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ABSTRACT 

Aditi Ajit Bapat 

INHIBITION OF APE1’S DNA REPAIR ACTIVITY AS A TARGET IN CANCER: 

IDENTIFICATION OF NOVEL SMALL MOLECULES THAT HAVE 

TRANSLATIONAL POTENTIAL FOR MOLECULARLY TARGETED CANCER 

THERAPY 

  

 The DNA Base Excision Repair (BER) pathway repairs DNA damaged by 

endogenous and exogenous agents including chemotherapeutic agents. Removal of the 

damaged base by a DNA glycosylase creates an apurinic / apyrimidinic (AP) site. AP 

endonuclease1 (Ape1), a critical component in this pathway, hydrolyzes the 

phosphodiester backbone 5’ to the AP site to facilitate repair. Additionally, Ape1 also 

functions as a redox factor, known as Ref-1, to reduce and activate key transcription 

factors such as AP-1 (Fos/Jun), p53, HIF-1α and others. Elevated Ape1 levels in cancers 

are indicators of poor prognosis and chemotherapeutic resistance, and removal of Ape1 

via methodology such as siRNA sensitizes cancer cell lines to chemotherapeutic agents. 

However, since Ape1 is a multifunctional protein, removing it from cells not only inhibits 

its DNA repair activity but also impairs its other functions. Our hypothesis is that a small 

molecule inhibitor of the DNA repair activity of Ape1 will help elucidate the importance 

(role) of its repair function in cancer progression as wells as tumor drug response and will 

also give us a pharmacological tool to enhance cancer cells’ sensitivity to chemotherapy. 

In order to discover an inhibitor of Ape1’s DNA repair function, a fluorescence-based 

high throughput screening (HTS) assay was used to screen a library of drug-like 
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compounds. Four distinct compounds (AR01, 02, 03 and 06) that inhibited Ape1’s DNA 

repair activity were identified. All four compounds inhibited the DNA repair activity of 

purified Ape1 protein and also inhibited Ape1’s activity in cellular extracts. Based on 

these and other in vitro studies, AR03 was utilized in cell culture-based assays to test our 

hypothesis that inhibition of the DNA repair activity of Ape1 would sensitize cancer cells 

to chemotherapeutic agents. The SF767 glioblastoma cell line was used in our assays as 

the chemotherapeutic agents used to treat gliobastomas induce lesions repaired by the 

BER pathway. AR03 is cytotoxic to SF767 glioblastoma cancer cells as a single agent 

and enhances the cytotoxicity of alkylating agents, which is consistent with Ape1’s 

inability to process the AP sites generated. I have identified a compound, which inhibits 

Ape1’s DNA repair activity and may have the potential in improving chemotherapeutic 

efficacy of selected chemotherapeutic agents as well as to help us understand better the 

role of Ape1’s repair function as opposed to its other functions in the cell. 
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CHAPTER I 

INTRODUCTION 

  

The ability of cancer cells to recognize and repair chemotherapy-induced damage 

is an important factor in resistance to chemotherapy (131). Therefore, inhibiting DNA 

damage repair pathways and using inhibitors against specific proteins of these pathways 

is an excellent strategy to develop targeted therapies for cancer treatment (14, 42, 83, 

131, 133). Apurinic / apyrimidinic endonuclease 1 (Ape1) is a an essential protein 

functioning in the Base Excision Repair (BER) pathway, which repairs damage caused by 

endogenous as well as exogenous agents including chemotherapeutic agents (32, 47, 56). 

Ape1 is unique such that it is the only cellular protein that can process the apurinic / 

apyrimidinic sites (AP sites) generated as a result of the action of the DNA glycosylases, 

which initiate BER and there is no backup for this critically important repair function of 

Ape1 in the cells. Given Ape1’s importance in normal cellular functioning, altered or 

elevated levels of Ape1 have been observed in a variety of cancers including breast 

cancer, gliomas, sarcomas (osteosarcomas, rhabdomyosarcomas), ovarian and multiple 

myeloma among others (47, 103, 108, 155, 162, 173, 195). These high levels of Ape1 

have not only been speculated to be a cause of resistance to chemotherapy but have also 

been linked to tumor promotion, progression and poor prognosis associated with shorter 

relapse-free survival and poor outcome from chemotherapy (108). Furthermore, Ape1 

also functions as redox regulatory protein (also known as Ref-1 (1, 205-207)) where it 

activates transcription factors by reducing cysteine residues on their DNA binding 

subunits to alter gene transcription, in addition to which it interacts with several proteins 
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from different signaling pathways (206). There is a vast amount of data showing that 

down-regulating or inhibiting Ape1 in cancer cells using RNA interference and DNA 

antisense oligonucleotide techniques can sensitize them to laboratory and clinical 

chemotherapeutic agents (17, 18, 103, 115, 162, 173, 194, 197). However, reduction of 

Ape1 protein levels using RNA interference or antisense DNA technology not only 

prevents its ability to repair DNA but also disrupts key protein – protein interactions 

within the BER pathway as well as its redox signaling. Therefore, development of good 

and selective inhibitors of the repair function of Ape1 would provide us with useful tools 

in order to improve the efficiency of chemotherapeutic regimens. 

 

Hypothesis 

 The hypothesis was that since Ape1 is involved in the repair of DNA damaged by 

chemotherapeutic agents, identification of a small molecule inhibitor of the DNA repair 

activity of Ape1 protein using a high-throughput screening assay will help us elucidate 

the importance (role) of its repair function in cancer progression as well as tumor drug 

response while maintaining its other functions and interactions intact. Such an inhibitor 

of Ape1’s DNA repair activity will also give us a pharmacological tool to enhance cancer 

cells’ sensitivity to chemotherapy. 

 

Specific Aims of the Project 

Specific Aim 1:  

 To identify and characterize novel inhibitors of Ape1’s DNA repair activity using 

a High-Throughput Screening (HTS) assay. A library of 60,000 compounds will be 
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screened to identify small molecule inhibitors of the DNA repair function of Ape1 using 

a modified fluorescence based assay as described by Madhusudan et al (132). The 

compounds shortlisted after two rounds of screening will be validated using another gel – 

based AP endonuclease assay to determine inhibition of Ape1’s DNA repair activity and 

IC50 values will be calculated using the aforementioned HTS assay.  

 

Specific Aim 2:  

 To determine the selectivity of the potential repair inhibitors to inhibit Ape1’s 

DNA repair activity. For the compounds identified to be selective for Ape1, their ability 

to inhibit a structurally different but related Escherichia coli endonuclease IV (63, 141, 

199) will be assayed as well as their ability to inhibit Ape1 in a cellular environment. 

 

Specific Aim 3:  

 To determine the efficacy of these inhibitors in the SF767 glioblastoma human 

cancer cell line and to test their ability to enhance cytotoxicity of laboratory and clinical 

chemotherapeutic agents. The survival of SF767 human glioblastoma cells will be 

monitored after treatment with the compounds singly as will the ability of these 

compounds to enhance the cytotoxicity of laboratory and clinical chemotherapeutic 

agents (Methyl methane sulfonate (MMS) and Temozolomide (TMZ)) known to induce 

DNA damage repaired by the BER pathway (32, 56). The Aldehyde Reactive Probe 

(ARP) assay will be used to assay for the persistence AP sites as a result of inhibition of 

Ape1 by these compounds (109, 143). 
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 Thus, dissecting out the two functions of Ape1 and exploring them individually 

will allow us to delve further into delineating the importance of these functions. Since 

Ape1 has been known to be involved in resistance to chemotherapy, developing unique 

inhibitors of Ape1’s repair function will help us increase the efficiency of the current 

chemotherapy and radiation regimens. 
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

 

Importance of DNA Repair Pathways and Cancer 

 DNA repair pathways protect the genome from damage caused by endogenous 

and exogenous DNA damaging agents including chemotherapeutic agents and radiation 

damage (32, 56, 57, 117, 118), and the persistence of unrepaired DNA damage results in 

cell cycle arrest, apoptosis and accumulation of mutations (61, 127). To protect cellular 

DNA, several DNA repair pathways such as the Base Excision Repair (BER), Nucleotide 

Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR) 

and Non-homologous End Joining (NHEJ) exist in the cell to ensure efficient repair of a 

variety of damage (32, 56). The importance of multiple DNA repair pathways is 

highlighted by several cancer predisposing syndromes, which harbor germline mutations 

in DNA repair genes. Currently, surgeries to resect the tumor and chemotherapy and 

radiation therapy are the mainstream treatment options available to treat cancers. Many 

chemotherapeutic drugs act by damaging DNA, which leads to an accumulation of 

damage resulting in impaired cell signaling and ultimately causing cell death (79). 

Normal cells are proficient in all forms of DNA repair; however, deficiency of a 

particular DNA repair pathway in cancer cells can lead to elevated levels of other DNA 

repair pathway proteins leading to efficient repair of DNA damage and reducing the 

efficacy of cancer therapy. Cancer cells deficient in the proteins of the HR pathway for 

instance may be unable to efficiently repair damage through this pathway and may look 

to compensate for this deficiency by completing repair through alternative pathways such 
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as the NHEJ or BER pathway (21, 51, 104, 116). The ability of cancer cells to identify 

and repair such DNA damage undermines the efficacy of these agents, and acquired or 

intrinsic cellular resistance to these clinical DNA-damaging agents is governed by the 

enhanced or elevated levels of DNA repair proteins (14, 42, 83, 131). Although it may 

sound paradoxical to inhibit DNA repair pathway proteins since cancer promotion and 

deregulated cellular growth is aided by deficient DNA repair pathways, a fine balance 

exists between induction of DNA damage and its efficient repair, which is often 

responsible for resistance to chemotherapy (14, 133). Thus, inhibiting specific proteins 

from DNA repair pathways in cancer cells would provide us with a selective way to 

sensitize cancer cells to chemotherapeutic agents (131, 133). Additionally, combining 

DNA repair inhibition with other current chemotherapy regimens (21) and thus 

developing targeted therapies are generating robust interest.  

 

The DNA Base Excision Repair (BER) Pathway 

 The BER pathway recognizes and repairs single base lesions caused by 

endogenous and exogenous agents including radiation and chemotherapy-induced 

damage (56, 57, 117, 118). Such lesions include N-alkylated purines (N
3
-methyladenine, 

N
7
-methylguanine and N

3
-methylguanine), 8-oxo-7,8-dihydroguanine (8-OxoG), thymine 

glycols, 5-OH and 6-OH dihydrothymine, uracil glycol, 5-hydroxycytosine and urea 

residues in addition to a number of additional adducts (4, 32, 47). Repair of the damaged 

base is initiated by a DNA glycosylase (Figure 1), which specifically recognizes and 

excises the damaged base. Different DNA glycosylases recognize specific and different 

types of base damage (38, 168). Glycosylases are of two types: monofunctional and 
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bifunctional glycosylases. Monofunctional glycosylases (eg: N-methyl purine DNA 

glycosylase, MPG) excise the damaged base to generate an apurinic / apyrimidinic (AP) 

site. In contrast, bifunctional glycosylases in addition to exhibiting glycosylase activity 

also have an AP lyase function (26, 36). Bifunctional glycosylases such as 8-oxoguanine 

DNA glycosylase (OGG1), Nei endonuclease VII like, NEIL1, NEIL2 and NTH not only 

excise the damaged base but also nick the phosphodiester backbone 3’ to the AP site (32, 

47). Removal of the damaged base by a DNA glycosylase creates an AP site, and AP 

sites are also generated by spontaneous base loss in the genome (38, 47, 127, 161, 199). 

 The second critical component of the pathway is the multifunctional protein 

apurinic / apyrimidinic endonuclease (Ape1). Following hydrolysis by a DNA 

glycosylase, Ape1 processes the AP site by making an incision in the phosphodiester 

backbone immediately 5’ to the AP site. This incision creates 3’OH and 5’deoxy Ribose 

Phosphate (5’dRP) termini (201). At this stage, repair can proceed via one of two 

pathways. The short-patch BER (SP-BER) pathway repairs regular AP sites. In the short-

patch pathway, DNA polymerase β (Pol β) removes the 5’dRP moiety via its deoxy 

Ribose Phosphatase (5’dRPase) activity and uses the 3’OH terminus to insert the correct 

base. Subsequently, DNA ligase III / XRCC1 (X-ray cross-species complimenting 1) 

seals the nick and repair is completed (40, 57, 161, 175) (Figure 1). The long-patch BER 

(LP-BER) pathway preferentially repairs modified (oxidized, reduced) AP sites (60, 106, 

161). In this minor BER pathway, a flap of 3-8 nucleotides surrounding the AP site is 

displaced. The correct nucleotides are inserted by DNA polymerase β, δ or ε along with 

proliferating cell nuclear antigen (PCNA) and replication factor - C (RF-C). Following 

resynthesis, flap endonuclease 1 (FEN1) removes the displaced strand and then the nick 
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Figure 1: The Short-Patch DNA Base Excision Repair (BER) Pathway 

A schematic representation of the BER pathway, AP sites genereated by the action of 

DNA glycosylases or by spontaneous hydrolysis are processed by the Short-Patch BER 

pathway. 
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is sealed by DNA Ligase I or DNA Ligase III / XRCC1 (47, 106) (Figure 2). Oxidative 

DNA lesions can also be excised by the recently identified Neil glycosylases NEIL1 and 

NEIL2, which show homology to the E. coli endonuclease VIII (8, 74-76, 96, 183) and 

the subsequent AP sites generated are processed by Ape1 to complete repair. 

 

AP Endonucleases and the Ape1 Protein 

 Based on the method of incision, AP Endonucleases can be classified into two 

classes:  

Class I AP Endonucleases 

 Class I AP endonucleases are also known as AP Lyases (or β-lyases) as they 

process the AP sites by the β-elimination reaction, which involves the removal of a 

hydrogen atom from the 2’ position and cleave the phosphodiester backbone 3’ to the AP 

site generating a 5’ phosphate and a 3’ α,β-unsaturated aldehyde end (7). This AP lyase 

activity is usually associated with complex DNA glycosylases, which are responsible for 

repairing oxidatively damaged DNA (36). The E. coli endonuclease III and endonuclease 

VIII (73) and the human homologue NTH1 (80, 81, 90) belong to this class of 

endonucleases.  

 

Class II AP Endonucleases  

 Class II AP endonucleases are the major class of endonucleases and are also 

known as hydrolytic endonucleases as they hydrolyze the phosphodiester backbone 5’ to 

the AP site. Based on homology, Class II AP Endonucleases can be further classified into 

two families, the exonuclease III (xth) and the endonuclease IV (nfo) family. The 
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Figure 2: The Long-Patch BER Pathway 

In this minor BER pathway, modified or oxidized AP sites are repaired by the insertion of 

a patch of 3-8 nucleotides to complete the repair of the damaged base. 
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Exonuclease III family consists of human Ape1 in addition to enzymes from various 

phyla, and these enzymes possess a strong AP endonuclease activity (38, 47, 156, 168, 

170, 203). Although, Ape1 also possesses a much weaker (almost 200-fold weaker) 3’-

repair diesterase activity (26) than the AP endonuclease activity, it is important in the 

removal of 3’ blocking lesions such as phosphoglycolate moieties in order to complete 

repair (25, 26, 47, 54, 150).  

 The endonuclease IV family of enzymes is the second major family of Class II AP 

endonucleases which include the E. coli endonuclease IV (Figure 3) and Apn1 from 

Saccharomyces cerevisiae (yeast), which is responsible for 90% of AP endonuclease 

activity in S. cerevisiae (yeast) (47, 100, 154, 193). Apn1 can repair both alkylation and 

oxidative damage including oxidized AP sites and unlike Ape1, Apn1 has a higher 3’-

repair diesterase activity (55). Although the enzymes from both families share the AP 

endonuclease function, they do not share sequence or structural similarity (38, 141).  

 

The Structure of the Ape1 protein 

 The Ape1 protein is a ~37kDa, 318 amino acid protein, which is encoded by a 

2.6kb gene on chromosome 14, q11.2-12 (47, 72, 163). The Ape1 protein is a 

multifunctional protein and with two main activities: the redox activity and the AP 

endonuclease or DNA repair activity (207). The first 36 amino acids at the N-terminal 

part of the protein comprise the nuclear localization sequence (NLS) (47). The redox 

activity resides in the N-terminal part of the protein and C65 has been shown to be the 

critical residue required for redox activity (47).  
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The AP endonuclease activity or the DNA repair function resides in the C-

terminal portion of the protein. Similar to exonuclease III and DNase I, Ape1 is a 

globular protein and forms a four-layered α / β sandwich. This α/β sandwich is made up 

of two β-sheets, each of which is comprised of six strands and each β-sheet is surrounded 

by α helices (67, 207) (Figure 3). There is a single active site for the repair function and 

the H309 residue has been shown to be critical for catalysis as site-directed mutagenesis 

studies have shown that an H309N mutant protein has a 2000-fold decrease in activity. 

Additionally, H309 interacts with D283 to form the active–site nucleophile, which is 

responsible for bond cleavage. D283 in turn interacts with D308 to maintain the 

conformation of the active site and to align H309 accurately in the active site (10, 47, 

128).  Mg
2+

 is a critical requirement for the activity of Ape1, and E96 and K98 play an 

important role in positioning Mg
2+

 in the active site (10, 95). Y171 is another residue 

critical for catalysis, and mutating Y171 drastically reduced activity of Ape1 as did 

mutating the D210 residue. D210 has been speculated to play a role as a proton donor 

(46, 140), and N212 has been shown to be responsible for substrate recognition (47, 167). 

