
 

 

 

MULTIPLE, NUTRIENT SENSING KINASES CONVERGE TO 

PHOSPHORYLATE AN ELEMENT OF Cdc34 THAT INCREASES 

SACCHAROMYCES CEREVISIAE LIFESPAN 

 

 

Ross Roland Cocklin 

 

 

 

Submitted to the faculty of the University Graduate School  
in partial fulfillment of the requirements 

for the degree 
Doctor of Philosophy 

in the Department of Biochemistry and Molecular Biology 
Indiana University 

 
August 2009  

 



 

 ii 

Accepted by the Faculty of Indiana University, in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy. 

 
 
 

 
 

_____________________________________ 
Mark Goebl, Ph.D., Chair 

 
 
 
 
 
 

_____________________________________ 
Martin Bard, Ph.D. 

 
 

Doctoral Committee 
 
 
 

_____________________________________ 
Maureen Harrington, Ph.D. 

 
 

June 17, 2009 
 
 

_____________________________________ 
Robert Harris, Ph.D. 

 
 
 
 
 

_____________________________________ 
Mu Wang, Ph.D. 

 
 



 

 iii 

DEDICATION 

This thesis is dedicated to the many teachers who have inspired me and taught me 

how to appreciate the learning process.  Although I could never make a complete list of 

this group, those who first come to mind are my parents (Kim and Crystal), Ms. Fumie 

Bouvier, Mr. Rob Hartgrove, Mrs. Helen Sears, Ms. Pam Dawson, Dr. Bill Mahoney, Dr. 

Mu Wang, Dr. Bob Harris and Dr. Mark Goebl.   

I am also fortunate to have friends who have inspired me to think for myself and 

reach beyond what I first thought possible.  Again, the list is too long to ever be complete 

but those who first come to mind are my brother and sister (Toben and Brooke), Kasey 

and Kodey Jolly, Scott Shupe, Jim Rice, Chuck Hayden, Jon Smith and Josh Heyen.  

 Lastly, this thesis is dedicated to my kids, Claire and Alex, and my wife, Carrie, 

who give me great joy and hope.  It is my hope that these studies and the future research 

that builds upon them will positively impact their lives. 

 

   

 

 

 



 

 iv 

ACKNOWLEDGEMENTS 

I would like to thank my parents, Kim and Crystal Cocklin, and my mother- and 

father-in-law, Alan and Carolyn Smith, for making my life outside the lab infinitely 

easier.  They have been incredibly generous with their time.  I also thank the other two 

graduate students of the Goebl lab, Josh Heyen and Lin Lin, both for their advice and 

encouragement.  I have learned nearly as much from their work as my own.  Cary Woods 

helped with much of the informatics.  I also owe Tolonda Larry a big thank you for her 

persistence and attention to experimental detail.     

Dr. Frank Witzmann and Dr. Dorota Skowyra were willing collaborators and 

without their help this thesis would be much different.  Dr. Clark Wells helped 

enormously with the microscopy and had excellent advice for figure construction and 

layout.  The members of my advisory committee, Dr. Maureen Harrington, Dr. Martin 

Bard, Dr. Robert Harris and Dr. Mu Wang provided me with a lot of scientific guidance 

and moral support during the course of my research.  I would especially like to thank Dr. 

Mu Wang who encouraged me to join the department as a graduate student.  I also owe a 

tremendous amount of thanks to my mentor, Mark Goebl.  His enthusiasm for biology is 

contagious and I don’t know of any labs where the scientific training is better.  This work 

was supported by grants from the National Institute of Health and the National Science 

Foundation.   



 

 v 

ABSTRACT 

 
Ross Roland Cocklin 

 

Multiple, nutrient sensing kinases converge to phosphorylate an element of Cdc34 that 

increases Saccharomyces cerevisiae lifespan 

 

Growth and division are tightly coordinated with available nutrient conditions.  

Cells of the budding yeast, Saccharomyces cerevisiae, grow to a larger size prior to 

budding and DNA replication when preferred carbon sources such as glucose, as opposed 

to less preferred sources like ethanol and acetate, are available.  A culture’s doubling time 

is also significantly reduced when the available carbon and nitrogen sources are more 

favorable.  These physiological phenomena are well documented but the precise 

molecular mechanisms relaying nutrient conditions to the growth and division machinery 

are not well defined.  I demonstrate here that Cdc34, the ubiquitin conjugating enzyme 

that promotes S phase entry, is phosphorylated upon a highly conserved serine residue 

which is part of a motif that defines the family of Cdc34/Ubc7 ubiquitin conjugating 

enzymes.  This phosphorylation is regulated by multiple, nutrient sensing kinases 

including Protein Kinase A, Sch9 and TOR.  Furthermore, this phosphorylation event is 

regulated through the cell cycle with the sole induction occurring in the G1 phase which 

is when nutrients are sensed and cells commit to another round of division.  This 

phosphorylation likely activates Cdc34 and in turn propagates a signal to the cell division 

cycle machinery that nutrient conditions are favorable for commitment to a new round of 

division.  This phosphorylation is critical for normal cell cycle progression but must be 
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carefully controlled when cells are deprived of nutrients.  Crippling the activity of Protein 

Kinase A, SCH9 or TOR increases the proportion of cells that survive stationary phase 

conditions, which because of the metabolic conditions that must be maintained and the 

similarity to post-mitotic mammalian cells, is referred to as a yeast culture’s 

chronological lifespan.  Yeast cells expressing Cdc34 mutants that are no longer subject 

to this regulation by phosphorylation have a reduced chronological lifespan.  A precise 

molecular mechanism describing the change in Cdc34 activity after phosphorylation of 

this serine residue is discussed. 

 

Mark Goebl, Ph.D., Chair 
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CHAPTER 1: INTRODUCTION 

1.1 Cell Growth and Division 

1.1.1 Yeast as a model system for the study of cell growth and division 

 The budding yeast, Saccharomyces cerevisiae, is an excellent model organism for 

the study of cell growth and division.  It is a single celled eukaryote and its cell cycle 

stage can be monitored and estimated by the size of the bud.  The budding yeast is also 

amenable to genetic analysis because of the relative ease of gene disruption (Hinnen, 

Hicks, & Fink, 1978) and a low nuclear DNA content (Bicknell & Douglas, 1970).  

Pioneering studies by Hartwell and coworkers (Hartwell, 1974) led to the identification 

of more than 50 gene products required for cell division.  The essence of this work was a 

screen of mutagenized yeast strains for mutants which when shifted from a permissive 

temperature to a restrictive temperature arrested cell division in a particular and 

phenotypically distinguishable phase of the cell cycle.  These studies allowed Hartwell 

and coworkers to construct a precise and well supported model of the cell division cycle 

and the cell cycle checkpoints which ensure its harmonious execution (Hartwell, 1974).  

In the time since these studies, different experimental techniques have identified other 

cell division cycle (CDC) genes (Stevenson, Kennedy, & Harlow, 2001) but Hartwell’s 

original model of the cell division cycle has not required significant revision.  However, a 

tremendous amount of effort has gone into characterizing the biochemical activities of the 

CDC gene products.   
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1.1.2 The G1 phase and commitment to a new cell division cycle 

This discussion will focus on the G1 phase of the yeast cell division cycle.  Much 

of the yeast cell division cycle is akin to that of other eukaryotic cells; however, there are 

notable differences.  It is beyond the scope of this work to discuss the specifics of cell 

division for all eukaryotic cells so it is my hope to give a high level overview of the yeast 

G1 phase while making mention of its similarities with other eukaryotic cell cycles. 

 In contrast to many eukaryotes, yeast cells divide with the nuclear envelope intact 

and so the G1 phase of the yeast cell cycle is defined as the time between nuclear division 

and the initiation of DNA replication; therefore, cytokinesis and cell separation are two of 

the earliest G1 events (G. C. Johnston, Pringle, & Hartwell, 1977) (Fig. 1).  Much of the 

early G1 phase is dedicated to the synthesis of building blocks such as nucleotides for 

DNA, amino acids for proteins and glucans for the cell wall.  The G1 phase is the period 

where yeast cells ensure that conditions are favorable for another round of division.  

Alternative developmental fates, such as pseudohyphal differentiation, may occur if 

conditions are not sufficient for adequate growth and division.  The landmark events of 

G1 are formation of the bud and septin ring, polarization of the actin cytoskeleton 

towards the new bud site and spindle pole body duplication.  The critical decision point, 

termed START, occurs immediately prior to bud emergence, spindle pole body 

duplication and the initiation of DNA replication.  Just prior to START, nutrients can be 

withdrawn and the cell will not proceed through a new round of division.  If nutrients are 

withdrawn after START, the cell will proceed through a full round of division and arrest 

in the subsequent G1 phase (Williamson & Scopes, 1960).   



 

 3 

 Emergence of a new bud is the most visible event of the yeast cell cycle.  The site 

for bud emergence is selected based on the mating type of the yeast cell.  Haploids of 

mating type a or α select a bud site adjacent to the previous bud site.  Diploids of mating 

type a/α form a new bud opposite the site used in the previous cycle.  Upon bud site 

selection, the new septin ring is assembled just below the bud and the actin cytoskeleton 

is polarized and oriented toward the new bud so that cargo can be carried by the secretory 

system to the new bud site (reviewed in (Botstein et al., 1997; Cid, Adamikova, Sanchez, 

Molina, & Nombela, 2001)).  While the bud is forming, the origins of DNA replication 

are being licensed and prepared to fire.  This is a highly regulated process which ensures 

that the origins do not fire prematurely nor are they allowed to fire twice and make extra 

copies of the DNA (reviewed in (Kelly & Brown, 2000)).  The spindle pole body, 

analogous to the mammalian centrosome, is duplicated during this time as well.  Spindle 

pole body duplication occurs late in G1 and is quickly followed by separation to form the 

mitotic spindle.  Like origin of replication firing, it is imperative that spindle pole body 

duplication occurs once and only once per cell cycle.   

The cyclin and cyclin dependent kinase (CDK) gene products form a protein 

complex that governs progression through the cell cycle.  This complex ensures an 

orderly and irreversible progression through the cell cycle.  The cyclin/CDK complex 

was discovered independently in yeast and frog oocytes as a mitosis promoting factor 

(Beach, Durkacz, & Nurse, 1982; Lohka & Masui, 1983; Masui & Markert, 1971).  In 

yeast, the primary mitosis promoting CDK, Cdc28, is independently activated by at least 

nine distinct cyclins (Cln1-3 and Clb1-6).  Cln3 is the first cyclin to associate with Cdc28 

in the early G1 phase.  The Cln3/Cdc28 complex activates a transcriptional program, 
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dependent on the transcription factor SBF, that is critical for progression through the G1 

phase.  SBF is a heterodimer of Swi4 and Swi6 which directly binds to the promoter 

elements of the early G1 genes (Cosma, Panizza, & Nasmyth, 2001).  The mechanism of 

SBF activation involves phosphorylation of the SBF inhibiting factor Whi5 (the 

functional equivalent of Rb) by Cln3/Cdc28 (de Bruin, McDonald, Kalashnikova, Yates, 

& Wittenberg, 2004; Wagner et al., 2009).  Whi5 dissociates from SBF upon its 

phosphorylation and SBF is then capable of inducing the transcription of a suite of genes, 

including two cyclin genes, CLN1 and CLN2.  The Cln1 and Cln2 proteins share ~50% 

sequence identity, have overlapping function and associate independently with Cdc28.  

The Cln(1 or 2)/Cdc28 complex is responsible for assembly of the new septin ring (Cid et 

al., 2001) and polarization of the actin cytoskeleton towards the new bud site (reviewed 

in (Madden & Snyder, 1998; Pruyne, Legesse-Miller, Gao, Dong, & Bretscher, 2004)).  

Loss of the Cln cyclins results in failure to accumulate factors necessary for a polarized 

actin cytoskeleton and secretion at the incipient bud site (Lew & Reed, 1993).  These 

polarization factors include the GTPase Cdc42, its GEF Cdc24 and its effector kinases 

Cla4 and Ste20, all of which are essential for budding and polarization (Butty et al., 2002; 

Cvrckova, De Virgilio, Manser, Pringle, & Nasmyth, 1995; D. I. Johnson & Pringle, 

1990).  The mechanism of factor recruitment to sites of polarized growth by Cln (1 or 

2)/Cdc28 is not fully understood but recent evidence demonstrates that the Cdc42 GAPs, 

Bem2 and Bem3, are subject to Cln2/Cdc28 phosphorylation.  This phosphorylation 

inhibits their GAP activity resulting in localized activation of Cdc42 at the site of bud 

emergence (Knaus et al., 2007).  Furthermore, the Cln2/Cdc28 complex phosphorylates 

the GEF, Cdc24, triggering its relocalization from the nucleus to the polarization site.  
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Cdc24 reinforces the locally activated Cdc42 to promote polarization (Gulli et al., 2000).  

Like budding and septin ring formation, duplication of the spindle pole body depends of 

Cln/CDK activity and this involves CDK dependent phosphorylation of the spindle pole 

component Spc42 on two N-terminal sites (Jaspersen et al., 2004).  

Eventually, Cln/CDK activity gives way to Clb/CDK activity at the G1/S phase 

transition.  The B-type cyclins, Clb5 and Clb6, are transcribed at the same interval in G1 

as Cln1 and Cln2.  However, the Clb/Cdc28 complex is kept inactive by the cyclin 

dependent kinase inhibitor Sic1 until immediately prior to START.  At that time, Sic1 is 

quickly degraded and the Clb5-6/Cdc28 complexes become active and initiate DNA 

replication which, via the firing of replication origins, is formally defined as the exit from 

the G1 phase.  In the case of replication initiation, one of the essential targets of the Clb(5 

or 6)/Cdc28 complex is known.  Clb(5 or 6)/Cdc28 phosphorylates Sld5, an essential 

component of the replication complex, and this is required for functional loading of the 

replication complex (Masumoto, Muramatsu, Kamimura, & Araki, 2002).  Other B-type 

cyclins, Clb1-4, are activated as cells progress through mitosis.  Along with their roles in 

promoting DNA replication, the Clb/Cdc28 complexes inactivate the SBF transcription 

factor (Amon, Tyers, Futcher, & Nasmyth, 1993) and inhibit spindle pole body 

reduplication (Haase, Winey, & Reed, 2001).  Ultimately, the exit from mitosis and entry 

into the next G1 phase is triggered by Clb/Cdc28 inactivation through proteasome 

mediated degradation of the Clb2 cyclin and accumulation of the cyclin dependent kinase 

inhibitor Sic1 (reviewed in (Sullivan & Morgan, 2007)). 

The cyclin/Cdc28 complexes are highly regulated.  Phosphorylation of Cdc28 on 

its activation loop by the CDK activating kinase, Cak1, is required for cyclin/Cdc28 
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activity both in vivo and in vitro and strains lacking CAK1 are inviable (Chun & Goebl, 

1997; Thuret, Valay, Faye, & Mann, 1996).  Phosphorylation of Cdc28 on a conserved 

residue, tyrosine 19, by Swe1, negatively regulates Cdc28 activity and this 

phosphorylation ensures that the developing bud and events of the nuclear division cycle 

such as migration of the spindle into the daughter cell are appropriately coordinated 

(Booher, Deshaies, & Kirschner, 1993).  Cdc28 Y19 phosphorylation can be reversed by 

action of the Mih1 phosphatase (Russell, Moreno, & Reed, 1989).  The cyclin/CDK 

complexes also associate with cyclin dependent kinase inhibitors, namely Sic1 and Far1.  

Far1 specifically inhibits Cln/Cdc28 activity (Chang & Herskowitz, 1990; Peter & 

Herskowitz, 1994) while Sic1 inhibits Clb/Cdc28 activity (Mendenhall, 1993; Schwob, 

Bohm, Mendenhall, & Nasmyth, 1994).  All of the G1 cyclins, Cln1-3, along with the 

cyclin dependent kinase inhibitors, Sic1 and Far1, are targeted for ubiquitin mediated 

degradation by an SCF/Cdc34 complex (Henchoz et al., 1997; Schwob et al., 1994; 

Tyers, Tokiwa, Nash, & Futcher, 1992).  This layer of post-translational control is 

essential for cell cycle progression and will be discussed in more detail later (section 

1.1.5). 

1.1.3 Nutrients and nutrient sensing mechanisms necessary for cell division 

As G1 is the time during the cell cycle that nutrients are sensed and a decision is 

made to commit to a new round of division, many of the nutrient sensing proteins are 

activated in G1 by nutrients (or the lack of nutrients).  In yeast, the essential nutrients are 

a carbon source which can be used for energy and as a backbone for amino acids and 

other structural components.  The preferred carbon source is glucose, which is the most 

abundant six carbon sugar on our planet.  Yeast also require a nitrogen source for their 
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amino acids and nucleotides.  Preferred nitrogen sources of the budding yeast include 

ammonium sulfate, glutamine and glutamate.  There are many other sources of nitrogen 

which yeast can utilize but those listed above are the most preferred and used at the 

exclusion of others.  Yeast also require sources of sulfur, phosphorous, potassium and 

essential metals.  All complex vitamins, amino acids, nucleotides and structural 

components can be synthesized from simple sources of carbon, nitrogen, sulfur and 

phosphorous.   

Glucose is the preferred carbon source of yeast and as such its presence represses 

the utilization of all other available carbon sources in a phenomenon known as glucose 

repression (recently reviewed in (Santangelo, 2006)).  The glucose sensing mechanism is 

not fully understood but many of the components have been identified.  An atypical G-

protein signaling cascade is involved and begins with binding of glucose to the G-protein 

coupled receptor, Gpr1 (Lemaire, Van de Velde, Van Dijck, & Thevelein, 2004).  Upon 

glucose binding to Gpr1, the G-alpha protein Gpa2 exchanges GDP for GTP and GTP-

bound Gpa2 specifically interacts with the membrane tethered adenylyl cyclase, Cyr1 

(Peeters et al., 2006).  Genetic data suggests that Gpa2 directly activates Cyr1 (Colombo 

et al., 1998) but further biochemical and molecular studies are needed to substantiate this 

conclusion.  The adenylyl cyclase, Cyr1, converts ATP to cAMP which binds the cAMP 

dependent kinase regulatory subunit, Bcy1, allowing the catalytic subunits, Tpk1, Tpk2 

and Tpk3, to dissociate and become active (Corbin et al., 1978; Hixson & Krebs, 1980).  

Gpa2 also regulates the cAMP dependent protein kinase (also known as Protein Kinase 

A) by binding the kelch repeat proteins, Kel1 and Kel2, in a GTP dependent manner.  

Kel1 and Kel2 facilitate the interaction of Bcy1 with Tpk(1-3) and thus, Gpa2 serves to 
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titrate the Kel proteins away from the PKA catalytic and regulatory heterodimers 

ultimately reducing the Bcy1, Tpk(1-3) interaction and increasing PKA activity.  The G-

beta protein Asc1 is a negative regulator of the Gpr1/Gpa2 signaling pathway by i) 

preventing the dissociation of GDP from Gpa2 and ii) by interacting with and repressing 

adenylyl cyclase activity (Zeller, Parnell, & Dohlman, 2007).  In yeast, as opposed to 

many mammalian cell types, protein kinase A is activated when glucose is available and 

conditions for growth and division are favorable (Wilson & Roach, 2002).   

An intracellular, glucose sensing pathway is also able to activate adenylyl cyclase.  

The membrane tethered, small G protein, Ras, is activated by internal glucose via its 

GEF, Cdc25 (Colombo, Ronchetti, Thevelein, Winderickx, & Martegani, 2004).  In the 

GTP bound state, Ras activates adenylyl cyclase, Cyr1, which again leads to activation of 

PKA (Toda et al., 1985).  The glucose derived metabolite required for Ras activation 

appears to be glucose-6-phosphate which is produced as the first step in the glycolytic 

pathway (M. Rose, Albig, & Entian, 1991).  It has been postulated that increased 

intracellular glucose-6-phosphate inhibits the activity of the Ras GTPase Activating 

Proteins (GAPs), Ira1 and Ira2, ultimately activating Ras (Colombo et al., 2004).  Still, 

the exact mechanism of Ras activation by glucose remains to be elucidated.  Notably, 

activated Ras and Gpa2 alleles can recapitulate nearly the entire glucose induced 

transcriptional response, independent of extracellular glucose (Wang et al., 2004).  Ras 

and Gpa2 converge on adenylyl cyclase independently and yeast strains lacking both 

RAS2 and GPA2 grow very slowly (Kubler, Mosch, Rupp, & Lisanti, 1997).  

Interestingly, Sgt1, an essential component of the SCF complex that reduces the rate of 

Sic1 turnover in vivo and Cln1 ubiquitination in vitro (Kitagawa, Skowyra, Elledge, 
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Harper, & Hieter, 1999), interacts with the leucine-rich-repeats of Cyr1 and modulates 

the activity of the cAMP pathway (Dubacq, Guerois, Courbeyrette, Kitagawa, & Mann, 

2002).  SGT1 is well conserved among eukaryotes and it is an essential gene in yeast.  It 

is noteworthy, that temperature sensitive alleles of SGT1 have been isolated that arrest as 

unbudded cells, early in G1 reminiscent of cells arrested due to nutrient deprivation or 

expression of a stable version of the cyclin dependent kinase inhibitor Far1 (Kitagawa et 

al., 1999). 

What evidence exists for cell cycle regulation of the above nutrient sensing 

machines?  A recent study from Steve McKnight’s lab elegantly shows the metabolic 

changes that occur during a single yeast cell cycle.  It is known that at high cell densities 

in a controlled environment, yeast cell cycle synchrony can be induced and monitoring of 

the transcriptional and metabolic changes revealed a “metabolic cycle”.  The key findings 

of this experiment were that yeast cells enter a non-oxidative metabolic state during DNA 

replication, likely to preserve genome integrity by preventing oxidative DNA damage 

(Chen, Odstrcil, Tu, & McKnight, 2007).  Slowly growing yeast cells accumulate the 

storage carbohydrates glycogen and trehalose but break these down during G1 phase to 

provide the carbohydrates necessary for another round of division and to ensure that 

enough nutrients are available to complete the entire cycle.  It has also been shown that 

cAMP levels fluctuate through the cell cycle with a peak in G1 and a trough late in 

mitosis (Müller, Exler, Aguilera-Vazquez, Guerrero-Martin, & Reuss, 2003; Tu, 

Kudlicki, Rowicka, & McKnight, 2005).  Other intracellular metabolites such as GTP, 

ATP, ADP and AMP and their respective ratios also have a large impact on cell cycle 

progression although measurements have not yet been made to determine whether the 
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levels of these metabolites fluctuate through the cell cycle.  The ratio of ATP:GTP 

appears to be approximately 1:1 in midlog phase cells and interconversion between ATP 

and GTP occurs enzymatically via Guk1 and Ynk1.    

1.1.4 Cell cycle exit and entry into a G0 state 

 When an essential nutrient is not available in quantities sufficient for the ensuing 

cell cycle, yeast cells enter a growth-arrested state termed G0.  Along with inhibition of 

DNA replication and cell division, G0 entry involves increased synthesis of the storage 

carbohydrates glycogen and trehalose along with induction of stress responsive 

transcripts such as HSP26, HSP12 and GRE1 (Pedruzzi et al., 2003; Reinders, Burckert, 

Boller, Wiemken, & De Virgilio, 1998).  Surviving nutrient deprivation requires an 

appropriate cell cycle arrest during the G1 phase and large scale reprogramming of the 

cell’s metabolism.  Nutrient deprivation in budding yeast is considered a model of 

chronological aging as assessed by the viability of cells driven into the G0 state by 

nutrient depletion.  It is clear that in many types of eukaryotic organisms (including yeast, 

mice and fruit flies), caloric restriction or inactivating mutations in conserved nutrient 

signaling pathways increases chronological lifespan (reviewed in (Longo & Finch, 2003; 

Longo, Mitteldorf, & Skulachev, 2005)).  

Exact molecular mechanisms for G0 entry in budding yeast are becoming clearer.  

The PAS family protein kinase Rim15 is required as cells lacking RIM15 do not survive 

the G0 state nearly as well as a wild type strain (Fabrizio, Pozza, Pletcher, Gendron, & 

Longo, 2001).  In response to nutrient depletion, Rim15 moves from the cytoplasm to 

nucleus where it activates stress responsive transcription factors such as Msn2, Msn4 and 

Gis1 (Pedruzzi, Burckert, Egger, & De Virgilio, 2000).  Rim15 is retained in the 
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cytoplasm by TORC1 and Sch9 kinases during periods of nutrient abundance but upon 

nutrient depletion TORC1 activity decreases thus reducing Sch9 activity.  Rim15 activity 

is also repressed by PKA; however, under conditions of carbon starvation, PKA activity 

is absent and Rim15 becomes active (Pedruzzi et al., 2003).   

Tight regulation of the cyclin/CDK complex is essential for proper G0 entry.  

Cells overexpressing CLN3 lose viability much quicker in the G0 phase than an isogenic 

wild type strain (Weinberger et al., 2007).  Normally Cln3 is down-regulated upon G0 

entry and its ectopic expression leads to a higher percentage of cells which arrest their 

growth in the S phase of the cell cycle rather than the G1 phase prior to G0 entry.  

Ultimately, strains lacking control elements of CLN3 have a shorter chronological 

lifespan along with age dependent increases in apoptosis and chromosome instability 

(Weinberger et al., 2007).  The same is true for cells lacking the cyclin dependent kinase 

inhibitor Sic1 (Zinzalla, Graziola, Mastriani, Vanoni, & Alberghina, 2007).  Both Cln3 

and Sic1 are subject to ubiquitin mediated degradation and as such it seems likely that 

appropriate post-translational regulation of both Sic1 and Cln3 is essential for surviving 

nutrient deprivation. 

