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ABSTRACT 
 

Lara Anne Vallely 
 
 

CONFOUNDING CONSTITUENTS  
IN REMOTE SENSING OF PHYCOCYANIN  

 
 

This project examines the impact of confounding variables that have limited the accuracy 

of remotely predicting phycocyanin in three Indiana drinking and recreational water 

reservoirs.  In-situ field reflectance spectra were collected from June to November 2006 

over a wide range of algal bloom conditions using an ASD Fieldspec (UV/VNIR) 

spectroradiometer. Groundtruth samples were analyzed for chlorophyll a, phycocyanin, 

total suspended matter, and other water quality constituents.  Previously published 

spectral algorithms for the detection of phycocyanin were evaluated against lab measured 

pigment concentrations using linear least squares regression.  Algorithm performance 

varied across study sites (best performing models by reservoir resulted in r2 values of 

0.32 to 0.84).  Residuals of predicted versus measured pigment concentrations were 

analyzed against concentration of potential confounding water constituents.  Residual 

analysis revealed optically active constituents contributed between 25% and 95% of 

original phycocyanin model errors.  Inclusion of spectral variables into models to account 

for significant confounders resulted in improved spectral estimates of phycocyanin (r2 = 

0.56 to 0.93).     

Jeffrey S. Wilson, Ph.D. 
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I.  INTRODUCTION 
 
Algal blooms can cause aesthetic and ecological degradation to water reservoirs.  

Aesthetic problems include surface scum and algal production of taste and odor causing 

compounds (Chorus and Bartram, 1999).  Of specific concern are blue-green 

(cyanobacteria) algal blooms which can threaten animal and human health (Pitois et al., 

2000; Chorus and Bartram, 1999).  Fish kills can result from anoxia:  as algal blooms die 

off, cell decay leads to oxygen depletion.  Human health concerns stem from potential for 

toxin production by some blue-green algal species.  Animal deaths from toxin intake have 

been reported in New Zealand (Hamill, 2001) and in North and South America, Europe 

and Africa (Chorus and Bartram, 1999).  

 

Cyanobacteria growth is dependent on temperature, light, and nutrient concentrations and 

is often associated with eutrophication (Pitois et al., 2000).  Eutrophication is the process 

of nutrient enrichment in water bodies, particularly from phosphorous and nitrogen (Horn 

and Goldman, 1994).  Eutrophication is a natural process, though anthropogenic activity 

has hastened nutrient enrichment.  As nitrogen and phosphorous levels rise in water 

bodies, conditions become more conducive for blue-green algal blooms (Pitois et al., 

2000).  As such, cultural eutrophication is understood to spur the frequency of blue-green 

algal blooms (Chorus and Bartram, 1999; Dekker, 1993).   

 

Because blue-green algal blooms degrade water quality, controlling their occurrence is a 

priority for water managers.  Current monitoring practices often involve widely dispersed 

station sampling and lab analysis.  The ephemeral nature of algal blooms makes effective 

monitoring in this manner difficult.  Remote sensing offers an alternative to minimal 

station monitoring by providing a synoptic view of a feature of interest (Simis et al., 

2005; Gitelson et al., 2000; Schalles and Yacobi, 2000; Gitelson et al., 1993).  

Phycocyanin, a pigment unique to blue-green algae and demonstrating a diagnostic 

spectral absorption in freshwater systems, makes the remote detection of blue-green algae 

possible (Simis et al., 2005; Schalles and Yacobi, 2000).   
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Multiple algorithms have been developed to estimate phycocyanin concentration from 

remote sensing data.  These include models created by Simis et al. (2005), Schalles and 

Yacobi (2000), Dekker (1993), and Millie et al. (1992).  The performance of these 

algorithms has only been tested on a few inland water systems with varying success.  

Applications to Indiana drinking water reservoirs showed model performance varied by 

reservoir (r2 values ranged from 0.32 to 0.91) (Randolph, 2007; Sengpiel, 2007).  A better 

understanding of water quality constituents that impact phycocyanin concentration 

estimates derived from these algorithms may be used to improve their predicative 

capabilities and utility to water resource managers.   

 

This project examines the impact of confounding variables that have limited the accuracy 

of remotely predicting phycocyanin in three Indiana drinking and recreational water 

reservoirs.  Previously published spectral algorithms for the detection of phycocyanin are 

evaluated against lab measured pigment concentrations using linear least squares 

regression.  Residuals of predicted versus measured pigment concentrations are analyzed 

against concentration of potential confounding water constituents.  The purpose of this 

analysis is twofold:  to determine the extent to which other water constituents interfere 

with model predictions and introduce error in phycocyanin concentration estimates, and 

to account for confounding water constituents to improve remote sensing of phycocyanin 

concentration. 
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II.  BACKGROUND 
 
Case I verse Case II Waters 

In 1977 Morel and Prieur introduced a classification of water bodies in remote sensing 

work based on their optical composition and complexity.  Case I waters are understood to 

be optically simple and generally refer to open ocean waters.  Phytoplankton and its 

byproducts dominate their spectral properties (Schalles, 2006; Morel, 2001; Bukata et al., 

1995).  Reflectance is understood to be a function of living algal cells, organic tripton 

from the death and decay of algae, and dissolved organic matter from phytoplankton 

metabolism and decay of organic tripton (Schalles, 2006).  Case I waters are 

characterized by high photic depths (the depth at which irradiance is 1% of the value at 

the water surface) and higher concentration of algal pigments compared to other optically 

active constituents (Bukata et al., 1995; Morel and Prieur, 1977).   

 

Case II waters are understood to be optically complex bodies where phytoplankton, 

inorganic and organic particulate matter, and dissolved organic matter all significantly 

impact the water’s spectral signature (Morel and Prieur, 1977).  Varying concentration of 

these optically active constituents present challenges to remote sensing of cyanobacteria 

(Vertucci and Likens, 1989).  Unlike Case I waters, suspended matter and dissolved 

organic matter present in the water column are not only the product of phytoplankton but 

can have terrigeneous sources and be spatially heterogeneous (Schalles, 2006; Morel, 

2001; Bukata, 1995; Gitelson et al., 1993).  Resuspension of bottom particles, terrigenous 

colored dissolved organic matter, and anthropogenic particulate and dissolved substances 

can all impact radiance leaving a Case II water body (Schalles, 2006).   

 

Despite challenges, remote sensing of Case II waters has become increasingly prevalent 

(Schalles, 2006).  Most inland water systems, including those examined in the current 

research, are categorized as Case II.  Their importance to human interests (e.g., drinking 

water sources, fisheries, recreational use) and their vulnerability to anthropogenic 

eutrophication underscore the need to monitor these water bodies timely and accurately 

(Yacobi, 2006; Liu et al., 2003; Dekker, 1993).   
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Field Water Spectra 

Water constituents have spectral absorption properties that make their remote detection 

through spectroscopy possible.  Radiance leaving a water body is a function of reflection, 

absorption, and transmission of the optically active constituents in a water body.  Spectral 

properties typical of Case II waters are illustrated in Figure 1.  Spectra from two study 

sampling points with varying concentrations of water constituents are shown. 

 

 
Figure 1.  Field spectra of two water samples collected at Eagle Creek Reservoir in July 
and August 2006.   
 
The samples have distinct spectral curves.  Sample 0608-710 had lab measured 

phycocyanin and chlorophyll a pigment concentrations of 188 and 91 ppb, respectively.  

Sample 0607-614 had lab measured phycocyanin and chlorophyll a pigment 

concentration of 18 ppb and 15 ppb, respectively.  The spectral signature from sample 

0608-710 is typical of in-bloom Case II water. 

 

Chlorophyll a has an absorption maximum at 440 nm, causing a characteristic reflectance 

dip at this value with increasing pigment concentration (A).  This spectral characteristic is 
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used in the remote detection and mapping of chlorophyll a in Case I waters, but not in 

Case II waters as other water constituents (e.g., suspended sediment and colored 

dissolved organic matter) impact reflectance in this portion of the spectrum (400 to 500 

nm) (Gitelson et al., 2000; Gitelson et al., 1993; Gitelson, 1992; Dekker et al., 1991).  

Carotenoid absorption results in the low reflectance values in these shorter wavelengths 

as well (B).  The visible green peak at 550 to 570 nm (C) is a function of minimal 

absorption of all algal pigments.  It is also impacted by scattering from algal cells and 

suspended sediment (Gitelson et al., 2000; Schalles and Yacobi, 2000).  Peak wavelength 

position in this spectral region is influenced by phycocyanin concentration:  higher 

pigment concentrations push the green peak towards lower wavelengths (Gitelson et al., 

2000; Schalles and Yacobi, 2000).  The trough at approximately 620 to 630 nm (D) 

results from the absorption maximum of phycocyanin (Simis et al., 2005; Gitelson et al., 

2000; Schalles and Yacobi, 2000; Gitelson et al., 1995).  This unique spectral absorption 

is exploited in remote sensing models to estimate phycocyanin concentration:  the depth 

of this trough has been found to vary with blue-green algae abundance – increasing 

trough depth is synonymous with higher pigment concentration (Gitelson et al., 2000; 

Schalles and Yacobi, 2000).  The reflectance peak at approximately 650 nm (E) 

represents phycocyanin fluorescence maximum (Rowan, 1989).  The reflectance trough 

at approximately 670 nm (F) is the chlorophyll a absorption maximum; it is 

predominantly used in remote sensing estimations of chlorophyll a concentration for case 

II waters (Dekker, 1993; Gitelson et al., 1993; Gitelson, 1992).  The distinctive 

reflectance peak at approximately 700 nm is a function of scattering by algal cells and 

particulate matter (Gitelson et al., 2000; Gitelson, 1992). 

 

Optically Active Constituents 

Optically active constituents (OACs) refer to all constituents that impact radiance leaving 

the water column.  In addition to algal pigments (e.g., chlorophyll a, phycocyanin) OACs 

include colored dissolved organic matter and suspended matter. 
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Colored Dissolved Organic Matter 

Colored dissolved organic material (CDOM) is decaying or decayed carbon-based 

material.  It has been referred to in remote sensing literature as aquatic humus, gilvin, 

yellow substances, humic substances, and gelbstoff (Bukata et al., 1995; Dekker, 1993). 

CDOM originates from decomposing phytoplankton or plant material.  It primarily 

consists of dissolved organic carbon in the form of fulvic or humic acids (Dekker, 1993).  

CDOM absorbs shorter wavelength light and leaves water with a yellow or tea-stained 

color.  It is defined optically in absorption units of sample filtrate (Schalles, 2006; 

Dekker, 1993; Gitelson et al., 1993) though it is also reported as dissolved organic carbon 

(mg/L) (Schalles, 2006; Bukata et al., 1995).  CDOM most strongly absorbs in shorter 

wavelengths; it is primarily measured in absorption units at a wavelength below 500 nm 

(e.g., Dekker 1993; Gitelson et al., 1993).  Dekker (1993) and Vodacek et al. (1997) 

found significant correlation between optically measured CDOM and measures of 

dissolved organic carbon (r2 = 0.96 and r2 = 0.86, respectively). 

 

Absorption of light by CDOM can significantly impact radiance leaving the water’s 

surface.  Absorption by CDOM is inversely related to wavelength and is described by an 

exponential decay curve (Schalles, 2006; Kutser et al., 2005; Dekker, 1993; Ferrari and 

Tassan, 1992).  Despite most strongly absorbing in lower wavelengths, CDOM can 

reduce reflectance at all visible wavelengths and even into the lower NIR (Schalles, 2006; 

Fuli et al., 2004; Dekker, 1993; Ferrari and Tassan, 1992).  Schalles (2006) showed that 

CDOM absorption had a stronger effect on the green and NIR reflectance peaks on algae 

laden water than the red absorption peaks in a controlled experiment.  Additionally, 

absorption by CDOM has been shown to induce error in remotely sensed estimates of 

chlorophyll and suspended sediment in waters where CDOM is spatially heterogeneous 

(Ferrari and Tassan, 1992).  

