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ABSTRACT 

 

Kristy Lee Beavers Mount 

 

THE HAEMOPHILUS DUCREYI SAP TRANSPORTER CONTRIBUTES TO 

ANTIMICROBIAL PEPTIDE RESISTANCE 

 

Haemophilus ducreyi is the causative agent of the genital ulcer disease chancroid, which 

has been shown to facilitate the transmission of HIV.  H. ducreyi is likely exposed to 

multiple sources of antimicrobial peptides in vivo.  APs are small, cationic molecules 

with both bactericidal and immunomodulatory functions.  Because H. ducreyi is able to 

establish and maintain an infection in an environment rich with antimicrobial peptides, 

we hypothesized that the bacterium was resistant to the bactericidal effects of these 

peptides.  Using a 96-well AP bactericidal assay, we examined H. ducreyi susceptibility 

to eight human APs likely to be encountered at the site of infection, including the α-

defensins human neutrophil peptide-1, human neutrophil peptide-2, human neutrophil 

peptide-3, and human defensin 5, the β-defensins human β defensin-2, human beta 

defensin-3, and human beta defensin-4, and the human cathelicidin, LL-37.  H. ducreyi 

survival was compared to the survival of Escherichia coli ML35, a strain known to be 

susceptible to several antimicrobial peptides.  H. ducreyi was significantly more resistant 

than E. coli ML35 to the bactericidal effects of all peptides tested.  Furthermore, we 

found that representative class I and class II strains of H. ducreyi were each resistant to 

APs of each functional category, indicating that resistance to antimicrobial peptides could 



 v 

represent a conserved method of pathogenesis for H. ducreyi as a species.  The H. ducreyi 

genome contains a homolog for the Sap influx transporter.  To study the role of the H. 

ducreyi Sap transporter in AP resistance, we generated an isogenic sapA mutant and used 

the 96-well AP bactericidal assay to compare the AP susceptibility profiles of wild-type 

H. ducreyi, the sapA mutant and the sapA trans-complement to α-defensins, β-defensins, 

and LL-37.  We observed a 25% decrease in the survival of the sapA mutant when it was 

exposed to LL-37.   These findings suggest that the H. ducreyi Sap transporter plays a 

role in H. ducreyi resistance to LL-37, but it is likely that other AP resistance 

mechanisms co-exist within the bacterium. 

 

 

Margaret E. Bauer, PhD 
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      LITERATURE REVIEW 

SECTION I:  HAEMOPHILUS DUCREYI 

 

 

History of Chancroid 

Haemophilus ducreyi is a Gram negative bacterium that causes chancroid, a genital ulcer 

disease (GUD) that is endemic in areas of Africa, Southeast Asia, and Latin America 

(219).  Leon Bassereau was the first physician credited with making a clinical distinction 

between the chancroid ulcer and the chancre of syphilis (19, 135).  In 1889, Augusto 

Ducrey was able to isolate the causative agent of chancroid through a series of repetitive 

forearm autoinoculation experiments and the organism was subsequently named in his 

honor (58, 135).  In 1900, Bezancon et al. used culture-purified bacteria to inoculate the 

forearms of volunteers who later developed soft chancre at the site of inoculation (32, 

135).  This experiment fulfilled Koch’s postulates and H. ducreyi was formally defined as 

the causative agent of chancroid when the bacteria was re-isolated from the lesions (32, 

135). 

 

 

Taxonomy and Genetics of H. ducreyi 

H. ducreyi is limited in its ability to aquire heme and is only capable of taking up an 

exogenous porphyrin ring containing source of heme to meet its basic requirements for  

growth (89, 159).  In addition, it has been shown to reduce nitrate and to produce alkaline 

phosphatase (159).  These biochemical characteristics, among others, led researchers to 

originally classify the organism as a Haemophilus species (114).  However, after a series 

of comparative genetic analyses, it was found that the bacterium did not closely resemble 

a true Haemophilus species (55, 56, 159).  The bacterium was subsequently re-classified 

as an Actinobacillus (55, 56, 159, 219).  A comparative analysis of the competence loci, 

DNA signal sequences, and 16S RNA of the members of the Pasteurellaceae family 

indicated that Mannheimia haemolytica, Actinobacillus pleuropneumoniae, and H. 

ducreyi form a separate genetic lineage apart from the other members of this family (80). 
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The H. ducreyi genome is composed of a single circular 1.7 Mb chromosome and the 

organism can maintain plasmids (159, 162, 219).  An annotated sequence of H. ducreyi 

35000HP was published in 2003 at www.ncbi.nih.gov.  Nineteen H. ducreyi clinical 

isolates were analyzed, and based on observed differences in lipooligosaccharide (LOS) 

migration patterns and outer membrane protein (OMP) profiles, the strains were grouped 

into two distinct classes (23, 193, 247).  The specific differences between these classes 

will be described in detail later in this manuscript.  

 

 

Clinical Features of Chancroid 

H. ducreyi likely gains access to the skin through small abrasions caused by the friction 

of sexual intercourse (135, 159, 219).  Small red papules form within a day of entry, but 

are generally not noticed by patients (135, 159, 219).  These papules develop into 

pustules within two to three days and can go on to ulcerate within seven to fourteen days 

(135, 159, 219).  The painful chancroid ulcers are typically soft, with ragged edges (135, 

159, 219).  The ulcer base is often covered by a necrotic, purulent exudate that bleeds 

easily (135, 159, 219).  In many cases, the infection progresses to include regional 

lymphadenopathy and bubo formation (135, 159, 219).  Lesions are typically localized to 

mucosal surfaces or to the stratified squamous epithelium (135, 219).  Patients in 

economically disadvantaged areas, where chancroid is endemic, often seek medical 

attention only after persistent ulceration (90, 159, 219).  H. ducreyi grows best between 

33°C and 35°C and it is likely that the temperature sensitivity of the organism prevents 

H. ducreyi from spreading throughout the body (135, 227).  However, extra-genital 

lesions can occur due to autoinoculation and in rare cases, H. ducreyi can cause infection 

in the extremities and throat (36, 135, 237).  

 

 

Diagnosis and Treatment of Chancroid 

H. ducreyi is a gram-negative bacillus that auto-aggregates (135, 227).  When grown on 

agar, the organism clumps and colonies can be pushed across the agar surface intact (135, 

227).  Microscopically, H. ducreyi assumes characteristic chaining patterns such as 
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“railroad tracks,” “schools of fish,” and “fingerprints” (135, 159).  The “railroad track” 

conformation is often observed after growth in liquid broth, while the “schools of fish” 

and “fingerprint” conformations are often observed after growth on agar or in specimens 

isolated from tissue (159).  These morphological features, while distinctive, do not allow 

for the accurate diagnosis of chancroid (135).  Nonetheless, culture for H. ducreyi 

remains the main diagnostic method available to most clinical laboratories as it is 

significantly more cost effective than alternative methods (135).  A combination of 

gonococcal (GC) broth and Mueller-Hinton media are optimal for H. ducreyi isolation 

(135, 227).  IsoVitaleX, hemoglobin, and fetal bovine serum or starch can be successfully 

used for supplementation of growth in culture (135, 159, 227).  Vancomycin (3 µg/ml) is 

often added to clinical cultures to suppress contamination by Gram-positive commensal 

bacteria (112, 135).  Most H. ducreyi strains grow well at 33°C in a humid atmosphere 

containing 5% CO2 (135, 227).  However, due to the fastidious nature of the organism, 

culture based diagnostic tests are not very sensitive (135).  Furthermore, significant 

difficulties have been encountered in culturing class II H. ducreyi strains, and 

consequently, it is likely that these strains are underrepresented among clinical isolates 

(160, 247). 

 

While significantly more costly, PCR-based techniques have improved the accuracy of 

clinical diagnosis (31, 135, 228).  The multiplex PCR (M-PCR) system was designed to 

amplify the DNA of multiple STD pathogens simultaneously (31, 135, 176) and was later 

modified to include quantitative real time PCR methodology for higher diagnostic 

accuracy (228).  This technology provides clinicians with the capability to distinguish 

between infections caused by H. ducreyi, Treponema pallidum, and herpes simplex virus 

and is currently regarded as the best diagnostic option available (228).  However, due to 

the prohibitive cost of refrigeration and equipment, and because the test was never made 

commercially available, it is unfeasible to conduct such an analysis in the poor 

communities where chancroid is endemic (135).  Several serology based techniques have 

been developed as a means for diagnosing chancroid (135).  Unfortunately, each of these 

strategies has met with limited success, likely due to the lack of an early antibody 

response to H. ducreyi infection (135, 180, 219).   
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Several antibiotic classes have been shown to exhibit efficacy against H. ducreyi, 

including the macrolides, aminoglycosides, quinolones, and cephalosporins (28, 159, 

222).  The current recommendation for chancroid treatment is one gram of azithromycin, 

taken one time, and delivered orally or 500mg ciprofloxacin twice daily for three days or 

a single 250 mg dose of ceftriaxone delivered intramuscularly (15, 222).  The ease of a 

single dose drug treatment regiment increases patient compliance and could help to 

prevent the spread of antibiotic resistance strains (104, 135).  H. ducreyi has the ability to 

maintain plasmid DNA, and as such, isolates have been reported to encode plasmid-

mediated resistance to ampicillin, chloramphenicol, tetracycline, aminoglycosides, 

sulfonamides and trimethoprim (53, 104, 159).  Chromosomal mutations resulting in 

trimethoprim resistance have also been reported (159).  As with all newly emerging 

antibiotic resistance scenarios, the increased prevalence of H. ducreyi strains containing 

antibiotic resistance genes is of great concern due to a dwindling supply of usable 

antibiotics and a shortage of new drugs in the developmental pipeline (135, 159).    

 

 

Epidemiology of Chancroid 

As described by Steen et al., chancroid is a disease whose cause can be partially related to 

economic prosperity and opportunity (222).  At one time, chancroid was prevalent is 

most parts of the world (222).  As nations became industrialized, a greater proportion of 

the population moved into to urban areas (222).  However, because economic 

opportunities were initially more abundant for men than women, some women were 

forced into temporarily trading sex for goods (222).  Prostitution plays a significant role 

in H. ducreyi transmission (159, 219, 222) and is important to the basic epidemiology of 

the organism (159, 222).  As economic opportunities for women increased, the 

prevalence of chancroid in a given geographic area was reduced (222).  These changes in 

socio-economic conditions, coupled with the advent of antibiotic therapy, led to the near 

elimination of chancroid from the western world (222). However, chancroid remains 

endemic in many of the poorest regions of the world, as these regions are now 

undergoing their own process of industrialization similar to what was previously seen in 

the Western world (222).  Because H. ducreyi is a strict human pathogen with no animal 
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reservoir, and because the economic health of a region is so closely coupled with the 

transmission of the disease, chancroid is a viable candidate for global eradication (222). 

 

In experimental infection, men developed pustules at rates two fold higher than women 

(33, 219).  Although the exact cause of this disparity has not been consclusively 

determined, these finding correspond with observations of natural infection, where 

chancroid infections rates are approximately three times higher in men than in women in 

endemic regions, and can be as much as 25 times higher in localized outbreaks (90, 135, 

219).  The transmission rate of chancroid is high (192, 219), a fact that illustrates the 

importance of using a proper barrier method of protection during sexual intercourse.  

Male circumcision has been shown to be a highly effective method of reducing the 

transmission rate of many sexually transmitted diseases, including chancroid (158, 219). 

 

 

H. ducreyi and HIV 

In recent years, H. ducreyi has become an organism of considerable interest to 

researchers because it can co-facilitate the transmission of the human immunodeficiency 

virus type 1 (HIV) (69, 109, 157, 245).  Patients with active GUD have a much greater 

chance of contracting and spreading HIV (201, 219), and thus contribute to the to the 

HIV epidemic (201, 219).  However, while GUD in general can contribute to HIV 

acquisition, H. ducreyi specifically increases the transmission rate of HIV in several ways 

(157, 201, 219).  At the most basic level, the chancroidal ulcer provides a gateway for the 

virus to enter the skin (157, 201, 219).  Upon entry, the virus encounters CD4+ T-cells 

and macrophages within the ulcer.  In response to infection with H. ducreyi, these cells 

express increased levels of the HIV co-receptors CCR5 and CXCR4 (101, 219).  In 

addition, H. ducreyi promotes viral shedding from the chancroidal ulcer and increases the 

viral load in the blood and semen, making transmission to another person all the more 

likely (157, 219, 245).   Fortunately, the increased HIV viral load associated with 

chancroid co-infection is associated only with the ulcerative stage of disease, indicating 

that early treatment of chancroid could help to reduce HIV transmission (107).  However, 

experiments examining the exact molecular mechanisms underlying the interactions of 
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HIV and H. ducreyi should be designed with caution, as unusual and severe clinical 

pathology has been described in immunocompromised HIV patients infected with H. 

ducreyi (36).  

 

Because of the difficulty associated with developing a HIV vaccine (8), there is 

considerable interest in attempting to reduce HIV transmission by generating a vaccine 

against H. ducreyi (49).  In order for this strategy to be successful, an antibody response 

must be mounted against the H. ducreyi vaccine that results in the production of 

immunological memory (49, 180).  Several H. ducreyi proteins have been evaluated with 

the goal of identifying factors that are immunogenic (5, 16, 60, 62, 121, 126).   

 

 

Models of Chancroid Infection 

In order to study the contribution of individual genes on pathogenesis, it was necessary to 

develop in vivo chancroid models.  One of the first attempts to develop an animal model 

of chancroid resulted in the injection of H. ducreyi under the skin of mice (44, 135, 235).  

While ulceration occurred in this model, it was later demonstrated that the lesions were 

not caused by live bacteria, but instead, as the result of the inflammatory response 

stimulated by H. ducreyi LOS (44, 135). 

 

Initial experiments with rabbits were unsuccessful because the bacteria failed to replicate 

at normal skin temperature (44, 135).  However, when the rabbits where housed at 

temperatures of 15 to 17°C, the bacteria survived and produced dermal lesions that 

persisted for up to two weeks before resolving (135, 198).  In comparison, chancroidal 

lesions in humans persist for up to three months (134, 219), indicating that the kinetics of 

disease progression vary between humans and rabbits.  In addition, a large inoculum was 

required to initiate infection (198).  1x10
5
 CFU were used to inoculate the rabbits (198, 

219), while in contrast, only 1-100 CFU are needed to initiate infection in humans (10, 

218). The difference in the size of the inoculum necessary to initiate infection 

demonstrates that the pathogenic efficiency of the bacterium is reduced in rabbits 

compared to humans (219).  
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In the macaque model, 1x10
7 

- 2x10
8 

bacteria were injected into the genital epithelium of 

primates (135, 136, 219, 233).  The male primates developed lesions within one to two 

days of infection and ulcers reminiscent of human chancroid developed within two weeks 

(135, 136, 219, 233).  However, female macaques failed to develop chancroid ulcers 

(135, 136, 219, 233).  This contrasts human disease which manifests in both males and 

females, albeit at lower rates in females. 

 

Finally, in the swine model, bacteria were inoculated onto the ears of pigs, using an 

allergy testing device (100).  Papules were apparent within two days of inoculation and 

pustules formed by day seven (100). Ulcerations were visible by 14 days of infection 

(100).  However, while the histopathology of the swine model mimicked that of human 

infections, a larger inoculum was required to initiate infection in pigs compared to 

humans and the bacteria did not replicate (100, 219).  These observed differences once 

again illustrate that H. ducreyi is a much less efficient pathogen in animals than in 

humans (219). 

 

In addition to the problems described above, several inconsistencies have been noted 

between the human and animal immune response to H. ducreyi.  Specifically, the human 

antibody response is delayed compared to that of rabbits, macaques and swine (9, 100, 

198, 219, 233).  In addition, rabbits and swine, unlike humans, develop productive 

immunity after exposure to H. ducreyi (93, 180).  Finally, a mutation that was shown to 

have a demonstrable effect on virulence in the swine model of chancroid (superoxide 

dismutase C) was later shown to play no role in the virulence of H. ducreyi in humans 

(34).  Together, these findings highlight the fundamentally different immune response of 

humans and animals to H. ducreyi.  As a strict human pathogen, H. ducreyi has evolved 

the ability to survive in the specific environment of the human skin (222).  Because the 

bacterium does not naturally cause disease in animals, any pathology that manifests from 

the animal models cannot be considered to be completely analogous to human infection.  

As with all artificial disease systems, the findings derived from these models should be 

evaluated in context of the limitations of each model.   
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From a historical perspective, the animal models of chancroid have provided us with the 

preliminary tools to better understand the biology of chancroid.  However, to date, the 

human model of experimental infection is the best method available for evaluating the 

contribution of individual genes in H. ducreyi pathogenesis (10, 219).  Volunteers are 

inoculated on each upper arm with approximately 100 live bacteria via puncture wounds 

made by an allergy-testing device (10, 219).  Isogenic mutant and parent bacterial strains 

are inoculated on opposite arms in order to prevent cross-contamination (10, 219). The 

patients are then monitored until a painful pustule develops, until resolution of the 

disease, or for a maximum of 14 days after inoculation, which ever comes first (10, 219).  

Papules form at the same rate in males in females (10, 219).  However, the pustule 

formation rate is greater in males, and thus mimics natural infection (33, 219).  Mutants 

who fail to produce pustules at doses ten times higher than the dose at which pustule 

formation is observed in the wild type are classified as fully attenuated.  Mutants who fail 

to produce pustules or produce pustules at a lower rate than the wild type, at either the 

same dose or at doses two to three times higher than the wild type, are classified as 

partially attenuated (10, 17, 219).      

 

The human challenge model (HCM) of chancroid has several clear advantages over the 

animal models that have been developed.  Most importantly, the bacterium is studied in 

its natural host, with an intact immune response (10, 219).  Second, the model evaluates 

H. ducreyi at the natural site of infection, human skin (10, 219).  Third, the clinical 

features of experimental papule and pustule formation are identical to those observed 

clinically (10, 219).  Finally, the histopathology of the experimental lesions closely 

resembles natural ulcers indicating that the model mimics chancroid clinical pathology 

(22, 219).  

 

While the HCM may be the best model available for the study of H. ducreyi, there remain 

limitations to be considered.  First, in order to ensure the safety of the volunteers, 

experimental infection can only be sustained through the pustular stage, or for a 

maximum of 14 days (10, 219).  This limitation eliminates the direct study of the 

ulcerative stage of chancroid (219).  However, because the histopathology of, and 
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localization of bacteria within experimental pustules so closely resembles that of natural 

ulcers, the applicability of the model could extend beyond the 14-day time period and 

findings could be extrapolated to apply to the ulcerative stage (22, 219).  Second, the use 

of an allergy testing device for the inoculation of H. ducreyi into the skin could disguise 

the effect of any virulence determinants involved with the initial entry and establishment 

of infection in the skin (219).  However, while these limitations are important and must 

be considered in the analysis of any data deriving from the model, the HCM remains the 

most relevant model of H. ducreyi infection available (219). 

 

    

Host Pathogen Interactions 

Small abrasions in the epidermis, likely produced during intercourse, are thought to 

provide H. ducreyi with a means of entering the body (25, 159, 219).  Upon entry into the  

epidermis and dermis, the bacteria begin to replicate (25, 219).  As part of the healing 

process, collagen and fibrin are deposited at the wounding site (25, 219).  H. ducreyi 

associates with these molecules which form a scaffolding that ultimately supports pustule 

formation (25, 219).  The increased levels of hypertrophic scarring observed in HCM 

volunteers may be due to the excessive collagen deposition that occurs in some subjects 

during pustule formation (102). 