 

Functions of Ape1 

The AP Endonuclease Activity of Ape1 

 Ape1 is responsible for 95% of the endonuclease activity in the cell and is a 

critical part of both the SP and LP-BER pathways (38, 168). Ape1 processes AP sites by 

hydrolyzing the phosphodiester backbone 5’ to the AP site to generate a 3’OH and a 

5’dRP terminus. Subsequently, the 5’dRP moiety is removed by the dRPase function of 

Ape1 or DNA Pol β and repair is completed via the SP-BER or LP-BER pathways
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Figure 3: Structures of the human Ape1 and the Escherichia coli endonuclease IV 

proteins 

The human Ape1 (140) (A) and the E. coli endonuclease IV proteins (89) (B) function 

similar to each other, but their structures are distinct from each other. 
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(47, 161). Ape1 is essential to complete the repair of AP sites, which are generated by 

spontaneous base hydrolysis in the cell (142) and by the action of different DNA 

glycosylases on a variety of DNA lesions, including oxidative DNA lesions, which can 

also be excised by the recently identified NEIL glycosylases (8, 74-76, 183). These AP 

sites if they are left unrepaired can be cytotoxic and mutagenic as they can block the 

replicating polymerase (107, 126, 127, 199, 214). While there are several different DNA 

glycosylases to excise the damaged base and generate AP sites, there is only one Ape1 

protein, which is functionally involved in the SP-BER, LP-BER and the Neil-dependent 

BER pathways, thus emphasizing its significance in the BER pathway. Furthermore, 

importance of Ape1 to normal cellular functioning and development is highlighted by the 

embryonic lethality of Ape1 knockout mice at E3.5 to E9.5 (114, 208). 

 

Other Repair Functions of Ape1 

 As discussed above, in addition to Ape1’s strong 5’ AP endonuclease activity, it 

also has a 3’-repair diesterase activity, which is important for the removal of lesions 

generated as a result of the β-lyase function of DNA glycosylases (Ogg1, Neil) (43, 47, 

75) which are involved in the repair of oxidative or radiation-induced DNA damage (25, 

26, 47, 54, 150). Lesions such as 3’ phosphate and 3’ phosphoglycolate moieties are 

generated by the action of oxidative agents such a bleomycin, radiation (IR) and are also 

formed at single-strand breaks. These 3’ blocking lesions are removed by Ape1’s 

phosdiesterase function so that the subsequent steps of BER can take place and repair can 

be completed (25, 26, 141, 150, 185). In addition to its hydrolytic and 3’-diesterase 

functions, Ape1 also possesses a 3’-5’ exonuclease activity, which is important to process 
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3’-mispaired termini (28) and for the removal of unnatural deoxyribonucleoside analogs 

(27, 29), which can impede repair (25, 28, 29, 44). Additionally, Ape1 also possesses a 

weak RNase H function, which allows it to act on the RNA strand in a DNA-RNA hybrid 

(11).  

 

The Redox Function of Ape1 

 In addition to its catalytic functions, Ape1 also functions as a reduction/oxidation 

(redox) signaling factor (Figure 4) and is therefore also referred to as Redox effector 

factor-1 (Ref-1) in the literature (1, 205-207). Ref-1 reduces key cysteine residues located 

in the DNA-binding domains of transcription factors such as AP-1 (Fos/Jun), p53, HIF-

1α, NfκB and others (2, 62, 82, 113, 186, 188, 206, 213). This reduction of the critical 

cysteines in the DNA binding domains of the transcription factors increases their DNA 

binding ability thereby activating them and resulting in the transcription of several key 

genes important for cell survival and in cancer promotion and progression (47, 185) 

(Figure 4). Thus, the multifunctional Ape1 protein not only functions in and interacts 

with the proteins involved in the repair of damaged DNA, it also interacts with proteins 

involved in growth signaling pathways and pathways known to be involved in tumor 

promotion and progression. The redox function of Ape1 as a target in cancer has not been 

as extensively investigated as the DNA repair function of Ape1. However, given its role 

in activating transcription factors such as NFκB, AP-1 HIF-1α etc, inhibiting the redox 

ability of Ape1 should lead to decreased signaling via these transcription factors of the 

signaling pathways involved in cancer promotion and progression. 
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Other Functions of Ape1 

 In addition to Ape1’s repair endonuclease and diesterase functions, Ape1 has also 

been shown to inhibit the activation of PARP1 (poly(ADP-ribose)polymerase 1) during 

oxidative damage repair thus preventing the cells from undergoing apoptosis (151). A 

relationship between Bcl2 and Ape1 resulting in decreased repair has been reported (99) 

in addition to negatively regulating the parathyroid hormone gene (PTH) (15, 33, 112, 

144), being involved in granzyme A (GzmA) aided NK cell mediated killing (49, 135) 

and it has been implicated in nucleotide incision repair (NIR) (91, 92). Ape1 has also 

been suggested to play a role in negatively regulating the Rac1 / GTPase to prevent 

oxidative stress (147) and to regulate vascular tone and endothelial NO production (98) 

(Figure 5).  

 

The Repair and Rexdox functions are disctinct from each other 

 Ape1 is a multifunctional protein with roles in DNA repair as well as in redox 

signaling in the cell besides making protein-protein interactions with a number of 

proteins. These two important functions of Ape1 are functionally distinct from each other 

and are encoded by distinct regions of the protein (207). The AP endonuclease or DNA 

repair activity, which is a critical component of the BER pathway, resides in the C-

terminal portion of the protein (Figure 4). The AP endonuclease activity is mediated by 

the active site residues His 309, Glu 96, Asp 238 and Asp 308 where H309 is the 

catalytic residue. Asp 238 acts as a proton donor to donate a proton to a water molecule, 

which then functions as a nucleophile to cleave the phosphodiester bond (11, 13, 47, 58, 

67, 128, 140). The redox regulatory activity of Ape1, which is important for the control 
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of transcription factors, resides in the N-terminal sequences of the protein. A conserved 

Cys 65 residue is crucial for this function of Ape1 (45, 47, 58) (Figure 4). These two 

activities of Ape1 can be functionally separated from each other, and disruption of either 

one of its activities does not affect the other. Several reports have shown that disruption 

of Cys 65 by site-directed mutagenesis (45) or by using a redox specific inhibitor, impairs 

the redox function of Ape1 but does not affect its DNA repair ability (158, 219). 

 

Sub-cellular localization of Ape1 and its consequences in caner 

 Ape1 is ubiquitously expressed and though there are several reports showing that 

Ape1 is localized to the nucleus, cytoplasmic localization of Ape1 has also been reported 

(44, 102, 139, 160, 204). In addition to exhibiting a heterogeneous and complex pattern 

of staining, localization of Ape1 is tissue specific and even differs between neighboring 

cells (102, 160, 185, 204). Localization of Ape1 in the cytoplasm may be associated with 

its role as a mitochondrial DNA repair protein (47, 139, 185). Noting Ape1’s role in 

redox control of transcription factors, the presence of Ape1 in the cytoplasm may be 

important to maintain these transcription factors in a reduced state prior to their transport 

to the nucleus (44). Ape1 has also been shown to accumulate in the nucleus and 

mitochondria in response to DNA damage (139). Thus, is appears that the intracellular 

localization of Ape1 is regulated; however, the significance of its sub-cellular localization 

is still not well understood. 
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Inhibition of DNA Repair as a Target in Cancer 

 DNA repair pathways are important to maintain the genomic integrity as 

highlighted by several cancer predisposing syndromes, which harbor germline mutations 

in DNA repair genes (32, 56, 83). Currently, surgery, hormone, chemo and radiation 

therapy are the mainstream treatment options available to treat cancers. The cytotoxic 

effects of many chemotherapeutic agents and radiation are related to their ability to 

induce DNA damage, and the ability of cancer cells to identify and efficiently repair such 

DNA damage undermines the efficacy of these agents (157). Therefore, inhibiting DNA 

repair proteins leading to reduced repair of damaged DNA in cancer cells is an attractive 

approach to combat chemotherapeutic resistance and to increase efficacy of therapy. 

Although it may sound contradictory to inhibit DNA repair pathway proteins since cancer 

promotion and deregulated cellular growth is aided by deficient DNA repair pathways, it 

actually makes sense to block DNA repair given the predominance of DNA damage 

during cancer treatments with chemotherapy and IR, which would allow for increased 

efficacy of the DNA damaging agent (14, 133). Thus, inhibiting specific proteins from 

selected DNA repair pathways in cancer cells could provide us with a selective way to 

sensitize cancer cells to chemotherapeutic agents and also combat their resistance to 

chemotherapeutic agents (131, 133).  

 

Consequences of Inhibiting the BER Pathway Proteins in Cancer 

 In cancer cells, the upregulation of certain BER proteins results in imbalanced 

repair causing resistance to chemotherapeutic agents (65). Modulating or inhibiting the 

activities of these BER proteins can lead to deregulated repair resulting in sensitivity to 
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chemotherapy agents (52-54, 103, 115). The BER pathway proteins interact with each 

other to make the BER process efficient and a delicate balance exists between the levels 

of all the BER proteins, and disrupting this balance results in imbalanced repair (65) 

(Figure 5). 

 However, the central idea that the presence of robust DNA repair mechanisms 

leads to resistance to chemotherapeutic agents (14, 35, 42, 79, 116, 133, 171) has been 

challenged by some studies. Roth et al (166) showed that absence of Aag (3MeA DNA 

glycosylase) in the bone marrow (BM) cells of the myeloid lineage from Aag -/- mice are 

resistant to the alkylating agent methyl methane sulphonate (MMS) as compared to the 

wild-type BM cells. They speculated that initiation of repair by Aag and subsequent 

incomplete repair of the lesions in wild-type BM cells may be more toxic than the 

inability of Aag null BM cells to initiate repair of these damaged lesions. This effect was 

specific to the myeloid lineage of the Aag -/- mice and was not observed in embryonic 

stem cells (ES), primary embryonic fibroblasts (PEF) and cells from the lymphoid 

lineage in the BM, indicating that this effect is tissue-specific as well as likely lesion-

specific. In general, it has been shown that the presence of DNA repair contributes to 

resistance to chemotherapeutic agents. DNA glycosylases show quite a bit of functional 

redundancy (114), and the action of all the DNA glycosylases results in the formation of 

AP sites. For instance, overexpression of 3MeA DNA glycosylases in S. cerevisiae and 

E. coli leads to increased sensitivity to alkylating agents and spontaneous mutations, 

possibly due to an imbalance between the levels of the DNA glycosylase and Ape1 

proteins and also due to the build-up of unrepaired AP sites (166). Accumulation of these 

unrepaired AP sites can lead to (Figure 6) single strand breaks, increased apoptosis and 
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enhanced cytotoxicity (61). Ape1 is required to process these AP sites and along with the 

rest of the BER proteins can facilitate the ensuing completion of repair.  

 On the other hand, several reports have also shown that increased levels of the 

Ape1 protein in cancer cells is an indicator of poor prognosis and resistance to 

chemotherapeutic ministrations (108). Inhibition of the Ape1 protein using siRNA 

technology has been shown to alleviate some the resistance to chemotherapeutic agents 

(52-54, 103, 115).   

 Similarly, the importance of DNA Pol β in maintaining genomic integrity has 

been highlighted by the embryonic lethality of Pol β null mice (114, 171). It has been 

shown that increased levels of Pol β in cells are responsible for increased genomic 

instability and have also been implicated in tumorigenesis (3, 178). However, decreasing 

the levels of Pol β sensitizes cancer cell lines to laboratory and clinical chemotherapeutic 

agents (87, 171, 191). 

 The XRCC1 protein, although it has no activity of its own (87), plays an 

important role as a scaffold protein in the BER pathway where it interacts with several of 

the BER proteins to facilitate efficient repair (48, 202), and Horton and colleagues found 

that XRCC1 -/- mouse fibroblasts are hypersensitive to the alkylating agents ethyl 

methane sulphonate (EMS), MMS and TMZ and exhibits a delay in the repair of IR-

induced DNA damage (87). 

 Increased expression of certain BER pathway proteins in cancer cells can result in 

efficient repair of damaged lesions and can reduce the effectiveness of chemotherapeutic 

agents. Therefore, keeping in mind the importance of the BER pathway in the repair of 

such damage induced by chemotherapy, exploiting the BER pathway and its proteins by 
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inhibiting them would increase the efficacy of chemotherapy thus making it an attractive 

target to develop novel means to combat chemotherapeutic resistance (171).  

 

Inhibition of the DNA Repair Function of Ape1 as a Target in Cancer 

 There are several reasons why Ape1 is a rational target for chemotherapeutic 

agents: 1) overexpression of Ape1 leads to chemoresistance; 2) cells that lack Ape1 are 

not viable; 3) knockdown or blockage of Ape1 activity sensitizes cancer cells to chemo 

agents such as temozolomide (TMZ), bleomycin etc. Elevated levels of Ape1 in cancer 

cells have been postulated to be a reason for chemotherapeutic resistance (16, 18, 103, 

108, 155, 162, 173, 195). The importance of Ape1’s function in the DNA BER pathway 

is observed from the lethality of Ape1 knockout mice (114, 208). Specifically knocking 

down or inhibiting Ape1 using RNA interference and anti-sense oligonucleotide 

technology hypersensitizes mammalian cancer cells to several laboratory and clinical 

DNA damaging agents, such as methyl methane sulfonate (MMS), hydrogen peroxide 

(H2O2), bleomycin, TMZ, and gemcitabine (17, 52-54, 115, 121, 123, 136, 137, 159, 173, 

194, 196) The decrease in cancer cell proliferation and survival after knocking down. 

Ape1 reiterates the importance of Ape1 function. Although these data demonstrate the 

uniqueness and feasibility of Ape1 as a target for inhibition in order to sensitize cancer 

cells, studies involving a reduction in Ape1 mRNA and protein do not allow us to dissect 

which function, repair or redox, of Ape1 is important for cell growth, cancer promotion 

and/or progression (17, 18, 103, 115, 127, 162, 173, 194, 195). Fung et al (61) 

demonstrated that depletion of Ape1 from cells using siRNA technology causes increased 

apoptosis and decreased cell growth of cancer cells. They further demonstrated that 
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Figure 4: The protein – protein interaction network of Ape1 

Ape1 interacts with several different proteins from the BER pathway and other DNA 

repair and signaling pathways to create a complex mesh of direct and indirect 

interactions. This matrix is a graphical representation of the molecular relationships 

between genes or gene products (proteins or complexes). Each gene or protein is 

represented as a node and the lines (edges) joining them represents the biological 

relationships between them. At least one reference from the literature, from a textbook, or 

from canonical information stored in the Ingenuity knowledge base corroborates each 

edge. Orthologs of a gene (human, mouse, and rat) are represented as a single node in the 

network but are stored as separate objects in the Ingenuity knowledge base. The various 

shapes of the nodes represent the functional class of that gene product. The nature of an 

edge is descriptive of the nature of the relationship between the nodes (e.g., solid line 

indicates a direct relationship, dashed line indicates an indirect relationship etc). This 

interaction network was generated through the use of Ingenuity Pathways Analysis 

(Ingenuity Systems®, www.ingenuity.com).  
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functional complementation with a yeast homologue (Apn1) of Ape1 deficient in redox 

activity could restore proliferation potential of the cells. Another report demonstrated that 

expressing a dominant-negative repair deficient Ape1 protein in cells sensitizes them to 

chemotherapeutic agents (137). Several studies conducted using a molecule 

methoxyamine (MX) that binds to AP sites in DNA and blocks Ape1’s ability to cut the 

sugar-phosphate backbone sensitized cancer cells to chemotherapeutic agents (53, 121, 

123, 184). Conversely, as we learn more about the redox function of Ape1, we appreciate 

its critical role in cell growth. Another recent study demonstrated that the redox function 

of Ape1 is important in hematopoietic differentiation (growth) by using a specific 

inhibitor of Ape1’s redox activity, but did not cause the cells to undergo apoptosis (219).  

 These observations not only suggest a crucial role for both of Ape1’s functions in 

cellular survival and tumor promotion and progression, but also demonstrate differences 

observed when the redox or repair functions are blocked. Developing specific inhibitors 

of the two functions of Ape1 would further allow us to discern which of the activities of 

Ape1 are important for cancer promotion and progression and normal cellular survival.  

Furthermore, the two functions may play different roles in different kinds of cancer 

allowing us to better understand tumor progression. Thus, the consequences of inhibiting 

Ape1 in cancer cells point to it being a logical target in cancer therapeutics. Identification 

of molecules that specifically inhibit Ape1’s repair or redox activity should be an 

effective means to sensitize cancer cells to chemotherapeutic agents and thus impact the 

development of new and targeted cancer therapies (reviewed in (54)).
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Figure 5: Consequences of Inhibition of the Repair Function of Ape1 
Blocking Ape1’s activity using an inhibitor of the BER pathway such as methoxyamine 

(MX) (125) leads to an accumulation of AP sites. Failure to repair such accumulated AP 

sites leads to cytotoxicity, increased apoptosis. 
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Existing Ape1 DNA Repair Inhibitors 

 As discussed above, Ape1’s importance in the BER pathway and unique role 

supports the hypothesis that it is a strong target for cancer therapy; elevated levels in 

cancer cells and knocking down Ape1 using siRNA leads to an increased ability of cancer 

cells to undergo apoptosis and sensitization to chemotherapeutic agents (17, 47, 103, 108, 

155, 162, 173, 195). Thus combining standard chemotherapeutic strategies with targeted 

inhibitors of Ape1’s DNA repair function would increase the effectiveness of existing 

chemotherapeutic regimens. Currently compounds known to inhibit Ape1’s DNA repair 

activity fall into two classes: negatively charged molecules including CRT0044876 or 7-

Nitroindole-2-carboxylic acid (NCA) (132), an arylstibonic acid compound (169), 

pharmacophore based compounds (215), pharmacologically active compounds (174) and 

methoxyamine (MX) (125). 