 

Total Suspended Matter 

Total suspended matter (TSM) refers to inorganic and organic material suspended in the 

water column.  Also referred to as seston, TSM constitutes all particulate matter 

suspended in the water column that does not pass through a 0.45 �m filter (Dekker, 
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1993).  The inorganic and dead organic component of seston is referred to as tripton 

(Dekker, 1993).  Suspended matter can include mineral particles of terrigenous origin, 

plankton, detritus (primarily from the decomposition of phytoplankton and zooplankton 

cells, but plant debris also), and particles of anthropogenic origin (Schalles, 2006; Bukata 

et al., 1995).     

 

TSM can be optically diverse and may cause strong backscattering of incident radiation 

(Liu et al., 2003).  When broken into its organic and inorganic components, the spectral 

characteristics of TSM are varied.  Dekker (1993) reports organic tripton has absorption 

properties similar to CDOM.  Conversely, inorganic tripton is understood to cause strong 

scattering and low absorption in the water column (Schalles, 2006).  TSM is positively 

associated with turbidity and negatively associated with water clarity.   

 

Several studies have examined the impact of varying levels of inorganic suspended 

matter and radiance leaving the water column.  Schalles et al. (1997) conducted a 

controlled experiment where reflectance spectra were taken with stepwise additions of 

white clay to a water tank.  Overall reflectance increased with each addition, though 

increases were nonlinear.  The peak reflectance shifted from 455 nm (with no clay) to 

540 nm (with 39 mg/L of clay added).  Han and Rundquist (1996) compared reflectance 

measurements taken with stepwise additions of two different types of clay loam soil to 

water tanks.  They found increased reflectance with increasing sediment concentration 

also, though reflectance increased more with additions of finer grained soil than coarser 

grained soil.  They reported this agreed with other controlled experiments that found 

increased reflectance with decreased particle size (Novo et al., 1989).  In addition to 

increases in overall reflectance, peak reflectance shifted to longer wavelengths as soil 

concentration increased for both textures.   

 

Work has also been done which measures the impact of varying levels of suspended 

matter on the estimation of chlorophyll a.  Han et al. (1994) conducted a controlled 

experiment where suspended sediment was incrementally added to algal chlorophyll and 

water.  Their results indicated an increase in overall reflectance values with increasing 
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levels of suspended sediment, though the unique spectral characteristics of chlorophyll a 

remained intact despite changing sediment concentrations.  Both the chlorophyll a red 

absorption maximum (approximately 670 nm) and the NIR reflection maximum 

(approximately 700 nm) were minimally affected by changing levels of sediment, and the 

use of the commonly used NIR/red ratio to estimate chlorophyll remained robust.  

Schalles et al. (1997) conducted a similar experiment where suspended sediments were 

incrementally added to a tank with a controlled level of chlorophyll a.  They found 

increasing levels of suspended sediments influenced the wavelength position of 

reflectance peaks.  Their work confirmed the need to use hyperspectral sensor to 

accurately remotely sense pigment concentrations in waters with varying levels of 

suspended sediments.  Work measuring the impact of varying levels of suspended 

sediment on the remote estimation of phycocyanin has not been documented. 

 

Model Types 

Water quality remote sensing models use reflectance values (R) at specific wavelengths 

(�) following: 

R = [Lu(�)] * [Ed(�)]-1 Equation 1 
 
where,  
Lu = upwelling radiance measured above or below the water surface 
Ed = downwelling irradiance 
 

Reflectance values at wavelengths sensitive to changes in concentration of the OAC of 

interest are utilized.  Morel and Gordon (1980) classified water quality remote sensing 

models into three different types:  empirical, semi-empirical, and bio-optical. 

 

Empirical methods derive relationships between spectra and measured water quality 

concentrations through statistical analysis.  Development of these algorithms requires 

simultaneous collection of spectral and water quality data.  Empirical models are often 

straightforward, though they lack transferability (Strombeck, 2001).  Empirical 

relationships are site-specific and models have less predictive power when used for other 

water bodies (Dekker, 1993).  Empirical models for the detection of pigments typically 
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incorporate reflectance at multiple wavelengths as independent variables in regressions to 

estimate pigment concentration.  Models are typically in the form of: 

 

y = ax + b Equation 2  

where, 
y = pigment concentration 
x = wavelength or wavelength ratio 
a and b = model coefficients 
 

Bio-optical models utilize inherent and apparent optical properties (IOPs and AOPs) of a 

water body.  Inherent optical properties refer to properties that do not change with respect 

to changes in irradiance (Gordon et al., 1975).  In optical models, reflectance under the 

water surface (R(0-)) is understood to be a function of the backscattering (bb) and 

absorption coefficients (a) of the water body and its constituents, and of the light field (f) 

(Gons, 1999; Morel and Gordon, 1980; Gordon et al., 1975).   

 

R (0-) = f * bb / (a + bb) Equation 3 

 

The concentration of the constituent of interest is derived through the inverse modeling of 

the absorption and backscattering coefficients of the water and its constituents.  The 

absorption coefficient of the constituent of interest is divided by its specific absorption 

coefficient (a*), absorption per unit path length and mass concentration, yielding 

concentration (Simis et al., 2005). 

 

a / a* = constituent concentration             Equation 4 

 

In bio-optical models for Case II waters, total absorption (a) is understood to be a 

function of absorption from all the optically active constituents in the water column:   

phytoplankton (aph), water (aw), CDOM (aCDOM), and suspended sediment (ass) (Gons, 

1999): 

 

atotal = aph + aw + aCDOM + ass                                                                                                                        Equation 5 
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Thus to utilize bio-optical models in these systems, IOPs and AOPs are needed for all 

optically active water constituents.   

 

Semi-empirical models incorporate components of both bio-optical and empirical models.  

IOPs and AOPs are used in addition to statistical relationships between estimated and in-

situ water quality data.  An example of this method is given by Simis et al. (2005).  Their 

semi-empirical model, developed to predict phycocyanin, utilized absorption properties 

of phycocyanin in addition to linear least square optimization coefficients.   

 

Phycocyanin Algorithms 

This study examines previously published empirical algorithms developed for the 

detection of phycocyanin concentration in inland water.  Modifications of four models 

are utilized (Simis et al., 2005; Schalles and Yacobi, 2000; Gitelson et al., 1995; Dekker, 

1993).  

 

Table 1.  Empirical algorithms used in analysis. 
Empirical Algorithms Source 

R709 / R620 Modified from Simis et al., 2005 

R650 / R625 Schalles and Yacobi, 2000 

R624 Gitelson et al., 1995 

0.5(R600 + R648) – R624 Dekker, 1993 

 
In addition to these empirical algorithms, a semi-empirical model proposed by Simis et 

al. (2005) is assessed.  This algorithm incorporates inherent optical properties of the 

water column into its phycocyanin predictions as:  

 

apc(620) = (({[R709 / R620] * [aw709 + bb]} - bb - aw620) / �)- [� *achl665]                Equation 6 

 
where,  
apc(620) = absorption of phycocyanin at 620 nm 
 
achl665 = ({[R709 / R665] * [aw709 + bb]} - bb - aw665) / �                                       Equation 7 
 
achl665 = absorption of chlorophyll a at 665 nm 
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R� = reflectance value at a specified wavelength 
 
aw� = pure water absorption coefficients at a specified wavelength 

aw709 = 0.70 m-1 (Buitevled et al., 1994) 
aw665 = 0.40 m-1 (Pope and Fry, 1997) 
aw620 = 0.30 m-1 (Buitevled et al., 1994) 

 
� = an optimization constant derived from a linear least-squares regression of measured to 
estimated phycocyanin absorption, 0.84 (Simis et al., 2005) 
� = an optimization constant derived from a linear least-squares regression of measured to 
estimated chlorophyll a absorption, 0.68 (Simis et al., 2005) 
� = a conversion factor to account for chlorophyll absorption at 620nm relative to 665, 
0.24 (Simis et al., 2005) 
 
bb = backscattering coefficient obtained from method proposed by Astoreca (2006) 
bb = (aw 778  �  R778) / (�’ - �  R778)  
 aw778 = 2.69 m-1 (Buiteveld et al., 1994) 
 �’ = an empirical constant, 0.082 
 � = a factor relating to refraction and reflection at the water surface, 0.60.  
 

Pigment concentration is obtained by dividing the measured absorption at the specified 

wavelength to the appropriate specific absorption coefficient: 

 

apc620 / a*620 = phycocyanin concentration in mg / m3                               Equation 8 
achla 665 / a*665 = chlorophyll a concentration mg / m3                                                           Equation 9 
 
where,  
a*620 = 0.0095 m2 / mg (Simis et al., 2005) 
a*665 = 0.0153 m2 (Simis et al., 2005) 
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III.  MATERIALS AND METHODS 

 
General Study Design 

A field campaign was carried out during the summer and fall of 2006 on three central 

Indiana reservoirs.  Ground truth water samples were collected simultaneously with field 

spectral measurements within a range of algal bloom conditions.  Water samples were 

analyzed for a variety of water quality parameters.  The study was designed to confirm 

relationships established between field spectra and algal pigment concentration 

(Randolph, 2007; Sengpiel, 2007) while also assessing the influence of additional water 

quality parameters on the robustness of these relationships. 

 

Study Sites 

Eagle Creek, Geist, and Morse Reservoirs are the focus of this study.  These reservoirs 

are part of a drinking and recreational water system for the city of Indianapolis, Indiana, 

USA and the surrounding communities.  Water managers have reported algal blooms in 

all three reservoirs (Li et al., 2006; Tedesco et al., 2003).  A summary of reservoir 

characteristics is given in Table 2.   

 

Table 2.  Reservoir characteristics (Li et al., 2006).   
Reservoir Eagle Creek Geist Morse Units 

Original Purpose Flood Control Water Supply Water Supply  

Date of Service 1968 1943 1956  

Surface Area 1.9 2.9 2.3 mi2 

Reservoir Volume 5,500 6,300 7,400 million gallons 

Maximum Depth 54 48 42 ft 

Mean Depth 13' 9" 10' 6" 15' 5" ft in 

Residence Time 56 55 70 days 

Watershed Area above Dam 162 215 227 mi2 

Trophic Status Mesotrophic-Eutrophic Mesotrophic Eutrophic  

% Agriculture in Watershed 60.1% 58.3% 76.9%  
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Eagle Creek Reservoir 

Eagle Creek Reservoir was constructed by the city of Indianapolis by 1967 to control 

flooding along Eagle Creek.  It is fed by a 162 square mile watershed.  Land use in the 

watershed is predominantly agricultural (60.1%) with some sub-watersheds transitioning 

to suburban development (Li et al., 2006; Tedesco et al., 2003).  The reservoir is used for 

recreational purposes (e.g. swimming, boating, fishing) and is bordered by Eagle Creek 

Park.  In 1976 a direct intake was established in the reservoir which serves the T.W. 

Moses water treatment facility.  It is the only reservoir in the study to serve a direct intake 

to a water treatment facility.  The direct intake has been problematic, as taste and odor 

compounds caused by algal blooms in the reservoir are not mitigated before treatment 

(Tedesco et al., 2003).  

 

Morse Reservoir 

Morse Reservoir was constructed between 1953 and 1956 by the Indianapolis Water 

Company.  Its original purpose was to provide consistent water supply to the water 

company’s White River water treatment facility.  Morse Reservoir is fed by the Cicero 

Creek watershed, a 214 square mile watershed where 76.9% of the land use is agricultural 

(Li et al., 2006; Tedesco et al., 2003).  Land use immediately surrounding Morse 

Reservoir is predominantly residential.  It is used recreationally by the community for 

swimming, boating, and fishing.  Due to its eutrophic nature, Morse Reservoir has 

experienced degrading algal blooms that produce problematic taste and odor compounds 

(Tedesco et al., 2003). 