1.2 The Mechanism of Ubiquitin Dependent Protein Degradation 

1.2.1 Mechanism of SCF/Cdc34 ubiquitin conjugation 

 Ubiquitin is a small, 76 amino acid residue protein.  The covalent attachment of 

ubiquitin to another protein often serves as the signal for the selective degradation of that 

protein by a complex protease, the 26S Proteasome (for review see (Glickman & 

Ciechanover, 2002)).  The mechanism of protein ubiquitination begins with the ubiquitin 

activating (or E1) enzyme forming a high energy thiolester intermediate with ubiquitin in 
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an ATP dependent reaction (Fig. 2).  The E1 enzyme transfers the ubiquitin molecule to 

an ubiquitin conjugating (or E2) enzyme which, like the E1, forms a thiolester with 

ubiquitin.  In the case of a RING-type E3 ubiquitin ligase, the E2 transfers ubiquitin 

directly onto a lysine residue of a substrate.  The transfer of ubiquitin to substrate 

typically requires the activity of an ubiquitin ligase (E3).  The bond formed between 

ubiquitin and substrate is an isopeptide bond which links the COOH-terminal glycine 

residue of ubiquitin to the ε-amino group of a lysine residue of the substrate.  Substrates 

may be monoubiquitinated or polyubiquitinated with the polyubiquitin chain being linked 

through one of the seven lysine residues of ubiquitin.  Lysine-48 linked ubiquitin chains 

are the canonical signal for proteasomal degradation.  

 Cdc34 is an E2 which ubiquitinates histones in vitro (Goebl et al., 1988) and itself 

in vitro (Banerjee, Gregori, Xu, & Chau, 1993) and in vivo (Goebl, Goetsch, & Byers, 

1994).  Cdc34 mediated conjugation of lysine 48 linked polyubiquitin chains to the cyclin 

dependent kinase inhibitor Sic1 is essential for cell viability and the initiation of DNA 

replication in the yeast, S. cerevisiae (Skowyra, Craig, Tyers, Elledge, & Harper, 1997; 

Verma, Feldman, & Deshaies, 1997).  Cdc34 genetically and physically interacts with the 

SCF family of ubiquitin ligases and this interaction is a requirement for Cdc34 to carry 

out its ubiquitin conjugating function in vivo (Mathias, Steussy, & Goebl, 1998).  The 

SCF family of ubiquitin ligases is composed of at least four distinct proteins, including 

Skp1, Cdc53, Rbx1 and a member of a family of proteins known as F-box proteins.  

Rbx1 contains a Ring-H2-finger domain and is essential for SCF dependent attachment of 

ubiquitin to its substrates (Skowyra et al., 1999).  Cdc53 is a scaffolding subunit or cullin 

which binds both Skp1 and Cdc34.  Skp1 tethers the F-box protein to the SCF complex 
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through an interaction with the F-box motif.  The F-box proteins are the component of the 

SCF ubiquitin ligase which determine substrate specificity (for review see, (Deshaies, 

1999)).  The F-box is also the unique component of each SCF complex and as such its 

name is written in superscript to designate a specific SCF complex (for example, 

SCFCdc4).  Seventeen genes within the yeast genome encode proteins with predicted F-

box motifs and although verifiable substrates have been identified for only six of these 

thirteen, thirteen unique SCF complexes have been reconstituted in vitro (Kus, Caldon, 

Andorn-Broza, & Edwards, 2004; Patton, Willems, & Tyers, 1998).  SCFGrr1 is required 

for ubiquitination of the cyclins Cln1 and Cln2 while SCFCdc4 is required for 

ubiquitination of the cyclin dependent kinase inhibitors Sic1 and Far1 (Skowyra et al., 

1997; Skowyra et al., 1999; Verma et al., 1997)  

 Cdc34 self-associates and accumulating evidence suggests homodimerization is 

critical for its catalytic activity (Gazdoiu et al., 2005; Varelas, Ptak, & Ellison, 2003).  

The formation of the Cdc34~ubiquitin thiolester precedes and facilitates Cdc34 self-

association.  Formation of the Cdc34~ubiquitin thiolester also increases the rate of 

dissociation of Cdc34 from the SCF complex which is part of the catalytic cycle 

(Deffenbaugh et al., 2003).  Dissociation of ubiquitin-charged Cdc34 from the SCF 

complex provides a satisfactory explanation for how ubiquitin can bridge the seemingly 

expansive space, uncovered in the SCF crystal structure, between Cdc34 and substrate 

(Zheng et al., 2002).  

Recent work has extended our understanding of the mechanistic principles 

underlying polyubiquitin chain formation.  At least three distinct mechanisms that result 

in lysine-48 linked polyubiquitin chains conjugated to substrate have been described.  
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What might be considered the traditional model involves only one E2 whereby the 

polyubiquitin chain is built upon the substrate in a series of reactions.  Elegant in vitro 

reconstitution of Sic1 polyubiquitination by SCFCdc4 demonstrates that conjugation of the 

first ubiquitin to the substrate is the rate limiting step in this process (Petroski & 

Deshaies, 2005).  Seemingly many E2s are capable of catalyzing only the 

monoubiquitination or the polyubiquitin chain extension reactions but not both.  

Recently, it was demonstrated that Ubc4 monoubiquitinates substrates of the Anaphase 

Promoting Complex while Ubc1 serves to extend the chain of these substrates (Rodrigo-

Brenni & Morgan, 2007).  Finally, at least one E2 in mammals, Ube2g1, is capable of 

generating ubiquitin chains on its catalytic cysteine prior to transfer to the substrate (Li, 

Tu, Brunger, & Ye, 2007).   

 A single motif, unique to the Cdc34/Ubc7 family of ubiquitin conjugating 

enzymes, allows the Cdc34/Ubc7 family to catalyze both the monoubiquitination and 

ubiquitin chain extension reactions (Petroski & Deshaies, 2005).  This motif is defined by 

two serines and a twelve amino acid acidic “loop”, all of which lie in close physical 

proximity to the catalytic cysteine (Fig. 1).  In contrast, the majority of E2s, of which 

Rad6 is a classic example, have a lysine and aspartic acid residue in lieu of the serine 

residues and lack the acidic “loop”.  Cdc34 mutants which lack the acidic “loop” 

monoubiquitinate Sic1 with the same kinetics as the wild type enzyme but extend 

ubiquitin chains at a negligible rate (Petroski & Deshaies, 2005) which is reflected in vivo 

as cells expressing Cdc34 mutants which lack the acidic “loop” are inviable (Y. Liu, 

Mathias, Steussy, & Goebl, 1995).  More recently, Li et al. (Li et al., 2007) discovered 

that the polyubiquitin chain can be formed on the ubiquitin conjugating enzyme prior to 
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substrate ubiquitination.  The acidic “loop” of the Cdc34-like ubiquitin conjugating 

enzyme Ube2g1 is essential for preforming the polyubiquitin chain on the ubiquitin 

conjugating enzyme itself and transfer of the “preformed” chain onto the known in vivo 

target HERPc, a short lived, ER-associated protein (Li et al., 2007).  Interestingly, the 

polyubiquitin chain preformation and ubiquitin conjugation to HERPc in vitro assays, 

like Cdc34 enzyme activity in vivo, require the presence of a RING finger containing 

protein.  In the in vitro reconstitution of Cdc34 autoubiquitination or Cdc34 dependent 

histone ubiquitination assays, which do not require the RING finger protein, acidic 

“loop” deletion mutants function as well if not better than WT Cdc34 (Pitluk, 

McDonough, Sangan, & Gonda, 1995; Varelas et al., 2003) suggesting that interactions 

between the acidic loop of Cdc34-like E2s and the RING finger protein facilitates SCF-

dependent polyubiquitination.   

1.2.2 Regulating the ubiquitin conjugation reaction 

 It is becoming increasingly clear that substrate recognition by the SCF complex is 

preceeded by substrate level phosphorylation (Hsiung et al., 2001; Nash et al., 2001; 

Skowyra et al., 1997; Song, Wang, Goebl, & Harrington, 1998).  This mechanism 

provides a means to temporally control SCF activity against any particular substrate.  For 

example, ubiquitin conjugation of Sic1 by the SCFCdc4 complex during the transition to S 

phase requires multisite phosphorylation of Sic1 by the Cln/Cdc28 kinase complex (Nash 

et al., 2001; Orlicky, Tang, Willems, Tyers, & Sicheri, 2003; Skowyra et al., 1997; Tang 

et al., 2007).  Furthermore, the G1 cyclin Cln2, which is an SCFGrr1 substrate, requires 

Cdc28 phosphorylation in order to be recognized by Grr1 (Lanker, Valdivieso, & 

Wittenberg, 1996).  Other examples of SCF substrates whose phosphorylation is a 
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prerequisite for timely ubiquitination include Far1, Swi5, Gcn4, Tec1, Pcl5 and Rcn1 

(Aviram, Simon, Gildor, Glaser, & Kornitzer, 2008; Chou, Zhao, Song, Liu, & Nie, 

2008; Henchoz et al., 1997; Kishi, Ikeda, Koyama, Fukada, & Nagao, 2008; Kishi, Ikeda, 

Nagao, & Koyama, 2007; Shemer, Meimoun, Holtzman, & Kornitzer, 2002). 

 The abundance of some F-box proteins is also subject to modulation and it is 

likely that regulation of F-box protein steady state abundance contributes to SCF complex 

activity.  The best example of F-box abundance regulation has been demonstrated for 

Met30.  SCFMet30 ubiquitinates and targets Met4, a transcriptional inducer of the 

methionine biosynthetic genes, for degradation.  When L-methionine is present, SCFMet30 

ubiquitinates Met4.  Work from our lab and the lab of Dr. Neal Mathias demonstrated 

that L-methionine stabilizes the Met30 protein thereby increasing Met4 ubiquitination 

(Smothers, Kozubowski, Dixon, Goebl, & Mathias, 2000).  Changes in protein 

abundance have been also been demonstrated for Cdc4 and Grr1 but the physiological 

significance of these changes is not well understood (Fey & Lanker, 2007; Mathias, 

Johnson, Byers, & Goebl, 1999).  

 Both human and budding yeast Cdc34 enzymes are phosphorylated in vivo 

(Block, Boyer, & Yew, 2001; Goebl et al., 1994; Semplici, Meggio, Pinna, & Oliviero, 

2002).  Site directed mutagenesis of five serines in the C-terminal tail of the human 

Cdc34 distinguishes these residues as potential phosphorylation sites.  These five serines 

are not conserved in budding yeast.  Some of these serines are phosphorylated by Casein 

Kinase 2 (Block et al., 2001; Semplici et al., 2002).  Phosphorylation of yeast Cdc34 on 

serines 130, 167, 207 and 216 by yeast casein kinase 2 modestly stimulates Cdc34 

activity in vitro (Coccetti et al., 2008; Sadowski, Mawson, Baker, & Sarcevic, 2007).  



 

 17 

Human Rad6 (hHR6A) is the only other ubiquitin conjugating enzyme known to be 

regulated by phosphorylation.  The phosphorylation of human Rad6 on the highly 

conserved serine 120 by the cyclin A-CDK2  kinases occurs in vivo and this 

phosphorylation increases the in vitro ubiquitin conjugating activity of Rad6 four-fold.  

This phosphorylation is also cell cycle regulated and contributes to cell cycle progression 

through the G2/M phase (Sarcevic, Mawson, Baker, & Sutherland, 2002).   

1.2.3 Transfer of ubiquitinated proteins to the proteasome 

Following lysine-48 linked polyubiquitination, a substrate is shuttled to the 

proteasome where it is recognized by virtue of its polyubiquitin chain.  Lysine-48 linked 

chains of four ubiquitin moieties are sufficient for a substrate to bind the proteasome 

(Thrower, Hoffman, Rechsteiner, & Pickart, 2000).  It is not clear whether ubiquitinated 

substrates are “shuttled” from the ubiquitin conjugating enzyme to the proteasome or if 

ubiquitinated proteins are transferred directly from the ubiquitin conjugating system to 

the proteasome and recognized by an intrinsic receptor.  There is evidence that both 

pathways may exist.  Multiple proteasomal receptors which recruit ubiquitinated 

substrates to the proteasome have been discovered.  S5a, the human ortholog of Rpn10, 

was the first proteasomal subunit implicated in polyubiquitin conjugate binding and was 

thought to be the sole ubiquitin receptor of the proteasome until it was found that yeast 

cells lacking RPN10 are viable (van Nocker et al., 1996).  Of the total cellular pool of 

Rpn10, only a small fraction can be found physically associated with the proteasome (van 

Nocker et al., 1996).  Rpn10 possesses a UIM (Ubiquitin Interacting Motif) which 

recruits substrates to the proteasome and a VWA (Von Willebrand Associated) domain 

that stabilizes the proteasome (Glickman et al., 1998).   
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 Other polyubiquitin chain receptors, such as Rad23, Dsk2, Ddi1 and Rpn13 have 

been identified.  Polyubiquitin chain length appears to be a major determinant of receptor 

specificity.  In vitro binding assays show that Rad23 prefers substrates with 

approximately 2-4 ubiquitin moieties while Rpn10 will preferentially bind substrates with 

> 4 ubiquitin molecules per chain (Richly et al., 2005).  Other work utilizing slightly 

different in vitro binding assays and different substrates confirms the finding that Rpn10 

prefers long chains; however, in the same assay Rad23 enhances the proteasomal binding 

of long chained substrates (Elsasser, Chandler-Militello, Muller, Hanna, & Finley, 2004).  

It is unclear if long ubiquitin chains (> 6 ubiquitin moieties) exist in vivo or if there is 

even a specific receptor for such chains.  Rad23 is not a stoichiometric subunit of the 

proteasome but is found loosely associated with the proteasome and binds 

polyubiquitinated substrates with its UBA (UBiquitin Associated) domain.  Rad23 also 

contains a UBL (UBiquitin Like) motif that is required for its interaction with the 

proteasome via the19S lid component Rpn1.  Rad23 is believed to act as a shuttle by 

binding ubiquitinated substrates apart from the 26S Proteasome and subsequently 

bringing them to the proteasome.  Rad23 can also be recruited to the proteasome via an 

interaction between the Rpn10 UIM domain and its UBL domain and this pathway is 

separate from its proteasomal recruitment via Rpn1 (Elsasser et al., 2004).  It is currently 

unclear whether Rpn10 binds its substrates while associated with the proteasome or prior 

to proteasomal association and subsequently recruits them.    

Rpn13, an integral subunit of the 19S regulatory particle of the proteasome, was 

recently found to bind ubiquitinated substrates (Husnjak et al., 2008; Schreiner et al., 

2008).  Purified proteasomes from rpn10Δ rpn13Δ mutants lack nearly all ubiquitin chain 
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binding activity although depending on the execution of the assays a small amount of 

residual binding can be detected (Husnjak et al., 2008).  Like Rpn10, Rpn13 binds the 

UBL domains of the UBL-UBA family of proteins Rad23, Ddi1 and Dsk2 (Husnjak et 

al., 2008) and therefore may act to recruit these proteins and their substrates to the 

proteasome.  

The discovery of an E4 enzyme, Ufd2, which can extend short ubiquitin chains is 

an additional layer of complexity within this system (Koegl et al., 1999).  Ufd2 is a 

component of a pathway which extends from the ubiquitin conjugating enzyme to the 

homohexameric Cdc48 complex and finally to the proteasome.  Ufd2 physically interacts 

with the Cdc48 complex which along with Cdc48 itself, also consists of two canonical 

adaptors, Ufd1 and Npl4.  Ufd2 can extend short polyubiquitin chains to a length of 6 

moieties in vitro.  Rad23 indirectly interacts with Ufd2 and this interaction is mediated by 

Cdc48 (Rumpf & Jentsch, 2006).  It is thought that Ufd2 creates ubiquitin chains which 

are ideally suited for Rad23 binding and subsequent shuttling to the proteasome.  At least 

some substrates, for example the cyclin dependent kinase inhibitor Far1, which are 

dependent on Rad23 for degradation also rely on Cdc48 and likely Ufd2 (Fu, Ng, Feng, 

& Liang, 2003; Verma, Oania, Graumann, & Deshaies, 2004).  The Cdc48, Ufd2, Rad23 

pathway is known to be critical for the degradation of many ERAD substrates including 

Spt23, Hmg2 and the artificial ERAD model substrate Deg1SEC62 (Rumpf & Jentsch, 

2006).  Moreover, Rpn10 has been suggested to function redundantly with Ufd2 as the 

above mentioned ERAD substrates are moderately but significantly more stable in ufd2Δ 

strains and much more stable in ufd2Δ rpn10Δ strains, although this stability may simply 
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be due to defective assembly of the proteasome in the rpn10Δ mutant (Glickman et al., 

1998; Richly et al., 2005).   

1.2.4 Substrate deubiquitination and proteasomal degradation 

Ubiquitin is a stable protein and therefore it is believed that substrates are 

deubiquitinated at the proteasome prior to or during their degradation (Haas & Bright, 

1987).  Ubp6 and Rpn11 are intrinsic subunits of the 26S proteasome and both possess 

deubiquitination activity (Guterman & Glickman, 2004; Verma et al., 2002; Yao & 

Cohen, 2002).  Proteasomes possessing both Ubp6 and Rpn11 will deubiquitinate the 

unnatural ubiquitin-GFP fusion protein without subsequent degradation.  Preventing 

deubiquitination either by addition of N-ethyl-maleimide or incubation of proteasomes 

lacking Ubp6 and Rpn11 results in the degradation of both ubiquitin and GFP moieties 

(Guterman & Glickman, 2004).  Sic1 is deubiquitinated by Rpn11 and if this activity is 

blocked then Sic1 is stabilized although it does become ubiquitinated and binds the 

proteasome (Verma et al., 2002).   

An elegant characterization of another deubiquitinating enzyme, Ubp14, 

demonstrated that Ubp14 is the major deubiquitination activity for free ubiquitin chains 

and upb14Δ cells accumulate free ubiquitin chains which inhibit degradation of the 26S 

Proteasomal substrates, Mat alpha2 and Ub-P-β-Galactosidase and L-β-Galactosidase 

(Amerik, Swaminathan, Krantz, Wilkinson, & Hochstrasser, 1997).  Ubp14 does not 

deubiquitinate the proteasomal substrate but it disassembles the ubiquitin chains after 

substrate deubiquitination so that these chains do not rebind the proteasome.  If they are 

not disassembled then these free ubiquitin chains become proteasomal inhibitors.  
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Once deubiquitinated, proteasomal substrates are degraded by the 26S 

Proteasome.  The 26S Proteasome is an approximately 2 megadalton complex which 

unfolds the substrate in an ATP dependent manner and degrades the substrate in an ATP 

independent reaction (Hough, Pratt, & Rechsteiner, 1986, 1987; Rechsteiner, 1998).  The 

26S Proteasome can be electrophoretically resolved into two separate structures, namely 

the 20S Core particle and the 19S regulatory particle.  The 20S core particle is a barrel-

shaped protease that possesses at least three distinct endoproteolytic activities: a tryptic 

activity (cleaving after basic residues), a chymotryptic activity (cleaving after 

hydrophobic residues), and a Glu-C like activity (cleaving after acidic residues) 

(Kisselev, Callard, & Goldberg, 2006).  Mutagenesis studies suggest that the 20S core 

contains all the proteolytic activities of the 26S complex while the 19S regulatory cap 

structure stimulates proteolysis by providing the ATP dependent unfolding activity which 

is required for proteolysis of the substrate (Braun et al., 1999; C. W. Liu et al., 2002; 

Seemuller et al., 1995).  Much is known about the structure and assembly of the 26S 

proteasome but that is beyond the scope of this thesis and I refer the reader to reviews 

which are able to cover these subjects in detail (Hanna & Finley, 2007; Rechsteiner, 

1998).  

1.2.5 The role of ubiquitin-dependent protein degradation during the G1 phase 

There are numerous substrates of the SCF/Cdc34 complexes that have been 

identified, but only a few have been implicated specifically in cell cycle progression with 

their degradation confined to a specific phase of the cell cycle.  Known substrates 

degraded in a cell cycle dependent manner include Far1, Sic1, Cln1, Cln2 and Cdc6 (Fu 

et al., 2003; Schneider et al., 1998; Schwob et al., 1994).  All of these substrates play 
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important roles in the G1 phase and the transcription rates of their genes are cell cycle 

regulated (Spellman et al., 1998).  Transcription of these genes is induced late in mitosis 

and repressed in late G1.  Their degradation also occurs during the G1 phase.  Far1 and 

Sic1 are phosphorylated by the Cln(1-2)/Cdc28 complexes and recognized by SCFCdc4 

which catalyzes their ubiquitination (Henchoz et al., 1997; Tyers, 1996).  Cln1 and Cln2, 

in collaboration with Cdc28, phosphorylate themselves, resulting in recognition by 

SCFGrr1 and subsequent degradation (Barral, Jentsch, & Mann, 1995; Lanker et al., 1996; 

Willems et al., 1996).  By the end of G1, Cln1 and Cln2 are virtually absent (Schneider et 

al., 1998).  The degradation of ubiquitinated Far1 depends on a pathway involving 

Cdc48, Ufd1 and Rad23 which most likely extends the initial ubiquitin chain conjugated 

by SCFCdc4 and delivers modified Far1 to the proteasome (Fu et al., 2003; Verma et al., 

2004).  Far1 is degraded early in G1 and its degradation is required for cell cycle 

progression (Henchoz et al., 1997).  Far1 is an inhibitor of Cln/CDK activity and its 

stabilization leads to an arrest much like the cdc28 arrest (Henchoz et al., 1997).  Sic1 is 

another cyclin dependent kinase inhibitor which serves to keep the Clb/Cdc28 kinase 

inactive in G1 so that origins of DNA replication do not fire prematurely.  Sic1 is not an 

inhibitor of the Cln/Cdc28 complexes so the landmark events of G1 induced by the 

Cln/Cdc28 complex, namely septin ring formation, bud emergence and spindle pole body 

duplication are unaffected by the stabilization of Sic1 (Goebl et al., 1988).  Sic1, like 

Far1, is phosphorylated by the Cln/Cdc28 complex and subsequently recognized by 

SCFCdc4 which ubiquitinates Sic1 and targets it to the proteasome through an Rpn10 

dependent pathway (Nash et al., 2001; Verma et al., 2004).  A recent report has called 

into question the requirement of Sic1 phosphorylation and degradation for cell cycle 
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progression (Cross, Schroeder, & Bean, 2007).  Cells containing Sic1 which lacks all 

phosphorylation sites are viable but with a delay in the budded portion of the cell cycle.  

The fact that these cells are viable is at odds with the cdc34Δ, cdc4Δ and cln1Δ cln2Δ 

cln3Δ strains which are inviable and require Sic1 destruction for appropriate progression 

through START.  Certainly more work needs to be done to explain this paradox. 

1.3 Research Objectives 

 The objective of this research is to expand our understanding of a highly 

conserved motif within the ubiquitin conjugating enzyme Cdc34 with the expectation that 

a better understanding of this enzyme, its function and regulation will enhance our 

knowledge of the eukaryotic cell division cycle.  Cdc34 is well conserved in all 

eukaryotic species sequenced to date and it is necessary for targeting certain cell cycle 

promoting and inhibiting proteins for timely degradation.  A motif which is highly 

conserved among eukaryotes and which is unique to the Cdc34/Ubc7 family of ubiquitin 

conjugating enzymes is not required for Cdc34 to fulfill its function in vivo and this 

paradox left us to wonder why this motif had been so strongly selected for throughout 

evolution.  Cdc34 is particularly interesting because it serves as one of the key enzymes 

of the cell division cycle.  Its activity in targeting the cyclin dependent kinase inhibitors, 

Far1 and Sic1 in yeast and p27Kip and p21Cip in mammalian cells, for degradation is a 

switch that nearly all eukaryotic cells need to flip in order to initiate DNA replication.  

Even the slightest alteration in the timing of cyclin dependent kinase inhibitor 

degradation has major implications for the fidelity of DNA replication and chromosome 

segregation.  The motif within Cdc34 which is the subject of study here and elsewhere 

(Y. Liu et al., 1995; Silver, Gwozd, Ptak, Goebl, & Ellison, 1992; Varelas et al., 2003) is 
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also fascinating because its lies in close physical proximity (~5 angstroms) to the 

enzyme’s active site and two separate portions of the motif are both essential for enzyme 

activity and cell viability.  Furthermore, although separately these portions are essential, 

removal of both portions is tolerated.  Intragenic suppression within a single enzyme has 

been observed during the study of numerous enzymes but to my knowledge this motif of 

Cdc34 is the only example of dual intragenic suppression where both components are 

separately essential and both can be made non-essential by mutation of the partner.   

Recent advances in molecular biology allowed us to use genome wide analysis 

tools to better understand the contribution of this motif to Cdc34 function.  We found 

these experiments to be a favorable methodology because it allowed me to first observe 

the global responses of the cell to perturbation of the motif without having to formulate a 

priori hypotheses.  From these initial global screens, we were able to formulate specific 

hypotheses regarding the contribution of this motif to the mechanism of ubiquitin 

dependent protein degradation and then use more traditional molecular, genetic and 

biochemical assays to rigorously test these hypotheses.  Previous work from our lab 

suggested that portions of this motif might also be subject to regulated phosphorylation 

but the reason for this phosphorylation was unclear.  We began these studies with the 

ultimate goal of determining whether or not an amino acid within this motif was indeed 

phosphorylated and subsequently identifying the enzymes that catalyze the 

phosphorylation reaction.   
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Media, Strains and Plasmids 

2.1.1 Bacterial growth media 

Escherichia coli strains, DH5α, BL21 and XL10-Gold, were grown in LB, SOB 

or NZY+ media.  Liquid LB media contains 10 g Bacto tryptone, 5 g Bacto yeast extract 

and 10 g NaCl per liter.  Liquid NZY+ media contains 10 g NZ amine (casein 

hydrolysate), 5 g yeast extract and 5 g NaCl per liter and is adjusted to pH 7.5 using 

NaOH.  Prior to use 12.5 ml of 1 M MgCl2, 12.5 ml of 1 M MgSO4 and 10 ml of 2 M 

glucose are added to complete the NZY+ broth.  Liquid SOB media contains 20 g Bacto 

tryptone, 5 g Bacto yeast extract, 0.5 g NaCl, 25 mM KCl, 10 mM MgCl2, 20 mM 

MgSO4 per liter and is adjusted to pH 7.0 with NaOH.  LB, SOB and NZY+ plates also 

contain 20 g/L Difco agar.  Ampicillin is used at a final concentration of 50 mg/L. 