 

Chancroidal pustules contain several cell types.  PMNs, Macrophages, T-cells, myeloid 

dendritic cells (DC) and a small number of B-cells accumulate at the pustule site (25, 

101, 219).  PMNs comprise the majority of the abscess, which is surrounded at its base 

by a “macrophage collar” (25, 219).  Beneath the macrophage collar, macrophages and T-

cells accumulate (25, 102, 219).  H. ducreyi associates with both PMNs and 

macrophages, but resists phagocytic uptake by both cell types (7, 25, 219).  However, H. 

ducreyi is taken up by myeloid DCs, which are in turn partially activated, resulting in 

stimulation of the immune response (18, 102).  The majority of T-cells recruited to the 

site of infection are CD4+ memory cells, suggesting a “delayed type hypersensitivity 

response”, even in the absence of prior infection (180, 219).  These T-cells are activated 

by H. ducreyi specific antigens to produce the cytokines IFN-gamma and IL-10, resulting 
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in a regulatory T cell response (78).  The immunosuppressive activity of IL-10 is thought 

to interfere with the activity of the phagocytes and thus inhibits the efficient clearance of 

H. ducreyi (78, 102, 219). The TH1 T-cell response is in turn supported by a DC type 1 

response (102). 

 

In experimental infection, volunteers who undergo repeated challenge with H. ducreyi 

can be grouped according to the result of their infection (102, 215).  Patients who 

repeatedly resolve infection after challenge are labeled “resolvers” (RR) while patients 

who repeatedly form pustules after challenge are labeled “pustule formers” (PP) (102, 

215).  Pustule formation is dependent on both the host immune response and gender (33, 

215).  Consequently, great interest has been generated concerning the differences in the 

immune response of PP vs. RR volunteers.  Microarray analysis of myeloid DC indicates 

that each group generates a distinct immune response after exposure to H. ducreyi that is 

independent of phagocytic capability (102, 215).  The characteristics of this “differential 

response” ultimately contribute to the PP and RR phenotypes (102).  Individuals who 

repeatedly form pustules after challenge with H. ducreyi generate a mixed “hyper 

inflammatory” and regulatory DC transcription profile (102).   

 

 

Virulence Determinants of H. ducreyi 

The animal models of chancroid infection have been successfully used for the 

preliminary evaluation of the role individual genes play in H. ducreyi pathogenesis.  

Contribution to virulence, however, is ultimately determined by attenuation of an 

isogenic mutant in the human model of experimental infection.  A list of all isogenic 

mutants that have been shown to contribute to H. ducreyi virulence in the HCM can be 

found in Table 1. 
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Table 1. H. ducreyi virulence factors as defined by the human challenge model 

Protein  Outcome     Reference 

DltA  Partial attenuation for pustule formation (105) 

WecA  Partial attenuation for pustule formation  (17) 

FgbA  Partial attenuation for pustule formation (23) 

HgbA  Full attenuation for pustule formation (11)  

PAL  Full attenuation for pustule formation (71)   

DsrA  Full attenuation for pustule formation (35)   

TadA  Full attenuation for pustule formation (217) 

NcaA  Full attenuation for pustule formation (72) 

LspA1 and 2 Full attenuation for pustule formation (106)  

 

 

The hemoglobin receptor HgbA is one such virulence determinant (11).  HgbA is an 

outer membrane protein (OMP) whose role in heme transport in dependent on TonB (5, 

61, 63).  The HgbA protein binds hemoglobin, the only source of heme or iron that can be 

utilized by H. ducreyi in vivo (126).  Without a functional HgbA, it is likely that the 

mutant starves for heme and dies (135, 219).  Two other TonB dependent receptors have 

been characterized in H. ducreyi: the heme receptor, TdhA, and an hypothetical protein, 

TdX (126).  A tdX/tdhA double mutant retained virulence in the HCM (126), a finding 

that indicates that HgbA alone is sufficient to provide H. ducreyi with the heme necessary 

for survival (126).  Because HgbA is also highly conserved within the species (247), 

researchers have speculated that it could serve as a potential H. ducreyi vaccine candidate 

(11).  Preliminary work was done analyzing the efficacy of an HgbA subunit vaccine in 

the swine model and the study yielded encouraging results concerning the ability of this 

protein to elicit a memory response in swine and to protect against re-infection (5). 

 

The peptidoglycan-associated lipoprotein (PAL) has also been determined to be an H. 

ducreyi virulence factor (71).  PAL is a outer membrane lipopoprotein that is thought to 

play a role in membrane stabilization by linking the cytosolic membrane to the outer wall 

(71, 216).  In the HCM, the pustule formation rate was significantly lower at sites 

inoculated with the PAL mutant as compared to the parent (71).  The PAL mutant formed 

smaller colonies than the wild type and was extremely sensitive to antibiotics (71), 

suggesting that the loss of PAL yields an unstable outer membrane (219).  In addition, 
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because of the pro-inflammatory nature of lipoproteins, the loss of PAL may have 

resulted in the stimulation of a weakened inflammatory response to the mutant and 

consequently less clinical pathology (71, 219). 

 

Another virulence determinant defined by the HCM was the ducreyi serum resistance A 

(DsrA) protein (35).  This OMP contributes to the serum resistance of H. ducreyi by 

blocking the binding of IgM and the subsequent classical complement pathway activation 

that would normally follow (2, 62). In addition, the protein acts as an adhesin by binding 

fibronectin and vitronectin (124, 125).  In the HCM, volunteers inoculated with the DsrA 

mutant, FX517, developed significantly smaller papules compared to parent inoculated 

sites and failed to develop pustules, indicating that serum resistance is an important 

phenotype for H. ducreyi pathogenesis (35).   

 

The OMP ducreyi lectin A (DltA) also contributes to the H. ducreyi serum resistance 

phenotype (127), although it plays a more minor role than does DsrA (105).  DltA 

mediates binding to lactose-related carbohydrates (127).  Isogenic dltA mutants were 

generated in both 35000HP and the dsrA mutant background (127). Each mutant 

exhibited increased susceptibility to serum than did the parent and the expression of 

recombinant DltA conferred serum resistance to H. influenzae strain Rd (127).  In the 

HCM, the DltA mutant was found to be partially attenuated for pustule formation (105). 

 

The H. ducreyi genome contains an operon that controls the production of fimbriae and 

has high levels of homology to the well described tight adhesion (tad) operon of A. 

actinomycetemcomitans (166, 217).  Three individual mutations were generated in this 

operon in the 3500HP background (166).  Each mutation reduced the bacterium’s ability 

to form microcolonies and to attach to human foreskin fibroblasts (166).  Consequently, 

the mutations were tested in the temperature dependent rabbit model of chancroid (166).  

The polar tadA mutant exhibited a small but significant decrease in virulence in the 

model, while the rcpA and flp-1 flp-2 mutants each had no effect on pustule formation, 

indicating that microcolony formation played at best, a minimal role in virulence (166).  

However, when the tadA mutant was evaluated in the HCM, it was fully attenuated (217).  
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These data suggest that tadA, which has homology to the NTPases of type IV section 

systems in other bacteria, or one of its downstream ORFs, is required for virulence by H. 

ducreyi in humans. (217)  Further, this study highlights the importance of studying H. 

ducreyi, a strict human pathogen, in humans. 

 

H. ducreyi binds the extracellular matrix (ECM) proteins fibronectin, laminin,
 
and type I 

and III collagen in vitro (26), associates with fibrin and collagen within experimental 

papules and pustules (25) and associates with fibrin at the ulcerative stage of disease (22).  

Consequently, the adherence of H. ducreyi to ECM proteins correlates with infection (72, 

219).  The necessary for collagen adhesion protein A (NcaA) is an H. ducreyi OMP that 

binds collagen in vitro and has homology to DsrA (72).  When expressed in trans, the 

protein confers to E. coli the ability to bind to type I collagen (72).  In the swine model, 

the NcaA mutant exhibited significantly reduced survival compared to the parent.  In the 

HCM, the NcaA mutant was fully attenuated, demonstrating the importance of collagen 

adherence to H. ducreyi virulence (72). 

 

H. ducreyi encodes two large ORFs aptly named large supernatant protein 1 (LspA1) and 

large supernatant protein 2 (LspA2).  These secreted proteins are highly homologous to 

one another (244).  Four H. ducreyi strains that were avirulent in animal models were 

found to have natural mutations that resulted in the loss of either LspA1 or LspA2 

production, suggesting that the proteins could be involved in H. ducreyi virulence (244).  

Three isogenic mutants were constructed lacking either one or both of the lspA1 and 

lspA2 ORFs (243).  Western blot analysis indicated that the parent contained abundant 

LspA1 and small amounts of LspA2 (243).  The lspA2 mutant contained comparable 

amounts of LspA1 to the wild-type, and lacked LspA2 (243).  In contrast, the lspA1 

mutant contained significantly up-regulated amounts of LspA2 (243).  The lspA1 lspA2 

double mutant was attenuated for virulence in the temperature-dependent rabbit model, 

indicating that the proteins could play a role in H. ducreyi virulence (243).   

 

Wild type 35000HP was shown to inhibit the phagocytosis of IgG opsonized 

microspheres by differentiated HL-60 (human promyelocytic leukemia cell line) and U-
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937 (Human leukemic monocyte lymphoma cell line) cells and by J774A.1 (murine 

macrophage cell line) cells in vitro (238).  In contrast, phagocytosis proceeded in the 

presence of the lspA1/lspA2 double mutant (238).  Likewise, 35000HP resisted 

phagocytosis itself, while the double mutant was readily taken up by HL-60 and J774A.1 

cells (238).  Proteins ranging in size from 50 to 60 kDa were harvested from macrophage 

cell lines exposed to H. ducreyi.  Using phosphor-specific antibodies and western 

analysis, these antibodies were shown to exhibit reduced levels of phosphorylation (156).  

Lyn and Hck, two Src family tyrosine kinases that fall within this size rage and that play 

an important role in phagocytic signaling, were later shown to have reduced enzymatic 

activity after exposure to H. ducreyi (156).  The lspA1/lspA2 double mutant was 

subsequently shown to be fully attenuated for virulence in the HCM (106).  Taken 

together, the cumulative data concerning LspA1 and LspA2 indicates that these proteins 

contribute to H. ducreyi virulence by allowing the bacteria to resist phagocytic uptake 

through the suppression of Src family protein tyrosine kinase activity (106, 156, 238). 

 

Many Gram-negative entero-bacterial species produce a complex cell wall bound 

carbohydrate named enterobacterial common antigen (ECA) (17, 64).  The enzymatic 

pathway controlling ECA production also contributes to the generation of 

lipopolysaccharide (LPS) O-antigen and to capsules (17, 129).  While H. ducreyi does not 

produce either of these structures, it does encode homologs of the ECA biosynthesis 

pathway, suggesting that H. ducreyi produces ECA (17).  The first enzyme in the ECA 

synthesis pathway, undecaprenyl-phosphate alpha- acetylglucos-aminyltransferase 

(WecA), was disrupted through the insertion of a polar antibiotic resistance cassette, 

creating an isogenic 35000HPwecA mutant (17, 64, 129).  As the presence of ECA has 

not yet been confirmed in H. ducreyi, it is still too early to make a definitive conclusion 

concerning the exact function of wecA in H. ducreyi virulence (17) However, when the 

mutant was analyzed in the HCM it was found to be partially attenuated, indicating that 

the wecA gene, or a downstream ORF, plays a role in H. ducreyi virulence (17). 

  

A gene expression study which compared the expression levels of H. ducreyi genes in 

broth and tissue was used to identify possible genes involved in virulence (24). This 
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study identified HD0192, a lipoprotein, as a potential virulence factor (24).  The 

recombinant lipoprotein was shown to bind fibrinogen in a ligand blot, and was 

subsequently renamed fibrinogen binder A (FgbA) (23).  An isogenic fgbA mutant was 

constructed in the 35000HP background through the insertion of a non-polar antibiotic 

resistance cassette (23).  In the HCM, the fgbA mutant was shown to be partially 

attenuated, suggesting that fgbA contributes to H. ducreyi virulence (23). 

 

It is also important to note that not all isogenic H. ducreyi mutants tested in the HCM 

have been shown to contribute to virulence.  For example, the H. ducreyi LOS molecule 

has been shown to mediate attachment of the bacterium to keratinocytes in vitro (79).  

However,  two separate H. ducreyi mutants, each harboring a mutation in the enzymatic 

pathway controlling LOS synthesis, (lgbA and lgbF) and consequently producing a 

truncated LOS molecule, retained their virulence in the HCM (261, 263).  This finding 

illustrates that an in vitro phenotype does not always translate to in vivo significance.  

Similarly, the H. ducreyi genome encodes the production of a 125 kDa β-hemolysin (181, 

232) which has been shown to have cytotoxic activity against human foreskin fibroblasts, 

human foreskin epithelial cells, human macrophage like cells (U937) and human T-cell 

like cells (Jurkat) in vitro (14, 252).  However, the H. ducreyi hemolysin did not affect 

the rate of pustule formation in the HCM, indicating that it is not important for the 

virulence of the organism (179).   In a third example, H. ducreyi produces a cytolethal 

distending toxin (CDT) that induces cell elongation and apoptosis in several cell lines 

(50, 51, 77) and apoptosis in primary DC, B-cells, T-cells and monocytes (17, 50, 251) 

by activating the p53/p21 and cyclin B/CDK1 dependent DNA damage response 

pathways, consequently blocking cell division in the G1 and G2 phases of cell growth 

(29, 51, 52, 77). The in vitro data collected to date suggests that the H. ducreyi CDT is 

important for the virulence of the organism and could provide an explanation for the 

persistence of untreated chancroid lesions (77, 229).  However, the in vivo data 

concerning CDT does not support this conclusion as multiple H. ducreyi CDT mutants 

have been shown to retain virulence in both the temperature dependent rabbit model of 

chancroid and in the HCM (224).  Taken together, the examples described above 

illustrate the immense value of the HCM as a tool that allows us to interpret in vitro 
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findings in a relevant in vivo setting and to classify H. ducreyi virulence factors in 

relation to Koch’s molecular postulates (66).      

 

 

Table 2.  H. ducreyi structures that did not contribute to virulence in the HCM 

Structure    References  

Lipooligosaccharide   (20, 21, 26, 44, 79, 223, 261, 263) 

Fine tangled pilus   (12, 42) 

β-hemolysin    (14, 179, 182) 

Superoxide dismutase   (34, 164, 204, 205) 

Cytolethal distending toxin  (138, 224, 262) 

Major outer membrane proteins  (99, 231) 

 

 

Two Classes of H. ducreyi 

As a species, H. ducreyi exhibits a high degree of genetic homology (151).  However, 

based on differences in the binding specificity of antibodies to OMPs, the rate of 

migration of LOS, and growth characteristics, two classes of H. ducreyi clinical isolates 

have been defined (247).  White et al. compared the molecular size of the DsrA protein in 

a variety of H. ducreyi clinical isolates (247).  In this study, they determined that five of 

the strains pro  duced an alternative version of the protein that was markedly different 

from that of 35000HP (247).  These five strains also expressed variant forms of NcaA, 

DltA, Hlp, MOMP, and OmpA2, that like DsrA, retained similarity to each other, but 

were distinct from 35000HP (247).  In addition, these strains synthesized a faster-

migrating LOS due to genetic differences in the lbgAB containing operon (194, 247).  

The OMP profiles and LOS migration patterns from the remaining H. ducreyi isolates 

were identical to that of 35000HP (247).  As such, the 35000HP containing group was 

classified as Class I and the strains expressing the variant proteins were classified as class 

II (247).  In light of this finding, analyses of potential virulence factors in H. ducreyi now 

generally include an evaluation of the conservation of genes in representative strains 

encompassing both classes of H. ducreyi, and the list of variant protein forms 

characterized to date has been expanded to include FgbA (23).  In addition, a large scale 

proteomics study was conducted comparing the overall proteome profiles of five H. 

ducreyi strains (193).  After an SDS page analysis of the migration patterns of 149 
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individual proteins, the authors concluded that the overall protein migration profiles of 

the H. ducreyi strains could be divided into two distinct groups, which corresponded to 

the groups proposed by White et al. (193, 247). Further, they commented that the high 

level of proteomic diversity between these groups warranted a full genomic sequencing 

of a representative member of the second class of H. ducreyi (193).  
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LITERATURE REVIEW 

SECTION II: ANTIMICROBIAL PEPTIDES 

 

 

Human Antimicrobial Peptides 

Antimicrobial peptides (APs) form part of the nonspecific innate immune system (41, 

108).  These molecules evolved early in history and are found in both vertebrates and 

invertebrates (108).  APs exhibit cidal activity against many different organisms, 

including bacteria, enveloped viruses, fungi and parasites (108).  Most APs are small 

cationic secreted molecules and many have both bactericidal and immunomodulatory 

properties (39, 41, 108, 255).   

 

Cathelicidins are produced by many different mammals (132, 265).  The sole human 

cathelicidin, LL-37, is an α-helical AP that bears a net positive charge (41).  Cathelicidins 

are composed of three distinct regions: a signal sequence, a pro-domain, and an 

antimicrobial domain (41, 265).  Proteolytic cleavage of the antimicrobial domain by 

proteinase-3 in the secretory granule   prior to exocytosis confers activity to the peptide 

(41, 213).  The 37 amino acid long peptide is named for both its size and the L-L amino 

acid sequence that leads the C-terminally located active peptide which remains after 

cleavage (213).   

 

Humans produce a second class of APs, referred to as the defensins (74).  Defensins are 

positively charged β-sheet peptides, the secondary structure of which, is dependent on the 

presence of  six cysteine residues that form disulfide bridges within the molecule (74).  

There are two classes of human defensins, the α- and β-defensins, and the pattern of 

cysteine bonding is different for each class (74).   The α-defensin disulfide bridges are 

arranged in a “1-6, 2-4, 3-5” pattern (41), while the β-defensin disulfide bridges are 

spaced in a “1-5, 2-4, 3-6” pattern (41).  Humans produce only six α-defensins.  In 

contrast, computational algorithms have predicted the presence of over 20 potential β-

defensin genes within the human genome (39, 208).  Much like the cathelicidins, 

defensins are initially synthesized as immature pre-peptides which are then 
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proteolytically cleaved, leaving behind the C-terminal portion of the peptide, which is 

active (74). 

 

 

Antimicrobial Peptides in the Chancroid Environment 

H. ducreyi likely encounters many cellular sources of APs during infection (Table 3).  

Keratinocytes constitutively express the human β-defensin (HBD)–1 (268) and the 

squamous epithelium of the vagina constitutively expresses the α-defensin human 

defensin (HD)-5 (199).  Wounding of the skin stimulates the production of TNF-α and 

IL-1, and these cytokines in turn stimulate the release of HBD-2, HBD-3, HBD-4 and 

LL-37 from keratinocytes (57, 115, 140, 212).  In response to bacterial stimulation, 

PMNs and macrophages are rapidly recruited to the site of infection (25, 101, 180).  

PMNs secrete  the α-defensins HNP-1, HNP-2, HNP-3, and HNP-4 from their azurophilic 

granules (67), and HBD-4 and LL-37 from their secondary granules (76, 236).  

Inflammatory stimulators also induce the expression and secretion of HBD-1, HBD-2, 

and LL-37 from macrophages (59, 141).  Inflammatory bacterial products further 

stimulate cytokine production from both monocytes and lymphocytes via the toll-like-

receptor signaling pathway (43).  Cellular extracts from both monocytes and, to a lesser 

degree, lymphocytes, have been shown to increase the production of HBD-1, HBD-2 and 

HBD-3 from keratinocytes (212).  

 

Several studies have recently established that H. ducreyi co-localizes with APs at the site 

of infection.  Bauer et al. visualized PMNs in natural chancroidal ulcers by staining for 

the α-defensins HNP-1-3 (22).  In this study, the authors demonstrated that these peptides 

were present within PMNs at the ulcerative stage of disease (22).  The same lab more 

recently stained tissue sections from the HCM to demonstrate that HNP-1-3 were also 

expressed by PMNs at the papular and pustular stages of disease (M.E. Bauer, C.A. 

