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ABSTRACT 

Elisabeth A. Lasater 

DISSECTING NEUROFIBROMATOSIS TYPE 1 RELATED VASCULOPATHY 

Neurofibromatosis type 1 (NF1) is a genetic disorder resulting from 

mutations in the tumor suppressor gene NF1.  NF1 encodes the protein 

neurofibromin, which functions to negatively regulate p21Ras signaling.  NF1 has 

a wide range of clinical manifestations, including vascular disease, which is 

characterized by neointima formation and subsequent vessel occlusion.  Despite 

numerous clinical observations of NF1 vasculopathy, the pathogenesis of 

vascular lesion formation remains unclear.  To determine the consequence of 

Nf1 haploinsufficiency in vascular disease, we generated an in vivo model for 

dissecting vascular lesion formation.  In response to mechanical arterial injury, 

Nf1+/- mice have significantly enhanced neointima formation characterized by an 

accumulation of vascular smooth muscle cells (VSMCs) and excessive cellular 

proliferation and Ras activation.  Further, using the pharmacological antagonist, 

imatinib mesylate, we identified that neointima formation in Nf1+/- mice was 

directly dependent on Ras signaling through either the platelet derived growth 

factor β receptor (PDGF-βR) and/or the C-kit receptor activation.  These 

observations identify a molecular mechanism of neointima formation given that 

our group has previously demonstrated that Nf1+/- VSMCs have hyperactive Ras 

signaling through PDGF-βR activation and Nf1+/- bone marrow derived cells 

(BMDCs) have increased recruitment and survival in response to C-kit activation 

compared to WT controls.  In order to dissect the cellular contribution to 



vi 
 

neointima formation, we utilized cre/lox technology and adoptive hematopoietic 

stem cell transfer techniques to genetically delete one allele of Nf1 in endothelial 

cells, VSMCs or BMDCs individually to test which cell lineage is predominant in 

NF1 vasculopathy.  Surprisingly, in response to carotid artery injury, 

heterozygous inactivation of Nf1 in BMDCs alone was necessary and sufficient 

for neointima formation.  Specifically, Nf1 haploinsufficiency in BMDCs resulted 

in an infiltration of macrophages into the neointima, providing evidence of 

“vascular inflammation” as factor in NF1 vasculopathy.  Further, we demonstrate 

for the first time that NF1 patients have evidence of chronic inflammation 

determined by increased concentrations of circulating monocytes and pro-

inflammatory cytokines.  In sum, we provide genetic and cellular evidence of 

vascular inflammation in NF1 patients and Nf1+/- mice and provide a framework 

for understanding the pathogenesis of NF1 vasculopathy and potential 

therapeutic and diagnostic interventions. 

 

David A. Ingram, Jr., M.D. 
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INTRODUCTION

 

Neurofibromatosis Type 1. 

Neurofibromatosis type 1 (NF1) is an autosomal dominate disorder that 

affects 1 in 3500 individuals (1).  NF1 results from mutations in the tumor 

suppressor gene NF1, which encodes the protein product neurofibromin (2).  The 

NF1 gene, originally described in 1990 (3-5), spans 350 kilobases of DNA on 

chromosome 17 and contains 60 exons (6).  Although NF1 is generally 

considered a familial disorder, approximately fifty-percent of patients do not have 

an affected parent.  Consistent with this finding, the NF1 gene has been 

described as having one of the highest mutation rates in humans (7, 8), with over 

240 different  mutations described throughout the gene (9).  Mutations described 

to date include insertions, duplications, substitutions, nonsense mutations, 

frameshift mutations, and gene deletions (10), resulting in little or no protein 

product.  The germline mutations that cause NF1 affect only one allele of the 

NF1 gene (11), however, loss of heterozygosity has been described in from 

primary tumor samples taken from NF1 patients, indicating the role of NF1 as a 

tumor suppressor gene (12). 

NF1 is a complete penetrance genetic disorder and manifestation of the 

disease varies greatly among patients as well as with age.  Clinical diagnosis of 

NF1 is confirmed if a patient meets two or more of the criteria established by the 

National Institutes of Health (NIH) (13) which is defined as: 1) the presence of six 

or more café-au-lait macules over 5 millimeters (mm) in diameter for prepubertal 
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individuals or 15mm in greatest diameter for postpubertal individuals, 2) two or 

more neurofibromas or one plexiform neurofibroma, 3) axillary or inguinal 

freckling, 4) optic glioma, 5) two or more Lisch nodules, 6) distinctive osseous 

abnormality, or 7) a first degree relative diagnosed with NF1 by the NIH criteria 

(13).  Additional manifestations of NF1 which complicate clinical management 

include learning disabilities, malignant peripheral nerve sheath tumors, myeloid 

leukemias, and vascular lesions.  

 

NF1 and Vascular Disease.   

One of the least studied complications of NF1 involves disorders of the 

cardiovascular system.  Although the exact frequency of vascular lesions is 

unknown, vasculopathy is an under-recognized complication of the disease and 

contributes to excess morbidity and mortality particularly among younger patients 

(14-17).  NF1 vasculopathy was first described in 1945 (18) and was further 

classified in 1974 based on the size of the lesion and the vessel effected (19).  

Specifically, NF1 patients develop aneurysms, stenosis and arterial occlusions 

that result in cerebral and visceral infarcts (14-17, 20).  NF1 vascular lesions are 

characterized by an accumulation of vascular smooth muscle cells (VSMCs) in 

the intima area of the vessel (termed neointima formation) resulting in lumen 

occlusion (14, 21, 22). 

 In 2001, an analysis of 3,253 death certificates of persons with NF1 

indicated that the median age of death for NF1 patients was fifteen years less 

that of the general population (16).  In this report, a diagnosis suggestive of NF1 
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vasculopathy was listed 7.2 times more often than expected among NF1 patients 

less than 30 years old at time of death and 2.2 times more often than expected 

among patients 30 to 40 years old at the time of death (16).  Another study 

demonstrated that 2.5% of children with NF1 who had undergone brain MRI were 

found to have cerebrovascular system abnormalities including narrowed vessels, 

moya-moya, vascular stenosis and aneurysm (17).  Although rare, sudden death 

in individuals with NF1 has been reported in both adults and children and 

vascular lesions have been identified in these patients.  Most recently, a 22-

month old male was found to have 33% luminal reduction in the left main 

coronary artery and left anterior descending coronary artery at the time of death 

(22).  In an unrelated patient, an adolescent male had 90% luminal occlusion of 

the left main coronary artery and left anterior descending coronary artery at the 

time of death (22).  Vascular lesions described in both patients were consistent 

with NF1 vasculopathy with histopathology including intimal hyperplasia and 

VSMC proliferation (21).  Despite numerous clinical observations, the molecular 

mechanism that underlies the cardiovascular complications of NF1 is virtually 

unknown.  In 2002, the NF1 Cardiovascular Task Force made research 

recommendations with included the development of a valid experimental model 

of NF1 vasculopathy in a laboratory animal or an in vitro system to dissect the 

molecular basis of NF1-associated cardiovascular disease in order to improve 

care for patients (14).  Therefore, studies outlined in this project developed an 

expandable in vivo murine model of NF1 vasculopathy to test the hypothesis that: 
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1.  Nf1+/- mice have increased neointima formation in response to 

vascular injury compared to wildtype (WT) controls. 

2. Heterozygous inactivation of Nf1 in VSMCs directly leads to increased 

neointima formation in response to vascular injury compared to WT 

controls. 

3. Increased neointima formation in Nf1+/- mice compared to WT controls 

is a result of hyperactive signaling through the PDGF-receptor. 

   

Neurofibromin.   

Neurofibromin, the product encoded by NF1, is a 2818 amino acid protein 

(23) that contains 60 exons (6).  Neurofibromin is expressed in all cell lineages 

analyzed to date, including neurons, glial cells, Schwann cells, leukocytes, 

astrocytes, vascular smooth muscle cells (VSMCs), endothelial cells (ECs) and 

fibroblasts (24-28).  In vivo studies have demonstrated that at least some 

neurofibromin expression is required for normal development in mice.  Germline 

homozygous deletion of Nf1 is embryonic lethal around day 13.5 and dissection 

of Nf1-/- mutants determined that embryonic lethality was due to cardiac 

malformation (29, 30).  Specifically, the absence of neurofibromin during 

development results in a condition in which the pulmonary artery and aorta both 

emerge from the right ventricle.  However, Nf1+/- embryos are viable and 

development normally with no sign of cardiac malformation.  Adult Nf1+/- mice do 

not develop neurofibromas, café-au-lait macules or Lisch nodules and therefore 

are phenotypically the same to WT mice.  However, in prolonged studies over a 
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period of 27 months, Nf1+/- mice did show a predisposition to tumor formation as 

well as myeloid leukemia (30).  These observations, along with genetic studies 

that indicate NF1 is caused from mutations within a single allele provide evidence 

that NF1 is a tumor suppressor gene (31).  While, loss of heterozygosity has 

been described in some tumors isolated from NF1 patients (32-34), 

haploinsufficiency of NF1 is sufficient for many of the clinical manifestations of 

NF1 (35-39).  

The most extensively studied role of neurofibromin, to date, is its function 

regulating p21Ras (Ras) signaling.  Neurofibromin has been demonstrated to have 

a catalytic domain with sequence homology to the mammalian Ras guanosine 

triphosphate accelerating protein (GAP), p120 Ras-GAP, and the yeast Ras 

inhibitors IRA1 and IRA2 (2, 40-42).  The activity of Ras proteins is tightly 

controlled by cycling between an activated guanosine triphosphate bound state 

(Ras-GTP) and an inactivated guanosine diphosphate bound state (Ras-

GDP)(43-45).  GAP proteins, including neurofibromin, accelerate the hydrolysis 

of GTP to GDP, converting active Ras-GTP to inactivate Ras-GDP (Figure 1) and 

negatively regulating Ras signaling (2, 44, 46).  The GAP domain of 

neurofibromin spans exons 20 through 27 and introduction of only this GAP 

related domain (GRD) is sufficient to stimulate GTP hydrolysis of Ras in yeast (2, 

40, 42).  Further experiments have also shown that the GRD domain of 

neurofibromin functions as effectively as a Ras-GAP as the full length protein 

(47).  Consistent with its function, primary cells isolated from both NF1 patients 
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and Nf1+/- mice have hyperactivated Ras signaling pathways, including ECs and 

VSMCs (48, 49), which are important in maintaining vascular health. 
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Figure 1.  Schematic of Ras signaling.   
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 While neurofibromin functioning as a Ras-GAP can be attributed to many 

of the in vitro and in vivo observations described in NF1, the GAP domain only 

accounts for 10% of the NF1 gene (50), indicating additional roles of 

neurofibromin in cellular function.  Studies in Drosophila have demonstrated that 

neurofibromin positively regulates adenylyl cyclase (51-53) (Figure 2) and 

mutations within NF1 result in reduced cyclic adenosine 3’,5’-monophosphate 

(cAMP) production and downregulation of protein kinase A (PKA) signaling (51, 

52).  Homozygous NF1 mutant Drosophila present with small size and decreased 

lifespan (51, 53) that was not recapitulated by upregulation of the Ras-Raf 

signaling axis.  However, these studies identified that mutation of adenylyl 

cyclase, the enzyme which produces cAMP from adenosisne triphosphate (ATP), 

also results in small size and decreased lifespan (53).  Further, the NF1 null 

phenotype is corrected by mutation of cAMP phosphodiesterase, which inhibits 

cAMP degradation, as well as constitutive activation of PKA (53).  Along with 

identifying the signaling axis, Tong et al. (53) demonstrated that loss of 

neurofibromin resulted in increased mitochondrial oxidative stress.  These 

studies suggest that neurofibromin is a regulator of adenylyl cyclase-cAMP-PKA 

signaling.  These observations in Drosophila have encouraged the interrogation 

of neurofibromin-adenylyl cyclase signaling in mammalian cells.  Dasgupta et al. 

(54) have identified that neurofibromin positively regulates adenylyl cyclase 

activity in astrocytes regulating cellular proliferation.  Interestingly, Kim et al. (55) 

have demonstrated that neurofibromin negatively regulates cAMP production in 

Schwann cells.  These conflicting observations reveal that the function of 
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neurofibromin in regulating cAMP production is dependent on cell lineage and 

additional studies need to be completed to determine the role of neurofibromin 

and cAMP in NF1 manifestations.  To this point, in vitro studies in Dr. Ingram’s 

lab have demonstrated the ECs transduced with short hairpin RNA (shRNA) 

directed against NF1 have reduced levels of cAMP compared to control ECs 

(Figure 3).  The cellular consequence of reduced cAMP levels in neurofibromin 

deficient ECs needs to be further investigated to determine if this signaling axis is 

involved in NF1 vasculopathy.   
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Figure 2.  Simplified schematic of positive regulation of adenylyl cyclase 

activity by neurofibromin.  
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Figure 3.  Quantitative analysis of cAMP levels in control and 

neurofibromin deficient ECs.  Cytoplasmic cAMP levels in ECs transduced with 

either scrambled shRNA (Control shRNA) or shRNA targeted against NF1 (NF1 

shRNA) in pg/mol per 106 cells.  Data represents the mean cAMP levels ± SEM, 

n=3, *p=0.0245.     
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Vascular Smooth Muscle Cells, Ras Activation and Neointima Formation.   

Arteries are composed of three primary regions, the intima, media and 

adventitia.  The intima area is the innermost region of the artery and consists of a 

monolayer of ECs resting on a basement membrane within the internal elastic 

lamina.  The ECs function as a barrier between the blood and VSMCs within the 

vessel wall regulating the transmigration of cells into the vessel (56, 57).  Further, 

ECs produce nitric oxide, which is important for regulating vascular tone and a 

potent inhibitor of VSMC proliferation (58).  The media area of the vessel, the 

interior region between the internal elastic lamina and external elastic lamina, is 

composed primarily of quiescent VSMCs and extracellular matrix.  The adventitia 

is the outermost region of the vessel and is composed of fibroblasts and 

connective tissue (Figure 4).  Vascular homeostasis requires a controlled 

interaction between the three regions to inhibit the infiltration cells into the vessel 

wall from either the lumen or adventitia, as well as maintain the VSMCs within 

the media in a quiescent state.         
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Figure 4.  Schematic of an arterial cross-section and neointima formation.               

A)  Cross-section of a normal murine carotid artery that has been stained with 

Hematoxylin/Eosin (H&E) to identify nuclei (blue) and cellular cytoplasm (pink).  

Black box identifies area magnified in the right panel.  B)  Cross-section of 

murine carotid artery with neointima formation.   
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Vascular occlusive disease is characterized by an accumulation of VSMCs 

within the intima area of the vessel (neointima formation), which results in lumen 

occlusion.  Studies by others have demonstrated that in response to injury, 

VSMCs from the media migrate into the intima in response to platelet derived 

growth factor BB (PDGF-BB) where they proliferate and produce extracellular 

matrix, forming the neointima (59-61).  Arterial injury results, initially, in the 

accumulation of platelets at the sites of exposed collagen due to loss of the 

endothelium.  Platelets are a potent source of PDGF-BB which serves as a 

necessary stimulant for medial VSMCs to migrate into the intima area in 

response to injury (61, 62).  Further, the importance of PDGF-BB signaling 

through the PDGFβ-receptor (PDGFβ-R) has been elucidated in a number of in 

vivo models where mice harboring genetic mutations that increase signaling 

through the PDGFβ-R-Ras-Erk signaling axis develop exaggerated neointimal 

hyperplasia and arterial occlusive disease reminiscent of the vascular 

complications which develop in some NF1 patients (63-72). 

Ras proteins regulate the growth, survival and differentiation of many cell 

types by functioning as a molecular switch that relays signals from the 

extracellular environment to the nucleus (45, 73-76).  Therefore, based on the 

global control of Ras signaling in regulating cell function, deficiency of 

neurofibromin in VSMCs could contribute to neointima formation.  Neurofibromin 

is expressed in human and murine VSMCs and has been demonstrated to 

function as a Ras GAP, negatively regulating Ras signaling (28, 48).  In vitro data 

from our laboratory demonstrated that neurofibromin deficient human and murine 
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VSMCs have increased proliferation and migration in response to PDGF-BB and 

that the hyperactivation is abrogated by pre-incubation of the cells with either the 

Mek inhibitor PD98059 or imatinib mesylate (48).  Further, stimulation of Nf1+/- 

VSMCs demonstrated increased Erk phosphorylation in response to PDGF-BB 

stimulation compared to WT VSMCs with no difference detected in Akt 

phosphorylation between Nf1+/- and WT VSMCs (48).  This data identifies the 

canonical Ras-Raf-Mek-Erk (Ras-Erk) signaling pathway as the primary axis for 

the increased proliferation and migration of the Nf1+/- VSMCs, therefore studies 

outlined in this project will focus on Ras-Erk signaling in vivo.  Understanding the 

role of neurofibromin in VSMCs gives potential insights into NF1 vasculopathy 

given the emerging paradigm in vascular biology where tight control of the 

PDGF-BB-Ras-Erk signaling axis in VSMCs is critical for maintaining in blood 

vessel homeostasis and preventing premature development of vascular occlusive 

disease (68-72, 77, 78). 

