from baseline 

body temperature were averaged for the thirty minute interval immediately 

following microinjection of PGE2 (i.e., t=5-35 min) for all analyses. 

D. Effect of bilateral microinjection of NBQX and APV in the DMH on the 
experimental fever produced by microinjection of PGE2 in the POA 

 In the previous experiments, prior unilateral microinjection of NBQX and 

APV into the DMH greatly attenuated the increase in body temperature evoked 

by subsequent microinjection of BMI at the same site.  I expected that similar 

pretreatment would also attenuate the febrile response evoked by microinjection 

of PGE2 in the POA.  After pretreatment with vehicle, microinjection of PGE2 into 

the POA produced a significant increase in body temperature (+1.30±0.16°C; 

Figure 11).  Pretreatment with NBQX+APV significantly decreased the febrile 

response produced by microinjection of PGE2 in the POA (+0.24±0.20°C; Figure 

11).  Pretreatment with NBQX+APV also significantly attenuated the modest 

increase in temperature that followed microinjection of vehicle into the POA 

(+0.06±0.10°C after NBQX and APV versus +0.43±0.17°C after vehicle).     
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FIGURE 9B.  Effect of prior microinjection of APV (200pmol/side) into the DMH on the increase in
body temperature produced by microinjection of BMI (10pmol) at the same site.  Results are expressed
as means ± S.E.M of a 20 minute interval 5 minutes after treatment (gray box). (*)  Significant difference
from baseline.  ( α) Significant difference between Vehicle/Vehicle and Vehicle/BMI.  ( β) Significant
difference between APV/Vehicle and APV/BMI.  The same set of animals was used for all trials serving as
their own control and was randomly treated every other day.  Significant differences determined using
One-Way ANOVA and Fisher's LSD post-hoc test. Limits of probability considered significant were 5%.

FIGURE 9A.  Real time temperature response of rats pretreated with either vehicle or APV
unilaterally in the DMH followed by unilateral (same side) microinjection of vehicle or BMI in the
DMH. Time zero indicates point of microinjections. Solid line depicts microinjection of BMI in the  DMH.
Light gray box is the 20 minute time period that was analyzed statistically.
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FIGURE 10B.  Effect of prior microinjection of NBQX (100pmol/side) into the DMH on the increase in
body temperature evoked by microinjection of BMI (10pmol) at the same site.  Results are expressed
as means ± S.E.M of a 20 minute interval 5 minutes after treatment (gray box).  (α) Significant difference
between Vehicle/Vehicle and Vehicle/BMI.  ( β) Significant difference between NBQX/Vehicle and
NBQX/BMI. The same set of animals was used for all trials serving as their own control and was randomly
treated every other day.  Significant differences determined using One-Way ANOVA and Fisher's LSD
post-hoc test. Limits of probability considered significant were 5%.

10A.

10B.

FIGURE 10A.  Real time temperature response of rats pretreated with either vehicle or NBQX
unilaterally in the DMH followed by unilateral (same side) microinjection of vehicle or BMI in the
DMH. Time zero indicates point of microinjections. Solid line depicts microinjection of BMI in the  DMH.
Light gray box is the 20 minute time period that was analyzed statistically.
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These results suggest that ionotropic glutamate receptors in the DMH play a role 

in the febrile response produced by microinjection of PGE2 in the POA.  The next 

series of experiments investigated the effect of NBQX and APV alone on the 

febrile response produced by microinjection of PGE2 in the POA.   

E. Pretreatment with NBQX or with APV evokes different degrees of attenuation 
on the experimental fever produced by the microinjection of PGE2 in the POA 

 The role of ionotropic glutamate receptors in the DMH has been studied in 

various models of both interoceptive and exteroceptive stresses, and the results 

thus far indicate that these receptors play an important role in the stress-induced 

increase in temperature as seen in all models examined.  Likewise, results just 

described show that antagonism at NMDA and AMPA/kainate receptors in the 

DMH attenuates the increase in core body temperature produced by 

microinjection of PGE2 in the POA.  I next investigated the effects of pretreatment 

with either APV or NBQX, individually.  As shown in Figure 12A and B, a 

significant increase in body temperature from baseline levels (+0.44±0.08°C) was 

evident after treatment with vehicle in both the DMH and the POA.  However, the 

increase in temperature seen after microinjection of APV into the DMH and 

vehicle in the POA was significantly reduced (−0.16±0.10°C).  Microinjection of 

PGE2 in the POA evoke a febrile response after pretreatment with vehicle in the 

DMH (+1.7±0.35°C), that was no different from that seen after pretreatment with 

APV (+1.6±0.44°C). 
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FIGURE 11B.  Effects of NBQX(100pmol/side) and APV(200pmol/side) in DMH on fever evoked by
microinjection of PGE2 (150pmol) in the POA. Results are expressed as means ± S.E.M of the 30 minute
period following treatment (gray box).  (*)  Significant difference from baseline.  (ε) Significant difference
between Vehicle (DMH)/Vehicle (POA) and NBQX+APV (DMH)/Vehicle (POA).  (α) Significant difference
between Vehicle (DMH)/Vehicle (POA) and Vehicle (DMH)/ PGE2 (POA). (δ) Significant difference between
Vehicle (DMH)/ PGE2 (POA) and NBQX+APV (DMH)/ PGE2 (POA). The same set of animals was used for
all trials serving as their own control and was randomly treated every other day.  Significant differences
determined using One-Way ANOVA and Fisher's LSD post-hoc test. Limits of probability considered
significant were 5%.

11A.

11B.

FIGURE 11A.  Real time temperature response of rats pretreated with either vehicle or NBQX+APV
bilaterally in the DMH followed by a microinjection of vehicle or PGE2 in the  POA. Time zero indicates
point of microinjections into the  DMH. Solid line depicts microinjection of vehicle or PGE2 in the  POA.
Light gray box is the 30 minute time period that was analyzed statistically.
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FIGURE 12A.  Real time temperature response of rats pretreated with either vehicle or APV bilaterally
in the DMH followed by a microinjection of vehicle or PGE2 in the  POA. Time zero indicates point of
microinjections into the  DMH. Solid line depicts microinjection of vehicle or PGE2 in the  POA.   Light gray
box is the 30 minute time period that was analyzed statistically.

12A.

12B.