 

Methoxyamine (MX), an Indirect Inhibitor of Ape1’s Repair Activity: 

 Methoxyamine (MX) is an inhibitor of Ape1 and is known to interact with the 

aldehydic C1` atom of AP sites (125). This stable interaction between MX and the C1’ 

aldehyde atom of AP sites results in the formation of an uncleavable covalent adduct 

(125). MX is considered to be an indirect inhibitor of Ape1 because it does not directly 

bind to Ape1 (125, 165). Instead it covalently modifies AP sites, and Ape1 is unable to 

readily cleave the resulting MX-AP site (59) thus preventing the subsequent BER 

proteins such as Pol β (86) from completing repair. MX can potentiate the cytotoxicity of 

alkylating agents such as TMZ and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (53, 

121, 184). TMZ predominantly alkylates guanine at the N
7
 and O

6
 positions and adenine 



 27 

at the N
3
 position. The BER pathway repairs N

7
 and N

3
 alkylation damage and the action 

of the DNA glycosylases generate AP sites. MX binds to these AP sites thus preventing 

Ape1 from completing the repair and stabilizing the AP site intermediate (53, 121, 184). 

Clinical trials with MX in combination with TMZ are currently being pursued. However, 

MX is a simple compound, H3CONH2, with no obvious potential for improvement in 

efficacy through derivatization, and high concentrations of MX are required in cell-based 

assays (20-50 mM) in order to potentiate cell killing in combination with other agents 

(123, 137, 184, 210). 

 

Lucanthone, a Direct Inhibitor of Ape1’s Repair Activity 

 Lucanthone, originally identified as a Topoisomerase II poison (12) is considered 

to be a direct inhibitor of Ape1’s DNA repair activity (138). Its extensive use to treat 

Schistosomiasis has shown it to be safe and nearly non-toxic from a clinical standpoint 

(37). Cancer cells treated with lucanthone exhibited a dose-dependent increase in AP 

sites seemingly due to inhibition of Ape1’s repair activity and blocking an early step in 

the BER pathway (138). Patients with brain metastasis treated in combination with 

radiation and lucanthone showed increased regression of the tumors with the combination 

as compared to radiation alone (37). Additionally, lucanthone enhances the cell killing 

effect of MMS and TMZ in breast cancer cells by the inhibition of Ape1’s DNA repair 

activity (130). However, the evidence of lucanthone also being a Topoisomerase II 

inhibitor raises the concern that the tumor cell killing observed could be partially 

attributed to the off-target effects of lucanthone, which again points to the need of a 

robust direct inhibitor of Ape1’s repair function. 
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7–Nitroindole – 2–Carboxylic Acid (NCA), a Direct Inhibitor of Ape1’s Repair 

Activity 

 Madhusudhan et al (132) identified CRT0044876 or 7-Nitroindole-2-carboxylic 

acid (NCA) in a high-throughput screen (HTS) of a library of 5000 drug-like compounds 

to be a direct inhibitor of Ape1’s repair activity with an IC50 value of ~3 µM.  NCA is 

negatively charged and is reported to inhibit all the DNA repair activities of Ape1 such as 

the AP endonuclease (repair activity), 3’-phosphodiesterase, 3’-5’ exonuclease and 3’-

phosphatase activities of Ape1. Survival analyses in HT1080 human fibrosarcoma cells 

showed that NCA potentiates the cytoxicity of MMS, TMZ, H2O2, and Zeocin (132). 

However, efforts to reproduce this repair inhibition have not been realized by our 

laboratory and by others (9), unpublished results. 

 

Arylstibonic Acid Compounds as Inhibitors of Ape1’s Repair Activity 

 Seiple et al (169) screened an NCI Diversity Set library of 2000 compounds to 

identify specific inhibitors of Ape1. The authors identified an arylstibonic acid compound 

13755, which is negatively charged as an inhibitor of Ape1’s DNA repair activity. This 

compound shows partial mixed type inhibition in that it binds both to the enzyme and the 

enzyme substrate complex. Even though these compounds have been reported to inhibit 

Ape1’s DNA repair activity in vitro, they have virtually no cellular uptake and are less 

attractive as translational agents. Treatment of HOS osteosarcoma cells with 5 µM of the 

compound in the presence of MMS did not show decreased survival in cytotoxicity 

assays (169).  
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Pharmacophore Mediated Models to Identify Inhibitors of Ape1 

 A report by Zawahir et al (215) used a pharmacophore-based method of searching 

for inhibitors of Ape1 by mimicking the interactions that Ape1 makes with the AP site 

DNA. Three models were developed to search known small molecule databases for 

possible hits. The models represent the electrostatic environment and the chemical 

interplay between the residues on the Ape1 protein involved in repair and the AP site-

containing DNA. From their investigations, they concluded that the compounds showing 

good inhibition of Ape1’s DNA repair activity all contained negatively charged groups. 

Furthermore, the top selected hits were found to be selective for Ape1 as they inhibited 

the related E. coli exonuclease III but did not inhibit Endonuclease IV or HIV-1 

integrase.  

 

Identification of Pharmacological Inhibitors of Ape1 

 In another report by Simeonov et al (174) a library of 1280 pharmacologically 

active compounds (LOPAC) was tested to determine possible inhibitors of Ape1. 

Simeonov et al utilized a modified fluorescent based assay with a red fluorescent tag and 

its corresponding quencher instead of using the green fluorescent dye, fluorescein. The 

compounds identified through this screen were tested against the endonuclease IV 

protein, and the top hits did not inhibit it. These hit compounds were also able to enhance 

the cytotoxicity of MMS, and treatment with these inhibitors resulted in an increase of 

AP sites formed. These compounds are known to target other molecules and are 

therefore, not specific for Ape1 which may not make them the best choice of compounds 

to inhibit Ape1. 
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Need for Specific Inhibitors of Ape1’s DNA Repair Activity 

 There is a clear need for a specific repair inhibitor of Ape1 in order to effectively 

determine the role of Ape1’s repair activity in potentiating the effects of alkylating 

chemotherapeutic agents. This is required given the importance of inhibiting Ape1 using 

siRNA leading to sensitization of cancer cells to chemotherapeutic agents (17, 18, 103, 

115, 127, 162, 173, 194, 195). However, these studies remove all of Ape1’s functions 

(repair and redox) as well as Ape1’s protein-protein interactions (48) making the data 

difficult to interpret. Thus, identifying specific and potent Ape1 repair inhibitors would 

facilitate the understanding of Ape1 not only in cancer, but also in dividing normal cells 

(bone marrow, gut etc), non-dividing normal cells (neurons) and other diseases where 

Ape1 has been implicated (22, 61, 84, 93, 185). In addition, these small molecule 

inhibitors will allow the specific inhibition of Ape1’s repair function while keeping its 

post-translational modifications (23, 94, 97, 139) and subcellular location of Ape1 intact 

and in determining the effect of blocking Ape1’s function on these subcellular events (39, 

153, 185). In summary, identification of specific inhibitors of Ape1’s repair activity will 

further our ability to determine the role it plays in cancer promotion and progression thus 

making a productive target of chemoprevention. 

 

High-Throughput Screening (HTS) Methodology to Identify Specific Inhibitors of 

Ape1’s DNA Repair Activity 

 High-throughput screening is a scientific method to assay large numbers of 

various chemical compounds against biological targets in a relatively short period of 

time. HTS assays are either entirely or partially automated and can be carried out in the 
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96-well or 384-well format. Robotic automation in HTS helps speed up the process of 

drug discovery and facilitates the generation of a large amount of scientific data in a short 

interval of time. Several different libraries of synthetic and drug-like compounds are 

available for HTS. Typically, the first round of HTS is carried out with a fixed 

concentration (1 µM – 10 µM) of the chemical compound. The positive ‘hits’ identified 

in the primary assay can be re-screened in the same assay and these hits are then followed 

up in secondary assays to validate the hits, determine an IC50 concentration and perform 

functional cellular assays. Thus, HTS is a promising and rapid methodology to identify 

potential modulators of the biological activity of the target from a large number of 

compounds.  

 

Glioblastoma cell lines as models to study the effects of the Ape1 repair inhibitor

 Malignant gliomas constitute a deadly group of cancer with a rather bleak outlook 

despite the advances in treatment and chemotherapy (173). Treatment options for gliomas 

usually includes surgical resection followed by chemotherapy with alkylating agents such 

as temozolomide (TMZ), procarbazine, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and 

1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) given singly or in combination 

(180). Most therapeutic regimens do not induce complete remission and long-term 

survival is often accompanied by adverse toxic effects such as radiation-induced necrosis, 

alkylation-induced bone marrow suppression of alkylator-based chemotherapy. The 

levels of Ape1 have been shown to be elevated in gliomas, and these have been correlated 

to resistance to chemotherapy (16, 18, 19, 173). 
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Knowing that TMZ and radiation, which induce lesions repaired by Ape1, and the 

BER pathway is the standard of care for glioblastomas, makes it a good system to 

manipulate the activity of Ape1 in order to increase sensitivity to such chemotherapeutic 

agents (180). Therefore, the SF767 glioblastoma cell line was used to study the effects of 

my Ape1 repair inhibitors in a cell-based system.  
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CHAPTER III 

MATERIALS AND METHODS 

 

MATERIALS 

 Chemicals and reagents for the experiments were purchased from Bio – Rad 

Laboratories (Hercules, CA), Corning Costar (Cambridge, MA), Dojindo Molecular 

Technologies (Rockville, MD), Eurogentec (San Diego, CA), Fisher (Pittsburg, PA), GE 

Healthcare (Piscataway, NJ), Gibco BRL Technologies, (Gaithersburg, MD), HyClone 

(Logan, UT), Invitrogen (Carlsbad, CA), LKT Laboratories Inc. (St. Paul, MN), Midland 

Certified Reagent Company (Midland, TX), NeoMarkers (Freemont, CA), Novus 

Biologicals Inc. (Littleton, CO), Nunc (Rochester, NY), Roche Applied Science 

(Indianapolis, IN), Santa Cruz Biotechnology Inc. (Santa Cruz, CA), Sigma (St. Louis, 

MO), Thermo Scientific (Rockford, IL), TPP (Valley Park, MO) and Trevigen, Inc. 

(Gaithersburg, MD). 

All the compounds from the High Throughput Screening Assay were purchased from 

Chemical Diversity Ltd (San Diego, CA) 

 

 

 

 

 

 

 



 34 

METHODS 

Purification of the Human Ape1 Protein 

 The human ∆40 Ape1 protein used in the high-throughput screening (HTS) assay 

and the gel–based AP endonuclease assay was purified as described before (64, 129) in 

Dr. Georgiadis’s lab. The human Ape1 protein with the first 40 amino acids removed was 

expressed in the Rosetta E. coli strain using the pET15b expression vector containing an 

N-terminal hexa-His tag and the human Ape1 gene. The protein was purified from 6 liters 

of bacterial culture that was induced for 4 hours at 37
o
C. The cultures were pelleted and 

each 1 liter pellet was resuspended in 20 ml Buffer A (50 mM Phosphate pH 7.8, 0.3 M 

NaCl and 10 mM Immidazol) on ice. The cells were passed through a French Press twice 

to lyse them and the lysate was centrifuged at 35 K for 30 minutes at 4
o
C. The 

supernatant was loaded onto a Nickel column, and fractions were eluted using Buffer B 

(50 mM Phosphate pH 7.8, 0.3 M NaCl and 250 mM Immidazol). Fractions from the 

observed peak at 280nM were run on an SDS gel to confirm the presence of the protein. 

These fractions containing the protein were pooled and diluted 5-times with Buffer C (50 

mM MES pH 6.5 and 1 mM DTT) to a salt concentration of 50 mM. This was loaded 

onto an S–sepharose column, and fractions were eluted with Buffer D (50 mM MES pH 

6.5, 1 M NaCl and 1 mM DTT). Once again appropriate fractions were run on an SDS gel 

to confirm the presence of the protein. From the elution profile, concentration of Ape1 at 

50% Buffer D (1 M NaCl) was estimated. The fractions containing the Ape1 protein were 

then digested overnight with thrombin to a final concentration of 2 U to remove the hexa-

His tag. The next day the protein was run on an SDS gel to check for the removal of the 

His-tag. The fractions were then diluted 8-times to 50 mM NaCl using Buffer E (50 mM 
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MES pH 6.0 and 1 mM DTT). This was loaded onto an S-sepharose column and gradient 

eluted with Buffer F (50 mM MES pH 6.0, 1 M NaCl and 1 mM DTT). The appropriate 

fractions were run on an SDS gel and then collected. These fractions were then 

concentrated in a protein concentrator (Amicon, MA) with a cutoff limit of 10,000 Da. 

The concentration of the protein was then calculated and its activity determined using the 

AP endonuclease repair assay. 

 

High Throughput Screening (HTS) Assay: 

Oligonucleotides Used in the HTS Assay: 

 The pair of oligonucleotides used in the HTS assay were 30 base pairs in length 

and were synthesized via custom order from Eurogentec Ltd (San Diego, CA) (132). Of 

the pair of oligonucleotides, one of them has a Fluorescein label (6-FAM) at its 5’ end 

(5’-6-FAM-GCCCCC*GGGGACGTACGATATCCCGCTCC-3’). This same 

oligonucleotide also contains a synthetic AP site mimic, tetrahydrofuran (THF, 

represented as *) at position 7 in the oligonucleotide. The complimentary strand has a 

quenching moiety (Dabcyl - Q in the oligonucleotide) at its 3’ end  

(3’-Q-CGGGGGCCCCCTGCATGCTATAGGGCGAGG-5’). The two single-stranded 

oligonucleotides were dissolved first in 1x TEN buffer (25 mM Tris pH 7.5, 1 mM 

EDTA and 50 mM NaCl) and also annealed in the same buffer at 95
o
C for 5 minutes in a 

1:1 ratio at a concentration of 10 µM. The DNA was allowed to cool to room temperature 

overnight, and the DNA was then appropriately aliquoted and stored at -20
o
C. When the 

two oligonucleotides are annealed together, the resultant fluorescence of the 

oligonucleotide is diminished as the juxtaposition of the fluorescein and dabcyl tags 
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Figure 6: Principle of the High Throughput Screening (HTS) Assay 
In this assay, which was modified from the one described by Madhusudhan et al (132), 

addition of Ape1 results in the cleavage of the THF residue to release the labeled piece of 

DNA. This results in a proportionate increase in fluorescence which is indicative of 

Ape1’s DNA repair activity. 
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allows dabcyl to quench its fluorescence. However, on addition of Ape1, Ape1 cleaved 

the double-stranded DNA substrate at the THF moiety. This generates a short 7 base pair 

fluorescein fragment, which can then dissociate from the remaining oligonucleotide by 

thermal melting. The release of the fluorescein containing piece of DNA from dabcyl’s 

proximity results in a proportionate increase in its fluorescence (Figure 7). 

 

Optimization of the HTS Assay Conditions 

 The HTS assay used here was tweaked for our use from that described by 

Madhusudan et al (132), and several conditions for the assay were optimized before the 

actual screen was performed. First the fluorescence of the single stranded fluorescein 

containing THF oligonucleotide was tested (2-100 nM) to confirm that the background 

fluorescence of the THF oligonucleotide was in the detectable range. The reactions were 

carried out in a 50 µl volume, and a single end–point measurement was taken using the 

Ultra Plate Reader at the IU Chemical Genomics Core Facility (CGCF).  

 To select an optimal concentration of Ape1 protein in the linear range to use in 

the assay, a range of Ape1 protein concentrations (0.075-1.4 nM) in a 50 µl reaction 

volume with a 100 nM concentration of the double stranded oligonucleotide substrate and 

the HTS Assay buffer (50 mM Tris-HCl, pH 8, 50 mM NaCl, 1 mM MgCl2 and 2 mM 

DTT) were tested in the assay, and fluorescence measurements were taken over 15 

minutes for each of the concentrations of Ape1 protein. By plotting the slopes (rates) of 

the time-dependent reactions against time of the assay indicated a steady and linear 

increase in fluorescence over time at 0.35 nM Ape1. The assay was performed at 37
o
C 

instead of at room temperature to ensure temperature consistency during the screen and to 
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aid in the spontaneous thermal dissociation of the cleaved piece of DNA from the rest of 

the substrate. 

 

Z’ Factor Measurement 

 A standard statistical value known as the Z’ factor value, which reflects the 

reliability of the screen, was calculated before starting the screen. A Z’ factor value 

between 0.5 and 1.0 is an indication of an excellent assay, and a value between 0 and 0.5 

is an indication of a poor assay (216). To calculate the Z’ factor measurement, positive 

and negative control reactions were carried out in 384-well plates. The positive reaction 

included 0.35 nM Ape1 along with 100nM of the oligonucleotide substrate and 1x HTS 

assay buffer in a 50 µl reaction volume. The negative reaction included all the above 

mentioned components including 50 mM EDTA. EDTA is a metal chelator that 

inactivates the Ape1 protein by chelating the Mg
2+

 ions, which are required for Ape1’s 

activity thereby inactivating the Ape1 protein. The assay was carried out for 5 minutes, 

and then the rates of the positive and negative reactions (384 points for each of the 

positive and negative reactions) were used to calculate the Z’ factor using the following 

formula: 

 Z’-factor = 1 – 3 (δp + δn)  

      (µp – µn) 

Where, δp = standard deviation of the positive reaction, δn = standard deviation of the 

negative reaction, µp = average of the points in the positive reaction and µn = average of 

the points in the negative reaction (216).   
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HTS Assay to Identify Potential Inhibitors of Ape1 

 A library of 60,000 diverse and drug-like compounds adhering to Lipinski’s rules 

(119) from Chemical Diversity Ltd Inc (San Diego, CA) was tested at the IU CGCF. The 

library was aliquoted and screened at a concentration of 10 µM in black 384 well plates 

in a 50 µl reaction volume. The Genesis (Tecan) Workstation 150, TeMo with a 96-

channel pipetting head was used to make all the additions in the following order: 

• 20 µl of the inhibitor library (10 µM) already aliquoted into black 384 well plates.  

• 20 µl of the Reaction mix which contains 100 nM oligonucleotide substrate and 1x 

HTS assay buffer (50 mM Tris pH 8.0, 1 mM MgCl2, 50 mM NaCl and 2 mM DTT). 

• 10 µl of the Ape1 protein at a final concentration of 0.35 nM. 