Traditionally, the role of Ras signaling in neointima formation has centered 

on activating Ras mutations or mutation of proteins within the Ras signaling 

scaffold.  For example, Grb2 is a critical adapter molecule required for the 

activation of Ras by receptor tyrosine kinases, including the PDGFR-βR (72).  

Grb2+/- mice are resistant to neointima formation in response to mechanical 

arterial injury compared to WT controls (72).  Consistent with this result, in vitro 

studies indicate that murine Grb2+/- VSMCs have decreased proliferation and 

migration in response to PDGF-BB compared to WT controls (72).  Similar 

results were obtained through the use of a pharmacological inhibitor of Mek in 
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rats (79), as well as the adenoviral mediated transfer of a dominant negative H-

Ras into VSMCs (68), both of which prevent the development of stenotic lesions 

after mechanical arterial injury by inhibiting the proliferation and migration of 

VSMCs.  In 2004, Chen et al. (65) demonstrated that the loss of a negative 

regulator of Ras activity resulted in neointima formation in response to vascular 

injury.  The protein product of hyperplasia suppressor gene (HSG) directly binds 

to Ras, inhibiting the activation of the Ras-Erk signaling axis and inducing cell 

cycle arrest (65).  HSG protein and mRNA expression is dramatically reduced in 

hyperproliferative VSMCs in vitro as well as in response to mechanical arterial 

injury.  This finding supports the hypothesis that increased Ras-Erk signaling in 

VSMCs through the loss of a negative regulator is sufficient to drive neointima 

formation in response to injury.  Based on these observations, we hypothesize 

that Nf1+/- VSMCs would have increased migration in response to arterial injury, 

resulting in enhanced neointima formation.    

 

Endothelial Cells, Ras Activation and Neointima Formation.   

Neurofibromin has a critical role in regulating EC function.  Complete 

germline inactivation of Nf1 results in midgestation lethality due to cardiovascular 

malformations (29, 30).  Lineage specific inactivation has shown that expression 

of Nf1 in ECs is essential for normal embryonic development (80).  Utilizing 

transgenic mice that express conditional Nf1 alleles that are susceptible to cre 

mediated recombination, Gitler et al. demonstrated that complete ablation of Nf1 

in ECs driven by the EC promoter, Tie2, recapitulates the phenotype of the Nf1-/- 
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embryo (80).  These results indicate that neurofibromin plays a critical role in 

normal cardiovascular development and therefore we hypothesize that 

neurofibromin also has an important role in maintaining vessel homeostasis. 

ECs derived from NF1 patients have reduced neurofibromin expression 

consistent with heterozygous inactivation of NF1 (49).  Decreased neurofibromin 

expression results in increased Ras activation in vitro, determined by increased 

Erk phosphorylation, in response to vascular endothelial growth factor (VEGF) 

and basic fibroblast growth factor (bFGF).  Further, we have shown that primary 

human ECs derived from NF1 patients have increased proliferation and migration 

in response to VEGF and bFGF through hyperactivation of the Ras-Erk signaling 

axis (49).  The effects of prolonged activation of Ras in ECs in NF1 patients are 

unknown; although oncogenic Ras signaling in ECs has been linked to cellular 

senescence in vitro (81).  This observation is intriguing given that EC 

senescence has been associated with vascular disease in other patient 

populations (58, 82).   

Cellular senescence is an irreversible growth arrest that is generally 

attributed to telomere shortening and chromosome instability (83).  This form of 

senescence, termed replicative senescence, limits the proliferative potential of a 

cell (84-86).  Another form of senescence, termed stress-induced or premature 

senescence, is independent of telomere shortening and can be induced by a 

number of challenges, including DNA damage, oxidative stress or oncogenic 

transformation (58, 87).  The functional consequences of EC senescence, either 

replicative or premature, include decreased production of nitric oxide, decreased 
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repair ability in response to injury and increased expression of cellular adhesion 

molecules which could predispose patients to vascular lesion formation (58).    

The endothelium forms a continuous monolayer that lines the lumen side 

of the vasculature and is essential for maintaining the integrity of the vessel wall.  

Normal functioning ECs produce nitric oxide, a multi-functional compound which 

regulates vascular tone, inhibits VSMC proliferation, and has anti-inflammatory 

effects (58).  Endothelial nitric oxide synthase (eNOS), a constitutively expressed 

EC enzyme, produces nitric oxide through the conversion of L-arginine to L-

citrulline.  A hallmark of senescence and subsequent endothelial dysfunction is 

reduced nitric oxide production, which has been associated in vitro with 

decreased eNOS activity (88, 89).  Reduction in eNOS activity has been 

attributed to reduced telomerase activity (88), oxidative stress (90, 91) and 

changes in shear stress (92).  Endothelial dysfunction mediated by changes in 

shear stress or increased oxidative stress implicates the role of premature 

senescence in vascular disease (58, 93, 94) because the anti-inflammatory 

effects of nitric oxide function to inhibit platelet aggregation and adherence to 

ECs (95-97) as well as regulate the expression of leukocyte adhesion molecules, 

such as intracellular adhesion molecule 1 (ICAM-1) in vitro (98).  This is an 

interesting observation given that recruitment of circulating inflammatory cells to 

the vessel wall can result in increased oxidative stress and EC activation, 

perpetuating an inflammatory response.          

EC activation by inflammatory mediators has been linked to vascular 

disease in patient populations with lesions reminiscent of NF1 vasculopathy.  
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Increased serum levels of the pro-inflammatory cytokines tumor necrosis factor α 

(TNFα) and interleukin 6 (IL-6) have been associated with atherosclerosis and 

coronary artery disease (99-103).  Endothelial activation by inflammatory 

mediators upregulates the expression of leukocyte adhesion molecules, including 

ICAM-1 and vascular cell adhesion molecule 1 (VCAM-1) as well as the 

chemokine monocyte chemoattractant protein 1 (MCP-1) (104).  These leukocyte 

adhesion molecules and chemokines mediate the recruitment and binding of 

leukocytes to the endothelium, facilitating the transmigration of cells into the 

vessel wall (105).  The infiltration of monocytes/macrophages, natural killer (NK) 

cells, dendritic cells, T cells, B cells and mast cells have all been described in 

vascular lesion formation (106, 107).  In vivo models utilizing antibody blockade 

of adhesion molecules or genetic ablation of leukocyte receptors have 

determined that transmigration of inflammatory cells into the vessel wall is 

essential for neointima formation in response to arterial injury (108-111).  These 

observations provide a potential mechanism through which EC senescence 

results in a recruitment of circulating inflammatory cells to the vessel wall, 

initiating vascular lesion formation.                

Recent unpublished studies from Dr. Ingram’s laboratory show that ECs 

isolated from NF1 patients’ peripheral blood and expanded ex vivo undergo 

premature senescence compared to healthy donors (Figure 5).  Specifically, 

these primary cells have increased population doubling time (Figure 5b) and 

show reduced growth kinetics compared to ECs derived from healthy adult 

controls (Figure 6).  However, targeted reduction of neurofibromin in ECs by 
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shRNA does not result in premature senescence or reduced growth kinetics 

compared to controls (Figure 6), indicating that premature senescence detected 

in primary NF1 ECs is not cultural artifact and is potentially a result of increased 

stress in vivo.  Preliminary studies utilizing ECs derived from NF1 patients and 

age-matched healthy controls showed that NF1 ECs have increased oxidative 

DNA damage compared to control ECs, determined by expression of the 

oxidative DNA adduct 8-oxo-deoxyguanosine (Figure 5c).  Inflammatory cells, 

specifically monocytes and macrophages are potent sources of reactive oxygen 

species.  Recruitment of these cells to the vessel wall either through vascular 

injury, changes in shear stress, or endothelial activation by inflammatory 

cytokines could result in stress-induced premature senescence of ECs that line 

the vessel wall in NF1 patients (56, 112, 113).  Therefore, cellular dysfunction as 

a consequence of haploinsufficiency of NF1 would result in transmission of 

migratory and proliferative signals to VSMCs, and/or increased expression of 

inflammatory markers on the endothelium, promoting vascular lesion formation. 

 

 

 

 

 

 

 



23 
 

 

 

 

 

 

 

 

 

 

 



24 
 

Figure 5.  Identification of premature senescence of peripheral blood 

derived ECs from NF1 patients.  A)  Representative photomicrographs of 

senescence associated beta-galactosidase stain of age and passage matched 

ECs derived from the peripheral blood of healthy adult controls (left panel) or 

NF1 patients (right panel).  Blue staining indicates cellular senescence.  

Photomicrographs are representative of 6 independent observations.  B)  

Quantification of average population doubling time (PDT) of ECs derived from 

healthy controls and NF1 patients.  Data represents average PDT ± SEM, n=6, 

*p=0.031 by Student’s unpaired t test with Welch correction.  C)  Histogram of 8-

oxo-deoxyguanine expression in cultured ECs derived from healthy adult control 

(blue line) or NF1 patient (red line).  Green line represents negative control.      

 

 



25 
 

 

 

 

 

 

 

 

 

 

 

 



26 
 

Figure 6.  Growth kinetics of peripheral blood derived ECs and shRNA 

transduced ECs.  A)  Representative growth kinetics curve of cultured ECs 

derived from sex and age matched healthy adult control (blue line) and NF1 

patient (red line) peripheral blood indicating reduced cumulative population 

doubling level (CPDL) of NF1 patient ECs.  B)  Representative growth kinetics 

curve of human microvascular cells transduced with control shRNA (blue line) or 

NF1 shRNA (red line), n=3.     
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Bone Marrow Derived Cells and Neointima Formation.   

Bone marrow derived cell (BMDCs) are mobilized in response to vascular 

injury and are required for repair and remodeling (114, 115).  Although neointima 

formation after injury has been described as local proliferation of VSMCs, recent 

data demonstrates that bone marrow derived inflammatory cells directly 

contribute to neointima initiation and progression (111, 115-119).  Leukocyte 

transmigration into the vessel wall in response to vascular injury is essential for 

neointima formation.  The requirement for the infiltration of BMDCs in neointima 

formation has been demonstrated through genetic ablation of receptors known to 

facilitate leukocyte transmigration, including Mac-1 (111) and CCR2 (120).  Along 

with the requirement for leukocyte attachment and transmigration into the vessel 

wall in neointima formation, a recent study indicates that neointima formation is 

dependent, at least in part, on activation of the C-kit signaling pathway (115).  

Wang et al demonstrated that C-kit deficient mice have reduced neointima 

formation in response to arterial injury (115).  Further, bone marrow 

transplantation of the C-kit deficient mice with WT bone marrow restored 

neointima formation in response to injury.      

Stem cell factor (SCF) is the ligand for the C-kit receptor and activation of 

C-kit by SCF has been shown to regulate hematopoietic stem cell proliferation, 

survival and recruitment (121-124).  In vivo, circulating levels of SCF were shown 

to be increased in response to vascular injury, peaking at three days post injury 

(115).  Further, SCF deficiency attenuated neointima formation in response to 

injury (115).  This observation is intriguing given that our group provided the first 
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genetic data that Nf1+/- myeloid cells have increased proliferation, survival and 

migration mediated through SCF activation of the C-kit-Ras signaling compared 

to WT controls (125-127).  Along with SCF stimulation, Nf1+/- BMDCs have 

increased Ras activation in response to granulocyte/macrophage colony 

stimulating factor (GM-CSF) (128-130).  As with SCF, GM-CSF has been shown 

to directly influence the accumulation of BMDCs within the neointima in response 

to injury.  GM-CSF stimulation increases the adhesion of monocytes to the 

endothelium (131, 132) and activates macrophages, stimulating pro-inflammatory 

cytokine production (133), which contributes to neointima formation.  In vivo, GM-

CSF-/- mice have reduced macrophage infiltration and PDGF-BB expression 

within the neointima in response to arterial injury compared to controls (134).  

The reduced accumulation of macrophages due to GM-CSF deficiency is 

hypothesized to account for the reduction in neointima size.  Given the role of 

SCF and GM-CSF in neointima formation and the observation that Nf1+/- BMDCs 

are hypersensitive to activation by these factors, we predict that Nf1+/- mice have 

increased contribution of BMDCs to neointima formation.   

The observation that GM-CSF deficiency attenuates neointima formation 

through the reduced infiltration of macrophages identifies a potential bone 

marrow derived lineage that directly contributes to neointima formation.  Along 

with traditional phagocytic properties, macrophages produce a variety of growth 

factors and cytokines that have been implicated in neointima formation, including 

PDGF-BB which stimulates VSMC migration into the intima area of the vessel in 

response to injury (60, 61, 77, 135, 136).  VSMC migration from the media area 
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into the intima area of the vessel is an essential process in neointima formation 

(59-61) and the release of VSMCs from the extracellular matrix of the media is 

required for this migration.  Macrophages are an important source of matrix 

proteases, which degrade extracellular matrix in the vessel wall, releasing the 

VSMCs to migrate in response to chemotactic stimuli.  In vivo, arterial injury 

induces the expression and activity of the matrix metalloproteinases MMP-2 and 

MMP-9 in the vessel wall (137).  Both VMSCs and macrophages produce and 

secrete MMP-2 and MMP-9 (138-140) and inflammatory cytokines have been 

shown to upregulate the activity of these enzymes (140, 141).  Further, Bendeck 

et al. demonstrated that treating rats with an MMP inhibitor significantly reduced 

neointima formation without effecting the proliferation of medial VSMCs in 

response to injury (137).  In a murine model of neointima formation by flow 

cessation, Godin et al. demonstrated that MMP-9 expression is significantly 

upregulated in ligated carotid arteries as early as 24 hours post ligation and 

remains significantly elevated through day seven post injury (142).  The 

expression of MMPs in neurofibromin deficient VSMCs and macrophages has 

not been investigated, however we hypothesize that hyperactivation of Ras 

signaling in these cells results in increased production/secretion of the proteases, 

mediating neointima formation.  Further, we hypothesize that heterozygous 

inactivation of Nf1 in macrophage results in increased production of growth 

factors and inflammatory cytokines.  This increased macrophage activation would 

subsequently produce an environment for vascular inflammation in both Nf1+/- 

mice and NF1 patients.      
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Vascular Inflammation and Cardiovascular Disease 

 Vascular inflammation has been identified in numerous patient populations 

with vascular lesions reminiscent of NF1 vasculopathy.  Vascular homeostasis 

requires a tightly controlled interaction between vascular ECs, VSMCs and 

circulating inflammatory cells.  In response to activation by inflammatory 

cytokines, ECs increase their expression of chemoattractant proteins and cellular 

adhesion molecules, promoting the recruitment and transmigration of monocytes 

into the vessel wall (112, 143-145).  In circulation, the pro-inflammatory 

monocytes identified by CD14 and CD16 cell surface expression (CD14+CD16+) 

are a major source of inflammatory cytokines, including tumor necrosis factor α 

(TNFα), which is known to induce the expression of cellular adhesion molecules 

on the endothelium (146).  In patients with coronary artery disease, Schlitt et al. 

demonstrated that patients had higher levels of CD14+CD16+ monocytes in 

circulation compared to healthy controls and that there was a positive correlation 

between the frequency of CD14+CD16+ monocytes and the severity of disease 

(102).  Further, this report identified a significant increase in circulating TNFα 

levels that was associated with increased severity of coronary artery disease 

(102).  This observed increase in TNFα in relation to the severity of disease is 

consistent with another report that has demonstrated that levels of TNFα 

correlate with the progression of atherosclerosis (103).  Further, TNFα 

expression has been identified in atherosclerotic lesions and sites of vascular 

injury (99, 147-149) while TNFα deficiency in mice protects against neointima 
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formation in response to injury (150).  These observations identify increased 

expression of pro-inflammatory cytokines as mediators of vascular disease.    

