Combination of OHA Therapy in Type 2 Diabetes Mellitus

Dr. Siddharth N. Shah

HON DIABETOLOGIST, Sir. H.N. Hospital, Bhatia Hospital, S.L. Raheja Hospital, Mumbai

POST GRADUATE TEACHER, Diploma in Diabetes, University of Mumbai, Past-President, Association of Physicians of India. Editor-in-chief : API Textbook of Medicine

HOLDS TRUE FOR TYPE 1 D.M.

Worldwide prevalence of diabetes in 2000

Number of persons

< 5,000
5,000-74,000
75,000-349,000
350,000-1,499,000
1,500,000-4,999,000
> 5,000,000
No data available

Adapted from WHO Diabetes Programme Facts and Figures: www.who.int/diabetes/facts/world_figures/en. Accessed 1 August, 2006.

Worldwide prevalence of diabetes in 2030 (projected)

Number of persons

< 5,000
5,000-74,000
75,000-349,000
350,000-1,499,000
1,500,000-4,999,000
> 5,000,000
No data available

Total cases > 300 million adults

Adapted from WHO Diabetes Programme Facts and Figures: www.who.int/diabetes/facts/world_figures/en. Accessed 1 August, 2006.

Type 2 diabetes: a growing problem

A serious, progressive disease, characterized by two fundamental defects

- Insulin resistance
- β-cell dysfunction

Accounts for > 95% on diabetes cases worldwide

- Represents a significant disease burden
 - Associated with serious microvascular and macrovascular complications

Significant impact on overall healthcare costs

Characteristics of type 2 diabetes

Chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism
 Defects in insulin action (insulin resistance), insulin secretion (β-cell dysfunction) or both

ORAL HYPOGLYCEMIC AGENTS

O.H.A. are the most common form of treatment of Type 2 D.M. worldwide. When used judiciously they are important agents in the management of the most common form of Diabetes.

O. H. A.

For economic, logistic and general effectiveness, oral agents are a dependable means of treating a large population of diabetics world wide when used correctly

ORAL HYPOGLYCEMIC AGENTS SULFONYLUREAS BIGUANIDES MEGLITTINIDES **ALPHA GLUCOSIDASE INHIBITORS** THIAZOLIDINEDIONES

CLINICAL BARRIERS TO O.H.A.S.

HYPOGLYCEMIA DIURNAL GLUCOSE FLLUCTUATIONS EXECESSIVE WEIGHT GAIN POST PRANDIAL HYPERGLYCEMIA

• Insulin helps regulate glucose disappearance

• Amylin helps regulate glucose appearance

Ideal Therapeutic Agents

- improve the timing and amount of insulin secreted without unduly stressing the already maximally stimulated beta-cells
- enhance insulin actions
- restore inhibition of hepatic gluconeogensis to normal

SULPHONYLUREAS FIRST GENERATION

CI

Tolbutamide

CH₂ -

-CH₂CH₂CH₂CH₂CH₂

-CH₂CH₂CH₂

Chlorpropamide

EFFECTS OF SULPHONYLUREAS

- Increased tissue sensitivity to insulin thus improved insulin action
- Reduced hepatic extraction of insulin from the circulation
- Effects on plasma lipids, i.e. Triglycerides and Cholesterol, Direct effects unlikely
- Effects on platelets and fibrinolysis
- Effects on Basement Membrane to reduce thickness

SULFONYLUREAS: EXTRAPANCREATIC EFFECTS 1. Increased insulin receptor binding sites 2. Decreased hepatic gluconeogenesis. **Augmentation of insulin-induced** suppression of hepatic glucose release. **3. Inhibition of triglyceride lipase** 4. Enteroinsular axis stimulation

OPTIONS FOR SULFONYLUREAS

CHLORPROPAMIDE TOLBUTAMIDE **GLIBENCLAMIDE** GLIPIZIDE **GLICLAZIDE GLIMEPIRIDE**

BIGUANIDES MODE OF ACTION

Inhibition of glucose and aminoacid transport across small bowel

Enhanced glycolysis in extra hepatic tissues

Inhibition of hepatic gluconeogenesis

Direct cellular effect

Increase in glucose uptake

BIGUANIDES MODE OF ACTION

In isolated mitochodria there is intereference with transfer of high energy bonds to A.D.P. suggesting that the compound inhibits oxidative phosphorylation.

1/3 is eliminated as metabolite. 2/3 is eliminated unchanged.
 30% is excreated in urine in 5 hours and 90% in 24 hours.

 Toxicity associated with hypoxia, renal insufficiency and excessive alcohol intake.

Hypoglycemia due to phenformin alone is actually unknown.

BIGUANIDES CONTRA-INDICATIONS

Patients with renal insufficiency

Conditions that predispose to tissue hypoxia.
 Severely uncontrolled diabetes
 C.C.F., I.H.D., Malignant hypertension, Proliferative retinopathy

Pulmonary insufficiency

Acute infections, traumatic or inflammatory conditions

Advanced age.

BIGUANIDES CONTRA-INDICATIONS

- Hepatic dysfunction (hepatitis, cirrhosis, fatty liver)
- Alcohol abuse
- Patients using barbiturates, salicylates phenothiazines
- General debilitating conditions
- Pre and post operatively (1 week)
- During starvation diet
- Poorly complying patients

OPTIONS FOR BIGUANIDES

Phenformin

Metformin

NEWER O.H.A.