 Addition of the Ape1 protein to the plates initiates the reaction and change in 

fluorescence were measured at 37
o
C over 5 minutes using an Ultra384 Plate Reader 

(Tecan, Durham NC) in the Kinetic Mode with an Excitation frequency of 495 nm with 

an Emission frequency of 530 nm. Every assay plate included one column each for the 

positive and negative control for the assay. The positive control lane contained the Ape1 

protein with no inhibitors, and EDTA served as the negative control for the assay as it 

chelates the Mg
2+

 required for Ape1 activity thereby inactivating the protein. The 

presence of Ape1 results in cleavage of the AP site mimic and a subsequent release of the 

short fluorescein labeled fragment, thus resulting in a proportionate increase in 

fluorescence. The rates of reaction were used to determine percent inhibition and the rate 

of reaction for Ape1 protein without inhibitors was considered as the 100% control and 

subsequent inhibition by the compounds was considered relative to that of the control.  
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% Activity =     Rate of reaction with inhibitor      x 100 

            Rate of reaction with no inhibitor   

 

Calculation of IC50 Values of the Compounds: 

 After two rounds of screening, IC50 values of the compounds selected for 

validation were determined. The assay used to determine the IC50 values was similar to 

the HTS assay, where a wide range of concentrations (0.1 µM-100 µM) of the 

compounds were tested with 0.35 nM Ape1, 100 nM of the annealed substrate and the 

assay buffer (50 mM Tris pH 8.0, 1 mM MgCl2, 50 mM NaCl and 2 mM DTT) in a 50 µl 

reaction volume. Once again fluorescence readings were taken at 37
o
C for 5 minutes and 

percent inhibition for each compound concentration was determined (as described above) 

as compared to the control with no inhibitor. IC50 values were calculated using the Sigma 

Plot graphing software with the following four-parameter logistic curve equation:  

 f = Min –       Max – Min e                   

                   1 + (x / IC50)
Hill Slope

  

 

Gel-based AP Endonuclease Assay: 

 This is another assay by which to determine the AP endonuclease activity of Ape1 

(110). The 26 base pair oligonucleotides utilized in the gel-based AP endonuclease assay 

were obtained from the Midland Certified Reagent Company Inc (Midland, TX). The 

oligonucleotides comprise one strand with a hexa-chloro phosphoramidite (HEX) label 

and tetrahydrofuran (THF, represented as F) molecule, an AP site analog  

(5’-HEX-AATTCACCGGTACCFCCTAGAATTCG-3’) and its opposite strand  
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(3’-TTAAGTGGCCATGGTGGATCTTAAGC-5’). The single-stranded oligonucleotides 

were dissolved and annealed in 1x TEN buffer (25 mM Tris pH 7.5, 1 mM EDTA and 50 

mM NaCl) at 95
o
C for 5 minutes at a 1:1 ratio at a concentration of 10 µM and then 

allowed to cool to room temperature overnight. The DNA was then diluted to 250 nM 

aliquots and stored at -20
o
C. A final concentration of 25 nM was used in the subsequent 

AP endonuclease assays. 

 The oligonucleotides used in the gel-based AP endonuclease assay differ from 

those used in the HTS assay. The size and sequence of the two oligonucleotides is 

different and as is the position of the THF moiety (at position 7 in the HTS 

oligonucleotides and at position 14 in the AP endonuclease oligonucleotides) (Table 1). 

The reactions were carried out in a 20 µl volume, and a typical reaction comprised of the 

following: 

• 2 µl of the inhibitor compound (10x the final concentration) 

• 2 µl of the 10x Ape assay buffer (50 mM HEPES pH 7.5, 50 mM KCl, 1 mM MgCl2 

and 2 mM DTT) 

• 2 µl of the HEX labeled oligonucleotide substrate (25 nM final concentration) 

• 2 µl of the Ape1 protein (0.175 nM final concentration) 

The reaction mixture was then incubated at 37
o
C for 15 minutes, and the reaction was 

stopped by the addition of 10 µl of Formamide without dyes. 15 µl of the resultant 

reaction mixture was resolved on a 20% denaturing (7 M Urea) polyacrylamide gel in 1x 

TBE at 300 V for 35 minutes to reveal two bands: the longer full-length labeled strand 

and the shorter cleaved fragment with the HEX label (Figure 8). The gels were scanned 

using the Hitachi FMBio II Fluorescence Imaging System (Hitachi Genetic Systems, 
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Figure 7: Principle of the gel-based AP endonuclease Assay 
In this assay, Ape1 cleaves the THF residue and resolution of the samples on a denaturing 

gel results in two bands: the top band corresponds to the full length oligonuclotide 

whereas the bottom band corresponds to the cleaved band, which is an indication of 

Ape1’s activity. Adapted from Kreklau et al 2001 (110). 
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South San Francisco, CA) and quantitated using the FMBio Software (Hitachi Genetic 

Systems). The amount of DNA cleaved was calculated as follows: 

% Cleaved =          Lower (cleaved) band – background      

          Upper (full-length) band - background + Lower (cleaved) band - background 

Amount of DNA cleaved of the reaction with no inhibitors was considered to be 100% 

activity, and the subsequent % activity and inhibition for the reactions with inhibitors was 

calculated relative to this.  

% Activity =     % Cleaved for a reaction with inhibitor        x 100 

            % Cleaved for the reaction with no inhibitor   

 

Gel-based AP Endonuclease Assay with pure Ape1 protein: 

 The potential inhibitors (18 compounds) identified after two rounds of screening 

and with IC50 values less than 50 µM were tested in this assay with the pure Ape1 

protein. The ranges of inhibitor concentrations were based on the IC50 value and a few 

concentrations above and below the IC50 value were chosen. To find a concentration of 

Ape1 in the linear range to use in the assay, a range of concentrations (0.1-0.7 nM) of the 

Ape1 protein were assayed. 0.175 nM Ape1 was used to test the 18 compounds in this 

afore mentioned gel-based AP endonuclease assay. 

 

Assay Oligonucleotide substrate 
Size 

(bp) 
Cleavage product 

HTS  
5’-F-GCCCCCXGGGGACGTACGATATCCCGCTCC-3’ 

3’-QCGGGGGCCCCCTGCATGCTATAGGGCGAGG-5’ 
30 5’-F-GCCCCC (6-mer) 

Ape1 

repair  

5’-HEX-AATTCACCGGTACCFCCTAGAATTCG-3’ 

         3’-TTAAGTGGCCATGGTGGATCTTAAGC-5 
26 

5’-HEX-

AATTCACCGGTACC 

(13-mer) 

 

Table 1: Summary of oligonucleotides used in the HTS and gel-based assays 
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Gel-based AP Endonuclease Assay with the Endonuclease IV protein: 

 After validating the compounds in the HTS assay and with purified Ape1 in the 

gel-based AP endonuclease assay, the ability of these compounds to inhibit a related 

endonuclease, the E. coli endonuclease IV was determined. The endonuclease IV protein 

(100 Units/100 µl) used in the gel-based AP endonuclease assays was purchased from 

Trevigen (Gaithersburg, MD). Before picking an optimal concentration of endonuclease 

IV to use in the assay, a range of concentrations (3.75-60 nU) of the endonuclease IV 

protein were assayed. A concentration of 30 nU was found to be in the linear range of the 

reaction, and the consequent reactions and quantitation were carried out as described 

above with 30 nU of endonuclease IV and a range of concentrations of the inhibitor 

compounds.  

 

Preparation of whole cell extracts from SF767 glioblastoma cells: 

 The SF767 cell extracts used in the gel-based AP endonuclease assay were 

prepared as described previously (110). Briefly, SF767 cells were trypsinized and 

collected. The cell pellets were then resuspended in no greater than 500 µl of cold 1x PBS 

+ 2 mM DTT and sonicated on ice three times for 30 seconds with one minute in between 

each pulse. The tubes were then centrifuged at 13,000 rpm for 15 minutes twice in the 

cold room to ensure the removal of all the debris from the supernatant. The protein 

concentration of the SF767 cell extracts was determined using the Bio-Rad (Hercules, 

CA) Bradford Assay. 
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Gel-based AP Endonuclease Assay with SF767 cell extracts: 

 The SF767 cell extracts used in this assay were prepared as described above and 

the assay was performed as previously described. 3.75 ng of the SF767 cell extract along 

with the assay buffer, DNA substrate and inhibitor compounds was incubated at 37
o
C for 

30 minutes and the reaction stopped by the addition of 10 µl of formamide without dyes. 

 

Gel-based AP Endonuclease Assay to rescue the activity of SF767 cell extracts: 

 For the experiments where purified Ape1 protein was added back to the SF767 

cell extracts treated with the inhibitor compounds, 3.75 ng of the SF767 cell extracts were 

first incubated with the compounds for 30 minutes at 37
o
C. The DNA substrate and pure 

Ape1 (0.4-3.5 ng) was added to the reaction mixture, and the reaction was allowed to 

proceed at 37
o
C for 30 minutes after which it was terminated by the addition of 10 µl of 

formamide without dyes.  

 

Immunodepletion of Ape1 from SF767 WCE: 

 SF767 cell extracts were immunodepleted of the Ape1 protein using a polyclonal 

Ape1 antibody. 250 µg of SF767 cell extracts in 1x PBS were pre-cleared by adding 50 µl 

of washed (beads were washed with 450 µl of PBS twice and then re-suspended in 50 µl 

of PBS) protein A / G Plus-agarose beads (Santa Cruz Biotechnology Inc, Santa Cruz, 

CA) to the cell extracts and gently rocking them at 4
o
C for 1 hour. The extracts were 

centrifuged at 10,000 g for 1 minute and the supernatants collected. The supernatants 

were then incubated with 10 µg of the polyclonal Ape1 antibody (Novus Biologicals Inc, 

Littleton, CO) or normal rabbit IgG (Santa Cruz Biotechnology Inc, Santa Cruz, CA) at 
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4
o
C with gentle shaking for 2 hours. After 2 hours, 50 µl of washed beads were added to 

the cell extracts and incubated for another 2 hours with gentle rocking at 4
o
C. The cell 

extracts were then centrifuged at 10,000 g for 5 minutes and the supernatants collected. 

The protein concentration of the immunodepleted cell extracts was measured with the 

Bradford Assay (BioRad, Hercules, CA), and aliquots were stored at -80
o
C.  

 

Western Blot Analysis: 

 To determine Ape1 levels in SF767 cell extracts after immunodepletion, 

appropriate samples were mixed with equal amounts of 2X protein loading dye and 

boiled in boiling water bath for 5 minutes. The samples were then loaded onto a 12% 

Tris-HCl pre-cast gel (BioRad, Hercules, CA) and allowed to separate at 150 V for 40 

minutes. The gel was then transferred onto a nitro-cellulose membrane at 90 V for 2 

hours at room temperature. Following the transfer of proteins onto the membrane, the 

membrane was blocked in 5% blocking solution made from blotting grade blocker, non-

fat dry milk (BioRad, Hercules, CA) dissolved in 1x TBS for 2-4 hours. Ape1 

monoclonal antibody at a dilution of 1:1000 in 1% blocking solution was then added to 

the membrane and allowed to rotate overnight at 4
o
C. The next day the membranes were 

washed with 1x TBST (1x TBS + 0.1% Tween 20) for 10 minutes, twice and a secondary 

anti-mouse HRP labeled antibody was added to the blots at a dilution of 1:1000 and 

allowed to rotate for 1-2 hours at room temperature. The membranes were washed once 

again with 1x TBST (1x TBS + 0.1% Tween 20) for 10 minutes, four times after which 

the SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific, 
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Rockford, IL) was added to the blots. The blots were developed using the BioRad 

machine in the Chemiluminescence Hi-sensitivity mode.  

 The blots were processed as described above for the detection of actin, which was 

used as an internal loading control. The actin antibody (NeoMarkers, Fremont, CA) was 

used at a dilution of 1:1000 along with the anti-mouse secondary antibody also at a 

dilution of 1:1000. The actin membranes were detected using the ECL Western Blotting 

Detection reagent (GE Healthcare, Buckinghamshire, UK). The experiment was done 

three times, and the data is an average of three individual experiments with standard 

error. For both the gel assays with the immunodepleted extracts and the western blot 

analysis, comparisons were made between corresponding lanes in the IgG treated and the 

immunodepletd samples.  

 

Gel-based AP Endonuclease Assay with immunodepleted SF767 cell extracts: 

 The AP endonuclease activity of the SF767 cell extracts immunodepleted of Ape1 

was tested. A range of concentrations (0.9-15 ng) of the IgG controls and Ape1 antibody 

treated were tested in this assay as described above. The samples were incubated with the 

assay buffer and DNA substrate and kept at 37
o
C for 30 minutes and the reaction stopped 

by the addition of 10 µl of formamide without dyes. 

 

Tissue culture with SF767 glioblastoma cells: 

 The SF767 glioblastoma cells were cultured in Dulbecco’s Minimal Essential 

Medium (DMEM) with high glucose supplemented with 10% Fetal Bovine Serum (FBS) 
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and 1% penicillin-streptomycin. The cells were passaged every two days to maintain 

them. All the cell based assays were done with these cells (111).  

 

The MTT Assay to Measure Cell Survival and Proliferation: 

 The MTT assay is a quick and simple method to measure cell proliferation and 

can also be used to determine the cytotoxicity of laboratory and chemotherapeutic agents. 

The important component in the assay is a yellow tetrazole, (3-[4,5-dimethylthiazol-2-

yl]-2,5-diphenyl tetrazolium bromide), which is reduced to purple formazan crystals in 

the mitochondria of living cells by the mitochondrial dehydrogenases. Dissolving these 

crystals in an appropriate solvent yields a purple solution, whose absorbance can be read 

at 570nm using a spectrophotometer. The amount of formazan crystals formed is 

proportional to the number of viable cells. Comparing the amount of formazan crystals 

produced by untreated control cells to those treated with an agent deduces the 

effectiveness of the agent in causing cell death by determining a dose-response curve 

(129). Cell survival after treatment with AR01, AR02 and AR06 was determined. Cells 

were treated with 0.05% trypsin and counted using a hemocytometer, and two thousand 

cells or media alone for the 72 hour time point were aliquoted into each well of a 96-well 

plate in triplicate and allowed to adhere overnight. The next day the cells were treated 

with the appropriate compounds and cell survival after 72 hours was ascertained by 

adding 20 µl of 0.5 mg/ml MTT to the wells. The cells were incubated at 37
o
C for 2 

hours after which the solution in the wells was discarded by inverting the plates and 

firmly shaking them once to remove all the media. The plates with the formazan crystals 

in the wells were allowed to dry first face down for 30 minutes and then they were air-
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dried for another 30 minutes. The resultant formazan crystals were then dissolved in 150 

µl DMSO and the absorbance of the wells was read at 570 nm on the Versamax 

microplate reader (Molecular Devices, Sunnyvale, CA). 

 

Determination of Cell Survival and Proliferation using the xCELLigence System: 

 The effects of the inhibitor compounds on the growth and survival of SF767 

glioblastoma cells were determined using the xCELLigence DP System (Roche Applied 

Science, Indianapolis IN) (177, 209, 217). The xCELLigence system monitors in real 

time cell growth, attachment, and spreading based on an electronic system of impedance 

measurements. The attachment of cells in the wells results in an interference in 

continuous electronic current, which is read as impedance and is a measure of the 

property of the cells to attach and grow (101, 105, 146, 209) (Figure 9). For the 

xCELLigence DP System, 3000 SF767 glioma cells were plated in each well of the 16-

well plates in 100 µl volume. Prior to plating the cells a background reading of the wells 

with 90 µl of appropriate media was recorded. After adding the cells to the wells, the 

plates were kept at room temperature for 30 minutes after which they were inserted into 

the cradles. The cells were allowed to grow for 20-24 hours before the cytotoxic agents 

were added. A range of MMS and AR03 concentrations were used to treat the cells and 

singly at 20x the final concentration in a 10 µl volume, and continuous impedance 

measurements were then monitored over a total of 96 hours. For the combined treatments 

with MMS and AR03, the additions were made in the same way as for MMS and AR03 

alone. For TMZ alone and in combination with AR03, all the media from the wells was 

removed and the TMZ dilutions at final concentration were added in a 100 µl volume. 
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Figure 8: Principle of the xCELLigence assay 
A schematic representation of the functioning of the xCELLigence assay. Adapted from 

the RTCA DP Instrument Operator’s Manual (Roche Applied Science, Indianapolis, IN) 

and from Xing et al 2005 (209). 
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Once again, survival of the SF767 cells was monitored continuously. The assay was done 

in triplicate and was repeated three individual times.  

 

Determination of AP Site formed using the Aldehyde Reactive Probe (ARP) Assay: 

 The ARP assay is a good assay to measure the number of AP sites generated in 

the DNA. The ARP reagent can specifically react with the aldehyde group of AP sites in 

the open conformation, and thus treating DNA containing AP sites with an excess of 

ARP reagent converts all AP sites to biotin-tagged AP sites. The amount of biotin can 

then be quantified by an ELISA-like assay (6, 109, 142, 143).  

