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Dental caries is a process resulting from the microbial deposits covering the 

tooth surfaces.1 It is a dynamic process formed from the interaction of many factors, 

including acid attack from micro-organisms, protective ions from the oral 

environment and buffering capacity and mechanical clearance of saliva. Although 

during recent years a decline in the incidence of dental caries has been observed for 

most industrialized countries,2-4 this disease remains a significant concern.5 

Approximately 60 percent of all tooth surfaces that are restored each year are 

replacements of existing restorations.6 Causes of these restoration failures include 

fractures, marginal breakdown, pulpal problems, periodontal disease and secondary 

caries.7 

Based on multiple reports, the most common reason given for restoration 

replacement is secondary caries, regardless of the type of the restorative material.7-14 

Secondary caries can be defined as the carious lesion that occurs near existing 

restorations.1, 14 Secondary caries remains an important unresolved issue.7, 15 

It is well established that secondary caries lesions involve two parts; an outer 

lesion and a wall lesion (Figure 1).13, 16-18 The outer lesion occurs due to the presence 

of plaque at the restoration margin. The development of the wall lesion is dependent 

on the size of the gap at the tooth-restoration interface. The size of this gap has been 

found to have an effect on the development of secondary caries lesions.19-22  

The presence of this microspace has been considered as a potential predictor 

for subsequent caries development underneath restorations. However, this topic is still 

debated by many researchers regarding its validity. Several investigations have 

suggested a positive correlation between gap size and secondary caries.16, 19-23 On the 

other hand, a number of studies have reported no such association.24-26 Gaps at the 
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margins of restorations allow bacterial invasion and plaque accumulation causing 

further demineralization along the restored cavity wall.23 Evidence from several 

studies has supported the presence of microspaces at the tooth-restoration interface 

after placing any restoration. This suggests that restorative materials do not 

completely eliminate microleakage.27-33 It was reported that the initial gap around 

light-activated materials could range from 5 to 100 µm.34-37 The inherent 

polymerization shrinkage of composites can be considered as the main reason for the 

formation of these gaps.38 

Secondary caries has been reported by many papers to take place in areas of 

plaque stagnation most likely in the gingival wall of class II and class V cavities.1, 14  

These areas are in most cases difficult to visualize. 

According to Bernardo et al.,39 the risk of secondary caries was 3.5 times 

greater in resin-matrix composites than amalgam restorations with an annual failure 

rate of up to 2.83 percent for amalgam restorations and up to 9.43 percent for 

composite restorations. Still, composite placement is tricky and technique sensitive40 

especially in posterior areas of the oral cavity with limited visibility and accessibility. 

Despite this, the use of composite restoration is increasing.40 Many 

practitioners are shifting from using amalgams to using the more esthetic resin 

composites. Although the properties and the handling parameters of resin-matrix 

composites has improved over the years, composite resin still poses a problem in 

restoring posterior teeth especially in stress bearing areas. 

Presence of gaps along resin-matrix composite interface is an implication of 

the technique-sensitivity of placing this type of material. Along with the gap size, 

fluoride was reported to have an effect on secondary caries development. Fluoride 

released from restorative materials within 200-µm gaps was shown to play a role in 
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the prevention of secondary caries.34, 41 In a recent study by Cenci et al.,23 fluoride 

present within the gaps overcame the effect of gap size. Also it was suggested that 

fluoride from other sources such as dentifrices could be effective in inhibiting 

secondary caries.37, 42  

It can be assumed from a clinical perspective that gaps developing around 

restorations are non-uniform. Since, most of the time, the superficial part of the tooth-

restoration interface is readily accessible to the practitioner to verify the absence of 

any discrepancy. On the other hand, there is no way for the dentist to check the inner 

part of the cavity for any voids unless he/she takes a radiograph; which is not a 

regular procedure after finishing the restoration. Furthermore, sometimes the 

restoration will superimpose the area of the void preventing the practitioner from 

observing it. 

Most of the reports mentioned in the literature that focused on investigating 

the effect of these gaps on secondary caries development assumed that these gaps are 

uniform. Furthermore, most of these efforts did not mention the possibility that these 

interfaces could be of different widths along the cavity wall or did not utilize any 

methodology that could establish this. Although the mechanism of secondary caries 

development around uniform gaps has been discussed to a great deal in the literature, 

none of the previous reports attempted to study non-uniform gaps. 

It could be assumed that gaps that develop near restorations are not uniform. 

For example, faulty restoration placement with lack of proper adaptation of resin-

matrix composite to the inner part of the cavity may leave some areas not completely 

filled. This could be seen in the proximal cavities in posterior part of the oral cavity 

where the dentin part of the gingival wall of a class II cavity might fail to be bonded. 

This will leave a defect under the clinically acceptable margin. Kakaboura and 
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colleagues43 evaluated the three-dimensional marginal adaptation of light-cured 

composites to dentin. They found an increase in gap sizes and porosities at the bottom 

sites of dentin cavities. These discrepancies resulted from a combination of 

polymerization shrinkage and weak bonding to dentin. 

Another reason for developing voids underneath resin-matrix composite 

restorations is the presence of too much residual water left from the etching and 

washing procedures.44 The presence of too much water can create small blister-like 

spaces or voids that are trapped along the surface of the hybrid layer.45 Furthermore, 

excess solvent that can remain on the primed dentin may prevent complete adaptation 

of resin and can result in voids at the dentin-resin interface.46 

Debonding of light-cured composite from dentin cavity walls as a result of 

polymerization shrinkage has been previously identified.47, 48  Contrary to the success 

achieved with bonding to enamel,49 bonding to dentin has been less predictable 

because of the organic composition of dentin along with its wet tubular structure.50 

Although recent developments in dentin adhesives have made recently placed resin 

composites nearly free of microleakage with bond strengths approaching those of 

enamel bonding,51-54 the effect of thermocycling and water sorption on dentin bond 

strength has been found to be deleterious.55 It was found by Okuda and colleagues 

that the strength of dentin bonds dramatically decreased and nanoleakage increased 

gradually when specimens were subjected to periods of storage in water.56, 57  

According to these data, debonding of resin-matrix composites from dentin 

due to thermocycling, water sorption or polymerization shrinkage is more likely to 

occur than failure of the enamel bond. This could leave the inner part of the cavity 

empty in areas such as gingival walls of class II restorations. 
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Based on this information, it can be proposed that gaps developing near 

restorations tend to be non-uniform in configuration; with larger gaps developing near 

the base or the dentinal part of the cavity. The effect of this geometric variability has 

not been considered in the published literature. It is possible that secondary caries 

lesions progress in a different manner next to these non-uniform gaps. In addition to 

that, the mechanism of secondary caries development may differ from those described 

in the literature,16, 22 since caries dynamics are likely to change at different gap 

widths. 

In summary, although the relationship between gap size and the rate of 

secondary caries development has been studied previously,19-22 the effect of gap 

geometry on the rate of development of secondary caries has not been studied 

previously. 

The purpose of this study was the investigation of the effect of the size of the 

space between the restoration and the dentinal wall of the tooth on the development of 

secondary caries lesions (especially the wall lesion). 

The study was based on the hypothesis that the bigger the size of the space 

between the restoration and dentinal wall of the tooth, the bigger the size of the 

secondary carious lesion. The null hypothesis tested was that the size of the space 

between the restoration and dentinal wall of the tooth will not have an effect on the 

development of secondary caries. 
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DENTAL CARIES 

Dental caries is a transmissible bacterial disease process caused by acids from 

bacterial metabolism diffusing into enamel and dentin and dissolving the mineral.58 

The term "caries" can be used to refer to both the caries process and the caries lesion 

that forms as a result of that process.59 The caries process is initiated in the biofilm or 

dental plaque.60 Biofilms form on any solid surface exposed to appropriate amounts of 

water and nutrient. However, surfaces of the dental tissues are first coated by a 

salivary pellicle to which the microbial cells attach.58, 59 These bacteria are essential to 

the disease process and include mutans streptococci and the lactobacilli species which 

are able to produce organic acids during the metabolism of fermentable 

carbohydrates.61-63 Furthermore, a biofilm is formed from the bacterial aggregation 

along with the exopolymer matrix that they secrete. The biofilm tends to form and 

mature in certain locations on the tooth, notably the occlusal surface, especially 

during eruption, the approximal surface cervical to the contact point, and along the 

gingival margin. The bacteria in the biofilm are always metabolically active, causing 

fluctuations in pH.59 These fluctuations may cause loss of minerals from the tooth 

when the pH drops or gain of minerals when the pH increases.60 The acids produced 

by the bacteria as by-products have been shown to readily dissolve the minerals of 

enamel and dentin.64, 65  

The cumulative result of these demineralization and remineralization cycles 

may be a net loss of minerals, leading to dissolution of the dental hard tissues and the 

formation of a caries lesion.58, 59 Remineralization is the body’s natural repair process 

for subsurface non-cavitated carious lesions.66 However, if the rate of 

demineralization is higher than the rate of the reparative process, cavitations in the 
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tooth structure will result.58 At this stage, restorative treatment is needed to restore the 

integrity of the tooth surface allowing the patient to maintain the area clean.1  

RESTORATION FAILURES 

Failure of dental restorations is a major concern in dental practice. It has been 

estimated that dentists spend between 60 to 75 percent of their working time replacing 

failed restorations,1, 39 which causes high personal and social costs.67 

In a study conducted in Portugal, the annual failure rate ranged from 0.16 to 

2.83 percent for amalgam restorations and from 0.94 to 9.43 percent for resin-matrix 

composite restorations over a period of seven years. The survival rate documented in 

the same study for amalgam and resin-matrix composite restorations was 94.4 percent 

and 85.5 percent, respectively.39 Surveys conducted in Denmark reported that 

replacement of failed restorations accounted for around 61 percent of all amalgam 

restorations and 62 percent of resin-matrix composite restorations. In these surveys, 

the age of amalgam restorations ranged from 0 to 46 years compared to an age range 

of 0 to 19 years for resin-matrix composite restorations.68, 69 A similar percentage of 

amalgam replacements was reported in Finland.70 In Australia, out of 2716 

restorations placed in private practices, 46 percent were new restorations while 54 

percent were replacement restorations. The main reason for these restoration 

replacements was secondary caries for all materials (amalgam, resin-matrix composite 

and glass ionomer).71 Mjör and Toffenetti72 reported the portion of restoration 

replacements in Iceland being 47 percent of all restoration placed with secondary 

caries as the main reason for the retreatment of these fillings. 