- GUAR GUM
- ACARBOSE
- GLIMEPIRIDE
- REPAGLINIDE
- GLITAZONES

ACARBOSE

Inhibits α Glucosidase Activity

GI Effects

GLIMEPIRIDE

• Less Hypos

• Less Weight gain

Less Hyperinsulinemia

• Less early failure of β cells

Less skipped doses

INSULIN SECRETAGOGUES

Miglitinide Analog – Repaglinide

- No peripheral effects on muscle, liver and adipose tissue
- Excreted via bite safe in patients with renal disease
- Lower risk for hypoglycemia even on skipping a meal!
- Good efficacy & safety profile even in the elderly
- First line therapy in type 2 patients with diet failure
- Good results when used in combination with Metformin

REPAGLINIDE

• Non Sulfonylurea

• Insulinotropic agent

GLITAZONES Modes of Action

- It activates the nuclear peroxisome proliferator activated receptor - γ (PPAR- γ)
- It also has partial agonist activity against PPAR α

DIFFERENT TYPES OF PPARS

The Carlo State	α	β	γ				
Tissue expression	Skeletal muscle liver, kidney	Not known	Adipose tissue, skeletal, cardiac muscle, liver, kidney SI, bladder & spleen				
Also expressed in vascular endothelial cells, VSMC & monocytes /macrophages							
Function	Control of lipoprotein metabolism, fatty acid oxidation	Not known	Adipocyte differentiation				
Target Actions	Treatment of dyslipidemia	Not known	Improves insulin sensitivity				
Natural ligands	Docosahexanoic acid	Not known	PG metabolite PGJ,				
Synthetic ligand	Fibrates		Thiazolidinediones				

GLITAZONES

- INHIBITS SMOOTH MUSCLE CELLS (SMC)
 PROLIFERATION IN PATIENTS WITH INSULIN
 RESISTANCE
- LIVER CELL INJURY IN 1.9% CASES IN CONTROLLED
 TRIALS
- SUBFULMINANT LIVER FAILURE
- **RETENTION OF FLUID**
- ANEMIA

GLITAZONES

• INCREASES INSULIN SENSITIVITY IN SKELETAL MUSLCE, HEPATIC AND ADIPOSE TISSUE

DECREASES ENDOGENOUS INSULIN
 CONCENTRATION

DECREASES EXOGENOUS INSULIN REQUIREMENTS

INDUCES CYTOCHROME p 450 ISOENZYME 3 A 4

Characteristics of Oral Antidiabetic Agents

Efficacy	Insulin secretagogues	Metformin	α-Glucosidase inhibitors	Insulin	TZDs
Effect on FPG / HbA1C	\downarrow	\downarrow	\rightarrow	\downarrow	\downarrow
Effect on Plasma insulin	\uparrow	\downarrow	JE-SE SAM	\uparrow	\downarrow
Effect on insulin resistance	and the	↓/-		2010	\downarrow
Effect on β -cell function	12 - 21 -				\uparrow
Safety and tolerability			2.8-1.85.2	durs 1	
Risk of hypoglycaemia	\checkmark	THE HE CH	202 - 13	\checkmark	100-00
Weight gain	1	-	-150	1	1
Gastrointestinal side- effects		1	1	-	1
Lactic acidosis		1	Colora - Carol	4	-
Oedema		-	He land		1

Effiacy : \downarrow = reduced levels; \uparrow = increased levels; - = no documented change. Safety and tolerability : \checkmark = treat-related adverse event; - no documented association with treatment. FPG = fasting plasma glucose. TZDs = thiazolidinedions.

TYPE 2 DIABETES MELLITUS SECONDARY FAILURE

- Secondary failure rate 5% to 10% a year (UKPDS 7% a year)
 - Decreasing β-cell function
 - Obesity
 - Non-adherence to treatment
 - Lack of exercise
 - Intercurrent illness

PROBALITY OF REQUIRING POLYTHERAPY

- Young age at diagnosis
- Increased base line Obesity
- Increased base line Glycemia
- Increased baseline Triglycerides

TRADITIONAL STEPWISE APPROACH

Duration of diabetes

EARLY COMBINATION APPROACH. OAD, ORAL ANTIDIABETIC DRUG

ADVANTAGES OF FIXED DOSE COMBINATIONS

Improved compliance

Synergism

Enhanced efficacy

Reduction of side effects

Economy

DR. ELLIOT JOSLIN

GOALS OF THERAPY FOR THOSE WITH DIABETES MELLITUS SHOULD INCLUDE A SERIOUS EFFORT TO ACHIEVE BLOOD GLUCOSE LEVELS AS CLOSE TO NORMAL AS POSSIBLE

> CONFIRMED BY DCCT UK PDS KUOMOTO TRIAL

IDEAL O.H.A.

Combination Efficacy, Safety, Tolerability.

Metformin

Thiazolidinediones

ADA "Consensus" on Type 2 Diabetes Therapy

Combination Therapy Frequently used or well studied

Sulfonylurea + Metformin Sulfonylurea + Troglitazone Sulfonylurea + Pioglitazone Sulfonylurea + Acarbose Repaglinide + Metformin Rosiglitazone + Metformin

> Sulfonylurea + Insulin Metformin + Insulin Pioglitazone + Insulin Troglitazone + Insulin Acarbose + Insulin

Infrequently used and/or less well studies

Sulfonylurea + Metformin + Troglitazone Sulfonylurea + Metformin + Insulin Troglitazone + Metformin + Insulin

Glycemic goals not achieved

Modified from Zimmerman et al. Diabetes Care - 1995.

PRACTICAL MANAGEMENT OF TYPE 2 DIABETES MELLITUS

Oral Combination

- Evolving criteria
 - If FBG>140 mg/dL (126 mg/dL?)
 - HbA_{1c} > 8% (7%?)
 - Add second oral agent and titrate to maximum dose

Triple Therapy

- If no improvement:
 - Try a different sensitizer
 - Or try triple therapy?
 - Or Continue oral agent(s) and add insulin Rx at PM or Hs

CONCLUSION

MONOTHERAPY

• COMBINATION THERAPY

THANK YOU