Townsend, unpublished data).  While still unproven, it is likely that H. ducreyi stimulates 

the degranulation of PMNs.  Consequently, these studies establish the relevance of 

investigating H. ducreyi resistance to the APs. 
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Table 3. Antimicrobial peptide secreting cell types in chancroid 

Cell type or tissue  AP Secreted  Class of AP     Reference 

Vaginal Mucosal   HD-5   α-defensin (199)   

    epithelium 

 

Keratinocytes   LL-37   Cathelicidin (115, 170, 212) 

    HBD-1   β-defensin (95, 268) 

    HBD-2   β-defensin (140, 212) 

    HBD-3   β-defensin (140, 212) 

    HBD-4   β-defensin (240, 254) 

 

Macrophage   LL-37   Cathelicidin (141)  

    HBD-1   β-defensin (59) 

    HBD-2   β-defensin (59) 

 

PMN    LL-37   Cathelicidin (83, 213, 236) 

    HNP-1   α-defensin (67, 75) 

    HNP-2   α-defensin (67, 75) 

    HNP-3   α-defensin (67, 75) 

HNP-4   α-defensin (67, 75) 

    HBD-4   β-defensin (83, 213, 236) 

 

 

Evidence of Antimicrobial Peptide Activity In vivo 

Alterations in AP production are known to be a contributing factor to many forms of 

human disease.  Patients with the skin disorder atopic dermatitis express low levels of 

LL-37, HBD-2, and HBD-3.  These patients consequently contract infections of the skin 

at a rate much higher than would otherwise be expected (115, 171, 175).  Conversely, 

patients with psoriasis express increased levels of  the same APs, yet even with a 

damaged stratum corneum, they develop few skin infections (115, 171, 175).  In another 

example, patients with cystic fibrosis express a dysfunctional Cl
-
 pump in the apical 

membrane of the lung epithelium (211, 267).  Studies have indicated that the mucus of 

these patients may have a much higher salt concentration than what is considered to be 

normal (211, 267).  Although still controversial, researchers have hypothesized that the 

high concentration of salt in the mucus interferes with the bactericidal activity of APs in 

the lung, and that as a result, cystic fibrosis patients are unusually susceptible to lung 

infections (149, 211, 250, 267).  Another important clinical example of AP activity in the 
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body can be found in the study of the innate immune system of newborns (39, 133).  

Infants do not develop a functional adaptive immune system until several months after 

birth (39, 133).  In order to help fight infection, newborns express elevated levels of β-

defensins and LL-37, both in utero and following delivery (39, 133).  These APs serve to 

protect the newborn from bacteria and fungi encountered as the infant traverses the birth 

canal (39, 133). The list of AP associated diseases described here is in no way exhaustive.  

Instead, it is intended to highlight interesting examples of the in vivo relevance of APs.  

Because APs represent an important part of the innate immune system, the list of disease 

states linked to AP disregulation continues to rapidly expand alongside our knowledge of 

the role that APs play in maintaining homeostasis within the body.     

  

Animal studies have also been used to establish the in vivo relevance of APs.  Mice that 

were genetically altered to lack CRAMP, a LL-37 homolog, were shown to be more 

susceptible to bacterial challenge than were wild type mice (39, 170).  The mice lacking 

CRAMP expression exhibited a normal recruitment of PMNs to the site of infection, 

suggesting that the lack of CRAMP in the PMNs negatively affected the mice’s ability to 

fight infection (39, 170).  In experiments using the opposite approach, wild type mice that 

were infected with cathelicidin-resistant bacteria developed chronic lesions, while 

cathelicidin-sensitive bacteria were efficiently cleared (39, 170).  Similarly, mouse 

studies have highlighted the contribution of defensins to host defense.  Mice that were 

engineered to lack all mature α-defensins were impaired in their ability to resolve 

infection and were more likely to die after bacterial challenge (39, 249).  Further, a 

knock-in of human HD-5 into mouse paneth cells markedly increased the effectiveness of 

the mouse immune response after exposure to bacteria (39, 202).  

 

As was previously detailed, the expression and secretion of many APs are induced by 

inflammatory mediators (38, 57, 115, 140, 212).  In healthy skin, most APs are either 

undetectable or found at very low levels (38).  However, in the presence of infection, the 

level of AP production by keratinocytes and resident macrophages increases 

substantially, and both LL-37 and the β-defensins can be found at concentrations in the 

µg/ml range (38).  α-defensins in the skin, produced by PMNs, can be found at 
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concentration as high as 10mg/ml immediately after degranulation (39).  However, their 

concentration is difficult to measure, as it quickly dilutes as the time after release 

increases (38).  The in vivo concentration of a peptide is vital to its activity (39).  As a 

rule, APs generally disrupt membranes at high concentrations and modulate immune 

responses at lower concentrations (38, 39, 41).  It is probable that at low concentrations 

an AP may not have direct bactericidal activity against an organism, but could still play 

an important role in the immune response to pathogens. 

 

 

Antimicrobial Peptide Bactericidal Activity 

In order to be effective, APs must associate with the cytoplasmic membrane (108).  The 

interaction of APs with the membrane is dependent on both the amphipathic nature of the 

APs and on their positive charge (91, 108).  In order to gain access to the cytoplasmic 

membrane of Gram-negative organisms such as H. ducreyi, APs must first cross the outer 

membrane through a process known as “self-promoted uptake” (91, 108, 207).  Cationic 

APs transiently bind to the anionic membrane through electrostatic attraction (108).  

Consequently, the high concentration of negatively charged lipids on the bacterial 

membrane is important to the selectivity of APs for bacterial cells over eukaryotic cells 

(91, 108). Once in the periplasm, the amphipathic and hydrophobic nature of the APs 

allows them to pass into the inner membrane of the bacterium (54, 108).  APs kill 

bacteria through two main mechanisms (108).  They can either directly lyse the 

prokaryotic inner membrane, an event that is lethal to gram-negative bacteria (131), or 

they can cross the intact membrane and disrupt the synthesis of anionic intracellular 

targets such as DNA, RNA, and enzymes through a currently undefined mechanism (91, 

108, 253). The α-defensin HNP-1 has been shown to interfere with the production of both 

nucleic acid and protein in E. coli (108, 131).      

 

Because the majority of experiments examining the direct interaction of APs with lipid 

bilayers have been conducted using synthetic or liposomal model membrane systems it 

has been difficult to accurately characterize the exact series of molecular events 

comprising this interaction (91, 113, 253).  Regardless of these limitations, several 
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models have been proposed to describe the relationship of APs with anionic membranes 

(108).  In each of the four following models, APs first interact with the anionic lipid head 

groups of the membrane before assuming a position parallel to the membrane (108).  In 

the “toroidal pore” model, APs insert themselves perpendicularly into the membrane and 

the individual lipids within the membrane curve inward with the APs to stabilize a 

temporary pore (87, 108).  LL-37 interacts with the membrane through the formation of a 

toroidal pore (108, 248).  In the “aggregate” model, large clusters of peptides span the 

membrane and intermix with lipids in a random pattern that leads to disruption of the 

membrane (108, 150, 253).  In the “barrel-stave” model, peptides span the membrane as 

“staves” in a “barrel”-shaped pore of consistent size (108, 214).  Finally, in the “carpet” 

model, large aggregates of peptide line the lipid bi-layer at concentrations high enough to 

carpet the membrane (108, 195).  At these concentrations, the APs produce large micelles 

which significantly disturb the stability of the membrane through “detergent-like” activity 

(108, 248).  Due to their amphipathic character, many APs have been shown to behave in 

this manner at very high concentrations, but the relevance of this model to in vivo AP 

activity is debatable (37, 38, 108).  

 

It is important to remember that each of these models has validity under different 

circumstances.  The examination of a broad range of peptides encompassing a variety of 

sizes and structures has indicated that each peptide produces a unique signature of 

membrane interaction (108).  No one model is adequate to explain how all APs interact 

with a particular pathogen. Individual peptides may behave differently at high 

concentrations that they do at low concentrations (38, 39, 108).  It is also likely that 

individual APs may use more than one mechanism to kill bacteria at a time (108, 184, 

196).  For example, the β-defensin, HBD-3, has been shown to negatively affect cell 

growth both by depolarizing the bacterial membrane and by interfering with the 

functionality of bacterial autolysins (188). Further, while most cationic APs have been 

characterized as membrane permeabilizing, almost any peptide that is both cationic and 

amphipathic will cause membrane disruption of synthetic membranes at high 

concentrations (108).   As such, it is likely that the role of membrane disruption in AP 

research has been overstated, and that in reality, APs exert their bactericidal activity by a 
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more tempered combination of membrane perturbation and the disruption of intracellular 

processes (38, 39, 108, 253).   

 

 

Antimicrobial Peptide Immunoregulatory Activity 

In early studies establishing the role of APs in the regulation of the immune system, mice 

were challenged with Pseudomonas aeruginosa in the lung, with or without the 

simultaneous tracheal instillation of the LL-37 precursor, CAP18 (39, 206).  The mice 

that received APs along with bacteria, exhibited a clinical reduction in inflammation, as 

measured by a decreased production of TNF-α, IL-6 and nitrous oxide, when compared to 

the mice that were received only bacteria (39, 206).  However, a surprising finding of 

these studies was that similar numbers of bacteria could be recovered from both groups of 

mice, suggesting that the APs did not have direct bactericidal activity, but instead 

upregulated the immune response in a controlled manner (39, 206).  We now know that 

APs function not only through their bactericidal activity, but also have immunoregulatory 

activity (39, 82, 264).   

 

LL-37 plays a role in establishing, maintaining, and regulating the immune response to 

pathogens (39).  LL-37 acts as a chemoattractant of PMNs, T-cells and monocytes (39, 

257, 259), and it induces chemotaxis, toll-like receptor expression and degranulation in 

mast cells (39, 168, 169, 260, 264).  The peptide supports the continuation of the immune 

response by stimulating phagocytosis in PMNs (165), by suppressing apoptosis of both 

keratinocytes and PMNs (46, 266), and by acting as an angiogenic factor in endothelial 

cells (39, 117).  In addition, LL-37 acts synergistically with GM-CSF and IL1β to 

upregulate the expression of NFκB and AKT in human leukocytes (165).  Finally, LL-37 

regulates inflammation overall by binding to and neutralizing bacterial surface 

components (39, 122, 163).  

 

The α-defensins HNP-1-3 also regulate the immune response (39).  These peptides 

stimulate the production of IL-8 by monocytes and epithelial cells, and induce epithelial 

cell proliferation (39, 239).  In addition, both HNP-1 and HNP-2 have been shown to 
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chemoattract T-cells and immature dendritic cells, although HNP-1 is a stronger 

chemoattractant than HNP-2 (39, 48, 74, 230, 258).  Likewise, the β-defensin HBD-2 has 

been shown to chemoattract immature dendritic cells, memory T cells, and PMNs 

through a process that is dependent on CCR6 (39, 74, 167, 256, 259).  Taken together, 

these data indicate that the APs likely found at the site of infection could potentially play 

multiple roles in the immune response to H. ducreyi.  

 

 

Bacterial Resistance to Antimicrobial Peptides 

Virtually all bacterial pathogens encounter APs in their natural environment (118).  

Consequently, bacteria have evolved many distinct mechanisms for surviving in the 

presence of bactericidal APs (118).  AP resistance genes have been found in the genomes 

of the vast majority of pathogenic bacterial species tested (118, 246) and the impressive 

number of AP resistance mechanisms cataloged to date provides an elegant example of 

evolution at work (188).  Each species has co-evolved with its respective host to adapt to 

meet the unique challenges present in that bacterium’s specific niche (118, 188).  

 

Some general strategies to evade killing by APs include repelling APs from the bacterial 

surface, inactivating APs in the extracellular milieu and pumping APs out of the 

periplasm before they can damage the cytosolic membrane (118, 160, 188, 246).   The 

genome of a single species often encodes multiple AP resistance strategies (118).  The 

redundancy and complementation of these strategies allows the bacterium to achieve a 

high level of resistance to a diverse variety of APs (65, 118).  However, while most AP 

resistance genes are chromosomally encoded, they are not always highly conserved 

within a species and there can be a large range of AP susceptibility among the clinical 

isolates of an individual species, a phenomenon that has been observed with commensal 

Staphylococcal and Streptococcal species (111, 118, 155).  H. ducreyi is exposed to 

many different APs in vivo (22, 27).  Consequently, it is reasonable to expect that the 

organism has evolved multiple mechanisms of AP resistance in order to survive in this 

hostile environment.  It is also possible that the class I and class II strains of H. ducreyi 
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could express different AP susceptibility profiles.  The experiments described in this 

thesis directly address these questions. 

 

One of the most prevalent strategies for AP evasion is the alteration of the bacterial 

membrane or cell wall in a manner that would eliminate or reduce the net negative charge 

of the membrane, subsequently allowing the bacterium to more closely mimic the 

substantially less anionic nature of the eukaryotic membrane and to remain undetected by 

APs (118, 188).  For example, many Gram-positive organisms encode the dltABCD 

operon, which modifies the cell wall through D-alanine incorporation, reducing the 

charge of teichoic acid (1, 118, 119, 189, 197).  Similarly, many Gram-negative bacterial 

species utilize the Pmr enzyme to modify their cell surface by adding aminoarabinose 

onto lipid A (65, 85, 118, 172).  The genomes of many pathogenic bacteria, both Gram-

positive and Gram-negative, contain the mprF gene (118).  This enzyme alters the 

phosphatidylglycerol of the cell wall with L-lysine, once again reducing the net charge of 

the cell wall (118, 174, 190, 221, 246).  An alternate implementation of the same basic 

strategy is found in the production of bacterial capsules and biofilms (118).  While these 

structures inhibit the binding of antibodies at the cell surface, they are an inadequate 

physical barrier against small molecules (45, 118, 241).  However, the extremely positive 

charge of the extracellular matrix of a capsule or biofilm repels APs from the bacterial 

surface (45, 118, 241).  In each of the examples described above, the net charge of the 

cell surface is made more positive as a mechanism to dampen the electrostatic attraction 

of APs to the bacterial surface (118).   

 

A second strategy used by bacteria to resist the bactericidal activity of APs is the 

degradation of APs in the extracellular milieu, before they have the opportunity to 

damage or cross the membrane (118).  One way in which bacteria accomplish this task is 

through the production of either secreted or membrane bound enzymes that cleave APs in 

the extracellular environment (118).  A few examples of this strategy include the S. 

enterica protease PgtE (84, 118), the S. aureus secreted metalloprotease aureolysin and 

serine protease V8 (118, 210), and the membrane bound E. coli OmpT and OmpP (103, 

118, 188, 226).   In a similar approach, some bacterial species neutralize extracellular 
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APs by expressing secreted or membrane bound proteins that have the ability to bind and 

sequester APs, preventing them from interacting with the membrane (118, 188).  The S. 

aureus staphylokinase is representative of this strategy (110).   

 

Some bacteria directly bind and transport APs away from the membrane before they can 

cause damage (118).  The multiple transferable resistance (Mtr)CDE pump has been 

shown to confer resistance to APs in Neisseria gonorrhoeae (118, 209).  Likewise, the 

QacA efflux pump contributes to S. aureus AP resistance (118, 120), demonstrating that 

the pumps can be found in both Gram-positive and Gram-negative organisms (118).  

While most transporters shuttle APs out of the cell, the senstitive to antimicrobial 

peptides (Sap) transporters of Salmonella typhimurium (183), Proteus mirabilis (152), 

Erwinia chrysanthemi (142), and H. influenzae (146) have been shown act as an influx 

pump shuttling APs into the cell, where they are presumably degraded (183).  The H. 

ducreyi genome contains a homolog of this pump, which will be analyzed in detail in the 

following chapter of this literature review.  

 

One previous study has been conducted investigating H. ducreyi resistance to APs.  In 

this study, Fortney et al. used a radial diffusion assay (RDA) to demonstrate that H. 

ducreyi was susceptible to PG-1, a porcine protegrin with no human homolog (70).  It is 

possible that the presence of animal specific APs such as PG-1 may be a contributing 

factor to the limited host specificity of this pathogen (160).  
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LITERATURE REVIEW 

SECTION III: SAP TRANSPORTER 

 

 

The Sap Transporter 

As previously discussed, bacterial pathogens have evolved many mechanisms enabling 

them to resist the bactericidal effects of APs (118, 187).  Because H. ducreyi is able to 

not only establish an infection but also to persist in an environment rich with APs (22, 

27), we hypothesized that the bacterium was resistant to the APs it was most likely to 

encounter in vivo (160).  In order to identify possible AP resistance mechanisms in H. 

ducreyi, we examined the H. ducreyi genome for evidence of mechanisms homologous to 

those described in other bacteria and found high levels of homology to the sensitive to 

antimicrobial peptides (Sap) transporter.  The Sap transporter has been studied in 

multiple bacterial species and has been found to confer resistance against a variety of APs 

(47, 81, 142, 144, 146, 152, 183). 

 

 

Salmonella typhimurium Sap Transporter 

The sap operon was first identified as a possible mechanism of AP resistance by 

Groisman et al.  Transposon mutagenesis was performed on an AP resistant S. 

typhimurium strain, in an effort to identify genes required for AP resistance (81).  The 

resultant mutants were screened for their susceptibility to protamine, a cationic peptide 

derived from salmon sperm (81).  Twelve mutants were sensitive to protamine on agar 

plates and eight of these mutants went on to exhibit sensitivity to protamine in a liquid 

assay (81).  The susceptibility of these mutants to rabbit defensin NP-1, frog magainin 2, 

pig cecropin P1, insect peptides mastoparan and melittin, and human crude granulocyte 

extract was examined (81).  One mutant was extremely sensitive to all of the peptides 

tested, but was later shown to harbor a mutation in the transcription factor phoP, a part of 

a two-component regulator involved in the regulation of many bacterial virulence factors 

(68, 81).  The remaining mutants fell into groups based on their AP susceptibility (81).  

The mutants were referred to as Sap mutants for their sensitivity to antimicrobial peptides 
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and they all contained mutations that mapped to the same operon (81).  At the time of this 

research, it was not yet known that different APs were produced by different cell types 

within the body.  However, when the mutants were inoculated into mice through the 

intragastric and intraperitoneal routes, differences in virulence were noted (81).  The 

altered susceptibility pattern of the mutants provided some of the first evidence that 

pathogens were exposed to different APs at different locations within the body (81).   

 

The same lab later built off of their preliminary study by isolating the genes from three S. 

typhimurium mutants which were required for resistance to the melittin and crude 

granulocyte extracts, but not for resistance to rabbit defensin NP-1 (Table 4) (183).  The 

region of DNA responsible for AP resistance was shown to contain five ORFs: sapA, 

sapB, sapC, sapD and sapF, organized in an operon (183).  The complex was composed 

of five proteins exhibiting sequence identity with other known ATP dependent import 

and export transporters (97, 183, 200).  SapD and SapF were shown to be homologous to 

other prokaryotic ATP binding cassette (ABC) family transporters involved in the uptake 

of oligopeptides such as the bacterial oligopeptide permease (Opp) (98) and the B. 

subtilis response regulator (SpoOK) (183, 186).  SapA was homologous with other 

periplasmic solute binding proteins involved in peptide transport such as E. coli dipeptide 

transporter (Dpp) (3) and oligopeptide transporter (Opp) (98, 183).  The identification of 

a conserved signaling sequence on the peptide indicated that it was most likely expressed 

in the periplasm (183).  Based on these findings, a model of Sap transporter activity was 

proposed (Figure 1) (183).  Of the three mutants initially analyzed, one contained a 

mutation in sapC (EG123) and two (EG1209 and EG1216) contained mutations in sapD 

(183).  The sapC mutant was susceptible to both human crude granulocyte extract and 

melittin, while the sapD mutants were only susceptible to the crude granulocyte extract 

(183).  All three mutants retained their resistance to rabbit defensin NP-1 (183). 