Along with the production of pro-inflammatory cytokines, CD14+CD16+ 

monocytes effectively undergo endothelial attachment and transmigration under 

normal flow conditions due to the expression of the fractalkine receptor CX3CR1 

(151, 152).  CD14+CD16+ monocytes express high levels of CX3CR1 compared 

to other monocyte populations and tightly adhere the vessel wall upon binding to 

fractalkine (153, 154).  Fractalkine is a membrane bound chemokine that 

expressed on ECs activated by inflammatory cytokines, including TNFα and IL-

1(143).  Fractalkine and CX3CR1 produce a high-affinity interaction that allows 

for the transmigration of inflammatory monocytes into the vessel wall.  In vivo, 

CX3CR1 deficiency significantly reduces monocyte infiltration into the vessel wall 

and protects against neointima formation in response to injury (155).  To date, 

the role of inflammation in NF1 vasculopathy has not been determined.  

However, observations in other patient populations provide a mechanism for 

interrogating and understanding the development of vascular lesions in NF1.    
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MATERIAL AND METHODS 

 

Animals. 

All protocols for this study were approved by the Indiana University 

Laboratory Animal Research Center.  Nf1+/- mice were obtained from Tyler Jacks 

at the Massachusetts Institute of Technology (Cambridge, MA) in a C57BL/6.129 

background and backcrossed for 13 generations into the C57BL/6J strain.  WT 

C57BL/6 mice were obtained from Harlan Laboratories.  C57BL/6 WT and Nf1+/- 

mice were utilized for the mechanical arterial injury studies.  For the carotid 

ligation studies, Nf1flox/flox mice were obtained from Luis Parada (University of 

Texas Southwestern) and back-crossed 13 generations into the 129SvJ strain.  

Rosa26R lacZ reporter (stock #3474 ), GFP (stock #3291), SM22cre (stock 

#4746) and Tie2cre (stock #4128) mice were purchased from Jackson 

Laboratory (Bar Harbor, ME) and maintained on the C57BL/6 strain.  Nf1flox/flox 

mice were crossed with either SM22cre or Tie2cre mice to generate C57BL/6 x 

129SvJ pups.  Nf1flox/+;SM22cre and Nf1flox/+;Tie2cre mice were used for 

experiments.  Nf1+/- and WT controls were generated by crossing Nf1flox/flox 

129SvJ mice with Nf1+/- C57BL/6 mice.  Rosa26R reporter mice were crossed 

with Nf1flox/flox mice to generate Nf1flox/flox;Rosa26R reporter mice that were 

crossed with either SM22cre or Tie2cre mice.  Nf1+/- mice that ubiquitously 

express GFP were generated by crossing GFP mice with Nf1+/- mice.  Only male 

mice, at least 12 weeks of age were used for experiments. 
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Genotyping of Mice.  

 DNA was extracted from tail clippings by Proteinase K (Roche) digestion 

followed by ethanol extraction.  The Nf1 allele was genotyped by identifying the 

neomycin resistance gene (neo) expression cassette that has been inserted into 

exon 31 of the Nf1 gene (30).  The 3' primer, TTCAATACCTGCCCAAGG, is 

complementary to a 3' region of exon 31 the Nf1 gene.  The 5' primer, 

CACCTTTGTTTGGAATATATGACT, is complimentary to exon 31 of the Nf1 

gene.  The 5' Nf1 primer and 3' Nf1 primer identify the WT allele and produce a 

230 basepair (bp) fragment.  The 5' neo primer, ATTCGCCAATGACAAGAC, 

along with the 3' Nf1 primer identify the mutant allele and produce a 350-bp 

fragment (127).  The polymerase chain reaction (PCR) program for identifying 

the mutant Nf1 allele is: 95° Celsius (C) for 5 minutes, then 34 cycles of 95°C for 

30 seconds, 55°C for 1 minute and 72°C for 1 minute followed by 72°C for 7 

minutes and held at 4°C.   

 Nf1flox/+;SM22cre and Nf1flox/+;Tie2cre mice were genotyped for cre 

expression by the forward primer 5'- CATTTGGGCCAGCTAAACAT-3' and the 

reverse primer 5'- CCCGGCAAAACAGGTAGTTA-3' which yield a 450-bp 

fragment.  The PCR program for identifying cre is: 94°C for 4 minutes, 27 cycles 

of 94°C for 20 seconds, 65°C for 20 seconds and 72°C for 20 seconds followed 

by 72°C for 2 minutes and held at 4°C.  The conditional flox alleles were 

identified by using three primers.  Two primers, from intron 30 of the Nf1 allele 

yield a 480-bp fragment identifying a WT allele.  The sequence of primer 1 is 5'-

CTTCAGACTGATTGTTGTACCTGA-3' and the sequence of primer two is 5'-
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ACCTCTCTAGCCTCAGGAATGA-3'.  The third primer, 5'-TGATT 

CCCACTTTGTGGTTCTAAG-3' along with primer one yields a 350-bp fragment.  

The PCR program for identifying the conditional Nf1 allele is: 94°C for 3 minutes, 

35 cycles of 94°C for 1 minute, 55°C for 2 minutes and 72°C for 3 minutes 

followed by 72°C for 4 minutes and held at 4°C.  This reaction for the Nf1flox/+ 

mouse yields two fragments, one at 480-bp and the other at 350-bp.   

 Expression of the Rosa26R allele was identified by the combination of 

three primers with sequence 5'-AAAGTCGCTCTGAGTTGTTAT-3', 

5'-GCGAAGAGTTTGTCCTCAACC-3' and 5'-GGAGCGGGAGAAATGGATATG-

3'.  The PCR program 94°C for 4 minutes, 43 cycles of 94°C for 30 seconds, 

67°C for 30 seconds and 72°C for 30 seconds and held at 4°C yields 2 

fragments, one that is 600-bp and that is 275-bp.  A single 600-bp band indicates 

WT alleles, one 600-bp fragment and one 275-bp fragment indicates a Rosa26R 

heterozygous genotype and a single 275-bp fragment indicates a Rosa26R 

homozygous genotype.    

 

Mechanical Wire Carotid Artery Injury. 

The carotid arteries of 12-15 week old C57BL/6 WT and Nf1+/- male mice 

were mechanically injured by use of a beaded guidewire as previously described 

with minor modifications (72, 167).  In brief, animals were anesthetized by 

inhalation of isoflurane (2%)-oxygen (98%) mixture.  Under a dissecting 

microscope (Leica, Bannockburn, IL), the entire left carotid artery was exposed 

via an anterior incision of the neck.  Microvascular clamps were used to 
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temporarily occlude the common and internal carotid artery and a 6/O silk 

ligature was used to tie off the distal external carotid artery.  An epoxy resin-

beaded probe (0.45 mm to 0.6 mm diameter beads) was introduced through a 

transverse arteriotomy in the external carotid artery.  The probe was inserted and 

withdrawn into the common carotid artery three times with rotation to denude the 

endothelium and stretch the artery approximately 2 fold.  The external carotid 

artery was immediately ligated proximal to the arteriotomy site.  Microvascular 

clamps were removed and normal blood flow through the common carotid and 

internal carotid artery was reestablished.  The skin was closed with running 6/O 

suture.  The mice recovered for 21 days with no sign of stroke or surgical 

complications.    

 

Imatinib Mesylate Administration 

When stated, imatinib mesylate (50 mg/kg/day; Novartis International AG, 

Basel, Switzerland) was administrated once per day by intraperitoneal (I.P.) 

injection.  Imatinib mesylate treatment began 3 days prior to carotid injury and 

continued through day 7 post injury.  Mice recovered to 21 days post injury.  

Phosphate buffered saline (PBS; Invitrogen, Grand Island, NY) was given in an 

equivalent volume as described for imatinib mesylate as a control.  
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Histopathology and Immunohistochemistry for Mechanical Wire Carotid 

Injury. 

 Twenty-one days after carotid injury, mice were anesthetized with 1.25% 

Avertin (Sigma-Aldrich, St. Louis, MO) and were perfusion fixed in situ with PBS 

for 5 minutes followed by 4% paraformaldehyde in PBS (pH 7.3) for 10 minutes 

at a constant pressure of 100 mmHg.  The injured left and control uninjured right 

common carotid arteries were excised under a dissecting microscope, fixed in 

4% paraformaldehyde for 8-12 hours at 4°C and embedded in paraffin or snap-

frozen in O.C.T. (Sakura Finetek U.S.A., Inc. Torrance, CA) in liquid nitrogen.  

Serial 5 µm cross-sections were made at 100 µm intervals across the length of 

the artery.  Hematoxylin/Eosin (H&E) staining was conducted according to 

standard methods (Anatech, Ltd., Battle Creek, MI).  

 For immunostaining, de-waxed and hydrated sections were blocked for 

endogenous peroxidase activity with 3% hydrogen peroxide in PBS following 

antigen retrieval in Antigen Unmasking Solution (Vector Laboratories, 

Berlingame, CA) at 95°C.  Sections were blocked in 3% bovine serum albumin 

(BSA; Sigma, St. Louis, MO) for 1 hour at room temperature and were stained for 

smooth muscle cells (anti-α-SMA; Sigma, 1:400), cellular proliferation (anti-Ki67; 

DAKO Corp, Carpinteria, CA, 1:50), or Erk phosphorylation (anti-phospho-Erk; 

Cell Signaling, Danvers, MA, 1:100) for 1 hour at room temperature.  Purified 

class- and species-matched immunoglobulins (BD Pharmingen, San Jose, CA) 

were used for isotype controls.  Sections were incubated with the appropriate 

biotinylated secondary antibody (Vector Laboratories) followed by incubation with 



37 
 

either 3,3′-Diaminobenidine (DAB; Vector Laboratories) for 5 min and 

counterstained with hematoxylin, or were mounted in 90% glycerol/10% PBS, pH 

8.0, containing, 6-diamidino-2-phenylindole dihydrochloride (DAPI; Sigma) to 

permit nuclear identification.  Sections were examined and images of sections 

were collected using a Zeiss Axioskop microscope (Carl Zeiss, Chester, VA) with 

a 20X or 40X CP-ACHROMAT/0.12NA objective.  Images were acquired using a 

SPOT RT color camera (Diagnostic Instruments, Sterling Heights, MI).   

Percent positive Ki67 cells in the neointima was calculated as: (total 

number Ki67 positive cells in neointima/total cell number in neointima)*100.  

Percent positive phospho-Erk cells in the neointima was calculated as (total 

number phospho-Erk positive cells in neointima/total cell number in 

neointima)*100. 

 

Carotid Artery Ligation. 

Carotid artery injury was induced by complete ligation of the left common 

carotid artery as previously described (161).  Briefly, mice were anesthetized by 

inhalation of isoflurane (2%)-oxygen (98%) mixture.  Under a dissecting scope 

(Leica), the entire left carotid artery was exposed through a midline incision of the 

neck.  The common carotid artery was completely ligated just proximal to the 

bifurcation using 6-O silk suture (Fine Science Tools, Foster City, CA).  Mice 

recovered without for 28 days with no sign of stroke or complication.   
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Bone Marrow Transplantation. 

Femurs and tibias from WT and Nf1+/- mice that ubiquitously express GFP 

were flushed with Iscove’s Modified Dulbeccos Medium (IMDM, Invitrogen, 

Carlsbad, CA).  Whole, unfractionated bone marrow was collected and washed 

and re-suspended in IMDM.  Male, 12 week old recipient WT and Nf1+/- mice 

were conditioned by lethal irradiation (1100 rads) given at a 700 rad dose 

followed by a 400 rad dose 4 hours later.  Unfractionated bone marrow cells 

(5x10^6 cells) were injected via tail vein into conditioned recipients.  After a four 

month reconstitution period, peripheral blood was collected via tail vein bleed to 

determine percent engraftment.  Red blood cells were lysed (Qiagen, 

Germantown, MD) and mononuclear cells (MNCs) were re-suspended and 

analyzed by flow cytometry using FACS Calibur (BD, Franklin Lakes, NJ) and 

data was analyzed using FlowJo software, version 8.7.3 (Tree Star, Ashland, 

OR).  MNCs isolated from a non-transplant control were used for a negative 

control and only mice with greater than 85% engraftment were used for 

experiments. 

 

Histopathology and Immunohistochemistry for Carotid Artery Ligation. 

Twenty-eight days post ligation, whole ligated and contralateral uninjured 

carotid arteries were harvested from mice.  Mice were anesthetized with 1.25% 

Avertin (Sigma-Aldrich, St. Louis, MO) and were perfusion fixed at constant 

pressure (100mmHg) with 10 mL of 0.9% sodium chloride followed by Z-fix 

solution (Anatech) for 5 minutes at a constant pressure of 100 mmHg.  Under a 
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dissecting scope, whole carotid arteries were excised then subsequently fixed 

overnight at 4°C in Z-fix solution and paraffin embedded.  Serial, 5 μm arterial 

cross-sections were collected every 200μm across the length of the carotid 

artery.  H&E staining was performed according to standards methods (Anatech).  

Animals that showed sign of clot or thrombus formation due to carotid ligation 

were excluded from the study.    

For immunohistochemistry, paraffin-embedded sections were de-waxed 

followed by enzymatic (20μg/mL Proteinase K, Roche, Indianapolis, IN) antigen 

retrieval for 10 minutes at 37°C.  Sections were blocked with Protein Block 

(Dako, Carpinteria, CA) for 1 hour at room temperature followed by incubation 

with anti-GFP (Abcam, Cambridge, MA, 1:1000), or anti-Mac3 (BD Pharmingen, 

San Jose, CA, 1:50) primary antibodies.  Sections were incubated with the 

appropriate secondary antibody (Vector Laboratories) and visualized DAB 

development and counterstained with hematoxylin. 

For immunofluoresence co-staining, paraffin-embedded sections were de-

waxed followed by enzymatic antigen retrieval at 37°C for 10 minutes.  Sections 

were blocked with M.O.M. reagents according to manufacturer’s 

recommendations (Vector Laboratories) and incubated with anti-GFP (Abcam, 

1:1000) primary antibody followed by the appropriate biotinylated secondary 

antibody.  The sections were then co-incubated with anti-α-SMA (Sigma, 1:400) 

and AlexaFluor 546 strepavidin conjugated antibody (BD Pharmingen) and 

mounted with ProLong Gold antifade mounting media containing DAPI 

(Invitrogen). 
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Sections were visualized on a Leica DM4000 B microscope with a 20X or 

40X objective and images were captured using a SPOT RT color camera. 

 

Morphometric Analysis. 

 For morphometric analyses, images of H&E stained cross-sections of 

injured and control arteries were analyzed using Metamorph 6.1 (Universal 

Imaging System Corp, Westerchester, PA).  Lumen area, area inside internal 

elastic lamina (IEL) and area inside external elastic lamina (EEL) were measured 

for each cross-section.  The neointima area was calculated by subtracting the 

lumen area from the IEL area and the media area was calculated by subtracting 

the IEL area from the EEL area.  The intima-to-media (I/M) ratio was calculated 

as intima area divided by media area(165).  For mechanical wire injury, 5-10 

sections along the length of each artery, 100 μm apart were measured by a 

person blinded to animal genotypes.  The average neointima area and average 

I/M ratio were calculated for both the uninjured and injured artery.  An average 

was neointima area and I/M ratio was calculated for each genotype.  Percent 

lumen stenosis was calculated as: (intima area/IEL area)*100.  For the carotid 

ligation model, H&E stained arterial cross-sections at 400 μm, 800 μm, and 1200 

μm proximal to the ligation were measured for neointima area and I/M ratio as 

described.  The measurements from the three sections were averaged for each 

animal and an average neointima area and I/M ratio were calculated for each 

genotype.        
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Identification of Murine Monocytes by Flow Cytometry. 

 Peripheral blood from WT and Nf1+/- mice was collected via tail vein bleed 

into EDTA microtainer tubes (BD).  Peripheral blood was diluted 1:10 with PBS 

followed by red blood cell lysis (Qiagen).  MNCs were washed in PBS and 

blocked with mouse FcR Blocking Reagent (Milltenyi Biotec, Auburn, CA) for 30 

minutes at 4°C.  MNCs were incubated with anti-Cd11b phycoerythrin (PE; BD 

Pharmingen) and anti-F4/80 fluoroscein isothyocyanate (FITC, Invitrogen) for 30 

minutes at 4°C.  Stained MNCs were acquired on a FACS Calibur (BD).  50,000 

events were collected per sample and analyzed using FlowJo software, version 

8.7.3. 

 

Quantification of Cytokine and Chemokine Levels in Murine Peripheral 

Blood. 

 Peripheral blood from WT and Nf1+/- mice was collected via tail vein bleed 

into EDTA microtainer tubes (BD).  Samples were centrifuged at 2,000g for 20 

minutes at 4°C.  Plasma was isolated and stored at -80°C until use.  IL-1β, IL-6, 

IL-10, TNFα, IFN-γ, GM-CSF, MCP-1 and M-CSF were quantified by using a 

custom Milliplex Cytokine kit (Millipore, Billerica, MA) according to manufacturer’s 

recommendations.  Samples were analyzed by a Luminex200 version 2.3 and 

the StatLIA Immunoassay Analysis Software (Brendan Technologies, Inc., 

Carlsbad, CA) with a 5-parameter logistic curve fitting method was used to 

calculate sample concentrations.  Concentrations below the minimum detectable 

concentration were set equal to the minimum detectable concentration.         
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Patient Recruitment. 

