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ABSTRACT 

Zhong Yan 

ONTOLOGY-DRIVEN AND NTEWORK–ENABLE  

SYSTEMS BIOLOGY CASE STUDIES 

 

     With the progress in high-throughput technologies and bioinformatics in recent years, 

it is possible to determine to what extent genetic or environmental manipulation of a 

biological system affects the expression of thousands of genes and proteins. This study 

requires a shift from the conventional pure hypothesis-driven approach to an integrated 

approach--systems biology method. Systems biology studies the relationships and 

interactions between various parts of a biological system. It allows individual genes or 

proteins to be placed in a global context of cellular functions. This analysis can answer 

the question of how networks of genes/proteins, differentially regulated respond to 

genetic or environmental modification, are placed in the global context of the protein 

interaction map. In this project, we establish a protein interaction network-based systems 

biology approach, and use the method for two case studies.  

 

     In particular, our systems biology studies consist of the following parts: (1) Analysis 

of mass-spectrometry derived proteomics experimental data to identify differentially 

expressed proteins in different genetic or environmental conditions; (2) Integration of 

genomics and proteomics data with experimental results, the molecular context of 

protein-protein interaction networks and gene functional categories; (3) Visual 

interpretation of molecular networks. Our approach has been validated in two case 

studies by comparing our discoveries with existing findings. We also obtained new 

insights. In the first case study, the proteomes of cisplatin-sensitive and cisplatin-resistant 

ovarian cancer cells were compared and we observed that cellular physiological process 

is significantly activated in cisplatin-resistant cell lines, and this response arises from 

endogenous, abiotic, and stress-related signals. We found that cisplatin-resistant cell lines 

demonstrated unusually high level of protein-binding activities, and a broad spectrum of 

across-the-board drug-binding and nucleotide-binding mechanisms are all activated. In 



 vi 

the second case study, we found that the significantly enriched GO categories included 

genes that are related to Grr1 perturbation induced morphological phenotype change are 

highly connected in the GO sub-network, which implies that Grr1 could be affecting this 

process by affecting a small core group of proteins. These biological discoveries support 

the significance of developing a common framework of evaluating functional genomics 

and proteomics data, using networks and systems approaches.  
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1. INTRODUCTION 

 

     Over the past two centuries, life science research has been rooted in the assumption 

that complex problems may be solvable by dividing them into smaller, simpler, and 

thus more manageable units. While the human body is considered to be an integrated 

system with a company of components, the natural tendency of medicine is to separate 

the single factor that is most responsible for the consequence. It is undeniable that this 

approach has been a success for years. However, it leaves little room for contextual 

information. The need to make sense of complex interactions has led some researchers 

to shift from a component-level to system-level perspective. With the progress in high-

throughput technologies and bioinformatics (for example, many bioinformatics 

databases are available to the public) in recent years, it is possible to determine to 

what extent genetic or environmental manipulation of a biological system affects the 

expression of thousands of genes and proteins. This form of study requires a shift from 

a conventional individual approach (divide-and-conquer approach) towards an 

integrated approach. The integrated approach leads to an emerging field called 

systems biology[1]. Systems biology takes into account complex interactions of genes, 

proteins, and cell elements. By studying the relationships and interactions between 

various parts of a biological system, it is hoped that researchers might build a system-

level understanding of biological systems and gain novel insights towards discoveries. 

 

     In this project, we have developed a novel systems biology approach to study 

proteomics experimental data. Using this approach we have performed case studies on 

two proteomics datasets: (1) human ovarian cancer drug resistance; (2) yeast Grr1 

knock-out. Our systems biology studies consist of the following parts (see figure 1.1). 

(1) Analyzing mass-spectrometry derived proteomics experimental data to identify 

differentially expressed proteins in cisplatin-sensitive vs. cisplatin-resistant ovarian 

cell line samples and yeast Grr1 knock-out vs. wild-type samples; (2) Integrating 

genomics and functional genomics data with experimental results and the molecular 

context of protein-protein interaction networks and gene functional categories: we use 

OPHID (Online Predicted Human Interaction Database) for our ovarian cancer study 
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and an in-house developed yeast protein-protein interaction database (SBG) for our 

yeast study. The integration involves identifying protein interaction partners for the 

differentially-expressed protein set ("seed proteins"), as well as identifying the gene 

ontology cross-talk partners in the context of the protein-protein interaction network; 

(3) Visual interpretation of molecular networks.[2] 

 

 

 

Figure 1.1 Framework of novel systems biology approach 
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     Unlike conventional methods, which lack functional integration of data and 

effective analysis tools to derive functional relationships between heterogeneous while 

related data, our studies have the following significance. First, we have developed a 

novel systems biology approach which can identify “significantly interacting protein 

categories”. This is distinct from the recent approach of using GO annotations for 

differentially expressed gene classifications resulting from microarray analysis[3]. Our 

method can be generalized to enable other similar systems biology studies, in which 

statistically significant experimental “omics” results, public protein interactome data, 

and genome/proteome annotation database are integrated into an easy-to-interpret two-

dimensional visualization matrix[2]. Second, to integrate yeast protein-protein 

interaction data from different sources, we have created our own metadata for 

experimental methods that are used to detect interacting protein pairs (see section 3.2 

in paragraph “Protein Interactome Data”). Third, we have developed our unique 

scoring model (see section 3.3) to calculate reliability scores for the interacting protein 

pairs. We applied our scoring model to the combined protein-protein interaction 

dataset to calculate a reliability score for each unique interacting pair. This enables our 

significant protein ranking analysis (see section 3.10). Fourth, we applied a unique 

molecular network visual representation scheme to the significant biological process 

categories and significant between-category interactions (see section 3.5 and section 4. 

for two case studies). Our new approach based analysis will help the life science 

researchers validate their discoveries and generate new hypotheses. 
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2. BACKGROUND 

 

2.1 Mass Spectrometry - based Proteomics 

     Proteomics refers to the branch of discovery science focusing on large scale 

analysis of proteins. Initially, the term proteomics was used to describe the study of 

expressed proteins of a genome using a combination of two-dimensional (2D) gel 

electrophoresis to separate proteins and mass spectrometry (MS) to identify them.  

This approach is now referred to as “expression” or “global profiling” proteomics. 

However, the scope of proteomics has now broadened to include the study of “protein-

protein” interactions (protein complexes), referred to as cell-mapping proteomics [4, 

5]. Proteomics complements other functional genomics, including microarray 

expression profiling, systematic phenotypic profiling, systematic genetics, and small-

molecule-based arrays [6]. Compared with genomics, proteomics is much more 

complicated.  While the genome is rather stable, the proteome differs from cell to cell 

and is constantly changing through its biochemical interactions with the genome and 

the environment.  

 

     Mass spectrometry-based proteomics has a distinct application in unraveling the 

levels of protein abundance, post-translational modifications (e.g., glycosylation, 

acetylation, phosphorylation, and myristoylation), as well as protein-protein 

interactions, which are the formative drive in a cell. Changes in these parameters are 

not revealed by measuring mRNA levels. Mass spectrometry-based proteomics 

provides opportunities to identify target proteins that are differentially regulated under 

different conditions. It helps biologists elucidate the dynamics of important signaling 

and regulatory networks in biological process.  

 

2.1.1 Mass spectrometry 

     Mass spectrometry is the method for determining the molecular weight of chemical 

compounds by separating molecular ions according to their mass-to-charge ratio (m/z).  

Mass spectrometers are powerful devices used for this purpose. Mass spectrometric 

measurements are carried out in the gas phase on ionized analytes. A mass 

http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Proteome
http://en.wikipedia.org/wiki/Biochemistry
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spectrometer consists of an ionization source for ion-generation, a mass analyzer that 

measures the mass-to-charge ratio (m/z) of the ionized analytes, and a detector that 

registers the number of ions at each m/z value. The ionization source transfers 

molecules from solution or solid phase into gas-phase ions that can then be 

manipulated within electric or magnetic fields. Ionization techniques are critical for 

determining what types of samples can be analyzed by mass spectrometry. The two 

most frequently used ionization techniques are ESI (Electrospray Ionization) and 

MALDI (Matrix-Assisted Laser Desorption/Ionization). ESI ionizes the analytes out 

of a solution and is therefore readily coupled to liquid-based separation tools such as 

HPLC. MALDI sublimates and ionizes the samples out of a fry, crystalline matrix via 

laser pulses. MALDI-MS is normally used to analyze relatively simple peptide 

mixtures, whereas integrated liquid-chromatography ESI-MS systems (LC-MS) are 

preferred for the analysis of complex samples [7, 8]. 

 

     The mass-analyzer is used to separate gas-phase ions based on their mass-to-charge 

(m/z) ratios, and is central to the technology. In the context of proteomics, its key 

parameters are sensitivity, resolution, mass accuracy and its ability to generate 

information-rich ion mass spectra from peptide fragments (tandem mass or MS-MS 

spectra). There are four basic types of mass analyzers currently used in proteomics 

research. These are the ion trap, time-of-flight (TOF), quadrupole, and Fourier 

Transform ion cyclotron (FT-ICR-MS) analyzers. They are very different in design 

and performance and, each has its own strength and weakness. These analyzers can be 

stand alone or, in some cases, put in tandem to take advantage of the strengths of each 

[8-11]. 

 

     Both MALDI and ESI are soft ionization techniques in that ions are created with 

low internal energy and thus undergo little fragmentation. Mass-to-charge ratios can 

be readily and accurately measured for intact ions, but this information does not 

provide data on the covalent structure of the ion. For peptides and proteins in 

particular, data related to the amino acid sequence of the molecule are desired. To 

generate this information, new configurations of mass spectrometers have been 
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developed to isolate ions, fragment them, and then measure the mass-to-charge ratio of 

the fragments. These devices are collectively called tandem mass spectrometers. A 

tandem mass spectrometer is a mass spectrometer that has more than one analyzer, in 

practice usually two. The two analyzers are separated by a collision cell into which an 

inert gas (e.g. argon, henium) is admitted to collide with the selected sample ions and 

bring about their fragmentation (collision-induced dissociation or CID). The analyzers 

can be of the same or different types, the most combinations being quadrupole-

quadrupole, magnetic sector-quadrupole, and quadrupole-TOF [12, 13]. 

 

     The first analyzer of a tandem mass spectrometer is used to select user-specific 

peptide ions from peptide mixtures. These chosen ions then pass into the collision cell, 

and are bombarded by the gas molecules into fragment ions, which are then analyzed. 

The original mass to charge ratio of each ion as well its specific fragment spectrum are 

used to search a database of theoretical peptide fragmentation spectra often resulting 

in unambiguous peptide identification. The data from each of these methodologies is 

represented as output peak list files adherent to a specific file format that is dependent 

on the instrument used for analysis. Programs such as SEQUEST [14] and MASCOT 

(http//www.matrixscience.com) correlate the experimentally acquired MS/MS spectra 

to the computer generated MS/MS spectra and produce various scores used to assess 

the validity of this correlation. Each correlation program uses a different algorithm to 

assign peptides and thus each program produces overlapping but variable outputs. 

Various laboratories have used different approaches to exploit the advantages of both 

software algorithms [15] and to validate more thoroughly the results of these 

algorithms individually [16, 17]. It is apparent that no single analysis system has been 

universally accepted to date. 

 

2.1.2 Proteomics data analysis 

     In a typical mass spectrometry based experiment, protein samples are digested by a 

protease (usually trypsin) and the resulting peptides can be further separated by liquid 

chromatography before directly introduced into MS. The peptide fragment masses are 

determined by MS, which provides a fingerprint of the protein of interest. The masses 
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are compared to the predicted proteolytic peptides from sequence databases taking into 

account user specified parameters such as the number of missed cleavage sites. If, 

however, database searching leads to ambiguous results, then further MS analyses, 

involving the usage of tandem mass spectrometry (MS/MS), are undertaken 

sequentially on each peptide in the mixture to generate a sequence, or partial sequence, 

known as a sequence tag, for these peptides. This is frequently achieved by using ESI-

MS/MS. Further database searching with both the molecular mass of the peptide and 

the sequence tag information should lead to unambiguous protein identification[18-20]. 

Finally, the instrument generates an output peak list file in a specific file format 

depending on the type of instrument used, and an analysis pipeline (Figure 2.1) can be 

used to take the peak list file as input and generate a series of output files.  

 

 

Figure 2.1 Proteomics data analysis pipeline 

2.1.3 Proteomics data management tools 

     The scale and complexity of proteomics data require software tools to facilitate 

data management. Compared with microarray data management tools, there are few 

tools available for mass spectrometry proteomics studies. Below we summarize most 

of the proteomics data management tools. This work is based on my previous 

publication [21]. 

 

     PEDRo database tool (http://pedro.man.ac.uk ) is an open source tool for 

proteomics data entry and modeling. However, it is not a comprehensive query and 

analysis tool. The PEDRo tool implements the PEDRo data model (Refer to section 3) 

which was released early in 2003. The schema of the PEDRo data model is available 

http://pedro.man.ac.uk/
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at the website. PEDRo supports an ontology service. It stores the XML directly in an 

open-source XML storage system, Xindice. The data are presented to the users by 

gathering web pages from the stored XML using XSLT.[22, 23] 

 

SBEAMS-Proteomics (http://www.sbeams.org/Proteomics/ ) is one of the modules of 

SBEAMS integrated platform developed by ISB that is used for proteomics 

experimental data storage and retrieval. These experiments can be correlated later 

under the same framework. The integrated open source system SBEAMS adopts a 

relational database management system backend and a web interface front end. 

Information about the quality of identification can be stored with the data; peptides 

which could not be properly identified from mass spectra can be flagged and 

reanalyzed with additional searches. The database schema for SBEAMS-Proteomics is 

available at the website (http://www.sbeams.org/Proteomics/ ).  

 

     ProteinScape is a commercial client-server platform for proteomics data 

management (http://www.bdal.com/proteinscape.html). It organizes data such as gel 

data, mass spectra, process parameters, and search results. It can manage gel-based or 

LC-based workflows, as well as quantitative proteomics. ProteinScape also enables 

automated analysis through interactions with database search engines such as Mascot, 

Phenux, and Profound. ProteinScape‟s relational database system can be Microsoft 

SQL or Oracle 9.1.  

 

     PROTEIOS (http://www.proteios.org/) is an mzData-compliant open source client-

server application that implements mass spectrometry data storage, organization, and 

annotation. The server is a relational database that can be MySQL, Oracle, as well as 

utilize other alternatives. The client side runs as a Java application. One of the main 

objectives of Proteios is to provide a GUI enabling queries based on experiment data 

and annotation data. The schematic diagram is available at the website. Currently the 

input data files must be in XML format.  It is working on imports of tab-separated files 

[24]. 

 

http://www.sbeams.org/Proteomics/
http://www.sbeams.org/Proteomics/
http://www.bdal.com/proteinscape.html
http://www.proteios.org/
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     PROTICdb is a web-based proteomics data management tool used for plant 

proteomics data storage and analysis. The data can come from 2D-GEL and MS. The 

data stored can also be in the form of quantitative measurements. To support data 

interpretation, PROTICdb allows the integration of information from the user‟s own 

expertise and other sources into a knowledge base. It also provides links to external 

databases [25]. 

 

     ProDB is an open source proteomics data management tool 

(http://www.cebitec.uni-bielefeld.de/groups/brf/software/prodb_info/index.html) that 

can handle data conversion between different mass spectrometer software, automate 

data analysis, and allow the annotation of MS spectra (i.e. assigning gene names or 

storing data on protein modifications). The system is based on an extensive relational 

database to store the mass spectra together with the experimental setup [26]. The first 

release will be available to the public soon. 

 

     There are several other proteomics data management tools not described here, such 

as PROTEUS [27], Proteomics Rims (developed by Bruker BioSciences), Xome and 

Mass Navigator [28]. 

 

2.2 Ontology-based Gene Annotation and Network-enabled Analysis  

 

2.2.1 Proteomics and Systems Biology 

     The goal of proteomics research is to understand the expression and function of 

proteins on a global level. It strives to characterize protein structure and function, 

protein-protein, protein-nucleic acid, protein-lipid, and enzyme-substrate interactions, 

post-translational modifications, protein processing and folding, protein activation, 

cellular and sub-cellular localization, protein turnover and synthesis rates, and even 

alternative isoforms caused by differential splicing and promoter usage. In addition, 

the ability to capture and compare all of this information between two cellular states is 

essential for understanding cellular responses. Achieving the goals of proteomics is 

http://www.cebitec.uni-bielefeld.de/groups/brf/software/prodb_info/index.html
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not trivial. Adding to the complexity of this field is the need to integrate proteomics 

data with other information to fully understand how systems work.  