Additional mutants were generated to characterize the activity of the transporter.  A 

mutation that eliminated the entire sapABCDF operon was shown to be as susceptible to 

promatine as the sapC mutant (183).  An antibiotic resistance cassette was inserted in the 

sapF gene.  This mutant was as susceptible to protamine as the sapD mutant, indicating 

that both SapD and SapF are necessary for the full functionality of the transporter (183).  
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Finally, a non-polar mutation was generated in sapA.  This mutant retained a low level of 

residual AP resistance against protamine when compared to the sapC and sapD mutants, 

indicating that the the functionality of the transporter, while greater reduced, continued to 

function at a low level in the absence of SapA (183).     

 

 

Figure 1.  Model of Sap transporter (183).  Parra-Lopez et al. proposed a model 

of the Sap Transporter mechanism of action.  SapA was hypothesized to be a 

periplasmic protein that bound APs and transported them into the SapBCDF 

membrane complex (183). SapB and SapC were hypothesized to be membrane 

spanning proteins that form a channel through the membrane (183).  SapD and 

SapF were hypothesized to be ATPases that provided energy for the complex 

(183).  Peptides are thought to be shuttled into the cytosol where they are 

presumably degraded before they can damage the cytoplasmic membrane or 

anionic intracellular targets (183). 
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Proteus mirabilis Sap Transporter 

P. mirabilis is a pathogen that primarily causes urinary tract infections, bladder infections 

and kidney infections (152).  P. mirabilis encounters many APs in vivo, and the high 

levels of resistance of P. mirabilis to these APs could play a role in the virulence of this 

organism at mucosal surfaces (152).  McCoy et al. used transposon mutagenesis to 

identify genes necessary for resistance to polymixin B (PM), a small cationic and 

amphipathic antibiotic that causes permeabilization of the bacterial membrane (152).  

One of the mutants generated contained an insertion in a gene homologous to the sapD 

locus of S. typhimurium (152, 183).  This mutant was more susceptible than the wild type 

to α-helical peptide PM, but retained resistance to a β-sheet protegrin analog (Table 4) 

(152).  Based on these results, McCoy et al. argued that the Sap transporter conferred 

resistance to α-helical peptides, but not to β-sheet peptides, demonstrating that the 

specificity of the transporter was linked to structure (152).  However, a survey with a 

greater number of APs should be performed in order to substantiate these claims. 

 

 

Haemophilus influenzae Sap Transporter 

Haemophilus influenzae is one of the causative agents of otitis media (OM), or 

inflammation of the middle ear (147).  The β-defensin HBD-2 suppresses the growth of 

several OM pathogens, including Streptococcus pneumoniae, Moxaxella catarrhalis, and 

nontypeable H. influenzae (NTHI) (128, 147).  This inhibition of growth is linked to 

membrane damage, as bacteria exposed to APs were shown to have membrane 

protrusions and to leak cytoplasmic contents (128, 147).  Mason et al. examined the 

genome of H. influenzae for the presence of possible AP resistance mechanisms, 

including the Sap transporter system (146-148).  A putative sap operon containing 

sapABCDFZ was revealed (148).  The authors demonstrated that the transcription level of 

sapA was 2.8 fold higher in bacteria grown in the middle ear in a chinchilla model of OM 

vs. bacteria grown in vitro (148), and thus generated a non-polar isogenic H. influenzae 

sapA mutant (147).  This mutation was shown to render NTHI more sensitive to killing 

by recombinant chinchilla β-defensin 1 (r-cBD-1), HBD-3, which is homologous to cBD-

1, and LL-37 (Table 4) (147).  The authors went on to demonstrate the direct association 
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of NTHI recombinant SapA with r-cBD-1, LL-37, and HBD-3 (146).  These studies made 

three important contributions to our understanding of Sap transporter biology.  First, the 

finding that the NTHI Sap transporter confers resistance against the β-defensins r-cBD-1 

and HBD-3 contrasts with the studies conducted with P. mirabilis (152) that indicated 

that the Sap transporter played no role in resistance to β-sheet peptides.  Second, the 

finding that the H. influenzae SapA directly associates with r-cBD-1 (146) supports the 

proposed mechanism of action of the Sap transporter originally hypothesized by Parra-

Lopez et al., which postulated that SapA bound APs in the periplasm (183).  Finally, the 

discovery of the sapZ gene, which encodes a hypothetical protein with as of yet unknown 

function, could represent an uncharacterized member of the Sap transporter complex 

(146, 147). 

 

 

Erwinia chrysanthemi Sap Transporter 

The production of APs is a defense strategy that has been evolutionarily conserved (41, 

108).  As such, bacterial pathogens of plants are also subjected to the bactericidal activity 

of APs and have developed AP resistance strategies (142).  Lopez-Solanilla et al. 

investigated the role of the Sap transporter in the bacterial resistance to plant 

antimicrobial peptides (142).  E. chrysanthemi is a phytopathogenic bacterium that causes 

soft rot in a variety of crops (142).  The genome of this bacterium encodes a homolog to 

the sapABCDF operon of S. typhimurium (142, 183).  A polar sapABCDF E. 

chrysanthemi mutant was shown to be more sensitive than was the wild type to wheat α-

thionin and to snakin- 1 (Table 4) (142).  However, it did not play a role in E. 

chrysanthemi resistance to the defensin Pth-1 (no human homolog) or protamine (142).   

In addition, the overall virulence of the sapABCDF mutant was reduced compared to the 

wild type (142).   This study highlighted two important aspects of Sap transporter 

biology.  First, the Sap transporter confers resistance to APs across kingdoms (47, 142, 

144, 146, 152, 183), indicating that it is evolutionarily conserved.  Second, the transporter 

plays a role in AP resistance to only a subset of the APs that the bacterium was likely to 

encounter during infection, indicating that the Sap transporter binds APs with molecular 

specificity (142). 
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Vibrio fischeri Sap Transporter 

Based on the data presented thus far, it would be easy to assume that the Sap transporter 

always confers AP resistance to those organisms in which it is expressed.  In 2000, Chen 

et al. examined the genome of Vibrio fischeri and uncovered an ORFs with high levels of 

homology to the sapD and sapF ORFs of E. coli (47), S. typhimurium (183), and H. 

influenzae (146).  From this homology, they concluded that “the sap operon in the 

genome enables V. fischeri enables [sic] to transport peptides and resist antimicrobial 

peptides.” (47).  However, they did not publish empirical data in support of this 

conclusion (47).  In 2002, Lupp et al. published a study contradicting the conclusions of 

Chen (47).  In this study, the authors calculated the MIC of eight different APs against 

both a polar sapA mutant and wild type V. fischeri and found the MICs to be identical for 

the two bacterial strains (144).  In contrast, the protamine-susceptible V. fischeri ompU 

(outer membrane protein U) mutant control strain (4) was susceptible to each peptide 

(144).  These data suggest that a functional SapABCDF system in V. fischeri does not 

confer an increased resistance to the APs tested (Table 4) (145).   

 

The lack of an AP susceptible phenotype associated with the V. fischeri sapA mutant was 

unexpected (47, 144).  From this study, Lupp et al. concluded that the Sap transporter 

may not confer resistance to APs in every bacterial system (144).  The discrepancy of 

these studies highlights the need to carefully examine the function of the Sap transporter 

in each pathogen in which it is expressed.  However, it is also important to note two 

important problems with this study.  Six of eight peptides in the panel described in this 

study were synthetic and V. fischeri would not naturally encounter these peptides in vivo.  

Second, the presence of a functional OmpU within V. fischeri could mask the effects of 

the sap mutation, if they both play a role in AP resistance.  Because the lack of an AP 

resistance phenotype in the V. fischeri sapA mutant was unexpected, Lupp et al. went on 

to characterize the true function of the Sap transporter in V. fischeri (144).  The authors 

observed that when compared to the wild type, the sapA mutant displayed a reduced 

growth grate in rich medium that could not be rescued through the addition of carbon, 

nitrogen, or phosphorous (144).  In addition, they observed a statistically significant 

reduction in the final population size of the bacterium grown in the host compared to 
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growth in medium, suggesting that the V. fischeri sap operon plays a role in host 

symbiosis (145).  These studies are important to our understanding of Sap transporter 

biology as a whole because they indicate that a high level of homology between the Sap 

transporters of various species is not always indicative of a similar function in host 

pathogenesis, and further, that the Sap transporter may have functions outside the realm 

of AP resistance.   

 

 

Homology of H. ducreyi Sap to Other Sap Transporters 

The H. ducreyi genome encodes a sap operon consisting of five ORFs (Figure 2): tyrR 

(HD1229), sapA (HD1230), sapB (HD1231), sapC (HD1232), and sapD (HD1235) 

(162).  sapF (HD0863) is encoded independently (162).  The H. ducreyi tyrR gene is 

annotated as a transcriptional regulator of aromatic amino acid metabolism in the 

published H. ducreyi genome available at www.ncbi.nih.gov.  The H. ducreyi SapABCD 

and SapF proteins are highly homologous to other SapABCD and SapF proteins reported 

in the literature (142, 144, 146, 152, 162, 183).  The greatest levels of homology were 

found with H. influenzae (146), with percent identities as high as 65% and percent 

similarities as high as 82% (Table 5).  Proteins with high levels of homology to H. 

ducreyi SapA have also been identified in the two organisms most closely related to H. 

ducreyi: M. haemolytica and A. pleuropneumoniae.  However, while the genome of A. 

pleuropneumoniae also encodes strong homologs of the other Sap transporter 

components and may in fact express a functional Sap transporter, the closest homologs of 

SapB, SapC, and SapD in M. haemolytica, are annotated as Dpp transporter components.  

Studies investigating the functionality of the transporter system in these organisms have 

not been published.  
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Table 4. Sap transporter mutants and phenotypes 

Species      Mutation   Susceptible    Resistant     Source         Structure    Reference 

S. typhimurium  

        sapC
T
    CGE*                                 Human       α,β  (183) 

      Melittin                              Insect           β                (183) 

                  Magainin          Amphibian   β   (183) 

            NP-1                 Rabbit          β                (183)  

            Ceropin             Plant            β  (183) 

            Mastoparan       Insect           α   (183) 

      sapD
T
    CGE*                                 Human        α,β  (183) 

                     Magainin           Amphibian   β   (183) 

            NP-1                  Rabbit          β               (183)  

                  Ceropin              Plant            β  (183) 

            Mastoparan        Insect           α   (183) 

      sapD
T
    CGE*                                  Human        α,β  (183) 

                     Magainin           Amphibian    β   (183) 

            NP-1                  Rabbit           β              (183)  

                  Ceropin              Plant             β  (183) 

            Mastoparan        Insect            α   (183)  

                  sapA
NP     

Protamine             Fish           β  (183) 

      sapF              Protamine               Fish         β    (183) 

P. mirabilis        sapD    PM-B             Bacteria        α  (152) 

                                                Protegrin Analog Synthetic      β              (152)     

H. influenzae        sapA
NP 

                         LL-37             Human         α       (147)              

                                                        r-cBD-1  Chinchilla    β  (147) 

                                  HBD-3             Human          β             (147) 

        sapD         LL-37             Human         α       (146)              

                                                        r-cBD-1  Chinchilla    β  (146) 

                                  HBD-3             Human          β             (146) 

E. chrysanthemi   sapABCDF
P   

Snakin-1   Plant          β              (142)                                      

    α-thionin                             Plant             β              (142)    

                  Protamine  Fish              β   (142) 

           Pth-1 (defensin) Plant             β              (142) 

V. fischeri     sapA
P
        CP11CN  Synthetic      Linear  (145) 

           CP26  Synthetic      α              (145) 

                                                                  CP28  Synthetic      α              (145) 

           CP29  Synthetic      α              (145) 

           LL-37  Human         α              (145) 

           P-CN  Synthetic      α              (145) 

           PM-B  Bacteria        α              (145) 

           Protamine  Fish               β             (145) 

*Crude Granulocyte Extracts, 
T
Mutant generated by transposon mutagenesis 

P
Polar mutation, 

NP
Non-polar mutation 
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Table 5. Homology between H. ducreyi Sap proteins and other Sap proteins 

Protein   SapA   SapB  SapC  SapD  SapF      

S. typhimurium 

Percent Identity
 a
 35%      37%  43%  59%  52%      

Percent Similarity
 b
 55%  60%  63%  77%  72%       

E value
c
  4e-92  4e-54  2e-67  8e-122  3e-81 

 

P. mirabilis 

Percent Identity 35%  36%  43%  59%  51%       

Percent Similarity 53%  57%  64%  76%  74%       

E value  4e-93  1e-58  5e-69  7e-120  8e-80 

 

H. influenzae 

Percent Identity
 
 44%  46%  52%  65%  59%       

Percent Similarity 67%  67%  73%  82%  73%       

E value  6e-143  2e-81  4e-90  8e-132  9e-90 

 

E. chrysanthemi 

Percent Identity
  

35%  31%  44%  58%  51%       

Percent Similarity
  
 53%  54%  65%  78%  69%       

E value   1e-91  3e-45  6e-61  6e-122  9e-78 
   

V. fischeri 

  Percent Identity
 
 33%  38%  42%  56%  50%       

Percent Similarity
 
 52%  62%  63%  76%  70% 

E value  2e-86  6e-62  8e-61  7e-115  5e-73 

 

M. haemolytica 

Percent Identity 57%  66% (DppB) 64% (DppC)   77%(DppD) 73% 

Percent Similarity 71%  82%  80%  89%  86% 

E value  0  4e-126  1e-98  4e-167  1e-116 

 

A. pleuropneumoniae 

Percent Identity 71%  79%  81%  88%  78% 

Percent Similarity 82%  92%  90%  93%  90% 

E value  0  1e-154  9e-132  0  1e-123 
a, b, c

 Percent identity and percent similarity and E value as calculated by NCBI BLASTP 

2.218+  
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Figure 2. Genetic map of sap-containing loci in H. ducreyi 35000HP 

(www.ncbi.nih.gov).  Putative operon containing tyrR and sapABCD located 

between ORFs HD1228 and HD1236, and unlinked sapF-containing locus 

between ORFs HD0861 and HD0866 and (www.ncbi.nih.gov). ORFs are drawn 

to scale, arrowheads show direction of transcription, white boxes represent 

intergenic sequences, arrows represent predicted promoters and ball-and-stick 

structures indicate predicted stem-loop transcriptional terminators. 

 

 

 

Other Roles of the Sap Transporter  

The role of the Sap transporter in AP resistance has been well characterized (142, 144, 

146, 152, 183).  However, because the transporter is homologous to other transporters 

involved in peptide uptake (183), it is possible that it also plays a role in nutrient 

acquisition.  Several studies have been performed specifically examining the role of the 

SapD protein in pathogenesis (96, 146, 152, 185).  In Pasteurella multocida the sapD 

gene is up-regulated in response to iron-containing compounds (185).  The protein was 

also shown to assist potassium uptake in E. coli by acting as an ATPase for the 

TrkG/TrkH potassium uptake system (96) and it plays a role in potassium uptake in H. 

influenzae, possibly through the same system (146).  Loss of SapD resulted in increased 

susceptibility to APs in Proteus mirabilis (152), H. influenzae (146), and S. typhimurium 

(81).  In addition, the H. influenzae sapD mutant had greatly reduced virulence in the 
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middle ear, was unable to compete with the wild type for survival, and was significantly 

less fit than the sapA mutant (146).  

 

 

Genetic Regulation of the Sap Transporter  

At present there are no hard and fast rules concerning the regulation of the sap operon.  

Multiple systems have been shown to play a role in the regulation of the operon in 

different bacteria (68, 123, 146).  In E. chrysanthemi, the expression of the sap operon is 

regulated by the nucleoid-associated protein Fis, which also regulates the expression of 

many other virulence factors of the bacterium (123).  In Salmonella, the sap operon is 

regulated by the PhoP-PhoQ two-component system (68, 183).  In contrast, H. influenzae, 

which lacks a PhoP-PhoQ regulatory system, has been shown to regulate the sap operon 

through the direct association of the SapA and APs. (146)  This association initiates an as 

of yet undefined signaling event leading to increased sap gene expression and the 

production of Sap proteins required for resistance to APs (146).  It is possible that the 

interaction of SapA with APs in H. influenzae could trigger the activation of a two 

component system other than PhoP-PhoQ (146).  This regulatory system could mimic 

that of Yersinia, which resists the action of APs via an efflux pump/potassium antiporter 

system that is itself regulated by exposure to APs via the RosA/RosB two-component 

regulator (30).   

 

 

The H. ducreyi Sap Transporter is Expressed during Human Infection 

Bauer et al. published a study using the selective capture of transcribed sequences 

(SCOTS) to pinpoint genes important for H. ducreyi virulence (24).  In this study, mRNA 

transcripts were amplified from both broth derived cultures and tissue derived biopsies.   

The sequences were competitively hybridized in order to selectively identify transcripts 

that were expressed in vivo.  Transcripts that were expressed at higher levels in tissue 

than in broth were hypothesized to be important for H. ducreyi virulence.  This analysis 

identified hmologs of H. influenzae sapA, sapB, and sapF genes (24).  In order to further 

confirm the in vivo expression of H. ducreyi sapA, the same lab later performed nested 
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RT-PCR on RNA from H. ducreyi-infected pustules. The RNA transcripts were amplified 

in tissue-derived RNA, indicating that H. ducreyi expresses the sap genes at the pustular 

stage of disease.  
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HYPOTHESIS 

 

 

Based on the previous literature concerning H. ducreyi, antimicrobial peptides, and the 

Sap transporter: 

 

I hypothesized that H. ducreyi is resistant to the bactericidal effects of the APs likely to 

be found at the site of infection (160).  The rationale for this hypothesis is derived from 

two sources.  First, the literature indicates that H. ducreyi is able to both establish and 

maintain an infection in an environment known to be rich with APs (22, 25).  Second, 

other bacterial pathogens have been reported to express mechanisms enabling them to 

resist the bactericidal effects of these peptides (118). 

 

I hypothesized that the putative H. ducreyi Sap transporter plays a role in H. ducreyi 

resistance to APs.  The rationale for this hypothesis is derived from three sources. First, 

the H. ducreyi genome encodes an operon with high levels of homology to the previously 

defined sap operon of H. influenzae (147, 162).  Second, the Sap transporter has been 

reported in the literature to confer resistance to a wide variety of bacterial species 

including S. typhimurium, E. chrysanthemi, P. mirabilis, and H. influenzae (81, 142, 146, 

147, 152, 183).  Third, the H. ducreyi Sap transporter was shown to be expressed in 

chancroidal pustules, indicating that it is expressed in vivo (24). 

 

The following studies were undertaken to directly address these hypotheses. 
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METHODS 

 

All methods described in this section are also detailed, with minor modification, in either 

Mount et al. (2007) (160) or Mount et al. (2009). 

 

Bacterial Strains and Growth Conditions 

H. ducreyi strains (kindly provided by S.M. Spinola) (Table 6) were grown on chocolate 

agar plates at 33°C with 5% CO2, for strains 35000HP, HD183, and HD188, or at 30°C 

with 10% CO2, for strains CIP542 ATCC, HMC112, and DMC164.  35000HP and 

CIP542 ATCC cultures were grown with aeration at 33°C in brain heart infusion (BHI) 

(Difco Laboratories, Detroit, Mich.) broth containing
 

0.1% soluble starch (Fisher 

Scientific, Itasca, Ill.), 1% IsoVitaleX,
 
and 50 µg of hemin (Aldrich Chemical Co., 

Milwaukee, Wis.) per
 
ml,  or in gonococcal broth (15% proteose peptone (BD, Sparks, 

Maryland), 4% K2HPO4, 2% KH2PO4, 10% NaCl) supplemented with 10% Fetal Bovine 

Serum (HyClone, Logan, Utah), 1% IsoVitaleX,
 
and 50 µg of hemin (Aldrich Chemical 

Co.) per
 
ml (234).  E. coli ML35 (ATCC# 43827) was grown on Luria Bertani (LB) 

plates (203).  E. coli cultures were grown in LB broth at 37°C with aeration.  H. 

influenzae 86-028NP, 86-028NP∆sapA, and 86-028NP∆sapA/psapA (kindly provided by 

K. Mason) were grown on chocolate agar plates at 33°C with 5% CO2.  All H. influenzae 

cultures were grown statically in BHI broth containing 0.2% hemin and 0.2% β-

nicotinamide adenine dinucleotide hydrate (Sigma, St. Louis, MO) at 37°C with 5% CO2.  