 NF1 patients were recruited through the Indiana University 

Neurofibromatosis Clinic at Riley Hospital for Children.  All patients had a 

medical history and physical examination performed to confirm the diagnosis of 

NF1 using standard NIH clinical criteria (193).  Patients with a personal history of 

cancer, currently using anti-cancer drugs or patients who were pregnant were 

excluded from the study.  All patients gave informed consent prior to their 

participation in the study. 

 

PFC Analysis of Peripheral Blood MNCs. 

Blood samples were collected from NF1 patients (37.6±9.7 years) and age 

and sex-matched healthy controls (40.2±8.1 years) into EDTA Vacutainer tubes 

(BD Biosciences).  MNCs were isolated from 16 mLs of peripheral blood by 

density centrifugation using Ficoll-Paque Plus (GE Healthcare, Pittsburgh, PA) as 

previously described (194).  A total of 10 million MNCs were resuspended in PBS 

with 2% FBS and incubated with human FcR Blocking Reagent (Miltenyi Biotec, 

Auburn, CA) for 10 minutes at 4°C.  Following blocking, MNCs were incubated 

for 30 minutes at 4°C with the following primary conjugated monoclonal 

antibodies: anti-human CD14 PECy5.5 (Abcam), anti-human CD45 

allophycocyanin (APC)-AlexaFluor 750 (Invitrogen), and anti-human CD16 

PECy7 (BD Pharmigen) as well as the live/dead marker ViVid (Invitrogen).   

Following staining, MNCs were washed 2 times with PBS with 2% FBS and fixed 

in 1% formaldehyde (Sigma-Aldrich) for a minimum of 24 hours.  Stained MNC 
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samples were acquired on a BD LSRII flow cytometer (BD, Franklin Lakes, NJ, 

USA) equipped with a 405nm violet laser, 488nm blue laser and 633nm red 

laser.  At least 300,000 events were collected for each sample.  Data was 

collected uncompensated and analyzed using FlowJo software, version 8.7.3 

(Tree Star, Inc., Ashland, OR, USA).  The Institutional Review Board at the 

Indiana University School of Medicine approved all protocols.    

 

Quantification of Cytokines in Patient Plasma Samples.   

Blood samples were collected from NF1 patients (17±2 years, n=6) and 

healthy age-matched controls (18.5±3.4 years, n=7) EDTA Vacutainer tubes (BD 

Biosciences).  Plasma was isolated from 3 mLs of blood by centrifugation at 900g 

for 10 minutes at 4°C.  Plasma was aliquoted and stored at -80°C until use. IL-

1β, IL-6, IL-10, TNFα, GM-CSF, MCP-1, IFN-γ and fractalkine were quantified by 

using a custom Milliplex Cytokine kit (Millipore, Billerica, MA) according to 

manufacturer’s recommendations.  Only plasma samples that had not undergone 

a freeze/thaw cycle were analyzed.  Samples were analyzed by a Luminex200 

version 2.3 and the StatLIA Immunoassay Analysis Software (Brendan 

Technologies, Inc., Carlsbad, CA) with a 5-parameter logistic curve fitting method 

was used to calculate sample concentrations.  Concentrations below the 

minimum detectable concentration were set equal to the minimum detectable 

concentration.  The Institutional Review Board at the Indiana University School of 

Medicine approved all protocols. 
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Statistical Analyses. 

 All values are presented as mean ± S.E.M.  Intima area and I/M ratio 

analysis was assessed by One-way ANOVA with a Tukey post-test was 

performed using GraphPad InStat version 3.00 (GraphPad Software, San Diego 

California USA).  Percent lumen stenosis and percent Ki67 positive cells analysis 

were assessed by Student's unpaired t test with Welch correction.  Percent 

phopsho-Erk positive cells were assessed by Student's unpaired t test.  Percent 

GFP positive cells were analyzed by One-way ANOVA with a Tukey post-test.  

Patient and control plasma concentrations of IL-1β were assessed by the non-

parametric Mann-Whitney test.  Patient and control plasma concentrations of IL-6 

were log-transformed for normal distribution and assessed by Student’s unpaired 

t test.  Fractalkine levels were assessed by Student's unpaired t test with Welch 

correction.  p values <0.05 were considered significant. 
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RESULTS 

 

Development of an In Vivo Model of NF1 Vasculopathy. 

 In order to fully understand NF1 vasculopathy, an in vivo model needed to 

be developed that recapitulated the human phenotype.  The following criteria was 

established to ensure an expandable model murine was developed to interrogate 

NF1 vasculopathy: 

1. The genotype of the animal or cell lineage being investigated must 

agree with experimental findings described in NF1 patients. 

2. The established model must be reproducible and provide consistent 

results. 

3. The vascular phenotype identified in the experimental model must 

recapitulate the vascular lesions described in NF1 patients.     

 

 NF1 patients are heterozygous for NF1 and loss of heterozygosity has not 

been described in ECs or VSMCs.  Therefore, we utilized Nf1+/- mice which are 

genetically similar to NF1 patients, having one functional allele of the Nf1 gene.  

Nf1+/- mice develop normally and are phenotypically similar to WT mice.  The 

vasculature of Nf1+/- mice shows no vascular lesion formation without external 

manipulation.  To induce neointima formation, two well-established models of 

arterial injury have been described which include a mechanical injury model and 

a hemodynamic injury model.  The mechanical injury model mimics vascular 

lesion formation by denuding the endothelium through the insertion of either a 

balloon catheter (156) or a flexible wire (157) into the artery.  In this model, the 



46 
 

loss of the endothelium results in platelet aggregation on the exposed 

extracellular matrix followed by leukocyte recruitment (157).  Platelets are a 

potent source of PDGF-BB (158, 159), which stimulates VSMC migration from 

the media into the intima area (61, 62, 160).  As originally described, VSMC 

proliferation is at the highest rate 1-2 weeks post injury and reendothelialization 

of the artery is complete within 3 weeks (157).  This model is technically 

challenging with the caveat that breaking of the internal elastic lamina during 

injury can result in robust neointima formation mediated through a different 

mechanism than that of just endothelial denudation.  The second injury model, a 

ligation model, induces neointima formation through changes in hemodynamic 

forces (161).  In this model, the artery is ligated to stop the net forward flow of 

blood.  Changes in shear stress activate the endothelium to express adhesion 

molecules which facilitate leukocyte transmigration.  Further, the near static 

conditions in the ligated artery allow for platelet aggregation on the endothelium 

that can stimulate VSMC migration and proliferation into the intima.  The ligation 

model is technically easier and more consistent than the mechanical injury model 

and mimics vascular lesion formation that has been described in areas of low or 

altered shear stress in patient populations (162, 163).   

 The vascular injury models described have been utilized in numerous 

genetically engineered mice to demonstrate the role of adhesion molecules, 

signaling molecules, growth factors etc. in vascular lesion formation.  Along with 

information about the mechanism of neointima formation, these models have 

identified that murine strain and sex have a direct role in the size of vascular 
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lesion formation in response to injury.  Strain dependent studies have been 

conducted with carotid artery injury using both the mechanical wire injury model 

and arterial ligation model (164, 165).  In both studies, the C57BL/6 strain had 

one of the lower responses in terms of neointima area and intima-to-media (I/M) 

ratio and the 129/SvJ strain had an intermediate response.  In order to determine 

which strain is appropriate to identify the role of a specific protein in neointima 

formation, it is important to understand whether the mutant mouse will have a 

larger or smaller response than the WT controls.  When using the C57BL/6 

strain, the injured artery from the WT mouse does not have a significantly larger 

neointima area than the uninjured artery, therefore this strain is a poor choice if a 

reduction in neointima is the expected result from genetic manipulation.  Further, 

in response to vascular injury, female mice have been shown to have reduced 

neointima area compared to male mice of the same genotype and strain (166).  

Tolbert et al. reported that ovariectomy of the female mice corrected the sex-

dependent difference and that exogenous estrogen attenuated neointima 

formation in these mice (166).  Therefore, the use of male mice eliminates the 

variation in response to vascular injury due to the effects of estrogen.              

 

Nf1 +/- Mice Have Increased Neointima Formation and Vessel Lumen 

Occlusion in Response to Mechanical Arterial Injury. 

 Heterozygous inactivation of Nf1 increases VSMC proliferation and 

migration in response to PDGF-BB stimulation in vitro (48), which are cellular 

functions linked to neointima formation in vivo (63, 64, 68-72).  Therefore, based 

on these prior studies, we tested whether Nf1+/- mice had increased neointima 
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formation in response to mechanical arterial injury in vivo compared to WT 

controls utilizing a well established surgical model (167).  The C57BL/6 murine 

strain was utilized for these experiments since previous studies indicate that 

C57BL/6 mice are more resistant to neointima formation in response to injury 

compared to other strains (165).  Therefore, we hypothesized that use of 

C57BL/6 mice would allow us to interrogate whether Nf1 haploinsufficiency would 

enhance neointima formation on a relatively resistant murine genetic strain.   

 Briefly, the endothelium of the common carotid artery of WT and Nf1+/- mice 

was denuded using a beaded wire and the mice were allowed to recover for 21 

days postoperatively.  Whole carotid arteries were then harvested and analyzed 

to quantify the animal’s response to injury (Figure 7).  For each animal, the 

contralateral carotid artery served as an uninjured control compared to the 

injured vessel.  To quantitate differences between the two experimental 

genotypes, morphometric analysis on arterial cross-sections was completed by 

measuring lumen, intima and media area.  From these measurements, the I/M 

ratio was calculated for the injured and uninjured arteries.  The I/M ratio is a 

widely used measurement to predict the development of cardiovascular morbidity 

(168).  Of note, animals in which the internal elastic lamina was damaged by the 

mechanical injury were excluded from the study. 
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Figure 7.  Schematic of experimental strategy for assessing neointima 

formation in Nf1+/- and WT mice in response to mechanical injury of the 

carotid artery. 

 

 

 

 

 

 

 

 

 

  



50 
 

 Histological examination of the uninjured carotid arteries from WT and Nf1+/- 

mice demonstrated the absence of neointima formation and revealed no 

structural differences in vessel architecture between the two experimental 

genotypes (Figure 8A).  However, in response to arterial injury, Nf1+/- mice had 

increased vessel occlusion compared to WT controls (Figure 8A).  A 

representative low and high power image of a hematoxylin-eosin (H&E) stain of 

an arterial cross section of uninjured and injured vessels harvested from WT and 

Nf1+/- mice is shown in Figure 8A.  Detailed morphometric analysis revealed that 

the injured arteries isolated from Nf1+/- mice had a five-fold increase in intima 

area compared to WT controls (Figure 8B).  No significant difference was 

observed in the media area in response to injury between the two genotypes 

(Figure 9) indicating Nf1+/- mice have increased accumulation of cells in the 

intima area resulting in partial lumen occlusion.  Of note, the C57/BL6 WT mice 

formed a small neointima after arterial injury, which is similar to previously 

published reports utilizing this murine strain(165).  Based on intima and media 

area measurements, the average I/M ratio of the injured arteries harvested from 

Nf1+/- mice was 3.5 fold higher than WT controls (Figure 8C).  Further, Nf1+/- mice 

had a six fold increase in percent lumen stenosis in response to injury compared 

to WT mice (Figure 8D).  Therefore, this data clearly demonstrates that 

heterozygous inactivation of Nf1 greatly accelerates neointima formation and 

vessel lumen occlusion after arterial injury. 
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Figure 8.  Histological and morphometric analysis of neointima formation in 

WT and Nf1+/- mice.  A)  Representative H&E stained carotid artery cross-

sections from WT (top panel) and Nf1+/- mice.  Red arrows indicate neointima 

boundaries.  Scale bars represent 50 μm.  B)  Quantification of neointima area of 

uninjured and injured carotid arteries from WT and Nf1+/- mice.  Data represent 

mean neointima formation of 5 cross-sections ± SEM, n=5.  For Nf1+/- uninjured 

vs. injured, *p<0.05, and for WT injured vs. Nf1+/- injured, **p<0.05 by one way 

ANOVA.  C)  Quantification of I/M ratio of uninjured and injured carotid arteries 

from WT and Nf1+/- mice.  Data represent mean I/M formation of 5 cross-sections 

± SEM, n=5.  For Nf1+/- uninjured vs. injured, *p<0.01, and for WT injured vs. 

Nf1+/- injured, **p<0.05 by one way ANOVA.  D)  Quantification of percent carotid 

artery stenosis for injured WT and Nf1+/- mice.  Data represent the mean percent 

stenosis of 5 cross-sections ± SEM, n=5, *p<0.04 by Student’s unpaired t test 

with Welch correction.   
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Figure 9.  Morphometric analysis of media area in WT and Nf1+/- mice.   

Quantitative analysis of media area of injured carotid arteries from WT and Nf1+/- 

mice.  Data represent mean media area of 5 arterial cross-sections ± SEM, n=5. 
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Nf1 +/- Mice Have Increased Numbers of VSMCs in the Evolving Neointima. 

 PDGF-BB binding to its receptor activates both the Ras-Erk and PI-3 

kinase-Akt signaling pathways, which regulate the proliferation and migration of 

VSMCs (169-171).  Our previous data demonstrates that heterozygous 

inactivation of Nf1 increases both murine and human VSMC proliferation and 

migration via hyperactivation of the canonical Ras-Erk pathway and not the Ras-

PI-3 kinase-Akt pathway in vitro (48).  Therefore, in order to better understand 

the mechanism of increased neointima formation in Nf1+/- mice, we utilized 

immunohistochemistry to identify VSMCs within the neointima, proliferating 

resident neointima cells, and Erk activation after arterial injury. 

 In response to arterial injury, the evolving neointima in both WT and Nf1+/- 

mice was composed primarily of VSMCs, as detected by immunohistochemical 

staining of cells with an anti-alpha smooth muscle actin (α-SMA) antibody in 

arterial cross sections (Figure 10).  For both WT and Nf1+/- mice, VSMCs 

accounted for at least 75 percent of the cells in the neointima, which is consistent 

with previously published reports (78, 172).  This may be an underestimation of 

VSMCs in the neointima because vascular injury produces phenotypic change in 

VSMCs from a quiescent, differentiated cell to a cell with enhanced proliferation 

and migration which downregulates the expression of certain proteins, including 

α-SMA (173).  The accumulation of VSMCs within the intima area of recapitulates 

the phenotype described in case reports from NF1 patients with vascular lesions 

(14, 22).   
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Figure 10.  α-SMA analysis of carotid arteries from WT and Nf1+/- mice.  

Representative photomicrographs of uninjured (left panel) and injured (right 

panel) carotid arteries from WT (top panel) and Nf1+/- (bottom panel) mice 

stained with α-SMA (red).  Cell nuclei are counterstained with DAPI (blue) and 

tissue autofluorescence is visible (green).  White arrows indicate neointima 

boundaries.  White boxes indicate areas magnified in inset.  Scale bars represent 

100 μm.  Results are representative of 5 independent experiments.   
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Nf1 +/- Mice Have Increased Cellular Proliferation in the Evolving Neointima. 

 Intimal hyperplasia in response to arterial injury requires the migration of 

VSMCs from the media area of the vessel in to the intima area where they 

proliferate.  To determine if Nf1+/- VSMCs had increased proliferation in response 

to arterial injury, cellular proliferation in the neointima was determined by 

immunohistochemical staining of arterial cross-sections for the presence of Ki67, 

a nuclear protein that is expressed in all cells active in cell cycle (174).  The 

injured vessels harvested from Nf1+/- mice had increased cellular proliferation in 

the neointima compared to WT controls (Figure 11A).  Specifically, Nf1+/- injured 

vessels had an approximately 20 fold increase in the percent of proliferating cells 

in the neointima, which expressed the Ki67 antigen, compared to WT controls 21 

days post injury (Figure 11B).  Since the majority of the cells within the neointima 

are VSMCs, the increased neointima area in Nf1+/- mice compared to WT mice 

can be attributed to increased proliferation of VSMCs in response to mechanical 

injury.  Of note, there was little cellular proliferation detected in the uninjured 

arteries from either Nf1+/- or WT mice indicating that in the absence of a stimulus 

Nf1+/- VSMCs are not hyperproliferative in the mouse model.         
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Figure 11.  Analysis of cellular proliferation within the neointima of injured 

carotid arteries from WT and Nf1+/- mice.  A)  Representative 

photomicrographs of uninjured (left panel) and injured (right panels) carotid 

arteries from WT (top panels) and Nf1+/- (bottom panels) stained with anti-Ki67 

(brown) and hematoxylin (blue).  Black boxes in middle panel indicate areas that 

are magnified in far right panels.  Red arrows indicate neointima boundaries.  