FIGURE 12B.  Effects of APV (200pmol/side) pretreatment in the DMH on fever evoked by
microinjection of PGE2 (150pmol) in the POA. Results are expressed as means ± S.E.M of the 30
minute period following treatment (gray box).  (*) Significantly different from baseline.  ( ε) Significant
difference between Vehicle (DMH)/Vehicle (POA) and APV (DMH)/Vehicle (POA).  ( α) Significant
difference between Vehicle (DMH)/Vehicle (POA) and Vehicle (DMH)/ PGE2 (POA).  ( β) Significant
difference between APV-DMH/VEH-POA and APV-DMH/ PGE2-POA.  The same set of animals was used
for all trials serving as their own control and was randomly treated every other day.  Significant
differences determined using One-Way ANOVA and Fisher's LSD post-hoc test. Limits of probability
considered significant were 5%.
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 In the last study, I investigated the effects of NBQX pretreatment alone on 

fever evoked by microinjection of PGE2 in the POA (Figure 13 A and B).  In this 

experiment, an increase in temperature was again seen after injection of vehicle 

into the DMH and the POA (+0.69±0.15°C; Figure13B); however, unlike 

pretreatment with APV, NBQX-pretreatment failed to significantly affect this 

response (+0.60±0.23°C; Figure 13B).  Likewise, microinjection of PGE2 in the 

POA after microinjection of vehicle into the DMH produced an increase in body 

temperature (1.7±0.17°C; Figure 13B) that was virtually identical to that seen 

after pretreatment with NBQX (+1.7±0.30°C, Figure 13B). 
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FIGURE 13B.  Effects of NBQX (100pmol/side) pretreatment in the DMH on fever evoked by
microinjection of PGE 2 (150pmol) in POA. Results are expressed as means ± S.E.M of the 30 minute
period following treatment (gray box).  (*) Significantly different from baseline. (α) Significant difference
between Vehicle (DMH)/Vehicle (POA) and Vehicle (DMH)/ PGE 2 (POA).  (β) Significant difference
between NBQX (DMH)/Vehicle (POA) and NBQX (DMH)/ PGE2 (POA).  The same set of animals was used
for all trials serving as their own control and was randomly treated every other day.  Significant differences
determined using One-Way ANOVA and Fisher's LSD post-hoc test. Limits of probability considered
significant were 5%.
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FIGURE 13A.  Real time temperature response of rats pretreated with either vehicle or NBQX
bilaterally in the DMH followed by a microinjection of vehicle or PGE2 in the  POA.  Time zero
indicates point of microinjections into the  DMH. Solid line depicts microinjection of vehicle or PGE2 in the
POA.   Light gray box is the 30 minute time period that was analyzed statistically.



 

96 
 

CHAPTER 4: DISCUSSION AND FUTURE STUDIES 
 

The stress response is also known as the fight or flight response, and the 

purpose of all the physiological changes that comprise this response is thought to 

be to prime the body to either fight or flee a perceived threat or danger.  A typical 

example of the fight or flight response at work is that of a zebra grazing 

peacefully and taking off in flight at the mere scent of a lion, which requires 

expenditure of a large amount of physical energy.  Likewise in prehistoric times, 

man’s fight or flight behavior was shaped by the perceived threats or dangers 

more likely encountered while hunting such as being confronted by a predator.  

The fight or flight response was vital for survival.  In modern society, we have 

very different perceived threats which don’t require expenditure of large amounts 

of energy yet the fight and flight response persists.  Constant activation of the 

stress response in humans can lead to negative psychological and physical 

effects.  Prolonged stress responses may result in an array of complications that 

can lead to heart disease, anxiety and panic disorders, and chronic suppression 

of the immune system, which leaves the body open for infection and other 

complications.  However, to date, there is no one effective manner to deal with 

stress and much more research needs to be done so that we can better 

understand how the brain mediates the stress response.  

I studied the role of ionotropic glutamate receptors in the DMH in the 

increase in body temperature induced by stress.  The overall results show that 

ionotropic glutamate receptors in the DMH play a role in the increase in 

temperature induced by stress.  Also, activation of both NMDA and non-NMDA 
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receptors plays a role in the increase in temperature evoked by stress, yet 

another important finding from these studies.  I studied both exteroceptive and 

interoceptive stress paradigms to study the role of ionotropic glutamate receptors 

in the increase in body temperature associated with stress.   

I. Role of ionotropic glutamate receptors in the hypothalamus in the increase in 
core temperature seen in response to stress 

A. Blockade of both NMDA and non-NMDA receptor subtypes prevents the 
increase in temperature evoked by air-jet stress 

Air-jet stress is a paradigm used in our laboratory and by others as a 

model for exteroceptive stress (de Menezes et al., 2006; Mayorov and Head, 

2002; Sarkar et al., 2007; Soltis and DiMicco, 1992b).  In conscious rats, 

exposure to this paradigm produces an increase in temperature, presumably 

induced as a classic component of the response to stress.  Interestingly, it 

appears that this increase in temperature in response to air-stress may also 

include a component representing a compensatory response to the cooling effect 

produced by the stream of air.  Exposure to acute cold-stress (4-5°C ambient 

temperature) or skin cooling (placement of a rat in a water jacket perfused with 

ice-cold water), induces an increase in core body temperature of 0.25 to 0.30°C 

(Bratincsak and Palkovits, 2005; Ishiwata et al., 2005; Morrison, 2004; Morrison 

et al., 2008; Saito et al., 2008) that persists for up to 30 minutes after exposure.  

More prolonged exposure to cold eventually leads to a decrease in body 

temperature.  The mean maximum increase in temperature seen in rats exposed 

to air-jet stress was +0.66 ± 0.11°C and body temperature had still not returned 

to baseline an hour after exposure to the stress.   
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The most compelling evidence for the existence of the “cold stress” 

phenomenon as an unanticipated component of the paradigm is the response to 

air-jet stress after microinjection of kynurenate into the DMH.  Pretreatment with 

this non-selective inhibitor of ionotropic glutamate receptors not only abolished 

the increase in temperature produced by air-jet stress, but actually unmasked a 

dramatic reduction in body temperature from baseline.  The most likely 

explanation for this finding is that air-jet stress, which involves exposure of the rat 

to a stream of air, produces a cooling effect that is normally countered by 

adaptive thermoregulatory changes that depend upon activity at ionotropic 

glutamate receptors in the DMH.  This cooling effect thus constitutes a cold 

stress associated with the air-jet stress paradigm that before this experiment had 

been unappreciated.  Microinjection of kynurenate into the DMH results in the 

apparent loss of the ability to counter the cold-stress, perhaps because 

compensatory thermoregulatory effectors in the body are not activated when the 

ionotropic glutamate receptors in the DMH are inhibited.  It has been shown that 

in rats and other small mammals exposed to cold ambient temperatures, non-

shivering thermogenesis or sympathetic stimulation of brown fat acts as an 

essential thermoregulatory effector in cold defense by generating heat that is not 

associated with muscle activity of shivering (Carlson and Cottle, 1956; Foster 

and Frydman, 1979; Fuller et al., 1975; Golozoubova et al., 2006; Hart and 

Jansky, 1963; Kalter et al., 1979; Morrison, 2004; Morrison et al., 2008).  

Evidence supports a role for neurons in the region of the DMH in thermogenesis 

induced by cold exposure.  In fact, cold exposure increases the expression of 
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Fos, a marker for neuronal activity, in neurons of the DMH (Cano et al., 2003).  