2.1.2 Plasmid DNA isolation from bacteria 

In order to isolate approximately 0.5 µg of plasmid DNA, DH5α strains harboring 

the indicated plasmids were grown in 5 ml LB+Ampicillin for 12-16 hours at 37°C.  

Cells were then pelleted and the plasmids were isolated using a Qiagen Miniprep kit 

(Qiagen, California, USA) following the manufacturer’s instructions.   

2.1.3 Site directed mutagenesis 

Only plasmids encoding mutations of the CDC34 gene were constructed during 

the course of this work.  All site directed mutagenesis was carried out using the 

QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene, California, USA) and its 

associated protocol.  Basically, complementary forward and reverse primers, 
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approximately 25 nucleotides in length, encoding the desired mutation(s) were used to 

amplify the appropriate plasmid.  The plasmid pRC001 is derived from pYL029 and 

encodes the CDC34 (S97D/Δ103-114) mutant under control of the GAL10 promoter.  To 

construct pRC001 the forward primer (5’-CCGGAAGACTTTCCCTTTTCTCCA-

CCACAGTTTCGATTTACGCC) and the reverse primer (5’-GGCGTAAATCGAAA-

CTGTGGTGGAGAAAAGGGAAAGTCTTCCGG) were utilized.  In the construction of 

pTL008 which is derived from pYL150 and encodes CDC34 (R93D) mutation, the 

forward primer (5’-AACGTTTACAGGGATGGCGACCTTTGTATTTCT) and reverse 

primer (5’-AGAAATACAAAGGCTCCGATCCCTGTAAACGTT) were utilized.  

pTL012, encoding CDC34 (R90D/D91N/R93D) mutations and derived from pTL008, 

was constructed using forward primer (5’-ATCCAAACGTTTACGAGAA-

TGGCGACCTTTGTATTTCTATTTT) and reverse primer (5’-AAAATAGAAATACA-

AAGGCTCCGATTCTCGTAAACGTTTGGAT).  To construct the pRC004 plasmid, the 

plasmid AD002 was used as template and primers 97AF2 (5’-GGGATGGCAGG-

CTTTGTATTGCTATTTTACACCAAAGTGGG) and 97AF2 (5’-CCCACTTTG-

GTGTAAAATAGCAATACAAAGCCTGCCATCCC) were used.  Following PCR 

amplification, 1 µl of the Dpn I restriction enzyme was added to the reaction mix to 

digest the parental, methylated plasmid DNA and the reactions were incubated at 37°C 

for 1 hour.  XL10-Gold Ultracompetent cells were transformed (see section 2.2.1) with 

two µl of the Dpn I-treated DNA.  Transformants were selected on LB+Ampicillin plates.  

Multiple clones from each transformation were selected and the plasmid DNA was 

isolated and sequenced at the Indiana University DNA Sequencing Core Facility.  

Plasmids used in this thesis are listed in table 2. 



 

 27 

2.1.4 Yeast growth media and genetic techniques  

Standard rich (YPD) and defined minimal (SD) media were prepared as described 

previously (M. D. Rose, Winston, & Hieter, 1990).  For analysis of Far1 and Cln1 

abundance and Cln1 half-life, cells were grown in YPD buffered with 30 mM succinic 

acid.  Standard sporulation and dissection procedures were used as described previously 

(M. D. Rose et al., 1990).  For sulfite sensitivity assays, 2 mM of sodium sulfite and 75 

mM tartaric acid was added to YPD media as previously described (Avram & 

Bakalinsky, 1996).  Strains were mated, sporulated and dissected as described previously 

(M. D. Rose et al., 1990).  If a tetrad containing a temperature sensitive allele was 

dissected, the zymolyase digestion and spore germination were done at room 

temperature. 

2.1.5 Yeast strain construction 

Standard methods were used for strain construction (M. D. Rose et al., 1990).  

Strains RC29, RRC73, RRC74, RRC76, RRC78 containing the CDC34tm allele flanked 

by the nourseothricin N-acetyltransferase gene (NAT1), which confers resistance to the 

aminoglycoside nourseothricin, were constructed as follows.  The plasmid pAG25 

containing the nourseothricin N-acetyltransferase gene (Goldstein & McCusker, 1999) 

was amplified with adaptamer primers CDC34F2 (5’- ACTTTTTTCAAGGCTGAGAA-

TCCATCGACAGATTGTAACGAAGCAGCTGAAGCTTCGTACGC- 3’) and 

CDC34R2 (5’- TGCTCTGTATAGTTCAATAGAATCTTACAGTACATCACGC-

TGCAAGCATAGGCCACTAGTGGATCTG - 3’) using the PCR cocktail and 

conditions as described previously (Goldstein & McCusker, 1999).  The PCR product 

was transformed into the CDC34tm containing strain KS418 using a previously described 
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transformation protocol (Gietz & Woods, 2002).  Selection of transformants was carried 

out on YPD plus 80 mg/L of nourseothricin (Werner BioAgents, Germany).  Insertion 

into the correct chromosomal locus was confirmed by PCR using the primers 34F2t(5’-

CAAACTTGAGATGGAGTTGTTGATG-3’) and pAG25Tr1(5’-

GTCAATCGTATGTGAATGCT-3’).  This strain was named RC6.  DNA containing the 

CDC34tm allele and the NAT1 gene was amplified from RC6 genomic DNA using 

Phusion DNA Polymerase (Finnzymes, Finland) according to the manufacturer’s 

instructions using primers 34F2t and 34R3 (5’-ATGAGTAGTCGCAAAAGCACCG-3’).  

To construct strains RRC73, RRC74, RRC76, RRC78 the PCR product from the RC6 

genomic amplification was transformed into the appropriate BY4741 strain containing 

either CLN1-TAP, CLN2-TAP, SIC1-TAP or FAR1-TAP at their endogenous 

chromosomal locus described in (Ghaemmaghami et al., 2003).  Transformation was 

carried out following the protocol of Johnston et al. (M. Johnston, Riles, & Hegemann, 

2002) for gene disruption generated from yeast genomic template.  Transformants were 

selected on YPD plus 80 mg/L of nourseothricin. 

RC29, the query strain for the SGA screen, was made by a cross of RC6 and 

MT1901 creating the diploid RC21 which was sporulated and its tetrads dissected until a 

haploid with the desired markers was acquired.  RC94, the control strain for the 

secondary SGA screen, was constructed by insertion of the nourseothricin N-

acetyltransferase gene into strain MT1901 at the exact same chromosomal location as 

strain RC6.  The PCR conditions and transformation were carried out exactly as 

described for construction of RC6.  Strains used during the course of these studies are 

listed in table 3. 
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2.1.6 Spot dilution assays 

For figure 14A, the cdc34-2 temperature sensitive strain YL10-1 harboring one of 

the plasmids pYL150 (CDC34), pYL029 (CDC34tm), or pYL027 (CDC34 Δ103-114) (Y. Liu 

et al., 1995) were grown overnight at 28°C in 5 ml SD-Leu.  Cells were diluted to equal 

densities and then 3 µl of each culture and two ten fold serial dilutions were spotted onto 

SD-Leu plates.  Images were taken after 3 days at 30°C.  For figure 14B, strains BL2 

(WT) and RRC85 [CDC34tm (NAT1)] were grown overnight in YPD, diluted to equal 

densities and then 3 µl of each culture and ten fold serial dilutions were spotted onto a 

YPD plate. 

2.2 Transformations 

2.2.1 Bacterial transformation 

E. coli (DH5α, BL21, XL10-1 GOLD) were made competent for transformation 

by streaking an aliquot of frozen cells onto an LB plate.  Ten colonies were picked and 

inoculated into 250 ml SOB media.  Cells were grown by vigorously shaking at 18°C 

until an OD600 of 0.6 was achieved.  The entire culture was placed on ice for 10 minutes 

and then centrifuged at 2,500xg for 10 minutes at 4°C.  The cell pellet was resuspended 

in 80 ml TB (10mM Pipes, 15 mM CaCl2, 250 mM KCl made to pH 6.7 with KOH and 

55 mM MnCl2).  The TB resuspension was centrifuged at 2,500xg for 10 minutes at 4°C 

and the cell pellet was resuspended in 20 ml of TB containing 7% DMSO.  The cell 

suspension was placed on ice for 10 minutes and then aliquoted into eppendorf tubes in 

200 µl increments.  The aliquots were frozen with liquid nitrogen and stored at -80°C 

until use. 
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Competent E. coli were transformed by adding approximately 20 nanograms of 

plasmid DNA to 50 µl of competent cells and incubating on ice for 25 minutes.  Cells 

were heat shocked at 42°C for 90 seconds and then placed on ice for 90 seconds.  Five 

hundred µl of SOB media was added to the cells and incubated at 37°C for 30 minutes.  

Cells were then spread on LB+ampicillin plates. 

2.2.2 Yeast transformation 

For gene disruption generated from a plasmid template, the lithium acetate 

method for yeast transformation as previously described (M. Johnston et al., 2002) was 

followed.  To transform yeast with plasmid DNA, a quicker but less efficient method was 

utilized.  Briefly, 0.5 µg of the plasmid DNA, 20 µl of 2 mg/ml carrier DNA and four 

volumes of PEG/Li-acetate/TE solution (PLATE; prepared by combining 90 ml of sterile 

45% PEG 3350, 10 ml of 1 M lithium acetate, 0.2 ml of 0.5 M EDTA  and 1 ml Tris-HCl, 

pH 7.5) were combined in an eppendorf tube along with a small swab of cells from a 

fresh plate or overnight culture.  The mixture was quickly vortexed and left at room 

temperature for 24 hours at which time 100 µl was plated on selective media.  

2.3 Protein Expression and Purification 

2.3.1 Cdc34 expression and purification using bacteria 

Cdc34ΔC6XHis and Cdc34ΔC(S97A)6XHis proteins encoding the first 244 amino 

acids of Cdc34 fused to a 6XHis tag at their C-terminus were expressed and purified for 

these studies.  Basically, BL21(DE3) bacterial cells harboring either plasmid AD002 

(Cdc34ΔC6XHis) or pRC004 [Cdc34ΔC(S97A)6XHis] were grown in 15 ml of 

LB+ampicillin for 16 hours at 37°C.  Five ml of the starter culture was used to inoculate 
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500 ml LB+ampicillin.  The 500 ml culture was grown with vigorous shaking at 37°C for 

2 hours or until the OD600 reached 1.2 at which time IPTG was added to a final 

concentration of 0.5 mM.  The cells were allowed to grow for an additional 3 hours and 

were then collected by centrifugation.   

To purify the desired histidine tagged proteins, the bacterial pellet was 

resuspended in 5 ml of Lysis Buffer [50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole 

and one complete mini, EDTA-free protease inhibitor cocktail tablet (Roche, Mannheim, 

Germany) adjusted to pH 8 using NaOH].  Five hundred µl of ten mg/ml lysozyme was 

added and the cell suspension was sonicated for five cycles of ten seconds with a twenty-

five percent duty cycle.  The lysate was repeatedly drawn through a 23G1 needle to shear 

the DNA and then spun quickly in a clinical centrifuge.  The supernantant was collected 

and mixed with 1.5 ml of Nickel Sepharose 6 Fast Flow resin (GE Healthcare-

Biosciences, Pittsburgh, PA) that had been washed twice with Lysis Buffer.  The nickel 

sepharose slurry was incubated on a rocker at 4°C for three hours.  The beads were then 

washed twice with 1 ml of Wash Buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM 

imidazole adjusted to pH 8 with NaOH) for 1 hour at 4°C.  Bound proteins were eluted 

by adding 500 µl of Elution Buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole 

adjusted to pH 8 with NaOH) and mixing at 4°C for 15 minutes.  Two additional rounds 

of elution, accomplished by adding 750 µl of Elution Buffer to the beads and mixing at 

4°C for 15 minutes, were necessary to recover the maximal amount of protein.  The 

purified protein was then dialyzed overnight at 4°C in 1 L of Dialysis Buffer I (20 mM 

Tris-HCl pH 7.5, 2 mM EDTA, 4 mM MgCl2, 1 mM DTT, 55 mM NaCl and 20% 
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glycerol) and for an additional hour in Dialysis Buffer II (20 mM Tris-HCl pH 7.5, 2 mM 

EDTA, 4 mM MgCl2, 1 mM DTT, 55 mM NaCl and 50% glycerol).   

2.3.2 GstKinase overexpression and purification using yeast 

An array of strain EJ758 [MATa his3-200, leu2-3,112, ura3-52, pep4::URA3], 

harboring a unique plasmid expressing a single GST-kinase fusion protein under control 

of the PCUP1 promoter which has been described previously (Martzen et al., 1999) was 

used for expression of GST-tagged kinases which would subsequently be purified and as 

a tool to measure Cdc34 S97 phosphorylation in strains with a singular kinase over-

expressed.   

For analysis of Cdc34 S97 phosphorylation in vivo, each strain of the EJ758 array 

was grown overnight in 5 ml SD-Ura then diluted to 4x105 cells/ml in 100 ml SD-Ura and 

grown for 8 hours at 30°C.  After 8 hours of growth, copper sulfate was added to a final 

concentration of 0.5 mM to induce GST-Kinase expression.  Induction lasted for 3 hours 

at which time the cells were pelleted in a Beckman Centrifuge at 4000xg, 4°C for 5 

minutes and immediately frozen with liquid nitrogen.  The level of Cdc34 S97 

phosphorylation in each strain was measured qualitatively by western blot analysis as 

described in the western blotting section below. 

To express and purify the GSTKinase from yeast, a patch of cells from the EJ758 

strain harboring the plasmid encoding the desired kinase was inoculated into 50 ml SD-

Ura to an OD600 ~0.2 and grown for the remainder of the day, shaking, at 30°C.  At the 

end of the day, the 50 ml culture was diluted into 500 ml so that it reached an OD600 of 

0.8 the following morning.  The following morning, copper sulfate was added to a final 

concentration of 0.5 mM to induce transcription of the GSTKinase.  The cultures were left 
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to shake at 30°C for 2 hours.  After 2 hr, the culture was split into 250 ml fractions and 

each was pelleted by centrifugation in a Beckman Centrifuge at 4000xg.  One tube was 

used for protein purification and the other was stored at -70°C for future purification.    

Each yeast cell pellet was resuspended in 1 ml EXTRACTION buffer (50 mM 

Tris-HCl (pH 7.5), 1 mM EDTA, 4 mM MgCl2, 5 mM DTT, 10% (v/v) glycerol, 1 M 

NaCl) with one protease inhibitor cocktail (Roche Diagnostics, USA) added per 10 ml 

buffer. 

 The suspension was transferred to an eppendorf tube and glass beads were added up to 

the level of the meniscus.  Cells were lysed at 4°C for 1 minute in a Biospec mini bead 

beater, using 10 cycles of shearing for 20 sec, followed by 1 minute cooling in an ice-

water bath.  The cell extract was removed from beads by puncturing the bottom of the 

tube with a hot (flamed) 25-gauge needle and the liquid was gently forced out with low-

pressure air or light centrifugation.  The remaining protein was washed off the beads with 

0.5 ml EXTRACTION buffer.  Two µl of one molar PMSF was added to the two ml of 

protein solution and insoluble cellular debris was removed by gentle centrifugation.  The 

supernatant was transferred to a new microfuge tube and protein concentration was 

determined by the Bradford method (Bradford, 1976).  Normally protein yields ranged 

from 15-25 mg/ml. 

 The crude protein extract was diluted with an equal volume of NO SALT WASH 

BUFFER (50 mM Tris-HCl, 4 mM MgCl2, 1 mM DTT, 10% Glycerol) to bring the final 

salt concentration to 0.5 M NaCl.  This salt concentration was chosen because it is high 

enough to prevent most nonspecific protein-ligand or protein-protein interactions, while 

still preserving required functional interactions.  It may be necessary to alter this 
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concentration to preserve kinase+cyclin or kinase+targeting subunit interactions although 

a functional Pho85/Pcl7 complex was purified at this salt concentration (Tan, Morcos, & 

Cannon, 2003).  One hundred µl of pre-equilibrated glutathione-Sepharose resin were 

added per two ml of extract (as measured after addition of No Salt Wash Buffer).  The 

tube was mixed gently at 4°C for 3 hours.  To remove non-specific proteins, the mixture 

was centrifuged for 20-30 seconds at low speed in a microfuge and the supernatant was 

decanted.  The beads were washed twice with 1 ml of WASH BUFFER (0.5 M NaCl, 4 

mM MgCl2, 1 mM DTT, 10% glycerol, 50 mM Tris-HCL, pH 7.5) by mixing for 15 

minutes, then centrifuged and the wash buffer was decanted.  Bound proteins were eluted 

by adding 2 ml ELUTION BUFFER (29.7 ml WASH BUFFER plus 0.3 ml of 2M NaOH 

and 0.23 g Glutathione.  The Wash Buffer and NaOH were mixed first followed by 

addition of glutathione) to the resin, followed by 1 hour of mixing, and then low speed 

centrifugation.  The elution was dialyzed overnight against DIALYSIS BUFFER I (20 

mM Tris-HCl, pH 7.4, 2 mM EDTA, 4 mM MgCl2, 1 mM dithiothreitol, 55 mM NaCl, 

20% (v/v) glycerol) for 2 hours at 4°C and then overnight against DIALYSIS BUFFER II 

(20 mM Tris-HCl, pH 7.4, 2 mM EDTA, 4 mM MgCl2, 1 mM dithiothreitol, 55 mM 

NaCl, 50% (v/v) glycerol) and stored at -20°C.  Normal GSTKinase yield from a 250-ml 

culture is 0.5 ml of protein at ~250 µg/ml. 

2.4 Antibody Production and Purification 

2.4.1 Antigen production and rabbit immunization 

In collaboration with Open Biosystems (Alabama, USA), antibodies were 

generated that recognize Cdc34 when serine 97 is phosphorylated.  The phosphopeptide 

DGRLCI(pS)ILHQ (N- and C-termini are not blocked) was synthesized and then 
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conjugated to the Keyhole Limpit Hemocyanin (KLH) protein.  On day one, 0.5 mg of 

KLH-phosphopeptide conjugate was emulsified with Freund’s complete adjuvant and 

subsequently used to immunize two New Zealand white rabbits.  On days 14, 28 and 42, 

the rabbits were injected with an additional 0.25 mg of KLH-phosphopeptide conjugate 

emulsified with Freund’s incomplete adjuvant.  On days 35 and 56, approximately 25 ml 

of serum was collected from each rabbit.  Production bleeds of 50 ml were taken from 

each rabbit on day 70 at which time the animals were euthanized. 

2.4.2 α-pS97 Antibody ELISA titers 

 Post-injection antibodies were detected by indirect ELISA against the passively 

coated peptides DGRLCI(pS)ILHQ and DGRLCISILHQ with anti-rabbit IgG-

Horseradish peroxidase (HRP) conjugate and ABTS (2,2'-Azinobis [3-

ethylbenzothiazoline-6-sulfonic acid]-diammonium salt) which is a water-soluble HRP 

substrate that yields a green end product upon reaction with HRP.  The green product has 

two major absorbance peaks, 410 nm and 650 nm.  The peptides were coated directly 

onto an Immulon II plate without conjugation to the KLH which avoids articial increase 

in titer levels due to the presence of KLH-specific antibodies.  Titers are reported as the 

reciprocal sum of serum dilution.  Values are calculated by measuring the dilution point 

where the absorbance drops below 0.2 at OD405 which is four times the background 

absorption. 
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Table 1.  ELISA titers of α-pS97 antisera.  Values were established by indirect ELISA 
as described in section 2.4.2. 
 

Animal Peptide Pre-bleed Day 35 Day 58 

PA0589 DGRLCI(pS)ILHQ < 50 25,600 > 204,800 

PA0589 DGRLCISILHQ < 50 < 50 12,800 

PA0590 DGRLCI(pS)ILHQ < 50 > 204,800 > 204,800 

PA0590 DGRLCISILHQ <50 51,200 51,200 

 

2.4.3 α-pS97 Antibody Purification 

To ensure that the antibody specifically recognized Cdc34 phosphorylated on 

serine amino acid residue 97, 360 µg of purified, bacterially expressed Cdc34ΔC6XHis was 

electrophoresed on a 10% SDS-PAGE gel.  The protein was transferred to PVDF 

membrane for 2.5 hours at 30 volts at 4°C in Transfer Buffer (25mM Tris, 190mM 

Glycine, 15% methanol).  The membrane was blocked with 5% milk in 1X KPBS-T for 1 

hour at room temperature.  After blocking, the membrane was exposed to 2 ml of crude 

anti-pS97 (Rabbit PA0590, 1 ml day 56 and 1 ml day 70) antisera which had been diluted 

with 13 ml of sterile 1X KPBS-T + 0.02% sodium azide.  The membrane was incubated 

overnight at 4°C with the antisera.  The unbound fraction was collected and 11.5 of the 

13 ml were purified with protein A beads as previously described (Harlow & Lane, 

1999).  α-pS97 antibodies were eluted from the protein A column with 2 ml of 100 mM 

Glycine (pH 2.2) and immediately neutralized with 100 µl of 1 M Tris-HCl (pH 9.1).  An 

A280 measurement estimates the α-pS97 antibody concentration to be 1.7 mg/ml.  Sodium 

azide was added to a final concentration of 0.02% prior to storage at 4°C.  
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2.5 Protein Manipulation 

2.5.1 Yeast protein extraction methods 

Once grown to the desired density, cells were collected by centrifugation for 5 

minute at 4000xg in a Beckman centrifuge which had been cooled to 4°C.  The cell pellet 

was immediately frozen with liquid nitrogen and stored at -80°C until lysis.  To extract 

the protein, the cell pellet was washed with water and then resuspended in 300 µl of 

Breaking Buffer [150 mM NaCl, 50 mM Tris-HCl pH7.5, 5 mM EDTA, 1% Triton X-

100, 50 mM NaF and one Complete Mini protease inhibitor cocktail tablet (Roche 

Diagnostics, USA) per 10 ml of breaking buffer].  Five hundred micrometer acid washed, 

glass beads (Sigma, USA) were added to the cell suspension and the cells were broken by 

repeated rounds of glass bead beating until a protein concentration of approximately 5 

mg/ml was achieved.  Usually, this required three rounds of bead beating at one minute 

per round.  Protein concentration was determined by the Bradford method (Bradford, 

1976).   

The Horvath-Rietzman protocol (Horvath & Riezman, 1994) is an alternate 

method for protein extraction from yeast cells.  This protocol was used infrequently for 

these studies but when used it has been denoted.  Briefly, 3.75 µl of Extraction Buffer 

(60mM Tris pH 6.8, 10% glycerol, 2% SDS, 5% β-mercaptoethanol, 5 mM EDTA, 50 

mM NaF plus one Complete Mini protease inhibitor cocktail tablet (Roche Diagnostics, 

Germany) per 10 mL of extraction buffer) was added per milligram of wet cell pellet.  

Cells were resuspended in extraction buffer and boiled at 95°C for 5 min.  Protein extract 

was then spun at 14,000 rpm in a cooled (4°C) microfuge for 5 minutes and the 

supernatant was saved as the protein extract. 
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2.5.2 SDS-Polyacrylamide gel electrophoresis and western blot analysis 

Five times concentrated Laemmli Sample Buffer (20% glycerol, 2% SDS, 5% β-

mercaptoethanol, 0.1% bromophenol blue and 62.5 mM Tris, pH 6.8) was added in an 

appropriate amount to the protein (~50 µg of protein) made from the glass bead method.  

Protein from either extraction method was loaded in equal amounts onto a 10% or 12% 

SDS-PAGE gel.  Separated proteins were transferred to a PVDF membrane using 

Transfer Buffer (25 mM Tris, 190 mM Glycine and 15% methanol).  The membranes 

were washed with KPBS-T (135 mM NaCl, 2.5 mM KCl, 5.5 mM Na2HPO4, 1.5 mM 

KH2PO4, 0.2% Tween-20, pH to 7.2) and blocked with 5% milk in KPBS-T.  Antibodies 

were used at the following dilutions, affinity purified α-Cdc34 (1:10,000), affinity 

purified α-MBPSic1 (1:1000) (Babbitt et al., 2005), α-pS97 antibody (1:1000), α-Ace2 

antisera (1:5000) (Sbia et al., 2008) and α-TAP (1:2000) (Open Biosystems, USA).  

Primary antibody was detected with an HRP conjugated goat α-rabbit secondary antibody 

at a 1:10,000 dilution (Santa Cruz Biotechnology, USA).   

2.6 In Vitro Phosphorylation of Cdc34 

2.6.1 Detecting Cdc34 phosphorylation using 32P 

 Bacterially expressed 6XHisCdc34ΔC and 6XHisCdc34(S97A)ΔC (1.3 nanomoles) were 

incubated with 10 µl (1 unit/µl) of bovine Protein Kinase A (Sigma Aldrich, USA) or 10 

µl of GSTTpk3 purified from yeast (section 2.3.2) in PKA phosphorylation buffer (35 mM 

Potassium Phosphate, pH 7.4, 0.25 mg/ml BSA) plus 10 µl of 5X ATP solution (1 mM 

ATP, 25 mM MgCl2, 310 cpm/pmol [γ-32P]ATP) in a total reaction volume of 100 µl.  

When PKA Inhibitor (Sigma-Aldrich, USA) was used, 1µl (1 mg/ml) was added to the 
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reaction.  The reactions were incubated at 30°C for 20 minutes and stopped by addition 

of 25 µl of 5X Laemmli Buffer.  Samples were heated at 95°C for 3 minutes and 30 µl of 

each reaction was loaded onto a 12% SDS-PAGE gel.  The gel was run and then dried 

and exposed to film for 4 hours.   