A survey conducted in Brazil aimed to report the reasons for placing and 

replacing of direct restorative materials. Of all the restorations placed, approximately 
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40 percent were first-time placements, while 60 percent were replacements. For first-

time placements, the main reason for placement was primary caries. For amalgam 

restorations, the main reason for replacement was to obtain improved esthetic 

appearance with a tooth-colored material while the main reason for replacing resin-

matrix composite restorations was the diagnosis of secondary caries. The longevity 

reported for amalgams, resin-matrix composites and glass ionomers were 13.6, 7.1 

and 5.7 years, respectively.11 

In most of the cited studies, survival of amalgam restorations was greater than 

that of resin-matrix composite restorations. However, in a study by Opdam and 

coworkers, better survival rate in composite than amalgam restorations was 

reported.12 Nordbø and his colleagues reported that the 10-year failure rate of resin-

matrix composite restorations was 30 percent in their clinical trial that was aimed to 

study the performance of saucer-shaped class II composite resin-matrix restorations.73 

In studies on the longevity of resin-matrix composites in posterior teeth restoration, 

survival rates between 55% and 95% during an observation period of 5 years have 

been documented.74 The difference between the longevity of resin-matrix composite 

and amalgam could be due to differences in material properties such surface 

roughness or antibacterial effect or technique sensitivity of resin-matrix composite.75 

Svanberg et al.76 found more caries-related microorganisms on resin-matrix composite 

than on amalgam restorations. 

An effort by Raskin77 and his coworkers to evaluate the clinical performance 

of posterior resin-matrix composites after 10-year showed that the failure rate of 

composite ranged from 40 to 50 percent. However, the main reason reported for this 

high rate of failures was not recurrent caries or fractures; but loss of occlusal anatomy 

and proximal contacts. This is the different from other reports that considered 
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secondary caries as the main reason for restoration failures regardless of the type of 

the restorative material.7-12, 14 A review of prospective studies on the clinical 

performance of posterior resin-matrix composites published between 1996 and 2002 

was published in 2003. Authors found that during the first five years after placement, 

the main reason for failures was restoration fracture followed by secondary caries. 

However, after five years of service, the main reason for failure and replacement of 

resin-matrix composite restorations was secondary caries. They also reported that the 

primary reasons for resin-matrix composite failure were secondary caries, restoration 

fracture, and marginal defects. The effect of isolation method and the professional 

status of the operator were not found to be significant.78 

SECONDARY CARIES 

Secondary caries or recurrent caries can be defined as a caries lesion that 

develops adjacent to a restoration.79 It might be considered as a primary lesion around 

restorations.9, 59 Histological studies describe the secondary caries lesion as having 

two parts: an outer lesion formed due to acid attack on the outer surface of the tooth 

next to the filling and a wall lesion which is assumed to develop there by diffusion of 

hydrogen ions through tooth-restoration interface.16, 17 This would suggest that 

demineralization could develop adjacent to the margin of a restoration that is 

clinically intact but allowing leakage.80 It was suggested that dental caries create the 

wall lesions by the action of hydrogen ions directly on the cavity walls.17 These ions 

evolving from within the tooth-restoration interface directly attack enamel and dentin 

leading to their demineralization.81 

Recent studies suggest that the development of outer lesions might be more 

important than the development of wall lesions.14 Results from a survey conducted by 
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Mjør and Qvist showed that combined wall lesions and caries underneath restorations 

were found much more frequently if the pre-operative diagnosis was a marginal defect 

with caries than if no caries was detected clinically. Furthermore, cavity wall lesions 

as diagnosed after the removal of restorations were uncommon whenever a marginal 

defect was diagnosed without caries. This suggests that the outer lesion constitutes the 

most important part of secondary caries.82 However, the use of the outer lesion as a 

predictor for wall lesion progression presents significant limitations. An in vitro study 

by Grossman and Matejka concluded that although the presence of an outer lesion 

strongly indicated the presence of a wall lesion, the absence of an outer lesion did not 

mean the lack of a wall lesion and that the outer lesion was unreliable to predict the 

extent of the wall lesion underneath.83 Wall lesions are the result of microleakage as 

believed by some researchers.84, 85 However, not all restorations suffering from 

microleakage develop secondary caries.  

Secondary caries is the most common cause cited by practitioners for 

restoration replacement.7-11, 14, 72, 86-88 It is well documented that all types of restorative 

materials including amalgam, resin-matrix composite and glass ionomer have been 

replaced due to the diagnosis of secondary caries. Friedl and his coworkers 

investigated the reasons for placement and replacement of amalgam and resin-matrix 

composite restorations in Germany. They found that approximately half the treatment 

provided was replacing old restorations and the most frequent cause for these 

replacements was secondary caries.89, 90 A report based on a survey of general 

practitioners in Sweden on the reason for restoration replacement there, indicated that 

almost half of the glass ionomer cements were being replaced because of secondary 

caries.82 
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DIAGNOSIS OF SECONDARY CARIES 

 Secondary caries is difficult to diagnose,91 and thus practitioners are 

inconsistent and inaccurate in their diagnosis.92 Clinical diagnosis of this disease is 

often obscured by other types of restoration failures such as marginal defects, ditches 

and discoloration.9 It known that not all dentists make the same decision regarding the 

need for treatment and treatment choices. In a clinical study conducted by Ermiş and 

Aydin,93 the decision to replace class I amalgam restorations showed only moderate 

level of agreement between participants in identification of secondary caries requiring 

treatment (kappa value=0.58). 

Secondary caries is rare on occlusal surfaces possibly because the margin of 

the restoration is cleansable.1 The main locations for secondary caries development 

are the areas of plaque stagnation, such as the cervical margins of restorations.14 

Secondary caries is more common at the gingival locations regardless of restoration 

type or restorative material used.94 Nordbø and colleagues reported the main location 

of secondary caries in their clinical trial to be the gingival margin of class II cavities.73 

A survey of 261 class II amalgam restorations and 102 resin-matrix composite 

restorations examined by general dentists in order to evaluate the frequency of 

secondary caries at various anatomical positions found that recurrent caries occurred 

more frequently at the cervical and proximal margins than at the incisal or occlusal 

locations.95 In another study by Jokstad and Mjör,96 secondary caries was recorded on 

the proximal surfaces of class II amalgam restorations and was mainly associated with 

gingival areas. In resin-matrix composite restorations, secondary caries was observed 

before the restoration was removed was usually located gingivally, regardless of the 

type of the cavity preparation, according to Mjör and Qvist.82 
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 The likelihood of secondary caries was suggested to increase with the increase 

of marginal deterioration in caries active populations.97 Several investigations studied 

marginal defects as the determining factor for secondary caries development. A cross-

sectional clinical study by Goldberg et al.21 found that marginal integrity had a 

significant effect on the likelihood of occlusal and smooth surfaces being affected by 

secondary caries. Another clinical study investigating the level of bacteria under the 

margins of amalgam restorations showed that samples associated with wide ditches (> 

0.4 mm) yielded significantly more bacterial levels. However, there was no difference 

between the infection levels underneath intact restoration and those with ditches 

narrower than 0.4 mm.98 An in vitro study by Kidd and O’Hara to examine the caries 

status of amalgam restoration associated with both defective and sound margins 

showed a low prevalence of caries lesions in the outer regions of enamel. However, 

lesions were present in enamel adjacent to the cavity wall in 54 percent of the 

specimens, whether the margin was defective or not.24 It was suggested that a 

defective margin alone should not be an indication for replacement. Similar results 

were reported by Pimenta et al.25 The presence of a narrow ditch at the margin of  a 

restoration should not trigger operative intervention.99 

 Another complicating factor in the diagnosis of secondary caries lesions is the 

presence of marginal discoloration. A study of staining around resin-matrix composite 

restorations reported that outer and wall lesions were more prevalent adjacent to 

stained margins compared to non-stained margins, based on histological data.100 Other 

studies found that grey discoloration might be a useful aid in detecting secondary 

caries around occlusal amalgam restorations. However, the same could not be found 

in the interproximal amalgam restorations.101, 102 A clinical effort by Foster103 

investigating the consistency and color of dentin underneath the defective amalgam 
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restoration scheduled for replacement showed that discoloration at the restoration 

margin was not associated with the consistency of the underlying dentin. The author 

also reported that external stains could be taken up by caries-affected dentin causing 

discoloration around restorations and led practitioners to suspect recurrent caries. The 

same conclusion was stated by Kidd et al.104 

GAPS ADJACENT TO RESTORATIVE MATERIALS 

 Several studies have supported the presence of microspaces after the 

placement of any restorative material.27, 28, 30-33 A study by Brännstrom et al.27 was 

conducted to study the initial gap around resin-matrix composite restorations in vitro. 

Resin containing a fluorescent additive was applied to all margins and passively 

drawn into the gap. The width of the contraction gaps found to vary from 3.5 to 16 

µm. In a similar study by Bergvall and colleagues, contraction gaps varied from 2 to 

20 µm with wider gaps observed at the floor of dentin cavities.105 In a study of 

cervical gap formation in class II resin-matrix composite restorations, average gaps of 

around 35 µm were demonstrated.106 It was suggested that the use of a bonding agent 

significantly reduced dentin marginal gaps. Results from Idriss et al.107 supported this 

where contraction gaps of 2 to 4 µm width were recorded. However, a more recent 

study reported that, even with use of the newer bonding agent systems, 40 µm-gaps 

can still form.32 Although water sorption of these materials may reduce the size of the 

gap, results from studies suggested hygroscopic expansion after storing the material in 

water reduced the size of the gap but did not close it completely.31, 108 Glass ionomer 

cements and indirect restorations were also found to demonstrate marginal gap 

formation. Studies of glass ionomer cements showed that gaps ranging from 3 to 29 

µm occurred inside the dentin cavity.30 A study of resin-modified glass ionomer 
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showed contraction gaps at the interface occurring 15 minutes after dehydration.109 

This could be explained by the setting reaction, according to Chutinan et al.110 Gaps 

ranging from 20 to 92 µm around crowns111, 112 were recorded and gaps up to 182 µm 

adjacent to ceramic and composite veneers were found in marginal gap integrity 

studies.113 

RELATIONSHIP BETWEEN GAP SIZE AND SECONDARY CARIES 

Early studies by Jørgensen and Wakumoto suggested that a minimal marginal 

defect of 50 µm is needed for the production of secondary caries, which can be 

detected by routine clinical examination.20 Adjacent to indirect restorations, Jahangiri 

et al. used gaps of 30 µm width to act a theoretical acceptable gap discrepancy and as 

cut off point in evaluating the sensitivity and specificity of clinical evaluation of cast 

restoration margins.114 Other studies have reported 30 µm to be a clinically acceptable 

gap discrepency.115-117 Hodges et al. performed an investigation to study the 

relationship between gap width and secondary caries development adjacent to 

occlusal margins of amalgam restorations. The authors reported a difference of 187 