 

     Systems biology is a newly emerging field that seeks to analyze the relationships 

among elements in a system in response to genetic or environmental perturbations, 

with the goal of understanding the system or the properties of the system[29]. 

Therefore, systems biology is a holistic approach that seeks to integrate biological data 

as an attempt to understand how biological systems function, thus being distinct from 

a pure omics - based or other bioinformatics methods.  The present thesis is an attempt 

in this direction. We captured the proteome difference between cellular states, and 

integrate this information with information from gene ontology as well as protein 

interaction database. Thus, for the first time, it provides an in-depth interpretation at 

the molecular signaling network level. 

 

     In particular, our systems biology approach consists of the following three major  

elements [2]: (1) Omics: analyzing mass-spectrometry derived proteomics 

experimental data to identify differentially expressed proteins in different genetic or 

environmental conditions; (2) Ontology: annotating the proteomics data based on gene 

ontology functional categories; (3) Network: mapping the proteomic data into protein-

protein interaction network and translating the protein-protein interaction network into 

a gene ontology cross-talk network.  

 

 

 

Figure 2.2 Major elements of our systems biology approach. The lines represent 

the tight connections of the elements.   

 

Proteomics  

(see 2.1.1 ~ 

2.1.3) 

Gene 

Ontology 

(see 2.2.2) 

Protein - Protein 

Interaction Network 

(see 2.2.3 and 3.2) 
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     Figure 2.2 shows the three major elements of our systems biological approach. In 

this approach, the data from omics experimental results is analyzed against gene 

functional categories and gene functional category network. It is the first time that the 

gene ontology concept has been brought to the molecular context of protein-protein 

interaction networks, which has been used to interpret the proteomics experimental 

result.  

 

2.2.2 Ontology – based gene annotations 

     From the point of view of systems biology, the interpretation of differentially 

expressed protein lists identified from proteomics experiments is not a trivial task. 

Given a set of differentially expressed genes / proteins, or a set of genes / proteins in a 

cluster, one would often wish to know whether these genes / proteins share a common 

function, subcellular localization, metabolic or regulatory pathway. In addition to 

characterizing the gene/protein set, this type of analysis may also reveal information 

on new and previously unknown genes in the set. This type of work often requires the 

mapping of the genes/proteins into gene ontology (GO) terms. The introduction of 

Gene Ontology (GO) as a standardized vocabulary for describing genes, gene products 

and their biological functions represents an important milestone in the possibilities to 

handle and include biological background information in functional genomics and 

proteomics analyses. 

 

     The gene ontology is represented as a network, or a „directed acyclic graph‟ (DAG), 

in which terms may have multiple parents and multiple relationships to their parents. 

The controlled vocabularies are structured in levels so that attributes can be assigned 

to a gene product at different levels of description, depending on how much is known 

about this gene product.[30] There are three different sets of vocabularies for gene 

ontology: (1) Molecular function describes the activity of a gene product at the 

molecular level. It does not provide information about the compounds or locations of 

the activity. Example of molecular function at level 2 can be binding and at level 3 can 

be protein binding. The more specific term at level 4 can be transcription factor 

binding. (2) Biological process describes recognized series of events or molecular 
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functions. A biological process is not equivalent to a pathway though some GO terms 

do describe pathways. Examples of biological process are death at level 3 and cell 

death at level 4. (3) Cellular component refers to the location in the cell in which a 

gene product exerts its activity. Examples are nucleolus, organelle, and polarisome. 

Many databases today provide GO annotations for a variety of organisms including 

humans, yeast, and other species. 

 

     Annotation of genes with GO terms creates a biological knowledge profile in three 

layers (biological process, molecular function, or cellular component). Three common 

methods are used to query GO categories: by individual gene, by gene function, and 

by using a list of genes [31]. Translation of the differentially expressed gene/protein 

list into a functional profile helps biologist get insight into the cellular mechanisms 

relevant to a given condition. Therefore, it has been widely used in the analysis of 

functional genomics and proteomics studies [32-36].  

 

     The ontological analysis of gene expression or proteomics data usually follows the 

following steps: (1) Prepare the gene or protein list of interest. (2) Prepare reference 

gene or protein list which is used to calculate P-values against. (3) Map both lists 

(interested list and reference list) to GO categories. (4) Select statistical model. The 

gene ontology analysis can be performed with a number of statistical models including 

hypergeometric, binomial, Fisher‟s exact test, and chi-square. These tests are 

discussed in detail in [37]. (5) Find significantly enriched GO categories in your list of 

interest using the selected statistical model. (6) Perform corrections for multiple 

comparisons. When many genes/proteins are analyzed at the same time, some 

significance will happen by chance. The multiple comparison corrections control the 

overall probability of making a Type I error. Many different statistical methods have 

been published to perform this kind of correction, for example, Bonferroni correction 

[38], FDR [39], and permutation correction [40]. Each method has its unique feature. 

(7) Interpret the result in terms of the biological significance. 
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     The statistical evaluation of enriched GO categories enables to highlight the most 

significant biological characteristics of a gene or protein set, therefore allows us to 

mine knowledge from data. In recent years, many tools have been developed to 

automate the gene ontology analysis. Table 2.1 lists some popular GO analysis tools, 

the statistical models the tools used, multiple comparison correction methods 

implemented, and the GO visualization view. 

 

Table 2.1 Gene Ontology analysis tools 

Tool Statistical model Multiple comparison 

corrections 

GO 

visualization 

WebGestalt[41] Hypergeometric test, 

Fisher‟s exact test 

NA Tree, bar chart, 

DAG  

GeneMerge[42] Hypergeometric Bonferroni No tree view 

CLENCH[43] Chi-square test, Binomial, 

Hypergeometric 

NA DAG 

GOSurfer[44] Chi-square test FDR Tree 

Onto-

Express[45] 

Chi-square test, Binomial, 

Hypergeometric, Fisher‟s 

exact test 

Bonferroni, Holm, 

Sidak 

Tree 

GOToolBox[46] Binomial, Hypergeometric, 

Fisher‟s exact test 

Bonferroni, 

Holm,FDR, Hochberg, 

Hommel, 

NA 

Onto-

Express[45, 47] 

Binomial, Hypergeometric, 

Chi-square test 

Bonferroni, Holm, 

Sidak, FDR 

Tree, bar chart 

GO Term 

Finder[48] 

Binomial NA Tree 

 

     The ontology-based omics data analysis approach enables researchers to find out 

enriched functional categories involved in the experimental conditions. While 

biological systems contain large number of different genes and proteins that are 
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interacted with each other, it is necessary to develop an approach to bring the 

ontology-based omics data analysis to the interaction network. This integrated 

approach will definitely benefit the biologists to obtain more insight for biological 

phenomena. 

 

2.2.3 Protein interaction network- based analysis 

     A discrete biological function is rarely attributable to an individual protein [49]. 

Instead, most biological characteristics arise from complex interactions between the 

cell‟s numerous constituents, such as proteins, DNA, RNA and small molecules. In 

particular, the network of protein-protein interactions, also referred to as interactome, 

forms a backbone of signaling pathways, metabolic pathways and cellular processes 

for normal cell function. Protein interaction network analysis provides an effective 

way to understand the relationships between genes. It places the genes identified in 

functional genomics and proteomics experiments in a broader biological context, 

thereby facilitating the understanding of the structure and function of a living cell.  

 

     The network-based analysis has been enabled by the recent elucidation of large-

scale protein interaction networks in different species, including S. cerevisiae 

(yeast)[50-53], D. melanogaster (fly)[54], C. elegans (worm)[55] and H. sapiens 

(human)[56, 57]. )[56, 57]. Collections of these protein interactions, representing a 

subset of the whole interactome, are stored in various data repositories as the Database 

of Interacting Proteins (DIP) (ref), the Biomolecular Interaction Database (BIND), 

The Molecular INTeraction Database (MINT), InAct, the human Protein Reference 

Database (HPRD) and the  Online Predicted Human Interaction Database (OPHID) 

[58]. The protein network-based analysis has been utilized for the analysis of  

functional genomics experiments recently [59, 60]. 

 

     The most comprehensive database for a human protein network is the Online 

Predicted Human Interaction Database (OPHID) [58]. OPHID
 
is a web-based database 

of predicted interactions between human
 
proteins. It combines the literature-derived 

human protein-protein interactions from
 
BIND (Biomolecular Interaction Network 
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Database), HPRD (Human Protein Reference Database) and MINT (Molecular 

Interactions Database), with predictions made from Saccharomyces
 

cerevisiae, 

Caenorhabditis elegans, Drosophila melanogaster
 

and Mus musculus. OPHID 

catalogs 16034 known
 
human PPIs obtained from BIND, MINT and HPRD, and 

makes predictions
 
for 23889 additional interactions.[58]

  
It is designed to be both a 

resource for the laboratory scientist to explore known and predicted protein-protein 

interactions, and to facilitate bioinformatics initiatives exploring protein interaction 

networks. It should be noted that OPHID predicted human interaction are hypothetical 

and are likely to have some false positives as well as missing protein interactions. 

However, it was claimed that approximately half of the predicted interactions using 

interlogs between microorganisms can be experimentally validated [61]. 

Table 2.2 Leading protein interaction databases 

Name     Description 

Online Predicted Human Interaction Information about known human PPIs from Database 

(OPHID) http://ophid.utoronto.ca/ophid/    BIND, MINT, and HPRD, as well as large 

     number of  predicted human PPIs 

Human Protein Reference Database        Manually curated and extracted from literature  

(HPRD) http://www.hprd.org/  for human PPIs 

Saccharomyces Genome Database          Comprehensive database that contains genetic  

(SGD) http://www.yeastgenome.org/ and physical interactions for yeast  proteins.  

                                                                 More than 90% interactions come from GRID 

General Repository for Interaction         Genetic and physical interactions for yeast, fly,  

Datasets (GRID)  and worm proteins. Interactions data comes from                                  

http://biodata.mshri.on.ca/grid literature, BIND, and MIPS, including several 

genome/proteome-wide studies 

Biomolecular Interaction Network          Physical, biochemical, genetic interactions, and  

Database (BIND) interactions between DNA, RNA, proteins, small 

http://www.isc.org/index.pl?/sw/bind/ molecules, including interactions from human, yeast, 

mouse, rat, and many other species. 

Human Annotated Protein Protein          Database that contains protein interactions from 

Interaction (HAPPI) String, OPHID, and HPRD. 

http://bio.informatics.iupui.edu/HAPPI/index.stm   

http://ophid.utoronto.ca/ophid/
http://www.pubmedcentral.nih.gov/redirect3.cgi?&&reftype=extlink&artid=153463&iid=4761&jid=7&FROM=Article|CitationRef&TO=External|Link|URI&article-id=153463&journal-id=7&&http://biodata.mshri.on.ca/grid
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     On the other hand, SGD (Saccharomyces Genome Database) is a scientific 

database of the molecular biology and genetics of the yeast Saccharomyces cerevisiae, 

which is commonly known as Baker's or budding yeast. Besides protein-protein 

interaction datasets, SGD also contains genes and proteins sequence information, 

descriptions and classifications of their biological roles, molecular functions, and 

subcellular localizations, and links to literature information (see table 2.2) [62-64]. 

More than 90% of the interactions stored in SGD come from GRID. BIND 

(Biomolecular Interaction Network Database) is the database that stores the 

interactions between DNA, RNA, proteins, and small molecules for many species 

including yeast [65-67].  Table 2.2 lists the information for the leading protein 

interaction databases. 

 

     The protein network-based analysis has been considered as one of the most 

important elements of the systems biology approach. Protein network analysis place 

the genes identified in microarray experiments or differentially expressed proteins 

detected in mass-spectrometry experiments in a global biological context. Protein-

protein interaction networks reflect the functional grouping of these coordinated 

genes/proteins. It enables the study of the roles of subsets of genes/proteins. 

 

     A few papers published recently reported mapping the differentially expressed 

protein lists identified through microarray or proteomics experiments into protein-

protein interaction database such as OPHID. Using the network-based analysis, Wachi 

et al found that the genes differentially elevated in cancer, as obtained from 

microarray profiling data, are well connected[60]. In this study, genes in the array 

were mapped onto OPHID using gene symbols and protein sequences. Connectivity 

analysis was performed for the protein network constructed. Then k-core analysis was 

conducted, where less connected nodes were removed in an iterative way. This 

resulted in a series of subgraphs that gradually revealed the globally central region of 

the original network. Using k-core analysis, the authors measured how differentially 

expressed genes were close to the topological center of the protein network. Centrality 
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of the genes is associated with the essential functions of the genes in the yeast. The 

analysis concluded that squamous cell lung cancer genes share similar topological 

features for essential proteins. 

 

     Calvano et al recently performed a network analysis of systematic inflammation in 

humans [68]. Gene expression patterns in human leukocytes receiving an 

inflammatory stimulus were first analyzed using genome-wide microarray analysis. 

Genes significantly perturbed after stimulus were identified using significance analysis 

of microarray method, which controls the false discovery rate to less than 0.1%. To 

identify significant pathways in a biological process, the differentially expressed genes 

were overlaid onto the interactome, the Ingenuity Pathways Knowledge Base (KB), 

which is the largest curated database of previously published findings on mammalian 

biology from the public literature. Target genes were identified as the subset having 

direct interactions with other genes in the database. The specificity of connections for 

each target gene was calculated by the percentage of its connections to other 

significant genes. Pathways of highly connected genes were identified by likelihood. 

Using this strategy, the authors demonstrated that, upon acute systematic inflammation, 

the human blood leukocyte response includes widespread suppression at the 

transcriptional level of mitochondria energy production and protein synthesis 

machinery.  

 

     Said, et al [69] used protein interaction networks to analyze the phenotypic effects 

in yeast. Toxicity-modulation, non-phenotypic classifications, and high-throughput 

genomic phenotyping were conducted. Networks that represented a phenotypically 

annotated interactome of essential, toxicity-modulating, and no-phenotype proteins 

were constructed. The analysis showed interesting results. For example, 

toxicologically important protein complexes, pathways, and modules were identified, 

which have potential implications for understanding toxicity-modulating processes 

relevant to human diseases. 
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     In other studies, Seiden-Long et al integrated the microarray datasets with OPHID 

and found six of the target genes by HGF/Met/RAS signaling belong to a hypothetical 

network of function at the protein level [70]. Motamed-Khorasani et al found that six 

of the total of 17 androgen-regulated genes could be mapped into OPHID database. 

Five of the six genes are networked within two interacting partners [71].  

 

     The current project will integrate the three elements: proteomics, ontology, and 

network, and perform ontology-driven and network-enabled systems biology case 

studies. The following sections will describe the details of our methods and results. 
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3. METHODS 

 

     All methods related to ovarian cancer study in this section were based on the 

published methods and private communications with Dr. Chen, Dr. Shen, and Dr. 

Wang. I am one of the primary contributing members (Chen, J., Yan, Y., Shen, C., 

Fitzpatrick, D., Wang, M. A Systems Biology Case Study of Ovarian Cancer Drug 

Resistance. JBCB, 2007[2].). Method in 3.2.2 was kindly provided by Dr. Shen, who 

developed a statistical model to identify differentially expressed proteins as one of the 

inputs of my case study 2.  Ovarian cancer proteomics experimental methods in 

section 3.1.1 were kindly provided by Dr. Mu Wang. Yeast proteomics experimental 

methods in section 3.1.2 were kindly provided by Josh Heyen. Tables 3.1 ~ 3.3 were 

based on discussion with Dr. Goebl and Josh Heyen, where I am one of the 

contributors. The use of the materials was granted with the permission from 

participating contributors. 