 

DNA Isolation: 

 To determine the number of AP sites formed, 2 x 10
6
 SF767 cells were treated 

with 275 µM MMS and 3 µM AR03 alone or in combination for 24 hours after which the 

cells were collected and the genomic DNA was isolated using the Get-Pure DNA 

Isolation Kit (Dojindo Molecular Technologies, Rockville, MD). The cells were detached 

from the 10 cm
2
 dishes using 2 ml of Trypsin and 5 ml of DMEM Media (with 10% FBS 

and 1% Penicillin & Streptomycin) and collected in 15 ml conical tubes. The cells were 

then centrifuged at 1200 rpm for 5 minutes. The media was then discarded and the cell 

pellet was re-suspended in 500 µl of 1x PBS (phosphate buffered-saline) and transferred 

to eppendorf tubes. This cell suspension was centrifuged at 2000 rpm for 5 minutes and 

once again the supernatant was discarded. The following steps were carried out using 

solutions provided in the Get – Pure DNA Isolation Kit (Dojindo Molecular 

Technologies, Rockville, MD). The cell pellets were then dissolved in 250 µl of the Lysis 
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solution by first vortexing them for 5 seconds and then pipeting the solution up and down 

5 times after the additions of 10 µl of Proteinase K. The tubes were then incubated at 

65
o
C for 10 minutes to completely dissolve any cell clumps present. 2 µl of RNAse A 

was added to the tubes and incubated at RT for 2 minutes in order to remove all the RNA 

present. 50 µl of Precipitation Solution I was added, and the tubes were vortexed for 5 

seconds to result in a white precipitate. Addition of 50 µl of Precipitation Solution II with 

another 10 seconds of vortexing resulted in more white precipitate being formed. The 

tubes were centrifuged at 14,000 rpm for 10 minutes twice to clear the supernatants of the 

precipitate. The supernatants were transferred to new tubes, and equal amounts of 100% 

EtOH (ethanol) were added. The tubes were rocked gently to mix, and the DNA was 

visualized as a white precipitate in the tubes. The tubes were then centrifuged at 8000 

rpm for 2 minutes, and the white pellet washed with 1 ml of 70% EtOH, centrifuged at 

8000 rpm for 2 minutes, and the supernatant discarded. The DNA pellet was air dried by 

inverting the tube for 30 minutes. The DNA was then dissolved in 50 µl of TE buffer and 

allowed to dissolve completely overnight at 4
o
C. The next day, the concentration of the 

DNA was measured using the SmartSpec
TM

 3000 (BioRad, Hercules, CA) and the DNA 

was diluted to 100 µg/ml (25 µl). The concentration of the 100 µg/ml DNA dilution was 

confirmed and adjusted using the SmartSpec
TM

 3000 (BioRad, Hercules, CA).  

 

AP Site Determination: 

 To determine the number of AP sites formed, 10 µl of the 100 µg/ml DNA 

dilution was mixed with 10 µl of the ARP solution from the DNA Damage 

Quantification, AP site Counting Kit (Dojindo Molecular Technologies, Rockville, MD) 
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and incubated at 37
o
C for 1 hour. The inside of the filtration tube was then washed with 

100 µl of TE twice and after the incubation was complete, 380 µl of TE were added to the 

reaction mixture and transferred to the filtration tube. The tubes were centrifuged at 2500 

xg for 15 minutes, and the filtrate solution was discarded. The DNA on the filter was then 

dissolved in 400 µl of TE by gently pipeting up and down. The tubes were once again 

centrifuged at 2500 xg for 15 minutes, and the filtrate solution was discarded. The ARP-

labeled DNA on the filter was then resuspended in 200 µl of TE and transferred to a fresh 

eppendorf tube. The entire remaining DNA from the filter was transferred to the tube 

with another 200 µl of TE and 180 µl of this ARP-labeled DNA was then diluted with 

220 µl of TE. 200 µl of this diluted ARP-labeled DNA was mixed with 333 µl of the 

DNA binding buffer in a new tube, and 160 µl of this mix was plated in triplicate in the 

coated ELISA plate provided with the kit, covered with a piece of parafilm. The DNA 

was allowed to attach to the plate overnight at RT. The next day, the DNA solution was 

discarded by inverting the plate once, and the plate was washed 5 times with 250 µl of the 

washing buffer, which is dissolved in 1L of distilled water. After the washes, using a 

multi-channel pipet, 150 µl of the diluted HRP-streptavidin (HRP-streptavidin stock 

diluted 1 / 4000 in washing buffer → 10 µl of the HRP-streptavidin + 40 ml of the 

washing buffer) was added to the wells. The plate was then covered with a piece of 

parafilm and was incubated at 37
o
C in the tissue culture incubator in the dark for 1 hour. 

Once again the solution in the plate was discarded by inverting the plate once, and the 

plate washed 5 times with 250 µl of the washing buffer. Finally, 100 µl of the substrate 

solution was added to the wells, and once again the plate was incubated at 37
o
C in the 

dark for 1 hour. Within 30 minutes of the end of the final incubation, the absorbance of 
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the plate was read at 650 nm using the Versamax microplate reader (Molecular Devices, 

Sunnyvale, CA). The number of AP sites formed was calculated based on the standard 

curve, and the number of AP sites is represented against 10
6
 base pairs. 

 

Statistics: 

 Each of the above mentioned experiments were carried out with the appropriate 

controls including vehicle controls (DMSO), and they were all repeated at least three 

individual times. The cell survival assays (MTT and xCELLigence experiments) and the 

AP site determinations were done in triplicate in addition to repeating them at least three 

individual times. P values of significance were calculated using the Student’s t-test.  

 In case of the IC50 value calculations and the gel-based assays with pure Ape1 

protein and SF767 cell extracts alone, the lanes with inhibitors were compared to the lane 

containing the vehicle control (DMSO) and without inhibitors.  

 For the experiments showing restoration of AP endonuclease activity of the cell 

extracts, the lanes treated with the Ape1 repair inhibitor are compared back to the vehicle 

(DMSO) treated control lane and the lanes with the cell extracts. Inhibitor and purified 

Ape1 protein were compared to the lane with cell extracts and inhibitor alone.  

 For both the gel-based AP endonuclease assays and the western analysis of the 

immunodepleted cell extracts, comparisons were made between corresponding lanes in 

the IgG treated control samples and the immunodepleted samples.  

 For the cell survival studies using the MTT assay for both experiments with single 

agent and combined treatment, columns with cells treated with the various compounds 

were compared back to the vehicle treated control. For the xCELLigence data, 



 55 

representative experiments are shown. However, a similar trend was noted during the 

individual repeats of these experiments.  
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CHAPTER IV 

RESULTS 

 

Optimization of the High Throughput Screening (HTS) Assay used to identify 

inhibitors of Ape1’s DNA repair activity 

 We optimized and improved upon an HTS assay from that was described by 

Madhusudan et al (132) in our efforts to identify compounds, which inhibit Ape1’s DNA 

repair activity. A library of 60,000 versatile and drug-like compounds from Chemical 

Diversity Ltd (San Diego, CA) was tested in this HTS assay. The assay is based on a 

system in which the measurement of the change in fluorescence is representative of the 

activity of the protein of interest. The assay employs two synthetic oligonucleotides 

annealed together, which are 30 base pairs long. One of the DNA strands has a unit of 

fluorescein (6-FAM) at its 5’ end and a THF molecule at position 7 mimicing an AP site, 

the substrate that Ape1 acts upon (201). The 3’ end of the complimentary DNA strand 

has a dabcyl group also known as a dark quencher and is able to quench the fluorescence 

of the fluorescein molecule (Figure 7). When the recombinant ∆40 Ape1 protein is added 

to the reaction mix containing the annealed strands of DNA along with the appropriate 

buffers, Ape1 cuts the DNA at the THF moiety resulting in the release of a short 

fragment tagged with fluorescein. This distance from the dabcyl quencher results in a 

concomitant increase in fluorescence, which I measured as an indicator of Ape1’s activity 

(132).   

Increasing concentrations of Ape1 were tested in this assay and changes in 

fluorescence were measured for each Ape1 concentration over a 15 minute time period to
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Figure 9: Optimization of the Conditions used in the HTS Assay 
(A) Range of concentrations of Ape1 was tested in the HTS assay to determine a 

concentration of the Ape1 protein in the linear range. (B) 0.35 nM Ape1 shows a linear 

increase in fluorescence over time. 
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determine a concentration of Ape1 that would work in the linear range (Figure 10A). 

Figure 10B shows that 0.35 nM Ape1 shows a linear increase in fluorescence over time. 

Rates of reaction rather than absolute fluorescence were used to determine activity of the 

Ape1 protein and to compare a reaction in which Ape1 activity was inhibited from a 

control reaction. I wanted to have a distinct positive reaction with the 0.35 nM Ape1 

alone so as to distinguish it from an inhibited reaction of Ape1. The reaction with 0.35 

nM recombinant Ape1 protein was linear over 10 minutes and therefore, the library of 

compounds was screened with this concentration and fluorescence was monitored for 5 

minutes. 

 

Z’ Factor Measurement 

 The Z’ factor is a measure of the accuracy and precision of a high-throughput 

screening (HTS) assay (216). The Z’factor reflects: 1) the dynamic range between the 

positive and negative controls, 2) the reproducibility of the data and 3) reliability of the 

assay. This value indicates whether the window of opportunity to detect hits is distinct 

enough from the noise at the positive and negative controls. The four parameters required 

to calculate the Z’-factor, the averages (µp and µn) and standard deviation (δp and δn) of 

both the positive and negative controls, were obtained by performing the assay as 

described in the Materials and Methods. A Z’ factor value between 0.5-1 is an indicator 

of a good and reliable assay with an ideal Z’ factor value of 1.0, which is achieved with a 

large dynamic range and small standard deviations. However Z’ factor values are rarely 

1.0 and are never greater than 1.0 (216). 384 measurements each for the positive and 

negative controls were carried out (one 384-well plate) and the Z’ factor calculated using 
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Figure 10: Z’ factor measurement for the HTS assay 
The Z’ factor for the assay was measured using the HTS assay. The Z’ factor value 

calculated for the screen was 0.78. 
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these values. The Z’ factor value measured for the HTS assay was 0.78, which is within 

the range of acceptable Z’ factor values (between 0.5-1) (Figure 11). The Z’ factor value 

was calculated with each new batch of oligonucleotides and for all the measurements, the 

Z’ factor was similar to the one reported. 

 

High Throughput Screen (HTS) to identify inhibitors of Ape1 

 After optimizing the HTS assay and verifying that my assay was reliable, a 

60,000 compound library from ChemDiv was screened to identify potential inhibitors of 

Ape1. This library conforms to Lipinski’s rule of 5 (119) and is a varied collection of 

synthetic compounds. The compounds were screened using the following parameters and 

equipment: an inhibitor concentration of 10 µM, 50 µl reaction volume, black 384-well 

plates and the Genesis Workstation 150 TeMo with a 96-channel pipetting head (Tecan, 

Durham NC) at the IU Chemical Genomics Core (CGCF) facility. Assay additions to the 

plates containing the compound library were made such that 100 nM of the double 

stranded oligonucleotide substrate and the 1x assay buffer were added first, and the 

reaction was started by the addition of 0.35 nM Ape1 protein. Every assay plate included 

one column each of a positive and negative control for the assay. The positive control 

lane contained the Ape1 protein with no inhibitors, and as a negative control EDTA was 

added to the reaction mix. EDTA serves as the negative control for the assay as it 

chelates the Mg
2+

 required for Ape1 activity thereby inactivating the protein. 

Displacement of the short labeled piece of DNA and the resultant increments in 

fluorescence were measured over time. After an initial screen of the library, 190 hits 

showing ≥ 50% inhibition of Ape1’s activity were identified (Figure 12A). Out of these
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HTS Assay Results: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Results of the HTS assay of the compound library for inhibitors of Ape1 
(A) Results of the initial screen identified 190 compounds that inhibited Ape1’s activity 

by 50% or more. (B) Results of a secondary screen of the hits from the initial screen 

identified 45 compounds with ≥ 40% inhibition of Ape1’s DNA repair activity, where the 

graphs are representations of the numbers of compounds plotted with their corresponding 

% inhibition of Ape1’s activity. 
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List of compounds identified after two rounds of high-throughput screening: 

 

HTS Assay 

(% 

Inhibition) Structure ID 
Mol 

Wt 

1
st
 2

nd
 

IC50 

(µM) 

50% 

inhibition 

of Ape1 -

Gel assay 

(µM) 

MTT 

Assay 

– ED50 

(µM) 

 

AR01 245.3 74 70 
1.7 ± 

0.3 
0.4 >800 

 

AR02 278.4 54 40 
6.4 ± 

1.1 
25 ~7.5 

 

AR03 237.3 60 58 
2.1 ± 

0.1 
5 ~1 

 

AR04 350.4 58 45 
14.9 ± 

8.4 
~25 ~3 

 

AR05 351.4 75 85 
6.6 ± 

0.9 
0.75 ~50 

 

AR06 262.7 52 44 
1.6 ± 

0.1 
0.7 >100 

 

AR07 400.5 80 41 ~ 100 ND ND 

 

AR08 259.3 71 21 >100 ND ~80 

 

AR09 322.4 51 52 42.9 ND ~8 

N

O

O

O
H

O
H



 63 

 

AR10 290.4 54 49 9.8 ~50 ~10 

 

AR11 278.4 53 50 4.7 ~50 ~10 

 

AR12 312.8 54 45 15.7 >50 ~6 

 

AR13 308.4 62 57 15.9 >100 ~10 

 

AR14 357.2 72 58 19.7 ~100 ~5 

 

AR15 312.8 70 57 17.7 ~50 ~8 

 

AR16 282.8 51 42 19.6 ~50 ~8 

 

AR17 290.8 50 52 ~100 ND ND 
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AR18 341.5 83 55 7.1 >50 ~6 

 

AR19 367.5 52 45 >100 ND ND 

 

AR20 220.7 76 94 >100 ND ND 

 

AR21 403.6 66 ND 50.9 ND ND 

 

AR22 258.3 61 ND >100 ND ND 

 

AR23 479.7 52 48 >100 ND ND 

 

AR24 376.5 77 92 >100 ND ND 

 

AR25 372.5 78 19 ~100 ND ND 

 

AR26 370.5 79 20 ~100 ND ND 

 

AR27 358.5 87 3 >100 ND ND 
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AR28 412.6 83 29 >100 ND ND 

 

AR29 386.5 80 30 >100 ND ND 

 

AR30 386.5 94 36 >100 ND ND 

 

AR31 400.5 95 35 >100 ND ND 

 

AR32 370.5 82 26 42.4 >100 ND 

 

AR33 372.5 91 1 >100 ND ND 

 

AR34 420.5 63 44 63.9 ND ND 

 

AR35 398.5 80 35 >100 ND ND 

 

AR36 398.5 93 43 >100 ND ND 

S

O

O

O
H
N

N
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AR37 373.9 52 28 ~25 ND ND 

 

AR38 399.9 68 29 >100 ND ND 

 

AR39 371.9 53 22 >100 ND ND 

 

AR40 419.9 77 34 >100 ND ND 

 

AR41 297.1 64 58 0.8 0.75 ~50 

 

AR42 256.3 53 25 26.6 ND ND 

 

AR43 258.3 52 48 3.1 ND ND 

 

 

Table 2: A list of the preliminary compounds and their IC50 values 
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Table 3: Range of IC50 values of the HTS assay compounds 

 

190 compounds, 174 were re-screened in the same HTS assay. After two rounds of 

screening, 45 compounds exhibiting greater than or equal to 40% inhibition of Ape1’s 

DNA repair activity were chosen for further validation assays (Figure 12B). A list of the 

41 compounds validated is presented in Table 2. 

 

Determination of IC50 values of the identified hits  

 After two rounds of screening, 41 target compounds were identified and 

considered for further validation. IC50 values of these 41 compounds were calculated 

using the previously described HTS assay. Each of the compounds was tested at several 

different concentrations (0.1-100 µM) with 0.35 nM Ape1 in the HTS assay and 

fluorescence readings were taken over 5 minutes. Percent inhibition of Ape1’s activity at 

each compound concentration was ascertained as compared to the control with no 

inhibitor. NCA (132) was used as a control at a concentration of 10 µM, the same 

concentration at which the compound library was screened in the HTS assay. IC50 values 

were calculated using the Sigma plot software as described in the Materials and Methods. 

Out of the 41 compounds identified after two rounds of screening, 18 compounds showed 

an IC50 value less than or equal to 50 µM, and 9 of them had an IC50 better than or equal 

to 10 µM (Table 3). The IC50 value curves for the compounds AR01, AR03, AR06 and 

AR02 are presented in Figure 13.    

 For the sake of convenience from here on forward, I have grouped the data for

IC50 values (µM) < 10 11 – 50  51 – 100  > 100 

Number of compounds 9 9 6 17 
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Determination of IC50 values of the top four compounds: 

 

Figure 12: Calculation of the IC50 values of the top hit compounds 
IC50 values of the top hit compounds were determined using the HTS assay. The assays 

for each compound were performed in triplicate. The Sigma Plot software (equation 

described in Materials and Methods) was used to calculate the values and presented here 

is a semi-log plot of the IC50 value determination. IC50 value curves for AR01 (A), AR03 

(B), AR02 (C) and AR06 (D) are represented here. P values were calculated using the 

student’s t-test comparing lanes with inhibitor to lane with no inhibitor (DMSO); * = p≤ 

0.05; # p≤ 0.005; ** = p≤ 0.0005; *** = p ≤ 0.0001. 
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Gel-based AP endonuclease assay with purified Ape1 protein:    
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Figure 13: The compounds AR01 and AR03 can inhibit the activity of purified Ape1 

protein in the gel-based AP endonuclease assay 
A range of concentrations of AR01 (A) and AR03 (B) were tested with 0.175 nM Ape1 

in the gel-based AP endonuclease assay. Representative gels are shown here for all the 

compounds. Each assay was performed in triplicate and is shown here as the average with 

standard error. P values were calculated using the student’s t-test comparing lanes with 

inhibitor to lane with no inhibitor (DMSO); * = p≤ 0.05; # p≤ 0.005; ** = p≤ 0.01; *** = 

p ≤ 0.0001. 
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Gel-based AP endonuclease assay with purified Ape1 protein: 
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Figure 14: The compounds AR06 and AR02 can inhibit the activity of purified Ape1 

protein in the gel-based AP endonuclease assay 
A range of concentrations of AR02 (A) and AR06 (B) were tested with 0.175nM Ape1 in 

the gel-based AP endonuclease assay. Representative gels are shown here for all the 

compounds. Each assay was performed in triplicate and is shown here as the average with 

standard error. P values were calculated using the student’s t-test comparing lanes with 

inhibitor to lane with no inhibitor (DMSO); * = p≤ 0.05; # p≤ 0.005; ** = p≤ 0.01; *** = 

p ≤ 0.0001. 