Furthermore, disinhibition of neurons by blockade of GABAA receptors in the 

DMH increases sympathetic SNA to BAT and thermogenesis (Cao et al., 2004b; 

Zaretskaia et al., 2002).  Tonic GABAergic input to the DMH may originate in the 

POA (Chiba and Murata, 1985; Kita and Oomura, 1982; Simerly and Swanson, 

1988; Thompson and Swanson, 1998).  Likewise, inhibition of neurons in the 

DMH blocks the febrile and cold-evoked excitation of SNA to BAT and 

thermogenesis (Madden and Morrison, 2004; Morrison, 2004; Nakamura and 

Morrison, 2007; Nakamura et al., 2005a; Zaretskaia et al., 2003).  Therefore, 

inhibition of neurons in the region of the DMH with microinjections of muscimol 

blocked shivering in rats exposed to cold (Tanaka et al., 2001).  The dramatic 

decrease in core body temperature in the kynurenate-treated animals suggests 

that ionotropic glutamate receptors in the DMH are involved in the activation of 

thermogenic effectors that respond to “cold stress” and that blockade of these 

receptors may therefore prevent the animal from maintaining its body 

temperature when exposed to the cooling effect produced by the air-jet stream.  I 

suggest that the increase in temperature induced by air-jet stress is probably due 

to the animal generating heat in response both to the cold and to being stressed 

from the procedure.  However, I cannot differentiate those effects induced by 

cooling from those effects induced by stress.  Therefore, in order to study the 

increase in body temperature produced specifically by stress, I was compelled to 

find another paradigm.   
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The results from this study also indicate that blockade of ionotropic 

glutamate receptors in the DMH attenuates the increase in temperature seen in 

unstressed animals that received injections of aCSF in the DMH.  This increase 

in temperature may be due to manipulating the rat or its environment during the 

experiment (i.e., my presence in the room, placing a hand inside the rat’s cage 

and/or handling of the rat).  As can be seen from the results (Figure 2), body 

temperature increases during the microinjection procedure, during which the rats 

were briefly exposed to the experimenter and microinjectors were inserted into 

the guide cannulas.  Several studies have reported an increase in body 

temperature of rats during similar experimental procedures, such as intracerebral 

microinjections or rectal temperature measurements (Eikelboom, 1986; Oka et al., 

2001; Pae et al., 1985; Poole and Stephenson, 1977).  The handling of the rat or 

“manipulation” during the experimentation procedure can be considered a mild 

stressor and, indeed, an increase in temperature was observed as a response to 

experimental manipulation in the present study (see Figure 2).  Placement of 

microinjectors in the guide cannula of the conscious and untethered rat was 

followed by a significant increase in temperature from baseline, an effect 

sustained for the following twenty minutes.  Likewise, bilateral microinjection of 

vehicle into the DMH was followed by a significant increase in body temperature 

during the 5-20min time interval (mean change compared to baseline, 

+0.48±0.12°C) that persisted for 40 minutes after the microinjections (mean for 

20-40min, +0.40±0.10°C; see Figure 2A and B).  The fact that this increase 

persisted for 40 minutes after the microinjections suggests that at least part of 
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the increase in temperature seen in both control and experimental rats is a 

consequence of these manipulations.  Placement of the microinjectors into the 

DMH produces damage in that region of the brain which itself may be another 

reason for this increase in temperature (Quan and Blatteis, 1989).  Handling of 

the rat and insertion of the guide cannula along with microinjection of vehicle 

produced a more pronounced and significant increase in temperature than that 

observed with handling of the rat and insertion of the guide cannula alone (Figure 

2A).  The increase in temperature induced by manipulation lasted less than 

twenty minutes whereas the increase in temperature induced by manipulation 

and microinjection of vehicle lasted for more than 30 minutes.  In addition, the 

increase in temperature induced by experimental manipulation was completely 

abolished by microinjection of kynurenate in the DMH.  If as suggested the 

increase in temperature induced during handling of the rat is a response to the 

mild stress of this manipulation, the inhibition of this increase by bilateral 

microinjections of kynurenate in the DMH suggests a role for ionotropic 

glutamate receptors in the DMH in stress-induced increases in body temperature.  

However, since the increase in body temperature was completely abolished, 

blockade of ionotropic glutamate receptors in the DMH also prevented any 

increase in temperature that may have been caused by local tissue damage.   

Because of the confounding contribution of cold stress to the air stress 

paradigm, cage-switch stress was the paradigm chosen to clarify the role of 

ionotropic glutamate receptors in the DMH in the increase in temperature 

induced by an emotional stressor in the remainder of my studies.  Cage-switch is 
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a mild exteroceptive stressor known to induce increases in body temperature that 

is uncomplicated by the confounder of the apparent “cold stress” component 

associated with air-jet stress, In the cage-switch stress paradigm, the animal is 

moved from its home cage to an identical clean cage.  Several variations of this 

paradigm have been used and all induce a significant and rapid increase in core 

body temperature that has been reported to range from 0.93°C to 1.33°C (Kluger 

et al., 1987; Long et al., 1990a; Long et al., 1990b; Oka et al., 2001; Singer et al., 

1986; Whyte and Johnson, 2005).  As can be seen in Figure 3, a significant 

increase in body temperature was observed following cage-switch stress in my 

studies (mean maximum increase from baseline +0.82±0.17°C). To determine 

whether ionotropic glutamate receptors play a role in the increase in temperature 

induced by cage-switch stress, animals were pretreated with microinjection of 

kynurenate into the DMH.  This pretreatment prevented any increase in body 

temperature, including the increase in temperature associated with the 

manipulation and microinjection as was seen in control animals.  These results 

support the idea that ionotropic glutamate receptors in the DMH play a role in the 

increase in temperature seen in response to exteroceptive stress.  Our laboratory 

has previously shown that blockade of ionotropic glutamate receptors in the DMH 

prevents the increase in heart rate and blood pressure associated with air-jet 

stress (Soltis et al 1992).  Thus, increased body temperature is another 

physiological component of the stress response that appears to be mediated by 

ionotropic glutamate receptors in the DMH.   
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To better define the specific subtype(s) of ionotropic glutamate receptors 

in the DMH that was (were) relevant to the effect of kynurenate, a nonspecific 

antagonist of ionotropic glutamate receptors, I employed more selective 

antagonists in the same paradigm.  In the experiments described below, I 

examined the effect of microinjection of a combination of NBQX (an 

AMPA/kainate receptor antagonist) and APV (an NMDA receptor antagonist) into 

the DMH on the increases in body temperature seen in cage-switch stress.   