 

3.1 Proteomics Method 

3.1.1 Ovarian cancer drug resistance proteomics method  

     A2780 and 2008 cisplatin-sensitive human ovarian cancer cell lines and their 

resistant counterparts, A2780/CP and 2008/C13*5.25, were used in the ovarian cancer 

drug resistant study. Proteins were prepared and subjected to LC/MS/MS analysis as 

described in [72]. There were two groups (two different parent cell lines), six samples 

per cell line, and two HPLC injections per sample. Samples were run on a Surveyor 

HPLC (ThermoFinnigan) with a C18 microbore column (Zorbax 300SB-C18, 1mm x 

5cm). All tryptic peptides (100 L or 20 g) were injected onto the column in random 

order. Peptides were eluted with a linear gradient from 5 to 45% acetonitrile 

developed over 120 min at a flow rate of 50 L/min. Fluant was introduced into a 

ThermoFinnigan LTQ linear ion-trap mass spectrometer. The data were collected in 

the “triple-play” mode (MS scan, Zoom scan, and MS/MS scan). The acquired data 

were filtered by proprietary software and Database searching against International 

Protein Index (IPI) database. NR-Homo Sapiens database was carried out using both 

SEQUEST and X!Tandem algorithms. Protein quantification was carried out using the 
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LC/MS-based label-free proprietary protein quantification software licensed from Eli 

Lilly and Company [72]. Briefly, once raw files are acquired from the LTQ, all 

extracted ion chromatogram (XIC) is aligned by retention time. Each aligned peak 

should match parent ion, charge state, daughter ions (MS/MS data) and retention time 

(within a one-minute window). If any of these parameters were not matched, the peak 

will be disqualified from the quantification analysis. The area-under-the-curve (AUC) 

from individually aligned peak was measured, normalized, and compared for their 

relative abundance. All peak intensities were transformed to a log2 scale before 

quantile normalization [73]. If multiple peptides have the same protein identification, 

then their quantile normalized log2 intensities were averaged to obtain log2 protein 

intensities. The log2 protein intensity is the final quantity that is fit by a separate 

ANOVA statistical model for each protein. log2 (Intensity) = overall mean + group 

effect (fixed) + sample effect (random) + replicate effect (random). Group effect refers 

to the effect caused by the experimental conditions or treatments being evaluated. 

Sample effect is caused by random effects from individual biological samples. It also 

includes random effects from sample preparation. The replicate effect refers to the 

random effects from replicate injections of the same sample. All of the injections were 

in random order and the instrument was operated by the same operator. The inverse 

log2 of each sample mean was determined to resolve the fold change between samples.  

 

3.1.2 Yeast Grr1 knock-out proteomics method  

     For the yeast Grr1 knock-out study, a customized SILAC approach was used to 

perform mass labeling. S.cerevisiae strain DBY2059 (Mat α leu2-3) was cultured 

overnight to stationary phase in two replicate 10ml batches of modified SD media 

consisting of 2% glucose, .5% glutamine, and .05 mg/ml C6
13 

leucine (Cambridge 

Isotope Laboratories, Inc., Andover, MA, USA). Concurrently, strain JH001 (Mat A, 

grr1Δ::Nat) was also cultured overnight to stationary phase in two replicate 10ml 

batches of the same media supplemented with C6
12 

leucine. Each 10ml culture was 

then used to inoculate a 500ml culture of the same media and cells were grown for 

nine population doublings to mid-log phase (~5x10
6
 cells/ml). Cell density was 

determined by cell counting using a hemacytometer (Reichert, Buffalo,NY, USA.). 
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Cells were harvested by centrifugation in a Beckman JA-14 rotor at 4000 X G for 10 

minutes, washed three times in ice cold water, and immediately re-suspended in 5ml 

of extraction buffer [8M Urea, 0.1M Ammonium Bicarbonate]. Cells were then 

immediately flash frozen in liquid nitrogen and stored at -80C overnight. Protein 

extract was prepared the following day by manual bead beating using 300 um acid 

washed glass beads (Sigma, St.Louis, MO). Specifically, samples were subjected to 10 

cycles consisting of 30 seconds on ice and 30 seconds of vortexing in the presence of 

glass beads. Glass beads and cellular debris were then spun down at 2000 X G and the 

supernatant was placed in 15ml conical tubes. Protein concentrations were determined 

using the Bradford protein assay and protein samples were mixed in a 1:1 ratio 

(DBY2059 C6
13 

leucine: JH001 C6
12 

leucine) producing two replicate protein mixes 

from four independently grown batch cultures. Each protein mixture was diluted with 

100mM Ammonium Bicarbonate to a final Urea concentration of 4M. Protein 

disulfide bond reduction was carried out by adding a 40 fold molar excess of 

Dithiothreitol (DTT) to each protein mixture followed by a three hour incubation at 

36
◦
C. Reduced protein mixtures were then alkylated using a 1:80 molar ratio of protein 

to iodoacetamide (IAM) followed by incubation on ice in complete darkness for 2 

hours. The reduced and alkylated protein mixture was then diluted to 2M Urea using 

an equal volume of 100mM ammonium bicarbonate and subjected to trypsin digestion 

using 2% (weight/weight) of TPCK-treated trypsin. Digestion was carried out at 37
◦
C 

for twenty four hours. Peptide samples were then dried down in a speed-vac and 

resuspended in a buffer consisting of 5% Acetonitrile, 95% EMD water, 0.025% 

Formic Acid, and 0.0025% HFBA. 

 

     The two replicate peptide mixtures were analyzed 3 times each through an 

automated de-salt/2DLC/MS system. Peptide De-salting and separation were 

performed in tandem using the Paradigm MG4 HPLC System (Michrom Biosciences, 

Inc.). Initially, approximately 150ug of the tryptic peptide mixture was loaded directly 

onto a C-18 microtrap (Michrom Biosciences, Inc.) and desalted by flushing the trap 

with 20 column volumes of mobile phase A (2% Acetonitrile, 98% Water, 0.025% 

Formic Acid) at a flow rate of 50 ul/min. Peptides were then eluted onto an SCX 



 22 

microtrap (Michrom Biosciences, Inc.) using 20 volumes of mobile phase B (98% 

Acetonitrile, 2% Water, 0.025% Formic Acid, 0.001% HFBA). Peptides were then 

bumped off the SCX microtrap in a stepwise fashion using increasing concentrations 

of Ammonium Formate. Ten steps were used in our analysis of 0, 4, 8, 12, 15, 18, 21, 

25, 50, and 100 mM Ammonium Formate followed by two identical steps of 1M 

Ammonium Formate. Each population of peptides were eluted off the SCX micro-trap 

onto a C8 nano-trap (Michrom Biosciences, Inc.) coupled directly to a hand packed 

C18 column with a hand pulled tip. A home made high pressure bomb was used to 

pack 15 cm of 5um-100 angstrom Magic C18 resin (Michrom Biosciences, Inc.). 

Peptides were then eluted off this column at 500nl/min using an Acetonitrile gradient 

from 5-50% and analyzed by an LTQ Mass Spectrometer (Thermo Electron 

Corporation) on the fly. 

 

     The LTQ-MS was set for data dependent MS/MS acquisition with a total ion count 

threshold of 1000. Dynamic exclusion was used to only collect two MS/MS spectra on 

a single parent ion every 45 seconds. Two types of data collection were performed in 

this analysis termed gas phase fractionation and full scan analysis. Typically, the 

LTQ-MS is set to scan across an m/z range from 500-2000 throughout the course of 

the analysis. This type of analysis was done in replicate for both replicate peptide 

mixtures culminating in four, 12 step full scan analyses. Each of the peptide mixtures 

was also subjected to a single gas phase fractionation analysis. This analysis is 

essentially equivalent to three full scan analyses but the mass spectrometer is set to 

scan 1/3 of the m/z scan range. This allows for greater m/z resolution and increased 

peptide detection sensitivity due to the fact MS/MS spectra are being collected for a 

smaller fraction of the peptide population eluting from the column. However, this 

process is time consuming given that three separate analyses must be performed to 

acquire data across the whole scan range and thus we only conducted a single gas 

phase analysis for each peptide mixture. The scan ranges for gas phase fractionation 

were 500-1000 m/z, 900-1500 m/z, and 1400-2000 m/z. In all, each of the two 

replicate peptide mixes were loaded and analyzed five times through the 2D-LC-MS 

system for a total of ten different runs.  
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     Peptide assignments for experimental MS/MS spectra were made using the 

SEQUEST program (Thermo Electron Corporation). The 12 raw files generated for 

each run are run individually through the SEQUEST software. Peptide assignments 

were then analyzed for validity using a suite of software available from the Institute 

for Systems Biology termed the Trans-Proteomic Pipeline. This analysis toolkit 

provides computational tools that validate peptide assignments (Peptide Prophet), 

protein assignments (Protein Prophet), and quantify relative peptide and protein 

abundance ratios (ASAPRatio). It is important to note that prior to analysis through 

the TPP the 12 .raw files are combined into a single mzXML using the TPP. This 

mzXML file captures raw parent MS spectra for use in quantification by the program, 

ASAPratio. The SEQUEST output files are converted to summary.html files that are 

readable by the programs Peptide Prophet and Protein Prophet. All the individual .raw 

files and SEQUEST .out files for a given analysis are analyzed together through the 

TPP to calculate the most accurate peptide probabilities, protein probabilities, and 

ratios for a given analysis.  

  

3.2 Preparation of Datasets 

 

3.2.1 Proteins in differentially expressed cisplatin-resistant vs. cisplatin-sensitive 

ovarian cancer cells 

     The protein quantification data was stored in Oracle schema Sysbio (see appendix 

1). 574 differentially expressed proteins with q-value (false discovery rate) <=0.10; 

both up- and down-regulation values or 141 proteins (with q-value <=0.05) were 

generated by mass spectrometry based proteomics experiment. Proteins were mapped 

into IPI database IDs. These IPI identifiers were converted into UniProt IDs in order to 

integrate this data set with all other annotated public data. 119 of the 141 proteins 

(0.05 q-value threshold) were successfully mapped and converted (see appendix 2), 

using the International Protein Index (IPI) database[74] downloaded in February 2006, 

the UniProt database downloaded in November 2005[75], and additional internally 

curated public database mapping tables. Similarly, 451 out of the 574 proteins with the 

less strict threshold (q-value <=0.10) were mapped from IPI IDs to UniProt IDs. 
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3.2.2 Differentially expressed proteins identified from Grr1 knock-out yeast vs. 

wild-type yeast 

     For each protein identified in mass spectrometry experiment, there are two 

measures: (i) the probability that the identification is correct (output from 

ProteinProphet) and (ii) the relative abundance ratio and its standard error (output 

from ASAPratio).  

 

     Since some proteins might be identified by more than one experiment, one can 

improve the reliability and accuracy of the two measures by combining the estimates 

from each experiment. If a protein is identified by k experiments, labeled r1, r2,… rk, 

then the summarized probability is calculated as: 

1

1 (1 )
i

k

id r

i

P P


   , 

Where 
ir

P is the probability measure from experiment
ir .  

 

     To summarize the estimate of the relative abundance ratio, we use a linear 

combination of the estimate at the log10 scale from each experiment. The weight is 

determined so that the summarized estimate has the lowest standard error among all 

possible linear combinations. Then the z-score is calculated by dividing the 

summarized estimate by its standard error for each protein. The local false discovery 

rate approach proposed by Effron[76] is applied to the z-scores to calculate the 

probability that the relative abundance ratio is different from 1 (
ratioP ). Finally, we take 

id ratioP P P  as the final confidence measure that a protein is differentially expressed 

between the two samples. In other words, to be claimed as “differentially expressed”, 

a protein needs to have high confidence in its identification and high confidence in its 

differential abundance. 184 proteins were selected (Combined Probability>=0.8) from 

Grr1 knock-out vs. wild-type yeast mass spectrometry experiment (see appendix 3). 
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3.2.3 Protein interactome data 

     The primary source of human data comes from the Online Predicted Human 

Interaction Database (OPHID) [58], which were downloaded in February 2006. It 

contains more than 47,213 human protein interactions among 10,577 proteins 

identified by UniProt accession numbers. After mapping the proteins in OPHID to 

UniProt IDs, we recorded 46,556 unique protein interactions among 9,959 proteins. 

Note that even though more than half of OPHID entries are interacting protein pairs 

inferred from available lower organisms onto their human orthologous protein pair 

counterparts, the statistical significance of these predicted human interactions was 

confirmed by additional evidences according to OPHID and partially cross-validated 

according to our previous experience [77]. We assigned a heuristic interaction 

confidence score to each protein interaction, based on the type and source protein 

recorded in OPHID according to a method described in [77]. We call this data set PiD0. 

 

49%

12%

39%
BIND ONLY

SGD ONLY

BIND AND SGD
OVERLAPPINGS

 

 

Figure 3.1 Yeast interactome data source from BIND and SGD. The percentages 

show the proportion of the non-redundant interacting pairs of each category among the 

combined non-redundant interacting pairs from BIND and SGD. 

 

     The source of yeast interactome data was the Saccharomyces Genome Database 

(SGD) [58], Biomolecular Interaction Network Database (BIND), and a small set of 

in-house manually curated data by our biology group (Goebl). The data from SGD and 
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BIND were downloaded in February 2006. Figure 3.1 summarized the percentage of 

overlappings of the interactome data from SGD and BIND. A total of 25,418 non-

redundant interactions were obtained after combining the 3 interactome datasets and 

the intensive processing (see Figure 3.2 for the data processing flow chart). We call 

this interactome dataset SBG. Non-redundant interactions are defined as the 

interactions that only contain unique interacting pairs. The same interaction detected 

by different methods or published in different papers is counted as one unique pair. 

For each interacting pair in SBG, we calculated a reliability score based on the scoring 

model developed (see section 3.3). 

 

 

 

Figure 3.2 Interactome data integration flow chart
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3.2.4 Noise-introduced human protein interactome data 

     To test how robust the final computational results would hold up against noise, 

which is commonly believed to exist in large portions of the public protein interaction 

data set, we generated two additional human protein interaction data sets, PiD-a20 and 

PiD-r20.  

 

     For PiD-a20, we add “protein interaction noise” by randomly connecting protein 

pairs from the set of 9,959 unique proteins for as many times as necessary to 

eventually generate 120% * 46,556= 55869 unique interactions. Therefore, we 

generate 20% new and unique “noisy” interactions in the PiD-a20 data set.  

 

     For PiD-r20, we eliminate “protein interaction noise” by randomly removing 

protein interaction pairs from the total 45,556 initial pairs of protein interactions in 

PiD0 to eventually reduce the total number of protein interactions down to (1-20%) * 

46,556= 37,243. Therefore, 80% of original interactions are kept intact in the PiD-r20 

data set. 

 

3.2.5 Gene annotation data  

     The human gene annotation database was downloaded from 

http://www.genmapp.org in January 2006. The whole annotation database (in MS 

Access) was then migrated to Oracle 10g. Human proteome GO annotation was 

performed based on human gene GO annotation and human gene ID to protein 

UniProt ID mappings. 

 

     The yeast gene annotation database was downloaded from www.genmapp.org in 

January 2006.  This database (in MS Access) was migrated to Oracle 10g. We also 

downloaded additional annotation datasets from other websites such as 

http://www.yeastgenome.org in January and February. Based on these datasets, we 

designed and implemented our yeast gene annotation database (see Figure 3.3). Yeast 

http://www.yeastgenome.org/
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proteome GO annotation was performed based on yeast gene GO annotation and yeast 

gene ID to ORFs mappings curated internally. 

 

 

Figure 3.3 ERD diagram of yeast annotation database stored in Oracle 10g 

 

3.2.6 Interacting protein categorical annotation data 

     Each GO term from the human or yeast protein annotation data was annotated with 

its minimal GO level number in the GO term hierarchy. Each GO term‟s higher-level 

parent GO terms (multiple parent GO terms are possible) up to GO level 1 (three GO 

terms at this level: molecular function, cellular components, and biological processes) 
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are also traced and recorded in an internally curated GO annotation table. When 

calculating interacting protein GO category information, we use this internally curated 

GO term table to map all the low-level GO term IDs (original GO Term ID) used to 

annotate each protein to all the GO term IDs‟ high-level GO term IDs (folded GO 

Term ID). For this study, we designate that all the folded GO term ID should be at GO 

term hierarchy Level = 3. Note that our method allows for multiple GO annotation 

Term IDs (original or folded) generated for each protein ID on purpose. Therefore, it 

is possible for a protein or a protein interaction pair to appear in more than one folded 

GO term category or more than one folded GO term interacting category pairs.  

 

3.3 Protein-Protein Interaction Scoring Model 

     The reliability score of a pair of interaction can be assigned based on what 

experimental methods detected the interaction, how many different methods were used, 

and how many different papers have published the same interaction.  

 

     Our scoring model was developed in 3 steps:  

     First, we mapped the interaction methods stored in SGD (see table 3.1) or BIND 

(see table 3.2) into certain codes: for SGD, the code begins with “s”; for BIND, the 

code begins with “b”. Then we created our metadata (see table 3.3) to unify the 

experimental methods for interacted pairs stored in SGD and BIND. We created the 

code for the unified method, which begins with “G”. For each unified term, a 

reliability score was assigned based on the characteristics of the experimental method. 