µm between mean gap widths at sites with recurrent caries and sound locations, with 

gaps at the secondary caries sites being wider.19 

Thomas and colleagues75 reported, based on their in situ study, that the 

presence of the gap is necessary but not a sufficient condition for the formation of 

wall lesions adjacent to restorations. They also concluded that secondary outer lesions 

appeared and progressed as primary lesions. Papagiannoulis et al.118 reported no 

lesion development at gap-free regions adjacent to glass ionomer and resin-matrix 

composite restorations in vivo and lesions did not develop in all gap locations, 75.5 

percent of glass ionomer and 62.5 percent of resin-matrix composite developed 
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lesions. According to them, the reason for that was that the initiation of secondary 

caries is not directly related to the marginal defect, but requires plaque accumulation 

with cariogenic potential and that marginal sealing has a critical role in restoration 

integrity. The authors also found that all lesions were located at the vicinity of the gap 

entrance.118 This may have been due to the calcification effect that occurs due to 

bacterial colonization at the highly plaque retentive areas such as the inner parts of the 

gap. The explanation to this phenomenon could be that deeper areas of the gap have 

little effect of the salivary pellicle proteins that have an inhibiting effect on calcium 

phosphate precipitation. However, this mechanism does not occur at the entrance of 

the interface where the abrasive forces due to mastication and tooth brushing 

frequently renew the absorbed salivary proteins, exposing enamel margins to the 

continuously changing intraoral conditions.119 Another report states that different 

mechanisms may account for the differences reported in plaque composition and 

cariogenicity between deep fissures and smooth surfaces or fissure orifices, the latter 

being more virulent.120 

Totiam et al. found a positive correlation between the size of the gap adjacent 

to resin-matrix composite and secondary caries wall lesion. These authors also found 

a significant increase in the size of wall lesion when a 500 µm difference was present 

between the study groups.16 In a study conducted by Dérand et al., the relationship 

between secondary caries and gap formed around amalgam restoration in vitro was 

investigated. Specimens were incubated with glucose or sucrose bacterial broth with 

Streptococcus mutans. In the presence of sucrose, dentin caries was found in all 

groups where a 30 µm or wider gap was present. With the presence of glucose, dentin 

caries was detected only in specimens with a 60 and 80 µm gaps. Caries lesions were 

detected on the outer surface of enamel on all specimens.22 On the other hand 
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Rezwani-Kaminski et al., failed to observe an association between gap size and 

secondary caries development.26 

In conclusion, conflicting data can be found in the literature regarding the 

effect of the gap size on the development of secondary caries lesions. While some 

authors believe there is a positive correlation,16, 19-21, 23 others did not observe such a 

correlation.24-26 More studies are needed to verify the presence or absence of this 

association. 

BACTERIA AND SECONDARY CARIES 

After the restorative material is placed in the mouth, it is immediately covered 

with a salivary pellicle, which spreads rapidly into surface irregularities and into these 

microspaces.81 The oral bacteria are able to adhere to this salivary pellicle and 

multiply invading the microspace.16 Many studies have demonstrated the presence of 

bacteria in gaps between restoration and tooth structure.13, 121-124 Provided with 

suitable conditions and time, these bacteria would potentially demineralize the tooth 

structure along the cavity wall.16 

Many studies demonstrated the presence of bacteria in gaps between 

restorations and tooth structure.13, 121-124 A study by Varpio et al.125 investigated 

marginal adaptation and bacterial penetration in primary molars filled with class II 

resin-matrix composite that had been in service for three years. While gaps were 

recorded in 42 percent of the specimens, bacteria were observed underneath the filling 

in 75 percent of the specimens and inside the dentinal tubules in 61 percent of them. 

They concluded that bacterial leakage was associated with marginal defects. A 

secondary caries study in dentin showed that there was a considerable variation in 

numbers and types of microorganisms next to recurrent lesions.126 However, other 
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studies reported mutans streptococci and lactobacilli as the causative organisms of 

primary as well as secondary caries lesion development.13, 122, 123, 127 

An in vitro study by González-Cabezas and colleagues,13 using 

immunofluorescent techniques and confocal laser scanning microscopy (CLSM) for 

identification of bacteria in secondary caries lesions, showed that mutans streptococci 

were detected in approximately 89 percent of samples analyzed. The same group of 

authors studied the distribution of the three suspected cariogenic groups of bacteria, 

namely mutans streptococci, Actinomyces naeslundii and lactobacilli, in secondary 

caries lesions around amalgam restorations and found that the three bacterial groups 

were widely present and concluded that these bacterial may have an important role in 

the development of secondary caries.122 In 2002, they also found that the same group 

of microorganisms in secondary caries lesions around tooth-colored restorations.123 

Cenci et al. found that there was no significant difference between finished or 

polished restorations in relation to the presence of white spots.8 This suggests the lack 

of association between surface roughness and bacterial adhesion.128, 129 

The introduction of self-etching primer and self-etching adhesive system to 

simplify the bonding procedure is accompanied with partial removal of the smear 

layer that acts as a layer of bonding substrate.55, 130 This implies that residual bacteria 

in the cavity may remain at the tooth-restoration interface and dentinal tubules, 

increasing the risk of secondary caries.81, 130 Microgaps at the tooth-restoration 

interface can rapidly be filled with tissue fluid from the freshly cut dentinal tubules or 

from saliva and provide space and nutrients for bacterial growth.81 Bacteria in the 

smear layer is less likely to survive with good adaptation of the restoration to the 

cavity wall because the nutrition to this bacteria is inhibited from the oral cavity.131 

However, bacteria can still survive in the smear layer despite the surface sealing 



20 
 

according to Brannstrom and Nyborg.132 An in vitro study by Živković et al.133 was 

conducted to assess the quality of the marginal seals of seven restorative materials by 

means of bacterial penetration using histological bacterial staining. It was found that 

the use of a restorative material did not entirely eliminate microleakage. 

The size of gap interfaces could have an effect on the metabolism of the 

bacteria inhabiting it. With small gap sizes, the diffusion of carbohydrates to the 

deeper areas of the tooth/restoration interface maybe hindered. This can reduce the 

bacterial activity and results in smaller wall lesions. Conversely, the presence of 

larger gaps may facilitate the diffusion of nutrients to the deeper areas, making the 

bacterial biofilm more active, eventually leading to wall lesions of larger sizes.16 

VOIDS UNDERNEATH RESIN-MATRIX 
COMPOSITE RESTORATIONS 

The bond strength of dentin adhesive resins is greatest when the surface of the 

dentin is slightly moist.134-136 However, if the dentin surface is too wet the adhesive 

resin does not fully penetrate the dentinal tubules or the demineralized dentin.45, 137, 138 

Sources of wetness include fluid from the dentin tubules, hydrophilic primers, 

sulcular fluid, humidity of the mouth, and residual water left from the etching and 

washing process.44 The presence of too much water can create small, isolated, blister-

like spaces or voids that are trapped along the surface of the hybrid layer.45 The voids 

are partially filled with extraneous resin globules dispersed within an amorphous 

matrix and are often continuous with incompletely sealed tubular orifices.44 Excess 

solvent remaining on a primed dentin surface will prevent complete adaptation of 

bonding resin and may result in non-attachment or voids at the resin–dentin 

interface.46, 139  
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If the demineralized dentin at the gingival location of class II preparations is 

too wet and not fully hybridized, it can become vulnerable to hydrolytic breakdown 

and penetration by bacterial enzymes.138 This could lead to compromising the 

integrity and strength of the dentin-adhesive bond and ultimately the restoration.140, 141 

Gaps between the resin-matrix composite and tooth also increase the risk for 

restorative failure and gingival margin of restorations appear to be especially likely to 

have such gaps.142-144 

The anatomy of the tooth at the gingival wall may account for the 

vulnerability of restorations to gaps.44 The density of dentin tubules 1.0 mm above the 

CEJ at the gingival cavity wall is 49% greater than at the axial wall.145 After dentin is 

acid etched, the surface area of exposed tubules can increase from 1% to 13% at the 

DEJ and from 22% to 34% close to the pulp.44 As the number of tubules increases, the 

pulp can force moisture in the form of intrinsic pulpal fluid to increase the moisture 

on the dentin surface. This excess moisture can reduce the adaptability of the 

restorative material to the prepared surface.44 

Voids in restorations have an impact on the performance of adhesive 

materials. In a study to analyze the voids in class II resin-matrix composite 

restorations conducted by Purk et al., they found more voids through the adhesive at 

the gingival wall of the cavity than the axial wall.44 These voids significantly affected 

the microtensile bond strength of the resin and were found to have more impact than 

the condition or the location of the restoration. The in vivo gingival group of their 

study had the lowest bond strength and the highest percentage of voids. This indicates 

that less predictable bonds occur during clinical procedures than what is observed by 

laboratory studies. Voids throughout the adhesive layer were found to be 

approximately 5–40 μm diameter blister-like spaces and resulted in stress 
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concentration and incomplete adhesion to dentin. Others reported more voids at the 

gingival wall occurring under in vivo conditions from moisture contamination due to 

hydrostatic pulpal pressure, dentinal fluid flow after removal of the smear layer, 

working in an environment where isolation of the tooth is difficult, pooling of 

solvents and adhesives at the corners of the preparation box, increased permeability of 

dentin at the gingival wall or probably the most important is the inability of air drying 

to remove excess water at this location.138, 145-149 When contaminated with water, 

bonding resins that contain HEMA and Bis-GMA can undergo phase separation that 

can reduce the conversion level of the adhesive system by 50%. As little as 9% 

volume of water added to a HEMA/Bis-GMA bonding resin under wet conditions can 

weaken the resin by 64% as reported by Paul et al.146 The study by Kakaboura et al.43 

further highlights these findings. They reported larger gaps and more porosity in 

dentinal cavities restored with light-cured resin-matrix composites. This was due to 

polymerization shrinkage from underlying underexposed areas and weak bonding 

effect due to dentin wetting by unreacted resin monomers before setting. 

In an attempt to study the contraction gaps and marginal adaptation of 

microhybrid resin-matrix composites, Kakaboura and colleagues conducted a study 

where cervical cavities were prepared in human extracted molars and filled these 

cavities with microhybrid resin-matrix composites without any adhesive cavity 

pretreatment. After that, the specimens were imaged by computerized X-ray 

microtomography. Authors found significant difference between middle and bottom 

parts of the cavity; with larger gaps and more porosities occurring at the bottom of the 

cavity. The investigators explained that by a weak bonding effect due to dentin 

wetting by unreacted resin monomers before setting and by shrinkage compensation 

from underlying underexposed areas.43 
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Bergvall and colleagues105 studies the initial gap developed around large resin-

matrix composite restorations. They reported that the contraction gaps at the floor of 

the cavity varied between 2 and 20 µm and was usually around 9 µm. The gap was 

narrower along the lateral wall varying from less than 1 to 10 µm. In a similar attempt 

by Brännstrom et al.,27 authors reported lack of adaptation of resin-matrix composite 

to the floor of large cavities due to entrapped air or fluid, from dentin or residual 

water, blocking the gap. Another reported reason was the polymerization of resin-

matrix composite too rapidly. 