Black arrows represent positive Ki67 staining of proliferating cells.  Scale bars 

represent 50 μm.  Results are representative of 5 independent experiments.  B)  

Quantification of percent Ki67 positive cells within the neointima of injured carotid 

arteries from WT and Nf1+/- mice calculated as (total Ki67 positive cells in 

neointima/total number of cells in neointima)*100.  Data represent the mean 

percentage of Ki67 positive cells in the neointima ± SEM, n=3, *p<0.005 by two-

tailed Student’s unpaired t test.     
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Nf1 +/- Mice Have Increased Erk Phosphorylation in the Evolving Neointima. 

 The increased proliferation detected 21 days post-injury in the Nf1+/- mice 

suggests that the cells within the neointima have hyperactive Ras-ERK signaling, 

a pathway known to control cellular proliferation.  Activation of the Ras-Erk 

pathway in vivo in response to arterial injury was determined by staining injured 

arterial cross sections with an antibody directed against phosphorylated-Erk.  

Consistent with increased numbers of VSMCs and cellular proliferation in the 

neointima, Nf1+/- mice had increased Erk phosphorylation compared to WT 

controls 21 days after arterial injury (Figure 12).  Similar to results seen with 

cellular proliferation, baseline levels of Erk phosphorylation were minimal in the 

uninjured arteries and there was no difference detected between the WT and 

Nf1+/- mice.  The hyperactivation of the Ras-Erk pathway in response to arterial 

injury provides a molecular target for understanding the mechanism of NF1 

vascular lesion formation.    
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Figure 12.  Analysis of Erk phosphorylation within the neointima of injured 

carotid arteries of WT and Nf1+/- mice.  A)  Representative photomicrographs 

of uninjured (left panels) and injured (right panels) carotid arteries from WT (top 

panels) and Nf1+/- (bottom panels) mice stained with anti-phospho-Erk (brown) 

and counterstained with hematoxylin (blue).  Black boxes in middle panel indicate 

areas magnified in far right panel.  Red arrows indicate neointima boundaries.  

Black arrowheads represent positive phosphor-Erk staining.  Data represent 5 

independent experiments.  Scale bars represent 50 μm.  B)  Quantification of 

percent phosphorylated-Erk positive cells within the neointima of injured carotid 

arteries of WT and Nf1+/- mice.  Data represent mean percentage of 

phosphorylated-Erk positive cells in the neointima ± SEM, n=3, *p<0.04 by two-

tailed Student’s unpaired t test.   
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Administration of Imatinib Mesylate Inhibits Neointima Formation in Nf1 +/- 

Mice After Mechanical Arterial Injury. 

 Imatinib mesylate is a potent inhibitor of the PDGF-BB signaling axis in 

VSMCs and prevents neointima formation and aneurysms in vivo in mice 

genetically predisposed to diverse vasculopathies (63).  Given our prior 

experimental observations implicating hyperactivation of the PDGF-BB-Ras-Erk 

signaling pathway in the neointima formation in Nf1+/- mice, we tested whether 

pre-administration of imatinib mesylate would inhibit neointima formation in Nf1+/- 

mice after arterial mechanical injury (Figure 13).  We utilized an imatinib 

mesylate treatment protocol which had previously been shown to prevent 

neointima formation in other murine models of vascular disease (115).  

Specifically, either phosphate buffered saline (PBS) or 50 mg/kg imatinib 

mesylate was administered daily to WT and Nf1+/- mice intraperitoneally 

beginning 3 days prior to arterial injury and continued for 7 days post injury.  Mice 

were then sacrificed 21 days postoperatively for analysis.   

 In response to carotid injury, imatinib mesylate treatment greatly reduced 

neointima formation in Nf1+/- mice compared to PBS treatment (Figure 14A).  

Specifically, imatinib mesylate treated Nf1+/- mice had a four-fold reduction in I/M 

ratio compared to PBS treated Nf1+/- mice (Figure 14B) in response to carotid 

injury.  No significant difference was seen in response to injury in the I/M ratios of 

WT mice when comparing PBS to imatinib mesylate treatment.  This is consistent 

with the fact that C57BL/6 WT mice are resistant to neointima formation in 

response to mechanical injury (165, 172).  Further, immunohistochemistry 
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indicates that imatinib mesylate treatment reduced cellular proliferation as well as 

Erk phosphorylation in Nf1+/- mice in response to injury compared to PBS 

treatment (Figure 15).  Thus, this data indicates that enhanced neointima 

formation in Nf1+/- in response to vascular injury is mediated via an imatinib 

mesylate sensitive pathway.  While we have identified a pharmacological 

antagonist of neointima formation in Nf1+/- mice, the cellular mechanism of 

neointima formation is unknown because imatinib mesylate inhibits more than 

one receptor.  Therefore, to fully understand NF1 vasculopathy, the predominate 

cell lineage(s) involved in neointima formation in Nf1+/- mice need to be identified.   
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Figure 13.  Schematic of imatinib mesylate inhibition of neointima 

formation.     
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Figure 14.  Histological and morphometric analysis of injured carotid 

arteries from imatinib mesylate-treated WT and Nf1+/- mice.  A)  

Representative photomicrographs of H&E-stained carotid arteries from WT (top 

panels) and Nf1+/- (bottom panels) mice 21 days following no injury and PBS 

treatment (left panels), injury and PBS treatment (middle panels), or injury and 

imatinib mesylate treatment (right panels).  Red arrows indicate boundary of 

neointima.  Scale bars represent 50 µm.  Results are representative of 5 

independent experiments.  B)  I/M ratio of injured carotid artery cross-sections 

from PBS and imatinib mesylate-treated WT and Nf1+/- mice.  Data represent 

mean I/M ratio of 5 cross-sections ± SEM, n=4 to 6 mice.  For Nf1+/- uninjured vs. 

injured with PBS treatment, *p<0.001; for Nf1+/- injured with PBS vs. injured with 

imatinib mesylate treatment, **p<0.001; and for WT injured with PBS treatment 

vs. Nf1+/- injured with PBS treatment, ***p<0.05 by one-way ANOVA with Tukey 

post-test.  
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Figure 15.  Analysis of α-SMA, Ki67, and Erk phosphorylation within the 

neointima of injured carotid arteries from imatinib mesylate-treated Nf1+/- 

mice.  Representative photomicrographs of α-SMA staining (left panels) of 

carotid artery cross-sections from injured Nf1+/- PBS-treated (top panels) and 

Nf1+/- imatinib mesylate-treated (bottom panels) mice.  α-SMA staining is seen in 

red, DAPI nuclear dye is blue and murine tissue autofluorescence is green.  

White arrows indicate neointima boundary.  White boxes indicate area magnified 

in inset.  Representative images of Ki67 (middle panels) and phoshophorylated-

Erk (right panels) staining of carotid artery cross-sections counter-stained with 

hematoxylin (blue).  Red arrows indicate neointima boundary.  Black arrowheads 

represent positive Ki67 or phosphorylated-Erk staining (brown).  Black boxes 

indicate areas magnified in insets.  Results are representative of 5 independent 

experiments.  Scale bars represent 50 µm.   
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Heterozygous Inactivation of Nf1 in ECs and VSMCs Alone is Insufficient to 

Recapitulate Neointima Formation of Nf1+/- Mice. 

In order to determine the cellular mechanism of NF1 vasculopathy, we 

initially generated mice, utilizing cre/lox technology, that were heterozygous for 

Nf1 in ECs alone or VSMCs alone.  Briefly, Nf1flox/flox mice, which contain 

conditional Nf1 alleles susceptible to Cre mediated recombination, were crossed 

with either Tie2cre or SM22cre mice to generate Nf1flox/+;Tie2cre and 

Nf1flox/+;SM22cre progeny (Figure 16).  Tie2cre mice express Cre recombinase 

under the control of the Tek promoter, which is expressed uniformly in ECs 

resulting in deletion of floxed sequences in ECs (175).  In the SM22cre mice, Cre 

recombinase expression is driven by the smooth muscle cell specific promoter, 

transgelin, resulting in deletion of floxed sequences in smooth muscle cells, 

including VSMCs in the carotid artery (176).  Cre expression was mapped 

utilizing the Rosa26 reporter mouse, which expresses lacZ in response to Cre 

expression (177) to demonstrate the generation of experimental mice that are 

heterozygous for Nf1 only in ECs (Nf1flox/+;Tie2cre) or VSMCs (Nf1flox/+;SM22cre) 

with all other cell lineages containing both Nf1 alleles (Figure 16).   

To interrogate the role of Nf1 in ECs and VSMCs, Nf1flox/+;Tie2cre and 

Nf1flox/+;SM22cre mice, respectively, underwent carotid artery ligation and 

analysis for neointima formation along with experimental controls.  Carotid artery 

ligation is a well-established model that induces neointima formation through 

changes in hemodynamic forces (161).  Briefly, the common carotid artery was 

completely ligated proximal to the bifurcation and the mice recovered for 28 days 
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post-operatively.  Whole ligated carotid arteries along with the contralateral 

uninjured carotid arteries were harvested from each animal and analyzed for 

neointima formation as previously described (161).   

Histological analysis of H&E stained arterial cross-sections from the 

uninjured carotid artery demonstrated that WT, Nf1+/-, Nf1flox/+;Tie2cre and 

Nf1flox/+;SM22cre are not structurally different and showed no sign of neointima 

formation (Figure 17).  Analysis of the ligated carotid arteries indicated that only 

Nf1+/- mice have significantly enhanced neointima formation in response to 

arterial injury (Figure 17 and 18) with no difference in neointima formation 

detected between WT, Nf1flox/+;Tie2cre and Nf1flox/+;SM22cre mice.  Specifically, 

Nf1+/- mice have a five-fold increase in I/M ratio compared with WT, 

Nf1flox/+;Tie2cre and Nf1flox/+;SM22cre mice (Figure 17c).  This data demonstrates 

that heterozygous inactivation of Nf1 in ECs or VSMCs alone is insufficient for 

neointima formation in Nf1+/- mice after vascular injury.   

   

 

 

 

 

 

 

 

 



73 
 

 

Figure  16.  Breeding scheme for the generation of Nf1flox/+;Tie2cre and 

Nf1flox/+;SM22cre mice.    
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Figure 17.  Histological and morphometric analysis of WT, Nf1+/-, 

Nf1flox/+;Tie2cre and Nf1flox/+;SM22cre mice.  A)  Representative H&E stained 

cross-sections uninjured (left panel) and injured (right panel) carotid arteries from 

WT, Nf1+/-, Nf1flox/+;Tie2cre and Nf1flox/+;SM22cre mice.  Red arrows indicate 

neointima boundaries.  B)  Quantification of neointima area of uninjured (open 

bars) and injured (black bars) carotid arteries from WT, Nf1+/-, Nf1flox/+;Tie2cre 

and Nf1flox/+;SM22cre mice.  Data represent the mean neointima area of 3 arterial 

cross-sections (400 μm, 800 μm and 1200 μm proximal to the ligation) ± SEM, 

n=4-7, *p<0.001 for Nf1+/- uninjured vs. Nf1+/- injured and Nf1+/- injured vs. WT 

injured, Nf1flox/+;Tie2cre injured and Nf1flox/+;SM22cre injured by one-way 

ANOVA.  C)  Quantification of I/M ratio of uninjured (open bars) and injured 

(black bars) carotid arteries from WT, Nf1+/-, Nf1flox/+;Tie2cre and 

Nf1flox/+;SM22cre mice.  Data represent the mean I/M ratio of 3 arterial cross-

sections (400 μm, 800 μm and 1200 μm proximal to the ligation) ± SEM, n=4-7, 

*p<0.001 for Nf1+/- uninjured vs. Nf1+/- injured and Nf1+/- injured vs. WT injured, 

Nf1flox/+;Tie2cre injured and Nf1flox/+;SM22cre injured by one-way ANOVA with 

Tukey post-test. 
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Figure 18.  Histological analysis of WT, Nf1+/-, Nf1flox/+;Tie2cre and 

Nf1flox/+;SM22cre mice.  Representative H&E stained arterial cross-sections 

from injured Nf1+/-, Nf1flox/+;Tie2cre and Nf1flox/+;SM22cre mice (left panel).  Black 

box indicates area magnified in right panel.  Red arrows indicate neointima 

boundaries.   
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Nf1+/- Bone Marrow Derived Cells Are Necessary and Sufficient for 

Neointima Formation. 

Previous reports demonstrate that infiltration of BMDCs, especially 

leukocytes and macrophages, significantly contributes to neointima formation 

(108, 110, 111).  We have previously reported that Nf1+/- BMDCs have increased 

migration and proliferation in response to multiple growth factors implicated in 

neointima formation (125-127).  Therefore, to test the hypothesis that Nf1+/- 

BMDCs enhanced neointima formation, we utilized adoptive hematopoietic stem 

cell transfer techniques.  BMDCs isolated from Nf1+/- or WT mice that 

ubiquitously express green fluorescent protein (GFP) were transplanted into 

conditioned Nf1+/- or WT recipients to generate Nf1+/- mice with either WT or 

Nf1+/- GFP bone marrow (BM) and WT mice with either WT or Nf1+/- GFP BM 

(Figure 19).  Bone marrow engraftment was determined after four months by 

determining the percent of GFP positive mononuclear cells in peripheral blood by 

flow cytometric analysis.  Mice with greater than 85% engraftment (Figure 20) 

underwent carotid artery ligation as previously described. 
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Figure 19.  Experimental strategy for adoptive hematopoietic stem transfer.   
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Figure 20.  Determination of percent bone marrow engraftment.           

A)  Representative forward-scatter (FSC-H) side-scatter (SSC-H) profile of whole 

MNCs from murine peripheral blood.  Black box represents live events gated for 

GFP expression analysis.  B)  Representative histogram of percent GFP 

expression in MNCs.  Red line represents GFP negative control.  Blue line 

represents MNCs from a mouse transplanted with GFP positive bone marrow. 
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Uninjured arteries from each transplant group were morphologically similar 

and showed no evidence of neointima formation (Figure 21).  In response to 

carotid artery ligation, Nf1+/- mice transplanted with WT BM had a 10 fold 

reduction in neointima area (Figure 21a-b and 22) and a 9 fold reduction in I/M 

ratio compared to Nf1+/- mice reconstituted with Nf1+/- BM (Figure 21c).  Further, 

WT mice transplanted with Nf1+/- BM had a 20 fold increase in neointima area 

(Figure 21b) and I/M ratio (Figure 21b) compared to WT mice reconstituted with 

WT BM.  The observation that transplantation of WT BM into Nf1+/- mice 

completely abrogates neointima formation indicates that heterozygous 

inactivation of Nf1 in BMDCs is necessary and sufficient for neointima formation 

in response to vascular injury.  
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Figure 21.  Histological and morphometric analysis of WT and Nf1+/- mice 

transplanted with WT and Nf1+/- bone marrow.  A)  Representative H&E 

stained cross-sections of uninjured (left panels) and injured (right panels) carotid 

arteries from WT (top panels) and Nf1+/- (bottom panels) mice transplanted with 

WT or Nf1+/- BM.  Red arrows indicate boundaries of neointima.  B)  

Quantification of neointima area of uninjured (open bars) and injured (black bars) 

carotid arteries from WT or Nf1+/- recipients transplanted with WT or Nf1+/- BM.  