 

 

Sources of Peptides 

Recombinant α– and β-defensins were purchased from PeproTech Inc. (Rocky Hill, N.J.), 

Sigma Aldrich, Peptides International (Louisville, Ken.), and AnaSpec (San Jose, Calif.).  

Synthetic LL-37 was purchased from Phoenix Pharmaceuticals, Inc. (Belmont, Calif.).   
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Table 6. Bacterial strains used in this study 

Strain   Genotype or Geographic Origin   Source 

E. coli Strains: 

HB101   F, thi-1, hsdS20 (rB, mB), supE44, recA13,  Promega  

ara-14, leuB6, proA2, lacY1, galK2, rpsL20  

(str
r
), xyl-5, mtl-1 

 

Top 10   F- mcrA ∆(mrr-hsdRMS-mcrBC)φ80lacZ ∆M15 Invitrogen 

                                   ∆lacX74recA1ara∆139 ∆(ara-leu)7697galUgalK                      

                                   rpsL (strR) endA1 nupG 

 

H. ducreyi Strains: 

35000HP  Class I; human-passaged (HP) variant of  (10, 88, 247)  

                                    strain H. ducreyi 35000HP, 

 Winnipeg, Canada, 1975 

 

HD183   Class I clinical isolate, Singapore, 1982  (23, 216) 

 

HD188   Class I clinical isolate, Kenya, 1982   (23, 216) 

 

CIP542 ATCC  Class II clinical isolate, Hanoi, Vietnam, 1954 (88, 247) 

 

H  MC112  Class II clinical isolate, Origin Not reported, 1984 (247) 

 

DMC164  Class II clinical isolate, Bangladesh    (247)  

   Origin and year not reported 

 

35000HPsapA  35000HPsapA::kan     This study 

 

35000HPsapA/psapA 35000HPsapA::kan/psapA    This study 

 

 

96-well AP Bactericidal Assay  

Bacteria were grown to mid-logarithmic phase in gonococcal broth, harvested by 

centrifugation, washed three times, and suspended in 10 mM sodium phosphate pH 7.4 

supplemented with 0.1% BHI (bacterial diluent).  Approximately 10
3 

cfu of bacteria were 

mixed with the indicated concentration of peptides in wells of a 96-well polypropylene 

plate (Costar 3790).  All peptide concentrations were tested in duplicate wells.  The 

bacteria and peptides were incubated for one hour at 33°C (H. ducreyi) or 37°C (E. coli).  

After incubation, the concentration of bacteria remaining in the wells was determined by 
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plate count.  Results from duplicate wells were averaged, and survival in the presence of 

APs was calculated as a percentage of survival in control wells without APs.  Assay 

results were subjected to a mixed model analysis in which data were log transformed and 

modeled with fixed effects for group, concentration, and the group by concentration 

interaction and included a random effect for sample, so that the correlation of percentages 

calculated from the same sample were incorporated.  The Sidak adjustment was used to 

control for multiple comparisons and P values < 0.05 were considered to be statistically 

significant. 

 

 

Radial Diffusion Assay  

H. ducreyi strains were grown for 24 hours on chocolate agar as described above.  

Approximately 10
7 

bacteria scraped from a confluent plate were suspended in a nutrient-

poor and salt-free underlay gel containing 0.15% proteose peptone (Difco Laboratories) 

and 1% agarose (Sigma 6013).  Serial half-log dilutions were made for each peptide, and 

either peptide or peptide diluent was added to 3-mm wells in the underlay.   After a three 

hour incubation period at 33°C (H. ducreyi) or 37°C (E. coli), a nutrient-rich overlay 

containing 15% proteose peptone, 0.4% K2HPO4, 0.1% KH2PO4, 0.5% NaCl, 0.1% 

soluble starch (Fisher Scientific) and 1% agar (Difco Laboratories) was added to each 

plate, and the plates were incubated for another 24 (E. coli ML35) or 48 (H. ducreyi) 

hours.  The zones of inhibition associated with each well were measured and expressed in 

units (0.1 mm = 1 U) (70).  The diameter (3 mm = 30U) of the well was subtracted from 

the unit calculation (70).  For each experiment, peptides were tested in duplicate.      

 

 

Polymerase Chain Reaction  

Polymerase Chain Reactions (PCR) were conducted using HiFi high fidelity taq 

polymerase (Invitrogen, Carlsbad, CA) and a PCR Sprint Thermal cycler (Thermo 

Electron Corporation, Waltham, MA).  Reactions were initialized with a 94°C, 2 min 

melting cycle.  Standard reactions used 30 amplification cycles including a 94°C, 30 

second melting cycle, a 59°C, 30 second annealing cycle, and a 72°C, 2 minute extension 
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cycle.  Standard reactions concluded with a 72°C, 10 min extension time.  Individual 

reactions necessitated the adjustment of the annealing temperature to account for primer 

melting temperatures and the adjustment of the extension time based on the size of the 

anticipated product.  All primers were ordered from the Integrated DNA Technologies 

Company (Coralville, IA).  Reactions included a DNA template positive control and a 

negative control lacking a template.  Primers are located in Table 7. 

 

 

Reverse Transcription PCR  

RNA was isolated from mid-log cultures of H. ducreyi using the trizol reagent 

(Invitrogen).  The isolated RNA was DNAse treated using a DNA-free kit (Ambion, 

Austin, TX) and complementary DNA (cDNA) was synthesized using random hexamer 

primers and an Advantage RT for PCR kit (BD, Palo Alto, CA).  Standard PCR was 

performed on the resultant cDNA.  All RT-PCR reactions included a DNA template 

positive control, a negative control lacking a template, and a negative control that did not 

receive reverse transcriptase.  Primers are located in table 7. 

 

 

Quantitative RT-PCR  

RNA was isolated as described above and quantitated using a Nanodrop UV/Vis 

spectrophotometer (Thermo Electron Corporation).  Primers were designed for HD1643 

(DNA gyrase subunit B), which served as a reference gene, and H. ducreyi sapD, the last 

gene in the sap operon.  HD1643 was selected as a control because the expression level 

of this housekeeping gene was not expected to vary between the wild type and mutant.  

The cycle threshold was calculated for 10-fold serial dilutions of DNA using each primer 

set.  The linear best fit line was calculated for each primer set and primer efficiencies 

were calculated as E = 10
(1/slope of line)

.  The primer efficiencies were high and reproducible 

at: 94%, 95%, and 87% for HD1643 and 94%, 90%, and 99% for sapD.  The relative 

expression ratio of the sapD and HD1643 genes, for both 35000HP and 35000HPsapA, 

was calculated as a means to determine if the expression level of sapD had changed 

relative to that of HD1643, after the introduction of the kanamycin resistance cassette 
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into 35000HPsapA, thus ensuring that the mutation was non-polar.  The relative 

expression ratio was determined by the Pfaffl method (191): [E target 
(∆Ct target (control-treated))

] / 

[E reference 
(∆Ct reference (control-treated))

].  Primers located in table 7. 

 

 

Southern Blot Analysis  

Digoxigenin (Dig) labeled DNA probes specific for the kanamycin resistance cassette, 

the deleted portion of sapA, and 5’ end of tyrR were synthesized using a PCR Dig Probe 

Synthesis Kit (Roche, Nutley, NJ) (Primers, Table 7).  Genomic DNA was isolated from 

H. ducreyi 35000HP and 35000HPsapA using standard methods (203).  5 µg of each 

DNA preparation was digested with AgeI (New England Biolabs, Ipswich, MA).  The 

digested DNA preparations and 0.5 µl of each probe (positive control) were separated by 

gel electrophoresis and transferred to a nitrocellulose membrane by capillary transfer 

(203).  The DNA was UV crosslinked and a Dig detection kit (Roche, Nutley, NJ) was 

used to prepare the membrane for detection.  Dig labeled probes were boiled and 

incubated with the filter at 42°C O/N.  The filter was washed extensively and a Dig 

blocking solution was used to block non-specific binding of the probes before the 

addition of chemiluminescent substrate.  Bands appearing on film were compared to a 

standardized ladder for sizing.   

  

 

DNA Sequencing 

Genomic DNA was isolated from putative sapA mutants using standard methods (203).   

Primers (Table 7) were designed to bind within the kanamycin resistance cassette and 

sequence outward into the sapA gene and to bind within the flanking genes of the operon 

and sequence into sapA.  DNA sequences were obtained by the Indiana University School 

of Medicine DNA Sequencing Core Facility using a Perkin Elmer / Applied Biosystems 

3100 Genetic Analyzer and Big Dye Terminator chemistry v3.1 system.  DNA sequences 

were analyzed by Chromas lite software, version 2.01.  
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Table 7.  Primers Used in PCR, RT-PCR, qRT-PCR, southern, and sequencing 

Primer   Sequence 

PCR Primers 

SapADelFor1  CGGATAATTCGGTGTTGGCGCATT 

SapADelRev1  AAACGCTCGCGGTTAATTGCTTGG 

SapAMutFor1  TGCGTACGGCAACTGAGAATAGGT 

SapAMutRev1 AACGCCTTGGTTTACGCCAACA 

pSap001  TTGAGGCATCGTTGTTACGCCGTT 

KanRev2  CCTTTGGAACAGGCAGCTTTCCTT 

KanFor2  GCTTTATTGATCTTGGGAGAAGCGGC 

pSap004  AATGATTTAATGGATCACGCAA 

 

RT-PCR Primers 

pSap001  TTGAGGCATCGTTGTTACGCCGTT 

pSap002  GCGGAATAAGCGGTCGAAATCCAA 

pSap003  CTCAGCGTAGCTTGTTTGTC 

pSap004  AATGATTTAATGGATCACGCAA 

pSap005  TAATGCGATTTCTGCCGGTGTGGT 

pSap006  GCCACTTTATCTTGCCGTAACTCAAGCC 

pSap007  CAAAGTCCAATGCCAGAATGG 

pSap008  GCCCTGTTGGCGTATCAATTTC 

pSap009  GGCAGAATTTGAGCCTGTAGTCGT 

pSap011  TACGACCGCAATATGGCTCGGATT 

SapDFor1  TAAGTGGTGGCAGTGGTTTGGTTG 

SapDRev1  AAACGAGGTTGATTAGCCACTGCC 

 

qRT-PCR Primers 

SapDFor2  GCATTGAAATTGATACGCCAACAGGGCGAG 

SapDRev2  TCCGCGGTCACAATCCACTCATCTTTCATC 

1643For1  TGAAGGGCTTGTTGCGGTGATTTC 

1643Rev1  TCCGCTAAACAAGGTCGTGATCGT 

 

Dig Probe Primers 

TyrRSouthernFor CACAGCTTGATGCGCCCTTATTGA 

TyrRSouthernRev AAGTCGCCTTGTCGCTCACGTAAT 

KanSouthernFor ACCACCTATGATGTGGAACGGGAA 

KanSouthernRev AATGTCATACCACTTGTCCGCCCT 

SapAdeleatedFor CGGATAATTCGGTGTTGGCGCATT 

SapAdeletedRev AAACGCTCGCGGTTAATTGCTTGG 

 

Sequencing Primers 

KanFor2  GCTTTATTGATCTTGGGAGAAGCGGC 

KanRev2  CCTTTGGAACAGGCAGCTTTCCTT 

pSap001  TTGAGGCATCGTTGTTACGCCGTT 

pSap004  AATGATTTAATGGATCACGCAA 
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Comparative Growth Curves  

H. ducreyi 35000HP and H. ducreyi 35000HPsapA were streaked from freezer stocks 

onto Chocolate agar plates.  A single colony was used to inoculate 20 ml gonococcal 

broth supplemented with 10% Fetal Bovine Serum (HyClone, Logan, Utah), 1% 

IsoVitaleX,
 
and 50 µg of hemin (Aldrich Chemical Co.) per

 
ml that was incubated for 16 

hours in a 33°C water bath with shaking.  30 ml overnight cultures were diluted to an OD 

660nm: 0.065.  OD readings were taken every 60 minutes and 1ml was removed every 

two hours for plate counts.  Plates were incubated in a 33°C incubator with 5% CO2 for 

48 hours.  Plate counts were performed in triplicate and used to calculate the colony 

forming units / ml of the culture. 

 

 

Construction of 35000HPsapA  

Primers used to generate constructs are listed in Table 8.  All plasmids were maintained 

in E. coli TOP10.  Plasmids were passed through E. coli HB101 before introduction into 

H. ducreyi to increase transformation efficiency into H. ducreyi (225).  A 517 bp 

fragment containing the 5’ end of HD1230 (sapA) was PCR amplified from H. ducreyi 

35000HP genomic DNA.  The DNA fragment was TA cloned into pGEM T-Easy 

(Promega, Madison, Wis.) to generate pMEB078.  A 489 bp fragment containing the 3’ 

end of HD1230 was PCR amplified from genomic DNA and TA cloned into p-GEM T-

Easy (Promega) to generate pMEB080.  A non-polar kanamycin resistance cassette from 

pUC18K2 (153), was inserted downstream of the 5-prime fragment of sapA in MEB078 

to generate pMEB092.  The sapA’-kan
R
 fragment of pMEB092 was cloned upstream of 

the 3-prime region of sapA in pMEB080, generating pMEB098.  In this construct, 676 bp 

of sapA was replaced with the Kan
R
 cassette.   

 

The sapA’-kan
R
-‘sapA fragment was subcloned into pRSM2072, which expresses lacZ 

and acts as a suicide vector in H. ducreyi (40).  As described above, the vector was 

passed through E. coli HB101 before introductioin into H. ducreyi by electroporation 

(178)  In the pRSM2072 system, lacZ expression is detectable in by O-nitrophenyl-β-d-

galactoside hydrolysis (40).  The growth rate of the bacteria grown in the absence of 5-
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bromo-4-chloro-3-indoyl-β-D-galactopyranoside (X-gal) is unaffected by this reaction 

(40). However, in the presence of X-gal, colonies appear blue and there is a dramatic 

reduction in the growth rate due to the expression of the lacZ gene encoded on the 

pRSM2072 backbone (40).  The successful completion of a double crossover is 

phenotypically detectable by the appearance of white healthy colonies (40)   Kanamycin 

resistant transformants were repetitively passed on chocolate agar plates containing X-

gal, in order to select for colonies in which the wild type allele had been successfully 

replaced by the mutagenized allele (40).   

 

 

Generation of 35000HPsapA/psapA  

To complement 35000HPsapA in trans, the sapA ORF and its putative native promoter 

were expressed in H. ducreyi shuttle vector pLSKS (252) (Figure 4).  BPROM software 

(www.softberry.com) was used to identify the putative promoter located 177 bp upstream 

of tyrR in an untranslated region.  The sapA ORF was PCR-amplified and TA cloned into 

pGEM-T-Easy (Promega) to generate pMEB108.  The 5’ primer used to amplify sapA 

also inserted the nucleotide sequence “CAT” immediately upstream of the sapA start 

codon in order to introduce an NdeI restriction digest site (CATATG) at the 5’ end of the 

sapA gene.  237 bp of the putative promoter containing intergenic region located 

upstream of tyrR was PCR-amplified with primers that also introduced an NdeI site at the 

3’ end of the fragment.  The putative promoter region was TA cloned into pSC-A 

(Stratagene, Cedar Creek, TX) to generate pMEB114.  The putative promoter was cut 

away from pMEB114, digested with NdeI, and then ligated with NdeI-digested 

pMEB108 to generate pMEB115.  In this construct, the sapA ORF lies immediately 

downstream of the untranslated region upstream of tyrR.  The construct was subcloned 

into pLSKS to produce pMEB120.  pMEB120 was electroporated into E. coli HB101 and 

subsequently introduced into 35000HPsapA by electroporation.  Transformants were 

selected for on plates containing both kanamycin and streptomycin.  RT-PCR was used to 

verify that the complemented sapA gene was transcribed in vitro (data not shown). 
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Table 8. Primers Used in sapA Mutagenesis 

Primer   Construct Sequence* 

5’SapA Forward pMEB078 CATATCtctagaGCGGATAGCTTAATTTAT 

                                                            TGCACCAG  

 

5’SapA Reverse pMEB078 CATATCggtacc*CATATCctcgagGAATCTT 

                                                            TACTGTATATTCATTCGGTGCTG 

 

3’SapA Forward pMEB080 CATATCtctagaGCGGATAGCTTAATTTATTGC 

                                                            ACCAG 

 

3’ SapA Reverse pMEB080 TAAACGAACTTGCCCGAATGGCTC 

 

SapAcompFor1 pMEB120 GATGTATCATTACTCACTAATATCCCTGCT 

 

SapAcompRev1 pMEB120 CGGTCGAAATCCAACAGAACACAG 

 

SapApromoterFor1 pMEB120 CCTTTAATTTGTTCTAAATACATAATGATCC 

 

SapApromoterRev1 pMEB120 CATATCcatatgTCTTTTCGCCTTAATTTAAGC 

*Underlined regions correspond to restriction digest sites generated during PCR.  In 

pMEB078 a XbaI recognition site was added to the construct by 5’SapA Forward and 

KpnI  and XhoI sites were added to the construct by 5’SapA Reverse.  In pMEB080 a 

KpnI site was added to the construct by 3’SapA Forward.  In pMEB120 an NdeI site was 

added to the construct by SapApromoterRev1. 
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Figure 3.  Generation of H. ducreyi sapA mutant   
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Figure 4.  Generation of H. ducreyi sapA complement 
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Table 9. Plasmids used in study 

Plasmid  Description             Source or reference 

pGEM-T Easy  TA cloning vector, Kan
R   

Promega 

 

pSC-A   TA cloning vector, Amp
R   

Stratagene 

 

pCR XL Topo  TA cloning vector, Amp
R   

Invitrogen 

 

pUC18K2  Source of non-polar, Kan
R   

(153) 

 

pRSM2072  H. ducreyi suicide vector   (40) 

 

pMEB078  5’ end of HD1230 in pGEM-T Easy  This study 

 

pMEB080  3’ end of HD1230 in pGEM-T Easy  This study 

 

pMEB092  5’ end of HD1230 + Kan
R 

cassette in  This study  

                                    pGEM-T Easy 

 

pMEB098  5’ end of HD1230 + Kan
R 

cassette +  This study 

                        3’ end of HD1230 in pGEM-T Easy 

 

pMEB101  5’ end of HD1230 + Kan
R
 cassette +  This study 

   3’ end of HD1230 in pRSM2072   

 

pMEB114  sap operon promoter in pSC-A  This study 

 

pMEB108  sapA (HD1230) ORF in pCR XL Topo This study 

 

pMEB115  sap promoter ligated to sapA ORF in  This study 

  pCR XL Topo 

 

pMEB120  Putative sap operon promoter region             This study 

                                    + sapA in pLSKS 

 

pLSKS   H. ducreyi shuttle vector   (252) 
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RESULTS 

SECTION I: H. DUCREYI IS RESISTANT TO HUMAN APS  

 

All data and text in this chapter have been previously published, with minor 

modifications, in Mount et al. (2007) (160). 

 

Validation of 96-well AP Bactericidal Assay  

A 96-well AP bactericidal assay was used to measure the bactericidal effects of APs 

against H. ducreyi and E. coli ML35, a control strain shown in the literature to be 

susceptible to many APs (173, 177).  We tested the activity of each peptide over a 100-

fold range that encompasses most concentrations at which resistance to APs has been 

demonstrated and included estimated in vivo concentrations (130, 199).  As was 

discussed in the introduction, the AP concentration in the skin has been estimated to 

range from nanograms to milligrams, depending on the AP (39).  