2.6.2 Detecting Cdc34 phosphorylation using α-pS97 antibody 

Bacterially expressed 6XHisCdc34ΔC (165 picomoles) was incubated with 10 µl (1 

unit/µl) of bovine Protein Kinase A (Sigma Aldrich, USA) or 5 µl of GSTTpk3 purified 

from yeast (section 2.3.2) in PKA phosphorylation buffer (35 mM Potassium Phosphate, 

pH 7.4, 0.25 mg/ml BSA) plus 10 µl of 5X ATP solution (1 mM ATP, 25 mM MgCl2) in 

a total reaction volume of 50 µl.  When PKA Inhibitor (Sigma-Aldrich, USA) was used, 

1 µl (1 mg/ml) was added to the reaction.  The reactions were incubated at 30°C for 10 

minutes and the samples were placed on ice.  Ten µl of each reaction was spotted onto a 

strip of PVDF membrane which had been pre-soaked in methanol.  The spot was allowed 

to dry for 30 minutes.  The membrane was re-wet with methanol and then processed as 

described in the western blotting section above (section 2.5.2).  

2.7 Microarray Analysis 

2.7.1 Yeast growth conditions 

A CDC34tm strain (RRC85) and a wild type strain (DBY2059) were inoculated 

from stationary phase cultures into a synthetic defined minimal medium containing 2% 

dextrose, 0.17% yeast nitrogen base minus amino acids and ammonium sulfate, 0.25% L-

glutamine, 0.025% magnesium sulfate and 25.2 mg/L L-Leucine.  Four separate cultures 

of each strain were grown at 30°C, allowing between three and four doublings and cells 
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were collected at approximately 8 x 106cells/ml.  Cells were centrifuged and immediately 

frozen in liquid nitrogen. 

2.7.2 RNA extraction and cRNA construction 

 Cells were centrifuged and immediately frozen in liquid nitrogen.  Total RNA was 

extracted using a hot acid phenol-chloroform protocol as previously described (Schmitt, 

Brown, & Trumpower, 1990).  RNA quality was verified with OD260/280 readings and a 

1.5% agarose gel.  The following portion of this microarray study was carried out using 

the facilities of the Center for Medical Genomics at Indiana University School of 

Medicine.  The Center for Medical Genomics is supported in part by the Indiana 

Genomics Initiative at Indiana University (INGEN®), which is supported in part by the 

Lilly Endowment, Inc.  Briefly, cDNA was synthesized from the original RNA template 

by single cycle labeling using a T7 promoter-dT24 oligonucleotide as primer with the 

Invitrogen Life Technologies SuperScript Choice system (Invitrogen, California, USA) 

per the manufacturer’s instructions.  Following second strand cDNA synthesis and 

incubation with T4 DNA polymerase, the products were purified using an Affymetrix 

Cleanup Module (Affymetrix, California, USA) per the manufacturer’s protocol.  The 

cDNA was converted to cRNA using the Affymetrix IVT kit, again following the 

manufacturer’s instructions.  The cRNA was purified with Qiagen RNAeasy columns 

(Qiagen, California, USA), quantitated and then fragmented by incubating at high 

temperature with magnesium.  

2.7.3 cRNA hybridization and data analysis 

 Fifteen µg of biotinylated cRNA was added to a total hybridization cocktail of 300 

µl, and 200 µl was hybridized to an Affymetrix Yeast 2.0 GeneChip after adding control 
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oligonucleotides.  The cRNA was hybridized at 45°C for 17 hours with constant rotation.  

The hybridization mixture was then removed and the Affymetrix Yeast 2.0 GeneChip 

were washed, stained with phycoerythrin-labeled Streptavidin, washed, incubated with 

biotinylated anti-streptavidin, and then restained with phycoerythrin-labeled Streptavidin  

for signal amplification.  Balanced groups of samples were handled in parallel to reduce 

non-random error.  The arrays were then scanned using the dedicated scanner, controlled 

by Affymetrix GCOS software.  The Affymetrix Microarray Suite version 5 (MAS5) 

algorithm was used to analyze the hybridization intensity data from each array.  The 

average intensity on each array was normalized by globally scaling to a target intensity of 

1000.  A student’s t-test of the log base 2 transformed data was used to establish p-values.  

The q-value, or the false discovery rate, for each transcript was calculated based on the 

associated p values using the method of Storey et al. and setting π0 equal to 

0.661958910889993 (Storey & Tibshirani, 2003).  A software package was downloaded 

from http://genomine.org/qvalue/ to assist with the calculations.  The microarray data 

presented in this thesis have been deposited in NCBI’s Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) and are accessible to the public through GEO Series 

accession numbers GSM210016-GSM210023. 

2.8 Synthetic Gene Array 

2.8.1 A screen for interactions with non-essential genes 

Construction of RC29, the query strain for the primary SGA screen, is described 

in the “Yeast Strain Construction” (2.1.4) section of this thesis.  Duplicate SGA screens 

of the CDC34tm (NAT1) query strain, RC29, were performed against the approximately 

4,700 single, non-essential gene deletion strains as previously described (Tong et al., 
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2001).  Computer-based image analysis of colony size allowed genetic interactions to be 

scored on a scale of 1-4 with 1=lethal, 2=severely sick, 3=sick, 4=mildly sick.  Candidate 

synthetic genetic interactions were validated by a second SGA screen which was done 

manually.  Strains RC29 and RC94, isogenic to RC29 except that the NAT1 gene marks a 

wild type CDC34 allele, were separately crossed to strains with the candidate gene 

deletion.  Diploids were selected by replica-plating onto YPD + 100 mg/L nourseothricin 

+ 200 mg/L G418 then isolated by streaking for single colonies on the same media.  The 

isolated diploids were sporulated on Sporulation Medium (1% Potassium Acetate, 2% 

Agar, 0.1% yeast extract, 0.05% glucose supplemented with 1mM of uracil, histidine and 

leucine).  Diploids were sporulated at room temperature for 7 days and then struck onto 

Haploid, Double Mutant Selection Media (2% Glucose, 0.17% Yeast Nitrogen base 

lacking ammonium sulfate and amino acids, 0.1% monosodium glutamatic acid, 0.2% 

Amino Acid Mix lacking histidine and arginine, 50 mg/L canavanine, 100 mg/L 

nourseothricin, 200 mg/L G418 and 2% Agar).  The CDC34tm (NAT1) xxxΔ::KanR 

genetic interactions were scored visually after 3 days growth at 30°C by comparing its 

growth to that of the CDC34 (NAT1) xxxΔ::KanR haploid. 

To determine if deletion of SIC1, ACE2 or SWI5 was capable of suppressing the 

lethality of certain double mutants, SIC1, SWI5 or ACE2 were disrupted with the K. lactis 

URA3 gene in a diploid strain which was heterozygous for the gene deletion of interest 

(for example RAD23) and heterozygous for the CDC34tm allele.  The primers used were 

as follows: SIC1(5’-CCACCAAGGTCCAGAGGGACTAGGTAC-

CTTACTAGTGGATCTGATATCC-3’ and 5’ GCTCTTGATCCCTAGATTGAA-

ACAATGCCTCGATTTAGGTGACACTAT-3’), ACE2 (5’-TGGATAACG-
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TTGTAGATCCGTGGTATATAAACTAGTGGATCTGATATCAC-3’ and 5’-

TCAGAGAGCATCAGTTTCGTTTGAAAGGGTGCGATTTAGGTGACACTAT-3’) 

and SWI5 (5’-GATGGATACATCAAACTCTTGGTTTGATGCACTAGTGGATCT-

GATATCAC-3’ and 5’-CTTTGATTAGTTTTCATTGGCGAAACCATAC-

GATTTAGGTGACACTAT).  The plasmid pUG72 (Gueldener, Heinisch, Koehler, 

Voss, & Hegemann, 2002) which contains the K.lactis URA3 gene was amplified with 

adaptamers for SIC1, ACE2 or SWI5 listed above using the PCR cocktail and conditions 

as described previously (Goldstein & McCusker, 1999).  The PCR product was 

transformed into the desired diploids using a previously described transformation 

protocol (Gietz & Woods, 2002).  Transformants were isolated and patched onto YPD 

and grown for 24 hours after which they were replicaplated onto the Sporulation Media 

described above.  Diploids were sporulated at room temperature for 7 days and then 

struck onto the Haploid, Double Mutant Selection Media described above.  Plates were 

imaged after 72 hours of incubation at 30°C. 

2.8.2 A screen for interactions with essential genes 

 A screen for genetic interactions between the NAT1 marked CDC34tm and 

essential genes was carried out much like the screen for genetic interactions between 

CDC34tm and the non-essential genes described in section 2.8.1.  Basically strains RC29 

and RC94 were mated to each of the ~575 strains containing a single essential gene under 

control of a TetO7 promoter (Yu, Pena Castillo, Mnaimneh, Hughes, & Brown, 2006).  

The essential gene remains at its native chromosomal location but part of its promoter has 

been replaced with a doxycycline repressible element (TetO7).  The KANR gene marks 

the regulatable, essential allele and so diploids for this screen were selected on YPD + 
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G418(200 mg/L) + Nourseothricin (90 mg/L).  The diploids were sporulated for five days 

at room temperature and then were replicaplated onto Haploid, Double Mutant Selection 

Media (2% Glucose, 0.17% Yeast Nitrogen base lacking ammonium sulfate and amino 

acids, 0.1% monosodium glutamatic acid, 0.2% Amino Acid Mix lacking histidine and 

arginine, 50 mg/L canavanine, 100 mg/L nourseothricin, 200 mg/L G418 and 2% Agar) 

without doxycycline.  After 3 days, the haploids were replicaplated onto new Haploid, 

Double Mutant Selection Media plates containing 10 mg/L doxycycline.  Growth of the 

CDC34 (NAT1) and CDC34TM (NAT1) haploids was scored after 3 days at 30°C.   
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CHAPTER 3: DISCOVERY AND CHARACTERIZATION OF THE ESSENTIAL 

PHOSPHORYLATION OF CDC34 SERINE 97 

3.1 Structure/Function Studies of Cdc34 Serine 97 Mutants 

A partial sequence alignment of the yeast ubiquitin conjugating enzymes and 

Cdc34 orthologs is shown in figure 3A.  It is apparent that there is a relationship among 

S73, S97 and a twelve amino acid “loop” region which surrounds the catalytic cysteine.  

Ubc7, like Cdc34, contains serine residues at the positions equivalent to yeast Cdc34 S73 

and S97.  In contrast, the majority of E2s, of which Rad6 is a classic example, have a 

lysine and an aspartic acid residue, respectively, at these positions.  Cdc34/Ubc7 family 

members also contain an insertion near S97 (residues 103-114 of Cdc34) that other E2s 

lack.  This motif of serine/serine/insert or lysine/aspartic acid/no insert is conserved 

among most eukaryotic E2s (Y. Liu et al., 1995).  The amino acid residues that constitute 

the motif are in close physical proximity.  The crystal structure for Ubc7 shows serine 

residue S91 (Cdc34 S97 equivalent) to lie within 3 Å of the well conserved aspartic acid 

residue (D108) of the twelve amino acid “loop” while serine residue S67 (Cdc34 S73 

equivalent) is within 4 Å of the invariant tryptophan residue (W110) (Cook, Martin, 

Edwards, Yamazaki, & Chau, 1997).  Even with differences at these amino acid residues, 

the tertiary fold of the Cdc34/Ubc7 family resembles that of the Rad6 family (Fig. 3B). 

Previously, our lab determined that mutation of Cdc34 which changes amino acid 

residue S97 to alanine or aspartatic acid renders the Cdc34 enzyme non-functional both 

in vivo and in vitro; however, the S97T mutation does not compromise Cdc34 activity in 

vivo (Y. Liu et al., 1995; Varelas et al., 2003).  During the course of reproducing the 

growth assays, a condition was found in which the Cdc34 S97D mutation can 



 

 46 

complement a cdc34-2 temperature sensitive strain at a non-permissive temperature (Fig. 

4A).  Our lab’s previous study used 36°C as the non-permissive temperature and used 

patch assays to assess complementation of the cdc34-2 temperature sensitive strain by 

CDC34 (S97) mutations (Y. Liu et al., 1995).  For experiments reported here, the non-

permissive temperature is set to 35°C and complementation was assessed by a spot 

dilution assay which is more sensitive to differences in growth and allows more cells to 

be deposited on a plate than a patch assay.  Two notable discoveries resulted from this 

experiment.  First, the Cdc34 S97D mutant can complement a cdc34-2 temperature 

sensitive strain when overexpressed at the non-permissive temperature of 35°C while the 

Cdc34 S97A mutant does not complement at any temperature or any expression level 

(Fig. 4A).  However, neither the S97D nor S97A mutant complements a cdc34Δ strain, 

while a mutation that feasibly permits phosphorylation, S97T, complements both the 

cdc34-2 temperature sensitive and cdc34Δ strain in a spot dilution assay (Fig. 4B).  

Furthermore, this experiment reveals that overexpression of wild type CDC34 on 

galactose medium inhibits growth compared to the CDC34 S97T mutant (Fig. 4B).  

Comparisons between wild type CDC34 and an empty plasmid control or other CDC34 

mutants demonstrate that wild type CDC34 overexpression on galactose media is growth 

inhibitory (for example, see Fig. 12).  This phenotype was exploited in other experiments 

to explore the functional significance of Cdc34 amino acid residue S97 (Section 3.6). 

3.2 Discovery of Cdc34 Amino Acid Residue S97 Phosphorylation 

3.2.1.  Cdc34 is phosphorylated in vivo on serine residue 97 

Cdc34 is phosphorylated in vivo on serine residues (Goebl et al., 1994) and some 

of the serine phosphorylation sites have been mapped (Coccetti et al., 2008; Sadowski et 
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al., 2007).  Due to the combined evidence that the Cdc34 S97T mutant is functional both 

in vivo and in vitro and amino acid residue S97 is highly conserved across eukaryotic 

species, we reasoned that S97 might be a site of phosphorylation.  To test this hypothesis, 

antibodies capable of specifically recognizing Cdc34 phosphorylated on amino acid 

residue S97 were generated.  This antibody, termed α-pS97, recognizes a protein from a 

whole cell yeast lysate that migrates at approximately the same position as the Cdc34 

protein (Fig. 5A, lane 1).  When full length Cdc34 is replaced by a C-terminally truncated 

Cdc34 that migrates noticeably faster through an SDS-PAGE gel, the α-pS97 antibody no 

longer recognizes a protein at the size of full length Cdc34 but now recognizes a protein 

which migrates at approximately the same location as the C-terminally truncated Cdc34 

protein (Fig. 5A, lane 2) indicating that the α-pS97 antibody recognizes Cdc34 and that 

Cdc34 is the only protein contributing to the signal at the approximate molecular mass of 

42 kDa which is where Cdc34 migrates.  The α-pS97 antibody also does not recognize 

the Cdc34tm (S73K/S97D/Δ103-114) mutant (Fig. 5A, lane 4) indicating that this 

antibody is specific to S97.  Bacterially expressed Cdc34, which should not be 

phosphorylated, is also not recognized by this antibody even when loaded in excess of the 

endogenous yeast Cdc34 (Fig. 5A, lane 6).  From these studies, we conclude that the α-

pS97 antibody is specific for Cdc34 phosphorylated on serine amino acid residue 97 and 

that Cdc34 is phosphorylated in vivo on serine 97.  Furthermore, Fig. 5A, lanes one and 

two, reveal that the tail of Cdc34 (amino acids 245-295) contributes to the level of Cdc34 

S97 phosphorylation.  

During the course of these experiments, it was discovered that S97 

phosphorylation becomes undetectable when the protein extract is subject to a single 
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freeze/thaw cycle or when the protein extract is made by the Horvath method (Horvath & 

Riezman, 1994), a common method for yeast cell protein extraction which requires 

heating the sample in SDS for 5 minutes (Fig. 5B, lane 2 and data not shown).  Breaking 

cells open by repeated rounds of bead beating in either the breaking buffer described in 

the materials and methods section or in 8M urea allows S97 phosphorylation to be 

detected by the western blot method.  Previous studies have attempted to characterize all 

the phosphorylation sites of Cdc34 but did not report S97 phosphorylation (Sadowski et 

al., 2007).  This discrepancy is likely due to the method of protein extraction. 

3.2.3 Phosphorylation of S97 is induced in the G1 phase 

 Cdc34 in cooperation with the SCF complexes has a plethora of substrates which 

it targets for proteasome mediated degradation.  Many of the substrates whose 

degradation is required for timely cell cycle progression, including Cln1, Cln2, Sic1, Far1 

and Cdc6, are ubiquitinated and degraded in the G1 phase of the cell cycle.  We reasoned 

that if Cdc34 S97 phosphorylation regulates Cdc34 activity then S97 phosphorylation 

might be regulated through the cell cycle.  To test this hypothesis, cells were 

synchronized in G1 with alpha factor.  After three hours, >95% of the cells were arrested 

with a mating proficient or schmoo-like morphology.  The alpha factor was washed away 

and cells were resuspended in fresh medium which allowed cells to synchronously re-

enter the cell cycle.  S97 phosphorylation levels were monitored over the course of the 

ensuing one and a half cell cycles (Fig. 6).  Analysis of the budding index revealed that 

the cells did indeed re-enter the cell cycle with a high level of synchrony and as expected 

after one division, the cells became asynchronous as the mothers progress through the 

second G1 phase faster than the daughter cells.  This is because daughters typically 
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emerge smaller than the mother and spend extra time growing before bud emergence.  

This experiment revealed two notable discoveries regarding Cdc34 S97 phosphorylation.  

This first being that the level of Cdc34 S97 phosphorylation is induced in the G1 phase of 

the cell cycle (Fig. 6, 100 min.).  Secondly, S97 phosphorylation is reduced by exposure 

of cell’s to alpha factor.  We confirmed this finding in a separate experiment (see Fig. 9) 

and the reasons for this decrease of S97 phosphorylation in response to alpha factor 

became clear when we discovered a kinase which phosphorylates Cdc34 S97 (see section 

3.3.2 and 3.4). 

3.3 Identification of Kinases which Affect the Level of S97 Phosphorylation 

3.3.1 A screen for kinases which when overexpressed or deleted alter S97 

phosphorylation 

Suspecting that the kinase(s) responsible for the phosphorylation of S97 might be 

essential and thereby, preventing identification in a screen of strains lacking an individual 

kinase, a genomic ordered array of 124 strains, each over-expressing a unique GST-

kinase fusion from a copper inducible promoter was used.  Construction and utilization of 

this collection of strains was described previously (Martzen et al., 1999) as well as a 

previous utilization of the kinase collection (Burchett, Scott, Errede, & Dohlman, 2001).  

Strains were grown to mid-exponential phase (3-5x106 cells) in minimal media and the 

expression of the GST-kinase fusion protein was induced with the addition of copper 

sulfate.  Cell lysates were made from each strain and the level of Cdc34 S97 

phosphorylation was assessed by the western blot method.  More than 90 unique kinases 

were screened for their effect on S97 phosphorylation in this manner.  A number of 

kinases (Tpk1, Tpk2, Sch9, Vps15, Mkk2, Cla4, Mrk1, Mec1, Mps1, Snf1 and Gcn2), 
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which when overexpressed, increase the level of S97 phosphorylation (Fig. 7, red 

lettering).  There are also two MAP kinases, Mkk1 and Ste7, which when overexpressed 

slightly reduce the level of S97 phosphorylation (Fig. 7, green lettering).  There were 

some kinases which were not present in our array (Vps34, Tor1, Tor2 and Ste20 among 

others) and a number of others which did not grow to a density sufficient for analysis of 

S97 phosphorylation.  It should also be noted that other kinases require targeting subunits 

and that without simulateous overexpression of both the catalytic and regulatory subunits, 

the activity of these kinases against certain substrates remains unchanged. 

To extend the investigation of kinases affecting S97 phosphorylation, the level of 

S97 phosphorylation in strains lacking the individual kinases discovered by the initial, 

kinase overexpression, screen was analyzed.  Many of the kinases which increase the 

level of S97 phosphorylation when overexpressed, the level of S97 is reduced in strains 

lacking these kinases (Fig. 8, see sch9Δ, vps15Δ, mkk2Δ, snf1Δ and gcn2Δ).  Loss of 

other kinases does not noticeably reduce the level of S97 phosphorylation (Fig. 8, see 

tpk1Δ. tpk2Δ, mrk1Δ, hsl1Δ, cla4Δ, mkk1Δ).  The level of Cdc34 S97 phosphorylation 

was also measured in a strain lacking the VPS34 kinase.  VPS34 was not included in the 

initial set of strains overexpressing a particular kinase but Vps34 is a lipid kinase that 

dimerizes with Vps15 and these proteins depend on each other for their activity (Backer, 

2008).  The Vps15 kinase positively affects affects Cdc34 S97 phosphorylation (see Fig. 

7 and Fig. 8); therefore, we reasoned that Vps34 protein activity would also positively 

affect Cdc34 S97 phosphorylation.  Ultimately, this rationale proved sound as deletion of 

VPS34 results in a reduction in Cdc34 S97 phosphorylation (Fig. 8).  Contribution of the 

Tor kinases to Cdc34 S97 phosphorylation was also pursued for three reasons.  First, 
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multiple, nutrient sensing kinases were found to control S97 phosphorylation and the 

TORC1 complex (Tor1, Kog1, Lst8, Tco89) is one of the major sensors of nitrogen 

availability in eukaryotic cells.  Secondly, both Vps15, a kinase which activates TORC1 

in some eukaryotic cell types, and Sch9, a kinase activated by TORC1, increase S97 

phosphorylation when overexpressed which suggested that TORC1 could lie in the 

middle of the Vps15, Sch9, Cdc34 cascade.  Finally, neither Tor1 nor Tor2 are included 

in the collection of copper inducible kinases.  As predicted, S97 phosphorylation is 

reduced when cells are treated with the Tor kinase inhibitor rapamycin (Fig. 8, + 

rapamycin). 

Many scenarios exist to explain how loss of kinases such as Tpk1 and Cla4 do not 

reduce the level of S97 phosphorylation.  First, as demonstrated below for Tpk1 and 

Tpk2 (section 3.3.2), kinases of the same family with a high level of sequence similarity 

often phosphorylate the same substrates; therefore, deletion of only one member of a 

kinase family will not change the degree to which a substrate is phosphorylated in vivo.  

This rationale may also explain why deletion of Cla4 does not reduce Cdc34 S97 

phosphorylation while its overexpression significantly increases the level of Cdc34 S97 

phosphorylation.  Cla4, Ste20 and Skm1 share a high degree of sequence similarity and 

are members of the PAK family of protein kinases which are activated by Cdc42 and 

Cdc42-like G-proteins.  Mrk1 is one of four GSK-3 homologs in S. cerevisiae and Hsl1 

shares a high degree of similarity with Kcc4 and Gin4.  

Another possibility is that these kinases might be phosphorylating a very small 

population of the intracellular Cdc34 and reduction in the level of only this particular 

pool goes unnoticed when the entire pool of Cdc34 phospho-S97 is probed.  Cdc34 
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associates with many SCF complexes which are unique in their F-box component and 

different kinases may phosphorylate Cdc34 S97 only in the context of certain SCF 

complexes.  

3.3.2 Altered PKA activity affects S97 phosphorylation 

An upstream component of the cAMP/PKA pathway, RAS2, genetically interacts 

with CDC34 (Irniger, Baumer, & Braus, 2000).  Compromising the activity of protein 

kinase A, either by deletion of the upstream component, RAS2, or growth on a non-

fermentable carbon source which reduces intracellular cAMP levels, inhibits the growth 

of cdc34-2 temperature sensitive strains at otherwise permissive temperatures (Irniger et 

al., 2000).  This finding suggests that Cdc34 and PKA act in a common pathway and 

combined with our discovery that Cdc34 S97 phosphorylation increases when TPK2 is 

overexpressed led us to test whether S97 phosphorylation levels are affected in other 

circumstances where PKA activity is altered.  There are three isoforms of the catalytic 

subunit of PKA, Tpk1, Tpk2 and Tpk3.  Bcy1 is the regulatory subunit which inhibits 

PKA catalytic activity in the absence of cAMP.  Bcy1 directly binds to cAMP, causing its 

release from the catalytic subunits and resulting in an increase in PKA activity (Hixson & 

Krebs, 1980).  Strains lacking BCY1 have increased PKA activity and are sensitive to 

heat shock and nutrient deprivation due specifically to increased PKA activity (Toda, 

Cameron, Sass, Zoller, Scott et al., 1987).  Our experiments reveal the level of S97 

phosphorylation increases in cells harboring the crippled bcy1-14 allele (Fig. 9, lane 2).   

Strains lacking all three TPK genes are inviable (Toda, Cameron, Sass, Zoller, & 

Wigler, 1987) and strains lacking either TPK1 or TPK2 do not have altered levels of S97 

phosphorylation (Fig. 8); therefore, a strain known as the tpkwee strain, which was 
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isolated because of its ability to withstand heat shock in the absence of BCY1, was 

utilized to examine the level of S97 phosphorylation in a strain with highly reduced PKA 

activity (Cameron, Levin, Zoller, & Wigler, 1988).  This strain lacks the TPK2 and TPK3 

genes and Tpk1 activity is highly reduced due to a point mutation.  Our studies show that 

S97 phosphorylation is reduced in the tpkwee strain (Fig. 9, lane 4). 

 Early experiments dissecting the molecular mechanisms of the alpha factor 

response found that intracellular cAMP levels decrease in strains of the ‘a’ mating type 

when exposed to alpha factor (Liao & Thorner, 1980).  This observation combined with 

our observation that alpha factor decreases S97 phosphorylation in an alpha factor arrest 

and release experiment (Fig. 6) led me to compare the levels of Cdc34 S97 

phosphorylation in alpha factor treated and untreated cells.  As predicted, alpha factor 

exposure leads to a reduction in S97 phosphorylation likely because of the reduction in 

cAMP and PKA activity (Fig. 9, lane 6).  In all, these western blots demonstrate that 

during exponential growth in glucose and in response to alpha factor the level of S97 

phosphorylation is controlled by PKA. 