RESIN-MATRIX COMPOSITE AND SECONDARY CARIES 

 In recent years, the use of resin-based composites for restoration of posterior 

permanent teeth has increased significantly, despite the fact that they are more 

technique-sensitive to place and more costly.40 There is some evidence that the 

longevity of resin-matrix composite restorations is less than that of amalgam 

restorations in similar conditions.94, 150 Bernardo and colleagues reported that the main 

reason for restoration failures was secondary caries which accounted for 87.6 percent 

and 66.7 percent of the failures that occurred in amalgam and resin-matrix composite 

restorations, respectively. They also reported that the risk of secondary caries in resin-

matrix composite restorations was 3.5 times greater than in amalgam restoration.39 

One study that compared the longevity of amalgam and resin-matrix 

composite restorations in teenagers and adults found out that the longevity of the 

restorations placed in teenagers was five to six years shorter than that of restorations 

placed in adults.151 Poor oral hygiene habits, as presented in teenagers, may have been 

responsible for the elevated rates of secondary caries in the more susceptible resin-

matrix composite restorations.39 Braga and collaborators reported the main reason for 
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replacing resin-matrix composite restorations in Brazil was secondary caries while the 

main reason for replacing the more durable amalgam restorations was to achieve 

better esthetics.11 Secondary caries and poor appearance accounted for equal 

proportions of composite restoration failures according to Wilson et al.6 

BONDING TO ENAMEL AND DENTIN 

 In 1955, Buonocore49 introduced the acid-etch technique. He used phosphoric 

acid to roughen enamel surfaces in order to create micromechanical retention with 

resin-matrix composites through the formation of resin tags that fill the 

microporosities produced by the acid.152, 153 Since then, bonding to enamel has been 

considered predictable, long lasting and successful.54, 55, 152 When resin-based 

composite is placed on properly etched enamel, regardless of how long the resin-

matrix comspoite has been bonded to the tooth, it is nearly impossible to remove the 

resin from the surface of the tooth without utilizing rotary instruments.54 

 Bonding to dentin has had a different and less successful history.54 The main 

reason for the less predictable dentin bonding is the difference in its composition. 

Dentin is a less mineralized tissue containing more organic materials than enamel. 

Furthermore, the moist tubular ultrastructure of dentin leads to the formation of a 

smear layer when dentin is instrumented.50, 153, 154 These characteristics were found to 

impair the bonding capacity of resin materials to this substrate38 and make adhesion to 

dentin more complex than adhesion to enamel.55 

With the use of early hydrophobic resins, acid treatment of dentin did not 

produce bond strengths similar to those achieved when bonding to enamel surfaces.155 

Later, adhesive systems incorporating acid-etching and hydrophilic monomers were 
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developed.152 Enamel and dentin acid-etching could be done simultaneously and there 

was an increase in the adhesive bond strength.152, 156 

Current dentin adhesives employ two different means to achieve the goal of 

micromechanical retention between resin-matrix composite and dentin. The first 

method removes the smear layer completely and demineralizes the subsurface intact 

dentin via etching with acids. Following rinsing, a multi-step application of a primer 

and an adhesive, or a simplified self-priming adhesive is applied to the conditioned 

substrate to complete the bonding protocol.55 

The second method uses the smear layer as a bonding substrate. There are two 

types of simplified adhesives that are applied to the smear layer. One is a self-etching 

primer that includes two steps: the primer is applied without rinsing then a layer of 

adhesive resin is applied. The other type is more simplified, one-step self-etching 

adhesive that includes a single application to the tooth.55 

High early bond strengths of current adhesive systems to dentin have been 

reported157 with bond strengths approaching those of enamel bonding.52-54, 158 

However, the durability of these adhesive bonds is still one of the areas of current 

interest in adhesive dentistry.55 Thermal cycling simulates the introduction of hot and 

cold extremes in the oral cavity and shows the relationship of the linear coefficient of 

thermal expansion between tooth and restorative material. Thermal cycling stresses 

the bond between resin and the tooth and may affect bond strength.159, 160 Davidson et 

al.161 examined the durability of the shear bond strength of adhesive systems to human 

dentin by thermocycling the specimens up to 300 cycles. They observed a significant 

decrease in bond strength after thermal cycling depending on the adhesive system 

tested. Price et al.162 also reported thermal cycling up to 5000 cycles had a very 
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significant negative effect on bond strength in human dentin when a high C factor 

testing design was used. 

During thermal cycling the specimens are subjected to thermal changes and 

also to additional exposure to water.55 Thermal stresses generate mechanical stresses 

by differences in the coefficient of thermal expansion and can result in bond failure at 

the tooth-restorative interface.163 However, a major cause for the reduction in bond 

strengths is believed to be the possible effect of hydrolysis at the interfaces of the 

bonding resin and hybrid layer,55 which might be enhanced by the thermocycling 

process. Burrow et al.164 reported that the bonded resin absorbs a significant amount 

of water which may adversely affect the longevity of restorations. Furthermore, cured 

single-step adhesives may act as semipermeable membranes allowing water diffusion 

from the bonded hydrated dentin to the intermixed zone between the adhesive and the 

resin-matrix composite, as reported by Tay et al.165 

Permeability of single-step adhesives to water may hasten the rate of water 

sorption and leaching of resin components,166 challenging the durability of resin-

dentin bonds produced by these adhesives.55 This explains why bond strength to 

dentin decreased on aging of self-etching adhesives. Other researchers have reported 

the bond strengths in dentin dramatically decreased56 and leakage was gradually 

increased at the dentin interfaces.57 

EFFECT OF ANATOMIC VARIATIONS ON DENTIN BONDING 

Differences in anatomic structures in different parts of the tooth can have an 

effect on resin-matrix composite bonding. Research shows that resin bonded under in 

vitro conditions in class V lesions to parallel-oriented tubules located in the occlusal 

part of the tooth had higher microtensile bond strengths than resin bonded to 
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perpendicularly oriented tubules in the gingival locations.167, 168 Tubule direction may 

also determine the intrinsic wetness of the surface.168 The gingival wall of a class II 

cavity contains predominantly perpendicular oriented tubules.169 Cutting and etching 

tubules oriented in a perpendicular direction, such as in gingival walls, might result in 

a continuous reservoir of fluid that is fed by capillary action resulting in a wetter 

surface. On the other hand, cutting and etching tubules in a parallel direction might 

result in a less fluid oozing from the dentinal tubules without a continuous feed. These 

differences in the anatomy of the two locations may account for the larger number of 

debondings at gingival sites than at axial sites.44 

Voids along the tooth–restoration interface resulting from excessive moisture 

can result in fluid and bacterial movement through the interface that can be 

experienced by the patient as post-operative sensitivity and recurrent caries.170, 171 

Narrow gaps, crevices, ditches, and microleakage do not lead to secondary caries, but 

wide voids may.14 

Clinicians interested in enhancing bond strength must control the amount of 

wetness on the dentin surface. In order for a good bond to develop between the dentin 

and adhesive, all excess moisture on the dentin surface should be replaced by 

monomers in the primer and adhesives during the bonding procedure.44 It is very 

difficult for an operator to determine if the dentin surface is ‘too wet’ or ‘too dry’. 

Rinsing and drying steps are difficult to standardize under clinical conditions.137, 148 

Ethanol or acetone adhesives that displace water and are more volatile might behave 

better in a wet environment at the gingival wall of class II preparations. Reducing the 

amount of time dentin is etched might also reduce the amount of wetness from the 

dentinal tubes.44 



28 
 

As mentioned earlier, in vitro conditions may over-estimate bond strengths in 

in vivo conditions. Greater effort should be directed to in vivo approaches to bond 

strength testing in order to determine the optimal etchants and etching times for 

conditioners used on dentin.172, 173 Reducing the number of voids at the adhesive 

dentin interface will improve the tensile bond of the adhesive to the dentin and 

improve clinical outcomes for patients.44 

The occurrence of pathophysiological alterations can affect the bond strength 

to dentin.55 Variations such as sclerotic dentin and hypermineralization associated 

with erosion or abrasion lesions have been reported to cause complication when 

dentin adhesion is attempted.50, 174 

POLYMERIZATION SHRINKAGE OF  
RESIN-MATRIX COMPOSITES 

Marginal debonding of light-cured resin-matrix composites from dentin cavity 

walls due to setting shrinkage has long been identified as a major polymerization 

defect of great clinical implications.47, 48 Many efforts have been undertaken to reduce 

the effect of this phenomenon and consequently minimizing the interfacial gaps 

formed. These include the introduction of low-shrinking monomers,175, 176 increase in 

the filler volume loading and development of new types of filler, use of incremental 

placement techniques, development of irradiation modes that provide increase plastic 

flow during pre-gel polymerization state and implementation of flexible cavity liners 

to counteract the composite shrinkage stresses.177-180 However, despite all these 

advances, production of gaps around resin-matrix composites remains a major clinical 

dilemma.43 

The bond strengths obtained in dentin is not always strong enough to 

counteract the stresses developed during polymerization shrinkage which affect the 
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sealability. Cavities with high C-factor, which is the ratio between bonded and 

unbounded surfaces, could increase the shrinkage stress at the adhesive interface, 

consequently, impairing the sealing ability.181 Amaral and colleagues180 attempted to 

study the effect of polymerization shrinkage of resin-matrix composite restorations on 

microleakage and gap sizes formed. They utilized vertical slot cavities prepared in 

bovine teeth that were filled with resin and then thermocycled. They concluded that 

thermocycling significantly increased the gap formation, but, they did not observe a 

correlation between microleakage and gap formation. 

MICROLEAKAGE 

Secondary caries formation depends on the interaction of the sealing stability 

of the restoration and the microenvironmental conditions of the oral cavity. The lack 

of marginal integrity in either enamel or dentin induced by polymerization shrinkage 

of resin-based materials should be counteracted.182 

 Microleakage is the penetration of fluids, bacteria, toxins, ions and other 

molecules that can be observed at the tooth-restoration interface.81 During the past 

few years, considerable efforts have been focused on the development of new 

adhesives to prevent secondary caries and restoration failures.183-185 Marginal 

breakdown and microleakage due to polymerization shrinkage of resin-matrix 

composite occur if the bonding system is not able to prevent postcuring composite 

shrinkage.184, 186 Since the micromechanical adhesion to dentin takes place with the 

formation of the hybrid layer,165 the bonding stability is greatly dependant on the 

hybrid layer integrity and ability to resist demineralization of the marginal dentin and 

gap formation.187 
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 One of the most common techniques employed to evaluate microleakage is by 

using the dye method. In this technique migration of a dye along the tooth-restoration 

interface is evaluated.153 Although this method is considered fast and economic, the 

subjectivity in reading the specimens has been noted as a shortcoming related to this 

methodology.188 Araujo153 and colleagues used this technique to evaluate the 

microleakage of seven adhesive systems on enamel and dentin. They detected higher 

leakage in dentin when compared to enamel with all the adhesive systems tested. 