 

Previous work by Fortney et al. demonstrated that H. ducreyi is susceptible to killing by 

PG-1, a porcine AP with no human homolog (70).  We therefore used PG-1 to establish 

the ability of our assay to detect the bactericidal activity of APs.  As expected, both H. 

ducreyi 35000HP and E. coli ML35 were effectively killed by PG-1 (Table 10), 

demonstrating that the bactericidal assay can detect killing of H. ducreyi by APs. 

 

Table 10.  Survival of E. coli ML35 and H. ducreyi 35000HP exposed to PG-1 (160) 

[PG-1] E. coli ML35    H. ducreyi 35000HP_____________                            

0.2 µg/ml            0 ± 0.007
a                                                  

0.62 ± 0.29 

2.0 µg/ml                  0 ± 0                          0 ± 0 

20 µg/ml                           0 ± 0                                              0 ± 0 
a 
Mean percent survival ± standard error of three independent assays 

 

 

H. ducreyi Susceptibility to Human α-defensins  

H. ducreyi infection leads to a rapid and dense PMN infiltrate (27, 101, 180).  α-defensins 

HNP-1-3 are expressed by PMNs in natural ulcers (22).  We therefore tested H. ducreyi 
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susceptibility to α–defensins HNP-1-3.  E. coli ML35, which has been shown previously 

to be sensitive to a variety of APs, was used as a control for AP activity (108, 131).  E. 

coli ML35 was sensitive to all three HNPs tested, demonstrating only 10-30% survival in 

the presence of HNPs at 20 µg/ml (Figure 5A-C).  In contrast, H. ducreyi 35000HP 

exhibited greater than 90% survival at all concentrations tested (Figure 5A-C).  The 

differences in survival of the two bacteria were statistically significant.   

 

During natural infection of women, H. ducreyi likely encounters the α- defensin HD-5, 

secreted by the squamous epithelium of the vagina (199).  We therefore tested H. ducreyi 

susceptibility to HD-5.  HD-5 was more potent than HNP-1-3 against E. coli, with less 

than 1% survival at 20 µg/ml and 16% survival at 2 µg/ml (Figure 5D).  In contrast, 

greater than 88% of H. ducreyi survived these concentrations of HD-5 (Figure 5D).  

Taken together, our data demonstrated that H. ducreyi 35000HP was significantly more 

resistant than the control strain to the bactericidal effects of α-defensins (Figure 5).   

 

  

H. ducreyi Susceptibility to Human β-defensins  

Both H. ducreyi and the small wounds required to initiate infection act as inflammatory 

stimulators of keratinocytes at the site of infection, stimulating the expression and 

secretion of the β-defensins HBD-2, -3, and -4 (139, 212).  HBD-2 is also expressed and 

secreted by macrophages and PMNs that are recruited to the site of infection (59, 242).  

In addition, HBD-1 is constitutively expressed by both macrophages and keratinocytes 

(59, 94).   

 

We evaluated the susceptibility of H. ducreyi to HBD-2-4 and found that H. ducreyi 

35000HP was significantly more resistant than E. coli ML35 to 20 µg/ml of HBD-2,-3, 

and -4 and 2 µg/ml of HBD-3 and -4 (Figure 6.  Less than 7% of E. coli ML35 survived 

exposure to 20 µg/ml of each β-defensin.  In contrast, significantly more H. ducreyi (25-

66%) survived the same dose of peptide (Figure 6A-C).  At the 2 µg/ml concentration of 
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Figure 5.  H. ducreyi is resistant to α-defensins (160).  Percent survival of 

bacteria exposed to α-defensins (A) HNP-1, (B) HNP-2, (C) HNP-3, and (D) HD-

5.  H. ducreyi 35000HP is shown in black bars and E. coli ML35 is shown in grey 

bars.  Data represent the mean ± standard error for three independent assays.  

Asterisks represent statistically significant differences between strains at the 

indicated concentration of AP, at P <0.0001 (HNP-1 and HD-5), P =0.0017 

(HNP-2), and P =0.0335 (HNP-3). 
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 HBD-3 and HBD-4, the survival of E. coli was 25% or 30%, respectively, while at least 

84% of H. ducreyi 35000HP survived incubation with 2 µg/ml of HBD-3 or HBD-4 

(Figure 6B-C).   At the highest concentrations tested in our assay, the bactericidal effects 

of the β-defensins were more potent than the effects of the α-defensins against H. ducreyi 

35000HP.  However, in each case, H. ducreyi 35000HP was significantly more resistant 

than E. coli ML35 to the bactericidal effects of HBD-2-4 (Figure 6).  We were unable to 

determine the susceptibility of H. ducreyi to HBD-1 because both recombinant and 

synthetic HBD-1, purchased from three different sources, failed to demonstrate 

bactericidal activity against E. coli ML35 in our assays (data not shown).   

 

 

 

Figure 6.  H. ducreyi is resistant to β-defensins (160).  Percent survival of 

bacteria exposed to β-defensins (A) HBD-2, (B) HBD-3, and (C) HBD-4.  H. 

ducreyi 35000HP is shown in black bars and E. coli ML35 is shown in grey bars.  

Data represent the mean ± standard error for three independent assays.  Asterisks 

represent statistically significant differences between strains at the indicated 

concentration of AP at P <0.0001 (HBD-2, HBD-3, and HBD-4 at 20 µg/ml) and 

P =0.0089 (HBD-4 at 2 µg/ml). 
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H. ducreyi Susceptibility to the Human Cathelicidin, LL-37  

Only one cathelicidin, LL-37, is produced by humans.  This AP is expressed and secreted 

by macrophages, PMNs, and keratinocytes in response to inflammatory mediators (6, 

115, 141).  We evaluated the susceptibility of H. ducreyi to this peptide.  LL-37 had the 

most potent bactericidal activity against E. coli ML35 of all peptides tested.  Similarly, H. 

ducreyi 35000HP was much more susceptible to the bactericidal effects of LL-37 than to 

either the α-defensins or the β-defensins.  However, survival of H. ducreyi (16%) was 

significantly greater than survival of E. coli (5%) at the 2 µg/ml dose of LL-37 (P < 

0.001) (Figure 7A).   

 

To define the differences in susceptibility between E. coli ML35 and H. ducreyi 

35000HP to LL-37 in more detail, we exposed the bacteria to 2-fold serial dilutions of 

LL-37 across a concentration range spanning complete killing of bacteria (4 µg/ml) to at 

least 90% survival of bacteria (0.125 µg/ml).  When the bacteria were exposed to 0.5 

µg/ml of LL-37, survival of H. ducreyi (43%) was significantly higher than survival of E. 

coli (3%) (P = 0.0036) (Figure 7B).  Thus, while the overall levels of killing produced by 

LL-37 appeared qualitatively to be higher than those observed with the other APs tested, 

our data demonstrate that H. ducreyi was significantly more resistant to killing by LL-37, 

relative to the killing observed when E. coli ML35 was exposed to the peptide (Figure 7). 

 

 

Class I and Class II H. ducreyi Strains are Resistant to APs  

H. ducreyi as a species shows limited genetic and phenotypic diversity (247).  However, 

based on differences in OMP profiles and LOS migration patterns, two classes of H. 

ducreyi strains have been described (247).  We compared the susceptibility of 

representative members of the two classes of H. ducreyi to each class of AP.  The class I 

strain, 35000HP, and the class II strain, CIP542 ATCC, were each exposed to a 100-fold 

concentration range of α-defensin HNP-1, β-defensin HBD-3, and LL-37.  Our data 

demonstrate that the class I and class II strains of H. ducreyi are each resistant to the 

bactericidal effects of the APs tested (Figure 8).  While 35000HP was statistically more 

resistant than CIP542 ATCC to HBD-3, and CIP542 ATCC was statistically more 
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resistant than 35000HP to LL-37, both strains exhibited resistance to all of the APs tested 

(Figure 8).  These findings indicate that AP resistance may represent a conserved 

mechanism of H. ducreyi survival. 

 

  

 

 

Figure 7.  H. ducreyi is resistant to the human cathelicidin LL-37 (160).  

Percent survival of bacteria exposed to (A) 10-fold and (B) 2-fold serial dilutions 

of the human cathelicidin LL-37.  H. ducreyi 35000HP is shown in black bars and 

E. coli ML35 is shown in grey bars.  Data represent the mean ± standard error for 

three independent assays.  Asterisks represent statistically significant differences 

between strains at the indicated concentration of AP, with P<0.0001 (A) and 

P=0.0012 (B). 
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Figure 8.  Representative class I and class II H. ducreyi strains are  

resistant to APs (160). Susceptibility of class I 35000HP and Class II CIP542 

ATCC to (A) α-defensin HNP-1, (B) β-defensin HBD-3, and (C) cathelicidin 

LL-37.  Class I results are shown in black, and class II results are shown in 

grey.  Data represent the mean ± standard error for three independent assays.  

Asterisks represent statistically significant differences between strains at the 

indicated concentration of AP, with P < 0.02 for HBD-3 and P =0.0036 for LL-

37.   

 

 

Minimum Inhibitory Concentration of Antimicrobial Peptides  

Although H. ducreyi was significantly less susceptible than E. coli to AP activity (Figure 

5-7), some killing of H. ducreyi was observed with some β-defensins and LL-37 (Figure 

6-7).  We therefore assessed the relative activities of these APs against E. coli and both 

class I and class II H. ducreyi in a radial diffusion assay (RDA), which provided a more 

quantitative dose-response curve and allowed for calculation of a minimal effective 

concentration (MEC) of each peptide against each bacterial strain. 

 .   
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As in previous studies, the MEC of each peptide against each bacterial strain was defined 

as the x-intercept of plots of AP activity over the AP concentration range (70, 220). If 

fewer than two peptide concentrations exhibited activity against a bacterial strain, no x-

intercept could be defined, and the MEC was estimated as > 158 µg/ml, the upper limit of 

measurable MEC in this assay.  The statistical differences among MECs were calculated 

using Students’ t-test (Table 11).   

 

All peptides exhibited activity against E. coli ML35, with MECs ranging between 2 and 

18 µg/ml (Table 11).  The MEC of PG-1 against the H. ducreyi strains was not 

significantly different than PG-1 activity against E. coli (Figure 9A, P = 0.1, two-tailed 

Students’ t- test).  These results are consistent with a previously published report that H. 

ducreyi is susceptible to killing by PG-1 (70).  

 

In the 96-well bactericidal assay, human cathelicidin LL-37 showed greater activity than 

other APs against H. ducreyi (Figure 7).  In the RDA, activity of LL-37 was significantly 

lower against H. ducreyi than against E. coli (P < 0.0001) (Figure 9B).  The MEC of LL-

37 was 6.2 µg/ml against E. coli ML35 but >158 µg/ml against H. ducreyi strains (Table 

11).  These data confirm that H. ducreyi is less susceptible than E. coli ML35 to LL-37 

mediated activity. 

 

In contrast to porcine protegrin, the human β-defensins demonstrated much less activity 

against the H. ducreyi strains than against E. coli ML35 (Figure 9C-E, Table 11).  The 

MECs of human β-defensins against H. ducreyi exceeded the upper limits of the assay, 

with little to no activity even at a peptide concentration of 500 µg/ml (Figure 9C-E).  

However, the MECs of the β-defensins against E. coli were less than 20 µg/ml.  The 

overall activity of each β-defensin, calculated by comparing the slopes of each inhibition 

curve, was significantly lower against 35000HP than against E. coli ML35 (P < 0.0001) 

(Figure 9).  These data are consistent with the results of our 96-well AP bactericidal assay 

(Figure 6), which demonstrated that H. ducreyi was significantly more resistant than E. 

coli to killing by human β-defensins. 
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The RDAs were performed with both class I and class II strains of H. ducreyi. The two 

strains showed similar levels of susceptibility to all peptides tested, with both strains 

being relatively susceptible to killing by PG-1 and resistant to killing by human APs 

(Figure 9, Table 11). These data support the conclusion that resistance to AP-mediated 

killing is a phenotype common to both known classes of H. ducreyi strains. 

 

Figure 9.  AP-mediated inhibition of bacterial growth (160).  Serial dilutions 

of the indicated peptides were tested for activity against class I H. ducreyi 

35000HP (open circles), class II H. ducreyi CIP542 ATCC (open squares), and E. 

coli ML35 (filled triangles).  Data represent the mean ± standard error for three 

independent assays, each performed in duplicate.  The units of inhibition shown 

on the y-axis represent the diameter of the zone of inhibition surrounding the well, 

minus the diameter of the well itself. Asterisks represent statistically significant 

differences in peptide activity compared with E. coli ML35 (P <0.001). 

 



 62 

Table 11. Minimum effective concentrations of APs (160) 

Peptide       E. coli ML35     H. ducreyi 35000HP         H. ducreyi CIP542 ATCC 

PG-1     2.5
a 

       39.0       23.1 

HBD-2    11.1      >158
b
                >158 

HBD-3              17.4      >158      >158 

HBD-4              12.6                               >158                                       >158 

LL-37                 6.2      >158      >158 
a 
MEC in µg/ml, calculated as the x-intercept of the best fit line.  Data are the mean MEC 

from three independent assays, each performed in duplicate. 
b 
If less than two peptide concentrations exhibited activity, no x-intercept could be 

defined, and the MEC was reported as >158 µg/ml, the upper limit of measurable MEC in 

this assay.  

 

 

AP Resistance is Conserved within the Species  

In order to confirm that the AP resistance phenotype was conserved within the species, 

we used an RDA to calculate the MEC of LL-37 against three class I and three class II 

strains of H. ducreyi.  The MEC of LL-37 against each strain exceed the upper limit of 

measurable MEC in the assay, and was thus reported as >158 µg/ml (Table 12).  Because 

AP resistance is conserved within the species, the phenotype could represent a putative 

H. ducreyi virulence factor.  

 

 

Table 12. AP resistance is conserved within the species 

H. ducreyi strain       Class                       MEC LL-37 (µg/ml)  

35000HP                                     I                                 >158 µg/ml   

HD183                                          I                                 >158 µg/ml   

HD188                                            I                                 >158 µg/ml   

CIP542 ATCC                               II                                 >158 µg/ml   

HMC112                                        II                                 >158 µg/ml     

DMC64                                       II                                 >158 µg/ml  
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RESULTS 

SECTION II: THE H. DUCREYI SAP TRANSPORTER PLAYS A                                

ROLE IN AP RESISTANCE 

 

All data and text described in this chapter have been prepared for publication, with only 

minor modification, in Mount et al. (2009). 

 

Our data indicate that H. ducreyi is resistant to the bactericidal effects of the APs likely to 

be found at the site of infection.  This AP resistance phenotype is conserved within the 

species and could thus represent a putative H. ducreyi virulence factor.  As such, we 

examined the H. ducreyi genome (available at www.ncbi.nih.gov) for evidence of regions 

of homology to other known AP resistance mechanisms.  We uncovered an operon with 

high levels of homology to the previously described sap operon of S. typhimurium, P. 

mirabilus, H. influenzae, E. chrysanthemi, and V. fischeri (Table 5) (142, 144, 147, 152, 

183).  sapA, sapB, and sapF transcripts were identified as putative virulence determinants 

though the use of the SCOTS procedure, which compares the transcription levels of genes 

in broth derived cultures and tissue derived biopsies (24).  We therefore designed a 

strategy to mutagenize the sapA gene (HD1230) of H. ducreyi as a means to examine the 

role of the Sap transporter in H. ducreyi AP resistance.  We choose to mutate sapA 

specifically, as previous studies with S. typhimurium and H. influenzae have indicated 

that the loss of sapA dramatically decreases the functionality of the transporter as a whole 

(147, 183).  By adopting this mutagenesis strategy we have hypothesized that the loss of 

of sapA in H. ducreyi will phenotypically correspond to a loss of all AP resistance 

functionality of the transporter in the organism. 

 

 

Construction of a sapA Mutant in H. ducreyi  

We used RT-PCR to map the operon structure of the H. ducreyi sapABCD locus in broth 

culture and found that the four contiguous sap genes, along with the upstream tyrR, are 

co-transcribed (Figure 10).  We therefore used a non-polar kanamycin resistance cassette 

(154) in the construction of the 35000HPsapA mutant in order to ensure that transcription 
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of the downstream genes was not disrupted.  The sapA mutation in 35000HPsapA was 

confirmed by PCR analyses (Figure 11), DNA sequencing, and southern blotting (Figure 

12).  35000HP and 35000HPsapA demonstrated similar growth rates in broth (Figure 13).  

Standard RT-PCR (Figure 14) was performed in order to confirm that sapD, the most 

downstream gene of the sap operon, was transcribed after the mutagenesis procedure was 

complete.  Quantitative RT-PCR was performed to ensure that the transcription level of 

sapD was unaffected by the mutagenesis procedure.  The expression level of sapD in 

35000HP and 35000HPsapA was normalized to the expression level of the housekeeping 

gene HD1643 (DNA gyrase B) and the expression level of sapD was compared between 

the two stains.  The expression level of HD1643 was expected to be unaffected by the 

mutagenesis procedure and thus served as a reference for gene expression in our system.   

Three assays were performed, yielding an average relative expression ratio of 1.44 (sapD 

to HD1643) with a standard error of 0.19.  These data indicate that sapD, the most 

downstream gene of the sapABCD operon, is equally expressed in 35000HP and 

35000HPsapA, and that the sapA mutation in 35000HPsapA is non-polar.  
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Figure 10.  The sap-containing locus of H. ducreyi is transcribed as an 

operon.  A. Representation of sap operon.  B. RT-PCR analysis was used to 

determine if the sap containing mRNA encoded a poly-cistronic message.  Lanes 

1, 5, 9 and 13 contain DNA as a template.  Lanes 2, 6, 10 and 14 lack a template.  

Lanes 3, 7, 11 and 15 contain cDNA.  Lanes 4, 8, 12 and 16 contain RNA that 

was not reverse transcribed.  Lanes 1-4 used primers that spanned the tyrR/sapA 

junction.  Lanes 5-8 used primers that spanned the sapA/sapB junction.  Lanes 9-

12 used primers that spanned the sapB/sapC junction.  Lanes 13-16 used primers 

that spanned the sapC/sapD junction.     
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Figure 11. PCR Confirmation of 35000HPsapA. PCR was used to characterize 

two putative 35000HPsapA mutants (2 and 25).  Prior to analysis, kanamycin 

resistant transformants were propagated on chocolate agar plates containing X-

gal, in order to identify colonies that had undergone allelic exchange. (A) A 

representation of the WT H. ducreyi genome compared to (B) the expected 

conformation of 35000HPsapA.  The kanamycin resistance cassette is larger than 

the DNA sequence deleted from the WT sapA gene, resulting in a size shift that 

can be detected by PCR primers binding outside the kanamycin resistance 

cassette.  (C) Products of PCR reaction amplifying sapA deleted region.  (D) 

Products of PCR reaction detecting size shift between WT and sapA mutant 

genomes.  (E) Products of PCR reaction using primers that amplify across the 

junction between the H. ducreyi sapA gene and the kanamycin resistance cassette. 
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Figure 12.  Southern analysis of 35000HPsapA.  A southern analysis was 

performed to verify that the kanamycin resistance cassette had inserted into only 

one location in the 35000HP genome in the creation of 35000HPsapA. Genomic 

DNA was digested, separated by electrophoresis, and transferred to a 

nitrocellulose membrane.  Blots were probed with probes specific for tryR, the 

kan
R 

cassette, or the deleted region of 35000HP.    As a positive control for each 

blot, the probe was shown to bind to itself.  As a negative control for each blot, 

the probe was shown to not bind to the other probes used in the study.          
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Figure 13. The 35000HPsapA mutation did not affect H. ducreyi growth in 

vitro. Mid-log cultures of H. ducreyi 35000HP (Black diamond) and 

35000HPsapA (Blue square) were grown in a 33°C water bath.  The OD660 nm 

was measured every 60 minutes.  One ml of culture was removed every two hours 

to perform plate counts.  Plate counts were performed in triplicate and results 

were averaged.  Data shown is representative of three independent assays. 
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Figure 14. RT-PCR confirmation of putative 35000HPsapA mutant.  RT-PCR 

analysis of sap-containing locus was used to determine if the 35000HPsapA 

mutation altered the transcription of the sap operon encoded poly-cistronic 

message.  NT: Sample lacking template.  WT: Wild type H. ducreyi 35000HP.  