3.4 Reconstitution of Cdc34 S97 Phosphorylation In Vitro  

 PKA is an arginine directed protein kinase and at least two consensus sequences 

have been determined.  PKA exhibits a definite preference for arginine amino acid 

residues at positions -2 and -3 and a preference for an amino acid with a hydrophobic side 

chain at the +1 position relative to the phosphorylation site (Denis, Kemp, & Zoller, 

1991; Songyang et al., 1994; Tegge, Frank, Hofmann, & Dostmann, 1995).  A second 

consensus sequence for PKA has been identified as R-6-X-X-R-3-X-X-(S/T0)-B+1 with X 

referring to any amino acid and B referring to an amino acid with a hydrophobic side 
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chain (Smith, Radzio-Andzelm, Madhusudan, Akamine, & Taylor, 1999).  Cdc34 S97 

has arginine residues at positions -4 and -7 and an isoleucine residue at the +1 position 

(Fig. 10A).  Although the Cdc34 S97 sequence doesn’t align exactly with the PKA 

consensus sequence we reasoned that the sequence shared enough of a resemblence to 

test whether PKA can directly phosphorylate Cdc34 S97.  Either PKA from bovine 

source or GSTTpk3 from yeast can phosphorylate 6XHisCdc34ΔC (Fig. 10B, lanes 3 and 7).  

Bovine PKA and GSTTpk3 can also phosphorylate the 6XHisCdc34(S97A)ΔC mutant but to a 

lesser degree (Fig. 10B, lanes 5 and 9).  The activity of bovine PKA against 6XHisCdc34ΔC 

can be inhibited by addition of Protein Kinase A Inhibitor while GSTTpk3 appears to be 

insensitive of this inhibitor (Fig. 10B, lanes 4 and 8).  To confirm that phosphorylation of 

Cdc34 by PKA is specific to S97, the kinase reaction contents were probed with the α-

pS97 antibody (Fig. 10C).  This reagent revealed that both bovine PKA and GSTTpk3 can 

specifically phosphorylate Cdc34 S97.  Taken together, these experiments demonstrate 

that PKA phosphorylates S97 and possibly other amino acids with Cdc34.  The sequence 

surrounding Cdc34 amino acid residue T7 conforms to a PKA consensus sequence and 

may be another site of PKA phosphorylation which is being phosphorylated in these in 

vitro experiments.   

 Sch9 is another member of the AGC family of protein kinases.  It shares some 

sequence similarity with the Tpk1-3 proteins and its overexpression can suppress the 

lethality of a tpk1Δ tpk2Δ tpk3Δ strain (Toda, Cameron, Sass, & Wigler, 1988).  It serves 

a redundant role with the Tpk kinases to inhibit autophagy in rich medium and it is 

believed that both Sch9 and PKA must be inactivated for autophagy (Yorimitsu, Zaman, 

Broach, & Klionsky, 2007).  Sch9 has been described as the yeast equivalent of AKT.  
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No consensus sequence has been defined for Sch9 as it has very few known substrates 

but a consensus sequence has been identified for AKT and it, like PKA, is an arginine 

directed kinase.  A peptide library screen defined the AKT consensus sequence as R-7-X-

R-5-X-R-3-X-X-S-P+1 (Obata et al., 2000).  The facts that Cdc34 S97 phosphorylation 

levels correlate with Sch9 activity in vivo (Fig. 7 and 8) and PKA, another arginine 

directed kinase, phosphorylates S97 led us to test whether Sch9 can also directly 

phosphorylate S97.  We find that GstSch9 purified from yeast, like GSTTpk3, can directly 

phosphorylate Cdc34 S97 (Fig. 10C).   

3.5 Structure/Function Studies of Cdc34 Serine 97, PKA Consensus Sequence Mutants 

 Upon closer observation, a pattern emerged from what might be considered the 

PKA/AKT consensus sequence surrounding S97.  The Cdc34/Ubc7 family of ubiquitin 

conjugating enzymes has one of two sequences neighboring S97.  Yeast Cdc34 encodes 

arginines at positions -7 and -4 and aspartic acids at positions -6 relative to S97.  Ubc7 

and human Cdc34 have an aspartic acid at position -7 and -4 and an asparagine at -6 (Fig. 

3A).  These residues were mutated within the yeast Cdc34 to their Ubc7/hCdc34 

counterparts to test the contribution to the function of Cdc34 in vivo.  The R93D and 

R90D/D91N/R93D mutants complement the cdc34 temperature sensitive strains much 

more poorly than the WT enzyme at both high and low levels of Cdc34 expression (Fig 

11A).  However, the R93D and R90D/D91N/R93D complement the cdc34Δ strain as well 

as the wild type enzyme (Fig. 11B).  This suggests that the presence of the endogenous 

Cdc34 enzyme in the temperature sensitive cells is inhibiting the activity of the Cdc34 

R93D and R90D/D91N/R93D mutants.  There is also the possibility that the R93D and 

R90D/D91N/R93D mutants are not stable proteins at 37°C.  These data are reported 
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without extensive interpretation because the possible explanations are too numerous and 

speculative without further experimentation. 

3.6 Genetic Interactions Between Cdc34 and the Kinases which Affect Cdc34 S97 

Phosphorylation 

Mutagenesis studies of S97 (Fig. 4 and Section 3.1) and the genetic interactions 

between CDC34 and both RAS2 and SLT2 (Irniger et al., 2000; Varelas, Stuart, Ellison, & 

Ptak, 2006) suggest that the phosphorylation of S97 increases the activity of Cdc34.  The 

growth inhibitory effects of CDC34 overexpression on galactose (Fig. 4B) are likely the 

result of an overly active Cdc34 which might reduce the Cln1 and Cln2 protein levels to 

such a degree that progression through G1 is slowed.  Furthermore, we hypothesized that 

the growth inhibition resulting from CDC34 overexpression on galactose would be 

relieved in a strain(s) lacking the kinase(s) which increase S97 phosphorylation.  This 

concept has been termed dosage suppression and has been documented for other kinase-

substrate pairs.  Reciprocal relationships of a kinase phosphorylating and reducing a 

substrate’s activity have also been established in this way.  This genetic phenomenon is 

termed synthetic dosage lethality and in the case of the kinase Pho85, its substrates Pho2, 

Gsy1 and Gsy2 inhibit yeast growth when overexpressed in cells lacking PHO85 (Sopko 

et al., 2006). 

To test for dosage suppression, CDC34 was overexpressed in strains lacking a 

single candidate S97 kinase.  Overexpression of CDC34 on galactose inhibits cell growth 

in the BY4741 background while BY4741 strains overexpressing the CDC34(S97D/Δ12) 

mutant grow as well as the empty vector control BY4741 strain.  Strains lacking either 

gcn2Δ, vps15Δ or vps34Δ allows cells overexpressing CDC34 to grow at a rate 
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comparable to the same strain overexpressing CDC34S97D/Δ12 or carrying an empty vector 

(Fig. 12).  A strain lacking either VPS15 or VPS34 grow slowly on galactose but slow 

growth alone will not suppress the growth inhibitory effects of CDC34 overexpression as 

sch9Δ strains grow slowly on galactose media but are not dosage suppressors of CDC34 

overexpression (Fig. 12).  Deletion of MKK2 slightly suppresses the slow growth 

phenotype of CDC34 overexpression on galactose but it is not as robust a suppressor as 

GCN2, VPS34 or VPS15.  We interpret these results to mean that Gcn2, Vps34 and 

Vps15 positively activate Cdc34, likely by controlling the phosphorylation of Cdc34 S97, 

on galactose containing media.  Furthermore, Sch9 exerts very little control over Cdc34 

S97 phosphorylation on galactose containing media.  We hypothesize that deletion of 

GCN2, VPS15 and VPS34 but not SCH9 should reduce Cdc34 S97 phosphorylation when 

galactose is the sole carbon source.  We were unable to test whether strains which had 

compromised PKA function could suppress the slow growth phenotype of CDC34 

overexpression on galactose due to a conflict with the selectable auxotrophies required to 

maintain the CDC34-bearing plasmid.  This experiment is possible but it would require 

further strain construction. 

3.7 Summary and Model of S97 Phosphorylation 

 By screening nearly the entire collection of yeast kinases, a number of kinases 

that affect Cdc34 S97 phosphorylation were discovered.  Attempting to explain all the 

findings of a global screen can be overwhelming so instead common themes among the 

various kinases which increase Cdc34 S97 phosphorylation were explored.  In looking 

for relationships among these kinases it is apparent that many of them are responsive to 

intracellular nutrient conditions and in turn, loss of these signaling pathways results in G1 
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arrest.  PKA, Sch9, Tor, Vps34, Vps15, Gcn2 and Snf1 all have a role in nutrient sensing 

and the resulting intracellular adaptations.  PKA is activated by glucose through an 

increase in intracellular cAMP (Mbonyi, van Aelst, Arguelles, Jans, & Thevelein, 1990).  

The yeast Targets of Rapamycin, Tor1 and Tor2, also respond to nutrients.  The best 

evidence for this comes from studies which demonstrate that the effects of nitrogen 

depletion can be closely mimicked by rapamycin treatment.  In mammalian cells, and 

likely yeast cells as well, the Vps34/Vps15 complex is activated by amino acids while 

glucose starved cells have no detectable Vps34 activity (Byfield, Murray, & Backer, 

2005; Nobukuni et al., 2005).  Vps34 and Vps15 dimerize and pools of the complex can 

be found at both the vacuole and late golgi stacks (Kihara, Noda, Ishihara, & Ohsumi, 

2001; Obara, Sekito, & Ohsumi, 2006).   

Gcn2 and Snf1, on the other hand, are most well characterized for their functions 

when nutrient conditions less favorable.  Gcn2 becomes active when yeast are starved for 

amino acids.  Uncharged tRNAs accumulate upon amino acid starvation.  The Gcn2 

histidyl-tRNA binding domain binds the uncharged tRNAs and becomes active.  This 

allows Gcn2 to phosphorylate eIF2α, in turn slowing the rate of general translation but 

increasing the rate of Gcn4 translation.  Gcn4 is a transcriptional activator which induces 

the amino acid biosynthetic genes.  Snf1 is the yeast equivalent of AMP Kinase.  It is 

activated by a high AMP/ATP ratio but, unlike mammalian AMPK, is not directly 

allosterically activated by AMP (Wilson, Hawley, & Hardie, 1996).  Low glucose and 

non-preferred carbon sources lead to high AMP/ATP ratios and therefore strains lacking 

SNF1 struggle to grow on sucrose, galactose, acetate and ethanol.  This is due to the fact 



 

 59 

that Snf1 has a major role in activation of glucose-repressed genes such as genes 

encoding the gluconeogenic enzymes.   

As nutrient sensing is an integral function of the G1 phase, it is not suprising that 

loss of some of these nutrient sensing kinases results in an arrest in the G1 phase.  For 

example, a strain lacking all the PKA isoforms arrests in G1 as do strains lacking TOR 

function and mec1Δ strains arrest in G1 as well as in the S and G2/M phases (Toda, 

Cameron, Sass, Zoller, & Wigler, 1987).   

Consistent with their established roles in nutrient sensing during the G1 phase, 

there are interrelationships among the kinases which control Cdc34 S97 phosphorylation.  

The primary example is phosphorylation of Sch9 by the TORC1 complex (Urban et al., 

2007).  Phosphorylation of Sch9 on its C-terminus by TORC1 increases Sch9 activity 

against the ribosomal S6 subunit, suggesting that Sch9 functions as the S6 kinase in yeast 

(Urban et al., 2007).  Furthermore, the Vps15/Vps34 heterodimer activates TORC1 by an 

unknown mechanism (Nobukuni et al., 2005).  From these studies, it appears that 

Vps34/Vps15 activates Tor in turn activating Sch9 which is consistent with the finding 

that each of these kinases controls Cdc34 S97 phosphorylation.  Protein Kinase A is 

inactive when bound to the cAMP responsive protein, Bcy1.  cAMP binds to Bcy1 and 

allows the PKA catalytic subunits to dissociate and become active.  The kinases Mrk1 

and Mkk2, which increase S97 phosphorylation when overexpressed, negatively regulate 

Bcy1 cytoplasmic accumulation.  Regulation of Bcy1 by Mrk1 and Mkk2 has only been 

observed under conditions of heat stress (growth at 37°C) (Griffioen, Swinnen, & 

Thevelein, 2003).  We hypothesize that overexpression of MRK1 or MKK2 may cause 

relocalization of Bcy1 and result in increased Tpk1-3 activity against Cdc34 S97.  Mec1 
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has also been shown to activate PKA under conditions of DNA damage (Searle, 

Schollaert, Wilkins, & Sanchez, 2004) which offers a potential explanation for the 

increase in S97 phosphorylation in a strain overexpressing MEC1.  As MEC1 is an 

essential gene, it has been difficult to assess whether Mec1 contributes to PKA activation 

under steady state growth conditions.   

It is unclear where the phosphorylation of Cdc34 S97 occurs in the cell.  Cdc34 

can be found in both the nucleus and cytoplasm, although it appears to be more highly 

concentrated in the nucleus (Goebl et al., 1994).  The regulatory and catalytic subunits of 

PKA are also found in both the nucleus and cytoplasm and the regulation of their 

localization is important for execution of some of their known functions (Behrens & 

Mazon, 1988; Bharucha et al., 2008; Griffioen et al., 2003).  A pool of Vps15/Vps34 

complex and TORC1 resides at the vacuole and it is likely that this is the site of TORC1 

activation by Vps15/Vps34.      

Sch9 and the PKA catalytic subunits (Tpk1-3) are members of the AGC (Protein 

Kinase A/G/C) kinase family which consists of the cAMP activated protein kinases, the 

cGMP activated kinases and Protein Kinase C.  Sch9 and PKA may function in redundant 

pathways as suggested by the findings that SCH9 acts as a multicopy suppressor of PKA 

signaling defects and activation of PKA eliminates the slow growth defects of sch9Δ cells 

(Toda et al., 1988).  Furthermore, Sch9 and PKA function seemingly redundantly to 

inhibit autophagy in rich media conditions (Yorimitsu et al., 2007).  AGC family kinases 

have similar consensus sequences neighboring the amino acid to be phosphorylated.  

Most frequently, two or three basic amino acids are found N-terminal to the serine or 

threonine which accepts the phosphate group.  Protein Kinase A was screened against a 
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peptide substrate library and was found to have a strong preference for arginine amino 

acid residues at positions -2 and -3 and a preference for an amino acid with a 

hydrophobic side chain at the +1 position (Denis et al., 1991; Songyang et al., 1994; 

Tegge et al., 1995).  A second consensus site for PKA has been identified as R-6-X-X-R-3-

X-X-(S/T0)-B+1 with X referring to any amino acid and B referring to an amino acid with 

a hydrophobic side chain (Smith et al., 1999).  Cdc34 S97 can be phosphorylated by both 

PKA and Sch9 and although atypical, Cdc34 S97 is part of a reasonable AGC-type 

consensus sequence with arginine residues at positions -4 and -7 and isoleucine at +1 

relative to S97.   

We have not yet explored the impact of S97 phosphorylation on Cdc34 ubiquitin 

conjugating activity; however, genetic and molecular experiments suggest that S97 

phosphorylation activates the enzyme.  Mutating S97 to alanine or aspartic acid inhibits 

the in vivo and in vitro activity of Cdc34; however, an S97T mutation is functional.  

There are published genetic interaction between the cAMP/Ras/PKA pathway and Cdc34 

which suggests that PKA stimulates Cdc34 activity (Irniger et al., 2000).  Furthermore, 

elimination of kinases that are positive effectors of S97 phosphorylation, appear to reduce 

Cdc34 activity in vivo (section 3.6).  We hypothesize that S97 phosphorylation increases 

the ubiquitin conjugating activity of Cdc34.  The mechanism is unclear but our working 

model is as follows.  Self-association is required for Cdc34 function and Cdc34 S97D 

mutants do not self-associate (Y. Liu et al., 1995; Varelas et al., 2003).  However, fusion 

of an artificial dimerization domain, like GST, to the Cdc34 S97D mutant restores its 

ability to polyubiquitinate a natural substrate (Gazdoiu et al., 2005).  The Cdc34 S97D 

mutant can interact with the SCF complex (Varelas et al., 2003).  The experiment 
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demonstrating this was an in vivo immunoprecipitation of FlagCdc34(S97D) showing that 

it co-precipitates with Cdc53.  The wild type Cdc34 enzyme was present in this assay and 

it is possible that the wild type Cdc34 dimerized with the Cdc34 S97D mutant allowing 

S97D to interact with the SCF.  Our discovery that the Cdc34 S97D mutant can 

complement a cdc34 temperature sensitive strain but not a null strain means that the 

residual activity of the temperature sensitive enzyme is supplying a component of the 

necessary activity to the S97D mutant which the S97A mutant can not take advantage of.  

In light of the above discussion, it is plausible that the Cdc34 S97D mutant and wild type 

enzyme are forming functional heterodimers and supplying the necessary Cdc34 activity 

to the cell.  In a physiological setting, this model could be extended to a scenario where 

two Cdc34 molecules dimerize after one has been phosphorylated on S97 (Fig. 13).  

Extrapolating further, we postulate that these molecules of Cdc34, which are 

differentially modified at S97, have different activities, with one Cdc34 molecule 

conjugating the initial ubiquitin to the substrate and the other extending the polyubiquitin 

chain.   
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CHAPTER 4: THE MOTIF WHICH DEFINES THE CDC34/UBC7 FAMILY OF 

E2 ENZYMES IS REQUIRED FOR APPROPRIATE TRANSCRIPTIONAL AND 

POST-TRANSLATIONAL REGULATION OF CDC34 SUBSTRATES 

4.1 Structure/Function Studies of the S73/S97/Loop Motif which Defines the 

Cdc34/Ubc7 Family 

Three conserved elements, S73, S97 and an acidic loop, distinguish the catalytic 

core of Cdc34 from all other E2 ubiquitin-conjugating enzymes except Ubc7.  The 

possibility that these three elements collaborate in a key aspect of Cdc34 function was 

first suggested by the finding that a substitution of residue S97, or deletion of the loop 

render yeast inviable, but these mutations act together with the S73K substitution, which 

by itself has no phenotype, as intragenic suppressors (Y. Liu et al., 1995).  A defect in 

polyubiquitin chain extension could be responsible for lethality associated with lack of 

the loop alone, as biochemical in vitro analysis of the Cdc34Δ103-114 construct showed that 

it cannot rapidly extend polyubiquitin chains (Petroski & Deshaies, 2005).  In such a 

case, however, how could the Cdc34/Rad6 chimeric E2 (Silver et al., 1992), or the triple 

mutant Cdc34tm E2 (Y. Liu et al., 1995) constructs that lack the loop in the context of the 

S73K and S97D replacements rescue growth of cdc34-2ts yeast?  The Cdc34Δ103-114 

construct has been evaluated in SCF dependent in vitro reactions (Petroski & Deshaies, 

2005); however, the Cdc34tm construct has never been investigated in an SCF dependent 

in vitro reaction.  Previously, our group found the Cdc34Δ103-114 mutant supported growth 

much more poorly that the Cdc34tm.  This was confirmed with spot dilution assays using 

a low expression plasmid to suppress a cdc34-2 temperature sensitive strain (Fig. 14A).  

It is clear that the CDC34tm supports yeast growth much more robustly than the 
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CDC34Δ103-114 at low expression levels but strains expressing the wild type CDC34 show 

the most robust growth.  Next, we wished to compare the function of CDC34 and 

CDC34tm expressed from the CDC34 chromosomal locus under its native promoter.  The 

level of colony growth is indistinguishable between strains harboring a chromosomal 

copy of the CDC34tm allele relative to the wild type (Fig. 14B).  Furthermore, integration 

of the CDC34tm allele at the endogenous CDC34 locus does not notably alter the cell 

cycle distribution as assessed by flow cytometry (Fig. 14C).  Although very similar, the 

flow cytometric profiles of wild type and CDC34tm strains are not identical and both 

peaks are shifted slightly to the left in CDC34tm strains revealing less DNA-bound DAPI 

(Fig. 14C).  In this type of experiment the majority of fluorescence arises from staining of 

the nuclear DNA but mitochondrial DNA also contributes to the overall fluorescence 

intensity of a single cell and we believe that the most likely explanation for the slight left-

shift in the peaks of the CDC34tm strain is a result of less mitochondrial DNA.  

Furthermore, Fzo1, a protein required for mitochondrial fusion, is a substrate of the 

SCFMdm30 complex (Cohen, Leboucher, Livnat-Levanon, Glickman, & Weissman, 2008).  

Changes in its steady state abundance have been shown to increase the amount of 

mitochondrial aggregation (Escobar-Henriques, Westermann, & Langer, 2006) 

potentially altering the amount of mitochondrial DNA.  A change in Fzo1 steady state 

abundance due to altered activity of the Cdc34tm protein may explain the slight difference 

in fluorocytometric profiles of wild type and CDC34tm strains. 

4.2 Determining the Contribution of the S73/S97/Loop Motif to Substrate Abundance 

The disparity between the less efficient, Cdc34Δ103-114 catalyzed Sic1 

polyubiquitination and the lack of a noticeable change in growth and viability in a 
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CDC34tm strain led us to test whether the absence of the S73/S97/loop motif in Cdc34 

affected the steady state levels of known Cdc34 substrates in vivo.  Strikingly, the steady 

state levels of Cln1, Cln2, Sic1 and Far1 were altered in a CDC34tm strain (Fig. 15A).  

The steady state abundances of Sic1, Cln1 and Cln2 are increased while the Far1 steady 

state level is reduced in the CDC34tm expressing strain.  Consistent with previous studies, 

Cln1 protein is visualized as two bands with the slower migrating species representing a 

modified species (Tyers, Tokiwa, & Futcher, 1993).  A similar pattern of migration is 

seen when yeast extracts are probed for Cln2 protein and the slower migrating species are 

attributable, at least in part, to phosphorylation (Wittenberg, Sugimoto, & Reed, 1990). 

Protein half-life analyses verify that Cln1Tap is stabilized in CDC34tm yeast.  Instead of a 

half-life of less than 10 minutes (Fig. 15B, CDC34, WB and graph; (Blondel & Mann, 

1996)), Cln1Tap has a half-life of ~20 minutes in CDC34tm cells (Fig. 15B, CDC34tm, WB 

and graph).  This change is modest when compared to the half-life of Cln1 in cdc34-2ts 

yeast (Blondel & Mann, 1996), but it uncovers a defect in Cdc34 function that could 

explain the accumulation of Cln1Tap and of the related Cln2Tap (Fig. 15A, Cln1Tap and 

Cln2Tap).  In contrast, Sic1Tap protein is degraded much faster in CDC34tm than in CDC34 

yeast.  Instead of a half-life of 50 minutes, which is a typical Sic1 half-life in 

cycloheximide-treated wild type yeast (Bailly & Reed, 1999), Sic1Tap has a half-life of 

less than 10 minutes in CDC34tm yeast (Fig. 15C, CDC34tm, WB and graph).  The half-

life of Far1 protein could not be measured in CDC34tm yeast as they have undetectable 

Far1 protein (Fig. 15A, Far1Tap).  

The increased Sic1 protein turnover rate in CDC34tm yeast could result from the 

accumulation of Cln1-2/Cdc28 activity which drives more rapid recruitment of Sic1 to 
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SCFCdc4 (Nash et al., 2001) and, as a result, compensates for a modest defect in Cdc34tm 

function.  Whether a similar effect could explain the disappearance of Far1 in CDC34tm 

yeast is unclear.  An alternative possibility is that Cdc34tm is defective in SCFGrr1-

mediated proteolysis, but that a yet unknown feature of SCFCdc4 can compensate for the 

defect in Cdc34tm, leading to a more rapid proteolysis of Sic1 and Far1 without a change 

in their recruitment.  This model could explain the disappearance of Far1Tap providing 

that there is no inhibition in the FAR1 gene expression, and would be consistent with the 

accumulation of Sic1Tap providing that an increase in the SIC1 gene expression 

compensates for the abnormally rapid Sic1 protein turnover. These possibilities are 

addressed below.  

4.3 Microarray Comparison of CDC34tm and WT Yeast 

4.3.1 The transcription factor Ace2 is responsible for increased transcription of the SIC1 

cluster of cell cycle regulated genes in CDC34tm cells 

To investigate the basis of the increase in Sic1 steady state abundance in CDC34tm 

cells and to better understand the functional significance of the Cdc34 S73/S97/loop 

motif, a microarray analysis was performed.  Four biological replicates were sampled for 

the both a CDC34tm strain and a wild type strain.  Sic1 mRNA levels are significantly 

increased 1.6 fold (p < 0.01) in the CDC34tm strain.  Examination of the cluster of genes 

co-regulated throughout the cell cycle with Sic1, as defined by Spellman et al. (Spellman 

et al., 1998), revealed that more than 60% of the genes in this cluster are significantly 

increased (p < 0.05) (Table 4).  Evidence suggests that this effect can not be attributed to 

an altered cell cycle distribution of the CDC34tm strain as asynchronous CDC34tm 

cultures have a cell cycle distribution approximating that of wild type as assessed by 
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DNA content (Fig. 14C).  The transcriptional flux of most genes in the SIC1 cluster is 

attributed to the transcriptional activities of the homologous transcripion factors Ace2 

and Swi5.  Earlier work dissected the transcription factor dependence for the Sic1 co-

regulated gene cluster (Doolin, Johnson, Johnston, & Butler, 2001).  As shown in table 4, 

Ace2 dependent genes are the most highly upregulated in CDC34tm cells.  Furthermore, 

the CLN3 transcript is repressed by Ace2 in daughter cells and this is thought to be a 

mechanism which allows daughter cells to grow to a larger size prior to START (Laabs et 

al., 2003).  CLN3 mRNA levels are decreased 1.41 fold (p = 0.006) in CDC34tm cells.   