 

Geist Reservoir 

Geist Reservoir was also constructed by the Indianapolis Water Company to provide a 

consistent water supply to one of the company’s water treatment facilities.  Construction 

of the reservoir was completed in 1944.  Geist Reservoir is fed by the 219 square mile 

Fall Creek watershed (Tedesco et al., 2003).  Nearly 60% of land use in the watershed is 

agricultural (Li et al., 2006).  Real estate development began around the reservoir in the 

early 1980s, and today nearly all of its shoreline is composed of residential land use.  

Geist Reservoir is used recreationally for swimming, boating, and fishing.  Like Eagle 
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Creek and Morse, Geist Reservoir has experienced degrading algal blooms due to its 

eutrophic nature (Tedesco et al., 2003). 

 

Data Collection 

A field campaign was carried out from June through November 2006.  Samples were 

taken under a diverse range of algal bloom conditions (chlorophyll a and phycocyanin 

concentrations ranged from 2.69 to 182.55 and 0.73 to 370.95 ppb, respectively).  A 

summary of samples taken is given in Table 3.   



 15 

   Table 3.  Summary of spectra and water samples collected by reservoir with corresponding lab analysis performed.  
  OACs  measured Samples Used in Analysis 

Date Spectra samples 
taken 

Spectra Samples 
Retained 

PC Chl a ISM DOC 
Both PC and 

Spectra values 
(Phases 1 and 4) 

All Parameters 
measured 

(Phases 2 and 3) 
Eagle Creek Reservoir               

15-Jun-2006 26 19 11 12 11 11 8 8 
20-Jun-2006 23 20 9 8 9 10 7 4 
29-Jun-2006 11 6 10 11 8 11 5 5 

6-Jul-2006 11 9 11 11 5 11 9 4 
25-Jul-2006 11 11 11 9 11 11 10 9 

16-Aug-2006 21 21 20 20 21 15 20 14 
23-Aug-2006 18 17 18 18 16 0 17 0 

2-Nov-2006 5 5 5 5 0 0 5 0 
 Total 126 108 95 94 81 69 81 44 
Morse Reservoir                

19-Jul-2006 20 16 18 19 20 20 15 14 
31-Jul-2006 19 19 17 19 19 7 17 7 

22-Aug-2006 20 20 17 19 20 0 17 0 
19-Sep-2006 2 2 2 2 0 0 2 0 
25-Sep-2006 19 19 16 18 0 9 16 0 

6-Oct-2006 21 20 20 20 0 8 19 0 
 Total 101 96 90 97 59 44 86 21 
Geist Reservoir                

24-Jul-2006 16 0 15 15 16 16 0 0 
1-Aug-2006 12 11 12 12 11 12 11 11 

17-Aug-2006 15 15 15 15 15 0 15 0 
24-Aug-2006 20 19 20 20 20 0 19 0 

7-Sep-2006 16 15 13 16 15 10 12 7 
26-Sep-2006 7 7 7 7 0 7 7 0 

7-Oct-2006 20 18 18 20 0 0 16 0 
 Total 106 85 100 105 77 45 80 18 
Abbreviations PC = Phycocyanin,      Chl a = Chlorophyll a,      ISM = Inorganic Suspended Matter,      DOC = Dissolved Organic Carbon 

15 
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Reflectance spectra were collected with an ASD FieldSpec ultraviolet/visible and near-

infrared spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) which 

collects a continuous range of electromagnetic spectrum from 350 to 2500 nm in 2150 

bands.  A fiber optic cable connected to the sensor was attached to an extendable pole 

pointed in a nadir viewing angle, approximately 1 meter above the water surface.  

Downwelling irradiance was measured at each sampling site using a Spectralon reference 

panel (Labsphere Inc., North Sutton, NH, USA) to calibrate upwelling radiance measured 

from the water surface (Equation 1).  To reduce noise in the spectra, final reflectance 

values at each site were averaged over 10 consecutive readings.   

 

Because field spectra were collected at nadir and close to solar noon, specular reflectance 

off of the water surface impacted some spectra samples.  All spectra were visually 

assessed for quality and samples with extensive noise or overtly high reflectance values 

(greater than 15%) were not included in data analysis.  Numbers of samples taken and 

retained are presented in Table 3. 

 

In situ water measurements were collected with a YSI 600 XLM multi-parameter probe 

(YSI Inc., Yellow Springs, OH, USA).  Measured in situ variables included temperature, 

specific conductivity, total dissolved solids, salinity, dissolved oxygen, and pH. GPS 

coordinates were collected at each in situ sampling location and water clarity was 

estimated using a Secchi disk.   

 

Surface water grab samples were collected at each sampling location approximately 0.3 

meters below the water surface.  Samples collected were analyzed for phycocyanin, 

chlorophyll a, total suspended matter, and loss on ignition (LOI) at Indiana University- 

Purdue University Indianapolis.  Replicates for phycocyanin, chlorophyll a, suspended 

matter, and LOI analysis were taken.  Samples with greater than 20% error (mean / 

standard deviation) between replicates were excluded from further analysis.  Dissolved 

organic carbon (DOC) and secondary chemical analysis were performed by Veolia Water 

laboratories (Indianapolis, IN, USA) following Environmental Protection Agency and 

American Public Health Association standards (Appendix A). 
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Analytical Methods 

Pigment Analysis 

Samples analyzed for pigment concentration were collected in 1 L amber HDPE bottles. 

At collection, samples were placed on ice and then filtered and frozen within four to eight 

hours.  All steps of the phycocyanin and chlorophyll a analysis were performed in 

subdued lighting conditions.   

 

Phycocyanin 

Water samples were analyzed for phycocyanin following Sarada et al. (1999).  150 to 300 

ml of sample was filtered through a Millipore 47 mm glass fiber filter within 8 hours of 

collection.  Filters were transferred to 15 mL falcon tubes, stored in a dark freezer, and 

remained frozen until extraction.  Filters were transferred to 50 mL polycarbonate 

centrifuge tubes and suspended in 15 mL of 50mM phosphate buffer.  Filters were broken 

up using a stainless steel spatula and then underwent two grinding and centrifuge cycles.  

Centrifuging was done at 5º C, 27,000 * g for 25 minutes using a Beckman J2-21M 

centrifuge.  Extract was analyzed for phycocyanin concentration fluoremetrically with a 

TD-700 Fluorometer (Turner Designs, Inc.) using a Cool White Mercury Vapor Lamp 

and a Phycocyanin Optical Kit (630 nm excitation and 660 nm emission filters).  The 

fluorometer was first calibrated using C-phycocyanin from Spirulina sp. (Sigma-Aldrich 

P6161).  Measured phycocyanin concentration using this extraction method has shown 

strong correlation (r2 = 0.946) to blue green algal biovolume measurements (Li et al., 

2006). 

 

Chlorophyll a 

150 to 200 mL of sample was filtered through 47 mm 0.45 micron pore size acetate 

filters.  Filters were transferred to 15 mL falcon tubes, stored in a dark freezer, and 

remained frozen until extraction.  Prior to analysis, filters were dissolved in 10 mL of 

90% buffered acetone and extracted in a dark freezer for between 24 hours and 48 hours.  

Extract was analyzed following EPA Method 445.0 (EPA, 1997).  After a 1:5 or 1:10 

dilution, pheophytin corrected chlorophyll a was measured fluoremetrically with a TD-

700 Fluorometer (Turner Designs, Inc., Sunnyvale, CA, USA) equipped with a Daylight 
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White Lamp and Chlorophyll Optical Kit (340 – 500 nm excitation filter and emission 

filter > 665nm).  The fluorometer was first calibrated with chlorophyll a from spinach 

standard (Sigma-Aldrich 10865). 

 

Total Suspended Matter (TSM) 

Samples analyzed for TSM were collected in 1 L HDPE bottles.  200 – 600 mL of sample 

was filtered onto pre-ashed, pre-weighed 47 mm, 0.7 micron pore size glass fiber filters 

using a filtration manifold.  Filters were dried in a 60º C oven for at least one hour before 

cooling in a dessicator and weighing.  TSM in mg/L was calculated by subtracting the 

original weight of the clean filter from the post-filtered weight. 

 

Loss on Ignition (LOI) and Inorganic Suspended Matter (ISM) 

Filters used to measure TSM were weighed and then ashed for 75 minutes at 550º C in 

porcelain crucibles.  Samples were cooled in a dessicator and weighed.  Inorganic 

suspended matter (ISM) in mg/L was calculated by subtracting the original weight of the 

filter from the weight post-ashing.  Loss on ignition (LOI) in mg/L was calculated by 

subtracting the pre-ashed weight of the filter with sample from the post-ashed weight.    

 

Data Analysis 

Four phases of analysis were completed: 

1) Evaluation of previously published remote sensing algorithms developed to 

predict phycocyanin concentration in Case II waters.  Algorithms were applied to 

individual reservoir data sets and evaluated through bivariate regression.   

2) Identification of confounding OACs through exploratory analysis and multivariate 

regression of model residuals from Phase 1.   

3) Inclusion of spectral estimates of significant OACs from Phase 2 into multivariate 

models to improve phycocyanin concentration estimates.  Models developed on 

subsets of individual reservoir and aggregated data sets. 

4) Validation of best performing models from Phase 3 on subset of individual 

reservoir and aggregated data sets. 
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The number of samples used in each stage of the analysis is given in the last columns of 

Table 3.   

 

Phase 1:  Evaluation of previously published algorithms 

Spectra were divided by reservoir and reflectance at each model’s specified wavelengths 

was used.  Because the tested algorithms are designed to use bands of maximum 

reflectance and absorption that correspond to algal optical properties, wavelength band 

ranges were examined instead of single band values to improve algorithm performance.  

The maximum and minimum reflectance values of a single band were used within the 

specified ranges given in Table 4 for the Schalles and Yacobi and modified Simis et al. 

ratio algorithms and the Gitelson et al. algorithm.  

 

Table 4.  Modification of three empirical algorithms. 
 Published Algorithm Modified 

R650 / R625, Schalles and Yacobi, 2000 R max � (645-655) / R min � (620-630)  

R709 / 620, Simis et al., 2005 R max � (704-714) / R min � (615-625) 

R624, Gitelson et al., 1995 R min � (619-629) 

 

Algorithm values were graphed against analytically measured phycocyanin 

concentrations and a best fit line was developed to predict phycocyanin concentration at 

each sampling point.  The coefficient of determination and root mean square error 

(RMSE) in parts per billion (ppb) were calculated for each reservoir.   

 

Phase 2:  Evaluation of Confounding Water Constituents 

In order to assess the impact of confounding water quality parameters on the remote 

sensing algorithms, residuals (ei) were computed for all of the models as: 

 

ei = yi - �i  Equation  10

 

where , 
yi = measured pigment concentration  
�i = estimated pigment concentration 
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Residuals were investigated in two ways.  Residuals for each model were correlated with 

the measured OACs individually to investigate potential relationships.  To measure the 

impact of each OAC while holding the effect of the other constituents constant, residuals 

were then analyzed through multivariate regression.  Models were developed using 

residuals as the dependent variable and concentrations of known optically active 

constituents as predictor variables:  phycocyanin, chlorophyll a, inorganic suspended 

matter, and dissolved organic carbon.  Dissolved organic carbon (DOC) is included as a 

proxy for colored dissolved organic matter (CDOM).  The purpose of this analysis was to 

determine the error introduced into model predictions from the optically active 

constituents in the water column.  Because not all of the OACs were measured for each 

sample in the data set, the number of samples in this stage of the analysis dropped 

relative to Phase 1 (n = 44, 21, and 18 for Eagle Creek, Morse, and Geist Reservoirs, 

respectively).   