Generally, interactions identified from low throughput experiments are more reliable 

than from high throughput experiments, for example, the method “Two Hybrid” was 

assigned the lowest score “0.1”. Based on this, an interaction pair j identified by 

experimental method i can be assigned a base score of S0ji.  

 

(2) For interaction pair j, a specified experimental method i can associate with certain 

number (Cji) of unique PubMed IDs. A maximum number of publications can be 

calculated among all methods for the same pair of interaction. The adjusted rate  ji 
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for experimental method i of a certain interacted pair j can be calculated as (see figure 

3.4): 

 

1
10%

max(max 1,  1)

Cji
ji

Cji



 


 

(Where j denotes the jth unique interaction pair, i denotes the ith experimental method) 

 

     The adjusted score for experimental method i of a specified interaction pair j can be 

calculated as (see figure 3.4): 

S ji = S0ji ( 1+   ji) 

 

 

Figure 3.4 Protein interaction reliability score calculation algorithm and 

formulas. PMID stands for PubMed ID. 

 

(3) Similar to  [78], we combine Sj1, Sj2, …, Sji, …, Sjn  and calculate a final score Sj 

for the specified interaction pair j (see figure 3.4). 
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Table 3.1 Experimental methods for interacting pairs stored in SGD. 

SGD Method Code SGD Method 

s1 Affinity Capture-MS 

s2 Affinity Chromatography 

s3 Affinity Precipitation 

s4 Biochemical Assay 

s5 Dosage Lethality 

s6 e-map 

s7 Purified Complex 

s8 Reconstituted Complex 

s9 Synthetic Growth Defect 

s10 Synthetic Lethality 

s11 Synthetic Rescue 

s12 Two-hybrid 

 

Table 3.2 Experimental methods for interacting pairs stored in BIND. 

BIND Method Code BIND Method 

b1  (Blank) 

b2 affinity-chromatography 

b3 autoradiography 

b4 colocalization 

b5 competition-binding 

b6 cross-linking 

b7 deuterium-hydrogen-exchange 

b8 electron-microscopy 

b9 electron-spin-resonance 

b10 elisa 

b11 equilibrium-dialysis 

b12 far-western 

b13 fluorescence-anisotropy 

b14 footprinting 

b15 gel-filtration-chromatography 

b16 gel-retardation-assays 
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b17 hybridization 

b18 immunoblotting 

b19 immunoprecipitation 

b20 immunostaining 

b21 interaction-adhesion-assay 

b22 light-scattering 

b23 mass-spectrometry 

b24 membrane-filtration 

b25 monoclonal-antibody-blockade 

b26 not-specified 

b27 other 

b28 phage-display 

b29 resonance-energy-transfer 

b30 sucrose-gradient-sedimentation 

b31 surface-plasmon-resonance-chip 

b32 three-dimensional-structure 

b33 transient-coexpression 

b34 two-hybrid-test 

 

Table 3.3 Metadata for experimental methods 

SGD and BIND 

Method Code 
Code Unified Term Reliability Score 

b2, s1, s2, s3, b19 G1 Affinity_Purification 0.8 

b6 G2 Cross_Linking 0.5 

b10 G3 Elisa 0.7 

b28 G4 Phage_Display 0.1 

b29 G5 Resonance_Energy_Transfer 0.4 

b34, s12 G6 Two_Hybrid 0.1 

s6 G7 E_Map 0.8 

s9, s10 G8 Synthetic_Growth_Defect 0.8 

s11 G9 Synthetic_Rescue 0.8 

s7 G10 Purified_Complex 0.8 

s5 G11 Dosage_Lethality 0.8 

s4 G12 Biochemical_Assay 0.8 

s8 G13 Reconstituted_Complex 0.6 
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b3, b4 ~ b9 G99 Other 0.1 

b11, b12 ~ b18 G99 Other 0.1 

b20, b21 ~ b27 G99 Other 0.1 

b1, b30 ~ b33 G99 Other 0.1 

 

3.4 Network Expansion 

     We derive differentially expressed protein interaction sub-network using a nearest-

neighbor expansion method described in [77]. We call the original list of differentially 

expressed proteins (119 proteins in ovarian cancer study or 184 proteins in yeast Grr1 

knock-out study) seed (S) proteins and all the protein interactions within the seed 

interactions (or S-S type interactions). After expansion, we call the collection of seed 

proteins and expanded non-seed (N) proteins sub-network proteins (including both S 

and N proteins); we call the collection of seed interactions and expanded seed-to-non-

seed interactions (or S-N type interactions) sub-network protein interactions (including 

both S-S type and S-N type interactions). Note that we do not include non-seed-to-

non-seed protein interactions (or “N-N” type interactions) in our definition of the sub-

network, primarily because the N-N type of protein interactions often outnumbered 

total S-S and S-N types of protein interaction by several folds with molecular network 

context often not tightly related to the initial seed proteins and seed interactions. The 

only occasion to consider the N-N type interactions is when we calculate sub-network 

properties such as node degrees for proteins in the sub-network. 

 

3.5 Network Visualization 

 

     We use Spotfire DecisionSite Browser 7.2 to implement the 2-dimensional 

functional categorical crosstalk matrix for human ovarian cancer drug resistance study. 

To perform interaction network visualization, we used ProteoLens[79]. ProteoLens 

has native built-in support for relational database access and manipulations. It allows 

expert users to browse database schemas and tables, query relational data using SQL, 

and customize data fields to be visualized as graphical annotations in the visualized 

network.  
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3.6 Network Statistical Examination 

     Since the seed proteins are those that are found to display different abundance level 

between two different cell lines via mass spectrometry, one would expect that the 

network  “induced” by them to be more “connected” in the sense that they are to a 

certain extent related to the same biological process(es). To gauge network 

“connectivity”, we introduced several basic concepts. We define a path between two 

proteins A and B as a set of proteins P1, P2,…, Pn such that A interacts with P1, P1 

interacts with P2, …, and Pn interacts with B. Note that if A directly interacts with B, 

then the path is the empty set. We define the largest connected component of a 

network, as the largest subset of proteins such that there is at least one path between 

any pair of proteins in the network. We define the index of aggregation of a network 

as the ratio of the size of the largest connected component of the network to the size of 

the network by protein counts. Therefore, the higher the index of aggregation, the 

more “connected” the network should be. Lastly, we define the index of expansion of 

a sub-network as the ratio of S-S type interactions among seed proteins over all seed 

and expanded sub-network interactions (S-S and S-N types). The higher the index of 

expansion, the more relevant roles seed proteins plays in the network.  

 

     To examine the statistical significance of observed index of aggregation and index 

of expansion in expanded protein networks, we measure the likelihood of the topology 

of the observed sub-network under random selection of seed proteins. This is done by 

randomly selecting 119 proteins (in ovarian cancer study) or 184 proteins (in yeast 

Grr1 knock-out study), identifying the sub-network induced/expanded, and calculating 

sub-network indexes accordingly. The same procedure is repeated n=1000 times to 

generate the distribution of the indexes under random sampling, with which the 

observed values are compared to obtain significance levels (for details, refer to [77]). 

3.7 Significance of Testing of GO Categories and GO-GO Categories 

     To assess how significantly the seed proteins (119 in human study and 184 in yeast 

study) in the subnetwork are distributed across their specific GO function categories, 
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we hypothesize the task as observing the outcome of a random draw of the same 

number of proteins from the pool of proteins in the whole interacting network (9959 

proteins in human study and 5240 in yeast study). Then the count in a certain GO 

category follows a hypergeometric distribution. A p-value is calculated based on the 

hypergeometric distribution to evaluate the likelihood that we observe an outcome 

under random selection of a subset of proteins (119 in human and 184 in yeast) that is 

at least as “extreme” as what we have observed. Note “extreme” either implies an 

unusually large (over-representation) or usually small (under- representation) number. 

Let x be the count of the seed proteins that falls in a function category in the 

subnetwork, n is the sample size (119 in human study, or 184 in yeast study), N is the 

population size (9,959 in human study, or 5240 in yeast study), and k=corresponding 

count in OPHID, then the p-value for over/under-representation of the observed count 

can be calculated as:  

 

Over representation: 

 

Under representation:   

       

     We also expand the protein list from the 184 seed proteins to 1251 sub-network 

proteins in yeast study, and calculate a p-value for randomly drawing of 1251 proteins 

from the pool of 5240 proteins in SBG based on its hypergeometric distribution. 

 

     Similarly, we can use the above formula to assess how significantly the protein 

interactions from the seeded subnetwork are distributed across specific GO-GO 

functional interaction categories. For a GO-GO functional interaction category, we 

refer to a pair of GO categories, which are derived by aggregating all the protein-

protein interaction pairs with the same pairing of GO annotation categories for the 
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interacting proteins. For example, if 3 protein interactions share annotation category A 

in one side of the interaction, and annotation category B in the other side of the 

interaction, we say that A-B is a functional interaction category with an observed 

count of 3. To identify significant GO-GO functional interaction category in the 

seeded subnetwork, we hypothesize the task as the observing the outcome of a random 

draw of 1,723 pairs from the pool of 46,556 pairs in OPHID in human study (or 

random draw of .1,698 pairs from the pool of 25,418 pairs in SBG in yeast study). 

Then the count of a certain GO-GO function interaction category follows a 

hypergeometric distribution. A p-value for over/under-representation of the observed 

count can be calculated similarly, based on the hypergeometric distribution. Since tests 

of over/under representation of various categories are correlated with one another 

(over representation of one category could imply under representation of other 

categories), we also control the false discovery rate (FDR) using method developed by 

Benjamini and Yekutieli.[80]  

3.8 Validation of Under-Represented GO Categories 

 

      

Figure 3.5 Illustration showing the overlap of 9959 OPHID proteins and 4333 

proteins detected by MS experiments. 119 seed proteins is a high-confidence subset 

of the overlapped proteins. 

 

     Proteomics techniques are generally known for problems with false positives and 

false negatives, primarily for reasons such as complex digested peptide samples, noisy 

un-separated peptide peaks, and computationally intensive protein/peptide 

9,959 OPHID proteins

3,690 proteins in both 

OPHID and MS

4,333 proteins detected 

by MS

119 

seed 

proteins
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identifications that cannot afford to take all post-translational modifications into 

account. Since we control false positives by choosing 119 high-confidence seed 

proteins in this study, false negatives, instead of false positives, are a potential concern. 

Therefore, when we interpret over-/under- representation of proteins in GO functional 

categories or GO-GO functional interaction categories, over-representation results are 

likely under-exaggerated and will remain true, but under-representation results are 

likely over-exaggerated and needs additional validation or some adjustment. 

 

     We take 4,333 of all reported proteins, which includes proteins identified with both 

high and low confidence, from the MS search software, and overlap this set with all 

the 9,959 proteins found in OPHID. Out of 4,333 raw UniProt IDs, 3,690 of which can 

be further mapped to OPHID interaction human database. The 3,690 is then assumed 

to be the upper limit of instrument/software detectable proteins. When re-examining 

over-/under- representation GO functional categories, we let n=3,690, N=9,959, 

k=corresponding count in OPHID, and use the same formula introduced in section 2.6 

to calculate significant protein  over/under- representation. This relationship is 

illustrated in Figure 3.5. 

3.9 Drill-Down of Significant Categories 

     Once certain GO functional categories or GO-GO functional interaction categories 

are determined to be significant, they become candidates for subsequent “drill-down” 

examinations. For drill-down of GO functional categories, we refer to exploration of 

the next-level GO functional annotation by tracing down the GO structure and re-

calculating the significance value, based on each protein‟s new next-level GO 

functional annotation labels, using methods described in section 2.6. For drill-down of 

GO-GO functional categories, we refer to exploring the next-level GO-GO functional 

annotations by tracing both proteins of the interaction pair down the GO structure and 

re-calculating the significance value. The new next-level GO-GO functional 

annotation categories consist of all paired combinations of sub GO functional 

categories. The use of drill-down allows us to zoom in our attention to detailed 

biologically interesting categories to obtain further insights in enriched molecular 



 38 

functions and biological processes without incurring a huge computational cost at the 

very beginning of the exploration. 

3.10 Scoring of Significant Proteins in the Sub-Network 

     Protein ranking analysis was performed in MS Access front-end database which 

connects to the Oracle back-end database. First, 184 differentially expressed proteins 

were imported (with replacement) into linked Oracle table from the application 

interface (see Figure 3.6 ) after correct login information was verified, then the 

application automatically create the sub-network data by querying the linked Oracle 

SBG interactome dataset. We calculated ranking scores for the significant proteins in 

the sub-network using the heuristic relevance scoring formula[81]: 

 

1
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Where Ri is the ith seed protein ranking score, Ki denotes its connectivity, and Sij 

denotes its interaction reliability score with the jth partner. 

 

 

Figure 3.6 Application for the yeast subnet construction 
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      Our ranking analysis was built on the hypothesis: the significance of a protein‟s 

contribution in the network depends on its ability to connect to other proteins in the 

network and the reliability of the detected interactions. The higher the connectivity 

and reliability, the higher the ranking score should be.  
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4. RESULTS 

 

Case Study 1. Ovarian Cancer Drug Resistance Case Study 

 

     This part was written based on the published result[2], where I am one of the 

primary contributing members. The use of the material was granted with the 

permission from participating contributors. 

4.1 Activated Protein Interaction Sub-Network Properties 

     The network topology for the protein interaction sub-network expanded from seed 

proteins was examined. The resulting protein interaction sub-network (core sub-

network) consists of 1,230 seed and non-seed proteins in 1,723 sub-network 

interactions (including 17 S-S type interactions and 1,706 S-N type protein 

interactions). The node degree frequency distributions were plotted in Figure 4.1, 

where the whole human protein interaction network from OPHID (labeled “network”) 

is also shown. As expected, both the network and the sub-network (full) display good 

“scale-free” property. These results also show that the cisplatin resistant activated sub-

network (full) contains more “hubs” than “peripheral” proteins to form a cohesive 

functional sub-network. The core sub-network, while perhaps limited in size, shows 

“scale-free like” distribution, although hubs in the sub-network (core) are more 

distinctively identifiable than overly abundant peripheral nodes by high node degree 

counts.  

 

     Other network features for the core sub-network are also examined. The largest 

connected component (defined in the Method section; ibid) of the sub-network 

consists of 1193 proteins. The index of aggregation is 1193/1230=97.0%. The index of 

expansion as the percentage of S-S type interactions (17) over the core sub-network 

interactions (1723), i.e., 17/1723=0.96%. The index of aggregation has a p-value of 

less than 0.001 (upper tail) and the index of expansion is 0.06 (upper tail) A significant 

and high network index of aggregation suggests that the core sub-network has 

connectivity structures that are not random by nature. This correlates well with the 
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node degree distribution in Figure 4.1, where an exceptionally large number of hubs 

are shown to exist.  
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Figure 4.1 Node degree distribution of the sub-networks (core or full) in 

comparison with the human protein interaction network. 

 



 42 

 

4.2 Analysis of Activated Protein Functional Category Distributions 

     Although GO-based functional category analysis can be done routinely using many 

existing bioinformatics methods [3], the inclusion of protein interaction network 

context has not been previously described. In this analysis, we are more interested in 

enriched protein categories in the cisplatin-response functional process. This includes 

both up-regulated and down-regulated proteins. Therefore, we transformed protein-

protein interaction sub-network to GO cross-talk sub-network. Enriched protein 

functional categories were discovered among differentially expressed seed proteins 

and its immediate protein interaction sub-network nearest interaction partners.  

 

     Table 4.1 shows significantly enriched GO categories in the sub-network. 17 GO 

categories were filtered from 70 GO categories (data not shown). The filter criteria are 

1) the P-value over- or under- representation must be within 0.05 and 2) the total 

category count of GO in the whole network is greater than 10. In GO_TERM column, 

we have listed three types of information: level 3 GO terms, GO term category type 

(„C‟ for cellular component, „F‟ for molecular function, and „P‟ for biological process; 

in parenthesis preceding the dash), and GO identifier (seven digit number following 

the dash in parenthesis). In the ENRICHMENT column, we listed two types of 

counts of proteins with GO annotation levels falling in the corresponding category: 

within core sub-network and whole network (in parenthesis). In the PVALUE column, 

we have listed two numbers: the p-value from the significance test of whether there is 

an over- or an under- representation (two numbers separated by a „/‟) of an observed 

GO term category count in the sub-network. In the last CONCLUSION column, „++‟ 

suggests significant over-representation when the false discovery rate (FDR) is 

controlled at 0.05, „--‟ suggests significant under-representation when FDR controlled 

at 0.05, „+‟ to suggest insignificant over-representation when FDR controlled at 0.05 

but significant overrepresentation at native p-value=0.05, „-‟ to suggest insignificant 

over-representation when FDR controlled at 0.05 but significant overrepresentation at 

native p-value=0.05.  
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Table 4.1 Enriched GO categories in the sub-network Context. An asterisk 

indicates adjustment may be needed for further interpretation. 