B. Microinjection of a combination of NBQX and APV into DMH attenuates 
increases in temperature induced by cage-switch stress 

As shown in Figure 4, cage-switch stress produced a significant increase 

in core body temperature, and this increase in temperature was completely 

prevented by prior microinjection of a combination of NBQX and APV into the 

DMH.  It is important to acknowledge various components together may account 

for the increase in temperature response observed in animals exposed to cage-

switch stress.  As discussed earlier, the microinjection alone could be 

responsible for an increase in temperature that may be a caused by tissue 

damage resulting from the insertion of the microinjectors.  During the cage-switch 

stress procedure, rats are picked up by the base of their tails.  It is possible that 

this type of handling alone could be responsible for the increase in temperature.  

More likely, grabbing the rat by the tail and then placing the animal in a new 

clean cage both contribute to the increase in body temperature observed.  One 

way to differentiate between the different components of the cage-switch stress 

paradigm would be to add another treatment in which rats are picked up by their 

tails and placed back in their home cage.  Likewise, it might be possible to test 
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for the effect of the novel environment alone by placing the rat in a cage with a 

divider that could be lifted to allow the rat to explore the “new” side of its cage.  

Nonetheless, microinjection of either a combination of NBQX and APV or 

kynurenate abolished the increase in temperature induced by cage-switch stress.  

However, the high concentrations of kynurenate in the injectate necessary to 

achieve blockade of glutamate receptors allows the possibility of non-specific 

receptor activity and possibly neurotoxicity (Koh et al., 1990).  Because of their 

relative potency as antagonists of either non-NMDA or NMDA receptors, effective 

blockade could be achieved at concentrations of NBQX and APV that were 100 

times smaller than that of kynurenate.  The increased potency and lower 

concentration of NBQX and APV required to achieve may produce a more 

selective effect.  I suggest that the decrease in temperature from baseline seen 

in the control animals following pretreatment with kynurenate was a consequence 

of a non-selective effect of the high concentration of this agent, and that greater 

selectivity of NBQX and APV may account for the lack of this effect in the control 

animals pretreated with the combination of these drugs.   

Interestingly, microinjections of NBQX and APV in unstressed animals 

prevented the increase in temperature observed in the control (vehicle treated 

and unstressed) animals.  These results are similar to those reported for the 

effect of pretreatment with kynurenate (see Figure 3).   

Overall, the findings suggest that blockade of ionotropic glutamate 

receptors in the DMH abolishes the increase in temperature produced by cage-

switch stress.  One of the advantages of using NBQX and APV in combination is 
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that these antagonists can also be administered singly to help distinguish the 

roles of NMDA versus non-NMDA subclasses of glutamate receptors. 

C. The effect of microinjection of APV in the DMH on increases in body 
temperature induced by cage-switch differs from that of NBQX 

The role of NMDA versus non-NMDA subtypes of ionotropic glutamate 

receptors was examined by assessing the effects of microinjection of either 

NBQX or APV alone into the DMH.  Bilateral microinjection of APV into the DMH 

did not significantly attenuate the increase in temperature produced by cage-

switch stress as was seen when NBQX and APV were administered together 

(Figure 5).  Pretreatment with APV also did not significantly attenuate the 

increase in temperature produced by the experimental procedure under control 

(unstressed) conditions as discussed above (Figure 5).  However, a definite trend 

in the data suggested that such an effect might have been demonstrated with a 

larger sample size.  One possible interpretation of these results is that activity at 

NMDA receptors in the DMH is not solely responsible for the increase in 

temperature produced by cage-switch stress.  Interestingly, microinjection of a 

similar dose of APV (100pmol/100nL) into the DMH attenuated the increase in 

heart rate induced by air-jet stress (Soltis and DiMicco, 1992b).  Microinjection of 

this same dose of APV also attenuated the increase in heart rate induced by 

microinjections of NMDA in the DMH and was shown to act selectively at NMDA 

receptors versus non-NMDA receptors (Soltis and DiMicco, 1992b).  The 

increase in heart rate and the increase in body temperature are well-documented 

responses to stress that are thought to be mediated through activation of 

neurons in the DMH.  However, the failure of the APV pretreatment to attenuate 
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the increase in temperature induced by cage-switch stress suggests that the 

increase in body temperature and the increase in heart rate are not mediated 

through the same populations of glutamate receptors in the DMH.  Therefore, 

blockade of both NMDA and non-NMDA receptors appears to be required to 

attenuate the increase in temperature produced by cage-switch stress.  Blockade 

of NMDA receptors tended to attenuate the increase in temperature observed in 

control animals although the difference was not statistically significant.  The fact 

that NBQX alone only attenuates the increase in temperature induced by cage-

switch but the addition of APV abolishes this response strongly suggests that 

NMDA receptors play a role in mediating some of the components of the cage-

switch stress, specifically the increase in temperature induced by manipulation 

stress.   

Unlike pretreatment with APV, microinjections of NBQX significantly 

attenuated the increase in temperature produced by cage-switch stress, but did 

not significantly attenuate the increase in temperature produce by manipulation.  

Careful examination of the increase in temperature of animals exposed to cage-

switch (see Figure 6) suggests that the difference between the temperature 

response of vehicle treated animals and the response of the NBQX treated 

animals is about the same as the increase seen in the vehicle-treated control 

(unstressed) group.  The results suggest the possibility that non-NMDA receptors 

do not mediate the response to manipulation stress but do mediate the effects 

evoked by cage-switch stress.  Therefore, microinjection of a combination of 
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NBQX and APV was the only treatment that abolished the increase in 

temperature induced by cage-switch stress.   

The data from the cage-switch studies demonstrates that activation of 

ionotropic glutamate receptors in the DMH is responsible for the increase in 

temperature produced by cage-switch stress.  A similar observation was made 

with respect to the increases in heart rate seen in air-jet stress when APV and 6-

cyano-7-nitroquino-xaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, 

were administered as pretreatments alone or in combination (Soltis and DiMicco, 

1991).  When either agent was microinjected into the DMH alone the increase in 

heart rate induced by stress was reduced by 30%, but when the antagonists 

were administered in combination, the tachycardia was reduced by 60%.  Thus, 

as with the increases in heart rate evoked by air-jet stress, the increases in body 

temperature induced by cage-switch stress are mediated through neuronal 

activity at NMDA and non-NMDA subtypes of glutamate receptors.   

One possibility that accounts for why inhibition of both NMDA and non-

NMDA receptors is required for the increase in temperature evoked by cage-

switch stress is that both glutamate receptor subtypes participate in synaptic 

transmission at the same critical synapses in the DMH that are involved in the 

response.  Early studies pointed to synaptic excitation mediated by both NMDA 

and non-NMDA receptors at other brain sites.  In 1985, Dale and Roberts using 

Xenopus embryos demonstrated that the excitatory post-synaptic potentials 

(EPSP) induced in motoneurons by focal stimulation of longitudinal axons could 

be classified as a fast EPSP, slow EPSP or a mixed EPSP (Dale and Roberts, 
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1985).  Blockade of either receptor subtype on a neuron exhibiting a mixed EPSP 

left either a pure fast EPSP or a pure slow EPSP.  Dale and Roberts 

demonstrated that one neuron could release a transmitter that activated at both 

NMDA and non-NMDA receptors on the same post-synaptic neuron generating 

fast and slow post-synaptic potentials (Dale and Roberts, 1985).  