 

Phases 3 and 4:  Inclusion of confounding constituents into improved models to predict 

phycocyanin 

In Phase 3, previously published remote sensing algorithms designed to estimate OACs 

that were found to be significant covariates of residuals in Phase 2 were included as 

independent variables with phycocyanin algorithms in multivariate regression models.  

The intent was to investigate if improved estimates of phycocyanin concentration could 

be derived by accounting for confounding constituents.  Phase 3 uses the same samples 

analyzed in Phase 2 as training sets to create phycocyanin algorithms  (given in Table 3; 

n = 44, 20, 18, and 82  for Eagle Creek, Morse, Geist Reservoirs, and an aggregated data 

set, respectively).  The regression coefficients developed in Phase 3 are applied to a new 

subset of samples not incorporated in the model’s development (given in Table 3).  Only 

models that showed significant improvement when accounting for confounding OACs are 

validated in Phase 4. Validation is done by reservoir and on an aggregated data set.  The 

performance on the validation data sets informs how well these new models are able to 

predict phycocyanin.    
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IV.  RESULTS AND DISCUSSION 
 
Phase 1:  Evaluation of previously published algorithms 
 
Algorithm performance, by reservoir, is given in Table 5. 
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Table 5.  Summary of spectral model performance. 
Algorithm Source r2 RMSE Equation 

Eagle Creek Reservoir, n = 81 

R709 / R620 Simis et al.,  2005 0.84 27.37 233.48x - 191.44 

R650 / R625 Schalles and Yacobi, 2000 0.70 37.25 873.22x – 863.02 

R624 Gitelson et al., 1995 0.08 65.26 -1591.06x + 94.68 

0.5(R600 + R648) – R624 Dekker, 1993 0.74 34.54 51211.79x – 40.56 

aPC(620)/a*PC(620) Simis et al., 2005 0.84 27.49 3.37x – 47.16 

Morse Reservoir, n = 86 

R709 / R620 Simis et al., 2005 0.71 42.90 243.856x – 205.886 

R650 / R625 Schalles and Yacobi, 2000 0.61 49.56 809.91x – 794.86 

R624 Gitelson et al, 1995 0.07 76.35 -1359.49x +121.07 

0.5(R600 + R648) – R624 Dekker, 1993 0.38 62.38 74504.88x – 99.57 

aPC(620)/a*PC(620) Simis et al., 2005 0.75 39.69 2.93x – 34.95 

Geist Reservoir, n = 80 

R709 / R620 Simis et al., 2005 0.32 41.20 261.21x – 226.24 

R650 / R625 Schalles and Yacobi, 2000 0.14 46.21 824.32x – 774.28 

R624 Gitelson et al., 1995 0.28 42.32 -2144.38x + 147.29 

0.5(R600 + R648) – R624 Dekker, 1993 0.26 42.99 -37963x + 186.93 

aPC(620)/a*PC(620) Simis et al., 2005 0.32 40.99 2.79x – 30.32 

22 
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The two Simis et al. algorithms resulted in the highest r2 values for all three reservoirs, 

but model performance varied by reservoir.  Best results occurred on Eagle Creek 

Reservoir. Both Simis et al. equations resulted in r2 values of 0.84.  Root mean square 

error ranged from 27 ppb for the Simis et al. equations to over 60 ppb when using 

reflectance values at 624 nm.  Both the Schalles and Yacobi algorithm and the Dekker 

algorithm performed relatively well on Eagle Creek, with r2 values of 0.70 and 0.74 

respectively. 

 

Morse Reservoir r2 values ranged from 0.07 to 0.75, and RMSE exceeded results 

observed for Eagle Creek for all of the spectral models.  Highest r2 values for Morse were 

obtained using the Simis et al. semi-empirical algorithm (0.75), though RMSE was 40 

ppb.  As with Eagle Creek, the Gitelson algorithm had the highest RMSE (76 ppb) and 

lowest r2 (0.07).  The spectral ratios R709 / R620 and R650 / R625 resulted in r2 values of 0.71 

and 0.61, respectively.   

 

The models performed most poorly on Geist Reservoir.  r2 values were lower for all of 

the models compared to their performance on Eagle Creek and Morse.  The model using 

reflectance values at 624 nm resulted in r2 values of 0.28, compared to 0.08 and 0.07 on 

Eagle Creek and Morse, respectively.  The highest r2 values for Geist Reservoir data were 

obtained using both Simis et al. models (r2 = 0.32).  

 

Phase 2:  Evaluation of Confounding Water Constituents 

Exploratory Residual Analysis 

Optically active water quality parameters were correlated to each other and to Phase 1 

model phycocyanin residuals (Table 6).   



 24 

Table 6.  Correlation matrix between optically active water quality parameters and model residuals by reservoir.  Relationships 
between OACs where r > 0.70 are bolded.    

 

PC 
(ppb) 

Chl a 
(ppb) 

TSM 
(mg/L) 

LOI 
(mg/L) 

ISM 
(mg/L) 

DOC 
(mgC/L) 

R709 / R620 
PC Residual 

R650 / R625 
PC 

Residual 

R624 PC 
Residual 

0.5(R600 + 
R648) - R624 PC 

Residual 

aPC(620) / 
a*PC(620) 

PC Residual 
Eagle Creek Reservoir 

PC (ppb)  0.802 0.681 0.829 0.477 -0.104 0.403 0.548 0.960 0.508 0.404 

Chl a (ppb) 0.802  0.724 0.823 0.566 -0.084 0.206 0.533 0.739 0.229 0.276 

TSM (mg/L) 0.681 0.724  0.919 0.927 -0.190 -0.061 0.392 0.690 0.123 -0.080 

LOI (mg/L) 0.829 0.823 0.919  0.704 -0.168 0.007 0.339 0.812 0.219 0.024 

ISM (mg/L) 0.477 0.566 0.927 0.704  -0.149 -0.094 0.405 0.504 -0.011 -0.133 

DOC (mgC/L) -0.104 -0.084 -0.190 -0.168 -0.149  -0.124 0.229 0.174 0.326 -0.412 

Morse Reservoir 

PC (ppb)  0.593 0.352 0.578 0.414 0.227 0.542 0.626 0.964 0.788 0.501 

Chl a (ppb) 0.593  0.645 0.727 0.596 0.125 -0.115 0.543 0.606 0.394 -0.095 

TSM (mg/L) 0.352 0.645  0.972 0.973 -0.124 -0.238 0.639 0.420 0.153 -0.176 

LOI (mg/L) 0.578 0.727 0.972  0.891 0.379 -0.232 0.626 0.592 0.392 -0.223 

ISM (mg/L) 0.414 0.596 0.973 0.891  0.110 -0.289 0.588 0.448 0.177 -0.293 

DOC (mgC/L) 0.227 0.125 -0.124 0.379 0.110  -0.019 -0.165 0.036 0.287 0.141 

Geist Reservoir 

PC (ppb)  0.435 -0.233 0.383 -0.581 0.637 0.826 0.927 0.849 0.862 0.822 

Chl a (ppb) 0.435  0.137 0.672 -0.124 0.318 0.211 0.547 0.413 0.413 0.287 

TSM (mg/L) -0.233 0.137  0.023 0.957 -0.410 -0.293 -0.148 0.119 0.042 -0.404 

LOI (mg/L) 0.383 0.672 0.023  -0.268 0.660 0.178 0.451 0.394 0.312 0.199 

ISM (mg/L) -0.581 -0.124 0.957 -0.268  -0.683 -0.693 -0.616 -0.354 -0.309 -0.698 

DOC (mgC/L) 0.637 0.318 -0.410 0.660 -0.683  0.432 0.515 0.557 0.602 0.344 

 

24 
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Correlation between the optically active water quality parameters varied by reservoir.  

Optically active constituents were most highly correlated in Eagle Creek Reservoir:  

phycocyanin was significantly correlated (r > 0.70) to chlorophyll a, TSM, and LOI.  

This is in contrast to Morse and Geist Reservoirs.  Phycocyanin did correlate to 

chlorophyll a and LOI greater than 0.57 for Morse Reservoir.  This is not as strong as the 

relationships revealed in Eagle Creek, but it is a much stronger relationship than 

phycocyanin correlation to chlorophyll a or any form of suspended matter on Geist 

Reservoir. 

 

The correlations of the OACs also revealed stark differences in the nature of suspended 

matter amongst the reservoirs.  Total suspended matter was highly correlated to both 

suspended matter lost on ignition (suspended organic matter in the water column) and 

ISM for Eagle Creek and Morse Reservoirs.  The positive nature of this strong 

relationship reveals that areas in these reservoirs with high LOI also have high ISM 

(correlation coefficient between LOI and ISM for Eagle Creek and Morse Reservoirs are 

0.704 and 0.891, respectively).  In contrast, TSM for Geist Reservoir is only strongly 

correlated to ISM (r = 0.957) and not LOI (r = 0.023), and ISM and LOI are not 

correlated to each other (r = -0.268). 

 

Relationships between TSM and LOI for all the reservoirs are plotted in Figure 2.  The 

strong linear relationship between TSM and LOI for Eagle Creek and Morse Reservoirs 

(Figure 2a and b) contrasts with the weak relationship evident in the Geist scatter plot 

(Figure 2c).  From the Eagle Creek and Morse plots it can be deduced that suspended 

matter in the water column is consistently a function of the organic component.  Coupled 

with the high correlation between LOI and pigment concentration in these reservoirs 

(Table 6) and the consistently better performing remote sensing models of phycocyanin, 

it is likely that the suspended matter in these reservoirs is consistently a function of 

phytoplankton.  This is in contract to Geist Reservoir, where it is apparent total 

suspended matter is not a function of the organic component in the water column (Figure 

2c, Table 6).  Additionally, phycocyanin is not highly correlated to LOI for Geist 
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Reservoir (r = 0.383) in comparison to Eagle Creek and Morse Reservoirs (r = 0.829 and 

0.578, respectively). 

 

��
���������������������

����������
���	�

�
�
�����	�

�

��

��

��

��

��

� � �� �� ��

�� ����� ��

!�
"
��
�
�
 �
�

 

��
�� ��������������

������ ���
��� �

�
�
����� �

�

��

��

��

��

��

��

� � �� �� �� �� �� ��

�� ����� ��

!�
"
��
�
� 
��

 



 27 

��
�!���"����������

����������#�� ���

�
�
�������

�

��

��

��

��

��

� � �� �� ��

�� ����� ��

!
�"

��
�
�
 �
�

 
Figure 2a, b, and c.  Total suspended matter verse organic suspended matter for (a) Eagle 
Creek, (b) Morse, and (c) Geist Reservoir. 
 

Correlating OACs to phycocyanin spectral model residuals revealed additional 

relationships (Table 6).  Positive correlation coefficients are associated with the 

underestimation of phycocyanin, and negative correlation coefficients are associated with 

the overestimation of phycocyanin.  For the following plots of model residuals and an 

OAC (Figures 3, 4, 5, and 6), y-values greater than zero represent a sample where 

phycocyanin was underestimated, and y-values less than zero represent a sample where 

phycocyanin was overestimated.   

 

Notably, phycocyanin concentration was consistently underestimated as pigment 

concentration increased (Table 6, e.g. Figure 3).  In their work remotely sensing 

chlorophyll a, Gitelson et al. (2000) note absorption by chlorophyll a at 670 nm does not 

decrease reflectance values at 670 nm once chlorophyll a concentration reaches 20 

mg/m3.  At this concentration, chlorophyll a absorption is offset by scattering from algal 

cells walls.  Gitelson et al. (2000) state this is why the inclusion of the near infrared 

reflectance peak is vital in remotely sensing chlorophyll a in Case II water bodies at high 
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concentrations.  The magnitude of the near infrared peak is influenced by scattering from 

all suspended matter, including phytoplankton biomass.  Gitelson et al. note the near 

infrared peak is related to chlorophyll a concentration because of the link between 

pigment concentration and algal biomass.   