Mut:  35000HPsapA.  RT+: RNA sample received reverse transcriptase.  RT-:  

RNA sample that did not receive reverse transcriptase. p001-p008:  primers 001-

008.    
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The H. ducreyi Sap transporter Confers Resistance to LL-37  

A 96-well AP bactericidal assay comparing the survival of H. ducreyi 35000HP, 

35000HPsapA, and the sapA complement, 35000HPsapA/psapA, was performed in order 

to ascertain what role the Sap transporter played in H. ducreyi resistance to LL-37.   In an 

assay with 10-fold serial dilutions of LL-37, 35000HP was significantly more resistant 

than 35000HPsapA to LL-37 at all but the lowest concentrations (Figure 15A).  An assay 

with two-fold serial dilutions of LL-37 was performed to more specifically characterize 

the effect of the sapA mutation on H. ducreyi resistance to LL-37.  Wild-type H. ducreyi 

was found to have significantly higher levels of survival than the sapA mutant in the 

presence of between 0.25 µg/ml and 2 µg/ml LL-37 (Figure 15B).  Statistically 

significant complementation was observed at LL-37 concentrations as high as 2 µg/ml.  

This finding indicates that the observed differences in LL-37 susceptibility of the parent 

and mutant are due to the activity of SapA.  These data suggest that H. ducreyi resistance 

to LL-37 is due, at least in part, to the activity of the Sap transporter.       

 

 

The H. ducreyi Sap Transporter does not Confer Resistance to β-defensins  

H. ducreyi is exposed to multiple cellular sources of β-defensins at the site of infection 

(74) and our data demonstrate that the bacterium is resistant to the bactericidal effects of 

HBD-2, HBD-3, and HBD-4 (Figure 6) (160).  In this study, we examined the role of the 

Sap transporter in H. ducreyi resistance to these β-defensins.  In a 96-well AP bactericidal 

assay with 10-fold serial dilutions of peptide, there was no discernable difference in AP 

resistance levels of 35000HP, 35000HPsapA, and 35000HPsapA/psapA exposed to the β-

defensins HBD-2, HBD-3, or HBD-4 (Figure 16).  This finding indicates that the H. 

ducreyi Sap transporter is not involved in the bacterium’s resistance to the β-defensins 

tested.  

 

Mason et al. previously reported that the H. influenzae sapA mutant is susceptible to 

HBD-3, a finding that contradicts our findings with H. ducreyi (147).  The assay was 

repeated with H. influenzae 86-028NP and 86-028NPsapA (kindly provided by Kevin 

Mason).  In these assays, the H. influenzae sapA mutant was more susceptible than the 
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wild type to 0.2 µg/ml and 2 µg/ml HBD-3 (data not shown), a finding that correlates 

with the previously published results (147).  Taken together, these data indicate that there 

could be differences in the ligand specificity of the H. ducreyi and H. influenzae Sap 

transporters. 

  

 

The H. ducreyi Sap Transporter Does not Confer Resistance to α-defensins  

H. ducreyi is exposed to PMN derived α-defensins at all stages of disease progression 

(22), and H. ducreyi is likely exposed to the α-defensin HD-5 during vaginal and cervical 

infection (199).  We have demonstrated that H. ducreyi is resistant to the bactericidal 

activity of these peptides (Figure 5) (160).  However, we found no significant difference 

in the rate of survival of 35000HP, 35000HPsapA and 35000HPsapA/psapA after 

exposure to increasing concentrations of HNP-1, HNP-2, and HD-5 (Figure 17).  This 

finding suggests that the Sap transporter does not confer H. ducreyi resistance to the α-

defensins surveyed. 

 

 

The sapA Gene is Conserved among Both Class I and Class II H. ducreyi  

Two phenotypic classes of H. ducreyi have been described (247).  Because both classes 

of H. ducreyi are resistant to APs (160), Carisa Townsend of the Bauer lab examined 

whether a panel of clinical isolates would also harbor the sapA gene.  PCR was 

performed using sapA-specific primers designed from the 35000HP sequence. The PCR 

primers were internal to the open reading frame of the gene. SapA was amplified from 

genomic DNA of all ten clinical isolates tested, including six class I stains and four class 

II stains.  All amplimers co-migrated with the corresponding amplimer in 35000HP 

genomic DNA.  Thus, the Sap transporter may be important for AP resistance in both 

classes of H. ducreyi and could act as an H. ducreyi virulence factor.   
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Figure 15. The H. ducreyi Sap transporter confers resistance to LL-37.  

Bactericidal assay comparing the percent survival of H. ducreyi 35000HP, 

35000HPsapA, and 35000HPsapA/psapA exposed to LL-37 for 1 hour.  Data 

represent the mean ± standard error for three independent assays.  Black bars: 

35000HP.  Light gray bars: 35000HPsapA.  Dark gray bars: 35000HPsapA/psapA.  

Asterisks represents that 35000HP has a significantly greater mean percent of 

control than 35000HPsapA.  Pound sign represents that 35000HPsapA/psapA has 

a significantly greater mean percent of control than 35000HPsapA.  Figure 15A: 

Bactericidal assay with a 10-fold serial dilution of LL-37.  In comparison of 

35000HP and 35000HPsapA, for 2 µg/ml, P = 0.0032.  For 20 µg/ml, P=0.0059.  

In comparison of 35000HPsapA/psapA and 35000HPsapA, P = 0.0009.  Figure 

15B: Bactericidal assay with a 2-fold serial dilution of LL-37.  In comparison of 

35000HP and 35000HPsapA, for 0.25 µg/ml, P = 0.01.  For 0.50 µg/ml, P < 

0.0001.  For 1.0 µg/ml, P < 0.0001.  For 2.0 µg/ml, P < 0.0001.  In comparison of 

35000HPsapA/psapA and 35000HPsapA, for 0.5 µg/ml, P = 0.0009.  For 1 µg/ml, 

P < 0.0001.  For 2 µg/ml, P < 0.0001.   
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Figure 16. The H. ducreyi Sap transporter does not confer resistance against 

β-defensins.  Bactericidal assay comparing the percent survival of H. ducreyi 

35000HP, 35000HPsapA, and 35000HPsapA/psapA exposed to HBD-2 (a), HBD-

3 (b) or HBD-4 (c) for 1 hour.    Data represent the mean ± standard error for 

three independent assays.  Black bars: 35000HP.  Light gray bars: 35000HPsapA.  

Dark gray bars: 35000HPsapA/psapA.  For HBD-3, P = 0.0157.  For HBD-4, P = 

0.0039.   
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Figure 17. The H. ducreyi Sap transporter does not confer resistance against 

α-defensins.  Bactericidal assay comparing the percent survival of H. ducreyi 

35000HP, 35000HPsapA, and 35000HPsapA/psapA exposed to HNP-1 (a), HNP-

2 (b) or HD-5 (c) for 1 hour.    Data represent the mean ± standard error for three 

independent assays.  Black bars: 35000HP.  Light gray bars: 35000HPsapA.  Dark 

gray bars: 35000HPsapA/psapA.  No statistical difference was observed between 

parent and mutant for HNP-1, HNP-2 or HD-5, at any concentration. P > 0.05 for 

all comparisons. 
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DISCUSSION 

 

 

Portions of the data analysis detailed in the following section has also been published in 

Mount et al. (2007) (160) and will be submitted for publication in Mount et al. (2009). 

 

H. ducreyi is a human pathogen (159) which facilitates the transmission of HIV in 

endemic areas (101, 116, 201).  As such, it is important to understand how H. ducreyi 

interacts with the immune system.  Because H. ducreyi is able to both establish and 

maintain an infection in an environment rich with APs (22, 25), we hypothesized that the 

organism would exhibit an AP resistance phenotype.  Section I of the Results 

demonstrates that H. ducreyi is resistant to the three major classes of APs found in human 

skin.  We further demonstrate that the AP resistance phenotype is conserved within the 

species, suggesting that AP resistance could represent a virulence factor for the 

bacterium.  We examined the H. ducreyi genome for evidence of homology to other 

known AP resistance mechanisms and found a strong homolog of the well characterized 

Sap transporter.  Section II of the Results explores the role of this transporter in AP 

resistance.  These data demonstrate that the Sap transporter plays a role in the resistance 

of H. ducreyi to the cathelicidin LL-37.  However, because the Sap transporter did not 

play a role in H. ducreyi resistance to many other APs likely to be encountered by the 

bacterium in vivo, we have now hypothesized that additional resistance mechanisms may 

be present within the bacterium. 

 

In vivo, H. ducreyi encounters PMNs, macrophages, and keratinocytes at the site of 

infection (25, 27).  In the presence of bacterial stimulation, PMNs actively secrete the α-

defensins HNP-1-4, the β-defensin HBD-4, and the cathelicidin LL-37 (67, 236).    Upon 

stimulation by bacteria, keratinocytes show increased levels of both the expression and 

the secretion of the β-defensins HBD-2-4 and the cathelicidin LL-37 (115, 139).  

Inflammatory mediators further induce the expression of HBD-2 and LL-37 from 

macrophages (59, 139).  Finally, because chancroid is a genital ulcer disease, we also 

investigated the susceptibility of H. ducreyi to HD-5, an α-defensin found in the vaginal 
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mucosa (199).  Our results demonstrate that H. ducreyi was significantly more resistant 

than E. coli ML35 to the bactericidal effects of all peptides tested, including the α-

defensins HNP-1, HNP-2, HNP-3 and HD-5, the β-defensins HBD-2, HBD-3, and HBD-

4, and the cathelicidin, LL-37. 

  

The effectiveness of the APs against H. ducreyi varied by the class of the peptide, with α-

defensins exhibiting the least bactericidal activity and LL-37 the most.  Very little 

reduction in survival was observed when H. ducreyi was exposed to α-defensins HNP-1-3 

or HD-5, although bactericidal activity against E. coli in the same dose range indicated 

that the peptides were active (Figure 5).  The β-defensins showed a modest dose-

dependent effect on H. ducreyi that was significantly less than the effect on E. coli ML35 

(Figure 6).  LL-37 exhibited the most potent bactericidal activity against H. ducreyi of all 

of the peptides tested (Figure 9) but nonetheless continued to exhibit significantly higher 

levels of survival compared to E. coli ML35. 

  

While H. ducreyi was more resistant than E. coli ML35 to all of the APs tested in the 96-

well assay, some residual killing was observed in assays with the β-defensins and LL-37.  

In order to more accurately quantitate H. ducreyi AP resistance to these peptides, we 

performed a RDA that enabled us to calculate the MEC of the peptides against H. ducreyi 

35000HP and E. coli ML35.  In this assay, we found that each of the peptides exhibited 

activity against E. coli ML35, with MECs ranging between 2 and 18 µg/ml (Table 11).  

In contrast, the MECs of the β-defensins and LL-37 against H. ducreyi exceeded the 

upper limits of the assay, with little to no activity, even at a peptide concentration of 500 

µg/ml (Fig. 8B-E).  These results indicate that while the β-defensins and LL-37 may 

exhibit more activity against H. ducreyi than do the α-defensins, H. ducreyi is resistant to 

their bactericidal effects in vitro. 

 

Prior to this work, the only study to investigate H. ducreyi susceptibility to APs 

demonstrated that the organism is susceptible to protegrin, a porcine AP with no human 

homolog (70).  In contrast, the work described in this thesis demonstrates that H. ducreyi 

is resistant to each of the human APs tested in our assay.  H. ducreyi is a strict human 
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pathogen (159, 219).  As such, one could speculate that the diversity in the spectrum of 

APs found between humans and animals could be one of the many characteristics that 

limit the pathogenesis of H. ducreyi to humans.  For example, the resistance of H. ducreyi 

to human APs, but not to porcine protegrin, could contribute to reported differences in the 

survival of the organism in the human and swine models of infection.  H. ducreyi 

multiplies during human infection, with bacterial recovery typically 10-1000 fold greater 

than the inoculum (100, 219).  In contrast, bacterial recovery from porcine skin is usually 

less than the inoculum used, suggesting that the bacteria do not multiply in porcine skin 

as efficiently as they do in human skin (204).   

 

H. ducreyi is resistant to the APs that it naturally encounters in vivo, while maintaining 

susceptibility to the one animal derived AP tested.  Based on this observation, one could 

argue that non-human APs could be a possible source of bactericidal agents to investigate 

in the development of therapies against H. ducreyi.  While there is considerable interest 

in advancing this research, many studies with non-human APs have shown limited 

success in phase three clinical trials against other types of infections (92).  Many of the 

problems associated with these therapies stem from the fact that non-human APs have 

bactericidal activity against not only human pathogens, but against our normal flora (92).  

Disruption of the normal flora can provide pathogens with an unoccupied niche to 

habitate (92).  Consequently, the use of non-human APs as a therapeutic tool against H. 

ducreyi should be investigated with caution. 

 

H. ducreyi clinical isolates can be divided into two phenotypic classes (247).  In order to 

determine whether the AP resistance phenotype was specific to one class of H. ducreyi, 

we compared the percent survival of 35000HP, a class I strain, with that of CIP542 

ATCC, a class II strain, in the 96-well bactericidal assay.  Representative strains of both 

classes exhibited resistance to killing by α-defensin HNP-1, β-defensin HBD-3, and 

cathelicidin LL-37.  We further tested this preliminary conclusion by challenging three 

class I and three class II H. ducreyi strains to increasing concentrations of LL-37 in a 

radial diffusion assay.  From this experiment, we were able to calculate the average MEC 

of the peptide against both class I and class II strains.  We found that the MEC of LL-37 
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against each stain tested exceeded the limit of detection for the assay.  Taken together, 

these data suggest that resistance to APs is a phenotype of both class I and class II H. 

ducreyi strains and that it could represent a conserved role in the virulence of H. ducreyi 

as a species.  

 

Successful bacterial pathogens have evolved a variety of mechanisms for overcoming the 

bactericidal activity of host APs (118).  These mechanisms are often expressed 

simultaneously, highlighting the importance of AP resistance for successful bacterial 

pathogenesis (118).  Some general strategies to evade killing by APs include inactivating 

APs in the extracellular milieu, pumping APs out of the cytosol, and repelling APs from 

the bacterial surface (118, 188).  In order to identify putative mechanisms of H. ducreyi 

resistance to APs, we surveyed the H. ducreyi genome (www.ncbi.nih.gov) for regions of 

homology to other known AP resistance factors.  From this study, we found that the H. 

ducreyi genome encodes a strong homolog of the Sap transporter, an influx pump thought 

to shuttle APs into the cytosol where they are presumably degraded before they damage 

the cytosolic membrane or anionic intracellular targets such as DNA or proteins (183). 

 

The sap operon was originally identified as a possible mechanism of AP resistance by 

Groisman et al. in 1992, and the first sap mutants were generated in S. typhimurium (81, 

183).  Since then, sap mutants have been successfully generated in a variety of 

organisms, each with a distinct AP susceptibility profile (47, 142, 144, 147, 152, 183).  In 

S. typhimurium, three Sap mutants were characterized, each of which was more 

susceptible than the wild type bacteria to human crude granulocyte extracts, but retained 

their resistance to rabbit defensin NP-1 (183).  McCoy et al. generated an AP susceptible 

mutant harboring an insertion within the sapD gene of P. mirabilis (152).  This mutant 

was susceptible to the α-helical peptide polymixin B while it retained resistance to a β-

sheet protegrin analog (152).  In a H. influenzae Sap mutant, the transporter was shown to 

confer resistance to the r-cBD-1, HBD-3, and LL-37 (147).    

 

The virulence of the Sap transporter has been conserved among many different bacteria, 

as evidenced by the activity of the Sap transporter in the plant pathogen E. chrysanthemi 
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(142).  Interestingly, while the Sap transporter plays a role in the AP resistance of many 

different bacteria, it does not play a role in AP resistance in all of the bacteria in which it 

has been studied.  In V. fischeri, a polar mutation within the sapABCDF operon does not 

result in susceptibility to any of the eight APs tested, including LL-37 (145).  Taken 

together, these studies indicate that the Sap transporter has evolved distinct functionality 

within each bacterial species to meet the need of that particular pathogen.  

 

It is important to note that the transporter confers resistance to a different subset of APs 

in each of the previously described systems, illustrating the need to characterize its 

function in each pathogen in which it is expressed.  Further, the functionality of the 

transporter can be most accurately assessed by challenging sap mutants with APs that are 

actually found in the unique environmental niche of the organism in question.  As 

demonstrated by the literature, what is true in one system cannot be broadly assumed to 

be true in other systems (144).   

 

As an influx pump, it is likely that the original function of the Sap transporter was for 

nutrient acquisition, be it through the uptake of nutrients such as potassium, or by 

scavenging for peptides which could be broken down for parts (3, 97, 183).  The AP 

resistance functionality of the transporter may have evolved out of its role in basic 

nutrient acquisition, to meet the specific needs of each bacterial species, under the 

selective pressure of each unique niche.     

 

In order to study the role of the Sap transporter in H. ducreyi resistance to APs, we 

generated an H. ducreyi sapA isogenic mutant in the 35000HP background.   The H. 

ducreyi Sap transporter is encoded in an operon containing the tryR, sapA, sapB, sapC 

and sapD ORFs, while sapF is encoded independently.  Traditional cloning methods 

were used to generate an isogenic non-polar insertion/deletion sapA mutant through the 

insertion of a promoter-less kanamycin resistance cassette into sapA (153).  The use of a 

non-polar cassette ensures that the 35000HPsapA mutant retains transcription through the 

operon, downstream of the sapA mutation (153). 
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We used the 96-well bactericidal assay to examine the role of the Sap transporter in H. 

ducreyi.  The percent survival of wild type H. ducreyi 35000HP, 35000HPsapA, and the 

35000HPsapA/pSapA complement were calculated after exposure to increasing 

concentrations of APs.  An approximately 25% reduction in the percent survival of the 

35000HPsapA mutant was observed as compared to the wild type, after exposure to LL-

37.   LL-37 resistance was restored in the complemented mutant.  This finding indicates 

that the Sap transporter plays a role in LL-37 resistance in H. ducreyi.  By importing LL-

37 into the cell, where it is presumably degraded, both the direct bactericidal activity and 

the immunomodulatory activity of the LL-37 can be circumvented or decreased.  

Interestingly, there was no discernable difference in the percent survival of 35000HP and 

35000HPsapA after exposure to the α-defensins HNP-1, HNP-2 and HD-5, or the β-

defensins HBD-2, HBD-3 and HBD-4, indicating that the H. ducreyi Sap transporter does 

not play a role in resistance to these APs and that it has a much higher level of molecular 

specificity than was originally anticipated, or alternatively, that the functionality of the 

transporter in regards to these peptides is redundant with other AP resistance 

mechanisms.   

 

Chancroid is a persistent infection and as such, H. ducreyi is exposed to multiple AP 

secreting cell types within the body (25).  We observed only a 25% decrease in the 

survival rate of the 35000HPsapA mutant compared to the wild type, after exposure to 

LL-37.  This observation suggests that multiple AP resistance mechanisms exist 

simultaneously within H. ducreyi and that their functionality is redundant.  Investigations 

with S. enterica and S. aureus have revealed the presence of several redundant resistance 

mechanisms within the same bacterial species (65, 118, 187).  These redundant 

mechanisms seem to complement one another to achieve high-level resistance to a broad 

spectrum of APs (65, 118, 187).  As discussed in the Future directions section of this 

thesis, future work on this project will focus on determining the role of these other 

putative resistance factors both alone and in concert with the Sap transporter.  Our data 

indicate that the Sap transporter confers to H. ducreyi resistance to only a subset of the 

APs to which it is likely exposed.  The presence of other AP resistance mechanisms 
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within the bacterium may mask the role of the transporter in resistance to additional APs 

and could help to explain this observation.     