 Our microarray results suggested that in CDC34tm cells, Ace2 activity is increased 

and that Ace2 could be responsible for the increase in SIC1 transcription.  To address this 

hypothesis, western blot analysis was used to determine whether Ace2 levels were 

elevated in CDC34tm cells.  The Ace2 protein levels are increased in CDC34tm cells while 

the Ace2 mRNA levels are not significantly different (Fig. 16A; mRNA fold change of -

1.21;  pval=0.0616).  It was next tested whether the increase in Sic1 protein could be 

attributed solely to Ace2.  Disruption of ACE2 in the context of CDC34tm reduces Sic1 

protein levels to below that detected in the wild type strain; deletion of SWI5 in the 

context of CDC34tm had only a minor effect on the steady state abundance of Sic1 (Fig. 

16B).  Thus, the increase in the steady state abundance of Sic1 in CDC34tm cells is due to 

increased Ace2, which is the result of an increase in Ace2 protein abundance. 

 As the increased steady state abundance of Ace2 in CDC34tm cells is due to a post-

transcriptional mechanism, we reasoned that Ace2 might be targeted for degradation by 

an SCF/Cdc34 complex.  Therefore, the steady state abundance of Ace2 was assessed in 

strains lacking each of the genes encoding F-box proteins except the essential genes, 
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CDC4 and MET30.  The Ace2 levels remain unchanged in all strains tested except grr1Δ 

and mdm30Δ cells which both have increased levels of the Ace2 protein (Fig. 16C, lanes 

2 and 4 and data not shown).  This is consistent with the finding that both Cln1 and Cln2, 

SCFGrr1 substrates, accumulate in CDC34tm cells and our conclusion that the CDC34tm 

strain is defective in degradation of SCFGrr1 substrates.  It is striking that the Swi5 

transcription factor, a positive regulator of SIC1 gene expression, is also an SCFCdc4-

dependent substrate of Cdc34 (Kishi et al., 2008).  If Ace2 is indeed an SCFGrr1substrate, 

both transcription factors implicated in SIC1 gene expression thus appear to be regulated 

in a manner dependent on Cdc34.  SCFGrr1 and SCFMdm30 both affect the stability of 

another transcription factor, Gal4.  Gal4 is a transcription factor which induces a suite of 

genes required for growth on galactose.  SCFGrr1 ubiquitinates Gal4 under conditions, 

such as raffinose-dependent growth, where Gal4 target genes are not induced.  SCFMdm30 

ubiquitinates and destabilizes Gal4 when its target genes are being induced.  

Ubiquitination and degradation of Gal4 by SCFMdm30 occurs somewhere during the 

transcriptional process and this actually stimulates translation of the Gal4-dependent 

transcripts.  The conclusion from this study is that Gal4 must be degraded for efficient 

processing and translation of Gal4-dependent mRNA (Muratani, Kung, Shokat, & 

Tansey, 2005). 

 Our lab, in collaboration with Lilia Iakoucheva and Predrag Radivojac, recently 

published a manuscript entitled “Identification, Analysis and Prediction of Protein 

Ubiqutination Sites”.  In this work, we constructed a computerized predictor of 

ubiquitination sites based on local sequence information.  The predictor was developed 

from 283 known ubiquitination sites identified in two large-scale proteomics-based 
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studies along with our own experiments (Hitchcock, Auld, Gygi, & Silver, 2003; Peng et 

al., 2003).  Lysines 82 and 556 of Ace2 are predicted with high confidence to be sites of 

ubiquitination based on our predictor, UbPred (Radivojac et al., 2009).   

We measured the half-life of Ace2 in wild type and CDC34tm cells but found no 

noticeable difference (data not shown).  However, the transcription of ACE2 and 

localization of Ace2 are regulated in a cell cycle dependent manner.  ACE2 mRNA is up-

regulated during the G2/M transition and the protein product enters the daughter cell 

nucleus late in mitosis (Dohrmann et al., 1992).  It can also be found in the mother 

nucleus and is involved in constitutive transcription of CUP1 gene (Butler & Thiele, 

1991).  The pool of Ace2 in the daughter nucleus has been shown to be more unstable 

than the cytoplasmic pool but the mechanism by which Ace2 becomes unstable is not 

clear (O'Conallain, Doolin, Taggart, Thornton, & Butler, 1999).  Because Ace2 is so 

highly regulated, we feel that further studies which can elucidate the stability of Ace2 in 

mother and daughter separately may be more informative regarding the exact mechanism 

by which Ace2 is up-regulated in CDC34tm cells. 

It is tempting to consider the possibility that Ace2 may be an SCF/Cdc34 

substrate.  The SCF ubiquitin ligase complex is responsible for the ubiquitination of 

numerous transcription factors.  Recent evidence demonstrates that ubiquitination of 

these substrates can play both a positive and negative role in transcriptional regulation 

and can but does not always result in proteasome mediated degradation (Chandrasekaran 

& Skowyra, 2008; Lipford, Smith, Chi, & Deshaies, 2005).  There are examples of 

transcription factors, like Tec1, which are polyubiquitinated and degraded resulting in 

reduced transcription of target genes (Chou, Huang, & Liu, 2004).  There is also an 
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example of transcription factor polyubiquitination and subsequent degradation leading to 

increased transcriptional activation of that factor’s targets (Salghetti, Caudy, Chenoweth, 

& Tansey, 2001).  Another regulatory paradigm has been established by the study of 

Met4, which in late exponential yeast cultures in media lacking methionine, is 

polyubiquitinated but protected from degradation by a tight interaction with the F-box 

protein Met30 and its co-activator proteins.  When returned to early exponential growth, 

the polyubiquitinated Met4 is rapidly degraded, which by an incompletely explained 

mechanism correlates with transcriptional activation (Chandrasekaran et al., 2006).  

Another interesting regulatory paradigm comes from studies of the Gal4 transcriptional 

activator.  Gal4 transcriptional activity is enhanced by its monoubiquitination.  The 19S 

regulatory particle of the 26S proteasome binds to promoter bound Gal4 and dissociates 

the Gal4-DNA complex (Ferdous et al., 2007).  When monoubiquitinated, Gal4 is 

resistant to the stripping activity of the 19S regulatory particle.  These studies reveal that 

there are numerous ways in which ubiquitination controls transcription factor activity and 

the length of the ubiquitin chain tethered to the transcription factor is known to be a 

critical component of this regulation.   

4.3.2 Targets of the transcription factor Haa1 are down-regulated in CDC34tm cells 

apparently due to alterations in acetaldehyde metabolism 

A previous microarray comparison of cdc34 and cdc53 temperature sensitive 

strains found an increase in the activity of the Met4, Gcn4, Tec1 transcription factors 

(Varelas et al., 2006).  Met4, Gcn4 and Tec1 are SCF/Cdc34 complex substrates and their 

stabilization in the cdc34 and cdc53 temperature sensitive strains leads to increased 

activation of their respective target genes.  The analysis of CDC34tm cells did not show a 
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comparable change in the Met4, Gcn4 or Tec1 dependent transcripts providing further 

support to the conclusion that the CDC34tm is a neomorphic, rather than hypomorphic, 

allele.   

In all, 55 gene transcripts were significantly (p value < 0.05) up-regulated at least 

two fold and 153 were significantly down-regulated by at least two fold in CDC34tm 

cells.  To determine the transcription factor(s) whose activity is altered in CDC34tm cells 

the YEASTRACT (www.yeastract.com) database which relates Saccharomyces 

cerevisiae transcriptional regulators and their target genes was used (Teixeira et al., 

2006).  Ninety percent of documented Haa1 target genes are downregulated more than 

two fold in CDC34tm cells (Table 5).  Haa1 is critical for the transcriptional response to 

exogenous acetaldehyde and weak organic acids.  Although insensitive to exogenous 

acetaldehyde, haa1Δ strains are sensitive to acetic, sorbic and propionic acids (Aranda & 

del Olmo, 2004; Fernandes, Mira, Vargas, Canelhas, & Sß-Correia, 2005). 

Elevated levels of acetaldehyde can inhibit growth of Saccharyomyces cerevisiae 

cells (Stanley, Douglas, Every, Tzanatos, & Pamment, 1993).  Excess acetaldehyde can 

be detoxified by allowing it to react with endogenous sulfite to form acetaldehyde 

hydroxysulfonate (Casalone et al., 1992).  Acetaldehyde hydroxysulfonate production 

also mitigates the growth inhibitory effects of excess sulfite which is used as a food 

preservative and is produced during the intracellular reduction of sulfate to cysteine 

(Casalone et al., 1992).  Microarray studies demonstrate that part of the response to 

exogenous acetaldehyde exposure is an increase of intracellular sulfite levels via up-

regulation of the homocysteine production pathway and reduction of the sulfite exporter 

Ssu1(Aranda & del Olmo, 2004).  Strains which can not up-regulate methionine 
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biosynthesis due to mutations in their transcriptional regulators (MET4, CBF1, MET28) 

are sensitive to exogenous acetaldehyde relative to isogenic wild type strains.   

A strong inverse correlation was discovered between the CDC34tm transcriptional 

profile and the transcriptional profile of cells exposed to exogenous acetaldehyde  

(Aranda & del Olmo, 2004).  Many of the transcripts most highly upregulated by 

acetaldehyde are significantly down-regulated in a CDC34tm strain (Table 5).  SSU1, 

which encodes a sulfite extrusion pump, is down regulated 3.3-fold in cells exposed to 

acetaldehyde but is up-regulated 3-fold in CDC34tm cells.  Genes encoding the branch 

points of glucose fermentation which shunt glycolytic flux away from acetaldehyde 

production, namely the NAD-dependent glycerol-3-phosphate dehydrogenases genes 

(GPD1 and GPD2), genes encoding the first and second steps of the pentose phosphate 

pathways (ZWF1 and SOL4), and the pyruvate carboxylase genes (PYC1 and PYC2) 

which convert pyruvate to oxaloacetate, are all significantly decreased in CDC34tm cells 

(Fig. 17A and Table 5).  The abundances of mRNAs encoding other glycolytic enzymes 

are unchanged in CDC34tm cells. 

The inverse correlation between cells exposed to acetaldehyde and CDC34tm cells 

led us to consider whether CDC34tm cells would be sensitive to sulfite because of an 

inability to detoxify it.  Indeed, CDC34tm cells are much more sensitive than their 

isogenic wild type counterparts (Fig. 17B).  It has previously been shown that grr1Δ cells 

are sensitive to sulfite (Avram & Bakalinsky, 1996) which supports the conclusion that 

Cdc34tm compromises SCFGrr1 activity.  A defect in SCFGrr1-mediated proteolysis of a yet 

unknown substrate, similar to that observed with the Cln1 substrate (Fig. 15A and B, 

Cln1Tap), could thus be responsible for the sulfite sensitivity of CDC34tm yeast and 
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explain the link between a change in Cdc34tm function and the upregulation of the Haa1 

gene cluster.  

4.4 Synthetic Lethal Screens Uncover Genes Necessary for Cell Survival in the Presence 

of CDC34tm 

4.4.1 General comments on the CDC34tm SGA screen 

As an alternative approach to identifying the functional significance of the Cdc34 

S73/S97/loop motif, a global synthetic lethal screen using the CDC34tm allele as the 

query gene was performed.  This was accomplished by tightly linking the CDC34tm allele 

to a nourseothricin N-acetyltransferase gene (nat1) from Streptomyces noursei, which 

confers nourseothrcin resistance (Goldstein & McCusker, 1999).  The nat1 start codon 

was placed ~1700 nucleotide bases 5’ of the CDC34tm start codon.  The nat1 gene 

faithfully segregated with the CDC34tm allele in more than 20 individual segregants 

derived from a CDC34tm(nat1)/CDC34 diploid (data not shown).  The SGA screen was 

carried out in duplicate and genetic interactions were scored by computer-based image 

analysis of colony size (Fig. 18A).  To my knowledge, this is the first synthetic lethal 

screen accomplished using a neomorphic mutant rather than a loss of function, gene 

deletion.  Notably, fourteen genes proximal to the CDC34 chromosomal locus scored as 

synthetically lethal in the primary screen.  Reduced recombination between neighboring 

loci prevents facile generation of double mutant haploids.  Genes neighboring CAN1 and 

the MFA1::pMFA1-HIS3 loci also appeared in the primary screen.  These interactions 

result from reduced recombination frequency rather than true synthetic lethality and were 

not included in the secondary screen. 
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Candidate genetic interactions from the primary screen were confirmed by 

crossing both a CDC34tm(nat1) strain and a CDC34(nat1) strain to strains carrying 

deletions of genes that scored as synthetically lethal in the primary screen.  Diploids were 

struck on a media that selected for haploids with both the NAT1 marked CDC34 or 

CDC34tm and the KANR marked gene deletion.  To my knowledge this is the first time 

that the control strain, which determines the gene deletions that are lethal when crossed to 

a wild type strain, harbors the resistance gene in exactly the same genomic location as the 

query strain.  In a typical synthetic lethal screen, NAT1 marks the gene deletion rather 

than being present at the same position as in the control strain. 

4.4.2 An altered mechanism of Sic1 degradation in CDC34tm cells is responsible for many 

of the synthetic lethal interactions 

In all, 86 genes were confirmed to be either synthetically lethal or sick with the 

CDC34tm allele (Table 6).  Seven genes with synthetic interaction with the CDC34tm 

share a synthetic sick/lethal interaction with SIC1 (Fig. 18B).  This evidence indicates 

that although the steady state abundance of Sic1 protein and SIC1 mRNA are increased, 

the effective concentration of Sic1 protein is decreased in CDC34tm cells.  RPN10 is 

synthetically lethal with both CDC34tm and SIC1 (Fig. 19C).  Rpn10 is a non-ATPase 

subunit of the 19S regulatory particle of the proteasome which binds medium to long, 

lysine-48 linked, polyubiquitin chains.  Deletion of RPN10 stabilizes Sic1 (Verma et al., 

2004).  The human Rpn10 ortholog, S5a, was the first 26S proteasome subunit implicated 

in the binding of polyubiquitinated substrates (Deveraux, Ustrell, Pickart, & Rechsteiner, 

1994).  Rad23, which is also synthetically lethal with the CDC34tm, has a ubiquitin like 

domain (UBL) near its N-terminus and a UBA domain which binds K48-linked ubiquitin 
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chains in vitro (Bertolaet et al., 2001).  In yeast, Rad23 can bind substrates with shorter 

polyubiquitin chains (4-6 ubiquitin molecules) through its UBA domain and recruit them 

to the proteasome through an interaction between its UBL domain and Rpn1 (Elsasser et 

al., 2002).  Yeast strains lacking Rad23 are not impaired in their ability to degrade Sic1 in 

vivo but 26S proteasomes isolated from rad23Δ strains are defective in Sic1 

deubiquitination and degradation in vitro (Verma et al., 2004).  These genetic interactions 

between CDC34tm and the polyubiquitin receptors RAD23 and RPN10 are particularly 

intriguing because utilization of polyubiquitin receptors in different contexts might 

explain the ability of CDC34tm cells to survive while the polyubiquitin conjugating 

activity of the SCF complex is compromised as suggested by in vitro reconstitution of 

SCF ubiquitination using the Cdc34Δ103-114 mutant (Petroski & Deshaies, 2005).  Dsk2 

and Ddi1 are also short chain polyubiquitin receptors of the 26S proteasome and like 

Rad23 have both UBL and UBA domains.  Neither Dsk2 nor Ddi1 appeared in the initial 

CDC34tm synthetic lethal screen and there is no detectable fitness defect in CDC34tm 

ddi1Δ or CDC34tm dsk2Δ haploids (Fig. 19C and data not shown).   

4.4.3 Deletion of SIC1 rescues the synthetic lethality of CDC34tm with RAD23 and the 

RNA Pol II CTDK-I kinase genes 

We reasoned that the additional increase in SIC1 transcription or compromise in 

Sic1 degradation might be the cause of synthetic lethality between CDC34tm and each of 

the RAD23, RPN10 and CTK2 genes.  Both CDC34tm rad23Δ and CDC34tm rpn10Δ cells 

die with a multiple, elongated bud phenotype (data not shown) indicative of defective 

Sic1 degradation.  Disruption of RPN10 reduces the rate of Sic1 degradation.  Although, 

disruption of RAD23 alone does not affect the rate of Sic1 degradation, a rad23Δ rpn10Δ 
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double mutant degrades Sic1 more slowly than the rpn10Δ mutant (Verma et al., 2004).  

The transcription factor, Swi5, which induces SIC1 at the end of anaphase is targeted for 

proteasome mediated degradation by SCFCdc4.  Furthermore, data suggests that the RNA 

Pol II CTD kinase, Srb10, phosphorylates Swi5 which stimulates binding to SCFCdc4 

(Kishi et al., 2008).  While the Koyama lab concluded that Srb10 is involved in Swi5 

degradation it is unlikely to be the only kinase which targets Swi5 to the SCFCdc4 

complex (Kishi et al., 2008).  The wild type Swi5 protein is more stable in an srb10Δ 

strain than a Swi5 mutant in which all of the consenus CDK sites have been mutated to 

alanine.  A different RNA Polymerase II C-terminal domain kinase, Ctk1, and the other 

members of the CTDK-1 kinase complex, Ctk2 and Ctk3, are all synthetically lethal with 

the CDC34tm.  The CTDK-1 complex coordinates transcriptional elongation, pre-mRNA 

3’end processing and translational fidelity (reviewed in (Hampsey & Kinzy, 2007).  Its 

role in transcriptional elongation is well characterized and its ability to phosphorylate the 

second serine of the repetitive C-terminal domain of Rpo21 increases the efficiency of 

transcriptional elongation (Lee & Greenleaf, 1997; Patturajan, Conrad, Bregman, & 

Corden, 1999).  The CTDK-1 complex might be acting to degrade Swi5 because it is also 

a cyclin dependent kinase which binds RNA Pol II and can often be found near 

transcriptional activators such as Swi5 and Ace2.  Therefore, SIC1, ACE2 or SWI5 were 

disrupted in the rad23Δ/RAD23 CDC34tm/CDC34, ctk2Δ/CTK2 CDC34tm/CDC34 and 

rpn10Δ/RPN10 CDC34tm/CDC34 diploids.  These diploids were struck on haploid 

selection media.  Deletion of SIC1, ACE2 or SWI5 was unable to suppress the lethality of 

the rpn10Δ CDC34tm haploid.  Two previous large scale synthetic lethal screens found 

that a sic1Δ rpn10Δ strain grows poorly (Collins, Schuldiner, Krogan, & Weissman, 
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2006; Pan et al., 2006).  The growth defect of the rpn10Δ sic1Δ strain is likely due to an 

inability to reduce Clb2 activity late in mitosis as Sic1 contributes to exit from mitosis by 

inhibiting Clb/Cdc28 activity and, although it has not been tested, Rpn10 might be 

involved in degradation of the Clb2 cyclin.  There is no evidence to suggest that the 

CDC34tm allele would alleviate the defect of the rpn10Δ sic1Δ strain, so it is not 

surprising that a SIC1 deletion will not suppress the lethality of the rpn10Δ CDC34tm 

strain.  However, deletion of SIC1 did suppress the lethality of CDC34tm rad23Δ (Fig. 

19D) 

The synthetic lethality of the ctk2Δ CDC34tm strain, and presumably the ctk1Δ 

CDC34tm and ctk3Δ CDC34tm strains, can be suppressed by deletion of SIC1, SWI5 or 

ACE2 (Fig. 20).  This finding suggests that the CTDK-1 complex negatively regulates 

Sic1 activity by affecting Swi5 and Ace2 activity.  Swi5 is known to be targeted for 

proteasome-mediated degradation by the SCFCdc4 complex.  Phosphorylation of at least 

one of the eight consensus CDK sites targets Swi5 to the SCFCdc4 complex (Kishi et al., 

2008).  The Srb10 cyclin dependent kinase is partially responsible for phosphorylation of 

Swi5 but it is not the sole kinase involved.  Swi5 is stabilized in an srb10Δ strain but not 

nearly to the same degree as in a strain in which all eight CDK consensus sites of Swi5 

have been mutated to alanines (Kishi et al., 2008).  We postulate that Ctk1 is also 

involved in targeting Swi5 to SCFCdc4.  Both Srb10 and Ctk1 phosphorylate the CTD of 

RNA Pol II.  Therefore they are often associated with the transcriptional machinery and 

thus both Swi5 and Ace2 may be in close physical proximity to these kinases.  The fact 

that deletion of either SWI5 or ACE2 suppresses the lethality of CDC34tm ctk2Δ cells 
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suggests that Ctk1 might be involved in the degradation of both of these transcriptional 

activators.  

4.4.4 A screen for genetic interactions between CDC34tm and essential genes 

 Approximately 12%, or 750, of the ORFs of S. cerevisiae are essential for growth 

and division under standard laboratory conditions (Goebl & Petes, 1986).  To further our 

understanding of CDC34tm yeast, we screened a collection of the ~750 essential genes for 

genetic interactions with the CDC34tm allele.  This array of strains, developed in the lab 

of Tim Hughes, places a single essential gene under the control of a doxycycline-

repressible promoter.  Addition of doxycycline to the media reduces the transcription of 

the essential gene.  However, the expression of many essential genes can be dramatically 

reduced without compromising cell growth.  This fact is evidence by the growth of 

strains from this collection as ~80% of the strains show at least some growth after 

addition of doxycycline to the media.  Regardless, we uncovered a number of genetic 

relationships between essential genes and the CDC34tm allele.  This screen was executed 

much like the confirmation SGA screen discussed in section  4.4.1.  The NAT1 marked 

CDC34 served as the control and allowed us to detect synthetic lethal relationships where 

reduced expression of the essential gene prevented colony growth in CDC34tm but not 

CDC34 haploid.  This experiment also uncovered numerous synthetic rescue interactions 

where the inhibition of growth  due to reduced expression of an essential gene expression 

could be suppressed by the CDC34tm allele (Table 7). 

 The CDC34tm allele interacts with multiple genes whose protein products are 

known to participate in ubiquitin-mediated protein degradation.  Ufd1, an essential gene 

identified as synthetically lethal with CDC34tm, is part of a complex containing Cdc48 
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and Npl4 that recognizes polyubiquitinated proteins and presents them to the proteasome.  

This complex is important for the degradation of many ERAD (Endoplasmic Reticulum 

Associated Degradation) substrates such as Spt23 and Hmg2.  Another non-essential 

component of the Cdc48 complex, Dfm1, is also synthetically lethal with CDC34tm 

(Table 6) (Goder, Carvalho, & Rapoport, 2008).  This implies that the mechanism of 

protein degradation utilized by the Cdc34tm enzyme relies on the Cdc48 pathway, at least 

for one of its substrates.  As mentioned in the chapter one, Far1 is degraded in a Cdc48 

dependent manner (Fu et al., 2003; Verma et al., 2004).   

We also discovered a number of interactions between CDC34tm and components 

of the RNA Polymerase machinery, including a synthetic lethal interaction with the large 

subunit of RNA Pol II, Rpo21 (Table 5).  Considering the interactions with the CTDK-1 

complex discussed in section 4.4.3, it appears that CDC34tm yeast are very sensitive to 

alterations in the activity and regulation of RNA Polymerases, especially RNA Pol II.  

RNA Pol II is responsible for transcribing nearly all mRNAs in S. cerevisiae.  The C-

terminal domain (CTD) of Rpo21 is a repetitive seven-amino-acid sequence, Y-S2-P-T-

S5-P-S.  Both Ser2 and Ser5 are phosphorylated in vivo and the levels of phosphorylation 

at each residue fluctuate as Pol II moves through the body of an actively transcribed gene.  

Modulating the phosphorylation state of Pol II is important for transcriptional elongation 

and capping, polyadenylation and splicing of the primary transcript.  BUR1, a cyclin-

dependent kinase which phosphorylates the RNA Pol II CTD, is synthetically lethal with 

both the CDC34tm and the CTDK-1 complex.  BUR1 mutants, much like CTDK-1 

mutants, are defective in transcriptional elongation (Murray, Udupa, Yao, Hartzog, & 

Prelich, 2001).  The combined action of the cyclin dependent kinases, Ctk1/Ctk2/Ctk3 
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and Bur1/Bur2 is the functional equivalent of mammalian P-TEFb which also regulates 

transcription elongation through phosphorylation of the CTD of RNA Pol II (Wood & 

Shilatifard, 2006).   

Phosphorylation of RNA Pol II CTD (Serine 2) increases cells enter the diauxic 

phase of growth.  This growth phase is characterized by a reduction in doubling time and 

a transition from fermentative to respiratory metabolism.  Cells with a truncated RNA Pol 

II CTD grow at the same rate as wild type cells through the exponential growth phase but 

growth is retarded through the diauxic phase and ultimately reach a lower density than 

wild type cells when growth ceases.  Although Ctk1 directly phosphorylates Ser5 of the 

CTD, the increase in S2 phosphorylation as cells enter the diauxic shift is dependent on 

CTK activity (Patturajan et al., 1999).  In fact, a strain harboring an activated RAS2G19V 

allele is phenotypically similar to the strain with truncated RNA Pol II CTD regarding 

diauxic phase growth.  The RAS2G19V allele is synthetically lethal when the elongating 

activity of RNA Pol II is compromised, either by deletion of the CTD itself or deletion of 

any of the CTK subunits (Patturajan et al., 1999).  Mycophenolic acid (MPA) and 6-

Azauracil (6-AU) reduce intracellular GTP levels and partially inhibit Pol II elongation 

ability.  The RASG19V mutants do not grow on medias with 6-AU or MPA and also are 

synthetically lethal with mutations in ctk1Δ (Howard, Hester, & Herman, 2003).  These 

interactions are reflected in the network depicted in figure 21.  Interestingly, 

overexpression of any of the three G1 cyclins, CLN1-3, can suppress the G1 arrest 

associated with temperature sensitive rpo21-4 allele suggesting that coordinated 

regulation of RNA Pol II activity and G1 cyclin function is imperative for G1 phase 

progression (Drebot, Johnston, Friesen, & Singer, 1993).  Furthermore, CLN3 and FAR1 
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are synthetically lethal with CTK1, which expands the relationship between SCF/Cdc34 

substrates, RNA Pol II CTD phosphorylation and CDC34, specifically the S73/S97/loop 

motif. 