 

Phycocyanin has only 20% of the absorption per unit of pigment when compared to 

chlorophyll a (Rowan, 1989).  Considering phycocyanin absorbs light less effectively 

than chlorophyll a, it is possible the same dynamic Gitelson et al. (2000) describe for 

chlorophyll a occurs with phycocyanin, perhaps to an even greater extent.  The 

phycocyanin reflectance trough (approximately 620 nm) may not deepen after a 

phycocyanin concentration of a certain threshold because it is also offset from scattering 

by algal cells.   

 

This is related to what is known as the “package effect.”  Because pigments are contained 

in discrete packages their light harvesting efficiency is lower than if uniformly distributed 

within a solution (Kirk, 1994).  In essence, the efficiency with which pigments absorb 

light decreases because they are contained within cells.   

 

Additionally, correlation between phycocyanin model residuals and phycocyanin 

concentration can be explained by variation in the specific absorption coefficient in 

phycocyanin.  Variation in the absorption per unit pigment concentration of chlorophyll a 

in living algal cells has been documented by Gitelson et al. (2007), Zimba and Gitelson 

(2006) Bricaud et al. (1995), and Bricaud et al. (1983).  Specific absorption is dependent 

on the physiological conditions and structure of algal communities and varies as the size 

and pigment concentration of algal cells changes.  Specific absorption “flattens” or 

decreases with increasing cell size.   

 

Variation in phycocyanin absorption per unit of pigment concentration would be in 

agreement with results obtained by Simis et al. (2005).  In developing their semi-

empirical phycocyanin algorithm, they calculated the specific absorption coefficient of 

phycocyanin by dividing calculated apc(620) (Equation 6) by lab measured phycocyanin 
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concentration.  They noted high variation in the calculated phycocyanin specific 

absorption coefficient with a mean of 0.0095 m2 / mg and standard deviation of 0.0033 

m2 / mg. 

 

Phycocyanin residuals using the Gitelson R624 model for all of the reservoirs were highly 

correlated to lab measured phycocyanin concentration (Table 6):  r = 0.960, 0.964, and 

0.849 for Eagle Creek, Morse and Geist Reservoirs, respectively.  The R624 only uses the 

absorption feature of phycocyanin in its estimates.  The very strong positive correlation 

between this model’s residuals and actual phycocyanin concentration reveal that 

reflectance values at approximately 620 nm do not vary consistently with increasing 

pigment concentration. Variation in the specific absorption by phycocyanin and/or 

increased scattering from algal cells walls relative to phycocyanin absorption can explain 

why model residuals are correlated to actual lab measured phycocyanin concentration.   
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Figure 3a and b.  (a) Phycocyanin residuals from the Schalles and Yacobi model and (b) 
Gitelson model verse measured phycocyanin concentration for Morse Reservoir.   
 

 

Correlation between the phycocyanin model residuals and the other measured OACs 

highlighted other relationships.  As with phycocyanin, higher levels of chlorophyll a were 

associated with an underestimation of phycocyanin, although this relationship was 

weaker across the models and reservoirs (Table 6, r < 0.74).  Higher levels of chlorophyll 

a were associated with the underestimation of phycocyanin for all of the models when 

applied to Eagle Creek and Geist Reservoirs and for three of the five models when 

applied to Morse Reservoir data (Table 6).      
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Suspended matter had a distinctly different relationship with the residuals for Geist 

reservoir than with Eagle Creek and Morse Reservoirs for several of the models (Table 

6).  This is evident in the scatter plots of TSM versus the Schalles and Yacobi 

phycocyanin residuals below (Figure 4).  While increasing suspended matter was 

associated with an overestimation of phycocyanin for Geist Reservoir, increasing 

suspended matter was associated with the underestimation of phycocyanin for Eagle 

Creek and Morse Reservoirs.  This also suggests the nature of suspended matter in Eagle 

Creek and Morse is different than in Geist, and that this difference impacts remote 

sensing phycocyanin predictions.       
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Figure 4a and b.  Total suspended matter versus the Schalles and Yacobi model 
phycocyanin residuals for (a) Eagle Creek and (b) Morse Reservoirs.   
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Figure 4c.  Total suspended matter versus the Schalles and Yacobi model phycocyanin 
residuals for Geist Reservoir.  Suspended matter greater than 25 mg/L was associated 
with the overestimation of phycocyanin, while concentrations of TSM less than 25 mg/L 
were both underestimated and overestimated.   
 
 
Scatter plots were made of the model phycocyanin residuals versus ISM. A negative 

logarithmic relationship was evident for the Geist models, particularly for the Simis ratio, 

Schalles and Yacobi, and the Simis semi-empirical models. The relationship between 

ISM and the model residuals for Eagle Creek and Morse were consistently different from 

the Geist plots.  No linear or logarithmic relationship was evident (r 2 values were 0.01 

and 0.04 for Eagle Creek and Morse Reservoir, respectively).  Example plots are given 

below (Figures 5 and 6).   
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Figure 5a and b.  ISM versus (a) Simis ratio and (b) Schalles and Yacobi model 
phycocyanin residuals for Geist Reservoir. 
 



 34 

#�$��������
��������
���


����
��� ��#�����

�
�
�������


���


��

�

��

���

� � �� �� �� ��

��" ���� ��

�
��

��
��
�
	�
�
�%
�
(
�
(
��
��
�"

�
�
�
���
�
��
�
)
�
�

 

*�$�" �
�������
���


����
�����$%&�'�#���� 	

�
�
�������


���


���


��

�

��

���

���

���

� � �� �� �� �� ��

��" ���� ��

��
�
��
��
�	
��
�%
�
(
�
(
�
�
��
�"

�
�
�
���
�
��
�
)
��

  
Figure 6a and b.  ISM versus the Simis ratio phycocyanin residual for (a) Eagle Creek 
and (b) Morse Reservoirs. 
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Regression Residual Analysis 

Phycocyanin spectral model residuals were regressed against lab measured OACs to 

determine the impact of each constituent while holding the impact of the other 

constituents constant.  Results, by reservoir and model, are given in Tables 7, 8, 10, and 

11.  P-values significant at the 0.05 level are bolded.  Positive regression coefficients are 

associated with the underestimation of phycocyanin, and negative regression coefficients 

are associated with the overestimation of phycocyanin.  Results of the regressions 

indicate the proportion of the error in the phycocyanin model predictions that can be 

explained using the included OACs and which OACs are statistically significant.   

 

Eagle Creek Reservoir Residuals 

Regressions of the model residuals on Eagle Creek reservoir revealed several consistent 

relationships (Table 7).  Dissolved organic carbon (proxy for CDOM) was a significant 

confounder in all of the spectral models except the R709 / R620 ratio. In the Schalles and 

Yacobi, Gitelson, and Dekker models, higher DOC levels were associated with the 

underestimation of phycocyanin.  This is consistent with results reported by Schalles 

(2006) in which increasing levels of CDOM were shown to have a greater effect on 

reflectance peaks in the spectral signature of algae laden water than on absorption 

troughs.  This could explain the observed underestimating effect for the Schalles and 

Yacobi and Dekker models.  Both of these models utilize reflectance peaks in their 

phycocyanin estimations. 

 

Phycocyanin concentration was a significant confounder in both the Gitelson and Dekker 

models.  In both instances higher lab measured phycocyanin concentrations were 

associated with the underestimation of phycocyanin.  This is consistent with the 

relationship revealed in the correlations performed in the first part of the Phase 2 analysis 

(Figure 2).  Higher phycocyanin concentrations are consistently under predicted in the 

spectral models.  This could be explained by variation in the specific absorption of 

phycocyanin and/or increased scattering by algal cells relative to increased absorption by 

phycocyanin. 
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Chlorophyll a was a significant confounder in three of the five models.  In each of these 

instances, higher chlorophyll a values were associated with overestimation of 

phycocyanin.  This could be due to overlapping chlorophyll a absorption at 620 nm.  The 

spectral models used attribute absorption at 620 nm (lower reflectance values) to higher 

levels of phycocyanin, even when light at this wavelength is being absorbed by 

chlorophyll a.  Thus, over prediction would increase as chlorophyll a concentration 

increases.  Inorganic suspended matter was a significant confounder in just one of the 

spectral models (R650 / R625).  It was associated with the underestimation of phycocyanin.   

 

Most r2 values of the regressions were under 0.35.  These regressions explained a third or 

less of the error in the phycocyanin spectral models using these four OACs.  This 

indicates that the confounding factors included in the regression are not the primary 

source of error in the models developed for Eagle Creek Reservoir.  
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Table 7.  Residual regression results for Eagle Creek Reservoir. 
Eagle Creek Reservoir, n = 44 

 r² RMSE  Constant PC Chl a ISM DOC 

Regression Coefficient 73.503 0.091 -1.010 1.203 -14.116 

Standard Error 60.498 0.107 0.317 1.715 14.645 

Beta Coefficient  0.157 -0.677 0.129 -0.132 
R709 / R620 0.28 20.88 

p-values 0.232 0.400 0.003 0.487 0.341 

Regression Coefficient -124.422 -0.087 -0.738 6.206 29.576 

Standard Error 57.270 0.101 0.300 1.623 13.863 

Beta Coefficient  -0.151 -0.499 0.671 0.280 

 
 
 

R650 / R625 0.34 19.77 

p-values 0.036 0.394 0.018 <0.001 0.039 

Regression Coefficient -250.533 0.889 -0.171 1.407 47.416 

Standard Error 36.642 0.065 0.192 1.039 8.870 

Beta Coefficient  0.933 -0.070 0.092 0.272 

 
 
 

R624 0.90 12.65 

p-values <0.001 <0.001 0.378 0.183 <0.001 

Regression Coefficient -183.199 0.310 -0.618 0.605 43.802 

Standard Error 73.116 0.129 0.383 2.073 17.699 

Beta Coefficient  0.454 -0.354 0.055 0.351 
0.5(R600 + R648) – R624 0.23 25.24 

p-values 0.017 0.022 0.115 0.772 0.018 

Regression Coefficient 191.819 0.046 -0.681 0.841 -44.442 

Standard Error 57.589 0.102 0.302 1.633 13.941 

Beta Coefficient  0.081 -0.469 0.093 -0.428 
aPC(620) / a*PC(620)  0.31 19.88 

p-values 0.002 0.654 0.030 0.609 0.003 
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Morse Reservoir Residuals  

Relationships between the OACs and the Morse residuals mirrored relationships observed 

in the Eagle Creek regressions (Table 8).  Chlorophyll a was a significant predictor of 

error in the three of the five models also.  As in the results for Eagle Creek, chlorophyll a 

was a significant confounder in the Simis et al. ratio and the Simis et al. semi-empirical 

model.  It was also a significant confounder in the Dekker model for Morse Reservoir.  

The direction of the relationship was negative:  higher chlorophyll a concentration 

resulted in negative residuals (an overestimation of phycocyanin).  Again, this could be 

due to chlorophyll a absorption in the 620 nm band used in the models (absorption at 620 

nm is attributed to phycocyanin, when in fact it is also being absorbed by chlorophyll a).   

 

Unlike Eagle Creek, phycocyanin concentration was significant in the residual 

regressions for every spectral model applied to Morse Reservoir samples.  The direction 

of the relationship in each case was positive:  higher phycocyanin concentration resulted 

in positive residuals (an underestimation of phycocyanin).  This is consistent with the 

results observed in the exploratory bivariate correlations.  Increased underestimation of 

pigment concentration occurred as measured pigment concentration increased.  This 

could be explained by variation in the specific absorption of phycocyanin and/or 

increased scattering by algal cells relative to increased absorption by phycocyanin. 