 71 

compounds AR01 and AR03 together in one figure as I consistently saw similar results 

with these compounds. The data for compounds AR02 and AR06 are grouped together. 

 

Target validation to determine selectivity of the inhibitor compounds for Ape1’s 

DNA repair activity in other in vitro assays 

 Two different assays to validate the 18 compounds with IC50 values less than 50 

µM were performed: 1) the compounds ability to inhibit Ape1 in another distinct in vitro 

gel-based AP endonuclease assay (110) (Figure 8) and 2) inhibition of the functionally 

related and structurally unrelated AP endonuclease, the E. coli, endonuclease IV protein 

(63, 141, 199). The 41 compounds can inhibit Ape1’s DNA repair activity both in the 

HTS assay and the gel-based assay (Table 2). Based on the confirmation of both assays 

that these compounds inhibit Ape1’s repair activity, we chose four compounds from 

distinct families: AR01 (2-(4-(2,5-dimethyl-1H-prryol-1-yl)phenoxy acetic acid), AR02 

(4-(2,6,8-trimethylquinolin-4-ylamino)phenol), AR03 (2,4,9-trimethylbenzo [b][1,8] 

naphthyridin-5-amine) and AR06 (N-(3-chlorophenyl)-5,6-dihyro-4H-cyclopenta [d] 

isoxazole-3-carboxamide) (Table 4). 

 After ascertaining that the four potential inhibitors do not bind genomic DNA 

(Table 2) and are able to inhibit Ape1 in two different AP site assays (Figures 13, 14 and 

15), I tested the selectivity of these compounds for Ape1 by determining their effect on a 

functionally similar, but structurally different AP endonuclease protein, the E. coli 

endonuclease IV protein (63, 141, 199). The endonuclease IV protein was incubated with 

a range of concentrations of each of the four top compounds under similar conditions as 

described above. The gel-based assays was used to determine whether these four 
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Gel-based AP endonuclease assay with Endonuclease IV protein: 
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Figure 15: Effect of AR01 and AR03 on the activity of the endonuclease IV protein 
The ability of AR01 (A) and AR03 (B) to inhibit the activity of endonuclease IV was 

determined in the gel-based AP endonuclease. A range of concentrations of each of the 

compounds were tested with 6.25 units of endonuclease IV protein. Representative gels 

are shown for all the compounds. Each assay was performed in triplicate and is presented 

here as the average with standard error. P values were calculated using the student’s t-test 

comparing lanes with inhibitor to lane with no inhibitor (DMSO); * = p≤ 0.05; ** = p≤ 

0.0005; *** = p ≤ 0.0001.  
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Gel-based AP endonuclease assay with Endonuclease IV protein: 
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Figure 16: Effect of AR06 and AR02 on the activity of the endonuclease IV protein 
The ability of AR02 (A) and AR06 (B) to inhibit the activity of endonuclease IV was 

determined in the gel-based AP endonuclease. A range of concentrations of each of the 

compounds were tested with 6.25 units of endonuclease IV protein. Representative gels 

are shown for all the compounds. Each assay was performed in triplicate and is presented 

here as the average with standard error. P values were calculated using the student’s t-test 

comparing lanes with inhibitor to lane with no inhibitor (DMSO); * = p≤ 0.05; # = p≤ 

0.005; ** = p≤ 0.0005.   
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compounds could inhibit endonuclease IV protein. The four compounds had an effect on 

the activity of endonuclease IV but at varying degrees. The concentration of AR01 

required to inhibit the activity of endonuclease IV by 50% was similar to the 

concentration required to inhibit Ape1’s activity by 50% (0.6 µM and 1.7 µM 

respectively), whereas a 16-fold higher concentration of AR03 (~40 µM) was required to 

inhibit the activity of Endonuclease IV protein by 50% (Figure 16) as compared to its 

IC50 value (2.1 µM). A concentration greater than 50 µM of AR02 and ~10 µM of AR06 

were required to inhibit the activity of Endonuclease IV activity by 50% (Figure 17). 

 Therefore, although AR01 inhibits Ape1’s activity, it also inhibits the activity of 

endonuclease IV at similar concentrations. The compounds AR03, AR02 and AR06 on 

the other hand required much higher amounts (16-fold, ~10-fold and ~6-fold 

respectively) as compared to their IC50 values to effect the same amount of inhibition of 

endonuclease IV’s activity.  

Compound ID IC50 values (µM) 
Concentration required to inhibit activity by 

50% in the gel assay (µM) 

 Ape1 Ape1  Endonuclease IV 

AR01 1.4 0.4 1.75 

AR02 6.4 25 > 50 

AR03 2.2 5 ~40 

AR06 1.6 0.7 ~10 

 

Table 4: Comparison of values of the top four compounds required to inhibit Ape1 

and endonuclease IV proteins 
 

Ability of the target compounds to inhibit Ape1 in whole cell extracts 

 Since the four target compounds inhibit recombinant Ape1 protein in the HTS 

assay and in the gel assay, I wanted to determine if these compounds could inhibit Ape1 

in whole cell extracts. Whole cell extracts from SF767 glioblastoma cells were prepared 

as described previously (110), and inhibition of the AP endonuclease activity of these 
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extracts was determined in the gel-based assay. SF767 cell extracts (3.75ng) were treated 

with increasing concentrations of the four compounds to determine their effect on Ape1’s 

DNA repair activity. As shown in Figure 18, AR01 and AR03 were able to inhibit the AP 

endonuclease activity of the cell extracts at concentrations comparable to those required 

to inhibit pure Ape1 in the gel-based assay (0.5 µM and 13.2 µM respectively). AR02 and 

AR06 (Figure 19) also inhibited Ape1’s activity in the extracts, but where relatively low 

concentrations of AR01 and AR03 (Figure 18) were required for inhibition, ~15-fold and 

~17-fold higher concentrations of AR02 and AR06 (~93 µM and 26 µM respectively for 

50% inhibition) were required to inhibit Ape1’s activity in the same cell extracts (Figure 

19).  

 

Table 5: Values of the top compounds for inhibition of Ape1, Endonuclease IV and 

SF767 cell extracts 

 

Further determination of selectivity of the top compounds 

Purified Ape1 can resuce the AP endonuclease activity of SF767 cell extracts treated 

with the inhibitors 

 To further ascertain the selectivity of the inhibitors for Ape1 in the SF767 cell 

extracts, I assayed the ability of pure Ape1 protein to rescue AP endonuclease activity of 

these SF767 cell extracts treated with my top four inhibitors. To this end, the cell extracts

Concentration required to inhibit activity by 

50% in the gel assay (µM) 
Compound ID 

IC50 value 

(µM) 
Ape1 

Endonuclease 

IV 

SF767 cell 

extracts 

AR01 1.4 0.4 1.75 2.4 

AR02 6.4 25 > 50 ~93 

AR03 2.2 5 ~40 13 

AR06 1.6 0.7 ~10 ~75 
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Gel-based AP endonuclease assay with SF767 cell extracts: 
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Figure 17: Ability of AR01 and AR03 to inhibit Ape1’s activity in SF767 

glioblastoma cell extracts  
A range of concentrations of AR01 (A) and AR03 (B) were tested with 3.75 ng of SF767 

cell extract in this assay. Representative gels are shown for all the compounds. Each 

assay was performed in triplicate and is shown here as the average with standard error. P 

values were calculated using the student’s t-test comparing lanes with inhibitor to lane 

with no inhibitor (DMSO); * = p≤ 0.01; ** = p≤ 0.05; p≤ 0.005; *** = p ≤ 0.0001. 



 78 

Gel-based AP endonuclease assay with SF767 cell extracts: 
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Figure 18: Ability of AR02 and AR06 to inhibit Ape1’s activity in SF767 

glioblastoma cell extracts  
A range of concentrations of AR02 (A) and AR06 (B) were tested with 3.75 ng of SF767 

cell extract in this assay. Representative gels are shown for all the compounds. Each 

assay was performed in triplicate and is shown here as the average with standard error. P 

values were calculated using the student’s t-test comparing lanes with inhibitor to lane 

with no inhibitor (DMSO); # = p≤ 0.05; ** = p≤ 0.005. 
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were treated with a concentration of each of the four compounds that inhibited more than 

50% of Ape1’s activity. After incubating cell extracts with the four compounds for 30 

minutes, varying amounts of purified Ape1 protein (0.7-5.6 nM) were added to them, and 

the reaction was allowed to proceed for another 30 minutes. When increasing amounts of 

purified Ape1 protein were added to SF767 extracts treated with 10 µM AR01 and 50 µM 

AR03, a dose dependent and linear increase in the AP endonuclease activity of the cell 

extracts was seen, whereas addition of the same amounts of purified Ape1 protein to 

plain SF767 cell extracts resulted in a saturation of the AP endonuclease activity of the 

extracts (Figure 20). Addition of a small amount (0.7 nM) of purified Ape1 to extracts 

treated with AR02 resulted in a slight increase in the AP endonuclease activity, but 

higher amounts (1.4-5.6 nM) of purified Ape1 resulted in AP endonuclease activity levels 

comparable to that with no inhibitors (Figure 21A). However, addition of 0.7nM of 

purified Ape1 to extracts treated with AR06 restored the AP endonuclease activity of 

these extracts to levels similar to that of the controls (Figure 21B).  

 Although, AR01 can inhibit Ape1’s repair activity of purified Ape1 protein 

(Figure14A) and in SF767 cell extracts (Figure 18A), it acts as an equally good inhibitor 

of the E. coli endonuclease IV protein (Figure16A). A ~15-fold and ~17-fold respectively 

higher concentration than the IC50 values of AR02 and AR06 (Figure19) were required to 

inhibit Ape1’s activity in cell extracts, and small amounts of purified Ape1 were able to 

restore the AP endonuclease activity of cell extracts comparable to that of the controls 

(Figure 21). I decided therefore, not to pursue the compounds AR01, AR02 and AR06 

further at this juncture. 
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Rescue of the AP endonuclease activity of SF767 cell extracts with purified Ape1: 
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Figure 19: Purified Ape1 protein rescues the AP endonuclease activity of SF767 cell 

extracts treated with AR01 and AR03 in a linear range 
Increasing amounts (0.7-5.6 nM) of purified Ape1 protein were added to SF767 cell 

extracts treated with 10 µM AR01 (A) and 50 µM AR03 (B). Each assay was performed 

in triplicate and is shown here as the average with standard error and p values were 

calculated using the Student’s t-test. (A) *** = p ≤ 0.01 - comparing lane 2 with lane 1. 

** = p ≤ 0.05 and *** = p ≤ 0.01 - comparing lanes 4-7 with lane 3. (B) * = p ≤ 0.05 - 

comparing lane 2 with lane 1. * = p ≤ 0.05 and ** = p ≤ 0.005 - comparing lanes 4-7 with 

lane 3. # = p ≤ 0.0001 - comparing lanes 8-11 with lane 2. 
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Rescue of the AP endonuclease activity of SF767 cell extracts with purified Ape1: 
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Figure 20: Purified Ape1 protein can rescue the AP endonuclease activity of SF767 

cell extracts treated with AR06 and AR02 
Increasing amounts (0.7-5.6 nM) of purified Ape1 protein were added to SF767 cell 

extracts treated with 100 µM AR02 (A) and 50 µM AR06 (B). Each assay was performed 

in triplicate and is shown here as the average with standard error and p values were 

calculated using the Student’s t-test. (A) # = p ≤ 0.0001 - comparing lanes 4-7 with lane 

3. (B) *** = p ≤ 0.01 and # = p ≤ 0.0001 - comparing lanes 4-7 with lane 3. # = p ≤ 

0.0001 - comparing lanes 8-11 with lane 2. 
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To determine selectivity of the gel-based AP endonuclease assay for Ape1 

 To confirm that the only enzyme in the cell extract participating in this assay to 

cleave the substrate is Ape1 and that the assay is specific for Ape1, the SF767 cell 

extracts were immunodepleted of Ape1 with a polyclonal Ape1 antibody (Novus 

Biologicals, Littleton CO) specific for Ape1. Western blot analysis shows that 

immunodepletion resulted in a 10-fold decrease in Ape1 protein in the SF767 whole cell 

extracts (Figure 22). This depletion of Ape1 from the extracts also resulted in a 

concurrent reduction in the ability of the cell extracts to hydrolyze the substrate in the 

gel-based AP endonuclease activity assay (Figure 23), thus confirming that the only 

enzyme from the extracts acting in my assay is Ape1. 

 

Effect of the inhibitor compounds on the survival of SF767 glioblastoma cells 

MTT Assays to determine survival of SF767 cells after treatment with the inhibitor 

compounds alone 

 After determining the effect of the top inhibitor compounds on the activity of 

Ape1 in the in vitro studies described above, the effect of these compounds on the 

proliferation of the SF767 human glioblastoma cancer cell line was determined using the 

MTT assay. SF767 cells were treated with increasing concentrations of the four 

inhibitors, and the survival of the cells after 72 hours was determined by the addition of 

MTT reagent (129). Even a concentration of 800 µM AR01 did not affect the survival of 

the SF767 cells (Figure 24A). One of the possible reasons for this effect could be that due 

to the charge on AR01, the cellular uptake of this compound may be impaired. Some of 

the other possible reasons for this observed effect of AR01 on the SF767 cells are
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Immunodepletion of Ape1 from SF767 cell extracts – Western Blot: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Immunodepleting Ape1 from SF767 cell extracts decreases Ape1’s level 

from the cell extracts 
Western blot analysis to show reduced levels of the Ape1 protein in the immunodepleted 

SF767 cell extracts. Actin was used as a loading control. The graph is a quantitation of 

the levels of Ape1 protein by normalizing back to Actin. A representative gel is shown, 

and the assays were performed three individual times and are presented here as averages 

with standard error. P values were determined using the student’s t-test comparing the 

IgG control lanes to the lanes with the immunodepleted cell extracts # = p ≤ 0.08; *** = p 

≤ 0.0005. 
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Immunodepletion of Ape1 from SF767 cell extracts – Ape1 activity assay: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Immunodepletion of Ape1 from SF767 cell extracts decreases its AP 

endonuclease activity 
The AP endonuclease activity of the immunodepleted SF767 cell extracts is significantly 

less than the IgG treated control extracts. The graph is a quantitation of the gel – based 

AP endonuclease assay results of normal IgG controls and Ape1 depleted SF767 cell 

extracts, and the activity of the cell extracts is represented as amount of DNA cleaved. A 

representative activity gel is shown, and the assays were performed three individual times 

and are presented here as averages with standard error. P values were determined using 

the student’s t-test comparing the IgG control lanes to the lanes with the immunodepleted 

cell extracts. * = p ≤ 0.05, ** = p ≤ 0.005. 
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discussed further in the discussion section. AR03 and AR02 were cytotoxic to the SF767 

cells with and LD50 values of ~1 µM and ~7.5 µM respectively, which are similar to their 

IC50 value of 2.2 µM and 6.4 µM respectively. On the other hand a concentration of ~100 

µM of AR06 was required to kill 50% of the SF767 cells (Figure 24).  

 Based on the previous in vitro data and this cell killing data, the compounds 

AR01, AR02 and AR06 were not pursued further. AR01 was not considered further 

because it inhibits the activity of both Ape1 (Figure 14A) and endonuclease IV protein  

(Figure 16A) at similar concentrations (Table 6), and it does not appear to have much of 

an effect on the survival of the SF767 glioblastoma cell line (Figure 24A). Even though, 

AR02 and AR06 were cytotoxic to the SF767 glioblastoma cells (Figure 24 B&D), these 

compounds were also not pursued further because concentrations higher than their IC50 

values (Table 6) were required to inhibit the activity of Ape1 in the SF767 cells extracts 

(Figure 19). All further experiments were therefore performed using the AR03 

compound.  

 

To determine whether AR03 can enhance the cytotoxicity of alkylating agents in 

SF767 glioblastoma cells using the xCELLigence system  

 The xCELLigence DP system (Roche, Indianapolis IN) monitors in real time cell 

growth, attachment and spreading based on an electronic system of impedance 

measurements. The attachment of a cell to the well results in an interference in 

continuous electronic current, which is read as impedance and is a measure of the 

property of the cells’ ability to attach and grow (101, 105, 146, 209) (Figure 9). 

 I hypothesized that blocking Ape1’s activity would affect the repair of alkylation 
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damage as part of the BER pathway. Since AR03 selectively inhibits the repair activity of 

purified Ape1, of SF767 cell extracts (Table 6) and also inhibits the growth of the SF767 

glioblastoma cells at relatively similar concentrations (Figure 24C), the ability of AR03 

to enhance the cytotoxicity of a laboratory alkylating agent such as MMS and a clinical 

alkylating agent such as TMZ was determined using the xCELLigence DP system. The 

survival of SF767 glioblastoma cells treated with MMS, TMZ, and AR03 singly was 

monitored in real-time using the xCELLigence DP system (Roche, Indianapolis IN). 

AR03 as a single agent was efficient in killing the cells with an LD50 value of 1.2 µM 

(Figure 25A), which is comparable to the value obtained with the MTT assay (Table 6 & 

Figure 24 C) and a dose-dependent decrease in survival was also seen after treatment of 

the SF767 cells with MMS and TMZ (Figure 25 B&C).   