Pharmacological experiments proved that the fast EPSPs were mediated by the 

non-NMDA ionotropic glutamate receptors and that the slow EPSPs were 

mediated by NMDA ionotropic glutamate receptors (Dale and Roberts, 1985).  

Similar findings were reported in various hippocampal preparations (Blake et al., 

1988; Collingridge and Lester, 1989; Dale and Grillner, 1986).  Therefore, 

inhibition of just one receptor subtype, either NMDA or non-NMDA, is not 

sufficient to prevent the increase in temperature induced by cage-switch.  After 

blockade of one receptor subtype, activation of the other is still capable of 

exciting the post-synaptic neuron, thus activating effectors to elicit an increase in 

body temperature.   

Although it is not possible to discriminate how neurons in the DMH are 

activated by stress I suggest there are several possibilities.  Neurons in the DMH 

could either be activated by glutamatergic afferent projections or by the 

withdrawal of tonic inhibition by GABAergic afferent projections.  Neuronal 

excitability in the region of the DMH may be modulated by a balance between 

synaptic inhibition (mediated by GABA receptors) and synaptic excitation 

(mediated by ionotropic glutamate receptors) (Bailey et al., 2003; de Menezes et 

al., 2008; DiMicco et al., 2006b; Jardim and Guimaraes, 2004).  This interaction 
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between GABAergic and glutamate receptors has been studied in the DMH and 

in other regions of the brain such as the hippocampus (Davies et al., 1990; Soltis 

and DiMicco, 1991a; Soltis and DiMicco, 1991b; Thompson and Gahwiler, 

1989a).  This model of synaptic circuitry suggests that both glutamatergic and 

GABAergic projections synapse on the same post-synaptic neuron to modulate 

that cell’s activity.  For example, under control conditions GABAergic synaptic 

inhibition may be sufficient to suppress activity caused by tonic stimulation of 

post-synaptic glutamate receptors.  However, in stress, disinhibition of neurons in 

the DMH occurs and this allows the ionotropic glutamate receptor-mediated 

depolarization and subsequent activation of the post-synaptic neuron (Davies et 

al., 1990; Davies et al., 1982; Thompson and Gahwiler, 1989a; Thompson and 

Gahwiler, 1989b).  GABAergic and glutamatergic neurons account for the 

majority of all afferents to the hypothalamus and may play a primary role in 

regulating output from this area (Headley and Grillner, 1990; van den Pol et al., 

1990; van den Pol et al., 1994).  The data presented does not allow 

discrimination between direct activation of relevant neurons in the DMH by 

glutamatergic neurons and indirect activation that may occur through disinhibition 

of the DMH neurons that would unmask the excitatory effect of tonic 

glutamatergic input.  However, microinjection of either kynurenate or a 

combination of NBQX and APV in the region of the DMH did not induce 

significant changes in baseline body temperature.  Although the present studies 

suggest a glutamatergic input to neurons in the DMH may exist, the source of 

this excitatory drive remains to be determined.  However compelling evidence 
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suggests that one such region may be the periaqueductal gray region of the brain 

which has been shown to play a role in the stress responses mediated by 

glutamate receptors (de Menezes et al., 2009).   

Other synaptic models may also be possible.  Ionotropic glutamate 

receptors may be involved in feedback inhibition in which a glutamatergic neuron 

may synapse with both a neighboring glutamatergic neuron and a GABAergic 

inhibitory interneuron.  Activation of the GABAergic interneuron by ionotropic 

glutamate agonists will induce release of GABA and in turn inhibit activity at 

glutamate receptors.  Results from my studies only show that NMDA and non-

NDMA receptors are involved in the increase in temperature induced by stress.  

The synaptic circuitry can’t be deduced from my results but future studies could 

address the neural circuitry involved in the thermogenic response to stress.   

In summary, the data presented suggest that the increase in temperature 

induced by exteroceptive stresses is dependent on the activation of both NMDA 

and non-NMDA ionotropic glutamate receptors in the DMH.  

II. Role of ionotropic glutamate receptors in the temperature response to several 
interoceptive stresses 

A. Disinhibition of neurons in the DMH induces increases in temperature that are 
mediated by NMDA and non-NMDA receptors in the DMH 

Previous evidence has suggested that disinhibition of neurons or 

activation of neurons in the region of the DMH may be required for the generation 

of the physiological responses seen in stress regardless of whether the stress is 

interoceptive or exteroceptive.  The similarity between the physiological 

responses to disinhibition of neurons in the DMH and the physiological 
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responses to emotional stress suggests that the same mechanism may be 

involved.  Therefore, disinhibition of DMH neurons with BMI activates a common 

signaling pathway that is crucial for all stresses investigated in the studies 

presented. 

Disinhibition of neurons in the DMH by microinjections of BMI induced 

marked increases in heart rate and modest pressor responses (DiMicco et al., 

1986; DiMicco et al., 1987; Wible et al., 1988; Wible et al., 1989).  Most pertinent 

to this thesis, disinhibition of neurons in the DMH by microinjections of BMI 

resulted in increases in core body temperature that were preceded by much 

more dramatic and rapid increases in local temperature in BAT of both 

anesthetized and conscious animals (Cao et al., 2004b; Zaretskaia et al., 2002).   

Inhibition of neurons in the DMH by microinjections of muscimol abolished 

the increase in heart rate seen in air-jet stress and also attenuated the 

accompanying increase in pACTH (Lisa et al., 1989a; Lisa et al., 1989c; Stotz-

Potter et al., 1996a; Stotz-Potter et al., 1996b).  Microinjection of PGE2 into the 

region of the POA, a model for fever, produced increase in heart rate and core 

temperature that were also attenuated by microinjections of muscimol in the 

DMH (Zaretskaia et al., 2003).  Likewise, Madden and Morrison found that 

inhibition of neurons in the DMH abolished the increases in heart rate, IBAT 

temperature and IBAT sympathetic nerve activity evoked by microinjection of 

PGE2 into the POA (Madden and Morrison, 2004; Morrison et al., 2008).  The 

evidence suggests that neurons in the region of the DMH responsible for the 

increase in heart rate, pACTH levels and temperature induced by stress are 
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tonically inhibited by GABA (DiMicco et al., 1996; Stotz-Potter et al., 1996a; 

Stotz-Potter et al., 1996b; Zaretskaia et al., 2002).  This GABAergic inhibitory 

input to the thermogenic neurons within the DMH may originate from the POA 

(Nakamura et al., 2005b; Zaretsky et al., 2003c).  Inhibition of neurons in the 

POA by muscimol evokes increases in body temperature, heart rate, blood 

pressure, and plasma levels of ACTH, similar to the physiological responses 

seen following disinhibition of neurons in the DMH (Zaretsky et al., 2006).   