 

In generating the 35000HPsapA mutant, we chose to knock out sapA as a way of 

eliminating AP resistance activity without affecting other putative functions of the 

transporter.  The SapA protein has been shown to directly bind APs in H. influenzae 

(146).  SapA binds APs and shuttles them through a channel formed from SapB, SapC, 

SapD, and SapF (183).  We reasoned that if SapA were required to bind APs in the 

periplasm for the Sap transporter to function, then loss of this protein would render the 

entire complex useless, as was shown in H. influenzae and S. typhimurium (147, 183).  

However, because we observed that the loss of SapA in H. ducreyi resulted in 

susceptibility to only one class of APs, we cannot rule out the possibility that the 

SapBCDF complex could continue to function by directly binding and transporting other 

peptides into the cell for degradation in the absence of SapA, or that another H. ducreyi 

periplasmic peptide binding protein could mimic the AP binding activity of SapA in the 

Sap transporter.  Other periplasmic binding proteins have been described in H. ducreyi 

(137), but their interaction with the Sap membrane complex has not been examined.   

 

The work described in this thesis is the first to examine the role of the Sap transporter in 

AP resistance using a broad panel of human APs encompassing multiple members of the 

same peptide class against a specific human pathogen.  In previous studies, homologous 

transporters were characterized using APs derived from multiple species or with synthetic 

peptides.  Our study examines in detail what role the transporter plays in conferring 

resistance to not only broad classes of APs, but to individual peptides within a class.  As 

such, our work adds an important element of complexity to the field as a whole. 

 

Finally, sapA was detected by PCR in all ten H. ducreyi strains tested, including both 

class I and class II H. ducreyi.  This finding suggests that the transporter is conserved 

within the species.  Conservation of AP resistance mechanisms within a species is not 

always guaranteed (111, 118, 155).   Work with S. enterica and S. aureus demonstrates 

that isolates of a species may vary widely in their expression of AP resistance 
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mechanisms and in their susceptibility to APs (111, 118, 155).  Because the expression of 

the H. ducreyi Sap transporter is conserved within the species, it could represent a 

virulence factor for the organism.   

 

H. ducreyi is an extracellular pathogen (22, 27) that likely encounters multiple 

antimicrobial peptides in vivo.  These peptides are secreted by macrophages, PMNs, 

keratinocytes, and the vaginal epithelium (73). The work detailed in this thesis 

demonstrates that H. ducreyi has evolved at least one mechanism necessary to resist the 

bactericidal activity of these peptides (160), and further, that the Sap transporter plays an 

important role in the H. ducreyi AP resistance phenotype.  As such, the Sap transporter 

contributes to H. ducreyi pathogenesis by allowing the bacterium to thrive in the presence 

of this ancient innate immune response (108). 
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FUTURE DIRECTIONS 

 

 

The data presented in this thesis adds a critical level of detail to the study of bacterial 

resistance to APs, which was previously lacking from the field.  Prior to this study, 

researchers had not examined, at the same level as cataloged in this work, the interaction 

of a specific pathogen with the APs unique to the organism’s particular niche and host.  

By observing how a pathogen interacts with not only broad classes of APs, but with 

individual peptides within a class, we have added an important element of detail to the 

rapidly expanding field of bacterial AP resistance. 

 

Because APs exert their bactericidal effects by different mechanisms depending on their 

concentration (108), it will be important to expand on our current work and to define the 

specific kinetics of this interaction as it relates to H. ducreyi.  We have reported that H. 

ducreyi is resistant to eight specific APs.  One of the limits currently encountered when 

considering H. ducreyi AP resistance, is our lack of understanding of how various 

peptides interact with the H. ducreyi cytosolic membrane.  For example, it is entirely 

possible that the cathelicidin LL-37 interacts with the membrane differently than does the 

α-defensin HD-5, considering their different structures, yet we have reported that H. 

ducreyi is resistant to both peptides.  Likewise, it is possible that a single peptide, for 

example, LL-37, interacts with the membrane differently at high vs. low concentrations.  

It would be interesting to catalog the similarities and differences of the H. ducreyi AP 

resistance response after treatment with a larger range of peptide concentrations, 

encompassing both more dilute and more concentrated concentrations that which were 

analyzed in this study.  By broadening the range of concentrations tested in our assays, 

we will be better able to accurately define the physiologically relevant concentrations of 

specific peptides as they interact with H. ducreyi.  In addition, completion of these more 

detailed dose response studies with multiple classes of peptides would allow us to 

propose a basic set of rules concerning the roles that AP structure plays in governing the 

interactions of APs with H. ducreyi.   
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A considerable effort was made to take into account the future direction of this project 

when constructing the 35000HPsapA mutant.  35000HPsapA was generated using one of 

only two non-polar antibiotic resistant cassettes approved for use in the HCM.  Because 

35000HPsapA was resistant to LL-37 in vitro, indicating that the Sap transporter could 

possibly contribute to H. ducreyi virulence, testing of this mutant in the HCM was 

undertaken.  It is interesting to consider the possible contribution that this transporter 

could make to the virulence of H. ducreyi in vivo.  Had we seen results suggesting that 

the transporter played a role in resistance to all of the APs likely to be encounter in vivo, 

then it would have been tempting to hypothesize that 35000HPsapA would be fully 

attenuated in the HCM.  However, because we saw that the transporter plays a much 

more subtle role in H. ducreyi AP resistance as a whole, with no change in the survival 

rate of the WT and mutant when exposed to seven of the eight peptides tested, then it is 

more reasonable to hypothesize that partial attenuation will be observed.  Experiments 

performed to date indicate that 35000HPsapA is in fact partially attenuated in the HCM, 

supporting this hypothesis (Unpublished data, D. Janowicz and S. Spinola). 

  

Although there has been a substantial body of work published detailing the function of 

the Sap transporter in other organisms, it is important to determine how the Sap 

transporter functions in H. ducreyi specifically.  The generation of the non-polar sapA 

mutation in H. ducreyi allowed us to simultaneously examine the role of the transporter 

in AP resistance, while preserving other putative functions of the complex.  By knocking 

out only the periplasmic component of the transporter, the remaining membrane bound 

portion of the transporter, composed of SapB, SapC, SapD and SapF, remained intact and 

could theoretically remain active if SapB and SapC directly bound peptide.  Although the 

direct association of SapA with APs has been hypothesized in several organisms, it has 

only been experimentally demonstrated in one organism, H. influenzae (146).  The formal 

possibility remains that APs could be shuttled into the cell by directly binding the 

SapBCDF complex, even in the absence of SapA.   Individual transporter component 

mutations were generated S. typhimurium and H. influenzae (147, 183).  In each of these 

studies, sapC mutants were susceptible to lower AP concentrations than were sapA 

mutants, indicating that the most effective transporter alterations involve the loss of the 
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membrane bound components of the transporter and that a low level of activity remained 

when only SapA was missing.  In addition, the H. ducreyi genome encodes a DppA 

homolog, which could conceivably interact with the remaining Sap complex.  In the 

future, non-polar mutations should be generated in each individual gene within the H. 

ducreyi sap operon, allowing us to study the contribution of each component of the 

transporter in AP resistance.   

 

Finally, an intact SapD protein could play a role in potassium uptake in the cell through a 

homolog of the E. coli Trk system.  If H. ducreyi SapD plays a role in potassium uptake 

that is analogous to that of the H. influenzae SapD (146), the S. typhimurium SapD (183), 

or the E. coli SapD (96), then an H. ducreyi strain carrying a mutation in sapABC is likely 

to display a more robust growth phenotype than a strain carrying a sapABCD mutation, 

because nutrient acquisition could be affected by the loss of SapD.  The generation of 

mutations resulting in the loss of function of both individual and combinatory Sap 

transporter components would allow us to evaluate these hypotheses.   

 

Two of the most interesting questions to arise from this research are: on what basis does 

the H. ducreyi Sap transporter recognize APs, and why does H. ducreyi Sap transporter 

confer resistance to a different subset of AP than the Sap transporters of other organisms?  

Our data indicate that the H. ducreyi Sap transporter confers resistance against the 

cathelicidin LL-37, but not against either the α- or β-defensins.  It is not sufficient to 

explain the selectivity of the transporter on the basis of structure alone, when we have, as 

of yet, only tested the role of the transporter with a single α-helical peptide.  Further, our 

knowledge of the Sap transporters of other organisms is insufficient to assign rules for the 

recognition of APs, as an analysis of the literature to date fails to yield a discernable 

pattern of structure based AP recognition (47, 81, 142, 144, 146, 147, 152, 160, 183).    In 

the future, the ability of the transporter to bind other α-helical structures should be 

analyzed.  However, as H. ducreyi does not naturally encounter α-helical peptides other 

than LL-37 in vivo, relevant research in this area is not feasible with the H. ducreyi Sap 

transporter.  It remains possible that the size, the charge, or the inherent flexibility of the 

peptide could also play a role in its recognition by the Sap transporter.  Thus, we should 
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examine the individual differences in the peptides in greater detail in order to determine 

what characteristics are important for recognition and transport by the transporter.  

Finally, protein crystallography could be used to map the SapA/AP binding site and 

provide more basic information about the protein: protein interaction.  As an influx 

transporter, it is possible that the Sap complex originally evolved for the purpose of 

nutrient acquisition and that it acquired AP resistance functionality independently in each 

bacterial species in which it is expressed.  This hypothesis would help to explain the 

differences in the AP resistance functionality profiles of the Sap transporters of the 

various bacterial species in which the organism has been studied. 

 

Another important element to consider when characterizing the functionality of the Sap 

transporter is its regulation.  The Sap transporter of S. typhimurium is regulated by the 

PhoP-PhoQ two component regulatory system (183).  In contrast, H. influenzae, lacks a 

PhoP-PhoQ homolog and regulates the Sap transporter through a system involving the 

direct interaction of SapA with APs (146).  Three preliminary approaches should be 

considered to begin the characterization of the regulation of the H. ducreyi Sap 

transporter.  While a PhoP-PhoQ homolog has not been identified in the H. ducreyi 

genome, genes with high homology to the CpxA-CpxR and the Sigma E regulators have 

been identified (24).  The intergenic region upstream of the sap operon contains 

consensus binding sequence boxes for each regulator (161).  In other organisms, these 

regulators are activated in response to envelope stress and they should therefore be 

evaluated for their contribution to the regulation of the Sap transporter.  In addition, the 

H. ducreyi sap operon contains an ORF coding for a tyrR transcriptional regulator that 

could play a role in the regulation of the transporter.  The generation of an isogenic tyrR 

mutant in 35000HP would allow for the analysis of the role of tyrR in AP resistance.  An 

examination of the up-regulation of the sap genes in response to outside stimuli, 

including direct exposure to various APs, should also be undertaken (146). 

 

A non-polar sapA mutant was generated in H. influenzae (146, 147).  H. influenzae is the 

nearest relative of H. ducreyi in which the Sap transporter has been studied.  As such, it is 

important to note the similarities and differences between these studies and those 
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presented here.  In H. influenzae, the Sap transporter was shown to confer resistance to 

LL-37, r-cβD-1, and HBD-3 (147).  The H. ducreyi Sap transporter also contributes to 

resistance to LL-37.  However, we did not observe a statistically significant difference in 

the susceptibility of 35000HP and 35000HPsapA to HBD-3.  In the future, experiments 

comparing the basic structural and regulatory differences in these transporters may shed 

some light on this discrepancy.  However, in order to determine if the difference in the 

specificity of the transporters lies with SapA, two experiments should be performed.  

First, just as was done in H. influenzae (146), ligand blots could be used to characterize 

the AP binding pattern of H. ducreyi recombinant SapA.  Second, the H. ducreyi SapA 

protein could be expressed in trans in the H. influenzae sapA mutant, in order to 

determine if the expression of the H. ducreyi SapA protein changes the specificity of the 

H. influenzae transporter.  A cursory examination of the Sap transporter literature could 

lead researchers to conclude that it functions by the same mechanism in each bacterial 

species, against every AP.  However, the model of Sap transporter activity proposed by 

Parra-Lopez et al. was based only on research conducted in S. typhimurium.  Future 

researchers should appreciate the complexity of this transporter and consider it when 

designing experiments to characterize its function in each unique bacterial species in 

which it is shown to be expressed and by testing its function with peptides found at the 

site of infection of that particular pathogen.   

 

Finally, the question remains as to what other AP resistance mechanisms might be active 

in H. ducreyi.  While a transposon mutagenesis procedure coupled with a simple AP 

susceptibility screen would allow us to identify other H. ducreyi genes involved with 

novel AP resistance mechanisms, the H. ducreyi genome also contains homologs of many 

previously characterized putative bacterial AP resistance factors.  The generation of 

isogenic mutations in any of these putative factors would prove valuable in determining 

their contribution to AP resistance.  In addition, the generation of double isogenic 

mutants, where multiple putative AP resistance factors are eliminated simultaneously, 

would allow researchers to evaluate the redundancy of these AP resistance factors in H. 

ducreyi.  One H. ducreyi putative AP resistance mechanism that is of considerable 

interest is the Mtr efflux pump which has been characterized in N. meningitidis and N. 
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gonorrhoeae (86, 209).  The pump functions by binding APs in the cytosol and periplasm 

and shuttling them out of the cell before they can damage the cytosolic membrane (209).   

The construction of an isogenic mutation, eliminating one, two, or all of the H. ducreyi 

mtr genes would prove very useful in ascertaining the role of this efflux pump in H. 

ducreyi AP resistance.  I have completed preliminary work towards this end, which is 

detailed in the appendix of this manuscript.  The Mtr project will be carried on by Dr. 

Sherri Rinker of the Bauer lab.   

 

The studies presented in the manuscript both help to clarify the role of the Sap transporter 

in AP resistance, and illustrate the need for more detailed, niche specific, analysis within 

the field.  AP resistance is an important mechanism for bacterial survival.  Clinically, we 

are faced with an ever dwindling supply of antibiotics to which bacteria have not 

developed resistance, while simultaneously we can observe that the research and 

development of new antibiotics is stalling.   Research into the use of APs as clinical 

therapy is already underway and could represent a significant therapeutic tool in the 

future (92).  As such, it is important to understand the ways in which bacteria have 

evolved resistance to these peptides.  The experiments presented in this work help us to 

take a small step in that direction by allowing us to better characterize the interaction of 

H. ducreyi with APs. 
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APPENDIX 

MTR EFFLUX TRANSPORTER MUTATGENESIS 

 

 

The multiple transferable resistance (Mtr)CDE pump has been shown to confer resistance 

to APs in N. gonorrhoeae (86, 209).   The H. ducreyi genome contains a homolog of the 

Mtr efflux transporter of N. gonorrhoeae (209).  This transporter is composed of the 

MtrC, MtrD and MtrE proteins (209).  In H. ducreyi, mtrC and mtrD homologs are co-

transcribed in an operon, while a mtrE homolog is encoded separately (Figure 18).  MtrC 

is a periplasmic protein that links MtrD and MtrE to form an efflux transporter complex 

for expulsion of APs from the cell (209). 

 

In order to examine the role of the putative Mtr transporter in H. ducreyi, we designed a 

strategy to create an isogenic mtrC mutant in the 35000HP background, using a non-polar 

chloramphenicol acetyl transferase (CAT) cassette (143) (Figure 19). The mtrC ORF 

(HD1513), along with approximately 1500 bp of upstream and downstream flank, were 

PCR amplified (Primers Table 13) and the resulting amplicon was TA cloned into pCR 

XL Topo to generate pMEB052.  pMEB052 was digested with PshA1 and AgeI to 

liberate a 597 bp section of mtrC.  The remaining portion of the pMEB052 was treated 

with the large fragment of DNA polymerase B (Invitrogen) to produce blunt ends and 

was ligated with the CAT cassette of pSL1 (143) to produce pMEB088.  Multiple 

unsuccessful attempts were made to liberate the disrupted mtrC gene from pMEB088 and 

to sub-clone it into pRSM2072.  Consequently, a shortened version of the disrupted gene, 

containing only 500 bp of flank on either side of the CAT cassette was PCR amplified 

from pMEB088 using primers that added an XhoI restriction site to the 5’ end of the 

construct and a BamHI site to the 3’ end of the construct.  The resultant amplicon was 

digested with XhoI and BamHI directly and ligated into pRSM2072 (40).  It was then 

digested with the same enzymes to produce pMEB118.  pMEB118 was electroporated 

into E. coli HB101, to produce pMEB119.  Many unsuccessful attempts were made to 

introduce pMEB119 into 35000HP by electroporation.  However, the resultant 

transformants were not more resistant than wild type H. ducreyi to chloramphenicol (0.3 
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µg/ml, 0.5 µg/ml, 10 µg/ml, or 33 µg/ml).  We hypothesized that the native promoter of 

the mutagenic mtr operon was insufficient to promote the transcription of the promoter-

less non-polar CAT cassette.   

 

To overcome this technical set back, a new strategy for the mutagenesis of mtrC was 

designed (Figure 20).  pMEB052 will be digested with PshA1 and AgeI, and treated with 

the large fragment of DNA polymerase B, as described above.  The resultant 6.7Kb 

fragment will then be ligated with the SmaI/EcoRV digested Ω CAT cassette of pBSL119 

(13).  The resultant disrupted mtrC construct will then be PCR  amplified to shorten the 

flank to facilitate ligation with pRSM2072, as described above.  The amplicon and 

pRSM2072 (40) will each be digested with BamHI and XhoI and ligated together to 

generate the final mtrC mutagenic construct.  This construct will be electroporated into E. 

coli HB101, and introduced into 35000HP by electroporation.  The ΩCAT cassette 

contains its own promoter, which should result in an increase in the transcription of the 

chloramphenicol resistance gene and yield chloramphenicol resistant transformants.   
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Figure 18. mtr efflux pump operon (162).  A. Schematic diagram of H. ducreyi 

mtrCD and mtrE containing locus (162).  B. RT-PCR analysis of mtr-containing 

loci was used to confirm that mtrC and mtrD were transcribed as an operon. 
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Figure 19. mtrC mutatgenic strategy 
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Figure 20.  Revised mtrC mutagenesis strategy 
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Table 13. Primers used in mtrC mutagenesis and RT-PCR 

Primer   Construct Sequence_________________________________ 

MtrC forward 1 pMEB053 CAGTTTGCCCAATCGTGGCGATAA 

 

MtrC Reverse 1 pMEB052 ACCGCTCCAGCAAGTTGGAAGGAA 

 

XhoI Forward I pMEB118 CATATCctcgagCTATGGCTGGCTTTGAGA  

 

BamHI Reverse I pMEB118 CATATCggatccACTCATTAAATATGG 

                                                                                                                            CCAATCA 

 

pMtr001  glmU/mtrD TTTAATAAGTCACCGCCGTGCCCA 

 

pMtr002  glmU/mtrD GTTGGCTTGATCACCAAACACGGT 

 

pMtr003  mtrC/mtrD AGCGCCAGTGGAAGAACGAATAGA 

 

pMtr004  mtrC/mtrD TAATGTCGGGAATGTTTGCGCGTC 

*Underlined regions correspond to restriction digest sites generated during PCR.  In 

MEB118 an XhoI recognition site was added to the construct by XhoI Forward I and a 

BamHI site was added to the construct by BamHI Reverse I. 

 

 

 

 

Table 14. Plasmids Used in mtrC Mutagenesis 

Plasmid  Description             Source or reference 

Plasmids: 

pCR XL Topo  TA cloning vector, Amp
R    

Invitrogen 

 

pMEB052  mtrC (HD1513) + flank in pCR XL Topo   This study 

 

pMEB088  Full length mtrC’+ Non-polar CAT + ‘mtrC  This study 

   in pCR XL Topo 

 

pMEB118  Shortened mtrC’+ Non-polar CAT + ‘mtrC  This study 

   in pRSM2072   

 

pSL1   Vector containing non-polar CAT cassette  (143) 

 

pBSL119  Vector containing Ω CAT cassette   (13)  

 

pRSM2072  H. ducreyi suicide vector    (40) 
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