 In order to determine whether AR03 is able to enhance the cytotoxicity of MMS 

and TMZ, SF767 cells were treated with a dose of MMS or TMZ and AR03 showing 

>95% survival of the SF767 cells (Figure 25) in combination with the Ape1 repair 

inhibitor. Growth and survival of the SF767 cells was monitored in real time over 96 

hours using the xCELLigence DP system (Roche, Indianapolis IN). Treatment of SF767 

cells with a combination of the alkylating agent and the Ape1 repair inhibitor potentiated 

the cytotoxic effect of the alkylating agent (Figure 26). This data suggests that AR03 can 

enhance the cytotoxicity of MMS and TMZ further supporting my hypothesis that AR03 

inhibits Ape1 and blocks the BER pathway from completing repair. 
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Determination of cytotoxicity of AR03, MMS and TMZ on SF767 cells using the 

xCELLigence system: 
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Figure 23: Cell survival analysis of SF767 glioblastoma cells after treatment with 

AR03, MMS and TMZ alone 
The xCELLigence DP system was used to determine cell survival and growth after 

treatment with AR03 (A), MMS (B) and TMZ (C) alone. The assay was performed in 

triplicate, three individual times and shown here is a representative experiment.  
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Enhancement of MMS and TMZ cytotoxicity by AR03 in SF767 cells using the 

xCELLigence system: 
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Figure 24: Cell survival analysis of SF767 glioblastoma cells after treatment with 

AR03 in combination with MMS and TMZ 
The xCELLigence DP system was used to determine cell survival and growth after 

treatment with AR03 in combination with MMS (A) and TMZ (B). The assay was 

performed in triplicate, three individual times and shown here is a representative 

experiment. 
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Calculation of the combination index (CI) values: 

 Since increased cytotoxicity of the SF767 cells was seen with a combined 

treatment of MMS and TMZ with AR03 as compared to either agent alone (Figures 25 & 

26), the combination index (CI) values for the combined treatments were also calculated 

using the Calcusyn software based on the Chou-Talay method (30, 31, 152). By 

calculating the combination index values for a combination of two drugs one can 

determine whether they act additively, synergistically or antagonistically. A CI value less 

than 1 indicates synergy; equal to 1 indicates an additive effect and greater than 1 is 

indicative of antagonism (30, 31, 152). SF767 cells were treated with a combination of 

MMS and TMZ with AR03 and after 72 hours the combination index values were 

calculated using the Calcusyn software based on the survival curves for each agent alone 

and in combination. If AR03 inhibits the DNA repair activity of Ape1, then inhibition of 

Ape1 would potentiate the cytotoxicity of the alkylating agents due to its inability to 

repair the AP sites generated. CI values of 1.02 and 1.11 for the MMS with AR03 and 

TMZ with AR03 combinations respectively were obtained. Based on the description of 

the CI values, both values could be indicative of a nearly additive interaction (30, 31, 

152) (Table 1). While nearly additive values were obtained with a combined treatment of 

MMS and AR03, the CI value for the TMZ and AR03 combined treatment borders on 

being slightly antagonistic. In this treatment, both the agents were added together at the 

same time, however, altering the treatment schedules of the two agents may yield 

different results. For example, inhibiting Ape1’s DNA repair activity before adding MMS 

and TMZ might improve the efficacy of these alkylating agents. This can be done by pre-
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treating the cells with AR03 to inhibit Ape1’s DNA repair activity before adding the 

alkylating agents.  

Drug Combination CI value @ ED50 Description  

MMS + AR03 1.02 Nearly additive 

TMZ + AR03 1.11 Nearly additive 

 

Table 8: Combination Index (CI) values obtained for the combination treatments of 

MMS and TMZ with AR03 in SF767 glioblastoma cells 

 

AP Site Determination in SF767 cells using the ARP Assay 

 To directly test that inhibition of Ape1 in cells by AR03 would lead to an increase 

in Ape1’s substrate i.e. AP sites, I assayed the ability of the cells to repair AP sites 

generated as a result of treating the cells with the alkylating agent MMS. SF767 cells 

were treated with MMS and AR03 alone or in combination, and the number of AP sites 

formed was determined using the Aldehyde Reactive Probe (ARP) assay (109, 143). 

MMS treatment alone resulted in a ~4-fold increase in AP sites as compared to the 

control, whereas AR03 alone did not significantly increase the number of AP sites as 

compared to control. Treatment of the SF767 cellswith a combination of MMS and AR03 

resulted in a statistically significant increase in AP sites as compared to the DMSO 

control (p ≤ 0.0001), MMS alone (p ≤ 0.01) and AR03 alone (p ≤ 0.0001) (Figure 27). 

This result along with the previous data supports my hypothesis that AR03 inhibits the 

DNA repair activity of Ape1 in SF767 cells, leading to an increase in AP sites formed 

along with an enhancement of MMS-induced cytotoxicity.
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AP site determination in SF767 cells after combined treatment with MMS and 

AR03: 

 

 

 

 

 

 

 

Figure 25: AP Site determination in SF767 cells after treatment with MMS and 

AR03 alone and in combination 
In order to directly determine inhibition of Ape1 by AR03 in cells, AP site formation was 

measured using the ARP assay after treatment of the SF767 cells with AR03 and MMS in 

combination as compared to either agent alone. The assay was done in triplicate, four 

individual times, and the data presented here is an average of four individual experiments 

with standard errors. P values were determined for an n = 12 using the student’s t-test 

where MMS + AR03 is compared to AR03 alone (** = p ≤ 0.0001) and MMS alone (* = 

p ≤ 0.01). 
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CHAPTER V 

DISCUSSION 

  

My thesis project was to identify a direct and selective inhibitor of Ape1’s DNA 

repair activity using a high-throughput screening methodology with an eventual goal of 

utilizing this inhibitor to enhance the efficacy of cancer chemotherapy, specifically in 

glioblastoma. The targeting of DNA repair pathways to improve the efficacy of 

chemotherapy is an emerging strategy to combat some resistant cancers (14, 35, 42, 79, 

131). Elevated levels of the Ape1 protein are thought to contribute to the resistance of 

several cancers to chemotherapy and are also a presage of poor prognosis and survival 

(16, 18, 103, 108, 155, 162, 173, 195). Therefore, modulating or inhibiting the activity of 

Ape1 would result in increased sensitivity of such cancers to chemotherapeutic agents. 

Our efforts and those of others have shown that blocking the DNA repair activity of Ape1 

can sensitize cancers and make chemotherapy more competent and effective (17, 52-54, 

115, 121, 123, 136, 137, 159, 173, 194, 196). However, none of these compounds has yet 

entered the clinic. Ape1 is a multifunctional protein with not only a critical role in the 

repair of damaged DNA, but it also functions as a redox factor to reduce cysteine residues 

of critical transcription factors. The DNA repair activity of Ape1 has been implicated in 

resistance to chemotherapy (17, 52-54, 115, 121, 123, 136, 137, 159, 173, 194, 196) and 

the redox activity of Ape1 has been shown to be essential for cell growth and 

proliferation (68, 70, 71, 77, 129, 211, 212, 218-220). My hypothesis here was that a 

selective inhibitor of Ape1’s DNA repair activity would allow us to specifically target 

and inhibit its DNA repair activity while maintaining its redox function and other 
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interactions intact. Such an inhibitor of Ape1 would prove to be a good tool in the efforts 

to overcome drug resistant cancers and make them more sensitive to chemotherapy. 

Furthermore, I decided to focus my cell-based studies on a glioblastoma cell line (SF767) 

as a model system. Glioblastoma is one of the most fatal and common brain cancers with 

a 26% 2-year survival rate (78, 179, 182). 

 As presented in this thesis, I have identified an inhibitor of Ape1’s DNA repair 

activity, AR03, which selectively inhibits Ape1’s repair activity without affecting its 

redox activity (Figures 13B, 14B and 17B). This compound inhibits Ape1’s DNA repair 

activity in in vitro assays and in cells as observed by the significant increase in the 

number of AP sites after treatment of the SF767 cells with AR03 and the alkylating agent 

MMS. AR03 is also able to enhance the cytotoxicity of the laboratory and clinical 

alkylating agents MMS and TMZ, respectively (Figures 18B, 20B, 24A, 25 and 26). 

Thus, the increased sensitivity of the SF767 cells to the alkylating agents together with 

the increase in AP sites and the inability of Ape1 to repair them presents further proof of 

target inhibition by AR03 and emphasizes the selectivity of AR03 for Ape1.   

 

High Throughput Screening (HTS) assay for inhibitors of Ape1 

 Described here are the results of an HTS assay to identify inhibitor compounds of 

Ape1’s DNA repair (AP endonuclease) activity. For my analyses, I optimized several 

conditions of the HTS assay from the one previously described by Madhusudan et al 

(132) to screen a library of 60,000 synthetic, drug-like compounds from ChemDiv. This 

library of compounds was screened at the Chemical Genomics Core Facility (CGCF). 41 

compounds, which inhibited Ape1’s DNA repair activity by 40% or greater were 
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identified after two rounds of screening. In order to organize the positive hits, I first 

determined the IC50 values of these compounds. The compounds were tested in the HTS 

assay and the IC50 values were calculated using the Sigma Plot software (San Jose, CA) 

as described in the Materials and Methods.  

 

The four top compounds can inhibit the activity of purified Ape1 protein in another 

distinct AP endonuclease assay 

 After determining the IC50 values of the compounds, all further experiments were 

performed with 18 compounds that had an IC50 value less than 50µM (Table 3). As a 

second validation assay, I tested the ability of these compounds to inhibit purified Ape1 

protein in a separate gel-based AP endonuclease assay (Figure 8) (110). This gel-based 

AP endonuclease assay differs from the HTS assay in several ways. The oligonucleotides 

used in the two assays differ from each other in size, sequence and position of the THF 

moiety, at position 7 in the HTS assay and at position 14 in the gel-based AP 

endonuclease assay oligonucleotides respectively (Table 1). In the HTS assay, activity of 

Ape1 was monitored continuously over a period of time (5 minutes), while the gel-based 

AP endonuclease assay is an end-point assay such that after 15 minutes the activity of 

Ape1 was determined. As previously discussed, following the determination that these 

compounds can inhibit the repair function of purified Ape1 protein both in the HTS and 

the gel-based AP endonuclease assay, I chose four compounds to pursue in all further 

experiments: AR01, AR03, AR06 and AR02 (Figures 13, 14 and 15). The four distinct 

compounds, which are listed in Table 4: AR01 (2-(4-(2,5-dimethyl-1H-prryol-1-

yl)phenoxy acetic acid), AR02 4-(2,6,8-trimethylquinolin-4-ylamino)phenol), AR03 
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(2,4,9-trimethylbenzo [b][1,8] naphthyridin-5-amine) and AR06 (N-(3-chlorophenyl)-

5,6-dihyro-4H-cyclopenta [d] isoxazole-3-carboxamide), belong to separate compound 

families and have IC50 values less than 10 µM (Figure 13). 

 

Determination of selectivity of these top four compounds for Ape1 

 While absolute selectivity and specificity is always difficult to obtain, I proceeded 

to identify which of these compounds were selective for Ape1. Since the substrate for 

Ape1 is DNA and the in vitro assays also utilize oligonucleotides, it was important to 

determine that the inhibitors directly target Ape1’s function. I propose that there can be 

four ways in which these compounds can effect the observed inhibition of Ape1. 

The compounds could bind DNA 

 First, these compounds could bind DNA and thus inhibit Ape1’s activity. 

Binding of the compounds to DNA or the oligonucleotides in the assays would show up 

as positive for repair inhibition (Figure 28B). However, since the observed inhibition 

would be due to the compound binding DNA and not Ape1, it would count as a false 

positive hit. This possibility was eliminated through the testing or all the positive hits 

from the screen for DNA binding. The DNA binding ability of the compounds was 

determined using the Fluorescence Intercalator Displacement (FID) assay (66, 192). The 

top four compounds were tested in this assay by LaTeca Glass from Dr. Georgiadis’s lab. 

Any compounds that tested positive in this FID assay and my HTS assay were excluded 

from further analyses as they would not be specific for Ape1. The four top compounds 

chosen AR01, AR02, AR03 and AR06, did not bind DNA supporting my contention that 

they did inhibit Ape1’s AP endonuclease activity. 
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The compounds could directly bind Ape1 

 Secondly, the four top compounds could directly bind Ape1 and thereby inhibit 

Ape1’s DNA repair ability (Figure 28C). All four of the compounds showed inhibition of 

Ape1 in the HTS and gel-based AP endonuclease assay (Figures 13, 14 and 15). In this 

case the compounds could be specific for Ape1 and not other AP endonucleases. This 

was confirmed by determining whether these compounds could inhibit another related AP 

endonuclease. While Ape1 is the only mammalian AP endonuclease in cells, the 

endonuclease IV family of enzymes functions as the AP endonucleases in E. coli and 

yeast (47, 154). The E. coli endonuclease IV protein is also a part of the Class II family 

of endonucleases, but it belongs to a different subfamily and is structurally distinct from 

Ape1. Endonuclease IV also cuts DNA at AP sites, but not using the same active site as 

found in Ape1 (63, 141, 199). This E. coli AP endonuclease serves as a good measure to 

determine the selectivity of these potential inhibitors. Thus, one would want compounds 

that block Ape1’s DNA repair activity but not endonuclease IV activity. AR03 requires a 

16-fold higher concentration and AR06 and AR02 both require approximately 10-fold 

greater concentrations to inhibit 50% of endonuclease IV’s activity suggesting that these 

compounds could be selective for Ape1 (Figures 16B, 17A and 17B). AR01, however, 

inhibits the activity of the E. coli endonuclease IV protein at a concentration of ~1.75 µM 

(Figure 16A) which is similar to its IC50 value. If a compound inhibits the activity of both 

Ape1 and endonuclease IV, one possibility is that it binds to the AP site rather than 

binding to Ape1. This possibility will have to be confirmed before a definite conclusion 

about the method of inhibition of this compound can be drawn as some aspects of the 

active sites of Ape1 and endonuclease IV are similar (141). 
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The compounds may bind AP sites 

 A third possible way that these compounds could inhibit Ape1 occurs through 

their binding to the AP sites in DNA thereby blocking Ape1 from acting on them (Figure 

28D). This type of inhibition would be similar to that seen with methoxyamine (MX), 

which binds to the AP site and blocks Ape1’s and DNA Polymerase β’s activity by 

preventing these proteins from processing the AP sites and completing repair (85, 88). 

Such an interaction of the compounds with the AP sites would affect not only Ape1’s 

activity but also of any other enzyme acting on AP sites including the E. coli 

endonuclease IV in my assays. Figures 16B and 17 demonstrate that compounds AR03, 

AR06 and AR02 require 16-fold and 10-fold greater concentrations respectively, to 

inhibit the activity of endonuclease IV as compared to Ape1 and more than likely, these 

compounds are not AP site binders. Although AR01 inhibits Ape1’s activity, it also 

inhibits endonuclease IV’s activity at a concentration comparable to its IC50 value (Figure 

16A). This inhibition may be due to a number of reasons, one of which is that AR01 

binds to the AP sites and is therefore able to inhibit both Ape1 and endonuclease IV. As 

AR01 is a negatively charged compound, it may also effect this inhibition by mimicking 

the negatively charged phosphate groups present in the DNA backbone.  

 One possible way to further dissect out whether AR01 is specific for Ape1 or 

whether it binds to AP sites can be determined by modifying the Aldehyde Reactive 

Probe (ARP) assay, which measures the formation of AP sites in the DNA. The ARP 

reagent binds to the aldehyde group present in an open configuration AP site thereby 

tagging all the AP sites in the DNA with biotin. These biotin tagged AP sites can then be 

measured using a streptavidin bound indicator enzyme such as HRP (109, 142, 143). 
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Genomic DNA can be treated with AR01 and after a certain period of incubation, AP 

sites formed in the DNA can be measured. If AR01 binds to AP sites then the ARP 

reagent will not be able to bind to the AP sites resulting in a decrease in the number of 

AP sites measured in this assay. This would be similar to the result observed with 

Methoxyamine (MX) (54, 59, 122, 125, 165, 184), an inhibitor of the BER pathway, 

which covalently binds to AP sites and disrupts the functioning of the BER pathway. As 

an AP site binder, MX can be used as a positive control to show that there is a decrease in 

the number of AP sites measured after treatment with MX.   

 

The compounds may bind the enzyme-substrate complex of Ape1 on the DNA 

 A fourth possible way for these compounds to elicit inhibition of Ape1’s activity 

may be through their binding to the enzyme-substrate complex of Ape1 and AP site 

DNA. This type of interaction may immobilize Ape1 on the DNA, which may be due to 

one or both of the following reasons: the binding of the compounds may inhibit Ape1 

from acting on the AP sites or this interaction may prevent the dissociation of Ape1 from 

the AP sites and impedeng the access of the subsequent BER proteins to these AP sites in 

order to complete repair (Figure 28E). This possibility would be more likely in the 

cellular extracts as the extracts would contain the rest of the BER proteins required to 

complete repair. In the in vitro gel-based assay however, the binding of the compounds to 

this protein-DNA complex would prevent the dissociation of the labeled DNA from the 

rest of the oligonucleotide, cleaved as a result of Ape1’s activity. Therefore, a possible 

explanation for the inhibition of both Ape1 and endonuclease IV by AR01 may be that 
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AR01 binds AP sites or may bind to the enzyme-AP site DNA complex. However, since 

AR01 is negatively charged, it is unlikely that it will bind to the AP sites in the DNA. 

 

The top inhibitor compounds, inhibit Ape1’s DNA repair activity in SF767 cell 

extracts 

 After determining that these potential ‘hit’ inhibitors are effective against Ape1, 

their capacity to inhibit Ape1 in a cellular environment was tested. The AP endonuclease 

activity of the SF767 cell extracts was inhibited in a dose-dependent manner after 

treatment with these inhibitor compounds. AR01 and AR03 inhibited 50% of Ape1’s 

activity in the extracts at concentrations comparable to that required to inhibit pure Ape1 

(Figure 18). On the other hand, although AR02 and AR06 inhibit the activity of purified 

Ape1 protein (Figure 15), a concentration greater than 50 µM of AR02 (~93 µM) and 

AR06 (~75 µM) was required to inhibit Ape1’s repair activity in the cell extracts (Figure 

19), which may suggest off-target interactions.  