 

     We also tested how robust the network is by introducing noise in protein 

interaction data sets. Two experiments were performed (for a description of the 

methods, see section 3.1.1) : “add20”, in which we added 20% new randomly-selected 

GO_TERM ENRICHMENT 

PVALULE 

(OVER/UNDER) CONCLUSION 

membrane (C-0016020)*       7 (2034)     1/0          -- 

proton-transporting two-sector 

ATPase complex (C-0016469)  2 (12)     .009/1      + 

non-membrane-bound 

organelle (C-0043228)           19 (834)     .005/.9980  + 

organelle lumen (C-0043233)                                2 (13)     .0101/.9996  + 

proton-transporting ATP 

synthase complex (C-0045259)                                         2 (17)     .0171/.9990  + 

proton-transporting ATP 

synthase complex\, catalytic 

core (C-0045261)                                       1 (1)   0.012/1          + 

proton-transporting ATP 

synthase, catalytic core  

(C-0045267) 1 (1) 0.012/1 + 

protein binding (F-0005515)                                26 (1387)  .012/.9937  + 

drug binding (F-0008144)                                   2 (12)     0.009/1  + 

isomerase activity (F-0016853)                             7 (69)     0/1  ++ 

nucleotide binding (F-0000166)                           23 (1205)    .0148/.9923 + 

receptor activity (F-0004872)*                               2 (642)    .9968/.0149  - 

receptor binding (F-0005102)*                               1 (422)    .9944/.0354  - 

oxidoreductase activity  

(F-0016491) 12 (271) 0/1 ++ 

                           Kinase 

regulator activity (F-0019207) 3 (50) 0.022/0.9970 + 

metabolism (P-0008152) 67 (4634) 0.020/0.9875 + 

response to biotic stimulus  

(P-0009607)*  1 (711) 1/0.0014 - 

regulation of physiological 

process (P-0050791)*                 17 (2129)  .9817/.0328  - 

regulation of cellular process 

(P-0050794)*                             15 (2182)  .9968/.0066  - 
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connections between OPHID proteins to create a new OPHID proteins data set PiD-

a20, and “remove20”, in which we removed 20% existing randomly-selected 

connections between OPHID proteins to create a new OPHID proteins data set PiD-

r20. Surprisingly, although the individual category counts fluctuate, all conclusions 

made through the above-described threshold values of p-value and FDR remain the 

same (this conclusion also remains true for high-level GO-GO category enrichment 

experiments in next section; results not shown). This suggests the significance of our 

discovery is robust against reasonable noise inherent in the protein interaction 

databases. 

 

     After the above analysis, we then re-examined all “under-represented categories” 

under a new false-negative controlled experiment to see if these under-representations 

have been “exaggerated” due to bias of the MS experimental methods. Therefore, we 

set up an experiment to observe the inherent bias (either over- or under- representation) 

in all detectable MS proteins overlapped with OPHID data sets (also described in 

section 3.1.6).  

 

Table 4.2 Re-examination of under-represented seed protein functional 

categories 

 

GO_TERM 

P-VALUE, OVER-

REPRESENTED 

(seed/background) 

P-VALUE, 

UNDER-

REPRESENTED 

(seed/background) 

CONCLU-

SION 

Membrane (C-0016020)       1.0000 (.00000) .00001 (1.0000) -- 

receptor activity (F-0004872)                               .99681 (.00002) .01489 (.99998) -- 

receptor binding (F-0005102)                               .99439 (.99937) .03550 (.00092) ? 

response to biotic stimulus  

(P-0009607)  .99986 (1.0000) .00144 (.00000) ? 

regulation of physiological 

process  

(P-0050791)                 .98169 (.00000) .03276 (1.0000) -- 

regulation of cellular process 

 (P-0050794)                             .99685 (.00000) .00664 (1.0000) -- 
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     Table 4.2 lists the results. Here seed experiment refers to the earlier experiment 

which we examined the enrichment (in this case, all under-representations) of 119 

seed proteins; background experiment refers to the re-examination experiment which 

we examined the enrichment bias of 3690 MS detectable proteins also found in 

OPHID data set. When we observe significant over-representation of certain GO 

functional categories in the background, we make the conclusion that the category is 

indeed under-represented in the seed (marked as “--“).When we observe significant 

under-representation of certain GO functional categories in the background, we make 

the conclusion that the category is not necessarily under-represented (or likely over-

represented) in the seed (marked as “?“ for inclusive). 

 

     From the above comprehensive analysis, we can obtain the following biological 

insights. First, proton-transporting ATP synthase activity is related to the cell cisplatin 

resistance function (see table 5 for the enriched GO categories), which may imply 

higher oxidative energy production capability among cancerous functions in cisplatin 

resistant cell lines over cisplatin sensitive cell lines. This is consistent with the existing 

findings: mitochondria -- “ATP factory”, was considered to be a major target of 

cisplatin, leading to mitochondrial loss of energy production[82]. Second, although the 

protein interaction network in general is inherently enriched with proteins with 

“protein binding” capabilities (note 1412 proteins in the category from the whole 

network), the cisplatin-resistant cell line demonstrated an unusually high level of 

protein-binding activities; in addition, a broad spectrum of across-the-board drug-

binding and nucleotide-binding mechanisms are all activated to fight again cisplatin-

induced DNA damage in cancer cells. This suggests that many intracellular signaling 

cascades are intensely mobilized with cisplatin-resistance. Third, the data suggest that 

the location of the biological activities of cisplatin resistant response take place in 

cytoplasm or nucleus, rather than on “membrane”. This correlates well with the 

previous hypothesis that transporters that are responsible for assisting with cisplatin 

import into the cell seem to become blocked in drug-resistant cells. This analysis gives 

essential clues to the overall picture of molecular signaling events for cisplatin 
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resistant cell lines. We also obtained categorical enrichment data at lower GO levels 

than are shown in this section, using the drill-down method (for method, refer to 

section 3.1.7; results not shown), to obtain detailed views of biological process, 

molecular function, and cellular components.  

4.3 Functional Category Cross-Talks 

     We developed a two-dimensional visualization matrix (extended from our 

technique described in [83]) to show significant cross-talk between GO categories in  

Figure 4.2 (only biological processes at level=3 are shown due to space constraints). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Significantly over-represented GO-GO interaction categories in seeded 

subnetwork. (only biological processes at level=3 are shown due to space constraints).  
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Table 4.3 Drill down of significant GO-GO functional category cross-talk. 

“Cellular Physiological Process” vs. “Cellular Physiological Process” at GO term level 

4. Note only p-value <0.05 for over-representation are shown (FDR<0.05 cases are 

also in bold) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

GO TERM #1 GO TERM #2 ENRICHMENT 

P-

VALUE  

cell homeostasis (P-

0019725) transport (P-0006810) 18 (120) 0 

transport (P-0006810) transport (P-0006810) 75 (1377) 0.0006 

regulation of cellular 

physiological process (P-

0051244) transport (P-0006810) 130 (2045) 0 

cell cycle (P-0007049) transport (P-0006810) 68 (708) 0 

cell death (P-0008219) transport (P-0006810) 45 (694) 0.0002 

cell proliferation (P-

0008283) transport (P-0006810) 22 (238) 0.0001 

cellular metabolism (P-

0044237) transport (P-0006810) 359 (6041) 0 

cellular metabolism (P-

0044237) cell cycle (P-0007049) 253 (4439) 0 

cellular metabolism (P-

0044237) 

cell proliferation (P-

0008283) 85 (1412) 0 

cell homeostasis (P-

0019725) 

cell organization and 

biogenesis  

(P-0016043) 11 (73) 0.0001 

cellular metabolism (P-

0044237) 

cell homeostasis (P-

0019725) 25 (279) 0 

cellular metabolism (P-

0044237) 

cellular metabolism (P-

0044237) 764 (17604) 0 

cell homeostasis (P-

0019725) cell cycle (P-0007049) 5 (43) 0.0207 

regulation of cellular 

physiological process (P-

0051244) cell cycle (P-0007049) 130 (2655) 0.0007 

cell cycle (P-0007049) cell cycle (P-0007049) 39 (702) 0.0084 

cell organization and 

biogenesis  

(P-0016043) cell cycle (P-0007049) 53 (936) 0.0017 

cell homeostasis (P-

0019725) 

chromosome 

segregation  

(P-0007059) 1 (1) 0.037 

regulation of cellular 

physiological process (P-

0051244) 

cell homeostasis (P-

0019725) 13 (149) 0.0037 
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The size of each node is inversely proportional to the p-value of interacting categories. 

The color legends are: red (dark) for interacting categories that are significant when 

FDR controlled at 0.05; and gray (light) for interacting categories that are not 

significant when FDR controlled at 0.05. The figure 4.2 reveals additional interesting 

findings. First, cellular physiological processes are significantly activated in drug-

resistant cell lines (the largest and reddest dot, at the bottom left corner). This could 

lead to further drill-down of protein interaction in the interacting category for 

biological validations (see Table 4.3 for an example). Second, these cellular 

physiological processes seem to be quite selective rather than comprehensive. For 

example, when looking at significant regulation of cellular response categories, 

significant cross-talk functional patterns strongly suggest the cellular and 

physiological responses arise from endogenous, abiotic, and stress-related signals 

(internalized cisplatin causing DNA damage and inducing cell stress). Using a cross-

talk matrix such as this, cancer biologists can quickly filter out other insignificant 

secondary responses (such as cell growth, cell development shown) to establish a new 

prioritized hypothesis to test. 

4.4 Visualization of the Activated Interaction Functional Sub-Network 

     In Figure 4.3, we show a visualization of the activated biological process functional 

network, using a recently developed software tool “ProteoLens”[79]. ProteoLens is a 

biological network data mining and annotation platform, which supports standard 

GML files and relational data in the Oracle Database Management System (for 

additional details, visit http://bio.informatics.iupui.edu/proteolens/). In the figure 4.3, 

in contrast with regular protein interaction network, we encode nodes as significantly 

over-/under- represented protein functional categories, and edges as significantly 

interacting protein functional categories. Several additional information types are also 

represented. The original abundance (by count) of each functional category is encoded 

in the node size. The p-values of activated protein category significance in the sub-

network is encode as node color intensity, on a scale from light yellow (less significant) 

to dark red (more significant). 

 

http://bio.informatics.iupui.edu/proteolens/
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Figure 4.3 Activated biological process network in cisplatin-resistant ovarian 

cancer cells. Red-colored lines stand for “significant”, while blue-colored lines stand 

for “not significant” (FDR=0.05) 
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     From this figure 4.3 we can see that cisplatin-resistant ovarian cancer cells 

demonstrated significant cellular physiological changes, which are related to cancer 

cell‟s native response to stimulus that is endogenous, abiotic, and stress-related. 

Interestingly, we also observed that the regulation of viral life cycle also plays very 

significant roles in the entire drug resistant process. This previously unknown 

observation may be further examined at protein levels to formulate hypothesis about 

acquired cisplatin resistance in ovarian cancer.  
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Case Study 2. Yeast Grr1 Knock-Out Case Study 

 

     Case study 2 is the collaborative work among the biology group (Dr. Goebl and 

Josh), biostatistics group (Dr. Shen), and Informatics group (Dr. Chen and I).  The 

manuscript is in preparation. 

4.5 Activated Protein Interaction Sub-Network Properties 

 

Figure 4.4  Node degree distribution of the sub-networks (core or full) in 

comparison with the yeast protein interaction network. 
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     The resulting protein interaction sub-network consists of 1,251 seed and non-seed 

proteins in 1,698 sub-network interactions (including 54 S-S type interactions and 

1,644 S-N type protein interactions). This protein interaction sub-network is called a 

“core sub-network”. The “full sub-network” includes all N-N type protein interactions 

in addition to the S-S type and S-N type interactions. We plot their node degree 

frequency distributions in Figure 4.4, where the whole yeast protein interaction 

network from SBG (labeled “network”) is also shown. As expected, both the network 

and the sub-network (full) display good “scale-free” property (some nodes act as 

"highly connected hubs", although most nodes are of low degree). The core sub-

network, while perhaps limited in size, begins to show “scale-free like” distribution, 

although hubs in the sub-network (core) are more distinctively identifiable than overly 

abundant peripheral nodes by high node degree counts.  

 

     We also examined other network features for the core sub-network. The largest 

connected component of the sub-network consists of 1163 proteins with 1637 

interactions. The index of aggregation is 1163/1251=93.0%. The index of expansion 

as the percentage of S-S type interactions (54) over the core sub-network interactions 

(1698) is 54/1698=3.18%. The high network index of aggregation here suggests that 

the core sub-network has high connectivity.  

 

4.6 Analysis of Activated Protein Functional Category Distributions 

 

     We first analyzed significantly enriched GO categories among 184 seed proteins. 

We limited our analysis to level 3 GO categories as previously described. Our result 

revealed 11 significantly enriched GO biological process, functional categories, and 

cellular components in response to Grr1 perturbation. After filtering out the general 

GO categories that have more than 200 ORFs from the whole yeast PPI have been 

annotated to, only 3 significantly enriched GO categories are left (see table 4.4). The 

table column header definition is the same as previously defined in the human case 

study. 

 



 53 

Table 4.4. Over/under – represented GO categories among the seed proteins 

GO_TERM ENRICHMENT 

(OVER/UNDER

) 

CONCLUSIO

N 

eukaryotic 43S preinitiation 

complex (C-0016282) 5 (55) 0.0427/0.988 + 

lipid transporter activity (F-

0005319) 2 (8) 0.0299/0.9979 + 

oxidoreductase activity (F-

0016491) 16 (184) 0.0007/0.9998 + 

 

 

     The analysis result from the above apparently provides limited information. Thus, a 

simple ontology-based annotation for global proteomics data offers no significant 

further understanding of Grr1 function. This is partially due to the fact that the current 

proteomics techniques are not sensitive enough to capture the whole proteome, 

especially those proteins with low-abundance, e.g. Grr1. However, we expect to find 

many abundant proteins whose expression levels are directly or indirectly regulated by 

Grr1. These proteins may look disparate or isolated in their GO-annotation, but may 

interact with other proteins and impact the cellular components or functions.  

 

     We expanded our protein list by mapping our differentially expressed proteins onto 

protein interaction networks and including the immediate partners in our analysis. The 

expanded sub-network included 1251 proteins (184 seeds and 1067 immediate 

partners). We then mapped these proteins into GO categories and re-analyzed the 

enriched GO categories using statistical methods previously described. We discovered 

53 enriched GO categories including both over- and under-represented GO categories. 