According to them the reason for that was that bonding to enamel is stronger and 

more stable than the bonding to dentin38 due to the difference in composition between 

these two substrates.154 

 In a recent study to evaluate the in situ influence of microleakage and surface 

roughness on caries formation around composite restorations, the investigators 

concluded that the presence of microleakage at the adhesive interface did not affect 

significantly the enamel demineralization.8 Cenci and colleagues conducted a 

randomized, double-blind in situ study to investigate the association between 

microleakage and secondary caries. Results from their study reinforced the concept of 

lack of association between microleakage and caries adjacent to restorations.37 

Although microleakage is still considered a potential etiological factor for secondary 

caries,15 most of the studies suggesting this were performed in vitro.67 

 In summary, the inherent polymerization shrinkage of resin-matrix composites 

can produce gaps between tooth-restoration interfaces.38 Microleakage has been 

strongly associated to marginal gaps189 and in vitro studies have associated the 

presence of secondary caries with microleakage.15 However, clinical findings have not 

supported this association.9 
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A secondary caries bacterial model developed by Totiam et al.16 was used to 

study the effect of the space between the restoration and the dentinal wall of the tooth 

on secondary caries development. The steps of the study are shown in Figure 2. 

Four groups of specimens were used (Figure 3). Each group consisted of ten 

specimens. The first group had a uniform gap size of 30±10 μm throughout both 

enamel and dentin. This group acted as a lower limit for caries development (negative 

control). The second group had a 30±10 μm enamel gap size with a 530±10 μm 

dentinal gap. Group three had a 525±20 μm gap in both enamel and dentin. The final 

group had a 525±20 μm and a 1025±20 μm gap in enamel and dentin, respectively 

(Table I). 

 The lower limit used for gaps in the study was 30 μm since it has been shown 

that secondary caries wall lesion development is minimal at gaps of this range.16, 114 

The 500 μm gaps used in groups two through four represent clinically unacceptable 

restoration margins that would require operative intervention. 

The within-group standard deviation estimate for the wall lesion area used in 

the sample size calculations was estimated to be 5000 µm2 based on the study by 

Totiam et al.16 With a sample size of 10 specimens per group, the study was expected 

to have 80% power to detect a difference of 8632 µm2 between any two groups, 

assuming two-sided significance tests at an overall significance level of 5%. 

The groups were sterilized and then incubated in the microbial caries model 

referenced above with Streptococcus mutans TH16 in 1% sucrose tryptic soy broth for 

1 h, four times daily, and with a buffer solution for the rest of the day for a period of 8 

days. After the incubation period, lesions size was measured quantitatively using 

Confocal Laser Scanning Microscopy (CLSM). 
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TOOTH SPECIMEN PREPARATION 

Specimens were obtained from extracted human molars stored in 0.1% 

Thymol solution (IRB#0306-64). Selected teeth were examined for any signs of 

caries, cracks or other defects. Teeth with any defects were eliminated. Selected teeth 

were cut in half in a bucco-lingual direction using a high speed cutting machine (Lil’ 

Trimmer, Lapcraft, Inc., Powell, OH). Proximal surfaces were used to obtain the 

specimens (Figure 4). Cut teeth were mounted on plastic plates using sticky wax with 

the CEJ parallel to the surface of the plastic plate. Two parallel saw blades (Isomet, 

Buehler, Lake Bluff, IL) were used to cut the specimens, 1mm above and 3mm below 

the CEJ (Figure 5). 

A final specimen block with 4 × 4 × 2.5 mm dimensions and a thickness of 2.5 

mm was obtained (Figure 6) with an enamel thickness on the simulated cavity wall in 

the range of 300–500 μm. Specimens were then mounted on plastic blocks using 

sticky wax and the simulated cavity wall surface was ground using 500-grit, 1200-

grit, 2400-grit and 4000-grit sand papers followed by polishing with 1 μm diamond 

abrasive paste on a polishing cloth (Figure 7). Both grinding and polishing were done 

using a rotary polishing machine (RotoPol 31/RotoForce 4, Struers Inc., Westlake, 

OH). The enamel thickness on the simulated cavity wall was measured using a 

stereomicrospe (Nikon Stereocopic Zoom Microscope SMZ1500, Nikon Digital 

DXM1200F camera, Japan) and analyzed with imaging software (Nikon ACT-1 

version 2.63 software, Japan)  

Specimens designated for groups 2 and 4 were further modified to achieve the 

non-uniform geometry (Figure 8). Specimens were mounted on plastic rods using 

sticky wax. An abrasive disc was used to mill the specimens utilizing a slow speed 
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milling machine (Custom designed by Stellar Systems, Inc., USA) (Figure 9). The 

edge of the disc was aligned with the enamel margin on the cavity wall. Then, the disc 

was moved horizontally until the dentino-enamel junction (DEJ) was visible (this 

corresponded to 300-500 μm of horizontal movement depending on the enamel 

thickness of the specimen). The disc was further moved horizontally until the distance 

from the edge of the disc to the DEJ was the same as the distance from the DEJ to the 

outer edge of the enamel. This procedure was conducted with the help of a digital 

camera (Panasonic CCTV camera, model WV-CP284, Japan) that magnified the 

region of interest. Then, the milling machine was turned on and the disc was gradually 

lowered until it touched the specimen (verified by the digital camera). Once the disc 

came into contact with the specimen surface, the micrometer of the machine was set 

to zero and gradual milling was performed until the indicator reached the 500 μm 

mark. Occasionally, the disc was further lowered to the 510 or 520 μm marks to 

compensate for the resistance encountered during the milling process. 

This newly obtained surface “step” was examined under the stereomicroscope 

to ensure that the distance from the DEJ to the edge of the step was within the 

acceptable range of 300-500 μm and the distance from the outer edge of enamel to the 

edge of the step was within the 600-1000 μm range. The step was, then, polished 

using fine and ultrafine discs (Sof-Lex 3M ESPE, Dental Products, St. Paul, MN). 

The cavity surfaces of all the specimens were polished with ultrafine Sof-Lex discs. 

All specimens were washed thoroughly with deionized water. 

RESIN-MATRIX COMPOSITE SPECIMEN PREPARATION 

Resin-matrix composite specimens were made by plugging 2 increments of 

resin-matrix composite (Point4, Kerr, CA, USA) into a custom-made silicone mold 
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made from vinyl polysiloxane impression material. Each increment was light cured 

for 40 seconds. Before curing the second increment, a mylar strip and a glass slide 

were placed on the resin-matrix composite.  Resin-matrix composite bars with 11 × 4 

× 2.5 mm dimensions were produced. Each bar was further sectioned to obtain two 4-

mm-wide blocks corresponding to the size of the tooth specimens (Figure 10). 

PROFILOMETRIC ANALYSIS 

 Since the creation of the modified wall was a modification of the original 

model, profilometric analysis was conducted to assess the effectiveness of the 

polishing technique utilizing Sof-Lex discs on the different surfaces of the specimen. 

 Five random specimens involving a dentin step were analyzed using an optical 

profilometer (Proscan 2000; Scantron, Venture Way, Taunton, UK). On each 

specimen, three areas were examined. A 200 µm×200 µm area was analyzed on the 

enamel and 500 µm×500 µm areas were analyzed on the dentin and the dentin step 

areas. Images were analyzed using dedicated software (proscan 2000; Scantron). The 

results of the scan were interpreted as the average of Ra values in the X and the Y 

direction of the five specimens. 

MODEL ASSEMBLY 

Tooth and resin-matrix composite specimens were mounted on a custom made 

specimen stage that allows for the creation of different gap sizes between tooth and 

resin specimens (Figure 11). Gaps were created by inserting shim stocks of different 

thickness at the tooth/resin interfaces. A 25 μm thick shim stock (Tri-Mat, Matrix 

Strip Kit, ¼ inch, Pascal Co. Inc., Bellevue, WA, USA) was used in groups 1 and 3 

and a 500 μm shim stock was used in groups 2 and 4. Cyanoacrylate cement was used 
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to fix the specimens on the stage after being aligned to the stage interface by the use 

of a reference square block. 

After the glue was dry, the sliding stages were then tightly closed to the fixed 

one by turning an attached screw. The resin-matrix composite specimens were 

mounted next to the tooth specimen separated by the specific metal strip creating the 

desired gap size. Digital images of the gap were taken under a microscope (Leco 

LM247AT, Hitachi CCD camera, model XP-M1AN, Japan) and analyzed (Confident 

software 2.5.2, USA) to verify that gap widths were within the expected gap size. 

Specimens with gaps outside this range were excluded from the experiment. 

STERILIZATION 

The sliding stage of each model was opened until a 2-mm gap size between 

tooth and resin-matrix composite specimens was achieved. Then, models were 

attached to Petri dishes (100×25 mm) (Extra-deep Petri dishes, 100x25 mm, Fisher 

catalog #08-757-11, USA) (Figure 12). The 40 specimens were assigned to 3 Petri 

dishes. The dishes were exposed to ethylene oxide gas for 1 hour, in moist condition, 

at 55°C (8XL sterilizer/aerator, 3M Health Care, USA). After aeration for 12 hours, in 

the same moisture and temperature conditions, specimens were soaked in sterile 

deionized water for 1 hour at room temperature. 

DEMINERALIZATION AND REMINERALIZATION 

The samples were inoculated with 50 µl of a fresh overnight culture of 

Streptococcus mutans (TH16) in tryptic soy broth with 1% sucrose (TSBS, Bacto, 

Dickinson and Company, Sparks, MD, USA) at an absorbance of 0.536 at 540 ηm 

(Spectronic 20D+, TheroSpectronic, USA) and incubated in a 5% CO2 environment 

for 2 hours at 37°C. After this period, the sliding stages were closed to the designated 
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gap size under a laminar flow hood. The stages were incubated daily with 50ml 

mineral wash buffer solution without fluoride (pH=7.71) for 20 h/day and TSBS 

(pH=7.55) for 4 h/day (1-hour incubations, 4 times/day) in a 37°C environment. 

After 8 days, the TSBS was discarded; the stages were rinsed with deionized 

water, cleaned with an ultrasoft brush (449 Ultra Soft, Butler G-U-M, John O. Butler 

Company, Chicago, IL, USA) and re-rinsed with deionized water. The tooth 

specimens were then removed from the models and gently cleaned with cotton pellets 

and deionized water. 

CONFOCAL LASER SCANNING MICROSCOPE ANALYSIS 

The tooth specimens were glued on plastic rods before being covered with an 

acrylic resin (SNAP, Parkell, Farmingdale, NY, USA) (Figure 13). The specimens 

were cut in half using a hard tissue microtome (Silverstone-Taylor Hard Tissue 

Microtome, Series 1000 Deluxe, USA). Specimen halves were stained overnight with 

a 0.1 mM solution of rhodamine B (Aldrich Chem. Co., Milw., WI, USA) (Figure 14). 

The dentin part of the specimens was immediately analyzed after taking the 

specimens out of the dye with a confocal microscope (Zeiss LSM 150, Carl Zeiss 

Inc.) using a helium/neon laser with 543-ηm excitation wavelength, a 25 μm confocal 

slit, and a long pass barrier filter between 565-m and 615-m (Table II). The specimens 

were allowed to air-dry for 1 h before the enamel part was analyzed. Digital images 

were taken and analyzed (Metamorph software, 5.0.1, Universal Image Corp., West 

Chester, PA) for lesion severity. Different parts of the lesion were measured as lesion 

area in four locations as follows (Figure 15 and Figure 16): 

1- Enamel Outer Lesion (EOL): the first 250 µm on the enamel surface 

starting at the enamel border. 
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2- Enamel Wall Lesion (EWL): between the inner border of the outer lesion 

and the DEJ. 