 As another way to determine inhibition of Ape1’s activity by the inhibitor 

compounds, the ability of purified Ape1 to rescue the AP endonuclease activity of SF767 

cell extracts treated with the inhibitors was determined. If the compounds inhibit Ape1’s 

DNA repair activity, then addition of increasing amounts of purified Ape1 would result in 

a gradual and linear increase in the AP endonuclease activity of the cell extracts. This is 

what I observed. The rescue of the AP endonuclease activity of the SF767 cell extracts 

treated with AR01 and AR03 was linear and dependent on the amount of Ape1 protein 

added (Figure 20). These results indicate that AR03 not only inhibits Ape1 in the cellular 

extracts, but can also inhibit the activity of the added purified Ape1 protein. This further 
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demonstrates that Ape1 is the primary target of AR03 in the processing of AP sites and 

supports my hypothesis that AR03 can selectively target Ape1. However AR01, despite 

being able to inhibit the AP endonuclease activity of the SF767 cell extracts (Figure 18A) 

also inhibits the activity of endonuclease IV at similar concentrations (2.4 µM and 1.75 

µM respectively) (Figure 16A). As mentioned above, a further clarification is warranted 

to estimate the mechanism of inhibition of AR01. Furthermore, the addition of the 

smallest amount of purified Ape1 elicited saturating levels of the AP Endonuclease 

activity even in the presence of 100 µM AR02 and 50 µM AR06 as compared to controls 

without inhibitors (Figure 21), insinuating that these compounds may interact with other 

molecules in the celluar extract.   

 

The gel-based AP endonuclease assay is specific for Ape1 and no other Ape1-like 

enzyme in the cell extracts can function in this assay 

 As an additional verification of the assay specificity, I wanted to confirm that the 

gel-based assay used to test Ape1’s inhibition in cell extracts with the inhibitor 

compounds was specific to Ape1 and that no other Ape1-like enzyme in the cell extracts 

could compensate for Ape1. Removing Ape1 from the cell extracts resulted in a 

significant decrease in the AP endonuclease activity of these cell extracts, confirming that 

Ape1 is the only protein in the cell extracts that can function in this assay (Figures 22 and 

23).  
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Ape repair inhibitor-AR01 

 Although AR01 can consistently inhibit the activity of purified Ape1 (Figure 

16A) as well as in cellular extracts (Figure 18A), it also inhibits the activity of the related 

AP endonuclease, endonuclease IV (Figure 16A) at a concentration similar to its IC50 

value (1.4 µM and 1.75 µM respectively) and does not kill SF767 cells (Figure 24A). 

There can be several reasons for AR01 not killing the SF767 cells: First, AR01 is 

negatively charged, so it might not be getting into the cells. Second, AR01 may get into 

the cells and just not effectively target Ape1. Third, if it enters the cells, it may be rapidly 

pumped out of the cells. Fourth, it could be degraded by cellular enzymes rendering it 

inactive. Alternatively, AR01 may bind to the serum proteins present in the cell culture 

media and become sequestered in the media and may not enter the cells or it may degrade 

in the media itself. One way to alter AR01 to pursue in cell-based assays would be 

derivitize the compound and change the negatively charged acetic acid to a neutral ester 

and then test the effect of this AR01 derivative on the SF767 cancer cells. Additionally, 

AR01 can be mixed with liposomes to deliver it into the cells and then measure its effect. 

 Therefore, although initially, AR01 seemed like a very promising inhibitor of 

Ape1’s DNA repair function, I decided not to pursue it further due to the above 

mentioned complicating factors. 

 

Ape repair inhibitors-AR02 and AR06 

 The AR02 and AR06 compounds can inhibit the activity of purified Ape1 (Figure 

15) at concentrations comparable to their IC50 values (Figure 13) but require ~ 10-fold 

higher concentrations to inhibit the activity of the endonuclease IV protein (Figure 17). 
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However, a concentration of ~93 µM of AR02 and ~75 µM of AR06 (Figure 19) is 

required to inhibit 50% of Ape1’s activity in the SF767 cell extracts. If these compounds 

were selective for Ape1, they would be able to inhibit the AP endonuclease activity of the 

SF767 cell extracts and would also be able to inhibit the activity of the exogenous 

purified Ape1 protein. However, addition of low concentrations of purified Ape1 protein 

resulted in the rescue of the AP endonuclease activity of SF767 cell extracts treated with 

100 µM AR02 and 50 µM AR06 to saturating levels as compared to controls without 

inhibitors (Figure 21). These two compounds are cytotoxic to the SF767 cells (Figure 

24B and D respectively), albeit at concentrations much lower than those required to 

inhibit Ape1’s activity in the cell extracts (Figure 19). This data together with the 

previous in vitro data suggests that these compounds may not be selective for Ape1, and 

the inhibition seen by AR02 and AR06 may be due to off-target effects. Additionally, 

there were problems with the solubility of AR06 when it was diluted for my assays. 

Therefore, due to all these reasons, I decided not to develop AR02, AR06 or AR01 as 

inhibitors of Ape1, and my efforts were focused on the AR03 compound.  

 

AR03 can act as a single agent against human cancer cells 

 In order for the inhibitors to be clinically and therapeutically relevant, they should 

be biologically active at physiologically attainable concentrations. Several clinical 

chemotherapeutic agents such as TMZ and radiation (IR) are used to treat a variety of 

cancers. TMZ is an alkylating agent, which induces DNA damage repaired by the BER 

pathway, while IR produces DNA strand breaks as well as reactive oxygen species 

(ROS), which generate oxidative damage also repaired by Ape1 and the BER pathway 
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(43, 56, 57, 75). Additionally, elevated levels of Ape1 in a variety of cancers including 

glioblastomas have been correlated to resistance to chemotherapy and poor survival, and 

knocking down Ape1 with antisense oligonucleotides enhanced alkylation and radiation 

sensitivity of several mammalian cancer cell lines (16-18, 173). I selected the SF767 

glioblastoma cell line to test my inhibitor compounds, as most therapeutic regimens for 

gliomas consist of alkylating agent–based chemotherapy and/or radiation therapy (180).  

 As shown in Figures 24C and 25A, AR03 effectively kills the SF767 glioblastoma 

cells in a dose dependent manner. As ~10,000 AP sites are generated per cell per day by 

the spontaneous depurination of bases due to the action of endogenous damaging agents 

resulting in the formation of AP sites, blocking Ape1 repair activity might be predicted to 

increase tumor cell killing (199). Persistence of these AP sites can be mutagenic and 

cytotoxic to the cells as it can stall replicative polymerases at AP sites giving rise to 

strand breaks (107, 126, 127, 199, 214). Also, error-prone translesion bypass polymerases 

can insert inappropriate bases opposite the AP site leading to an alteration in the 

nucleotide sequence, which are mutagenic. Additionally, single strand breaks created 

from AP sites can turn into double strand breaks leading to cytotoxicity (107, 126, 127, 

199, 214). Hence, inhibiting the DNA repair activity of Ape1 with a repair inhibitor 

would lead to an accumulation of AP sites in the cells leading to cytotoxicity (47, 199).  

 While AR03 is effective as a single agent, if AR03 does inhibit Ape1’s DNA 

repair activity, it should also enhance the cytotoxic effects of the laboratory and clinical 

alkylating agents MMS and TMZ respectively. In this case, the AP sites generated by the 

action of MMS and TMZ would be left unrepaired as AR03 would inhibit Ape1’s ability 

to process them, leading to increased cell death (47, 199). Treatment of SF767 
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glioblastoma cells with a combination of MMS or TMZ and AR03 resulted in increased 

killing of SF767 glioblastoma cells (Figure 26) compared to either agent alone (Figure 

25). These data strengthen my hypothesis that AR03 targets Ape1 and AR03 could be 

effective a single agent against the cancer cells in addition to enhancing the efficacy of 

chemotherapy.  

 

Inhibition of Ape1 in SF767 glioblastoma cells by AR03 results in an increase of 

unrepaired AP sites 

 Finally, as a direct estimation of inhibition of Ape1 by AR03 in the cells, I 

assayed for the formation of AP sites. This is the only assay that directly measures the 

substrate of Ape1, AP sites in the DNA. I hypothesized that blocking Ape1’s repair 

activity by AR03 would lead to an increase AP sites as they would not be processed by 

Ape1. A significant increase in AP sites was observed after treating SF767 cells with 

AR03 and MMS compared to either agent alone (Figure 27) as a result of Ape1’s 

inability to repair the AP sites induced by MMS. This reinforces the selectivity of AR03 

for Ape1. AR03 appears to be a promising hit compound as it is effective not only as a 

single agent, but can also be combined with existing chemotherapeutic agents to improve 

outcome in a variety of cancer cell lines. 

 In conclusion, I describe here a selective novel small molecule, AR03 that was 

identified using the high-throughput screening (HTS) methodology. AR03 has an IC50 

value of 2.2 µM for the inhibition of Ape1 in this HTS assay. AR03 inhibits the activity 

of purified Ape1 protein in two distinct assays (the solution-based HTS assay and the gel-

based AP endonuclease assay) (Figures 13C and 14B). AR03 also inhibits Ape1’s DNA 
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repair function in SF767 glioblastoma cell extracts as evidenced in Figures 18B and 20B. 

A concentration of AR03 16-fold greater than its IC50 is required to inhibit the 

structurally unrelated E. coli endonuclease IV (141), which is indicative of AR03’s 

selectively to inhibit Ape1’s DNA repair activity (Figure 16B). In addition, AR03 

functions as a single agent to kill SF767 glioblastoma cells and to enhance the 

cytotoxicity of the alkylating agents MMS and TMZ also leading to an increase in AP 

sites (Figures 25, 26 and 27). This inability of Ape1 to repair the AP sites due to 

inhibition by AR03 presents further proof of target inhibition by AR03 and emphasizes 

the selectivity of AR03 for Ape1.  

 

Ability of AR03 to target the redox activity of Ape1 

 As mentioned earlier, Ape1 is a multifunctional protein that has two major 

functions: a DNA repair activity and a redox signaling role (45, 55, 187). Since Ape1 has 

these two important functions and AR03 inhibits the DNA repair activity of Ape1, 

knowing its effect on the redox function of Ape1 would be interesting. The two functions 

of Ape1 are distinct from each other and lie far apart from each other in two different 

regions of the protein (Redox function in the N terminal and the DNA repair activity in 

the C terminal portion) (1, 205-207). Not only are these two functions physically 

separate, each function has a distinct active site and catalytic residue required for activity 

(11, 13, 45, 47, 58, 67, 128, 140). Therefore, I would not expect the redox activity of 

Ape1 to be affected by the AR03 compound. Nevertheless, the effect of AR03 on the 

redox activity of Ape1 can be determined using a redox electrophoretic mobility shift 

assay (EMSA) (129). In this assay, reduced Ape1 protein will be treated with AR03, and 
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the ability of Ape1 to reduce the cysteine residues on the transcription factor AP-1 

(Fos/Jun), a known redox target of Ape1, will be determined. If AR03 does not affect the 

redox activity of Ape1, the reduction of cysteine residues promotes binding of AP-1 to a 

consensus sequence in an EMSA gel-shift assay, which results in a shift in the position of 

AP-1 bound DNA as compared to the control (205, 206). 
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Future Directions 

Effect of combining other chemotherapy agents with AR03 in multiple cancer cell 

lines and the effect of AR03 on primary cells 

 The standard of care chemotherapy regimens for glioblastomas includes surgery 

followed by treatment with TMZ and irradiation (IR) (176, 179-182) and both of these 

agents generate lesions that are repaired by the BER pathway. My cell survival 

experiments with SF767 glioblastoma cells show that the Ape1 repair inhibitor can 

enhance the cytotoxicity of the laboratory alkylating agent MMS as well as the clinical 

agent TMZ (Figure 25). IR, which is part of the treatment for glioblastomas, also 

generates reactive oxygen species (ROS), which generate oxidative lesions (8-oxoG for 

example) in the DNA. The BER pathway in addition to repairing alkylation damage also 

repairs oxidative DNA damage (24, 200). Therefore, the ability of AR03 to enhance the 

efficacy of IR could also be determined.  Additionally, the ability of AR03 to function as 

a single agent as well as to enhance chemotherapeutic efficacy will need to be determined 

in other glioblastoma cell lines. For AR03 to be clinically relevant, it should be able to 

enhance the efficacy of the clinical chemotherapeutic agents in more than one 

glioblastoma cell line. Eventually, the AR03 inhibitor will also be evaluated in animal 

mouse models of brain tumor using orthotopic and xenograft models. 

 In addition to glioblastomas, elevated levels of Ape1 have been shown to be 

implicated in chemotherapeutic resistance of several other cancers such as breast, 

ovarian, colon, pancreatic and other diseases (16, 18, 39, 52, 53, 84, 103, 108, 130, 134, 

155, 162, 173, 195, 198, 220). AR03 can be used to improve therapeutic efficacy in the 

treatment of such cancer diseases where Ape1 has been implicated.   
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 Ape1 functions in normal and cancer cells to maintain the cell’s genomic 

integrity, and while Ape1 levels are elevated in human cancers (16, 18, 103, 108, 155, 

162, 173, 198), the effect of AR03 on normal cells will also need to be assessed. The 

bone marrow compartment is most affected after the administration of a 

chemotherapeutic agent, and the regeneration of the bone marrow cells are responsible 

for reducing the side effects of chemotherapy. Determining whether AR03 has any 

potential negative effects on such a population of the normal dividing bone marrow cells 

(CD34+ bone marrow progenitor cells) would need to be tested (219).  

 

To further characterize the repair response and DNA damage induced by AR03 

with and without treatment of chemotherapeutic agents in glioblastoma cell lines 

 In order to further characterize the effects of the Ape1 DNA repair inhibitor AR03 

in glioblastomas, the DNA damage and repair response will be analysed in the SF767 

glioblastoma cell line. Cell growth analysis using the MTT and xCELLigence assays has 

shown that AR03 can enhance the cytotoxicity of MMS and TMZ (Figures 24, 25 and 

26). In order to further determine that the enhanced cytotoxicity seen with TMZ and 

AR03 is due to inhibition of Ape1’s ability to process the AP sites formed, the amount 

and type of DNA damage will be determined. If AR03 inhibits Ape1’s DNA repair 

function, then treating the cancer cells with a combination of both agents would result in 

an increase in the AP sites (Figure 27). However, a failure to repair the persistant AP sites 

would result in these AP sites being converted to single-strand breaks (SSBs) during 

replication (20, 47, 149, 187, 202). The SSBs would ultimately be converted to double 

strand breaks (DSBs) as a result of incomplete repair (47, 69, 187, 202), and the 
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accumulation of such DNA damage would result in the cells undergoing apoptosis. The 

ability of cells to undergo apoptosis after treatment with TMZ and MX (125, 165), an 

inhibitor of Ape1’s DNA repair activity has been reported previously (53, 120, 121, 123, 

184, 191, 210).  

 The Comet assay can be used to determine the formation of SSBs and DSBs. 

Electrophoresis of the cells under different conditions allows one to assay for SSBs and 

DSBs: Under alkaline conditions, both SSB and DSB can be detected and only DSBs can 

be detected under neutral electrophoresis conditions (5, 145, 189, 190). This assay is 

based on the ability of broken DNA fragments (alkaline-sensitive AP sites or 

single/double strand breaks) to migrate out of a cell upon applying an electric current, 

whereas supercoiled undamaged DNA will not migrate out of the cells, or at a much 

lesser extent under these same conditions (5, 145, 189, 190). As an additional assay to 

measure the formation of DSBs, the levels of the phosphorylated H2A.X (γH2A.X), 

which is a marker of DSBs (164), will be determined using Western blotting techniques.  

 Apoptosis will be determined using Flow cytometry by staining the cells with 

Annexin-V and PI. Annexin-V positive and PI-negative cells will be considered positive 

for apoptosis (195).   

 

Chemical knockout of Ape1 using an inhibitor of Ape1’s DNA repair activity, AR03 

and an inhibitor of Ape1’s redox activity 

 As described previously, Ape1 is a multifunctional protein with two major 

activities, a DNA repair and a redox activity (207). In addition to these main activities, 

Ape1 interacts with a variety of proteins not only from the BER pathway but also from 
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other signaling pathways (9, 33, 41, 48, 92, 98, 112, 124, 147, 148, 151, 172). Therefore 

knocking down the levels of Ape1 in cells using the antisense oligonucleotide 

technology, not only inhibits its DNA repair activity, but also downregulates its redox 

function. The sensitization of mammalian cancer cells to a variety of chemotherapeutic 

agents after knocking down Ape1 has been previously reported by our laboratory and 

others (52, 103, 115, 130, 162, 195). Furthermore, removal of Ape1 from the cells would 

also prevent Ape1 from maintaining its protein-protein interactions and may alter its sub-

celllar location (34, 39, 44, 47, 48, 102, 139, 185) and its ability to be post-translationally 

modified (48, 50, 97, 139). This makes it difficult to attribute the observed effects on 

cellular survival definitely to the DNA repair function. Similarly, expressing a dominant-

negative form of the Ape1 protein inhibits the normal DNA repair activities of Ape1 in 

the cells (137). However, these types of studies imbalance the cellular system and make 

an interpretation of the results difficult. Being able to selectively inhibit one activity of 

Ape1 would help separate out the effects of these two activities on tumor cell survival 

and response to chemotherapy, without removing Ape1 from the cellular milieu and 

maintaining Ape1’s interactions. E3330, a small molecule compound that inhibits the 

redox function of Ape1 has been shown to inhibit the growth of human cancer cell lines 

(129, 218, 220). Therefore, combining the DNA repair inhibitor AR03 with the redox 

inhibitor, E3330 would enable us to selectively target the two major functions of Ape1 

known to be involved in tumor promotion and progression, while maintaining other 

activities.  

Therefore, understanding the role of Ape1’s DNA repair function is crucial from 

both a basic science and translational viewpoint, as is an understanding of its redox 
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function. A further understanding of the interplay between the two major functions of 

Ape1 will let us better grasp the cellular response to both endogenous and exogenous 

stress and DNA damage.  
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