Data represent the mean neointima area of 3 arterial cross-sections (400 μm, 

800 μm and 1200 μm distal to the ligation) ± SEM, n=5-8.  *p<0.001 for WT mice 

transplanted with Nf1+/- BM uninjured vs. WT mice transplanted with Nf1+/- BM 

injured and Nf1+/- mice transplanted with Nf1+/- BM uninjured vs. Nf1+/- mice 

transplanted with Nf1+/- BM injured, and **p<0.001 for WT mice transplanted 

with Nf1+/- BM and Nf1+/- mice transplanted with Nf1+/- BM vs. WT mice 

transplanted with WT BM and Nf1+/- mice transplanted with WT BM injured by 

one-way ANOVA with Tukey post-test.  C)  Quantification of I/M ratio of uninjured 

(open bars) and injured (black bars) carotid arteries from WT or Nf1+/- recipients 

transplanted with WT or Nf1+/- BM.  Data represent the mean I/M ratio of 3 

arterial cross-sections (400 μm, 800 μm and 1200 μm distal to the ligation) ± 

SEM, n=5-8.  *p<0.001 for WT mice transplanted with Nf1+/- BM uninjured vs. WT 

mice transplanted with Nf1+/- BM injured and Nf1+/- mice transplanted with Nf1+/- 

BM uninjured vs. Nf1+/- mice transplanted with Nf1+/- BM injured, and **p<0.001 

for WT mice transplanted with Nf1+/- BM and Nf1+/- mice transplanted with Nf1+/- 
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BM vs. WT mice transplanted with WT BM and Nf1+/- mice transplanted with WT 

BM injured by one-way ANOVA with Tukey post-test. 
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Figure 22.  Histological analysis of WT and Nf1+/- mice transplanted with WT 

and Nf1+/- bone marrow.  Representative H&E stained arterial cross-sections 

from injured WT and Nf1+/- mice that have been transplanted with either WT or 

Nf1+/- bone marrow (BM).  Black box indicates area magnified in lower panel.  

Red arrows indicate neointima boundaries.  
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Nf1+/- Mice Have Evidence of Vascular Inflammation. 

To further understand the cellular mechanism of Nf1+/- BMDCs in 

neointima formation, we identified BMDCs within the neointima in response to 

injury.  Utilizing immunohistochemistry, uninjured and injured carotid artery cross-

sections from each transplant group were co-stained with an anti-GFP antibody, 

to identify BMDCs, and an α-SMA antibody, to identify VSMCs.  We utilized an 

anti-GFP antibody given the amount of autofluorescence inherent in murine 

tissue.  Uninjured carotid arteries for each transplant group showed no 

accumulation of BMDCs within the vessel (Figure 23a).  In response to injury, 

WT mice transplanted with Nf1+/- BM had a 12 fold increase in the accumulation 

of GFP positive BMDCs within the neointima compared to WT mice reconstituted 

with WT BM (Figure 23).  Similarly, Nf1+/- mice transplanted with Nf1+/- BM had a 

14 fold increase in the number of GFP positive BMDCs within the neointima 

compared to Nf1+/- mice transplanted with WT BM (Figure 23b).  Surprisingly, 

despite no difference in neointima size, Nf1+/- mice transplanted with Nf1+/- BM 

had a two fold increase in the number of GFP positive BMDCs within the 

neointima compared to WT mice transplanted with Nf1+/- BM in response to 

carotid ligation (Figure 23b) with no difference in the total number of cells within 

the neointima.  This observation indicates that heterozygous inactivation of Nf1 in 

other cell lineages enhances the recruitment/survival of BMDCs in Nf1+/- mice 

transplanted with Nf1+/- BM.  Of note, arterial cross-sections showed no 

colocalization of GFP positive cells with α-SMA positive cells (Figure 23a) 
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indicating that the VSMCs within the neointima are locally derived and not bone 

marrow derived VSMCs.    
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Figure 23.  Identification of VSMCs and BMDCs within the neointima of WT 

and Nf1+/- mice transplanted with WT and Nf1+/- bone marrow.  A)  

Representative photomicrographs of uninjured (left panels) and injured (right 

panels) carotid arteries from WT (top panels) and Nf1+/- (bottom panels) mice 

transplanted with either WT or Nf1+/- bone marrow (BM).  VSMCs are stained 

with anti-α-SMA (red) and anti-GFP (green).  Cell nuclei are visible by DAPI stain 

(blue) and some tissue autofluorescence is visible (green).  White arrows indicate 

neointima boundaries.  Yellow boxes identify area of injured WT and Nf1+/- mice 

transplanted with Nf1+/- BM magnified in the far right panel.  B)  Quantification of 

the total number of GFP positive cells within the neointima of WT and Nf1+/- 

recipient mice after carotid ligation.  Data represents the mean GFP positive cells 

within the neointima 600 μm distal to the ligation ± SEM, n=6.  *p<0.05 for injured 

WT mice transplanted with WT BM vs. injured WT mice transplanted with Nf1+/- 

BM and injured Nf1+/- mice transplanted with WT BM vs. injured Nf1+/- mice 

transplanted with Nf1+/- BM and **p<0.05 for injured WT mice transplanted with 

Nf1+/- BM vs. injured Nf1+/- mice transplanted with Nf1+/- BM by one-way ANOVA 

with Tukey post-test. 
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Heterozygous Inactivation of Nf1 in VSMCs and BMDCs Increased the 

Accumulation of BMDCs Within the Neointima Compared to WT VSMCs.  

In order to determine if heterozygous inactivation in an additional cell 

lineage increased the accumulation of BMDCs in the neointima, we generated 

Nf1flox/+;SM22cre mice reconstituted with Nf1+/- BM.   In response to carotid artery 

ligation, the Nf1flox/+;SM22cre mice transplanted Nf1+/- BM had similar neointima 

formation to both Nf1+/- and WT mice transplanted Nf1+/- BM.  Further, 

immunohistochemistry demonstrated that Nf1flox/+;SM22cre mice reconstituted 

with Nf1+/- BM had equivalent accumulation of BMDCs as the Nf1+/- mice 

transplanted with Nf1+/- BM (Figure 24).  This observation indicates that 

heterozygous inactivation of Nf1 in VSMCs enhanced the recruitment/survival of 

Nf1+/- BMDCs to the site of vascular injury in Nf1+/- mice transplanted with Nf1+/- 

BM compared to WT mice transplanted with Nf1+/- BM.  In future studies in Dr. 

Ingram's lab, the role of neurofibromin in the production of chemokines and 

cytokines from Nf1+/- VSMCs will be determined in vitro and in vivo.     
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Figure 24.  Identification of GFP positive BMDCs within the neointima or 

WT, Nf1+/- and Nf1flox/+;SM22cre mice transplanted with Nf1+/- BM.  A)  

Representative photomicrographs of injured carotid arteries from WT (left panel), 

Nf1+/- (middle panel) and Nf1flox/+;SM22cre (right panel) mice transplanted with 

Nf1+/- bone marrow (BM) stained with anti-GFP (brown) and counterstained with 

hematoxylin (blue).  Red arrows indicate neointima boundaries.  B)  

Quantification of the total number of GFP positive cells within the neointima of 

WT, Nf1+/- and Nf1flox/+;SM22cre mice transplanted with Nf1+/- bone marrow.  

Data represents the mean total number of GFP positive cells within the neointima 

600 μm distal to the ligation ± SEM, n=3-6.  *p<0.05 for Nf1+/- vs. WT and 

**p<0.01 for Nf1flox/+;SM22cre vs. WT by one-way ANOVA with Tukey post-test.   
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Heterozygous Inactivation of Nf1 in BMDCs Leads to Vascular Inflammation 

in Response to Injury.   

Carotid artery ligation results in the deposition of platelets and leukocytes 

on the endothelium and the transmigration of leukocytes into the vessel wall.  

Specifically, monocytes and macrophages have been shown to play an essential 

role in neointima formation.  To further define the cellular mechanism of 

neointima formation in WT and Nf1+/- mice reconstituted with Nf1+/- BM, we 

utilized immunohistochemistry to identify the lineage of BMDCs within the 

neointima.  Anti-CD45 immunohistochemistry demonstrated that the BMDCs 

within the neointima were leukocytes (Figure 25).  To further identify the BMDCs 

within the neointima, carotid artery cross-sections were analyzed for the 

presence of lymphocytes and macrophages.  Lymphocytes and macrophages 

are inflammatory cells, which secrete growth factors and cytokines that have 

been implicated in neointima formation in response to injury (178-183).  Further, 

our group has demonstrated that neurofibromin is a critical regulator of Ras 

activation in both lymphocytes and mast cells in vitro and in vivo (126, 184).  

Based on immunohistochemistry, lymphocytes (Figure 26) did not significantly 

accumulate in the neointima or vessel wall of injured arteries in any of the 

experimental genotypes.  However, anti-Mac3 staining of injured carotid arteries 

demonstrated that the majority (>80%) of the GFP positive cells within the 

neointima of all transplant groups were macrophages (Figure 27).  Consistent 

with the results of anti-GFP immunohistochemistry, WT and Nf1+/- mice 

transplanted with WT BM had minimal accumulation of macrophages within the 
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intima area compared with WT and Nf1+/- mice reconstituted with Nf1+/- BM in 

response to injury (Figure 27).  This observation suggests that Nf1+/- BMDCs 

contribute to neointima formation through increased recruitment and/or survival 

of monocytes into the vessel wall where they differentiate into macrophages and 

drive enhanced neointima formation.   
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Figure 25.  Immunohistochemical analysis of CD45 positive cells within the 

neointima.  Representative photomicrographs of injured carotid arteries from WT 

(left panel) and Nf1+/- (right panel) recipient mice transplanted with Nf1+/- BM 

stained with an anti-CD45 antibody (brown) and counterstained with hematoxylin 

(blue).  Red arrows indicate neointima boundaries.  Black arrows represent 

positive staining.     
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Figure 26.  Immunohistochemical analysis of CD3 positive cells within the 

neointima.  Representative photomicrographs of injured carotid arteries from WT 

(top panels) and Nf1+/- (bottom panels) recipient mice transplanted with WT BM 

(left panels) or Nf1+/- BM (right panels) stained with an anti-CD3 antibody (brown) 

and counterstained with hematoxylin (blue).  Red arrows indicate neointima 

boundaries.  Black arrows represent positive staining.     
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Figure 27.  Identification of macrophage accumulation within the neointima 

of WT and Nf1+/- mice transplanted with Nf1+/- bone marrow.  Representative 

photomicrographs of injured  carotid artery cross sections from WT (top panels) 

and Nf1+/- (bottom panels) mice transplanted with WT (left panels) or Nf1+/- BM 

(middle and right panels) stained with anti-Mac3 antibody (brown) and 

counterstained with hematoxylin (blue).  Red arrows indicate neointima 

boundaries.  Black arrows represent positive Mac3 staining.  Black boxes identify 

area of injured WT and Nf1+/- mice transplanted with Nf1+/- BM that is magnified 

in the far right panel.    
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Based on this observation, we investigated whether heterozygous 

inactivation of Nf1 leads to increased numbers of circulating monocytes.  

Peripheral blood samples were taken from uninjured WT and Nf1+/- mice and 

complete blood count analysis completed.  At baseline, Nf1+/- mice have a 1.5 

fold increase in the percentage of circulating monocytes compared to WT mice 

(Figure 28a).  In order to determine if neurofibromin regulates the migration, 

proliferation and adhesion of macrophages, which are cellular functions critical 

for the recruitment and retention of macrophages in the vessel wall, we isolated 

and purified macrophages from the bone marrow of Nf1+/- and WT mice.  

Stimulation of the macrophages with macrophage colony stimulating factor (M-

CSF), a growth factor critical in neointima formation, demonstrated that Nf1+/- 

macrophages had a two-fold increase in proliferation (Figure 28b) and migration 

(Figure 28c) compared to WT macrophages.  Further, Nf1+/- macrophages 

showed significantly increased adhesion on fibronectin compared to WT 

macrophages (Figure 28d).  Consistent with increased accumulation of Nf1+/- 

macrophages into the neointima in vivo, this data clearly demonstrates that 

heterozygous inactivation of Nf1 increases macrophage migration, proliferation 

and adhesion in vitro.  Collectively, this cellular and genetic data demonstrates 

that neointima formation in Nf1+/- mice is directly related to increased “vascular 

inflammation” and accumulation of BMDCs, especially macrophages, into the 

evolving neointima. 
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Figure 28.  Effect of heterozygous inactivation of Nf1 in macrophages in 

vitro.  A)  Complete blood analysis of percent monocytes in circulation from 

peripheral blood from WT (open bars) and Nf1+/- mice (black bars).  Data 

represents the average percentage ± SEM, n=8, *p=0.02 for Nf1+/- vs. WT by 

Student’s unpaired t test.  B)  Proliferation of WT (open bars) and Nf1+/- (black 

bars) bone marrow derived macrophages in response to M-CSF stimulation.  

Data represents average CPM (thymidine counts per minute) ± SEM, n=4, 

*p<0.001 for WT macrophages 0 ng M-CSF vs. WT macrophages stimulated with 

30ng, 40ng and 50ng M-CSF and **p<0.001 for Nf1+/- macrophages stimulated 

with M-CSF vs. WT macrophages stimulated with M-CSF by one-way ANOVA 

with Tukey post-test.  C)  Haptotaxis of WT and Nf1+/- macrophages in response 

to 100ng M-CSF.  Data represents average number of migrated cells ± SEM, 

*p<0.001 for WT macrophages stimulated with 0ng M-CSF vs. WT macrophages 

stimulated with 100ng M-CSF, **p<0.001 for WT macrophages stimulated with 

0ng M-CSF vs. Nf1+/- macrophages stimulated with 0ng M-CSF and #p<0.001 for 

Nf1+/- macrophages stimulated with 0ng M-CSF vs. Nf1+/- macrophages 

stimulated with 100ng M-CSF by one-way ANOVA with Tukey post-test.  D)  

Adhesion of WT and Nf1+/- macrophages to fibronectin.  Data represents average 

optical density (600nm) ± SEM, n=4, *p<0.001 for WT macrophages vs. Nf1+/- 

macrophages and **p<0.01 for Nf1+/- macrophages at 60 min vs. Nf1+/- 

macrophages at 15 min, 30 min and 45 min by one-way ANOVA with Tukey post-

test.   
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Nf1+/- Mice Do Not Have Evidence of Chronic Inflammation. 

 The increased macrophage function observed in vitro suggests that Nf1+/- 

mice may exhibit chronic inflammation due to the increased function of Nf1+/- 

macrophages.  To determine if Nf1+/- mice have evidence of chronic 

inflammation, we assayed for the presence of inflammatory cytokines and 

chemokines in plasma isolated from the peripheral blood of uninjured Nf1+/- mice 

and WT mice.  Analysis of plasma samples demonstrated that there was no 

difference in circulating levels of the cytokines IL-1β, IL-6, IL-10 and TNFα, or the 

chemokines M-CSF and MCP-1 between Nf1+/- mice and WT mice (Figure 29).  

This is not a surprising observation given that Nf1+/- mice do not develop vascular 

lesions in the absence of an external challenge.  Therefore, in order to determine 

the acute effects of carotid artery ligation in future studies, plasma samples need 

to be collected at early timepoints post-injury and assayed for increased levels of 

inflammatory cytokines.  Preliminary data suggests that carotid artery ligation 

may increase the levels of circulating Cd11+Gr-1+ monocytes in Nf1+/- mice above 

baseline at 24 hours post-ligation compared to WT mice (Figure 30).  However, 

in order to determine if there is a significant increase in circulating monocytes 

and increased levels of inflammatory cytokines and chemokines in Nf1+/- mice in 

response to injury, multiple studies need to be completed to analyze peripheral 

blood samples from injured mice at numerous timepoints.  Studies will be 

continued in Dr. Ingram’s lab to identify whether carotid artery ligation results in 

acute systemic inflammation in Nf1+/- mice by assaying for increased 
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inflammatory cytokines production as well as dissecting the role of Nf1+/- 

macrophages in neointima formation.   
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Figure 29.  Analysis of circulating inflammatory cytokines and chemokines 

in Nf1+/- and WT mice.  Circulating levels of cytokines and chemokines in 

plasma samples isolated from uninjured WT (open bars) and Nf1+/- (black bars) 

mice.  Data represents the average pg/mL ± SEM, n=8.   
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Figure 30.  Flow cytometric analysis of circulating monocytes 24 hours 

post-ligation.  Peripheral blood analysis of circulating Cd11b+Gr-1+ monocytes 

in WT (left panel) and Nf1+/- (right panel) mice 24 hours post-ligation.  Black box 

identifies the Cd11b+Gr-1+ population. 
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NF1 Patients Have Evidence of Chronic Inflammation   

Given the observation of vascular inflammation in Nf1+/- mice in vivo in 

response to injury, we tested whether NF1 patients had cellular and cytokine 

evidence of vascular inflammation by assaying for previously established 

biomarkers linked to human vasoocclusive disease.  Utilizing mulitparameter flow 

cytometry, we analyzed mononuclear cells isolated from the peripheral blood of 

NF1 patients and age and sex-matched healthy controls for inflammatory 

monocyte populations.  The frequency of total circulating monocytes was initially 

determined by assaying total mononuclear cells for monocytes that co-expressed 

the cell surface antigens, CD45 and CD14 (185).  NF1 patients had significantly 

increased frequencies of circulating monocytes compared with healthy controls 

(Figure 31a).  We further measured specific circulating monocyte populations to 

identify pro-inflammatory monocytes, which co-express CD14 and CD16 

(CD14+CD16+) (186).  Pro-inflammatory monocytes have been identified in the 

peripheral blood of patients with coronary artery disease and atherosclerosis 

(102, 107) and have been shown to produce more inflammatory cytokines 

compared to classical monocytes (146, 186).  Analysis of NF1 patient peripheral 

blood monocytes identified a population of monocytes that had increased CD16 

expression (CD14dimCD16bright) compared to the traditional CD14+CD16+ 

population, a population that was not observed in peripheral blood samples from 

healthy controls (Figure 31b).  Based on a side scatter profile, the population of 

CD14dimCD16bright monocytes is larger in size compared with other monocyte 
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populations, indicating the cells have increased granularity, a characteristic of 

monocyte activation (187).   
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Figure 31.  Identification of circulating monocytes from peripheral blood of 

healthy adult controls and NF1 patients.  A)  Representative PFC analysis of 

peripheral blood monocytes by CD14 and CD16 cell surface expression in 

healthy adult controls (left panel) and NF1 patients (right panel).  Black box 

identifies CD14dimCD16bright monocyte population.  Data represents 5 

independent observations.  B)  Quantification of the frequency of CD45+CD14+ 

monocytes in circulation from healthy adult control and NF1 patient peripheral 

blood MNCs.  Data represents the mean frequency ± SEM, n=5, *p=0.024 by 

Student's unpaired t test with Welch correction.  C)  Quantification of the 

frequency of CD45+CD14dimCD16bright monocytes in circulation from healthy adult 

control and NF1 patient peripheral blood MNCs.  Data represents the mean 

frequency ± SEM, n=5, *p=0.0012 by Student's unpaired t test.   
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Pro-inflammatory monocytes produce a numerous inflammatory cytokines 

and chemokines that have been implicated in neointima formation.  Therefore, 

based on the increased levels of circulating monocytes and the presence of an 

activated monocyte population, we hypothesized that NF1 patients would also 

have increased levels of inflammatory cytokines and chemokines in their 

peripheral blood, a correlation that has been made in other patient populations 

with the progression of vascular disease (100, 103, 188, 189).  We analyzed 

plasma samples from NF1 patients and healthy controls for the presence of the 

specific pro-inflammatory cytokines IL-1β, IL-6, interferon-γ (IFN-γ) and TNFα.  