We applied the same filtering criteria to the 53 GO categories to remove generalized 

GO categories that contain 200 or more annotations, and obtained 40 enriched GO 

categories with 15 terms categorized as component terms, 15 categorized as process 

terms, and 10 categorized as function terms (see table 10). The table column header 

definition is the same as previously defined in the human case study. Therefore, the 

application of the GO analysis to the sub-network leads to the extraction of more GO 

terms overall and more specific GO terms. 
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Table 4.5. Over/under – represented GO categories among the subnet proteins 

GO_TERM 

ENRICH-

MENT (OVER/UNDER) 

CONCLU

-SION 

transcription export complex (C-0000346) 4 (4) 0.0032/1 + 

proteasome complex (sensu Eukaryota) (C-

0000502) 25 (37) 0/1 ++ 

transcription factor complex (C-0005667) 43 (106) 0.0001/1 ++ 

mitochondrial inner membrane presequence 

translocase complex (C-0005744) 3 (4) 0.0446/0.9968 + 

proteasome regulatory particle (sensu 

Eukaryota) (C-0005838) 8 (9) 0.0001/1 ++ 

microtubule associated complex (C-0005875) 14 (29) 0.0035/0.999 + 

bud (C-0005933) 48 (107) 0/1 ++ 

eukaryotic 43S preinitiation complex (C-

0016282) 19 (55) 0.0479/0.975 + 

chromatin remodeling complex (C-0016585) 30 (71) 0.0004/0.9998 ++ 

DNA-directed RNA polymerase II\, 

holoenzyme (C-0016591) 32 (66) 0/1 ++ 

external encapsulating structure (C-0030312) 14 (102) 0.9964/0.0077 - 

site of polarized growth (C-0030427) 50 (109) 0/1 ++ 

replisome (C-0030894) 12 (27) 0.0149/0.995 + 

cell projection (C-0042995) 19 (36) 0.0002/1 ++ 

pyruvate dehydrogenase complex (C-

0045254) 3 (4) 0.0446/0.9968 + 

RNA polymerase II transcription factor 

activity (F-0003702) 42 (93) 0/1 ++ 

receptor signaling protein activity (F-

0005057) 8 (13) 0.0041/0.9993 + 

amine transporter activity (F-0005275) 1 (33) 0.9999/0.0014 - 

organic acid transporter activity (F-0005342) 2 (39) 0.9997/0.002 - 

carrier activity (F-0005386) 24 (158) 0.9976/0.0046 - 

enzyme activator activity (F-0008047) 20 (56) 0.0304/0.9848 + 

lipid binding (F-0008289) 11 (15) 0.0001/1 ++ 

protein transporter activity (F-0008565) 11 (25) 0.0211/0.9928 + 

carbohydrate transporter activity (F-0015144) 3 (31) 0.9882/0.041 - 

GTPase regulator activity (F-0030695) 26 (63) 0.0016/0.9994 ++ 

aging (P-0007568) 15 (29) 0.001/0.9997 ++ 
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morphogenesis (P-0009653) 46 (103) 0/1 ++ 

response to endogenous stimulus (P-0009719) 64 (172) 0/1 ++ 

cell growth (P-0016049) 3 (4) 0.0446/0.9968 + 

death (P-0016265) 15 (39) 0.0295/0.9871 + 

sexual reproduction (P-0019953) 41 (93) 0/1 ++ 

asexual reproduction (P-0019954) 39 (75) 0/1 ++ 

cell differentiation (P-0030154) 39 (100) 0.0005/0.9998 ++ 

Filamentous growth (P-0030447) 23 (54) 0.0018/0.9993 ++ 

regulation of growth (P-0040008) 3 (3) 0.0136/1 + 

regulation of gene expression, epigenetic (P-

0040029) 25 (76) 0.0459/0.9737 + 

negative regulation of biological process (P-

0048519) 53 (155) 0.0021/0.9988 ++ 

non-developmental growth (P-0048590) 14 (28) 0.0023/0.9994 ++ 

regulation of enzyme activity (P-0050790) 13 (25) 0.0021/0.9995 ++ 

reproductive physiological process (P-

0050876) 27 (65) 0.0012/0.9995 ++ 

 

     To assess the validity of our analysis, we first determined whether the expanded 

GO annotation was supported by known Grr1 functions from previous publications.  

 

     Grr1 affects many different cellular processes in Saccharomyces cerevisiae through 

its role as a receptor for the SCF ubiquitin ligase[84-86]. In conjugation with this 

multimeric protein complex, Grr1 serves to target protein substrates for ubiquitylation, 

an event that ultimately results in the substrates degradation by the 26S proteasome. 

Currently, there are ten proteins that are thought to be ubiquitylated by the SCF
Grr1

 

ubiquitin ligase, each of these proteins playing distinct roles in multiple cellular 

processes.[86] The cells lacking Grr1 exhibit multiple abnormalities including cell 

elongation, slow growth on glucose, increased sensitivity to osmotic stress and 

nitrogen starvation, decreased divalent cation transport, enhanced filamentous growth, 

defects in sporulation, and slow growth or invariability when combined with amino 

acid biosynthesis mutants.[84, 87-90] We expect our ontology-driven network enabled 

approach would capture some of the GO functions through extracting the enriched GO 

terms directly associated with Grr1 or with the targets of Grr1.    
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     Intriguingly, among the 40 enriched GO categories, 14 GO categories are directly 

ascribed to Grr1 or at least one of its targets, 10 categories over-represented and 4 

under-represented. In figure 4.5, the 10 over-represented GO categories that are 

directly related to Grr1 or related to targets of Grr1 are shown. The Grr1 protein is 

known to participate in regulating bud emergence and growth through its role in 

targeting the Cdc42 effectors Gic1 and Gic2 as well as the cyclins Cln1 and Cln2 for 

degradation by the 26S proteasome [85, 90-93]. The GO categories “polarized 

growth”, “bud”, “morphogenesis”, “asexual reproduction”, and “cell projection” are 

all involved in the elongated bud morphological phenotype of Grr1 knock-out cells. 

The elongated bud morphology resembles invasive growth for Grr1 knock-out yeast. 

Therefore, based on the existing evidence from previous publications, the ontology-

driven network-enabled analysis approach proves to be not only valid, but also have 

the potential to drive the generation of the novel hypothesis for future investigations.   
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Figure 4.5 Enriched GO categories (partial listing) and yeast bud morphological 

phenotype. This figure was modified based on Josh‟s original figure. 

 

 

4.7 Functional Category Cross-Talks 

 

 

Figure 4.6 Visualization of significantly over-represented GO cross – talk sub-

networks related to Grr1 induced morphological change.  The partial sub-networks 

were constructed by seeding the significantly enriched GO cross-talk sub-network by 

“bud”, “cell projection”, “site of polarized growth”, “asexual reproduction”, and 

“morphogenesis". The top one is for biological process and the bottom one is for 
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cellular component. The numbers and the thickness both denote the enrichment of the 

GO cross-talk pairs in the protein-protein interaction sub-network. The larger the 

number, or the thicker the line, the more enriched the GO pair is. 

 

     To investigate how these Grr1-deletion enriched GO categories are functionally 

associated with each other, we subsequently performed functional category cross-talk 

analysis (for detailed method, see method section 3.7), and identified 287 significant 

over/under-represented GO-GO cross-talks (see appendix 4).  

 

     In particular, the significantly enriched GO categories discovered previously, i.e. 

“bud”, “cell projection”, “site of polarized growth”, “asexual reproduction”, and 

“morphogenesis" are also involved in the significantly enriched GO-GO cross-talk 

pairs. These cross-talk GO categories are functionally related to the yeast bud 

morphological phenotype change induced by Grr1 knock-out perturbation. 

Importantly, some of the GO-GO pairs are highly connected and form the GO-GO 

interaction subnet for Grr1 (Figure 4.6), implying that Grr1 perturbation may affect 

some specific biological processes or cellular components through a small core group 

of proteins. Further more, we also observe that microtube associated complex is highly 

connected to other GO categories in the GO cross-talk sub-network that are related to 

Grr1 induced morphological change. This intrigues us since there is no previously 

known role for Grr1 in microtubule related processes.  

 

      Drill-down analysis of the group of proteins involved in the GO cross-talk sub-

network might help biologists discover the proteins that significantly contribute to the 

Grr1 perturbed morphological phenotype change. 

 

4.8 Scoring of Significant Proteins in the Sub-Network 

     We further performed significant proteins ranking analysis, with the hope of 

isolating important proteins that contribute to Grr1's possible new function that we 

discovered earlier by our ontology-driven network-enabled approach. 
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     Based on the connectivity and the confidence of the protein-protein interactions, we 

ranked significant seed proteins (for detail of the method, see section 3.10). Table 4.6 

shows the top-ranked 20 proteins among 184 seed proteins.  

Table 4.6 Ranking analysis of the significant proteins. Only 20 top-ranked proteins 

were listed here due to the space. 

Rank Score ORF Gene Symbol Fold Change (Grr1
─
 vs wt) 

1 4.1826 YGL167C PMR1 0.250 

2 3.9453 YPR141C KAR3 5.970 

3 3.8658 YNL298W CLA4 0.202 

4 3.0236 YPL174C NIP100 0.111 

5 2.8646 YOR261C RPN8 0.33 

6 2.8301 YNL233W BNI4 5.31 

7 2.784 YML008C ERG6 0.129 

8 2.7606 YDR155C CPR1 0.524 

9 2.6697 YNL244C SUI1 4.224 

10 2.6495 YKL173W SNU114 0.409 

11 2.6329 YKR054C DYN1 39.224 

12 2.6311 YMR309C NIP1 13.115 

13 2.6219 YJL148W RPA34 0.129 

14 2.5001 YGL055W OLE1 6.486 

15 2.3706 YBL047C EDE1 0.343 

16 2.3508 YBR152W SPP381 4.658 

17 2.328 YDL006W PTC1 0.229 

18 2.3236 YGL112C TAF6 0.4029 

19 2.3079 YLR087C CSF1 6.4511 

20 2.2101 YOR290C SNF2 0.1812 

      

Later, we isolated the actual proteins from the top ranked protein list that mapped 

to the GO component term "microtubule associated complex". The analysis revealed that 

two of the most highly connected proteins, Nip100 and Dyn1. Both proteins also 

represented most extensively changed proteins in the network: Dyn1 protein levels 

were observed to increase in the Grr1 mutant ~ 40 fold while Nip100 protein levels 

were observed to decrease ~10 fold in the analysis. Nip100 is part of the dynactin 

complex[94] where it is thought to act as a tether for Dynein, encoded by Dyn1. Thus 

we probed the relationship between Grr1 and Nip100. Figure 4.7 shows protein 

interaction sub-network seeded by Grr1, Dyn1, and Nip100, where Grr1 connects to 
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Nip100 through Bzz1 and Tub3. Grr1 connects to Dyn1 through Cdc12 and Pac10. 

We hypothesized that Grr1‟s influence on the GO component microtubule associated 

complex could be possibly through one or more of these bridge proteins such as Bzz1. 

The biological experiments are being conducted by our biology group to validate this 

hypothesis. 

 
 

Figure 4.7 Protein interaction sub-network seeded by Grr1, Dyn1, and Nip100. 

Node colors: Red = protein level > 2 fold, Bright blue = -2>= protein level <=2, Grey 

= no detection, Green = protein level <-2. Line colors: Red = Synthetic Lethality, Pink 

= Synthetic Growth Defect, Light Blue = Two Hybrid or Affinity Capture MS, Dark 

Blue = Reconstituted Complex or Affinity Capture Western, Green = Synthetic 

Rescue, Purple = Dosage Rescue, Orange = Phenotypic Suppression, Yellow = 

Phenotypic Enhancement. This figure was provided by Josh Heyen. 
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     Through ranking analysis, we also further validated our ontology-driven network-

enabled approach.  Kar3, a kinesin-like nuclear fusion protein, is ranked at the second 

place in the table. It belongs to gene ontology categories “sexual reproduction” (level 

3 biological process) and “intracellular” (level 3 cellular component). The third top-

ranked protein Cla4, a protein kinase, can be mapped to GO categories “asexual 

reproduction”  at level 4 biological process, and “budding cell apical bud growth”, 

“cell communication”, “metabolism”, and “morphogenesis” at level 3 biological 

process. All of the GO categories mapped by these proteins have been shown to be 

important in Grr1 perturbation induced morphological changes through our ontology-

driven and network-enabled approach based analysis.  
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5. CONCLUSIONS 

 

     In the current study, we developed a systems biology approach to analyze the 

proteomics data. We applied this novel approach to two case studies: human ovarian 

cancer drug resistance study and yeast Grr1 knock-out study.  

 

     The identified differentially expressed proteins formed basic dataset – seed proteins 

of our case studies. We used the seed proteins to construct our protein-protein sub-

network. Then we analyzed the core protein-protein interaction sub-network feature. 

Both human ovarian cancer drug resistance related and yeast Grr1 knock-out sub-

networks showed high connectivity feature. After we mapped the proteins and protein-

protein interactions to GO annotations and constructed GO–GO cross-talk sub-

networks, we performed statistical testing to find significantly enriched over / under-

represented GO categories and GO-GO cross-talk categories. The visualization tools 

“Spotfire” and “Proteolense” were used to aid in the analysis.  

 

     Our approach has been validated in the two case studies by comparing our 

discoveries with existing findings. Some new insights were obtained.  

 

     In the first case study, we observed that cellular physiological process is 

significantly activated in drug-resistant cell lines, and this response arises from 

endogenous, abiotic, and stress-related signals. Our studies also showed that cisplatin 

resistant cell line demonstrated unusually high level of protein-binding activities, and 

a broad spectrum of cross-the-board drug-binding and nucleotide-binding mechanisms 

are all activated.  

 

     In the second case study, we observed that a subset of significantly over-

represented enriched GO categories is highly connected in the GO sub-network, which 

implies that Grr1 induced morphological phenotype change might be resulted from a 

small core group of proteins. We hypothesized Grr1's new role in microtubule related 

processes based on the high connectivity of microtubule associated complex with 
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other GO categories for Grr1's known functions. We further performed ranking 

analysis of the significant seed proteins based on their connectivities and reliabilities 

of the interactions in the sub-network. The ranking analysis further validated our 

findings revealed by the ontology-driven network-enabled approach. These biological 

discoveries support the significance of developing a common framework of evaluating 

functional genomics and proteomics data, using networks and systems approaches.  
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6. DISCUSSIONS 

 

     Molecular biology focuses the mechanistic study of biological phenomena. One of 

its strengths is to concentrate on the actions of a small number of genes without being 

distracted by the complex biological milieu in which they are found. However, in 

terms of a series of binary interactions or when pathways become complex and many 

genes work together, using molecular biology to model function shows its weakness. 

In this case, more network-level understanding is required. In this study, we showed 

that the key to interpreting omics data is a systems biology approach, which is both 

hypothesis-driven and data-driven, with the ultimate goal of integrating multi-

dimensional biological signals at molecular signaling network levels.  It is important 

to note that systems biology approach and the traditional molecular biology approach 

should complement each other in order to achieve a deep understanding of the 

molecular mechanisms. The systems biology approach is not a replacement of the 

traditional approach. 

 

     In the present study, we described a novel systems biology approach to integrate 

omics data with both GO annotation and protein interaction networks and its 

application in two proteomic case studies. The whole proteome of two cellular 

conditions of yeast or human cells were interrogated using LC-MS/MS. A 

differentially expressed protein lists were obtained by statistical analyses controlling 

false discovery rate. We obtained 114 and 184 significantly over- or under-expressed 

proteins for our two case studies, respectively. The mass spectrometer-based 

proteomics analysis is one of the major techniques recently developed to examine 

thousands of proteins simultaneously. Since it directly analyzes the protein level and 

protein modifications, the mass spectrometer- based proteomics provides more direct 

explanations for cellular processes involving multiple protein components. However, 

the current proteomics analysis was unable to detect and quantify an entire proteome 

and has low sensitivity to the low-abundant proteins such as Grr1, which may play 

critical roles in many important biological processes.  

 



 65 

     The large volume of differentially expressed proteins derived from the proteomics 

and microarray studies provide us the opportunity for investigating the biological 

function at the systems level. However, the protein lists themselves offers very limited 

clues to our understanding of the biological processes that underlie cisplatin resistance 

of human ovarian cancer cells or abnormal phenotype that is associated with Grr1 

deletion. Most of the identified significant differentially regulated proteins are not 

obviously related to the known function of Grr1 or drug resistance. As our first 

attempt to understand the function of our protein list, we performed ontology-based 

analysis, which is now widely used in data mining of functional genomic data as well 

as proteomics data. Gene ontology annotation is an important milestone on 

possibilities to handle and link biological knowledge with gene profiles identified in 

functional genomics and proteomics analysis. 

 

     Nevertheless, mapping differentially expressed protein list onto ontology provided 

only limited information to our understanding of the biological processes associated 

with cellular conditions. For example, our GO annotation analysis of Grr1-deletion 

affected protein list leads to identification of three enriched GO terms after applying 

certain filter: eukaryotic 43S preinitiation complex, lipid transporter activity, 

oxidoreductase activity, none seems to be clearly associated with known function of 

Grr1. Thus, although GO-based analysis proved to be useful in interpretation of the 

gene profiling experiments using microarray[95, 96], this technique on its own provide 

only limited information for our understanding of biological function at the systems 

level.  