The remainder of CDC34tm-interacting, essential genes are not easily explained 

based on our current knowledge.  A number of the genes, which are either synthetically 

lethal or rescued by the CDC34tm allele, were also identified in a large-scale proteomics 

screen to identify ubiquitinated proteins.  Figure 22 depicts those essential proteins which 

genetically interact with with CDC34tm and are potentially ubiquitinated (Peng et al., 

2003).  We hypothesize that alterations in their rates of ubiquitin-mediated degradation 

are responsible for the genetic interactions detected.  This hypothesis implies that these 

proteins are substrates of various SCF/Cdc34 complexes and can be extended to suggest 

that those genes which share a synthetic rescue relationship are more stable in the 

CDC34tm cells while those having a synthetic lethal relationship are less stable in 

CDC34tm cells.    

4.5 Summary and a List of Candidate SCF Substrates Suggested by the CDC34tm 

Microarray and Synthetic Lethal Screens 

This work originated with the discovery that mutations to Cdc34 S97 or deletion 

of amino acid residues 103-114 in the N-terminal catalytic domain of Cdc34 make a non-

functional enzyme but a combination of the mutations yields a functional enzyme, as 

assessed by in vivo complementation of a cdc34 null strain.  However, recent work has 

shown that the stretch of acidic residues in Cdc34 is necessary for timely and appropriate 

polyubiquitin chain extension of Sic1 (Petroski & Deshaies, 2005).  Therefore, we 

reasoned that because a strain bearing the CDC34Δ103-114 mutant does not support growth 
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while the CDC34tm is viable and has a growth rate comparable to wild type there must be 

an in vivo mechanism to compensate for the defect in polyubiquitin chain extension.  

Two ubiquitin conjugating enzymes can function together to polyubiquitinate a single 

substrate with one E2 serving to monoubiquitinate and the other extending the ubiquitin 

chain (Rodrigo-Brenni & Morgan, 2007).  No genetic interaction between CDC34tm and 

any of the other ubiquitin conjugating enzymes were detected in the primary SGA screen 

suggesting that other E2s are not compensating for the defective polyubiquitination 

activity of the Cdc34tm.  In contrast, CDC34tm exhibits strong genetic interactions with 

the polyubiquitin receptor genes RAD23 and RPN10.  Rad23 and Rpn10 have been 

shown to be required for Sic1 degradation; however, neither is an essential gene.  In fact, 

rad23Δ rpn10Δ double mutants degrade Sic1 slower than either single mutant but are 

viable.  This argues for an additional mechanism of recruiting Sic1 to the proteasome for 

degradation (Lambertson, Chen, & Madura, 1999; Verma et al., 2004).  Both CDC34tm 

rad23Δ and CDC34tm rpn10Δ cells have a multiple, elongated bud phenotype (data not 

shown) indicative of defective Sic1 degradation.  

The SCFCdc4 substrate Sic1 (and likely Far1) has a shorter half life in CDC34tm as 

compared to wild type cells while the SCFGrr1 substrate Cln1 is more stable in CDC34tm 

cells.  If steady state abundance is indicative of activity, Cln/CDK activity is increased in 

CDC34tm cells.  The Cln/Cdc28 complexes phosphorylate Sic1 and Far1 and based on the 

number of CDK sites, likely phosphorylate Cln1 as well (Henchoz et al., 1997; 

Mendenhall, Jones, & Reed, 1987; Peter, Gartner, Horecka, Ammerer, & Herskowitz, 

1993).  We postulate that increased Cln/Cdk phosphorylation of the substrates Sic1, Far1, 

Cln1 and Cln2 enables substrate recruitment to the individual SCF complexes; however, 
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upon encountering a Cdc34tm bound SCF complex the substrate is ubiquitinated but with 

a polyubiquitin chain different from that formed by wild-type Cdc34.  This could mean in 

Cdc34tm cells the time between SCF association and dissociation may be shorter for each 

substrate and thereby available for proteasomal degradation earlier than substrates which 

encounter a normal wild-type Cdc34 containing SCF complex.  Alternatively, the 

polyubiquitin receptors necessary for a substrate’s proteasomal recognition may be 

different for each of these substrates when ubiquitinated by Cdc34tm.  Rad23 and Rpn10 

both recruit Sic1 to the proteasome but there is likely a third pathway, possibly involving 

Rpt5, by which Sic1 is recognized by the proteasome.  Rad23 and Rpn10 do not appear to 

be proteasomal receptors for Cln1 and Cln2 while Rad23 and Rpn10 to a lesser degree 

are involved in Far1 degradation (Verma et al., 2004).  Our data do not uncover the 

contribution of each step (phosphorylation, ubiquitination, proteasome binding) to the 

overall differences in substrate steady state abundance and half lives in CDC34tm cells.  

However our data do suggest that the Cdc34tm be considered a useful tool for both in vivo 

and in vitro experiments as we continue to dissect the contribution of each step to the rate 

of the entire process.  

It might be argued that the increase in the steady state abundance of the Sic1 

protein in the CDC34tm strain contradicts our finding that Sic1 protein half-life in a 

CDC34tm strain is decreased by nearly 40 minutes.  However, microarray analysis 

provides a partial explanation for the increase in Sic1 protein steady state abundance.  

The level of Sic1 mRNA is significantly increased in the CDC34tm strain.  Asynchronous 

batch cultures were analyzed for these microarrays.  We expect that the relative 

difference in SIC1 mRNA between CDC34tm and wild type cells would be measurably 
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larger than 1.6-fold if measurements were made at the M/G1 transition when Ace2 is 

activated.  Not only are SIC1 transcript levels increased but so are the transcript levels of 

17 of the 26 genes of the SIC1 cluster of co-transcribed genes.  This group of co-

transcribed genes is controlled by the two homologous transcriptional activators Swi5 

and Ace2 (Zhu et al., 2000).  The gene products from this group of co-regulated genes are 

important for the final steps of mother-daughter separation and early G1 phase 

progression.  Although homologous, Ace2 and Swi5 act at measurably different times in 

the cell cycle and have both common and unique target genes (McBride, Yu, & Stillman, 

1999).  It is apparent that the Ace2 targets are up-regulated to a greater degree than Swi5 

targets in CDC34tm cells.  Therefore, we compared Ace2 protein levels (ACE2 mRNA is 

not significantly different between WT and CDC34tm cells) in wild type and CDC34tm 

cells and discovered the steady state abundance of Ace2 protein to be increased in 

CDC34tm cells.  Further confirmation that Ace2 upregulates Sic1 protein in CDC34tm 

cells can be derived from figure 16B which shows that CDC34tm cells lacking ACE2 do 

not accumulate Sic1 protein whereas CDC34tm cells lacking SWI5 still accumulate Sic1.  

Interestingly, the misregulation of Sic1 in CDC34tm cells mirrors the aberrant regulation 

of the mammalian cyclin dependent kinase inhibitor, p27Kip1, in many human breast 

cancer cells which often have an elevated steady state abundance of p27Kip1 (Fredersdorf 

et al., 1997).   

4.6 The S73/S97/Loop Motif Increases Chronological Lifespan 

 Surprisingly, S. cerevisiae has served as a very good model for aging research.  

Before advances in the genetic manipulation of model organisms like yeast, worms and 

fruit flies, it was a commonly held belief that single genes would not dictate aging.  The 
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process of aging is extremely complex and is influenced by diet and lifestyle.  As such it 

was believed that the genetic components of aging would be multi-factorial.  However, 

numerous, single gene mutations have been found in all model organisms including yeast, 

fruit flies, worms and mice which dramatically extend lifespan (for review see 

(Bitterman, Medvedik, & Sinclair, 2003)).  Evidence for a conserved mechanism of aging 

can be derived from the fact that mutations in genes such as Sch9/AKT affect the lifespan 

of all model organisms mentioned above.  Sch9 is 49% identical to the human, fly and 

worm AKT over a stretch of ~300 amino acids which encode the kinase domain.  In these 

and other higher eukaryotes, AKT is activated by insulin and the insulin-like growth 

factor (IGF-1).  Weak mutations in the IGF-1 pathway can extend the lifespan of worms 

more than two fold and that of fruit flies by 85% (Clancy et al., 2001; T. E. Johnson, 

1990; Kenyon, Chang, Gensch, Rudner, & Tabtiang, 1993; Tatar et al., 2001).  

Furthermore, Prop-1 (-/-) and Pit-1 (-/-) dwarf mice have decreased levels of IGF-1 and 

live ~65% longer than wild type mice (Brown-Borg, Borg, Meliska, & Bartke, 1996; 

Flurkey, Papaconstantinou, & Harrison, 2002; Hsieh, DeFord, Flurkey, Harrison, & 

Papaconstantinou, 2002) 

 Aging studies of S. cerevisiae are classically conducted by two methods.  The first 

method allows for the determination of replicative lifespan which is a study of mitotically 

dividing cells.  An individual yeast cell will undergo a finite number of divisions before 

dying.  There is a certain amount of strain specific variation in the number of divisions a 

new mother can undergo prior to senescence but on average a single yeast cell can give 

rise to ~20-25 daughters.  Determination of the viability of non-dividing yeast cells in the 

G0 or postdiauxic state, termed chronological lifespan, is another method by which aging 
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is assessed in S. cerevisiae.  After approximately three days in synthetically defined 

media, yeast cells stop dividing and significantly slow their metabolic activity.  Nutrients 

become limiting under these conditions but the cells are not starving and it has been 

postulated that this state resembles in some respects the conditions of postmitotic cells in 

higher organisms (Longo & Fabrizio, 2002).  

Conditions, such as nutrient depletion or exposure to mating pheromone, which 

require timely cell cycle arrest in the G1 phase depend on destabilization of the G1 

cyclins Cln1, Cln2 and Cln3 and stabilization of the cyclin dependent kinase inhibitors 

Sic1 and Far1.  Overexpression of CLN2 or loss of FAR1 prevents mating pheromone 

induced cell cycle arrest (Chang & Herskowitz, 1990; Oehlen & Cross, 1994).  And, as 

mentioned in the introduction, ectopic CLN3 expression or loss of SIC1 compromises the 

G1 arrest and ultimately a yeast cell’s ability to withstand prolonged period of nutrient 

depletion (Weinberger et al., 2007; Zinzalla et al., 2007).  Furthermore, overexpression of 

CLN3 or loss of SIC1 makes yeast sensitive to otherwise tolerable levels of the TORC1 

inhibitor rapamycin, which mimics nutrient deprivation (Zinzalla et al., 2007).  The 

Cdc34tm increases the rate of Sic1 degradation while decreasing the rate of Cln1 

degradation.  Therefore, we hypothesized that the highly conserved S73/S97/loop motif 

of Cdc34 does contribute to a cell’s ability to survive low dose rapamycin treatment and 

nutrient depletion.  Indeed, we find that a normally permissive level of rapamycin inhibits 

growth of CDC34tm cells (Fig. 23A) likely due to improper regulation of Sic1, Cln1 and 

Cln2.  

To test survival of CDC34tm yeast during a prolonged period of nutrient depletion, 

isogenic wild type and CDC34tm strains were grown to stationary phase in liquid culture 
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and the number of individual cells capable of forming a colony was determined over a 

period of ten days.  After 48 hours in defined liquid media, the cells have ceased dividing 

and some of the essential nutrients have been depleted (Bitterman et al., 2003).  As the 

graph shows, loss of the S73/S97/loop motif does not initially compromise survival (Fig. 

23B, day 0) but as the time in a quiescence state extends, CDC34tm yeast are significantly 

less robust and by day 10 their survival rate is more than five fold worse than the WT 

strain (Fig. 23B, days 3-10).  This simple experiment explicitly demonstrates the 

selective pressure on the yeast S. cerevisiae to retain the Cdc34 S73/S97/loop motif.  In 

nature, nutrient limitation is commonly encountered; therefore, genetic elements, like the 

S73/S97/loop motif, which contribute to survival of such conditions are highly desirable. 



 

 88 

 
Table 2. Plasmids used in this study. 
 
Plasmid 
Name Vector 

Yeast 
Marker 

Bacterial 
Marker Insert Gene Source 

pYL150 pSJ101 LEU2 ampicillin CDC34 
(Y. Liu et al., 
1995) 

pYL029 pSJ101 LEU2 ampicillin CDC34S73K/S97D/delta Yun Liu 
pSJ101 pSJ101 LEU2 ampicillin  S. Johnson 
pYL027 pSJ101 LEU2 ampicillin CDC34insert delta Yun Liu 
pRC001 pSJ101 LEU2 ampicillin CDC34S97D/delta this study 
pTL008 pSJ101 LEU2 ampicillin CDC34 R93D this study 
pTL012 pSJ101 LEU2 ampicillin CDC34 R90D/D91N/R93D this study 

pAG25 pFA6 natMX4 ampicillin 
Nourseothricin N-
acetyltransferase EUROSCARF 

AD002 pET21 none ampicillin CDC34deltaC(1-244)-6XHis D. Skowyra 

pRC004 pET21 none ampicillin 
CDC34deltaC(1-244 (S97A)-
6XHis this study 

 
 
Table 3. Yeast strains used in this study. 
 
Strain Genotype Reference 

2690 MATa sic1::KanR his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Winzeler et al., 
1999) 

4080 MATa swi5::KanR his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Winzeler et al., 
1999) 

4088 MATa ace2::KanR his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Winzeler et al., 
1999) 

7137 MATa haa1::KanR his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Winzeler et al., 
1999) 

5149 MATa vps34::KanR his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Winzeler et al., 
1999) 

3236 MATa vps15::KanR his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Winzeler et al., 
1999) 

3642 MATa gcn2::KanR his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Winzeler et al., 
1999) 

6055 MATa sst2::KanR his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Winzeler et al., 
1999) 

BY4741 (Cln1Tap) MATa CLN1-TAP(HIS3-MX6) his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Ghaemmaghami 
et al., 2003) 

BY4741 (Cln2Tap) MATa CLN2-TAP(HIS3-MX6) his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Ghaemmaghami 
et al., 2003) 

BY4741 (Far1Tap) MATa FAR1-TAP(HIS3-MX6) his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Ghaemmaghami 
et al., 2003) 

BY4741 (Sic1Tap) MATa SIC1-TAP(HIS3-MX6) his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
(Ghaemmaghami 
et al., 2003) 

DBY2059 MATα leu2-3,112 Hennessey 

EJ758(YIL035c) 
MATa his3-Δ200 leu2-3,113 ura3-52 pep4::HIS3 pYEX4T-+rec 
::YIL035c 

(Martzen et al., 
1999) 

KS415 MATa grr1::URA3 ura3-52 leu2Δ-1 his3Δ-200 

(Schweitzer, 
Cocklin, Garrett, 
Desai, & Goebl, 
2005) 

KS418 MATa, CDC34tm ura3 leu2 trp1 lys2 ade2 ade3 This study 
KS422 MATa ura3 leu2 trp1 lys2 ade2 ade3 (Schweitzer et 
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al., 2005) 

KT945 MATα his3 leu2 ura3 trp1 ade8 tpk2::HIS3 tpk3::TRP1 
(Cameron et al., 
1988) 

KT948 
MATa his3 leu2 ura3 trp1 ade8 bcy1::LEU2 tpk1-w tpk2::HIS3 
tpk3::TRP1 

(Cameron et al., 
1988) 

KT1112 MATa leu2 ura3-52 his3 
(Zaremberg & 
Moreno, 1996) 

KT1126 MATa leu2 ura3-52 bcy1-14 
(Zaremberg & 
Moreno, 1996) 

MT1901 MATα mfa1Δ::pMFA1-HIS3 can1Δ ura3Δ0 leu2Δ0 his3Δ1 lys2Δ0 M. Tyers 

RC21 

MATa/α CDC34tm(NAT1)/CDC34 ura3/ura3 leu2/leu2 trp1/TRP1 
lys2/LYS2 ade2/ADE2 ade3/ADE3 his3/HIS3 MFA1/mfa1Δ::pMFA1-
HIS3 can1/CAN1 This study 

RC29 
MATα cdc34tm(NAT1) mfa1Δ::pMFA1-HIS3 his3Δ ura3Δ leu2Δ 
can1Δ This study 

RC94 
MATα CDC34(NAT1) mfa1Δ::pMFA1-HIS3 his3Δ1 leu2Δ0 ura3Δ0 
can1Δ This study 

RC96 
MATa CDC34tm(NAT1) ace2Δ::KanR pMFA1-HIS3 ura3Δ0 leu2Δ0 
can1  This study 

RC100 
MATa CDC34tm(NAT1) swi5Δ::KanR pMFA1-HIS3 ura3Δ0 leu2Δ0 
can1 met15Δ0 This study 

RC106 

MATa/α CDC34(NAT1)/CDC34 rad23::KanR/RAD23 
mfa1Δ::pMFA1-HIS3/MFA1 his3/his3 ura3/ura3 leu2/leu2 
can1/CAN1 met15/MET15 This study 

RC113 

MATa/α CDC34tm(NAT1)/CDC34 rad23::KanR/RAD23 
mfa1Δ::pMFA1-HIS3/MFA1 his3/his3 ura3/ura3 leu2/leu2 
can1/CAN1 met15/MET15 This study 

RC131 
MATa/α CDC34(NAT1)/CDC34 ctk2::KanR/CTK2 mfa1Δ::pMFA1-
HIS3/MFA1 his3/his3 ura3/ura3 leu2/leu2 can1/CAN1 met15/MET15 This study 

RC141 
MATa/α CDC34tm(NAT1)/CDC34 ctk2::KanR/CTK2 mfa1Δ::pMFA1-
HIS3/MFA1 his3/his3 ura3/ura3 leu2/leu2 can1/CAN1 met15/MET15 This study 

RC150 MATa bar1::LEU2 his3 leu2 trp1 ura3 lys met- [pSIC1] This study 
RC153 MATa CDC34tm bar1::LEU2 his3 trp1 leu2 ura3 lys met- [pSIC1] This study 

RC166 

MATa/α CDC34tm(NAT1)/CDC34 rad23::KanR/RAD23  
sic1::URA3/SIC1 mfa1Δ::pMFA1-HIS3/MFA1 his3/his3 ura3/ura3 
leu2/leu2 can1/CAN1 met15/MET15 This study 

RC167 

MATa/α CDC34tm(NAT1)/CDC34 ctk2::KanR/CTK2 sic1::URA3/SIC1 
mfa1Δ::pMFA1-HIS3/MFA1 his3/his3 ura3/ura3 leu2/leu2 
can1/CAN1 met15/MET15 This study 

RC168 

MATa/α CDC34tm(NAT1)/CDC34 ctk2::KanR/CTK2 
ace2::URA3/ACE2 mfa1Δ::pMFA1-HIS3/MFA1 his3/his3 ura3/ura3 
leu2/leu2 can1/CAN1 met15/MET15 This study 

RC169 

MATa/α CDC34tm(NAT1)/CDC34 ctk2::KanR/CTK2 
swi5::URA3/URA3 mfa1Δ::pMFA1-HIS3/MFA1 his3/his3 ura3/ura3 
leu2/leu2 can1/CAN1 met15/MET15 This study 

RC171 

MATa/α CDC34tm(NAT1)/CDC34 ubp14::KanR/UBP14 
mfa1Δ::pMFA1-HIS3/MFA1 his3Δ/his3Δ ura3/ura3Δ0 leu2/leu2Δ0 
can1/CAN1 met15Δ0/MET15 This study 

RC172 

MATa/α CDC34(NAT1)/CDC34 ubp14::KanR/UBP14 
mfa1Δ::pMFA1-HIS3/MFA1 his3Δ/his3Δ ura3/ura3Δ0 leu2/leu2Δ0 
can1/CAN1 met15Δ0/MET15 This study 

RC173 

MATa/α CDC34tm(NAT1)/CDC34 cka2::KanR/CKA2 mfa1Δ::pMFA1-
HIS3/MFA1 his3Δ/his3Δ ura3/ura3Δ0 leu2/leu2Δ0 can1/CAN1 
met15Δ0/MET15 This study 

RC174 

MATa/α CDC34(NAT1)/CDC34 cka2::KanR/CKA2 mfa1Δ::pMFA1-
HIS3/MFA1 his3Δ/his3Δ ura3/ura3Δ0 leu2/leu2Δ0 can1/CAN1 
met15Δ0/MET15 This study 

RC175 

MATa/α CDC34tm(NAT1)/CDC34 rps7b::KanR/RPS7B 
mfa1Δ::pMFA1-HIS3/MFA1 his3Δ/his3Δ ura3/ura3Δ0 leu2/leu2Δ0 
can1/CAN1 met15Δ0/MET15 This study 

RC176 MATa/α CDC34(NAT1)/CDC34 rps7b::KanR/RPS7B mfa1Δ::pMFA1- This study 
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HIS3/MFA1 his3Δ/his3Δ ura3/ura3Δ0 leu2/leu2Δ0 can1/CAN1 
met15Δ0/MET15 

   

RRC43 

MATa/α CDC34tm(NAT1)/CDC34 rim13::KanR/RIM13 
mfa1Δ::pMFA1-HIS3/MFA1 his3Δ/his3Δ ura3/ura3Δ0 leu2/leu2Δ0 
can1/CAN1 met15Δ0/MET15 This study 

RRC73 
MATa CLN1-TAP(HIS3-MX6) CDC34tm(NAT1) his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0  This study  

RRC74 
MATa SIC1-TAP(HIS3-MX6) CDC34tm(NAT1) his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0  This study  

RRC76 
MATa FAR1-TAP(HIS3-MX6) CDC34tm(NAT1) his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0  This study  

RRC78 
MATa CLN2-TAP(HIS3-MX6) CDC34tm(NAT1) his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0  This study 

RRC85 MATα CDC34tm(NAT1) This study 

YL10-1 MATa  cdc34-2 leu2Δ1 ura3-52 trp1Δ63 his3Δ Gal+ 
(Y. Liu et al., 
1995) 

YL18 

MATa cdc34::HIS3 ura3-52 leu2delta1 trp1delta63 his3delta200 
(pYL250) 
 

(Y. Liu et al., 
1995) 
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Table 4. The SIC1 cluster of cell cycle regulated genes is up-regulated in CDC34tm 
cells. The genes which are co-regulated through the cell cycle with SIC1 as previously 
defined by (Spellman et al., 1998) are shown with their relative expression levels (labeled 
CDC34tm FC), p values (labeled CDC34tm pval) and q values (labeled CDC34tm qval) in a 
CDC34tm strain relative to an isogenic wild type as determined by microarray analysis.  
The column labeled “Transcription Factor” is derived from a separate study that 
determined the influence of the two main transcription factors of this gene cluster, Ace2 
and Swi5 (Doolin et al., 2001). The genes are arranged in order of their relative 
expression and the rows are colored according to the transcription factor dependence.   
(*) Indicates that the gene was not originally identified to be co-regulated with Sic1 
(Spellman et al., 1998) but was defined as having either Swi5 or Ace2 dependence 
(Doolin et al., 2001). The relative expression levels (labeled cdc34-2ts FC) and p values 
(cdc34-2ts pval) from a separate microarray experiment (Varelas et al., 2006) comparing 
a cdc34-2 temperature sensitive strain to a wild type strain are also listed. 
 

ORF ALIAS 
Cdc34t
m FC 

Cdc34tm 
pval 

Cdc34tm 
qval 

Transcription 
Factor 

cdc34-2ts 
FC 

cdc34-2ts 
pval 

YDR055W PST1 -2.17 7.9e-05 0.0027 Slight Ace2/Swi5 -1.12 0.54 
YKL163W PIR3 -1.35 0.058111 0.1377 Slight Ace2/Swi5 1.31 0.44 
YJL159W HSP150 -1.1 0.001441 0.0134 Slight Ace2/Swi5 -1.16 0.29 
YNR067C DSE4 -1.06 0.635923 0.5558 not detected -2.51 0.008 
YBR083W TEC1 -1.04 0.897662 0.637 not affected 1.37 0.395 
YKL116C PRR1 1.14 0.04453 0.115 not detected 1.12 0.299 
YNL192W CHS1 1.16 0.063773 0.146 not affected -1.43 0.0167 
YGR086C PIL1 1.18 0.023168 0.075 not affected 1.15 0.416 
YDL117W CYK3 1.21 0.052732 0.128 not detected  1.24 0.44 
YJL078C PRY3 1.25 0.217825 0.319 not detected  -1.69 0.025 
YNL327W EGT2 1.34 0.003588 0.0228 Ace2/Swi5 -1.5 0.029 
YBR158W AMN1 1.34 0.000267 0.0053 Ace2/Swi5 -1.39 0.05 
YIL009W FAA3 1.38 0.001426 0.013 not affected -1.11 0.516 
YKL185W ASH1 1.38 0.000885 0.0100 Ace2/Swi5 1.26 0.179 
YKL164C PIR1 1.41 7.2e-05 0.0026 Swi5 1.01 0.869 
YJL194W* CDC6 1.41 0.04 0.123 Swi5 - - 
YDL127W* PCL2 1.47 0.03 0.105 Swi5 1.03 0.947 
YNL078W NIS1 1.51 0.005773 0.0308 Swi5 1.66 0.06 
YDL179W PCL9 1.52 0.000748 0.009 Swi5 1.92 0.083 
YGR044C RME1 1.54 0.001677 0.014 Ace2/Swi5 -1.04 0.862 
YOR264W DSE3 1.6 0.000353 0.006 Ace2/Swi5 -1.18 0.869 
YLR079W SIC1 1.63 0.000288 0.005 Ace2/Swi5 1.41 0.398 
YLR286C CTS1 1.8 2.3e-05 0.0015 Ace2 -1.22 0.05 
YPL158C --- 1.87 6.1e-05 0.002 Swi5 1.44 0.455 
YHR143W DSE2 1.89 5.8e-05 0.002 Ace2 -1.58 0.015 
YNL046W* --- 2.13 5.00E-06 0.0008 Swi5 2.24 0.01 
YDL227C* HO 2.2 9.20E-05 0.0029 Swi5 1.4 0.2598 
YGL028C SCW11 2.58 1e-06 0.0003 Ace2 -1.49 0.006 
YER124C DSE1 3.61 5e-06 0.0008 Ace2 -1.48 0.064 
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Table 5. Genes induced in response to acetaldehyde, including most of the targets of 
the transcription factor Haa1, are repressed in CDC34tm cells. The genes that are both 
repressed in CDC34tm cells (this work) and induced in CDC34 cells in response to 
exogenous acetaldehyde (Aranda & del Olmo, 2004) are shown with their relative 
expression level (fold change, FC) and p value (pval). The relative expression levels 
(labeled cdc34-2ts FC) and p values (cdc34-2ts pval) from a separate microarray 
experiment (Varelas et al., 2006) comparing a cdc34-2 temperature sensitive strain to a 
wild type strain are also listed. Rows are colored and ordered according to the respective 
transcription factor(s) that was determined by the querying the Yeastract database 
(www.yeastract.com). Targets of the transcription factor Haa1 that were not detected in 
response to acetaldehyde are included and marked with an asterisk (*). 
 