In the current experiment, a single, unilateral microinjection of BMI into the 

DMH produced increases in body temperature of 0.88±0.09°C as previously 

reported (Zaretskaia et al., 2002; Zaretsky et al., 2003a).  To examine the role of 

NMDA and non-NMDA subtypes of ionotropic glutamate receptors in the 

increase in temperature induced by BMI in the DMH, animals were pretreated 

with unilateral microinjection of combination of NBQX and APV or single 

microinjection of NBQX or APV into the DMH prior to microinjection of BMI at the 

same site.  As described in the results, this increase in temperature was 

significantly attenuated but not abolished following unilateral pretreatment with a 

combination of NBQX and APV into the DMH.  In contrast, similar bilateral 

microinjections of NBQX and APV completely abolished the increase in 

temperature produced by cage-switch stress.  A possible reason for the 

difference in the degree of attenuation of the response seen with microinjection 

of NBQX and APV following microinjection of BMI in the DMH is that only one 

side of the DMH was inhibited by the antagonists in these experiments leaving 

the other side of the DMH intact.  Thus, the uninhibited side of the DMH could 



 

113 
 

still signal effectors to generate an increase in body temperature in response to 

the stress induced by manipulation and microinjection as was seen in Figure 2.  

Microinjections of BMI are used as a model for stress and have been shown to 

produce similar responses as those seen with stress, but microinjections of BMI 

act by disinhibiting GABAergic neurons only.  The responses to stress are due to 

activation of neurons and other receptors in the whole region of the DMH, which 

may also play a role in the responses to stress.  A possibility arises from the fact 

that ionotropic glutamate receptors are the only receptors being inhibited in any 

of the studies described which is most likely not the case during the response to 

stress.  However, it has been shown that metabotropic glutamate receptors in the 

DMH when activated also evoke increases in heart rate (Stotz-Potter et al., 

1996b).  Unlike with the responses to stress, microinjections of BMI into a single 

side of the DMH are only able to activate neurons on the site of injection.  

Therefore, it is possible that metabotropic glutamate receptors in the DMH could 

be the reason why combination of NBQX+APV was not able to abolish the 

increase in temperature evoked by BMI in the DMH or by the manipulation effect.     

In summary, this study provides evidence that the increase in temperature 

induced by removal of GABAergic inhibition in the DMH of the rat is dependent 

on activation of local NMDA and non-NMDA glutamate receptor subtypes.   

B. Combination of NBQX and APV attenuates the increase in temperature 
produced by microinjections of PGE2 in the POA 

Ionotropic glutamate receptor subtypes and their roles in the thermogenic 

response to stress were also studied in an interoceptive stress paradigm.  The 

interoceptive stress paradigm used was microinjection of PGE2 in the POA, an 
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established model for fever.  A previous study examined the role of ionotropic 

glutamate receptors in the DMH in the thermogenic response to microinjection of 

PGE2 in the POA in anesthetized animals.  Microinjection of PGE2 in the POA 

produced a significant increase in body temperature, IBAT temperature and IBAT 

SNA, all responses which were attenuated by the microinjection of kynurenate in 

the DMH (Madden and Morrison, 2004).  However, interpretation of the results of 

studies of body temperature in anesthetized animals is confounded by the fact 

that, because the animal cannot regulate its body temperature and becomes 

"poikilothermic-like” (Malkinson et al., 1988; Malkinson et al., 1993), body 

temperature is generally artificially supported by external means.  To study the 

effects on body temperature without this confound induced by anesthesia, 

animals used in the studies described were conscious and freely moving.   

In my study conscious rats were pretreated with bilateral microinjections of 

either aCSF or a combination of NBQX+APV into the DMH prior to microinjection 

of either vehicle or PGE2 in the POA.  After injection of vehicle into the DMH, 

microinjection of PGE2 in the POA elevated body temperature above baseline by 

a mean maximum of +1.81±0.36°C (Figure 12).  Injection of vehicle into the POA 

also evoked an increase in temperature that was significantly different from 

baseline (+0.44±0.08°C, Figure 12).  Again, microinjection of the combination of 

NBQX and APV bilaterally into the DMH abolished the increase in temperature 

induced by experimental manipulation and almost completely abolished the 

increase in temperature induced by microinjection of PGE2 into the POA. These 

results provide clear evidence that the increase in temperature produced by 
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microinjection of PGE2 in the POA is mediated by ionotropic glutamate receptors 

in the DMH of conscious animals.  Pretreatment with the combination of NBQX 

and APV showed responses similar to baseline values.  Therefore, these data 

suggest that neuronal activity dependent on tone at ionotropic glutamate 

receptors in the DMH did not contribute to baseline body temperature in our 

study.  As can be seen from Figure 11, microinjection of PGE2 into POA caused 

a maximal increases in body temperature at +40–50 min.  According to the 

results from a previous study, 30 minutes after the microinjection of PGE2 in POA, 

a microinjection of muscimol in the DMH attenuated the increase in body 

temperature suggesting that at 30min after microinjection of PGE2 in the POA, 

disinhibition of neurons in the DMH may still be occurring (Zaretskaia et al., 

2003).  Therefore, the apparent and prolonged increase in temperature observed 

following PGE2 in the POA may be simply due to a long duration of action and 

the animal begins to thermoregulate at a higher body temperature or “set-point”.  

Therefore, thermoeffectors would be working to maintain body temperature at the 

higher set point.  The effects of PGE2 in the POA appear to be long lasting as 

temperature remained elevated 95 minutes after microinjection of PGE2.  A 

possible explanation for the effect of PGE2 in the POA may also be related to the 

fact that tissue damage occur during the insertion of the microinjectors.  Unlike 

any of the other paradigms described, rats for these studies have three guide 

cannulas implanted in the brain.  The microinjectors targeting the POA may 

induce an inflammatory response that results in the further release of 

endogenous PGE2 into the POA.  This continuous release of PGE2 in the POA 
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could account for the long lasting increase in temperature observed in these 

studies following PGE2 in the POA.  Furthermore, in the animals treated with 

aCSF in the POA, an increase in body temperature significantly different from 

baseline is also observed.  Again, this increase in temperature may be evoked by 

the exacerbation of any tissue damage done by the implanted microinjectors.   