3- Dentin Wall Lesion-A (DWL-A): the first 150 µm next to the DEJ. 

4- Dentin Wall Lesion-B (DWL-B): 150 µm measured at a depth of 750 µm 

from the DEJ. 

The value for each specimen was recorded as the average of the sectioned 

halves. Analysis of lesion areas in these four locations and comparison between the 

groups were done.  

STATISTICAL ANALYSIS 

One-way analysis of variance (ANOVA) was used to test for differences 

between the groups for enamel outer lesion (EOL) area, enamel wall lesion (EWL) 

area, dentin wall lesion area next to the DEJ (DWL-A), and dentin wall lesion area 

750 µm from the DEJ (DWL-B). Pair-wise comparisons between the groups were 

performed using Tukey's method to control the overall significance level at 5% for 

each outcome. 
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Results of different group comparisons are illustrated in Figures 17 to Figure 

21. Groups did not have significantly different EOL area (p=0.41).  Although the 

overall test for any difference between groups for enamel wall lesion area was 

significant (p=0.0185), none of the individual group comparisons were significant 

However, there was a clear numerical trend towards higher EWL area for Group 4 

than for Groups 1 and 2.  

Group 3 had significantly higher DWL-A and DWL-B area than Groups 1 and 

2, and significantly higher DWL-B area than Group 4.  Group 4 had significantly 

higher DWL-A and a numerical trend towards higher DWL-B than Group 1. 

Results from the profilometry scan are provided in Table III. Although, some 

decrease in the surface roughness of the dentin surface was observed, little difference 

was noticed on the values of enamel and dentin step areas. Furthermore, It was 

observed that the average Ra value of the step area (Ra=2.47) was approximately 8 

times the value of the dentin area polished with the Struers machine (Ra=0.3). 
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TABLE I 

 

Summary of gap sizes used in the four 
groups of the study 

 
 

Group Enamel Gap Size (µm) Dentin Gap Size (µm) 

1 30±10 30±10 

2 30±10 530±10 

3 525±20 525±20 

4 525±20 1025±20 
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TABLE II 

 

The settings used for the confocal laser 
scanning microscope analysis of the 
specimens 

 
 

Parameter Enamel Dentin 

Laser Wavelength 543 ηm at 20% 

Pass Barrier Filter 565-615-ηm 

Pin Hole 160 158 

Detection Gain 308 576 

Amplification Offset - 0.1 0.017 

Amplification Gain 1.2 1 
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TABLE III 

 

Summary of the profilometric analysis 
of five random specimens with step 
surface fabricated 

 
 

Surface Prepolish Ra Average Postpolish Ra Average 

Enamel 0.36 0.35 

Dentin 0.42 0.30 

Step 2.66 2.47 

 
Ra was calculated as the average of the values in the X and Y directions. 
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TABLE IV 

 

Summary of the results obtained by 
confocal laser scanning microscopy for 
the four secondary lesion areas 

 
 

 Group N Mean SD 

Enamel Outer 
Lesion 

1 10 8497 2319 

2 9a 8808 3877 

3 10 9833 4798 

4 9a 11888 6802 

Enamel Wall 
Lesion 

1 10 8765 4045 

2 9a 8570 4347 

3 10 14446 8823 

4 10 15577 4970 

Dentin Wall Lesion 
A 

1 10 4247 4239 

2 10 6950 4893 

3 10 12574 1571 

4 10 10495 4205 

Dentin Wall Lesion 
B 

1 10 1090 2329 

2 10 2703 2966 

3 10 11859 6166 

4 10 6015 4371 

 
a A specimen could not be analyzed due to damage occurred during sectioning. 
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TABLE V 

 

Results of the statistical analyses of the 
between-group comparisons, showing the 
p-value of each comparison 

 
 

Comparison 
Enamel 
Outer 
Lesion 

Enamel 
Wall Lesion 

Dentin Wall  
Lesion A 

Dentin Wall 
Lesion B 

1 vs 2 0.9989 0.9999 0.4283  0.8282  

1 vs 3 0.9190 0.1574 0.0002 a 1 < 3 0.0000 a 1 < 3 

1 vs 4 0.4054 0.0652b 0.0058 a 1 < 4 0.0607 b  

2 vs 3 0.9638 0.1530 0.0148 a 2 < 3 0.0001 a 2 < 3 

2 vs 4 0.5110 0.0648 b 0.2024  0.3119  

3 vs 4 0.7755 0.9733 0.6429  0.0190 a 3 > 4 

 
a indicates statistical significance (p≤0.05). 
b indicates marginal statistical significance. 
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FIGURE 1.      A diagram showing the parts of the secondary caries lesion and their 

association with the gap at the tooth-restoration interface. 
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FIGURE 2.      A flowchart showing the steps of the study 
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FIGURE 3.      A diagram showing the four groups used in the study; group 1 (small 

gap and no step), group 2 (small gap with step), group 3 (large gap and 

no step) and group 4 (large gap with step). 
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FIGURE 4.      A diagram showing the location from which the specimens were 

obtained. Proximal surfaces of human molars were utilized. Horizontal 

cuts were made 1 mm occlusal and 3 mm cervical to the DEJ in order 

to control for enamel thickness. 
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FIGURE 5.      Photographs of the procedure for obtaining specimens. Human molars 

were cut in half using a high speed cutting machine (a), teeth halves 

were mounted on plastic plates using sticky wax with the CEJ parallel 

to the surface of the block (b), two parallel saw blades were used to cut 

the specimens (c), 4×4 mm specimens were obtained (d). 

 
 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
(c) 
  

 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
(d) 
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FIGURE 6.      Diagrams of the final specimen block. Side view (left), direct view of 

tooth specimen wall (right). 

  



54 
 

FIGURE 7.      Photographs of polishing the simulated cavity wall of the specimens. 

Specimens were mounted on plastic blocks using sticky wax (a) and 

then ground and polished on a rotary machine (b). 

 
 
 
 
 
 
 
 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) 
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FIGURE 8.      Diagrams of specimens used in groups 2 and 4 after step fabrication, 

showing the location of the step area. Side view (left) and direct view 

of tooth specimen wall (right). 
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FIGURE 9.      Diagrams of the steps for fabricating the additional wall space (“step”) 

for specimens in groups 2 and 4. The edge of the abrasive disc was 

aligned with the enamel margin (a), the disc was moved horizontally 

until the DEJ was visualized (b), the disc was further moved 

horizontally in an amount similar to the amount achieved in the 

previous step (c), lastly, the machine was turned on and the disc was 

lowered until the desired depth of 500 µm was reached (d). 
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FIGURE 10.      Photographs of resin-matrix composite preparation procedure. Vinyl 

polysiloxane mold (a), resin-matrix composite condensed into the 

mold (b), complete filling of the mold (c), a mylar strip and a glass 

slide placed (d), light curing (e), removal of the resin (f), removal of 

11×4×2.5 mm bars from the mold (g), two 4 mm-wide resin blocks 

were obtained after sectioning of each bar (h). 

 
 
 
 
 
 
(a) 

   
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
(e) 
 
 
 
 
 
 
 
 
 
 
(g) 
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FIGURE 11.      The custom-made stages used in the study. A diagram of stages used 

in groups 1 and 3 (a), a diagram of stages used for groups 2 and 4 (b) 

and a photograph of a stage after affixing the tooth and resin-matrix 

composite specimens (c). 

 
 
 
 
 
 
 
 
 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) 
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FIGURE 12.      A photograph of stages glued to Petri dishes before sterilization. 
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FIGURE 13.       Photographs of cutting the specimens in the microtome. Specimens 

were glued on plastic rods (a), covered with acrylic resin (b), and 

then sectioned with a hard tissue microtome (c). Figure (d) shows a 

specimen’s section. 

 
 
 
 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
(c) 
  

(b) 
 
 
 
 
 
 
 
 
 
 
 
 (d) 
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FIGURE 14.       A photograph of the specimen’s sections in Rhodamine B solution in 

preparation for confocal laser scanning microscopy. 
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FIGURE 15.       A diagram of the different areas of the lesion that were analyzed. 

Enamel outer lesion (the first 250 µm on the enamel surface starting 

at the enamel border), Enamel wall lesion (between the inner border 

of the outer lesion and the DEJ), Dentin wall lesion-A (first 150 µm 

next to the DEJ) and Dentin wall lesion-B (150 µm measured at a 

depth of 750 µm from the DEJ). Note that Dentin wall lesion-B for 

groups 1 and 3 is represented by the solid line. Whereas, Dentin wall 

lesion-B for groups 2 and 4 is represented by the dashed line. 
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FIGURE 16.       Digital composites of multiple confocal micrographs illustrating the 

four areas that were analyzed. Top view showing a specimen from 

group 3 and bottom view showing a specimen from group 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

EOL: enamel outer lesion area, EWL: enamel wall lesion area, DWL-A: dentin wall 

lesion area next to the DEJ and DWL-B: dentin wall lesion area at 750 µm from the 

DEJ. 
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FIGURE 17.       A graph showing the mean enamel outer lesion area among the four 

groups. Error bars represent ± 2 SE. There was no significant 

difference among the groups (p>0.05). 

  

0

3,000

6,000

9,000

12,000

15,000

18,000

21,000

Group 1 Group 2 Group 3 Group 4

M
ea

n 
Le

si
on

 A
re

a 
(µ

m
2 )



65 
 

FIGURE 18.       A graph showing mean lesion areas between groups 1 and 2. Error 

bars represent ± 2 SE. 

 

 
 
Groups with different letters were significantly different (p≤0.05).   
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FIGURE 19.       A graph showing mean lesion areas between groups 3 and 4. Error 

bars represent ± 2 SE. 

 

 
 
Groups with different letters were significantly different (p≤0.05).   
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FIGURE 20.       A graph showing mean lesion areas between groups 1 and 3. Error 

bars represent ± 2 SE. 

 

 
Groups with different letters were significantly different (p≤0.05).  
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FIGURE 21.       A graph showing mean lesion areas between groups 2 and 4. Error 

bars represent ± 2 SE. 

 

 
 

Groups with different letters were significantly different (p≤0.05).   
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This investigation was based on the hypothesis that the bigger the size of the 

space between the restoration and dentinal wall of the tooth, the bigger the size of the 

secondary carious lesion. The rationale for this hypothesis was that bigger gaps would 

provide more space for more microorganism colonization and better access to 

nutrients leading to the creation of larger wall lesions. Results from this investigation 

support the above-mentioned proposed hypothesis in case of uniform gaps, but do not 

support it if non-uniform geometry of gaps is present. 

To create a standardized distance between tooth structure and resin-matrix 

composite, both specimens were prepared separately and then assembled without 

using a dentin bonding agent. The gap was opened before inoculation and was left 

open for 2 hours of initial incubation to ensure that the bacteria had penetrated; 

simulating what may result from long term exposure in the oral cavity. 