 

     Another important approach for interpretation of omics data is network-based 

analysis. Since most biological characteristics arise from complex interactions 

between the cellular constitutes such as proteins, mapping changed proteins identified 

onto protein network will place these proteins in a broader biological context, thereby 

facilitating the understanding of the structure and function of living cells. In our yeast 

case study, we mapped our 184 proteins into protein interaction database and ranked 

the importance of these proteins according to the number of their immediate 



 66 

connectivity and the reliability score calculated using a formula. We hypothesized that 

the most highly connected proteins in the sub-network may represent proteins that 

may be mostly directly affected by Grr1 gene deletion. Intriguingly, two of the 20 top-

ranked proteins, Nip100 and Dyn1 are genetically and physically connected with each 

other (Figure 4.7). The physical association of Grr1 with Nip100 is through Bzz1, 

which appears in our extended protein ranking list. As Nip100 and Dyn1 are a part of 

the microtubule components, Grr1 may exert its function though its influence on its 

immediate target Bzz1. This hypothesis warrants a detailed study in the future. 

 

     One of the distinct features of our systems biology approach is to bring the gene 

ontology category concept into the context of protein-protein interaction network and 

use it for omics data analysis. We hypothesized that the limited number of changed 

proteins identified through proteomics may actually be connected within Grr1 sub-

network. These changed proteins may exert their function by influencing the protein 

networks that they are involved in. We thus expand our interest of proteins to include 

those proteins that directly interact with our changed proteins. To understand the 

biological function of these expanded protein list, we then mapped the protein list onto 

gene ontology terms and identified significantly enriched GO terms. Through this 

approach, we found about 40 significantly enriched GO terms by applying a certain 

filter. Strikingly, 10 of the enriched GO-terms could be ascribed to Grr1 or its target 

proteins (Figure 4.5) according to previous publications. Thus, our ontology-driven 

and protein network-enabled approach can not only be used to validate existing 

knowledge, but also have the potential to generate the hypothesis for future 

investigation. 

 

     In our approach, we also explored GO-GO cross-talks and identified Grr1-deletion 

associated GO-GO cross talks. This information further extends our understanding of 

the connection of multiple processes induced by gene deletion or other stress 

conditions. We also demonstrated that functional 2-dimensional matrix and protein 

interaction network visualization tool may significantly facilitate the biologists to form 

their hypotheses. 
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     Our systems biology approach provides a framework for further improvement in 

the future. First, our analysis is currently based on proteomics data only. The method 

described here is readily applicable to microarray data analysis. We expect to gain 

more in-depth understanding of the Grr1 function by incorporation of published Grr1 

microarray data into our analysis. Because the relationship between transcription and 

translation is likely to vary based on the individual gene/protein, it may not be realistic 

to expect a high degree of correlation between protein and RNA levels when 

attempting to correlate dynamic change in RNA with a static picture of proteins. 

Combination of genomics and proteomics data requires further development of current 

approach. Second, our network-based analysis focuses on the functional significance 

of changed proteins through protein-protein interaction analysis. We made no attempt 

to understand how the changed proteins are regulated by genetic or environmental 

stress. One of the future directions is to incorporate gene regulatory network analysis 

in order to identify regulatory relationships among large numbers of genes that form a 

network representation of the underlying regulatory processes. Finally, our current 

model needs fine adjustment to provide elegant interpretation of omics data. For 

example, the validity of ranking model needs further investigation. Drill-down of GO 

categories analysis may provide further details for interpretation of biological 

consequences induced by genetic or environmental stresses. 

 

     In summary, our ontology-driven network-enabled systems biology approach 

provides in-depth understanding of cellular functions and creates a robust concept 

framework for further improvement in the future. 
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7. Appendices 

 

Appendix 1. ERD diagram for Oracle schema Sysbio. For details, see [21]. 
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Appendix 2. Uniprot ID mappings for 119 differentially expressed seed proteins 

in ovarian cancer drug resistance study. 

 

UNIPROTID 

ANKS1_HUMAN 

1433T_HUMAN 

1433Z_HUMAN 

1433E_HUMAN 

1433F_HUMAN 

ACTN1_HUMAN 

AL3A1_HUMAN 

AL3A1_HUMAN 

AKAP9_HUMAN 

AL1A1_HUMAN 

CBX3_HUMAN 

DEST_HUMAN 

CENPE_HUMAN 

CNN2_HUMAN 

CRIP2_HUMAN 

CRTC_HUMAN 

E41L1_HUMAN 

FKBP4_HUMAN 

6PGD_HUMAN 

ABCG1_HUM AN 

ACADM_HUMAN 

DOCK4_HUMAN 

ANXA3_HUMAN 

B2MG_HUMAN 

DHCA_HUMAN 

CAP1_HUMAN 

ATPA_HUMAN 

ATPB_HUMAN 

CU059_HUMAN 

CYBP_HUMAN 

FA49B_HUMAN 

MDHC_HUMAN 

KCRU_HUMAN 

LPPRC_HUMAN 

GALT3_HUMAN 

HS70L_HUMAN 

HSP76_HUMAN 

GANAB_HUMAN 

IF4H_HUMAN 

HSBP1_HUMAN 
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HS90B_HUMAN 

KAP0_HUMAN 

ETFA_HUMAN 

PHS3_HUMAN 

PP2CG_HUMAN 

PPIA_HUMAN 

PGK1_HUMAN 

PPIB_HUMAN 

PDIA1_HUMAN 

PDIA6_HUMAN 

PARP3_HUMAN 

PADI3_HUMAN 

RS14_HUMAN 

SERA_HUMAN 

SODC_HUMAN 

SFRS2_HUMAN 

SFRS3_HUMAN 

INSI1_HUMAN 

MYLK_HUMAN 

PSB3_HUMAN 

PUR6_HUMAN 

MYH13_HUMAN 

MYL6_HUMAN 

MYL6_HUMAN 

MYL6_HUMAN 

NDK8_HUMAN 

PDCD6_HUMAN 

O2T35_HUMAN 

NDKB_HUMAN 

PCNA_HUMAN 

PLSI_HUMAN 

RL15_HUMAN 

TYSY_HUMAN 

VINC_HUMAN 

UGDH_HUMAN 

S10A1_HUMAN 

ST1A2_HUMAN 

TBA1_HUMAN 

TBA3_HUMAN 

TCP4_HUMAN 

THIL_HUMAN 

THIO_HUMAN 

SMCA5_HUMAN 
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TPIS_HUMAN 

TBA8_HUMAN 

TBAK_HUMAN 

STMN1_HUMAN 

RPA5_HUMAN 

Q12803_HUMAN 

O75935_HUMAN 

O60486_HUMAN 

O14950_HUMAN 

Q6IQ55_HUMAN 

Q6MZM0_HUMAN 

Q6ZSF4_HUMAN 

Q5HYM0_HUMAN 

Q5VVN3_HUMAN 

Q5S007_HUMAN 

Q5VU19_HUMAN 

Q7Z4V5_HUMAN 

Q86XQ2_HUMAN 

Q86WH0_HUMAN 

Q75MT3_HUMAN 

Q9P2M8_HUMAN 

Q9NVS0_HUMAN 

Q9NZI8_HUMAN 

Q9Y2K3_HUMAN 

Q9UPT8_HUMAN 

Q8TBR1_HUMAN 

Q8WU10_HUMAN 

ALDOA_HUMAN 

CH60_HUMAN 

PDIA3_HUMAN 

SEC5_HUMAN 

PSA6_HUMAN 

TBA6_HUMAN 

STMN2_HUMAN 

RL12_HUMAN 

Q96D18_HUMAN 
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Appendix 3. ORFs for 184 differentially expressed seed proteins in Grr1 knock-

out case study 

 

ORF Fold Change 

Q0255 4.15793714718904 

YAL038W 0.545852252758714 

YAR009C 6.05360443593325 

YBL015W 0.328014440120407 

YBL016W 8.14232901955471 

YBL030C 4.28248520447998 

YBL047C 0.34267736598115 

YBL088C 2.49526272717271 

YBL092W 0.483721610343309 

YBR021W 0.157116451158551 

YBR078W 0.23105360448864 

YBR115C 22.25185704536 

YBR136W 4.19593345669184 

YBR148W 1.86570263971014 

YBR149W 0.25000000018879 

YBR152W 4.65804066570279 

YBR169C 6.03512014781145 

YBR214W 0.203327171879698 

YBR218C 8.31792976604813E-02 

YBR225W 4.26987061012334 

YBR231C 9.54316594964094E-02 

YBR233W 12.8927911263819 

YBR241C 2.13537469763711 

YBR263W 0.147874306878216 

YBR272C 2.31265108764462 

YBR275C 4.96736103277175 

YBR286W 2.96785473982758 

YCL011C 2.59830512475747 

YCR065W 0.101522842755918 

YDL006W 0.228887134956306 

YDL019C 9.3956486699021 

YDL058W 9.8820593963859 

YDL075W 2.26719154500437 

YDL127W 5.34195933395087 

YDL131W 2.01603150013112 

YDL154W 5.66956521767448 

YDL176W 0.346494762223967 

YDL239C 0.295748613985256 

YDR035W 0.419114082837675 

YDR058C 4.17638479544648 
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ORF Fold Change 

YDR081C 0.175600739297833 

YDR116C 3.01369863012484 

YDR138W 2.44157937145452 

YDR155C 0.523771152122715 

YDR168W 0.194085027742803 

YDR171W 4.26062846561671 

YDR177W 0.166358595066621 

YDR226W 3.31896375814804 

YDR247W 3.68435004836908 

YDR351W 21.1090573011355 

YDR379W 0.191304347619674 

YDR450W 1.97524910005861 

YDR464W 20.3099999997752 

YDR469W 0.331450044758495 

YDR483W 0.240000000159372 

YER026C 5.84103511998871 

YER042W 6.30314232922456 

YER158C 1.91551565055894 

YER166W 0.273972603027691 

YER176W 0.12628255728794 

YER178W 2.10660620275169 

YFL003C 0.470655774025158 

YFL007W 5.73796369408722 

YFR034C 2.19983883943257 

YGL003C 0.110667072598724 

YGL055W 6.48573742222094 

YGL103W 2.07971802652271 

YGL112C 0.402900886532899 

YGL131C 0.370668815315337 

YGL148W 0.277264325355963 

YGL151W 0.203327171879698 

YGL156W 2.59468170831708 

YGL167C 0.249798549363811 

YGR004W 12.5138632168835 

YGR027C 1.78132111635026 

YGR087C 0.228887134956306 

YGR132C 0.360000000192903 

YGR175C 0.129390018511791 

YGR189C 0.29008863801562 

YGR203W 9.8383973630905 

YGR235C 3.69863013665815 

YGR275W 6.88539741255251 

YGR284C 0.304990757780443 
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ORF Fold Change 

YGR288W 14.1988950288631 

YHL011C 27.3300000004619 

YHL033C 2.45951318287733 

YHR104W 9.14445109656317 

YHR114W 6.39305445942334 

YHR179W 2.63093435531901 

YHR198C 6.46253021778323 

YIL019W 0.12628255728794 

YIL031W 5.01739130432334 

YIL041W 2.31952362986739 

YIL053W 0.345265042503515 

YIL112W 2.50699522170334 

YIL143C 8.91870560378892 

YIL159W 0.265416928466571 

YIR006C 8.86321626617145 

YJL005W 3.2126713688849 

YJL016W 2.38517324759968 

YJL051W 28.3078162776328 

YJL148W 0.129390018511791 

YJL190C 2.31551734904835 

YJL216C 7.52310536012055 

YJL218W 0.175600739297833 

YJR045C 1.81916371834376 

YJR061W 5.96954314750328 

YJR066W 23.0050761405552 

YKL014C 0.434430958041895 

YKL088W 0.306204673567028 

YKL173W 0.40890152098861 

YKL180W 1.9170591930552 

YKL195W 0.394842869081812 

YKL209C 8.1319796956819 

YKR018C 0.173638516204436 

YKR054C 39.2236598928196 

YKR057W 0.308407642817507 

YKR064W 0.258780037223804 

YKR096W 0.177276389876017 

YLL007C 3.64222401278672 

YLL045C 2.45951318287733 

YLL046C 2.20789685726298 

YLL057C 4.59352801929727 

YLR004C 3.08622078989969 

YLR028C 4.13321763210272 

YLR080W 0.173638516204436 
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ORF Fold Change 

YLR087C 6.45107160556459 

YLR148W 4.31103948406353 

YLR179C 12.5138632168835 

YLR191W 0.203045685201405 

YLR276C 7.05175600764816 

YLR376C 0.286506469458886 

YLR422W 0.380221832832661 

YLR450W 5.29578856112268 

YML008C 0.129390018511791 

YML023C 8.44670050774818 

YMR038C 0.234289452235187 

YMR068W 0.378726832817958 

YMR079W 0.339999999966919 

YMR096W 0.323475046523754 

YMR108W 0.522342689654229 

YMR133W 0.249537892567939 

YMR145C 3.06832708199654 

YMR231W 0.320883101002656 

YMR295C 0.31423290183668 

YMR309C 13.1146025881953 

YMR313C 0.217566478816452 

YNL073W 4.1095890411034 

YNL079C 0.303703534315121 

YNL121C 0.175600739297833 

YNL160W 8.4011090582411 

YNL218W 0.464296173029536 

YNL221C 2.35702717777939 

YNL233W 5.31000000022657 

YNL241C 0.304990757780443 

YNL244C 4.22365988910108 

YNL298W 0.201450443110585 

YNL313C 14.4269870612683 

YNR031C 8.90355330013963 

YOL056W 2.57856567271875 

YOL059W 2.97340854177039 

YOL060C 3.528963333553 

YOL081W 0.438552809930963 

YOL127W 0.46438538789387 

YOR048C 4.43190975024723 

YOR129C 3.11039484306185 

YOR136W 0.160000000126762 

YOR172W 0.145044319229564 

YOR187W 0.110905730058634 
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ORF Fold Change 

YOR191W 10.2233502548427 

YOR261C 0.330000000092788 

YOR290C 0.181206660197459 

YPL007C 27.7043478253533 

YPL113C 7.07182320476699 

YPL174C 0.110497237621271 

YPL231W 0.444474029156303 

YPL239W 4.99999999958532 

YPL248C 0.149960536676909 

YPL255W 12.3475046219541 

YPR004C 0.323475046523754 

YPR117W 12.2912449348497 

YPR134W 0.55600322290172 

YPR141C 5.97042513829489 

YPR186C 2.90894439963127 
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Appendix 4 Significantly over/under-represented GO cross-talk pairs for Grr1 

knock-out case study 

 

TYPE GO term 1 GO term 2 GO ID1 GO ID2 

F channel or pore class transporter 

activity 

ion transporter activity 15267 15075 

F ATPase activity\, coupled to 

movement of substances 

ion transporter activity 43492 15075 

F ion binding ion transporter activity 43167 15075 

F hydrolase activity ion transporter activity 16787 15075 

F transferase activity ion transporter activity 16740 15075 

F alcohol transporter activity ion transporter activity 15665 15075 

F peptide transporter activity ion transporter activity 15197 15075 

F ion transporter activity ion transporter activity 15075 15075 

C intracellular organelle ubiquitin ligase complex 43229 151 

C intracellular ubiquitin ligase complex 5622 151 

C membrane-bound organelle ubiquitin ligase complex 43227 151 

F ATPase activity\, coupled to 

movement of substances 

peptide transporter activity 43492 15197 

F ATPase activity\, coupled to 

movement of substances 

channel or pore class 

transporter activity 

43492 15267 

F ATPase activity\, coupled to 

movement of substances 

alcohol transporter activity 43492 15665 

F nucleobase\, nucleoside\, nucleotide 

and nucleic acid transporter activity 

nucleobase\, nucleoside\, 

nucleotide and nucleic acid 

transporter activity 

15932 15932 

F lyase activity nucleobase\, nucleoside\, 

nucleotide and nucleic acid 

transporter activity 

16829 15932 

C intracellular organelle membrane 43229 16020 

C immature spore membrane 42763 16020 

C pyruvate dehydrogenase complex membrane 45254 16020 

C external encapsulating structure membrane 30312 16020 

C non-membrane-bound organelle membrane 43228 16020 

C membrane-bound organelle membrane 43227 16020 

P cellular physiological process cell growth 50875 16049 

C eukaryotic 48S initiation complex eukaryotic 43S preinitiation 

complex 

16283 16282 

C eukaryotic 43S preinitiation 

complex 

eukaryotic 43S preinitiation 

complex 

16282 16282 

C non-membrane-bound organelle eukaryotic 43S preinitiation 

complex 

43228 16282 

C non-membrane-bound organelle eukaryotic 48S initiation 

complex 

43228 16283 

C intracellular organelle hydrogen-translocating V-

type ATPase complex 

43229 16471 

F ion binding oxidoreductase activity 43167 16491 
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TYPE GO term 1 GO term 2 GO ID1 GO ID2 