 

r2 values for the regression of the residuals for Morse Reservoir were higher than those 

obtained by Eagle Creek.  The R709 / R620 model had the lowest r2 value (r2 = 0.28) while 

the r2 values for the other models ranged from 0.67 to 0.90.  Excluding the R709 / R620 

model, the regressions explain the majority of the error in phycocyanin predictions for 

Morse Reservoir using the included OACs.  
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Table 8.  Residual regression results for Morse Reservoir. 
Morse Reservoir, n = 21 

 r² RMSE  Constant PC Chl a ISM DOC 

Regression Coefficient 167.989 0.677 -1.153 -9.044 -31.124 

Standard Error 124.716 0.116 0.540 6.101 32.246 

Beta Coefficient  1.370 -0.686 -0.418 -0.160 
     0.28 20.88 

p-values 0.197 <0.001 0.049 0.158 0.349 

Regression Coefficient 107.087 0.379 -0.671 9.944 -32.832 

Standard Error 119.324 0.111 0.517 5.838 30.852 

Beta Coefficient  0.865 -0.451 0.519 -0.190 
R650 / R625 0.67 24.22 

p-values 0.383 0.004 0.212 0.108 0.303 

Regression Coefficient 108.132 0.818 0.416 0.474 -46.740 

Standard Error 135.638 0.126 0.587 6.636 35.070 

Beta Coefficient  0.902 0.135 0.012 -0.131 

 
 
 

R624 0.90 27.53 

p-values 0.437 <0.001 0.489 0.944 0.201 

Regression Coefficient -97.644 0.992 -1.693 7.474 11.708 

Standard Error 145.970 0.136 0.632 7.141 37.742 

Beta Coefficient  1.182 -0.593 0.204 0.035 
0.5(R600 + R648) – R624 0.87 29.63 

p-values 0.513 <0.001 0.016 0.311 0.760 

Regression Coefficient 5.855 0.889 -2.759 -0.296 9.534 

Standard Error 105.622 0.098 0.457 5.167 27.309 

Beta Coefficient  1.388 -1.267 -0.011 0.038 
aPC(620) / a*PC(620) 0.88 21.44 

p-values 0.956 <0.001 <0.001 0.955 0.732 
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Maximum phycocyanin concentrations were significantly higher in Morse Reservoir than 

in Eagle Creek and Geist Reservoirs (Table 9) for the entire 2006 dataset.  In the subset 

of samples used in the regressions (n = 21) phycocyanin was also significantly higher 

than the subset of samples for Eagle Creek and Geist Reservoirs.  A second set of 

regressions were run on the Phase 1 models residuals for Morse Reservoir excluding the 

outlying sample that had a lab measured phycocyanin concentration greater than 300 ppb 

(371.0 ppb).  It was hypothesized that by excluding this sample, relationships existing 

between the other OACs and the model residuals would be identified.   

 
Table 9.  Comparison of measured phycocyanin concentration across  
sampled reservoirs for the entire 2006 data set and the Phase 2 subset.  

Phycocyanin Concentration (ppb) 

Entire 2006 Data Set Phase 2 Data Subset 
 

Mean Median Maximum Mean Median Maximum 

Eagle Creek 55.3 28 243.3 38.1 27.8 137.6 

Morse 88.9 58.3 371.0 104.9 59.6 371.0 

Geist 86.2 87.1 210.2 106.8 108.2 208.3 

 
 
Results for the second set of regressions are given in Table 10.  In this set of regressions, 

phycocyanin concentration was still a significant predictor for the Gitelson, Dekker, and 

Simis et al. semi-empirical models.  Chlorophyll a remained a significant confounder in 

the Simis et al. semi-empirical model, though it was no longer a significant confounder in 

the Simis et al. ratio and the Dekker model.  Dissolved organic carbon remained 

statistically insignificant for all of the models.  r2 values for this set of regressions 

dropped from the original set, excluding the Gitelson R624 and Simis et al. ratio.  For the 

Simis et al. ratio, ISM became statistically significant and r2 value increased from 0.28 to 

0.68.   
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Table 10.  Residual regression results for Morse Reservoir, excluding sample with phycocyanin concentration greater than 300 ppb. 
Morse Reservoir, n = 20 

 r² RMSE  Constant PC Chl a ISM DOC 

Regression Coefficient 60.498 0.221 0.035 -15.981 0.005 

Standard Error 93.114 0.140 0.486 4.691 24.325 

Beta Coefficient  0.487 0.031 -1.046 <0.001 
R709 / R620 0.69 18.11 

p-values 0.526 0.135 0.943 0.004 1.000 

Regression Coefficient 4.508 -0.056 0.463 3.324 -3.127 

Standard Error 89.338 0.134 0.466 4.501 23.339 

Beta Coefficient  -0.165 0.541 0.294 -0.032 
R650 / R625 0.47 17.38 

p-values 0.960 0.684 0.337 0.472 0.895 

Regression Coefficient 108.132 0.818 0.416 0.474 -46.740 

Standard Error 135.638 0.126 0.587 6.636 35.070 

Beta Coefficient  0.902 0.135 0.012 -0.131 

 
 
 

R624 0.90 27.53 

p-values 0.437 <0.001 0.489 0.944 0.201 

Regression Coefficient -120.713 0.895 -1.438 5.985 18.388 

Standard Error 155.959 0.235 0.814 7.858 40.742 

Beta Coefficient  1.172 -0.742 0.233 0.083 
0.5(R600 + R648) – R624 0.69 30.34 

p-values 0.451 0.002 0.098 0.458 0.658 

Regression Coefficient -35.927 0.712 -2.297 -2.993 21.634 

Standard Error 107.431 0.162 0.561 5.413 28.065 

Beta Coefficient  1.047 -1.331 -0.131 0.110 
aPC(620) / a*PC(620) 0.81 20.9 

p-values 0.743 0.001 0.001 0.588 0.453 
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Geist Reservoir Residuals 

The regressions on the Geist Reservoir model residuals revealed relationships not present 

in the other two reservoirs (Table 11).  Noteworthy of the Geist Reservoir regressions are 

the high r2 values.  These models explain 84% to 95% of the variation in the phycocyanin 

model residuals on the tested sample set.  Geist marks a unique case different from Eagle 

Creek and Morse Reservoirs, where the four measured OACs are the primary source of 

model error.  This is relevant considering the poor performance of the original spectral 

models on Geist Reservoir.   

 

Like the other reservoirs, phycocyanin was a significant confounder in two of the five 

models. Higher phycocyanin concentrations were associated with the underestimation of 

pigment concentration.  This could be explained by variation in the specific absorption of 

phycocyanin and/or increased scattering by algal cells relative to increased absorption by 

phycocyanin.  Chlorophyll a was a significant confounder in two of the models, 

demonstrating an inverse relationship.  Higher chlorophyll a concentrations were related 

to negative residuals and the overestimation of phycocyanin.   

 

Inorganic suspended matter was a significant confounder in four of the five spectral 

models.  The direction of this relationship varied.  In the models that used band ratios 

with reflectance peaks as numerators, the Simis et al. models (ratio and semi-empirical) 

and the Schalles and Yacobi model, higher ISM concentrations were related to 

overestimating phycocyanin.  In the Gitelson and Dekker models higher ISM values were 

related to underestimating phycocyanin.   
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Table 11.  Residual regression results for Geist Reservoir. 
Geist Reservoir, n = 18 

 r² RMSE  Constant PC Chl a ISM* DOC 

Regression Coefficient 215.859 0.146 -0.573 -109.623 -26.026 

Standard Error 68.224 0.177 0.184 25.873 16.408 

Beta Coefficient  0.214 -0.460 -0.983 -0.228 
R709 / R620 0.84 16.33 

p-values 0.007 0.426 0.008 0.001 0.137 

Regression Coefficient -32.260 0.253 0.634 -50.848 3.385 

Standard Error 81.223 0.211 0.219 30.802 19.535 

Beta Coefficient  0.292 0.402 -0.360 0.023 
R650 / R625 0.85 19.23 

p-values 0.698 0.253 0.012 0.123 0.865 

Regression Coefficient -188.816 1.157 0.020 95.287 3.958 

Standard Error 75.251 0.196 0.203 28.538 18.098 

Beta Coefficient  1.451 0.014 0.731 0.030 

 
 
 

R624 
0.85 17.82 

p-values 0.026 <0.001 0.922 0.005 0.830 

Regression Coefficient -208.172 1.516 -0.266 116.082 -0.562 

Standard Error 48.590 0.126 0.131 18.427 11.686 

Beta Coefficient  1.661 -0.160 0.777 -0.004 
0.5(R600 + R648) – R624 0.95 11.5 

p-values 0.001 <0.001 0.063 <0.001 0.962 

Regression Coefficient 195.111 0.140 -0.262 -110.384 -25.883 

Standard Error 68.968 0.179 0.186 26.155 16.587 

Beta Coefficient  0.195 -0.201 -0.942 -0.216 
aPC(620) / a*PC(620)  0.84 16.33 

p-values 0.014 0.449 0.181 0.001 0.143 
*log taken         
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Phase 2 Summary 

The following is a table summarizing the results of the exploratory and regression 

residual analysis.     

 
Table 12.  Phase 2 summary. 

The tested empirical and semi-empirical phycocyanin spectral models work well when: 

measured OACs are a function of phytoplankton (OACs co-vary) 

The tested empirical and semi-empirical phycocyanin spectral models do not work well when: 

Condition Impact 

non-covarying ISM overestimates phycocyanin when using band ratios that use 
reflectance peaks 

very high phycocyanin concentrations underestimates phycocyanin as lab measured concentration 
increases 

non-covarying high chlorophyll a 
concentration 

overestimates phycocyanin as chlorophyll a concentration 
increases 

 
 
Phase 3:  Inclusion of confounding variables into new spectral models   

Significant confounding OACs can be incorporated into the phycocyanin spectral models 

to account for their influence.  As an example, combining ISM as an additional 

independent variable with the Simis ratio model for Geist Reservoir, the r2 for 

phycocyanin concentration increases from 0.54 to 0.93 (Table 13, Figure 7 below).  This 

is nearly a twofold increase from the original model applied to the same sample subset. 

 
Table 13.  Incorporating ISM as a control with the Simis ratio spectral model to predict 
phycocyanin for Geist Reservoir applied to Phase 2 samples.   

Geist Reservoir, Simis Ratio PC 
Estimate Controlling for ISM Geist Reservoir, Simis Ratio PC Estimate 

r² 0.93 0.54 

Standard 
Error 14.52 35.47 

Observations 18 

 

18 

 

 Regression 
Coefficient 

Standard 
Error p-value Regression 

Coefficient 
Standard 

Error p-value 

Constant -66.918 32.045 0.054 -193.28 70.303 0.014 

Simis Ratio 182.394 25.45 <0.001 253.821 59.043 0.001 

ISM -7.409 0.826 <0.001 - - - 
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Figure 7.  Spectral phycocyanin estimate with ISM control for Geist Reservoir. 
 
The purpose of Phase 3 was to evaluate the potential for improved phycocyanin estimates 

by attempting to spectrally estimate and account for confounding constituents identified 

in Phase 2.  Previously published remote sensing algorithms developed to estimate the 

confounding constituents are combined with the phycocyanin algorithms used in Phase 1.   

 

The success of this technique is limited by the ability to spectrally estimate the 

confounders.  Suspended matter is particularly challenging because of its diversity in 

composition, size, and concentration.  Several authors report difficulty remotely 

estimating the concentration of suspended sediment and also suggest there is no universal 

algorithm to detect this constituent’s concentration (Warrick et al., 2004; Gin et al., 

2003).  Spectral ratios used to estimate chlorophyll a, ISM, and CDOM are given below 

in Table 14.  Results by reservoir follow. 