Since the tooth specimen is the structure that was analyzed for lesion severity, 

it was more convenient to fabricate the step in the tooth specimen rather than the 

resin-matrix composite block. This allowed for more control of the position of the 

step in relation to the DEJ and provided better orientation during analysis of the 

different regions of the specimen. 

Resin-matrix composite was used in this study for several reasons. In recent 

years, the use of resin-based composites for the restoration of posterior permanent 

teeth has increased significantly.40 Furthermore, some practitioners have shifted into 

amalgam-free practices, where resin-matrix composite might be the only material 

used to restore posterior teeth.190 Polymerization shrinkage of resin-matrix composite 

is still a concern especially in the light-cured formulations. This setting contraction is 

believed to form gaps that could lead to microleakage and in some cases secondary 
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caries, though this has not been proven to date. Another reason was the high 

percentage of composite failures compared to other restorative materials reported in 

the literature.39, 150, 191 In addition to that, the original model developed by Totiam et 

al.16 used resin-matrix composite and the model was shown to develop reproducible 

wall lesions adjacent to such material. If changing the restorative material in the 

model is considered, additional investigation of this “new” configuration should be 

carried out before attempting to study the effect of the gap geometry. 

 The 30 µm enamel gaps that were present in groups 1 and 2 was chosen since 

it has been reported that secondary caries wall lesion development is minimal at gaps 

of this range.16, 114 The 500 µm gaps in group two through four were used because it 

represented clinically unacceptable restoration that would require operative 

intervention. Totiam et al.16 found a clear increase in secondary caries development 

when a difference of 500 μm was present between groups. The values of the dentin 

gap size in groups 2 and 4 were merely the sum of the enamel gap size and the depth 

of the step in each group. 

 Our findings are in agreement with previous in vitro studies demonstrating 

that secondary caries lesions develop next to marginal gaps.22, 118 However, the main 

focus in our study was the effect of the presence of a defect underneath the resin that 

provided a larger space at the deeper regions of the gap. 

Provided in Table V are the group comparisons done and their outcome. 

Comparison between group-1 (small gap and no step) and group-2 (small gap and a 

step) was done. Similarly, comparison between group-3 (large gap and no step) and 

group-4 (large gap and a step) was done. In both these comparisons, the main interest 

was to determine the effect of the presence of the gap at the inner portion of the 
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simulated cavity wall. In addition to that, comparison between group-1 and 3 was 

done to determine the effect of increasing the gap size. 

Although comparison between group 2 and 4 was done, caution was taken in 

drawing conclusions based on this comparison. The reason of that was the presence of 

two variables. The two groups were different in terms of enamel gap size (30 µm vs. 

525 µm) and dentin gap size (530 µm vs. 1025 µm). 

 Between-group comparison regarding EOL did not yield statistical 

significance (p value=0.41), as shown in Figure XVI. That was expected since the 

conditions of the three Petri dishes were similar and they all were subjected to the 

cycling processes in the same manner. It should be noted that each Petri dish 

contained specimens from each group. It appears that larger gaps in groups 3 and 4 

had little effect on EOL, even though a small numerical trend seems to be consistently 

present. The same findings were documented by Totiam et al.,16 where deeper lesions 

were observed adjacent to larger gaps but without significant difference. 

 Groups 1 and 2 were compared mainly to evaluate the effect of the presence of 

a defect under a clinically acceptable margin. Results suggest that the presence of the 

step does not affect the development of wall lesions. We speculate the reason for this 

lack of impact is that the size of the interface entrance, which was the same in both 

groups and was relatively small, was the dominating factor affecting the dynamics of 

caries development. The reason for that could be that within smaller gaps, the 

minerals dissolved from tooth structure due to the acid attack would remain and 

supersaturate the gap. This would lead to remineralizing the area limiting the size and 

progression of wall lesions.16 Jorgensen and Wakumoto20 reported no caries in gaps 

smaller than 35-50 µm suggesting that secondary caries lesions do not tend to develop 

around smaller gaps. Lagerweij et al.192 attempted to study the caries susceptibility 
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related to dentinal grooves of different widths. They reported smaller lesions in 

association with narrower grooves. This could be the same dynamics that yielded 

differences between groups 1 and 3, as will be discussed later. 

 Comparison between groups 3 and 4 was done to evaluate the presence of the 

defect adjacent to larger gaps. No differences were observed between the groups 

except in the size of wall lesions at the deeper areas of dentin (DWL-B) where larger 

lesions occurred in group 3 compared to group 4. Although we were expecting that 

larger defects would accumulate more plaque leading to more demineralization, the 

presence of the step itself at the deeper areas of the simulated cavity could have led to 

conditions where the diffusion of nutrients might have been impaired by the distance 

that these substances had to travel to reach the inner part of the cavity. The same thing 

could be said about the demineralization products that had to travel the same distance 

to reach the outside of the interface. According to Rølla and colleagues,119 in areas 

with high plaque retentive potential, like the inner part of the gap, long-term bacterial 

colonization may induce a calcification effect by eliminating the inhibition action of 

pellicle proteins on calcium phosphate precipitation. This does not occur at the 

entrance of the gap interface where the abrasive forces of mastication and tooth 

brushing frequently renew the absorbed pellicle proteins, thus, exposing enamel 

margins to the continuously changing oral conditions. Another explanation was 

reported by Jenkins,193 proposed a difference in plaque composition and cariogenicity 

at different depth levels in the fissures, the plaque at the deepest level being the most 

aggressive. Combination of these factors could have led to creating remineralizing 

conditions at the step area where smaller wall lesions were developed. 

 In comparing groups 1 and 3, no differences were found at EWL. However, 

both DWL-A and -B were larger in group 3 than group 1. These results are in 
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agreement with previous reports that found a positive correlation between the size of 

the gap and the size of the wall lesion developed around it. As discussed earlier, the 

smaller gaps are likely to provide a better environment for remineralization than 

larger gaps. Larger gaps provided more bacterial colonization and better access to 

nutrients that led to larger wall lesions.16 

The difference in surfaces roughness between the area of DWL-B between the 

groups with the step and the groups without it could have an effect on the results. The 

difference in surface roughness between enamel, dentin and the step area may have 

affected the bacterial adhesion to these substrates. However, previous reports have 

shown no association between surface roughness values and bacterial adhesion on 

restorative materials.128, 129 Furthermore, the effect of surface roughness on fluid 

penetration inside the gap cannot be eliminated. Diffusion of fluids throughout the 

gap interface is likely to occur due to capillary action. It can be assumed that the 

capillary action can be affected by the geometry of the vessel that the fluids are 

passing through. Even more, the surface morphology of the walls of this vessel may 

affect the diffusion speed. Surface roughness can affect the surface tension of the 

fluids. The increase in surface roughness of the step area may have led to the increase 

in the surface tension of the fluid inside the gap. This could have led to decrease in the 

diffusion speed of the fluids which consequently led to less supply of nutrients to the 

bacteria in the deep parts of the step. The larger DWL-B in group 3 than group 4 

could have been caused by this proposed phenomenon. 

Regarding profilometric analysis it can be concluded that Sof-Lex discs can be 

used to polish dentin surfaces since a decrease in Ra values between prepolishing and 

postpolishing scans was observed. However, other means should be used to polish 

enamel surfaces and dentin surfaces with very high Ra values since little change was 
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observed when polishing these surfaces with Sof-Lex discs. Of special note is that the 

proposed polishing technique for the step area should inflect little effect on the depth 

of the step region in order to maintain the depth within the acceptable range. 

Although this investigation involves simulating a clinical condition, apparent 

differences between this in vitro model and the oral cavity are present. Among these 

differences are the dissimilar incubation conditions from what is found in the oral 

cavity. Furthermore, the composition of the buffer solution utilized is different from 

saliva constitution. Another importance limitation is the difference in surface 

roughness between the dentin part and the step area of the specimens in groups 2 and 

4. Although, to our knowledge, this is the first time that such model configuration was 

used, standardizing the conditions of areas of interest should be considered. Future 

studies investigating gap geometry effect should develop a polishing technique that is 

effective for all areas of the specimen with little effect on the depth of the step region. 

Still, results from this investigation could help establish future models to study 

secondary caries in relation to non-uniform gaps. 

In conclusion, this investigation provided important information regarding the 

effect of gap geometry on secondary caries development adjacent to resin-matrix 

composites. Results from this study show that the presence of additional space at the 

dentin wall area did not affect secondary caries development as long as the enamel 

gap was small. However, with larger enamel gaps, the presence of the additional gap 

space at the dentinal wall led to the development of smaller dentinal wall lesions at 

the deeper parts of the simulated cavity. Also, in uniform gaps, the size of the 

interface was positively correlated with size of the dentinal wall lesions. 
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Prevalence of primary caries has decreased in many countries during the last 

few decades. Despite this, the disease is still a major problem especially in certain 

groups of the population. Management of dental caries in the form of restorations is 

not always ideal since it has been found that secondary caries is associated with a high 

percentage of restoration failures. 

Histopathologically, secondary caries consists of two regions, an outer lesion 

and a wall lesion. It has been suggested that the development of the wall lesion in 

associated with the size of the microspace at the tooth-restoration interface. Data from 

the literature support the common presence of these gaps regardless of the restorative 

material used. Although not completely verified, there seems to be an association 

between secondary caries and gap size. 

In this study, we studied the mechanism of secondary caries development 

around non-uniform gaps under controlled conditions. Although many models and 

techniques have been used to study secondary caries, none of these have been used to 

investigate the mechanism of caries formation around a non-uniform geometry of the 

tooth-restoration interface. 

Tooth-resin-matrix composite specimens were mounted on custom-made gap-

model stages. Specimens were divided into four groups (n=10). Group 1 had a 

uniform gap size of 30 μm throughout both enamel and dentin. Group 2 had 30 μm 

enamel gap size with 530 μm dentinal gap. Group 3 had 525 μm gaps in both enamel 

and dentin. Group 4 had 525 μm and 1025 μm gap in enamel and dentin, respectively. 

Specimens were attached to plastic Petri plates, gas-sterilized and then incubated in a 

microbial caries model with S. mutans TH16 in (1% sucrose tryptic soy broth for 1 h, 
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4 times/day, and with a buffer solution for the rest of the day). After 8 days of 

incubation, tooth specimens were sectioned and stained with a rhodamine B solution. 

Digital images were taken under a confocal microscope and analyzed for 

lesion size at the enamel outer lesion (EOL), enamel wall lesion (EWL), dentin wall 

lesion next to the DEJ (DWL-A) and dentin wall lesion at 750µm from the DEJ 

(DWL-B). 