Analysis of plasma samples from NF1 patients with no known vascular disease 

(17±2 years, n=6) and healthy controls (18.5±3.4 years, n=7) showed a trend 

toward increased levels of IFN-γ (p=0.4399) and TNFα (p=0.17) as well as the 

growth factor GM-CSF (p=0.4228) but were not significant with the limited 

sample set (Figure 32).  Further, the plasma samples showed no difference in 

levels of the chemoattractant protein MCP-1 between control and NF1 patient 

samples (Figure 32).  However, significantly elevated levels of IL-1β and IL-6 

were observed in the plasma samples from NF1 patients compared to controls 

(Figure 33).  The production of pro-inflammatory cytokines has been linked to the 

activation of the endothelium and increased expression of chemokines involved 

in the recruitment of monocytes to the vessel wall (112, 143, 144, 151, 190).  

Interestingly, NF1 patient plasma samples had significantly elevated levels of 

soluble fractalkine (Figure 33), an adhesion molecule expressed on inflamed 

endothelium, which is involved in rapid, high-affinity binding of monocytes (151, 
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191, 192).  The increased number of circulating monocytes and production of 

inflammatory cytokines provides direct evidence of chronic inflammation in NF1 

and elevation of biomarkers previously identified as critical risk factors in other 

patient populations with vascular disease reminiscent of NF1 vasculopathy. 
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Figure 32.  Analysis of inflammatory cytokines and chemokines from NF1 

patient and healthy control plasma.  Determination of cytokine levels in 

plasma isolated from control peripheral blood and NF1 patient peripheral blood.  

A) IFN-γ levels in pg/mL from control and NF1 patient plasma samples.  Data 

represents the average pg/mL ± SEM, n=6.  B)  TNFα levels in pg/mL from 

control and NF1 patient plasma samples.  Data represents the average pg/mL ± 

SEM, n=6.  C)  GM-CSF levels in pg/mL from control and NF1 plasma samples.  

Data represents the average pg/mL ± SEM, n=6.  D)  MCP-1 levels in pg/mL 

from control and NF1 plasma samples.  Data represents the average pg/mL ± 

SEM, n=6.   
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Figure 33.  Analysis of inflammatory cytokines and chemokines from NF1 

patient and healthy control plasma.  Determination of cytokine levels in 

plasma isolated from control peripheral blood and NF1 patient peripheral blood.  

A)  IL-1β levels in pg/mL.  Data represents the average pg/mL ± SEM, n=6, 

*p=0.014 by Mann-Whitney test.  B)  IL-6 levels in pg/mL.  Data represents the 

average pg/mL ± SEM, n=6, *p=0.046 by Student's unpaired t test of log 

transformed data.  C)  Fractalkine levels in pg/mL.  Data represents the average 

pg/mL ± SEM, n=6-8, *p=0.0393 by Student's unpaired t test with Welch 

correction. 
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DISCUSSION 

 

NF1 is an autosomal dominant genetic disorder with a wide range of both 

malignant and non-malignant clinical manifestations.  In contrast to some NF1 

cancers where loss of heterozygosity at the NF1 allele is a prerequisite for tumor 

development, many of the non-malignant complications of NF1, including 

learning disorders, skeletal abnormalities and vascular disease occur secondary 

to aberrant NF1+/- cellular functions within a specific tissue microenvironment (21, 

37, 38, 50, 126).  Thus, study of the effects of NF1 haploinsufficiency in different 

cell lineages is imperative for understanding the diverse morbidities associated 

with NF1.  Vasculopathy associated with NF1 is an under-recognized 

complication of the disease and contributes to significant premature morbidity 

and mortality in patients.  NF1 vasculopathy was first described in 1945 (21).  

Since the original report, multiple clinical studies demonstrate that different 

locations within the entire arterial tree may be affected in NF1 patients (15, 20).  

An important tool for understanding the pathogenesis of NF1 vasculopathy is the 

development of in vivo animal models, which accurately recapitulate some, if not 

all, aspects of the clinical disease. 

An emerging paradigm in vascular biology is that neointima formation in 

response to injury is tightly controlled by the Ras-Mek-Erk signaling axis in 

resident cells within the vascular wall including endothelial cells and VSMCs (66, 

68-71, 171).  Specifically, prior animal studies indicate that increased Ras 

activation augments VSMC proliferation and migration, and the subsequent 
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development of vascular lesions (63, 65, 68, 72).  These vascular lesions are 

characterized by intimal wall hyperplasia and neointima formation, which 

ultimately leads to occlusive vascular disease.  In support of the importance of 

Ras in occlusive vascular disease, adenoviral mediated transfer of a dominant 

negative H-Ras into VSMCs prevents the development of stenotic lesions in rats 

after mechanical arterial injury by inhibiting the proliferation and migration of 

VSMCs (68).  Similar results were obtained when animals were treated with a 

chemical Ras farnesyltransferase inhibitor prior to arterial mechanical injury (69). 

Finally, when genetically engineered mice harboring constitutively active 

PDGF-βR only in VSMCs were intercrossed with low density lipoprotein receptor 

knockout mice, which have a predisposition to developing atherosclerosis, the 

mutant progeny developed aneurysms and a marked susceptibility to 

atherosclerosis (63).  The mutant mice also showed hyperproliferation of VSMCs 

and increased Erk activation in vivo (63).  Consistent with the central pathogenic 

role of hyperactivation of the PDGF-βR-Ras-Erk signaling pathway in controlling 

VSMC proliferation in vivo, mutant mice treated with imatinib mesylate, an 

inhibitor of PDGF-βR signaling, did not develop atherosclerosis or aneurysms 

(63).  Collectively, these studies provide a paradigm where hyperactivation of 

Ras and the PDGF-βR signaling pathway activates a discrete set of biochemical 

effectors which potentiates VSMC proliferation and migration in vivo.  

Recent genetic and biochemical studies from Dr. Ingram's laboratory 

demonstrated that neurofibromin functions as a formal Ras GAP in both murine 

and human VSMCs in vitro (48).  Specifically Nf1+/- VSMCs have increased 
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migration and proliferation in response to PDGF-BB stimulation via 

hyperactivation of the Ras-Erk signaling pathway (48).  Given the importance of 

PDGF-βR-Ras-Erk signaling in vascular lesion formation in vivo and the 

observation that Nf1+/- VSMCs have increased proliferation and migration in vitro 

in response to PDGF-BB, we utilized a well-established model of arterial injury to 

develop an in vivo model of NF1 vasculopathy. 

 

Development of an in vivo model of NF1 vasculopathy. 

In order to develop a model that properly reflected human disease, we 

utilized Nf1+/- mice, which are genetically similar to NF1 patients.  To date, loss of 

heterozygosity has not been described in the vascular cells of NF1 patients and 

therefore haploinsufficiency of Nf1 was appropriate for this model.  Nf1+/- mice do 

not develop vascular lesions in the absence of an external challenge.  In order to 

induce vascular lesion formation, we utilized a carotid artery injury model which 

mimics arterial microinjury by denuding the endothelium (157).  Loss of the 

endothelium, exposes the underlying matrix and collagen to the circulation, 

initiating a wound healing response.  Initially, platelets are recruited to the 

exposed collagen followed by leukocyte recruitment (111, 157).  Platelets are a 

potent source of PDGF (158, 159), which has been reported to be necessary to 

stimulate the migration of quiescent medial VSMCs into the intima area of the 

vessel (61, 62, 160).  The migration and proliferation of VSMCs in the intima area 

continues until reendothelialization of the lumen has occurred.   
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Utilizing C57Bl/6 male mice, we demonstrated that Nf1+/- mice had 

enhanced neointima formation in response to carotid artery injury compared to 

WT mice (Figure 8).  Specifically, Nf1+/- mice had a five-fold increase in neointima 

area compared to WT mice which resulted in approximately 35% lumen stenosis 

(Figure 8).  Morphologically, the neointima of Nf1+/- mice was reminiscent of 

vascular lesions described in NF1 patients.  Immunohistochemistry was used to 

determine the cellular content of the neointima and anti-α-SMA staining 

demonstrated that greater than 75% of the cells within the neointima of Nf1+/- 

mice were VSMCs, consistent with clinical reports from NF1 patients.  Further, 

immunohistochemistry demonstrated that Nf1+/- mice had significantly increased 

cellular proliferation within the neointima 21 days post vascular injury compared 

to WT mice (Figure 11).  Proliferation of VSMCs, a function known to be 

regulated in vitro by Ras-Erk signaling (48), suggests that arterial injury results in 

Ras activation in Nf1+/- mice.  Using phospho-Erk as a marker of Ras activation, 

we determined that vascular injury results in hyperactivation of the Ras-Erk 

signaling axis in Nf1+/- mice, resulting in enhanced neointima formation (Figure 

12).  Consistent with our prior in vitro observations, we now provide data in the 

present study to demonstrate that haploinsufficiency at Nf1 in vascular wall 

resident cells leads to hyperactivation of Erk, increased VSMC proliferation, and 

formation of an enlarged neointima in vivo in response to injury.  This observation 

is consistent with the concept that precise regulation of the Ras-Erk signaling 

axis is critical for maintenance of vascular wall homeostasis and lumen integrity.  
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Pharmacological Inhibition of Neointima Formation in Nf1+/- Mice. 

Imatinib mesylate is a potent inhibitor of both PDGF-βR-Ras-Erk signaling 

and C-kit receptor activation in vivo (195) and prevents neointima formation in 

other mouse models after arterial injury (63, 115).  Based on these prior studies 

and the fact that Nf1+/- VSMCs are hypersensitive to PDGF-BB stimulation in 

vitro, we tested whether imatinib mesylate could prevent or delay neointima 

formation in Nf1+/- mice after vessel injury.  In Figure 14, we demonstrated that 

treatment of Nf1+/- mice with imatinib mesylate completely abrogates neointima 

formation in response to injury.  The inhibition of neointima formation is 

accompanied by an inhibition of cell proliferation and Ras-Erk activation (Figure 

15).  In this model, mice were treated with imatinib mesylate daily for 10 days as 

previously described (115), beginning three days prior to injury to ensure a 

therapeutic, steady-state level of imatinib mesylate in circulation on the day of 

injury.  The mice continued recovering from day 7 through day 21 with no 

imatinib mesylate administration.  These observations indicate that the events 

necessary for neointima formation in Nf1+/- mice occur within the first week after 

injury and are a result of either PDGF-βR or C-kit activation.   

While we do detect inhibition of Erk activation and proliferation in VSMCs 

in the vessel wall with imatinib mesylate treatment in vivo, it is possible that 

imatinib mesylate also prevents the influx of BMDCs to the evolving neointima in 

Nf1+/- mice to account for the observed treatment effect.  In support of this 

concept, recent murine genetic studies demonstrate that activation of the C-kit 

receptor in BMDCs mobilizes either VSMCs or cells that express VSMC antigens 
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to enhance the progression of an evolving neointima by either direct cellular 

integration or paracrine stimulation of resident cells in the vessel wall (115, 196).  

This observation is especially intriguing since previous studies from our group 

demonstrate that Nf1+/- bone marrow derived cells have increased proliferation, 

migration, and survival in response to Kit ligand stimulation both in vitro and in 

vivo(125-127).             

This model has established that arterial injury results in enhanced 

neointima formation in Nf1+/- mice, characterized by increased accumulation of 

VSMCs and hyperactive Ras-Erk signaling compared to WT mice.  These 

observations are important since they recapitulate the phenotype of NF1 patients 

and are consistent with in vitro reports of hyperactive neurofibromin deficient 

VSMCs.  While these studies establish that Nf1 haploinsufficiency is sufficient to 

predispose mice to an enlarged neointima compared to WT controls in vivo, 

several questions remain.  Blood vessels are composed primarily of a continuous 

monolayer of ECs surrounded by VSMCs.  Dysfunction of either cell type can 

result in intimal hyperplasia, which can ultimately lead to occlusive vascular 

disease.  Further, animal studies of arterial mechanical injury have now shown 

that mobilization and transmigration of BMDCs into the intima in response to 

vascular injury directly contributes to neointima formation (111, 115-117, 196).  

Therefore, based on the complex interaction between cells in response to arterial 

injury and the global control of Ras signaling, it is essential that the predominant 

cell lineage(s) involved in neointima formation in Nf1+/- mice be dissected in order 

to determine the optimal treatment and prevention of NF1 vasculopathy.   
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Dissecting the Cellular Contribution to NF1 Vasculopathy. 

Vessel wall homeostasis requires a tightly regulated interaction between 

vascular cells and circulating BMDCs.  The endothelium functions as a barrier 

between the VSMCs within the vessel wall and the blood, controlling the 

transmigration of circulating cells into the vessel and inhibiting the proliferation 

and migration of VSMCs within the vessel wall (56, 57).  Endothelial dysfunction 

can be caused by a number of factors including oxidative stress, inflammatory 

cytokine activation, changes in shear stress or injury (113, 197-200).  A hallmark 

of endothelial dysfunction is the reduced production of nitric oxide, a potent 

inhibitor of VSMC proliferation (201).  Further, endothelial activation by 

inflammatory cytokines or changes in shear stress upregulates the expression of 

adhesion molecules on the surface of the endothelium, recruiting circulating 

inflammatory cells to the vessel wall (56, 112, 113, 202, 203).  Endothelial 

activation is one of the first steps in vascular inflammation, initiating a cascade of 

events that, if unchecked, result in vascular lesion formation (105, 204).  

Neurofibromin is a known critical regulator of Ras activation in ECs, VSMCs and 

BMDCs, however it remains unclear whether endothelial dysfunction, 

hyperproliferation or migration of VSMCs or increased activation of circulating 

BMDCs is the predominant factor in neointima formation in Nf1+/- mice.  

Therefore, we interrogated the role of heterozygous inactivation of Nf1 in ECs, 

VSMCs and BMDCs to neointima formation. 