 

Table 14.  Spectral ratios used to estimate and control for confounding OACs.   
OAC Spectral Ratio Source 

Chlorophyll a Rmax � (700 – 710) / R min � (665 – 675) Modified from Gitelson et al., 2000 
ISM R560 / R620 Gitelson et al., 1993 

CDOM R480 / R520 Gitelson et al., 1993 
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Multivariate Phycocyanin Models:  Eagle Creek Reservoir 

Multivariate spectral models to predict phycocyanin developed for Eagle Creek Reservoir 

are given in Table 15.  In Eagle Creek Reservoir, the only model that had a significant 

improvement in r2 values when controlling for significant confounders was the Schalles 

and Yacobi ratio.  The r2 value increased from 0.70 in Phase 1 to 0.83.  Standard error 

decreased from 37.25 ppb to 17.31 ppb.  For this particular model in the Phase 2 

regressions, chlorophyll a, ISM, and DOC were all significant confounders.   

 

In the model developed to control for these confounders though, only the spectral ratios 

used to control for chlorophyll a and DOC were statistically significant at the 0.05 level.  

The ISM ratio (R560 / R620) was statistically insignificant.  A new model excluding the 

insignificant ISM variable (Table 16, Figure 8) was developed and is tested on the 

validation set in Phase 4.  The r2 values and RMSE remain high for the new model, 0.83 

and 17.12 ppb, respectively.   

 

There are several reasons OACs identified as statistically significant in the analysis of 

phycocyanin residuals in Phase 2 become statistically insignificant when incorporated 

into a multivariate spectral model to predict phycocyanin.  The variables incorporated in 

Phase 3 are spectral estimates of the confounders, not the actual ground-truth 

measurements of the confounders that were used in Phase 2.  It is likely these spectral 

variables are limited in their ability to model each constituent, just as the spectral 

algorithms in Phase 1 were limited in their ability predict phycocyanin concentration.  

The success of accounting for a significant confounder is confined by the ability to 

spectrally estimate it with this approach.   

 

Additionally, analysis of the residuals and the prediction of phycocyanin involve 

modeling different phenomena.  Though residuals are calculated using lab measured 

phycocyanin concentration (the variables are related) the models are analyzing different 

dependent variables. 
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Table 15.  Phycocyanin models with additional spectral variables for Eagle Creek Reservoir. 

r² Standard 
Error  Constant PC spectral 

estimate 
Chl a 

(R705/R670) 
ISM 

(R560/R620) 
CDOM 

(R480/R520) 
                                   R709 / R620 

Regression Coefficient -129.320 159.387 4.946 
Standard Error 13.732 30.699 24.046 

Beta Coefficient  0.862 0.034 
0.80 18.50 

p-value <0.001 <0.001 0.838 

not significant 
in Phase 2 

not significant  
in Phase 2 

                                    R650 / R625 
Regression Coefficient -681.153 441.847 82.101 8.053 180.751 

Standard Error 100.653 108.161 29.362 23.483 82.013 
Beta Coefficient  0.626 0.567 0.045 0.392 

0.83 17.31 

p-value <0.001 <0.001 0.008 0.733 0.033 
                                       R624 

Regression Coefficient 246.594 386.702 -278.494 
Standard Error 56.977 694.433 84.569 

Beta Coefficient  0.102 -0.604 

 
 

0.29 34.60 

p-value <0.001 0.581 

not significant 
in Phase 2 

not significant 
in Phase 2 

0.002 
                          0.5(R600 + R648) – R624 

Regression Coefficient 6.219 35044.708 -35.665 
Standard Error 50.221 5743.251 55.954 

Beta Coefficient  0.740 -0.077 
0.62 25.14 

p-value 0.902 <0.001 

not significant 
in Phase 2 

not significant 
in Phase 2 

0.527 
                           aPC(620) / a*PC(620) 

Regression Coefficient 49.630 2.228 -91.821 
Standard Error 28.765 0.201 33.453 

Beta Coefficient  0.805 -0.199 
0.82 17.35 

p-value 0.092 <0.001 

not significant 
in Phase 2 

not significant 
in Phase 2 

0.009 
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Table 16.  New phycocyanin model for Eagle Creek Reservoir  
with significant spectral variables. 

r² 0.83 

Standard Error 17.12 

Observations 44 

 

 Regression 
Coefficient 

Standard 
Error 

Beta 
Coefficient p-value 

Constant -665.716 89.026  <0.001 

PC (R650 / R625) 458.312 95.844 0.649 <0.001 

Chl a (R705/R670) 78.109 26.657 0.539 0.006 

CDOM (R480/R520) 160.361 55.859 0.348 0.007 
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Figure 8.  Multivariate phycocyanin spectral estimate for Eagle Creek Reservoir training 
set versus lab measured phycocyanin concentration. 
 

Multivariate Phycocyanin Model:  Morse Reservoir 

The first regressions performed on the Morse Reservoir residuals revealed high 

phycocyanin values controlled model error (Table 7).  Exclusion of the sample with the 

highest phycocyanin concentration identified ISM as a significant confounder in the 

Simis et al. (2005) ratio.  A new model utilizing the R709 / R620 ratio and including a 
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spectral ratio to account for the influence of ISM is shown in Table 17.  The coefficient 

of determination increased from 0.71 using only the Simis et al. ratio to 0.92 when the 

ISM ratio was included.  RMSE decreased from 42.90 to 18.45 ppb.     

 

Table 17.  New multivariate phycocyanin model for Morse Reservoir. 
r² 0.92 

Standard Error 18.45 

Observations 20 

 

 Regression 
Coefficient 

Standard 
Error 

Beta 
Coefficient p-value 

Constant -191.220 22.487  <0.001 

PC (R709 / R620) 167.064 15.803 0.786 <0.001 

ISM (R560/R620) 64.101 15.394 0.310 0.001 
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Figure 9.  Multivariate phycocyanin spectral estimate for Morse Reservoir training set 
versus lab measured phycocyanin concentration. 
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Multivariate Phycocyanin Model:  Geist Reservoir 

 
Multivariate spectral models to predict phycocyanin developed for Eagle Creek Reservoir 

are given in Table 18.  Only the ISM variables incorporated into the Simis et al. (2005) 

algorithms were statistically significant at the 0.05 level.  The spectral variable included 

to control for chlorophyll a (identified as a significant confounder in phase 2) was not 

statistically significant.  A new model excluding this variable but including the ISM ratio 

is shown in Table 19.  This model is validated on a sample set in phase 4. 
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Table 18.  Phycocyanin models with spectral variables for Geist Reservoir. 

r² Standard 
Error  Constant PC spectral 

estimate Chl a (R705/R670) ISM (R560/R620) 

                           R709 / R620 
Regression Coefficient -417.040 331.389 -58.790 155.373 

Standard Error 77.542 76.433 52.558 41.469 

Beta Coefficient  0.956 -0.252 0.462 
0.81 24.32 

p-value 0.000 0.001 0.282 0.002 
                           R650 / R625 

Regression Coefficient -748.190 695.099 87.835 

Standard Error 336.228 328.367 47.945 

Beta Coefficient  0.434 0.376 
0.39 42.02 

p-value 0.042 0.051 0.087 

not significant 
in Phase 2 

                               R624 
Regression Coefficient 126.704 -2223.001 23.982 

Standard Error 169.790 1228.544 103.150 

Beta Coefficient  -0.555 0.071 

 
 

0.37 42.62 

p-value 0.467 0.090 

not significant 
in Phase 2 

0.819 

                  0.5(R600 + R648) – R624 
Regression Coefficient -26.172 -21818.039 128.628 

Standard Error 137.098 19868.437 79.496 

Beta Coefficient  -0.260 0.383 
0.29 45.26 

p-value 0.851 0.289 

not significant 
in Phase 2 

0.126 

                   aPC(620) / a*PC(620) 
Regression Coefficient -270.988 3.173 178.117 

Standard Error 64.365 0.538 41.756 

Beta Coefficient  0.732 0.530 
0.77 25.82 

p-value 0.001 <0.001 

not significant 
in Phase 2 

0.001 
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Table 19. New multivariate phycocyanin model for Geist Reservoir. 
r² 0.792 

Standard Error 24.52 

Observations 18 

 

 Regression 
Coefficient 

Standard 
Error 

Beta 
Coefficient p-value 

Constant -440.496 75.275  <0.001 

PC (R709 / R620) 258.874 40.826 0.747 <0.001 

ISM (R560/R620) 170.276 39.598 0.506 0.001 
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Figure 10.  Multivariate phycocyanin spectral estimate for Geist Reservoir training set 
versus lab measured phycocyanin concentration. 
 
Multivariate Phycocyanin Model:  Aggregated data set 

Because it consistently performs well, the Simis ratio was combined with spectral 

variables for the three additional OACs and applied to an aggregated data set.  Samples 

analyzed in the regressions on the residuals were used, excluding the sample with a 

phycocyanin concentration greater than 300 ppb.  Model results are shown in Table 20.  

Because the variable to control for the influence of chlorophyll a was not statistically 

significant, a new model was developed excluding this spectral variable (Table 21, Figure 

11).   
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Table 20.  Model trained on aggregated data set, including  
spectral variables for all measured OACs. 

r² 0.832 

Standard Error 24.03 

Observations 82 

 

 Regression 
Coefficient 

Standard 
Error 

Beta 
Coefficient p-value 

Constant -547.525 67.542  <0.001 

PC (R709 / R620) 165.625 30.802 0.681 <0.001 

Chl a (R705 / R670) 50.229 31.800 0.246 0.118 

ISM (R560 / R620) 80.805 14.530 0.326 <0.001 

CDOM (R480 / R520) 314.623 59.767 0.427 <0.001 

 
 
Table 21.  Model trained on aggregated data set, including  
spectral variables for OACs that were statistically significant. 

r² 0.827 

Standard Error 24.26 

Observations 82 

 

 Regression 
Coefficient 

Standard 
Error 

Beta 
Coefficient p-value 

Constant -479.078 52.303  <0.001 

PC (R709 / R620) 210.089 12.624 0.864 <0.001 

ISM (R560 / R620) 82.532 14.627 0.333 <0.001 

CDOM (R480 / R520) 249.717 43.814 0.339 <0.001 
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Figure 11.  Multivariate phycocyanin spectral estimate for the aggregated training set 
versus lab measured phycocyanin concentration. 
   

Phase 4:  Validation Algorithm Set 

To evaluate the accuracy and transferability of the multivariate phycocyanin spectra 

models, models developed in Phase 3 are applied to samples that were not used in the 

model’s development.  Samples used to “validate” the models are the samples used in 

Phase 1 that were not used in Phase 2 (samples that had phycocyanin lab measurements 

and spectra, but did not have lab measurements for the other OACs.  Samples that had 

phycocyanin concentrations greater than 300 ppb were also excluded (n = 3).  Sample 

sizes for each reservoir are the following: 

 

Table 22.  Number of samples used in validation. 
Reservoir Validation Sample Size 

Eagle Creek 37 

Morse 63 

Geist 62 

Aggregated 162 
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Eagle Creek Model Validation 

The model developed in Phase 3 for Eagle Creek Reservoir used the Schalles and Yacobi 

spectral ratio in addition to incorporating spectral variables to account for the influence of 

chlorophyll a and CDOM.  The model was in the form of (also see Table 10): 

 

PC = -665.716 + 458.312(R650 / R625) + 78.109(R705 / R670)  
+ 160.361(R480 / R520) 
 

Application of this model on the Eagle Creek Reservoir validation sample set (n = 37) 

resulted in an r2 value of 0.78 and RMSE of 39.95 ppb. 
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Figure 12.  Validation of multivariate phycocyanin model for Eagle Creek Reservoir. 
 