F transferase activity oxidoreductase activity 16740 16491 

C RNA polymerase complex DNA-directed RNA 

polymerase II\, holoenzyme 

30880 16591 

F ion binding nucleotide binding 43167 166 

F receptor signaling protein activity nucleotide binding 5057 166 

F carrier activity nucleotide binding 5386 166 

F electron transporter activity nucleotide binding 5489 166 

F protein binding nucleotide binding 5515 166 

F ATPase activity\, coupled to 

movement of substances 

nucleotide binding 43492 166 

F ion transporter activity nucleotide binding 15075 166 

F transferase activity nucleotide binding 16740 166 

F cyclase activity nucleotide binding 9975 166 

F GTPase regulator activity transferase activity 30695 16740 

F ligase activity transferase activity 16874 16740 

F ion binding transferase activity 43167 16740 

F lyase activity transferase activity 16829 16740 

F hydrolase activity transferase activity 16787 16740 

F ATPase activity\, coupled to 

movement of substances 

transferase activity 43492 16740 

F ion binding hydrolase activity 43167 16787 

F ATPase activity\, coupled to 

movement of substances 

hydrolase activity 43492 16787 

F hydrolase activity hydrolase activity 16787 16787 

F GTPase regulator activity lyase activity 30695 16829 

F vitamin binding lyase activity 19842 16829 

F ion binding ligase activity 43167 16874 

C intracellular organelle exosome (RNase complex) 43229 178 

C intracellular exosome (RNase complex) 5622 178 

P regulation of physiological process sexual reproduction 50791 19953 

P cellular physiological process sexual reproduction 50875 19953 

P negative regulation of biological 

process 

sexual reproduction 48519 19953 

P regulation of cellular process sexual reproduction 50794 19953 

P reproductive physiological process sexual reproduction 50876 19953 

P non-developmental growth sexual reproduction 48590 19953 

P regulation of cellular process asexual reproduction 50794 19954 

P localization asexual reproduction 51179 19954 

P asexual reproduction asexual reproduction 19954 19954 

P cell differentiation asexual reproduction 30154 19954 

P reproductive physiological process asexual reproduction 50876 19954 

P regulation of physiological process asexual reproduction 50791 19954 

P cellular physiological process asexual reproduction 50875 19954 

P non-developmental growth asexual reproduction 48590 19954 
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TYPE GO term 1 GO term 2 GO ID1 GO ID2 

C membrane-bound organelle cell fraction 43227 267 

C intracellular cell fraction 5622 267 

C intracellular organelle cell fraction 43229 267 

P reproductive physiological process cell differentiation 50876 30154 

P cell differentiation cell differentiation 30154 30154 

P filamentous growth cell differentiation 30447 30154 

P non-developmental growth cell differentiation 48590 30154 

P cellular physiological process cell differentiation 50875 30154 

C intracellular organelle external encapsulating 

structure 

43229 30312 

C membrane-bound organelle external encapsulating 

structure 

43227 30312 

C non-membrane-bound organelle site of polarized growth 43228 30427 

C intracellular organelle site of polarized growth 43229 30427 

C site of polarized growth site of polarized growth 30427 30427 

P reproductive physiological process filamentous growth 50876 30447 

P non-developmental growth filamentous growth 48590 30447 

C ribonucleoprotein complex ribonucleoprotein complex 30529 30529 

C intracellular organelle ribonucleoprotein complex 43229 30529 

C intracellular organelle Noc complex 43229 30689 

F ion binding GTPase regulator activity 43167 30695 

F ATPase activity\, coupled to 

movement of substances 

GTPase regulator activity 43492 30695 

C non-membrane-bound organelle RNA polymerase complex 43228 30880 

C intracellular organelle transcription export complex 43229 346 

C intracellular transcription export complex 5622 346 

C non-membrane-bound organelle transcription export complex 43228 346 

C membrane-bound organelle transcription export complex 43227 346 

F RNA polymerase II transcription 

factor activity 

nucleic acid binding 3702 3676 

F nucleic acid binding nucleic acid binding 3676 3676 

F cyclase activity nucleic acid binding 9975 3676 

F protein binding nucleic acid binding 5515 3676 

F hydrolase activity nucleic acid binding 16787 3676 

F translation factor activity\, nucleic 

acid binding 

nucleic acid binding 8135 3676 

F electron transporter activity nucleic acid binding 5489 3676 

P cellular physiological process regulation of growth 50875 40008 

P regulation of physiological process regulation of gene 

expression\, epigenetic 

50791 40029 

P regulation of gene expression\, 

epigenetic 

regulation of gene 

expression\, epigenetic 

40029 40029 

P negative regulation of biological 

process 

regulation of gene 

expression\, epigenetic 

48519 40029 

P cellular physiological process regulation of gene 50875 40029 
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TYPE GO term 1 GO term 2 GO ID1 GO ID2 

expression\, epigenetic 

P regulation of cellular process regulation of gene 

expression\, epigenetic 

50794 40029 

P regulation of cellular process homeostasis 50794 42592 

P cellular physiological process homeostasis 50875 42592 

P regulation of physiological process homeostasis 50791 42592 

C intracellular organelle immature spore 43229 42763 

C membrane-bound organelle immature spore 43227 42763 

C non-membrane-bound organelle immature spore 43228 42763 

C membrane-bound organelle cell projection 43227 42995 

C intracellular organelle cell projection 43229 42995 

F ion binding ion binding 43167 43167 

F ATPase activity\, coupled to 

movement of substances 

ion binding 43492 43167 

C pyruvate dehydrogenase complex membrane-bound organelle 45254 43227 

C membrane-bound organelle membrane-bound organelle 43227 43227 

C organelle lumen membrane-bound organelle 43233 43227 

C non-membrane-bound organelle non-membrane-bound 

organelle 

43228 43228 

C intracellular organelle non-membrane-bound 

organelle 

43229 43228 

C organelle lumen intracellular organelle 43233 43229 

C ubiquinol-cytochrome-c reductase 

complex 

intracellular organelle 45285 43229 

C respiratory chain complex III intracellular organelle 45275 43229 

C pyruvate dehydrogenase complex intracellular organelle 45254 43229 

F ATPase activity\, coupled to 

movement of substances 

ATPase activity\, coupled to 

movement of substances 

43492 43492 

F cyclase activity helicase activity 9975 4386 

F ATPase activity\, coupled to 

movement of substances 

helicase activity 43492 4386 

F ion transporter activity helicase activity 15075 4386 

F transferase activity helicase activity 16740 4386 

P cellular physiological process negative regulation of 

biological process 

50875 48519 

P regulation of physiological process negative regulation of 

biological process 

50791 48519 

P non-developmental growth negative regulation of 

biological process 

48590 48519 

P regulation of cellular process negative regulation of 

biological process 

50794 48519 

P regulation of enzyme activity negative regulation of 

biological process 

50790 48519 

F receptor signaling protein activity enzyme inhibitor activity 5057 4857 

P localization non-developmental growth 51179 48590 

P regulation of physiological process non-developmental growth 50791 48590 
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TYPE GO term 1 GO term 2 GO ID1 GO ID2 

P cellular physiological process non-developmental growth 50875 48590 

P non-developmental growth non-developmental growth 48590 48590 

P reproductive physiological process non-developmental growth 50876 48590 

P regulation of cellular process non-developmental growth 50794 48590 

F ion binding receptor activity 43167 4872 

C ribonucleoprotein complex proteasome complex (sensu 

Eukaryota) 

30529 502 

C intracellular organelle proteasome complex (sensu 

Eukaryota) 

43229 502 

C proteasome regulatory particle 

(sensu Eukaryota) 

proteasome complex (sensu 

Eukaryota) 

5838 502 

C intracellular proteasome complex (sensu 

Eukaryota) 

5622 502 

C non-membrane-bound organelle proteasome complex (sensu 

Eukaryota) 

43228 502 

F transferase activity receptor signaling protein 

activity 

16740 5057 

F ion binding receptor signaling protein 

activity 

43167 5057 

P cellular physiological process regulation of enzyme activity 50875 50790 

P regulation of enzyme activity regulation of enzyme activity 50790 50790 

P regulation of physiological process regulation of physiological 

process 

50791 50791 

P localization regulation of physiological 

process 

51179 50791 

P regulation of cellular process regulation of physiological 

process 

50794 50791 

P regulation of cellular process regulation of cellular process 50794 50794 

P localization regulation of cellular process 51179 50794 

P reproductive physiological process cellular physiological process 50876 50875 

P localization localization 51179 51179 

F ATPase activity\, coupled to 

movement of substances 

lipid transporter activity 43492 5319 

F hydrolase activity carrier activity 16787 5386 

F transferase activity carrier activity 16740 5386 

F ATPase activity\, coupled to 

movement of substances 

carrier activity 43492 5386 

F ion transporter activity carrier activity 15075 5386 

F alcohol transporter activity carrier activity 15665 5386 

F channel or pore class transporter 

activity 

carrier activity 15267 5386 

F ion transporter activity intracellular transporter 

activity 

15075 5478 

F ATPase activity\, coupled to 

movement of substances 

intracellular transporter 

activity 

43492 5478 

F transferase activity electron transporter activity 16740 5489 
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TYPE GO term 1 GO term 2 GO ID1 GO ID2 

F ligase activity electron transporter activity 16874 5489 

F ion binding electron transporter activity 43167 5489 

F transferase activity protein binding 16740 5515 

F cyclase activity protein binding 9975 5515 

C proteasome regulatory particle 

(sensu Eukaryota) 

intracellular 5838 5622 

C ribonucleoprotein complex intracellular 30529 5622 

C ubiquinol-cytochrome-c reductase 

complex 

intracellular 45285 5622 

C mRNA cleavage factor complex intracellular 5849 5622 

C respiratory chain complex III intracellular 45275 5622 

C histone methyltransferase complex intracellular 35097 5622 

C mitochondrial inner membrane 

presequence translocase complex 

intracellular 5744 5622 

C immature spore intracellular 42763 5622 

C transcription factor complex intracellular 5667 5622 

C pyruvate dehydrogenase complex intracellular 45254 5622 

C cell projection intracellular 42995 5622 

C Noc complex intracellular 30689 5622 

C site of polarized growth intracellular 30427 5622 

C bud intracellular 5933 5622 

C eukaryotic 43S preinitiation 

complex 

intracellular 16282 5622 

C external encapsulating structure intracellular 30312 5622 

C hydrogen-translocating V-type 

ATPase complex 

intracellular 16471 5622 

C microtubule associated complex intracellular 5875 5622 

C unlocalized protein complex transcription factor complex 5941 5667 

C intracellular organelle transcription factor complex 43229 5667 

C immature spore transcription factor complex 42763 5667 

C membrane-bound organelle transcription factor complex 43227 5667 

C transcription factor complex transcription factor complex 5667 5667 

C DNA-directed RNA polymerase II\, 

holoenzyme 

transcription factor complex 16591 5667 

C membrane-bound organelle mitochondrial inner 

membrane presequence 

translocase complex 

43227 5744 

C intracellular organelle mitochondrial inner 

membrane presequence 

translocase complex 

43229 5744 

C membrane-bound organelle proteasome regulatory particle 

(sensu Eukaryota) 

43227 5838 

C intracellular organelle proteasome regulatory particle 

(sensu Eukaryota) 

43229 5838 

C intracellular organelle mRNA cleavage factor 

complex 

43229 5849 
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TYPE GO term 1 GO term 2 GO ID1 GO ID2 

C membrane-bound organelle mRNA cleavage factor 

complex 

43227 5849 

C intracellular organelle microtubule associated 

complex 

43229 5875 

C site of polarized growth microtubule associated 

complex 

30427 5875 

C membrane microtubule associated 

complex 

16020 5875 

C membrane-bound organelle microtubule associated 

complex 

43227 5875 

C bud microtubule associated 

complex 

5933 5875 

C non-membrane-bound organelle microtubule associated 

complex 

43228 5875 

C cell projection microtubule associated 

complex 

42995 5875 

C site of polarized growth bud 30427 5933 

C non-membrane-bound organelle bud 43228 5933 

C bud bud 5933 5933 

C intracellular organelle bud 43229 5933 

P regulation of gene expression\, 

epigenetic 

response to stress 40029 6950 

P asexual reproduction response to stress 19954 6950 

P negative regulation of biological 

process 

response to stress 48519 6950 

P response to abiotic stimulus response to stress 9628 6950 

P non-developmental growth response to stress 48590 6950 

P morphogenesis response to stress 9653 6950 

P regulation of physiological process response to stress 50791 6950 

P cell communication response to stress 7154 6950 

P regulation of enzyme activity response to stress 50790 6950 

P regulation of cellular process response to stress 50794 6950 

P cellular physiological process response to stress 50875 6950 

P response to endogenous stimulus response to stress 9719 6950 

P negative regulation of biological 

process 

cell communication 48519 7154 

P non-developmental growth cell communication 48590 7154 

P positive regulation of biological 

process 

cell communication 48518 7154 

P cell differentiation cell communication 30154 7154 

P regulation of enzyme activity cell communication 50790 7154 

P response to abiotic stimulus cell communication 9628 7154 

P cellular physiological process cell communication 50875 7154 

P regulation of cellular process cell communication 50794 7154 

P cell communication cell communication 7154 7154 

P sexual reproduction cell communication 19953 7154 
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TYPE GO term 1 GO term 2 GO ID1 GO ID2 

P metabolism cell communication 8152 7154 

P morphogenesis cell communication 9653 7154 

P reproductive physiological process cell communication 50876 7154 

P regulation of physiological process cell communication 50791 7154 

P asexual reproduction cell communication 19954 7154 

P aging cell communication 7568 7154 

P death cell communication 16265 7154 

P response to endogenous stimulus aging 9719 7568 

P cellular physiological process locomotory behavior 50875 7626 

F cyclase activity enzyme activator activity 9975 8047 

F ligase activity translation factor activity\, 

nucleic acid binding 

16874 8135 

F transferase activity translation factor activity\, 

nucleic acid binding 

16740 8135 

P homeostasis metabolism 42592 8152 

P asexual reproduction metabolism 19954 8152 

P regulation of enzyme activity metabolism 50790 8152 

P regulation of cellular process metabolism 50794 8152 

P regulation of gene expression\, 

epigenetic 

metabolism 40029 8152 

P regulation of physiological process metabolism 50791 8152 

P response to abiotic stimulus metabolism 9628 8152 

P morphogenesis metabolism 9653 8152 

P negative regulation of biological 

process 

metabolism 48519 8152 

P response to endogenous stimulus metabolism 9719 8152 

P sexual reproduction metabolism 19953 8152 

P reproductive physiological process metabolism 50876 8152 

P non-developmental growth metabolism 48590 8152 

F ion binding lipid binding 43167 8289 

F ion transporter activity protein transporter activity 15075 8565 

F ATPase activity\, coupled to 

movement of substances 

protein transporter activity 43492 8565 

F transferase activity small protein conjugating 

enzyme activity 

16740 8639 

P regulation of enzyme activity response to abiotic stimulus 50790 9628 

P cellular physiological process response to abiotic stimulus 50875 9628 

P sexual reproduction response to abiotic stimulus 19953 9628 

P asexual reproduction response to abiotic stimulus 19954 9628 

P response to abiotic stimulus response to abiotic stimulus 9628 9628 

P reproductive physiological process response to abiotic stimulus 50876 9628 

P negative regulation of biological 

process 

response to abiotic stimulus 48519 9628 

P non-developmental growth response to abiotic stimulus 48590 9628 

P cellular physiological process morphogenesis 50875 9653 



 85 

TYPE GO term 1 GO term 2 GO ID1 GO ID2 

P asexual reproduction morphogenesis 19954 9653 

P non-developmental growth morphogenesis 48590 9653 

P regulation of cellular process response to endogenous 

stimulus 

50794 9719 

P regulation of physiological process response to endogenous 

stimulus 

50791 9719 

P response to endogenous stimulus response to endogenous 

stimulus 

9719 9719 

P death response to endogenous 

stimulus 

16265 9719 

P asexual reproduction response to endogenous 

stimulus 

19954 9719 

P regulation of gene expression\, 

epigenetic 

response to endogenous 

stimulus 

40029 9719 

P negative regulation of biological 

process 

response to endogenous 

stimulus 

48519 9719 

P non-developmental growth response to endogenous 

stimulus 

48590 9719 

P cellular physiological process response to endogenous 

stimulus 

50875 9719 

F GTPase regulator activity cyclase activity 30695 9975 

F transferase activity cyclase activity 16740 9975 
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