ORF ALIAS 
Cdc34tm 

FC 
Cdc34tm 

pval 
Transcription 

Factor 
acetaldehyde 

FC 
cdc34-2ts 

FC 
cdc34-2ts 

pval 
YPR157W --- -8.78 2.60E-05 Haa1 101.01 -1.38442 0.345335 
YER037W PHM8 -8.68 0.005485 Haa1 8.54 -1.89659 0.0637 
YLR297W --- -3.38 0.000164 Haa1 7.86 -1.062 0.771 
YIR035C* --- -2.74 4.00E-06 Haa1 Not Detected -1.2589 0.3574 
YPR156C

* TPO3 -2.73 0.002466 Haa1 Not Detected -1.168 0.346 
YBR054W YRO2 -17.55 0.00065 Haa1/Hsf1 14.23 -1.1402 0.938804 
YER150W SPI1 -3.67 0.051281 Haa1/Hsf1 78.26 1.097 0.582014 
YNL160W YGP1 -3.39 0.004359 Haa1/Hsf1 5.51 -1.072 0.6907 
YGR138C TPO2 -3.84 0.000148 Haa1/Sok2 111.65 -1.21147 0.4589 
YER130C --- -3.05 2.20E-05 Haa1/Sok2 6.05 -1.291 0.3937 
YCR021C HSP30 -34.85 0.000473 Hsf1 284.03 -1.25741 0.0592527 
YDR171W HSP42 -20.84 0.005181 Hsf1 20.58 1.05293 0.803385 
YJL144W --- -15.75 0.005232 Hsf1 48 1.27157 0.554221 
YGR249W MGA1 -8.04 0.005973 Hsf1 9.01 -1.13988 0.540401 
YGR142W BTN2 -7.81 0.055734 Hsf1 35.6 -1.29884 0.808935 
YGR248W SOL4 -7.33 0.022398 Hsf1 14.6 1.45075 0.15987 
YDR258C HSP78 -6.27 0.042359 Hsf1 6.4 -1.06028 0.978133 
YOR134W BAG7 -6.24 0.00011 Hsf1 4.31 1.00096 0.946521 
YFL053W DAK2 -5.17 0.013542 Hsf1 7.83 -1.16282 0.388227 
YPR158W --- -4.33 0.006109 Hsf1 4.48 -1.21017 0.684579 
YPR015C --- -3.78 0.000101 Hsf1 4.87 1.76389 0.00249866 
YGL037C PNC1 -3.72 0.006157 Hsf1 3.46 1.00461 0.782109 
YLL026W HSP104 -3.53 0.055282 Hsf1 12.71 -1.39409 0.276707 
YNL077W APJ1 -3.46 0.008297 Hsf1 5.7 -1.23354 0.631739 
YJL082W IML2 -3.45 2.10E-05 Hsf1 3.69 -1.31331 0.0639387 
YBR214W SDS24 -3.41 0.007507 Hsf1 5.48 -1.19071 0.598434 
YPL247C --- -2.66 0.007523 Hsf1 3.2 1.07658 0.810784 
YNL007C SIS1 -2.55 0.004259 Hsf1 3.77 -1.20468 0.263542 
YOR267C HRK1 -2.38 0.000483 Hsf1 4.96 -1.34363 0.206224 

YFL040W --- -2.32 0.000625 Hsf1 4.33 
Not 

detected   
YOL032W OPI10 -2.25 0.025852 Hsf1 5.19 1.17739 0.701631 
YBR101C FES1 -1.99 0.005175 Hsf1 6.11 -1.15911 0.410713 
YER035W EDC2 -2.55 0.002572 Hsf1/Sok2 4.76 -1.09357 0.409178 
YHL021C --- -2.37 0.015077 Hsf1/Sok2 7.59 -1.89444 0.0901108 
YGR088W CTT1 -1.94 0.005252 Hsf1/Sok2 10.08 1.76375 0.0952713 
YER028C MIG3 -4.48 0.000248 Sok2 7.18 5.29889 0.102304 
YNR014W --- -4.31 0.000868 Sok2 3.26 -1.5523 0.256663 
YMR316W DIA1 -3.31 0.001082 Sok2 10.62 -1.45601 0.312658 
YER053C PIC2 -3.21 0.046544 Sok2 12.13 -1.12369 0.461775 
YOL016C CMK2 -2.39 0.035474 Sok2 28.58 -1.51724 0.118288 
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YGL179C TOS3 -2.14 0.00326 Sok2 3.4 1.08028 0.799538 
YLR121C YPS3 -2 0.009871 Sok2 3.02 1.06573 0.70035 
YOR298C-

A MBF1 -2 0.010964 Sok2 3.09 -1.20198 0.0338532 

YDL038C --- -5.51 1.00E-05 Sok2/Mga1 4.68 -3.08668 
0.00076726

9 
YDL048C STP4 -4.91 1.00E-05 Sok2/Mga1 6.18 -1.07975 0.754752 
YKL043W PHD1 -2.16 0.008645 Sok2/Mga1 11.51 1.05313 0.851588 

YDR259C YAP6 -2.1 0.000163 Sok2/Mga1 4.76 
Not 

detected   
YOR273C TPO4 -5.23 0.002478 Mga1 6.5 -1.17421 0.610451 
YBR183W YPC1 -3.08 0.001528 Mga1 3.6 -1.04891 0.966512 
YMR181C --- -2.64 1.20E-05 ??? 4.15 -1.15099 0.633694 
YOL014W --- -2.39 0.006914 ??? 13.86 -7.53793 1.97E-05 
YFR022W ROG3 -2.33 1.00E-06 ??? 10.53 -1.01005 0.999712 
YLR343W GAS2 -2.27 0.000181 ??? 8.48 1.77452 0.103383 

YPL165C SET6 -2.25 0.000919 ??? 4.41 
Not 

detected   
YGR008C STF2 -2 0.112446 ??? 4.32 -1.06963 0.653618 
 

 
 
Table 6. CDC34tm genetic interactions with non-essential genes. These genes were 
confirmed to be synthetically lethal with the CDC34tm allele.  Superscipted “1” indicates 
no growth and a superscripted “2” is very limited growth.   
 

Gene Product Function ALIAS 
CELL GROWTH REGULATION FPR12, LAG22, RAS22, RIM131, RIM201, RIM81, SOK21, TIP411 

CELL STRESS HAL11, NRG22, RIM131, RIM201, RIM81, SOY12, TIR11 
CHROMATIN AHC12, CTK21, CTK11, CTK31, YAF91, IES21, IES51, HHT12 

CYTOSKELETON BNI42, LSB32, SPH12 

DNA DAMAGE MRE111, RAD161, RAD301, RAD511 

METABOLISM ABZ11, ADE121, COQ61, COX172, OPI32, PGM32, SIP12 

METAL HOMEOSTASIS FSF11, PPZ22 

MICROTUBULE FUNCTION CIK11, DYN12, DYN21, GIM51, KAR32 

PROTEIN TRAFFICKING SEC222, VAC81, VPS211, VPS452, SWA22, GVP362, NIR12, GET21, 
CHS52, MNN112, YUR12, PIB22, YIP22, 

SIGNALING-
PHOSPHORYLATION BNI42, CKA21, CTK21, FPR12, PPZ22, DBF22, SIP12, TIP411, 

SIGNALING-PI PDR162, PDR172, PIB22 

TRANSCRIPTION CTK21, NRG22, RIM131, RIM201, RIM81, RTR22, SOK21, STB12, 

TRANSLATION DOM342, GCN11, NCS21, RPL16B2, RPL34A2, RPL34B2, RPL291 
TIF46312 

UBIQUITIN PATHWAY DFM11, RAD231, UBP141 
MISCELLANEOUS FCY212, NUP1002, PEX131, PRB11 

UNKNOWN YCL049c2, YEL043w1, YHL042w1, YHR151c2, YMR102c1, 
YNL034w1, YNR070w2 

1 Synthetic lethality 
2 Synthetic growth defect 
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Table 7. CDC34tm genetic interactions with essential genes. These genes were found to 
have a genetic interaction with the CDC34tm allele.  Superscipted “1” indicates a strong 
interaction while a superscripted “2” is a noticeable but not as dramatic difference in 
growth between CDC34 and CDC34tm strains. 
 

Category CDC34tm Synthetic Lethality CDC34tm Sythetic Rescue 

Ubiquitin UFD11  RPT22  UBA12  RPT62 UBI31  PRE12 

RNA Polymerase    BUR11  RPC341  RPB101  RPA431  
TAF51  NCB21  TFA21  TFG22 RPO21 

TAF61 

CTK12 

RP0312 
DNA Replication DNA21 MCM31  POL11  MCM71  CDC61 

Metabolism GUK11  ERG121  SAH12 PGI11  VHT11  CDC192  ERG252   

Transcription MCM11 ABF11 GCR11 RAP11 

tRNA splicing/ 
synthetase FRS11  SEN342  THS12 TRL11  KRS12 

Chromatin Remodeling RSC41 ABF11 RVB11  RSC81  EPL12 

Ribosomal RNA 
Processing 

RRP421  NOP41  RRP171  GAR11  UTP61  
PXR11  DHR21  SME11  NOG11  SQT11  
URB11  RRS11  SDO11  KRR12    UTP42  

ECM162 

NAN11  RRP401 
ESF11  IPI11  CBF51 
UTP112  YGR251W2 

Translation SRP681  NAB21  HRP11  NAB31  RRP171  
HYP22  KRR12  DRS12 UBI31  RPL15A1  TIF341  RPG12 

Chromosome 
Segregation SMC41  ASK11  SPC342  CDC52 MPS21 

Secretion SED51  SEC172 SEC121  SEC42 

Uncharacterized SGD11 YHR122W2  YBR190W2 --- 

Miscellaneous ERO11  RFT11  CCT61 CDC421  CCT41  TIM501 
1 Strong genetic interaction 
2 Noticeable but less dramatic difference in growth between CDC34 and CDC34tm 
strains. 
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FIGURES 

 

 
 
Figure 1. Model of the S. cerevisiae cell cycle. This model is derived from Hartwell 
(Hartwell, 1974) and emphasizes gene products discussed throughout this thesis.  Kinases 
are represented in green and transcription factors are represented in blue.  The spindle 
pole body and the attached microtubules are depicted.  See introductory text for details 
and supporting references. 
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Figure 2. Ubiquitin conjugation and 26S Proteasome dependent degradation. 
Proposed pathway by which polyubiquitination targets substrates to the proteasome with 
emphasis on the SCF/Cdc34 ubiquitin ligase complex. Proteins and protein complexes 
listed in parentheses are examples of proteins with the type of activity specified. 
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Figure 3. Structure and alignment of E2s: The serine/serine/loop motif is conserved 
in all Cdc34 family members. (A) Partial alignment of yeast E2s and Cdc34/Ubc7 
family members.  Red indicates amino acid residues unique to the Cdc34 family of E2s 
(the regulatory triad). Asterisks represent identities to Cdc34.  Dashes represent gaps.  Sc 
– S. cerevisiae; Oc – O. cuniculus; Dm – D. melanogaster; Ce – C. elegans; At – A. 
thaliana; Hs – H. sapiens; ASFV1 –African swine fever virus (GI:9628248); ASFV2 –
African swine fever virus (GI:450743). (B) The structure shown at left is a stereo view of 
Ubc7 (Cook et al., 1997) depicting amino acids D51-S128. The catalytic cysteine is 
represented by the blue arrow.  The serines (Ser67 and Ser91) of the triad are labeled and 
amino acid residues Gly97-Arg109 which constitute the insert are colored yellow. The 
invariant residue Trp110 and the highly conserved residue Asp108 of the loop are 
depicted in atomic detail to demonstrate proximity to each serine. The structure on the 
right is a stereo view of Rad6 (Worthylake, Prakash, Prakash, & Hill, 1998) depicting 
amino acids Asp50 - Asn114. The residues equivalent to Ser67 and Ser91 of Ubc7 are 
Lys66 and Asp90 which are shown in atomic detail.  
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Figure 4. Complementation of cdc34-2 and cdc34Δ  strains by Cdc34 S97 Mutants.  
(A) YL10-1, a cdc34-2 temperature sensitive strain, bearing 2-micron plasmids encoding 
the indicated CDC34 mutant under control of the GAL10 promoter were spotted in ten 
fold serial dilution on the indicated medias and grown at the indicated temperatures for 3 
days. (B) YL18, a cdc34Δ strain harboring a URA3 marked plasmid encoding wild type 
CDC34 and a LEU2-marked plasmid encoding the indicated CDC34 mutant were spotted 
in ten fold serial dilution on the indicated medias and grown at 30°C for 3 days.  5-FOA 
is toxic to cells containing a functional URA3 allele.   
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Figure 5. Cdc34 S97 is phosphorylated in vivo and detection is prohibited by certain 
protein extraction conditions.  (A) Soluble protein from yeast cells expressing from the 
CDC34 chromosomal locus either the wild type Cdc34 (lanes 1, 3 and 5), a C-terminally 
truncated Cdc34 encoding amino acids 1-244 (lane 2) or the Cdc34tm mutant encoding the 
S97D mutation (lane 4) or bacterially expressed 6XHisCdc34 (lane 6) were analyzed by 
western blot using the α-pS97 phosphospecific and α-Cdc34 antibodies. (B) An equal 
amount of soluble yeast protein extract made by either the glass bead or Horvath 
extraction protocol (see Materials and Methods) was analyzed by western blot using the 
α-pS97 phosphospecific and α-Cdc34 antibodies. 
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Figure 6. Cdc34 S97 phosphorylation increases in the G1 phase of the cell cycle.  
Strain RC150 was grown to mid-log phase and alpha factor was added to a final 
concentration of 0.5 µg/ml.  After 3 hours, > 95% of the cells were arrested with a 
schmoo like morphology.  Cells were washed and resuspended in fresh YPD.  Cells were 
collected at the indicated time points and total soluble protein was analyzed by western 
blot using the α-pS97 phosphospecific and α-Cdc34 antibody.  At least 100 cells were 
counted per time point to determine the budding index. 
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Figure 7. A screen for kinases which when overexpressed alter the level Cdc34 S97 
phosphorylation. Total soluble protein from an array of strains each overexpressing the 
indicated kinase was analyzed by western blot using the α-pS97 phosphospecific and α-
Cdc34 antibodies.   
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Figure 8. Loss of Vps34, Vps15, Sch9 and TORC1 activity reduce Cdc34 S97 
phosphorylation.  Total soluble protein from strains and lacking the indicated kinase or 
from a strain treated with 200 nM rapamycin for 1 hour was analyzed by western blot 
using α-pS97 phosphospecific and α-Cdc34 antibodies. 
 

 

 

Figure 9. The cAMP/Protein Kinase A pathway regulates Cdc34 S97 
phosphorylation. Total soluble protein from the strains KT945 (WT, lanes 1 and 3), 
KT948 (tpkwee, lane 2), KT1126 (bcy1-14, lane 4), and 6055 untreated (lane 5) or 
exposed to alpha factor (lane 6) was analyzed by western blot using α-pS97 
phosphospecific and α-Cdc34 antibodies. 
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Figure 10. PKA and Sch9 directly phosphorylate Cdc34 upon serine 97.  (A) 
Alignment of the sequence neighboring Cdc34 S97 and the consensus phosphorylation 
sites of PKA and AKT (Obata et al., 2000; Smith et al., 1999). (B) 6XHisCdc34ΔC and 
6XHisCdc34(S97A)ΔC were phosphorylated in vitro by addition of either bovine PKA or 
GSTTpk3 and [γ-32P]ATP.  Protein kinase A inhibitor was added to the indicated reactions.  
The reaction components were separated by SDS-PAGE and autoradiographed.  (C) 
6XHisCdc34ΔC was phosphorylated in vitro by either bovine PKA, GSTTpk3 or GSTSch9.   

The reaction was spotted onto a PVDF membrane and probed with either α-pS97 
phosphospecific or α-Cdc34 antibody.   
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Figure 11. Functional studies of Cdc34 amino acid residues R90, D91 and R93.  (A) 
YL10-1, a cdc34-2 temperature sensitive strain, bearing 2-micron plasmids encoding the 
indicated CDC34 mutants (pSJ101 = Empty, pYL150 = CDC34, pTL012 = 
R90D/D91N/R93D, pTL008 = R93D) were spotted in ten fold serial dilution on the 
indicated medias and grown at the indicated temperatures for 3 days. (B) YL18, a cdc34Δ 
strain harboring a URA3 marked plasmid encoding wild type CDC34 and a LEU2-
marked plasmid encoding the indicated CDC34 mutant were spotted in ten fold serial 
dilution on the indicated medias and grown at 30°C for 3 days.  
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Figure 12. Deletion of GCN2, VPS34 or VPS15 suppresses the growth inhibition of 
CDC34 overexpression on galactose. Isogenic strains lacking the indicated kinases were 
transformed with either pSJ101 (empty vector), pYL150 (CDC34) or pRC001 
(CDC34S97D/Δ12).  Expression is under control of the GAL10 promoter.  Cells were struck 
on either SD-LEU or SGAL-LEU and incubated at 32°C for 4 days. 
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Figure 13. Model of Cdc34 S97 phosphorylation and dimerization. 
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Figure 14. Either the S73/S97/loop motif, or the K73/D97/no loop arrangement of the 
catalytic E2 domain can support yeast growth when placed in the context of Cdc34.  
(A) Overnight cultures of cdc34-2 ts strain YL10-1 carrying the indicated constructs 
(pYL150 -CDC34, pYL27-CDC34 Δ103-114, pYL29 -CDC34tm, pRC001-CDC34S97D/Δloop) 
under the GAL10 promoter on a 2 micron YEp51 plasmid were grown overnight at 27°C 
in 5 ml of SD-Leu, adjusted to a density of 1x108 cells/ml, serially diluted, spotted onto 
SD-Leu plates and incubated at permissive (27°C) or non-permissive (37°C) temperature 
for 4 days. (B) Isogenic strains BL2 and RC85 encoding chromosomal copies of either 
CDC34 or CDC34tm were serially diluted as in C, spotted onto YPD and grown at 30°C 
for 4 days. (C) Isogenic strains encoding chromosomal copies of CDC34 or CDC34tm 
were grown to mid-log phase and analyzed by FACS for their DNA content indicative of 
cell cycle distribution. 
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Figure 15. Replacement of CDC34 with the CDC34tm allele leads to unexpected 
changes in steady-state levels and half-lives of substrates that are recruited via 
SCFCdc4 and SCFGrr1. (A) Protein levels were analyzed by α-Tap western blot of 
extracts made from haploid cells containing a genomic copy of either CDC34 
(Ghaemmaghami et al., 2003), or CDC34tm (strains RRC74, RRC76, RRC73, RRC78) 
allele and a genomic copy of one of the Sic1Tap, Far1Tap, Cln1Tap and Cln2Tap constructs, 
as indicated (see Table 3 for details).  At least in the case of the Sic1Tap construct, its cell 
cycle fluctuations were confirmed to be identical to untagged Sic1 (Ghaemmaghami et 
al., 2003). Like in the case of Cln1 and Cln2 (Tyers et al., 1993) two bands are visible in 
the α-Tap ClnTap western blots, representing different electrophoretic mobilities of the 
phosphorylated and unphosphorylated forms. Comparable levels of Cdc34 and Cdc34tm 
proteins were detected by α-Cdc34 western blot in each type of an extract, but only the 
analysis of the Far1Tap extract is shown. (B) Protein levels were analyzed as in A, except 
that extracts were prepared from mid-log-phase yeast cultures harvested at various times 
after cycloheximide treatment as indicated. Graphs show quantitation of the western blot 
results, as indicated.  
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Figure 16.  Ace2 is responsible for the increase in Sic1 steady state abundance in 
CDC34tm cells and is potentially substrate of both SCFGrr1 and SCFMdm30. (A and C) 
Protein extracts were prepared by the Horvath and Riezman method from yeast of the 
indicated genotype and analyzed with affinity purified α-Ace2 or α-Cdc34 antibodies, as 
indicated. (B and C) Protein extracts were prepared from yeast of the indicated genotype 
and analyzed with affinity purified α-Sic1, α-Ace2 or α-Cdc34 antibodies, as indicated.  
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Figure 17. mRNAs encoding enzymes which reduce the metabolic flux through 
glycolysis are reduced in CDC34tm cells and correlates with CDC34tm and grr1Δ 
sulfite sensitivity. (A) Metabolic pathways of glycolysis and its shunts.  The mRNAs 
which are significantly reduced (p val < 0.01) in CDC34tm cells are shown in red.  
mRNAs which are not significantly different between WT and CDC34tm cells are not 
shown.  The mRNA encoding the sulfite extrusion pump, SSU1, is significantly up-
regulated (p < 0.01) in CDC34tm cells and is shown because it directly affects 
acetaldehyde levels by preventing the formation of the acetaldehyde hydroxysulfonate. 
(B) Strains BY4741 (WT), 7137 (haa1Δ), KS422 (WT), KS418 (CDC34tm), KS415 
(grr1Δ) were grown overnight adjusted to equal densities, serially diluted ten fold, 
spotted onto YPD plates, pH 3.5, either with or without 2 mM sulfite, and incubated at 
37oC for 2 days.  
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Figure 18. Synthetic lethality analysis with the CDC34tm allele identifies several 
groups of genes that are critical for growth of CDC34tm but not CDC34 yeast. (A) 
General schematic of our SGA approach.  An example of results of the primary (top) and 
secondary (bottom) screen using the CDC34tm query allele, or the control CDC34 allele, 
as indicated, each marked with NAT1 in the same location (for details see text, and 
Methods). (B) Network analysis of genetic interactions. Osprey software was used to 
visualize interactions housed in the Biogrid database  among genes which are 
synthetically lethal or sick with the CDC34tm.  Excluded from the analysis are genes 
identified as synthetically lethal with CDC34tm but lacking known interactions with other 
genes.  The analysis includes SIC1 that is not synthetically lethal with CDC34tm, but that 
nevertheless shares seven genetic interactions with CDC34tm (blue nodes and lines).  The 
analysis identifies synthetic lethality (green), dosage rescue (yellow), synthetic growth 
defect (purple) and phenotypic enhancement (aqua).  
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Figure 19. Growth of CDC34tm but not of CDC34 yeast depends on the intact 
functions of UBP14, CKA2, RPN10 and RAD23 genes. (A and C) Haploids with the 
indicated genotypes were selected by streaking heterozygous diploids on haploid 
selection media with G418 and nourseothricin. Plates were incubated at 30oC for three 
days. (B) CDC34tm ubp14Δ haploids have an elongated bud and enlarged vacuole. 
Haploids of the indicated genotype were isolated by tetrad dissection and imaged 
microscopically. (D) Deletion of SIC1 bypass the requirement for RAD23 in growth of 
CDC34tm yeast.  Diploid strains with the indicated genotypes (Table 3) were sporulated 
and then struck on haploid double mutant selection plate that allows for growth of only 
the indicated haploid. Plate was incubated at 30°C for three days.  
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Figure 20. CTK2 is synthetically lethal with CDC34tm. (A) Haploids with the indicated 
genotypes were selected by streaking heterozygous diploids on haploid selection media 
with G418 and nourseothricin. Plates were incubated at 30°C for three days. (B) 
CDC34tm/CDC34 ctk2Δ/CTK2 diploids, RC141, were sporulated and dissected on YPD. 
(C) Haploids of the indicated genotype were isolated by tetrad dissection and imaged 
microscopically. (D) Diploid strains with the indicated genotypes (Table 3) were 
sporulated and then struck on haploid double mutant selection plate that allows for 
growth of only the indicated haploid. Plate was incubated at 30°C for three days.  
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Figure 21. The highly connected network among nutrient sensing kinases, RNA Pol 
II, Cdc34 and Cdc34 substrates. Osprey software was used to visualize interactions 
housed in the Biogrid database along with interactions discovered during the course of 
this work (✩).   
 
 

 
Figure 22. A network of essential genes which genetically interact with CDC34tm and 
whose protein products are ubiquitinated.  Osprey software was used to visualize 
physical interactions housed in the Biogrid database among essential genes which share a 
genetic relationship with CDC34tm and were found in a global, proteomic screen (Peng et 
al., 2003) to physically associate with the UBI4 gene product, ubiquitin. 
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Figure 23.  The Cdc34 S73/S97/loop motif increases chronological lifespan and is 
required for rapamycin resistance. (A) Strains BL2 and RRC85 were grown overnight 
in SD (2% glucose) lacking all amino acids, diluted to 5x107 cells/ml and spotted in ten 
fold serial dilution on YPD and YPD+25 nM rapamycin plates.  Plates were incubated at 
32°C for 3 days.  (B) Strains BL2 (WT) and RRC85 (CDC34tm) were grown in 50 ml of 
SD (2% glucose) lacking all amino acids for the indicated number of days and then an 
appropriate dilution of cells was spotted onto a YPD plate.  The plates were incubated for 
3 days at 32°C and the percentage of viable cells was calculated by counting the number 
of colony forming units divided by the number of cells plated.  Data shown are the 
average of at least three independent experiments. 
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