Thus, neurons in the region of the DMH, a hypothalamic area where 

chemical stimulation increases heart rate and core and BAT temperature 

(Zaretskaia et al., 2002), play a role in the thermogenic response to PGE2 acting 

in the POA.  Microinjection of PGE2 into POA elicits marked increases in body 

temperature in conscious and anesthetized animals, and has been employed as 

a model for the fever associated with bacterial infection (Aronoff and Neilson, 

2001; Madden and Morrison, 2004; Milton, 1998; Nakamura et al., 2002; 

Zaretskaia et al., 2003).  In fact, the POA is the greatest source of hypothalamic 

afferents to the DMH (Thompson and Swanson, 1998).  Furthermore, neurons in 

the region of the DMH are activated by systemic administration 

lipopolysaccharide and by exposure to cold, both of which trigger increases in 

temperature induced by the POA (Elmquist and Saper, 1996; Kiyohara et al., 

1995).  Neurons in the POA exert tonic inhibition on downstream mechanisms 

capable of increasing the sympathetic thermogenic activity (Chen et al., 1998; 

Morrison, 2004).  It is thought that microinjection of PGE2 in the POA evokes 

disinhibition of neurons in the DMH (DiMicco and Zaretsky, 2007; Morrison, 2004; 

Nakamura et al., 2005b; Zaretskaia et al., 2002; Zaretskaia et al., 2003).  As was 

observed in this study and others, disinhibition of neurons in the DMH by BMI 
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evokes an increase in temperature, heart rate, blood pressure, and pACTH levels, 

responses also seen with microinjection of PGE2 into the POA (Bailey and 

Dimicco, 2001; DiMicco et al., 1996; Samuels et al., 2004; Zaretskaia et al., 2002; 

Zaretskaia et al., 2003; Zaretsky et al., 2006).  Furthermore, the increase in 

temperature induced by PGE2 into the POA is a response attenuated by 

microinjection of muscimol, a GABA agonist and general neuronal inhibitor, into 

DMH (Zaretskaia et al., 2003).  The data from the present study suggests that 

the increase in temperature requires activation of local ionotropic glutamate 

receptors.    

In summary, the increase in temperature induced by PGE2 in the POA 

may involve a balance between the synaptic inhibition by GABA receptors and 

synaptic excitation by the ionotropic glutamate receptor subtypes in the DMH.   

C. Microinjection of APV and NBQX have differing effects on increases in 
temperature evoked by microinjections of PGE2 in POA 

In order to characterize the roles of specific subtypes of ionotropic 

glutamate receptors in the DMH in the response to microinjection of PGE2 into 

the POA, I studied the effect of microinjections of NBQX and APV individually 

into the DMH.  Unlike microinjection of the combination of NBQX and APV, 

microinjection of APV alone did not attenuate the increase in temperature evoked 

by PGE2 in the POA (Figure 12).  It did however abolish the increase in 

temperature evident in the vehicle-treated animals, an increase most likely due to 

manipulation stress as discussed above.  In the cage-switch studies (see Figure 

5), pretreatment with APV in the unstressed animals did not significantly 

attenuate the increase in temperature seen in the control group although a trend 
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for this effect was clearly evident.  The ability of APV to abolish the increase in 

temperature induced by the manipulation associated with the injection of vehicle 

suggests that activation of NMDA receptors may mediate this increase in 

temperature.  One component of the increase in temperature seen with 

manipulation stress is the effect from the acute tissue damage at the injection 

site.  It is possible that tissue damage by either the cannula or insertion of 

injectors results in an increase in temperature that is ultimately mediated through 

activation of NMDA receptors.  Therefore, blockade of NMDA receptors by APV 

abolishes the increase in temperature seen in the control and unstressed animals.  

On the other hand, microinjections of NBQX into DMH did not prevent the 

increase in temperature seen after injection of vehicle or the increase in 

temperature evoked by PGE2 into POA.  In fact, after pretreatment with NBQX 

responses evoked by microinjection of PGE2 were identical to those seen after 

pretreatment with vehicle.  Therefore, non-NMDA receptors may be responsible 

for the increase in temperature induced by microinjections of PGE2 in the POA.  

These data suggest that the thermogenic response to PGE2 in the POA 

may be composed of two components, one mediated by NMDA receptors and 

the other by the non-NMDA receptors.  The only unexpected result from this 

study is the complete abolishment by pretreatment with APV of the increase in 

temperature seen after microinjection of vehicle, an effect presumably resulting 

from both the stress of the experimental manipulation and the physical effect of 

placing the microinjection cannula in tissue and injecting vehicle.  In all the 

experiments described thus far, microinjections of APV failed to attenuate the 



 

119 
 

increase in temperature seen after injection of vehicle.  However, this stress 

paradigm differed from all other stress paradigms discussed thus far in that it 

involved placement of a cannula in the POA region.  It is possible that delivery of 

vehicle into the POA region may lead to excitation of a synaptic mechanism that 

is mediated solely by NMDA receptors in the DMH and does not require 

activation of the non-NMDA ionotropic glutamate receptors.  One possibility is 

that tissue damage from the cannulas may induce an inflammatory response 

within the region of the DMH inducing release of interlukin 1 beta which has been 

shown to not only cause activation of NMDA receptors but may lead to NMDA 

excitotoxicity (Hagan et al., 1996a; Hagan et al., 1996b).  From the data, it is not 

possible to determine what synaptic mechanism could be responsible for this 

increase in temperature evoked by the manipulations used in this experimental 

paradigm.   

III. Future Studies 

Air-jet stress, cage-switch stress, and manipulation-induced stress are 

considered exteroceptive stresses.  However, when analyzing the manipulation-

induced stress, there is a possibility that tissue damage caused by the guide 

cannula in the region of the DMH may also evoke an inflammatory response 

which may be considered a type of interoceptive stress.  The data presented so 

far suggests that ionotropic glutamate receptors in the DMH play a role in the 

increase in temperature produced by cage-switch stress.  Unexpectedly in the 

case of air-jet stress, data suggests that ionotropic glutamate receptors also play 

a role in thermoregulation, the ability to maintain a normal body temp in an 
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environment outside the TNZ (Carlson and Cottle, 1956; Foster and Frydman, 

1979; Fuller et al., 1975; Golozoubova et al., 2006; Hart and Jansky, 1963; 

Morrison, 2004; Morrison et al., 2008).  It is possible that ionotropic glutamate 

receptors may play a role in activating thermogenic effectors stimulated by 

factors other than stress such as exposure to cold ambient temperatures or 

behavioral changes such as those occurring during exercise.  Recently our 

laboratory proposed that the DMH may not only mediate stress/defense 

responses, but that DMH neurons may also integrate thermoregulatory 

responses to cold and fever (DiMicco and Zaretsky, 2007).  We know that 

disinhibition of neurons in the DMH by microinjections of BMI produces activation 

of sympathetic nerves to IBAT and also induce increases in IBAT temperature 

(Zaretskaia et al., 2002; Cao et al., 2004).  Key studies showed that inhibition of 

neurons by microinjections of muscimol in the DMH prevented shivering in 

animals exposed to cold (Tanaka et al., 2001) and also reversed the activation of 

sympathetic nerve activity to IBAT in response to cold exposure (Nakamura and 

Morrison, 2007).  IBAT is responsible for nonshivering thermogenesis, a major 

component of facultative thermogenesis in many mammals.  It would be 

interesting to see if inhibition of ionotropic glutamate receptors in the DMH 

prevents nonshivering thermogenesis in animals exposed to cold temperatures.  