In this study, we demonstrated that heterozygous inactivation of Nf1 in 

ECs or VSMCs alone was insufficient to recapitulate the enhanced neointima 
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formation observed in Nf1+/- mice in response to carotid ligation.  Carotid ligation 

was chosen for inducing neointima formation in these studies because of the 

techniques reproducibility.  Neointima formation in response to carotid ligation 

results from changes in shear stress and the migration of leukocytes into the 

vessel wall (108, 161).  In our studies, morphometric analysis showed that WT, 

Nf1flox/+;Tie2cre and Nf1flox/+;SM22cre had similar neointima formation in 

response to ligation, and all were significantly lower than Nf1+/- mice (Figure 17 

and 18).  However, heterozygous inactivation of Nf1 in BMDCs alone was 

sufficient for neointima formation in response to vascular injury (Figure 19 and 

20).  Specifically, we showed that both WT and Nf1+/- mice reconstituted with 

Nf1+/- BMDCs had enhanced neointima formation characterized by an 

accumulation of BMDCs in response to carotid ligation (Figure 18 and 19).  At 28 

days post-ligation, mice transplanted with WT bone marrow had minimal 

neointima formation, suggesting that heterozygous inactivation of Nf1 results in 

increased recruitment and accumulation of BMDCs.  Specifically, 

immunohistochemistry demonstrated that in WT and Nf1+/- mice reconstituted 

with Nf1+/- BM, 25-30% of the cells within the neointima were bone marrow 

derived determined by GFP expression (Figure 23).  The presence of Nf1+/- 

BMDCs within the neointima at 28 days post-ligation suggests inflammation is a 

predominant factor in neointima formation given that in the original report of 

carotid artery ligation, Kumar et al. described that at 28 days post-ligation, 

inflammatory cells were not present in the neointima of WT mice and the majority 

of the cells were VSMCs (161).   
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The attachment and transmigration of BMDCs has been reported by 

others to be essential for neointima formation (108, 110, 111).  BMDCs 

contribute to neointima formation through the production of cytokines and growth 

factors to stimulate VSMC growth and proliferation as well as the addition of 

cellular mass to the neointima (108, 111, 150, 205, 206).  It has previously been 

reported that BMDCs transmigrate into the neointima in response to arterial injury 

and differentiate into α-SMA positive VSMCs (118).  To determine the origin of 

VSMCs within the neointima of both WT and Nf1+/- mice reconstituted with either 

WT or Nf1+/- BMDCs, arterial cross-sections were co-stained with an anti-GFP 

antibody, to identify BMDCs, and an anti-α-SMA antibody, to identify VSMCs.  

Analysis of co-stained arterial cross-sections under high-powered magnification 

determined that anti-GFP positive cells and anti-α-SMA positive cells did not 

colocalize (Figure 23), indicating that the VSMCs within the neointima and vessel 

wall were locally derived and not bone marrow derived VSMCs.  These results 

are consistent with other reports utilizing adoptive hematopoietic stem cell 

transfer in models of vascular lesion formation (207).  In order to fully understand 

the mechanism of neointima formation it is essential to determine the lineage of 

the BMDCs within the neointima in response to arterial injury.      

Therefore, we analyzed arterial cross-sections from WT and Nf1+/- mice 

transplanted with either WT or Nf1+/- BMDCs utilizing immunohistochemistry to 

identify the lineage(s) of BMDCs within the neointima.  Anti-CD45 staining of 

arterial cross-sections showed the same staining pattern as anti-GFP staining, 

indicating that the BMDCs within the neointima were of myeloid origin (Figure 



131 
 

25).  Leukocytes, specifically lymphocytes and monocytes, have been shown to 

contribute to neointima formation in response to injury.  Staining of arterial cross-

sections to identify lymphocytes, CD3 positive cells, showed that lymphocytes did 

significantly accumulate within the neointima and 28 days post arterial ligation 

(Figure 26).  Studies of lymphocyte infiltration in response to endothelial 

denudation have shown that lymphocytes are present at the vessel wall as early 

as 1 hour post-injury (172).  Further, in vivo studies using lymphocyte deficient 

mice demonstrate that the infiltration of lymphocytes in response to injury have a 

protective effect, inhibiting the proliferation of VSMCs (172).  Therefore, the role 

of lymphocytes in neointima formation in Nf1+/- mice cannot be discarded without 

determining if there are differences in lymphocyte infiltration at earlier timepoints 

in response to arterial injury compared to WT mice.  Assaying for the presence of 

macrophages, using anti-Mac3 immunohistochemistry, demonstrated that greater 

than 85% of the Nf1+/- BMDCs within the neointima were macrophages (Figure 

27).  Mac3 is a glycoprotein that is produced and expressed by macrophages, 

but not lymphocytes or monocytes (208).  Therefore, if there are immature 

macrophages within the vessel wall, they will not be identified by anti-Mac3 

staining, which could account for the 10-15% of GFP positive cells that are not 

CD3 or Mac3 positive.  These studies identify Nf1+/- BMDCs as necessary and 

sufficient for neointima formation and determine a new role for neurofibromin as 

an important regulator of macrophage function in vivo and in vitro.  Further, this 

data provides a novel paradigm of "vascular inflammation" as the major 
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determinant of vessel occlusion despite the role of neurofibromin in regulating EC 

and VSMC function.  

 

The Role of Macrophages in Neointima Formation. 

The accumulation of macrophages in the vessel wall in response to 

arterial injury suggests that inflammation has a direct contribution to neointima 

formation in Nf1+/- mice.  Macrophages play an important role in neointima 

formation through the production of growth factors and cytokines that activate 

ECs and stimulate VSMC migration and proliferation (209-211).  Further, 

macrophages are a source of matrix proteases, which cleave collagen within the 

vessel wall (212, 213) and activation of matrix metalloproteinases, specifically the 

gelatinases MMP-2 and MMP-9, breaks down collagen within the vessel wall 

allowing VSMCs to migrate from the media into the intima in response to 

chemotactic agents generated by arterial injury (137, 214, 215).  MMPs are 

expressed by macrophages and VSMCs and their expression can be induced by 

a number of cytokines and growth factors, including TNFα, IL-1β and PDGF-BB 

(138, 140, 141).  MMP-9 expression has been shown to be induced in response 

to arterial injury and genetic deletion significantly impaired VSMC migration in 

vitro and in vivo (216).  The expression and activation of the MMPs has not been 

described in neurofibromin deficient VSMCs or macrophages, however based on 

in vitro data that demonstrates that Nf1+/- VSMCs are hyperresponsive to PDGF-

BB and our in vivo observations of increased macrophage function, we 

hypothesize that arterial injury in Nf1+/- mice would enhance MMP activation, 
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contributing to neointima formation.  Along with cellular migration and 

proliferation, matrix remodeling significantly contributes to neointima formation.  It 

has previously been reported that cellular proliferation is drastically reduced after 

2 weeks post-injury although the neointima continues to develop due to the 

accumulation and remodeling of matrix (161, 217).  The continued growth of the 

neointima in the absence of VSMC proliferation suggests a mechanism by which 

the WT mice transplanted with Nf1+/- bone marrow had equivalent neointima 

formation to Nf1+/- mice transplanted with Nf1+/- bone marrow 28 days post-injury 

(Figure 21 and 22) despite the observation that Nf1+/- mice had significantly more 

BMDCs within the neointima (Figure 23).  These observations suggest that Nf1+/- 

vascular cells secrete increased levels of chemokines, which results in increased 

recruitment, retention or survival of BMDCs in the neointima compared to WT 

vascular cells.  We predict that Nf1+/- mice reconstituted with Nf1+/- bone marrow 

will have increased neointima formation compared to WT mice with Nf1+/- bone 

marrow at earlier time points (i.e. 1-2 weeks) due to the increased accumulation 

of BMDCs in response to injury.        

In order to fully understand the role of Nf1+/- macrophages in neointima 

formation, functional studies need to be completed.  There are multiple 

mechanisms that could account for increased accumulation of Nf1+/- 

macrophages in the evolving neointima including: 1) increased recruitment to the 

site of injury, 2) increased proliferation within the neointima, 3) increased 

retention in the neointima or 4) increased survival.  Recent in vitro studies 

completed in Dr. Kapur’s lab indicate that bone marrow derived Nf1+/-  



134 
 

macrophages have increased migration and proliferation in response to M-CSF 

stimulation (Figure 28).  M-CSF is a pro-inflammatory cytokine that regulates 

macrophage function and is upregulated in vivo in response to arterial injury(211, 

218).  Further, exogenous administration of M-CSF significantly enhanced 

neointima formation through the increased recruitment of BMDCs to the site of 

injury(211).  These observations suggest that Nf1+/- bone marrow derived 

macrophages may have increased recruitment to the site of arterial injury in 

response to M-CSF production.  Further, once emigrated into the emerging 

neointima, Nf1+/- macrophages may have increased proliferation in response to 

M-CSF and other growth factors produced in response to injury, furthering the 

accumulation of BMDCs within the neointima.  However, it is not known whether 

Nf1+/- vascular cells produce increased levels of M-CSF or other chemokines (i.e. 

MCP-1) in response to arterial injury that are involved in monocyte recruitment.  

Functional in vitro studies need to be completed to determine if heterozygous 

inactivation of Nf1 in VSMCs promotes the migration and proliferation of 

macrophages.  Along with increased recruitment and proliferation, M-CSF 

stimulation has also been shown to promote the survival of monocytes and 

macrophages.      

Increased survival of Nf1+/- macrophages within the neointima would 

enhance neointima formation through prolonged production of growth factors and 

matrix remodeling.  In addition to M-CSF, the multifunctional protein osteopontin 

(OPN) has also been shown to promote the survival of macrophages by inhibiting 

apoptosis (219).  In vivo, OPN is upregulated in response to arterial injury (220-
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222) and overexpression of OPN results in increased medial thickening and 

neointima formation (223), while genetic ablation of OPN results in protection 

against aneurysm formation (224).  In a recent report on bone malformation and 

NF1, Li et al. (225) demonstrated that Nf1+/- mice have increased serum levels of 

OPN compared with WT controls.  Given the multiple effects of OPN, this is an 

important finding.  In addition to its anti-apoptotic effects, OPN also stimulates 

VSMC proliferation and migration (226) and activates MMP-2 and MMP-9 

activity, suggesting a role of OPN in vascular lesion formation in Nf1+/- mice.  

While these observations suggest potential mechanisms, further characterization 

of neointima formation in Nf1+/- mice needs to be completed in order to identify 

initiating factors.  Specifically, in vitro studies of Nf1+/- ECs, VSMCs and 

macrophages need to be completed to determine the role of neurofibromin in the 

production of cytokines and growth factors involved in neointima formation.  

Further, the expression and activity of MMPs needs to be characterized in Nf1+/- 

VSMCs and macrophages.  Information gathered from these studies can be 

applied to the expandable in vivo model that was developed in this study.  

Utilizing cre/lox technology and immunohistochemistry the direct role of cytokines 

and growth factors at early timepoints in neointima formation can be dissected.      

  

Evidence of Vascular Inflammation in NF1 Patients. 

The direct role of Nf1+/- BMDCs and the accumulation of macrophages 

within the neointima of mice reconstituted with Nf1+/- bone marrow suggests that 

vascular inflammation contributes to neointima formation.  This observation is 
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intriguing given that inflammation is linked to vascular disease in patient 

populations including atherosclerosis and coronary artery disease (107, 227-

229).  In vascular inflammation, increased expression of adhesion molecules by 

the endothelium and the production of chemokines lead to a recruitment of 

BMDCs, specifically monocytes, to the site of injury initiating an inflammatory 

response (112, 143, 144, 151, 190).  In this study, we determined that NF1 

patients, with no overt vascular disease, have increased numbers of circulating 

monocytes compared to healthy controls (Figure 31).  Further, we identified a 

population of monocytes in NF1 patients that has characteristics of an activated 

state, including increased CD16 expression and increased size (187).  Increased 

levels of the pro-inflammatory cytokines IL-1β and IL-6 in plasma samples from 

NF1 patients (Figure 33) supports our observation that NF1 patients have 

increased activated monocytes in circulation given that, in peripheral blood, 

monocytes are the main producers of IL-1β and IL-6 (230, 231).  IL-1β 

stimulation of ECs increases the production of inflammatory cytokines, including 

IL-1β and IL-6 as well as the production of chemokines which recruit monocytes 

to the vessel wall, amplifying the inflammatory response (231, 232).  IL-1β has 

also been shown to induce the production of IL-6 in VSMCs (233).  In vitro 

studies have indicated that IL-6 stimulation of VSMCs results in increased 

proliferation through the production of PDGF (234, 235).  These observations 

identify a mechanism by which increased circulating monocytes and increased 

levels of inflammatory cytokines predispose NF1 patients to vasculopathy given 

that neurofibromin deficient VSMCs are hyperproliferative in response to PDGF.   
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Along with endothelial activation, cytokines have been described to affect 

arterial endothelial dependent vasodilation.  Iversen et al. demonstrated that the 

cytokines TNFα, IL-6 and IL-10 induced arterial contraction in an endothelial 

dependent manner (236).  In studies completed by our collaborator, Dr. Jan 

Friedman, NF1 patients showed decreased endothelial dependent dilation 

compared to normal standards with no difference detected in smooth muscle 

dependent dilation.  An important observation to this study was that reduced 

endothelial dependent dilation was observed in patients with no known vascular 

disease.  In our study, we tested endothelial dependent vasodilation and 

analyzed plasma samples of NF1 patients (17±2 years of age) with no known 

vascular disease and showed that our patient population did not have impaired 

endothelial dependent vasodilation but did have increased levels of the pro-

inflammatory cytokines IL-1β and IL-6.  Based on these observations, 

inflammation precedes endothelial dysfunction in NF1 patients.  Chronic 

inflammation results in endothelial dysfunction through the stimulation of the 

endothelium to produce adhesion molecules and chemokines that attract 

monocytes to the vessel wall.  The attachment of monocytes to the vessel wall 

further exacerbates endothelial dysfunction through the production of activating 

cytokines and reactive oxygen species, which result in premature senescence.  

Therefore, the findings of this study suggest that all NF1 patients may have sub-

clinical vascular disease.  We are currently conducting studies to determine the 

incidence of subclinical vascular disease in NF1 patients along with identifying 



138 
 

potential biomarkers that correlate to the progression of vascular disease in 

patients.      

In addition to increased levels of inflammatory cytokines, we identified that 

NF1 patients have increased levels the potent chemokine and adhesion molecule 

fractalkine (Figure 33).  Membrane-bound fractalkine is an adhesion molecule 

expressed on an inflamed endothelium when activated by pro-inflammatory 

cytokines, such as TNFα and IL-1β (143, 152).  Fractalkine produces a high-

affinity interaction with CX3CR1 expressing cells, including inflammatory 

monocytes, which allows cells to rapidly bind to the endothelium under normal 

flow conditions (151, 191, 192).  Fractalkine is cleaved from the cell membrane, 

resulting in soluble fractalkine which functions as a potent chemoattractant for 

monocytes (143).  CD14+CD16+ monocytes preferentially express CX3CR1 and 

their interaction with fractalkine induces the expression of IL-6 and MMP-9 in 

vitro, further perpetuating the inflammatory response and subsequent neointima 

formation (153, 154, 237).  In vivo, arterial injury upregulates the expression of 

fractalkine and genetic ablation of CX3CR1 abrogates neointima formation 

through impaired monocyte recruitment (155).  Further, single nucleotide 

polymorphisms within CX3CR1 have been described in humans with a reduced 

incidence of atherosclerosis and cardiovascular disease (238-240).  Taken 

together, upregulation of fractalkine expression in NF1 patients in response to 

increased inflammatory cytokines would result in increased recruitment and 

attachment of monocytes to the vessel wall leading to endothelial dysfunction 

and subsequent vascular disease.   
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In this study, we have developed an in vivo model of NF1 vasculopathy.  

We have demonstrated that Nf1+/- mice have increased neointima formation in 

response to injury and that the neointima is composed primarily of VSMCs, 

reminiscent of the patient phenotype.  Further, we identified hyperactive Ras 

signaling through either the PDGF-βR or C-kit activation as potential 

mechanisms for increased neointima formation.  The use of cre/lox technology 

and adoptive hematopoietic stem cell transfer techniques allowed us to 

interrogate the individual contribution of Nf1+/- ECs, VSMCs and BMDCs to 

neointima formation.  The studies reported here demonstrated that heterozygous 

inactivation of Nf1 in BMDCs alone is necessary and sufficient for neointima 

formation in response to arterial injury.  The neointima of mice reconstituted with 

Nf1+/- bone marrow was characterized by an accumulation of macrophages, while 

mice transplanted with WT bone marrow showed minimal neointima formation.  

These observations demonstrate that neurofibromin is a critical regulator of 

macrophage function and that vascular inflammation is a leading factor in 

neointima formation.  Further, the increased levels of circulating monocytes and 

increased expression of inflammatory cytokines observed in NF1 patients provide 

evidence of chronic inflammation associated with NF1.  In sum, these studies 

provide the first genetic and cellular evidence of vascular inflammation in Nf1+/- 

mice and NF1 patients, and provide a framework for understanding the 

pathogenesis of NF1 vasculopathy and potential therapeutic and diagnostic 

interventions.   
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