Morse Reservoir Model Validation 

The model developed in Phase 3 for Morse Reservoir used the Simis ratio in addition to a 

variable to control for ISM.  The model equation (also see Table 17) was: 

 

PC = -191.220 + 167.064(R709 / R620) + 64.101(R560 / R620) Equation 13 

Equation 12 



 56 

Applying this model to the remaining Morse Reservoir data set (n = 63) resulted in an r2 

value of 0.75 and RMSE 41.31 ppb.    
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Figure 13.  Validation of multivariate phycocyanin model for Morse Reservoir. 
 
 
Geist Reservoir Model Validation 

The model developed in Phase 3 for Geist Reservoir used the Simis ratio in addition to a 

spectral ISM variable.  The model (also see Table 19) was in the form of: 

 

PC = -440.496 + 258.874(R709 / R620) + 170.276(R560 / R620) Equation 14 

 

The Geist Reservoir validation (n = 62) had the poorest performance of the three 

reservoirs.  Applying the model developed in phase three resulted in an r2 value of 0.16 

and a high RMSE of 54.54 ppb.   
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Figure 14.  Multivariate phycocyanin spectral estimate versus lab measured phycocyanin 
concentration for Geist Reservoir. 
 

Aggregated Data Set Validation 

The model developed using all of the data points from Phase 3 was validated on 162 

samples from all three reservoirs.  The model developed (also see Table 21) was in the 

form of: 

 

PC = -479.078 + 210.089(R709 / R620) + 82.532(R560 / R620) Equation 15 

         + 249.717(R480 / R520) 

 

Applying this model to the aggregated validation set resulted in an r2 value of 0.80 and a 

RMSE of 28.35 ppb.  This was the highest r2 value and lowest RMSE in the validations. 
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Figure 15.  Multivariate phycocyanin spectral estimate versus lab measured phycocyanin 
concentration for an aggregated data set. 
 

Application of this model, developed using data points from all three reservoirs, 

performed better on each individual reservoir validation data set than the models 

developed using individual reservoir data points (Figure 16a-c).  A summary of the 

validation for the aggregated model and individually developed models follows the 

figures (Table 23). 
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Figure 16a-c.  Multivariate phycocyanin spectral model developed on aggregated data set 
applied to Eagle Creek (a), Morse (b), and Geist (c) validation data sets.  
 
 
Table 23.  Phase 4 results summary. 

 Model developed on  
aggregated data set 

Model developed on individual  
reservoir data set 

Reservoir r2 RMSE r2 RMSE 

Eagle Creek 0.93 31.12 0.78 39.95 

Morse 0.89 23.15 0.75 41.31 

Geist 0.56 32.15 0.16 54.54 

Aggregated 0.80 28.35 - - 

 

The results suggest using a comprehensive training set created under varying conditions, 

even across different reservoirs, results in more accurately predictive models for all 

reservoirs.  The improvement was most noticeable for Geist Reservoir.  The model 

developed for Geist Reservoir in Phase 3, using only Geist reservoir data points, had a 

very poor performance in its validation, despite a strong r2 value in its development (0.16 

in the validation compared to 0.79 when applied to the training set).  Applying the model 
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developed in Phase 3 on the aggregated data set resulted in an r2 value of 0.56 for the 

Geist Reservoir validation set.   

 

The improvement in the r2 value is noteworthy.  It suggests that the samples used in the 

Geist Reservoir training are not representative of the samples used in the Geist validation.  

It is possible samples used in the aggregated data set training model (those from Morse 

and Eagle Creek) better represent the Geist validation sample set.  The samples 

constituting the Geist training set were samples used in Phase 2 (those samples that had 

measured values for all of the OACs).  In the 2006 data set those were samples that were 

collected over two days, validated on samples collected on four additional days.  

 

The model developed in Phase 3 on the aggregated data set used samples from three 

reservoirs collected over a total of 10 days.  The variation of water quality conditions 

captured in the 10 days on the aggregated data set and incorporated in the aggregated 

training model could explain the improved performance on all three individual reservoir 

validation sets, particularly for Geist Reservoir.  It suggests that the confounding OACs 

impairing phycocyanin model predictions on Geist Reservoir revealed in the residual 

analysis are temporally heterogeneous.     
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V.  CONCLUSION 

 
Results of this work validate the use of hyperspectral remote sensing as a tool to estimate 

phycocyanin concentration in three central Indiana reservoirs.   

 

Correlation of the OACs by reservoir suggests remote sensing models to predict 

phycocyanin concentration perform best when OACs co-vary.  In Eagle Creek Reservoir, 

phycocyanin was highly correlated to multiple OACs (Table 6).  In contrast, phycocyanin 

was poorly correlated to other OACs in Geist Reservoir, and in the case of total 

suspended matter and inorganic suspended matter, phycocyanin was negatively 

correlated.  Correlation between phycocyanin and all of the other OACs for Morse 

Reservoir was positive, though correlation coefficients were not as strong as those 

measured on Eagle Creek Reservoir.  

 

Regression residual analysis revealed which relationships between OACs and 

phycocyanin prediction error were statistically significant and the direction of these 

relationships while holding the effect of the other OACs constant.  Its strength was the 

ability to measure the amount of variation in phycocyanin prediction errors that can be 

explained by the OACs, and how chlorophyll a, ISM, and DOC impact phycocyanin 

prediction error in water conditions with both high and low phycocyanin concentration.    

 

Analysis of phycocyanin prediction errors revealed strong relationships to sampled 

optically active constituents, particularly for Geist Reservoir.  Regression residual 

analysis suggested the measured OACs explained 80 to 95% of the phycocyanin 

prediction error in the tested models for Geist Reservoir.  The measured OACs explained 

less variation in the phycocyanin prediction error for Eagle Creek and Morse Reservoirs.  

Models assessing phycocyanin prediction error were statistically significant as a whole 

though, and several OACs were found to be significant confounders for these reservoirs.   

 

Residual analysis informed how OACs impacted error in the phycocyanin spectral 

estimates, though error could also be introduced through data collection and lab analysis.  
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Errors in data collection exist if there are changing light conditions during spectra 

collection.  Variation in solar irradiance between on-site calibration and reflectance 

measurements is possible.  Additionally, changes in reflection due to refraction off of the 

water surface would also introduce error in spectral estimates.  Error may also be 

introduced in analytical analysis.  Though several methods for phycocyanin extraction 

exist, few methods have been validated and no method is widely accepted.   

 

The creation of new multivariate spectral algorithms (Phase 3) to account for 

confounding constituents had varying success.  Though phycocyanin prediction 

improved, the statistical insignificance of new spectral variables that were statistical 

confounders demonstrates it is difficult to account for confounding water quality 

parameters using the algorithms selected for this technique.   

 

The validation of the models on samples not included in model development (Phase 4) 

revealed the importance of training models on data representing a wide range of water 

quality conditions.  The higher r2 values and lower RMSE obtained with the model 

trained on an aggregated dataset for each reservoir reveals the necessity of large training 

data sets that capture the variation in optically active water parameters a given reservoir 

exhibits.   

 

Though there is a need for comprehensive ground-truth data, the use of remote sensing to 

monitor algal blooms is beneficial to water managers.  Once a comprehensive spectral 

library is established and validated, models are easily applicable and can rapidly assess 

pigment concentration.  It is in this way that this application can aid water management in 

the effective understanding, monitoring, and treatment of degrading blue-green algal 

blooms.   
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APPENDIX A 
 

Summary of Analytical Methods 
 

Sample Analytical 
Method 

Detection 
Limit 

Method 
Description Description 

Alkalinity 
(mg/L as 
CaCO3) 

EPA (310.1) 2.0 Titrametric 

Alkalinity by titration to pH 4.5. Acid neutralizing 
capacity  (sum of all titratable bases). Primarily a function 
of carbonate, bicarbonate, and hydroxide content (usually 
an indicator of the concentration of these consituents) 

DOC (mgC/L) SM (5310C) 0.5 Persulfate Oxidation-Amount of TOC that passes through a 0.45µm-
pore-diam filter 

TOC (mgC/L) SM (5310C) 0.5 Persulfate 

Oxidation-Persulfate and Ultraviolet Oxidation with IR 
detection. Carbon atoms covalently bonded in organic 
molecules are broken down to be measured quantitatively. 
Organic Carbon is oxidized into CO2 by persulfate using 
UV light. CO2 is removed from the sample, dried, and 
transferred with a carrier gas to an IR analyzer.  

Chloride 
(mg/L) EPA (300.0) 8.0 Ion 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector.  
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, analytical 
column, supressor device, and conductivity detector.  

Sulfate (mg/L) EPA (300.0) 8.0 Ion 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, analytical 
column, supressor device, and conductivity detector.  

O-Phos (mg/L) EPA (300.0) 0.05 Ion 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, analytical 
column, supressor device, and conductivity detector.  

Total P (mg/L) SM (4500-P E.) 0.010 Colorimetric 

Ascorbic Acid Colorimetric method-Ammonium 
molybdate and potassium antimonyl tartrate react in acid 
with orthophosphate to form phosphomolybdic acid that 
is reduced to colored moltybdenum blue by ascorbic acid.   

Nitrite (mg/L) EPA (300.0) 0.0 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, analytical 
column, supressor device, and conductivity detector. 

Nitrate (mg/L) EPA (300.0) 0.10 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, analytical 
column, supressor device, and conductivity detector.  

NH4-N (mg/L) SM (4110) 0.02 IC 

Sample injected into carbonate-bicarbonate and passed 
through series of ion exchangers. Anions are separated by 
their relative affinities for for a strongly basic anion 
exchanger. Anions passed through s fiber supressor 
coated with a strong acid solution to conv ert anions to 
highly conductive acid form, conductivity is measured. 
Concentration is determined from measurement of peak 
height or area.      

TKN (mg/L) EPA (351.4) 0.30 Contracted Out Determined by digestion, followed by ammonia 
determination by ion selective Electrode by a contract lab 
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Sample Analytical 
Method 

Detection 
Limit 

Method 
Description Description 

Silica (mg/L) 
unfiltered EPA (370.1) 0.10 Colorimetric 

Heteropoly acids are produced by the addition of 
Ammonium molybdate (at pH 1.3) to sample containing 
silica and phosphates. Molybdosilicic acid is preserved 
and molybdphosphoric destroyed with the addtion of 
oxalic acid. Intensity of yellow color is indicative of 
concentration of molybdate-reactive silica. 

Ca (mg/L) EPA (300.7) 3.0 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, analytical 
column, supressor device, and conductivity detector. 

Mg (mg/L) EPA (300.7) 1.0 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, analytical 
column, supressor device, and conductivity detector. 

K (mg/L) EPA (300.7) 0.05 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, analytical 
column, supressor device, and conductivity detector. 

Na (mg/L) EPA (300.7) 1.0 C 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, analytical 
column, supressor device, and conductivity detector. 

Total Hardness 
(mg) SM (2340 B) 12.0 Calculation Total hardness is calculated from the sum of Calcium and 

Magnesium Concentrations (mg CaCO3/L) 

MIB 
(ng/L) SM (6040) 3.0 Mass 

Spectrometric 

Organics are extracted from water by closed-loop 
stripping. Extracted organics are injected into a gas 
chromatograph/mass spectrometer for identification based 
on retention time and spectrum comparison. Single-ion 
current integration is used to quantify MIB. 

Geosmin 
(ng/L) SM (6040) 3.0 Mass 

Spectrometric 

Organics are extracted from water by closed-loop 
stripping. Extracted organics are injected into a gas 
chromatograph/mass spectrometer for identification based 
on retention time and spectrum comparison. Single-ion 
current integration is used to quantify Geosmin. 
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