In summary, results from this study show that the presence of additional space 

at the dentin wall area did not affect secondary caries development as long as the 

enamel gap was small. However, with enamel gaps of ≈500 µm, the presence of the 

additional gap space at the dentinal wall led to the development of smaller dentinal 

wall lesions at the deeper parts of the simulated cavity. Also, in uniform gaps, the size 

of the interface was positively correlated with size of the dentinal wall lesions, as it 

has been shown in previous studies. The methodology used in this project can act as a 

foundation for development of techniques to study secondary caries around non-

uniform gaps which resemble the clinical situation more closely. 
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APPENDIX A – CONFOCAL LASER SCANNING ANALYSIS RAW DATA 

(continued) 
 
 
 

  

Group Specimen Enamel Outer 
Lesion 

Enamel Wall 
Lesion 

Dentin Wall 
Lesion-1 (next 

to DEJ) 

Dentin Wall 
Lesion-2 (750µ 

from DEJ) 

1 1 12331.32 9054.7 13431.95 188.7635 

 2 6822.24 17858.2 7648.63 6637.93 

 3 10557.395 5894.77 815.992 0 

 4 8504.755 7871.58 264.566 0 

 5 8070.75 8091.56 6956.005 0 

 6 5514.27 11603.7 1966.405 0 

 7 11076.1 10325.5 5402.795 0 

 8 9529.955 4069.56 175.3865 0 

 9 6166.4 4024.97 1474.4355 4072.53 

 10 6392.685 8855.53 4337.1 0 

2 1 2043.695 881.39 1527.94 6342.15 

 2 12061.535 10815.97 4475.325 0 

 3 8605.83 15778.8 7290.43 7092.7695 

 4 8101.965 6669.145 7375.15 0 

 5 13067.8 8834.715 3145.07 408.7395 

 6 7068.965 4927.17 4185.49 2382.58 

 7 N/A N/A 19148.335 3423.008 

 8 4285.82 8799.05 6165.28 0 

 9 11250.3 7696.195 9757.725 6594.815 

 10 12783.87 12724.415 6429.845 783.294 
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(continued) 
 
APPENDIX A – CONFOCAL LASER SCANNING ANALYSIS RAW DATA  

3 1 4109.325 6884.66 13131.7 16278.25 

 2 5321.045 12651.6 10720.87 8851.06 

 3 8947.695 10871 12876 0 

 4 9225.63 32401.9 13460.15 15231.9 

 5 11985.7 1762.78 10648.05 17803.2 

 6 9124.555 11744.9 10749.105 11689.97 

 7 8880.81 11471.5 13109.4 9901.9 

 8 21278.25 25585.6 12191.605 10052 

 9 12547.55 16403.1 13154 7101.644 

 10 6909.94 14686.4 15703 21682.5 

4 1 20981 19259.8 3427.465 117.4195 

 2 5350.775 12028.815 9919.72 4848.395 

 3 19524.38 14381.7 12046.7 7146.255 

 4 10781.825 9650.725 16853.45 5298.7535 

 5 12262.2 20289.85 13540.45 7265.16 

 6 1965.66 20811.5 15315.1 13653.37 

 7 N/A 8683.12 9348.975 0 

 8 7731.87 13466.1 11417.95 8527.05 

 9 19613.55 14137.94 6759.81 2721.46 

 10 8784.205 23055.9 6319.855 10572.25 



94 
 

APPENDIX B – CONFOCAL LASER SCANNING ANALYSIS RAW DATA (BY 
PETRI DISH) 

 
 
PETRI DISH#1 

Group Specimen Enamel Outer 
Lesion 

Enamel Wall 
Lesion 

Dentin Wall 
Lesion-1 (next 

to DEJ) 

Dentin Wall 
Lesion-2 (750 
µm from DEJ) 

1 1 12331.3 9054.7 13431.95 188.7635 

 4 8504.76 7871.58 264.566 0 

 7 11076.1 10325.5 5402.795 0 

 10 6392.69 8855.53 4337.1 0 

2 1 2043.7 881.39 1527.94 6342.15 

 4 8101.97 6669.15 7375.15 0 

 6 7068.97 4927.17 4185.49 2382.58 

3 1 4109.33 6884.66 13131.7 16278.25 

 4 9225.63 32401.9 13460.15 15231.9 

 7 8880.81 11471.5 13109.4 9901.9 

4 10 8784.21 23055.9 6319.855 10572.25 

 3 19524.4 14381.7 12046.7 7146.255 

 6 1965.66 20811.5 15315.1 13653.37 
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PETRI DISH#2 

Group Specimen Enamel Outer 
Lesion 

Enamel Wall 
Lesion 

Dentin Wall 
Lesion-1 (next 

to DEJ) 

Dentin Wall 
Lesion-2 (750 
µm from DEJ) 

1 2 6822.24 17858.2 7648.63 6637.93 

 5 8070.75 8091.56 6956.005 0 

 8 9529.96 4069.56 175.3865 0 

2 2 12061.5 10816 4475.325 0 

 5 13067.8 8834.72 3145.07 408.7395 

 7 N/A N/A 19148.335 3423.008 

 9 11250.3 7696.2 9757.725 6594.815 

3 2 5321.05 12651.6 10720.87 8851.06 

 5 11985.7 1762.78 10648.05 17803.2 

 8 21278.3 25585.6 12191.605 10052 

4 1 20981 19259.8 3427.465 117.4195 

 4 10781.8 9650.73 16853.45 5298.7535 

 7 N/A 8683.12 9348.975 0 
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PETRI DISH#3 

Group Specimen Enamel Outer 
Lesion 

Enamel Wall 
Lesion 

Dentin Wall 
Lesion-1 (next 

to DEJ) 

Dentin Wall 
Lesion-2 (750 
µm from DEJ) 

1 3 10557.4 5894.77 815.992 0 

 6 5514.27 11603.7 1966.405 0 

 9 6166.4 4024.97 1474.4355 4072.53 

2 3 8605.83 15778.8 7290.43 7092.7695 

 10 12783.9 12724.4 6429.845 783.294 

 8 4285.82 8799.05 6165.28 0 

3 3 8947.7 10871 12876 0 

 6 9124.56 11744.9 10749.105 11689.97 

 9 12547.6 16403.1 13154 7101.644 

 10 6909.94 14686.4 15703 21682.5 

4 2 5350.78 12028.8 9919.72 4848.395 

 5 12262.2 20289.9 13540.45 7265.16 

 8 7731.87 13466.1 11417.95 8527.05 
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APPENDIX C – PROFILOMETRIC ANALYSIS RAW DATA 
 

Specimen Surface 
Prepolishing Postpolishing 

Ra (X) Ra (Y) Average Ra (X) Ra (Y) Average 

1 

Enamel 0.29 0.17 0.23 0.31 0.24 0.27 

Dentin 0.29 0.26 0.28 0.19 0.21 0.20 

Step 3.36 1.99 2.67 3.17 2.16 2.66 

2 

Enamel 0.92 0.23 0.57 0.45 0.23 0.34 

Dentin 0.48 0.36 0.42 0.17 0.17 0.17 

Step 2.90 2.42 2.66 3.15 2.56 2.85 

3 

Enamel 0.56 0.64 0.60 0.40 0.25 0.32 

Dentin 0.59 0.40 0.49 0.30 0.42 0.36 

Step 3.22 2.03 2.63 2.91 2.11 2.51 

4 

Enamel 0.21 0.17 0.19 0.49 0.33 0.41 

Dentin 0.55 0.35 0.45 0.51 0.34 0.42 

Step 2.82 2.49 2.65 2.08 1.40 1.74 

5 

Enamel 0.21 0.20 0.21 0.50 0.26 0.38 

Dentin 0.48 0.41 0.44 0.47 0.27 0.37 

Step 2.87 2.50 2.69 2.778 2.56 2.56 
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APPENDIX D – PROFILOMETRIC ANALYSIS AVERAGES 
 

Surface Prepolishing 
Average 

Postpolishing 
Average 

Enamel 0.36 0.35 

Dentin 0.42 0.30 

Step 2.66 2.47 
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APPENDIX E – DETAILED STATISTICAL MEASURES FOR THE FOUR 
SECONDARY LESION AREAS MEASURED BY CONFOCAL 
LASER SCANNING MICROSCOPY. 

 

 Group N Mean SD SE Min. Max. 

Enamel Outer 
Lesion 

1 10 8497 2319 733 5514 8497 

2 9a 8808 3877 1292 2044 8808 

3 10 9833 4798 1517 4109 21278 

4 9a 11888 6802 2267 1966 20981 

Enamel Wall 
Lesion 

1 10 8765 4045 1279 4025 17858 

2 9a 8570 4347 1449 881 15779 

3 10 14446 8823 2790 1763 32402 

4 10 15577 4970 1572 8683 23056 

Dentin Wall Lesion 
A 

1 10 4247 4239 1340 175 13432 

2 10 6950 4893 1547 1528 19148 

3 10 12574 1571 497 10648 15703 

4 10 10495 4205 1330 3427 16853 

Dentin Wall Lesion 
B 

1 10 1090 2329 736 0 6638 

2 10 2703 2966 938 0 7093 

3 10 11859 6166 1950 0 21683 

4 10 6015 4371 1382 0 13653 

 

 

 

 

 

 

 

 



100 
 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 
 

 

 

 

 

 

 

 

 

 

 

 

 



101 
 

Objective: To investigate the effect of the size of the space between the restoration 

and the dentinal wall of the tooth (i.e. the dentinal portion of the gap) on the 

development of secondary caries. Methods: Tooth-resin-matrix composite specimens 

were mounted on custom-made gap-model stages. Specimens were divided into four 

groups (n=10). Group 1 had a uniform gap size of 30μm throughout both enamel and 

dentin. Group 2 had a 30μm enamel gap size with a 530μm dentinal gap. Group 3 had 

525μm gaps in both enamel and dentin. Group 4 had 525μm and 1025μm gaps in 

enamel and dentin, respectively. Specimens were attached to plastic Petri plates, gas-

sterilized and then incubated in a microbial caries model with S. mutans TH16 in (1% 

sucrose tryptic soy broth for 1 h, 4 times/day, and with a buffer solution for the rest of 

the day). After 8 days of incubation, tooth specimens were sectioned and stained with 

a rhodamine B solution. Digital images were taken under a confocal microscope and 

analyzed for lesion size at the enamel outer lesion (EOL), enamel wall lesion (EWL), 

dentin wall lesion next to the DEJ (DWL-A) and dentin wall lesion at 750µm from the 

DEJ (DWL-B). Results: No difference in EOL size was found between the groups. 

DWL-A and -B were larger in group 3 than groups 1and 2. Larger DWL-B was found 

in group 3 than group 4. Group 4 had marginally significant larger EWL than groups 

1 and 2 (p=0.0652 and p=0.0648, respectively). Also, group 4 had marginally 

significant (p=0.0607) larger DWL-B than group 1. Conclusions: Based on the 

results of this study, it can be concluded that the presence of additional space at the 

dentinal wall area did not affect secondary caries development as long as the enamel 

gap was small. However, with enamel gaps of ≈500 µm, the presence of the additional 

gap space at the dentinal wall led to the development of smaller dentinal wall lesions 

at the deeper parts of the simulated cavity. Also, in uniform gaps, the size of the 

interface was positively correlated with size of the dentinal wall lesions. 
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