Furthermore, with the possibility that these ionotropic glutamate receptors may 

play a role in mediating increases in body temperature cause by exposure to cold, 

it would also be of interest to determine which specific thermogenic effectors 
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might be stimulated by these receptors (such as cutaneous vasoconstriction, 

IBAT thermogenesis, or metabolic effectors). 

The more recent availability of selective agonists that can differentiate 

between the AMPA and KA receptor-mediated responses (Blair et al., 2004; 

Giardina and Beart, 2001; Matzen et al., 1997)  may provide further insight into 

the synaptic circuitry and pharmacology involved in the hypothalamic 

mechanisms and of other regions in the CNS in the physiological responses to 

stress.  In order to better understand the role of ionotropic glutamate receptors in 

the DMH, it would be useful to examine the origin of the glutamatergic projections 

to the DMH.  There is evidence the caudal PAG region may be involved in both 

cold and stress-induced increases in body temperature.  Recently, de Menezes 

and colleagues showed that microinjection of a combination of the glutamate 

receptor antagonists APV and NBQX at a concentration of 1mM into the caudal 

lateral/dorsal lateral PAG decreased stress-induced increases in heart rate (de 

Menezes et al., 2008).  In addition to the DMH as a site involved in mediating 

stress-induced responses, other areas, such as the paraventricular (PVH), 

ventromedial (VMH) nuclei, and the posterior (PH) and lateral (LH) hypothalamic 

areas and most recently the periaqueductal gray (PAG), are also thought to 

participate in thermoregulation (Cano et al., 2003; de Menezes et al., 2006; Pattij 

et al., 2001; Rathner and Morrison, 2006; Thornhill et al., 1994; Thornhill and 

Halvorson, 1994; Yoshida et al., 2005).  However, studies from our lab have 

called into question the anatomical specificity of the observations from studies 

involving the PVH, VMH and PH due to the large volumes of injectate used as 
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well as the lack of appropriate anatomical control injections (for review see 

DiMicco and Zaretsky, 2007).  In my studies, injection of any of the antagonists at 

sites 0.5-1.0mm lateral, posterior, or anterior to the region of the DMH did not 

attenuate the increase in temperature response induced by stress as shown in 

the Figures 14A and B.  Figures 14A and B show that microinjection of the 

combination of NBQX and APV at sites outside the region of the DMH did not 

have any effect on the increase in temperature induced by PGE2 in the POA.  

This suggests that the effects of the antagonists are localized to neurons in the 

region of the DMH.  Determining which areas might be involved in the responses 

to stress could further help us target these areas for pharmacological studies. 

IV. Summary 

The purpose of these experiments was to investigate the role of ionotropic 

glutamate receptors in the DMH in the increases in temperature induced by 

various stress paradigms, including both exteroceptive and interoceptive 

stressors.  The results demonstrate that inhibition of ionotropic glutamate 

receptors by either kynurenate or a combination of NBQX and APV into the DMH 

either attenuated or prevented the increase in temperature induced by the 

various stress paradigms employed.  The increases in temperature resulting from 

either exteroceptive or interoceptive stresses are mediated by activation of 

ionotropic glutamate receptors in the DMH, and both NMDA and non-NMDA 

subtypes of ionotropic glutamate receptors are involved.  This suggests the 

possibility that the same synaptic mechanism in the hypothalamus is responsible 

for the increase in temperature induced by stress, regardless of whether it is 
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interoceptive or exteroceptive.  This is important because it is thought that the 

increase in temperature induced by interoceptive stress, a stress usually 

exemplified by a bacterial infection, requires the “resetting” of the body’s 

temperature set-point to a higher temperature.  On the other hand, debate still 

exists regarding whether exteroceptive stress induces increases in body 

temperature by mechanisms that do not require resetting of the body’s set-point.  

From the present studies, it is clear that at least in the hypothalamus, these two 

classes of stresses evoke increases in body temperature through the similar 

mechanisms that involve activation of local ionotropic glutamate receptors.  Most 

recently in our lab, it was also shown that blockade of ionotropic glutamate 

receptors in the DMH attenuates the increase in pACTH, neuroendocrine marker 

for stress, induced by PGE2 into POA (unpublished data).  Overall, the evidence 

is clear that neurons in the region of the DMH play a key role in the physiological 

responses induced by stress and more specifically, we now know that ionotropic 

glutamate receptor subtypes are involved in this mechanism.  Therefore, the 

results from all the studies presented have improved our understanding of the 

hypothalamic mechanisms involved in the stress response by demonstrating that 
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FIGURE 14A.  Real time temperature response of rats pretreated with either vehicle or NBQX+APV
bilaterally in the DMH followed by a microinjection of PGE 2 in the  POA. Time zero indicates point of
microinjections into the  DMH. Solid line depicts microinjection of vehicle or PGE 2 in the  POA.   Light gray
box is the 30 minute time period that was analyzed statistically.
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FIGURE 14B.  Anatomical control group for the effects of NBQX(100pmol/side) and
APV(200pmol/side) in DMH on fever evoked by microinjection of PGE 2 (150pmol) in the POA. Results
are expressed as means ± S.E.M of the 30 minute period following treatment (gray box).  ( δ) Significant
difference between Vehicle (DMH)/ PGE 2 (POA) and NBQX+APV (DMH)/ PGE 2 (POA). For anatomical
control of the DMH target site, a set of animals were treated with NBQX+APV in areas near the region of the
DMH  (shaded bar).  Significant differences determined using One-Way ANOVA and Fisher's LSD post-hoc
test. Limits of probability considered significant were 5%.
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ionotropic glutamate receptors in the DMH are key players in the thermogenic 

response to stress.   

The DMH is likely to be one of the more important of the many CNS sites 

involved in the physiological response to stress.  The work presented here can 

lead to further examination of the hypothalamic signaling pathways involved in 

the central control of not just the increase in body temperature but of the other 

physiological responses to stress.  It is important to continue our quest to 

understand how the brain mediates stress and the stress response because 

stress and the repercussions of continuous exposure to stress can lead to many 

other negative conditions.  Unlike our ancestors, our stressors are not those of 

being hunted by a lion for example, but it seems that we have more things that 

stress us.  There are many techniques that allegedly can be helpful in dealing 

with stress including practicing yoga, meditation, acupuncture, and exercise.  

Drugs including benzodiazepines and barbiturates are used to treat stress and 

stress disorders.  However, these drugs carry the risk of overuse and 

dependency.  A better understanding of the central control of these responses 

can lead to new drug discovery and perhaps better treatments or prevention of 

stress-related illnesses.  The research presented here provides another piece of 

the puzzle that could prove useful in our discovery of new drug targets.   
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