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ABSTRACT 

Micah M. Bhatti 

 

FUNCTIONS OF THE UNIQUE N-TERMINUS OF A GCN5 HISTONE  

ACETYLASE IN TOXOPLASMA GONDII 

 

GCN5 is a histone acetyltransferase (HAT) that remodels chromatin by 

acetylating lysine residues of histones.  The GCN5 HAT identified in Toxoplasma 

gondii (TgGCN5) contains a unique N-terminal “extension” that bears no 

similarity to known proteins and is devoid of known protein motifs.  The 

hypothesis of this thesis is the N-terminal extension is critical to the function of 

TgGCN5.  Three possible roles of the N-terminus were investigated: nuclear 

localization, protein-protein interactions, and substrate recognition.  Subcellular 

localization was determined via immunocytochemistry using parasites expressing 

recombinant forms of TgGCN5 fused to a FLAG tag.  Initial studies performed 

with parasites expressing full length FLAGTgGCN5 were positive for nuclear 

localization.  Without the N-terminal extension (FLAGΔNTTgGCN5) the protein 

remains cytoplasmic.  Additional studies mapped a six amino acid motif 

(RKRVKR) as the nuclear localization signal (NLS).  When RKRVKR is fused to a 

cytoplasmic protein, it gains access to the nucleus.  Furthermore, we have 

established the NLS interacts with Toxoplasma importin α, a protein involved in 

nuclear trafficking.  Interaction with importin α provides evidence that the 

TgGCN5 N-terminal extension is involved in mediating protein-protein 
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interactions.  In order to identify additional interacting proteins, FLAG affinity 

purification was performed on parasites expressing full length FLAGTgGCN5 and 

FLAGΔNTTgGCN5.  Upon comparing the results of the two purifications, proteins 

captured with only full length TgGCN5 may be interacting with the N-terminal 

extension.  Full length TgGCN5 affinity purification indicates an interaction with 

histone proteins, two different homologues of Ada2 (adapter protein reported to 

interact with GCN5 homologues), and several heat shock proteins.  With regard 

to substrate recognition, the N-terminal extension of TgGCN5 is dispensable for 

the acetylation of non-nucleosomal histones in vitro.  However, the lysine 

acetylated by TgGCN5 is surprisingly unique.  Other GCN5 homologues 

preferentially acetylate lysine 14 in histone H3, but TgGCN5 exclusively 

acetylates lysine 18 in histone H3 and has no activity on lysine 14.  Taken 

together, these results argue that the N-terminal extension of TgGCN5 is critical 

for mediating protein-protein interactions, including those responsible for 

trafficking the HAT to the parasite nucleus but does not appear to be required for 

the acetylation of non-nucleosomal histones. 

 

William J. Sullivan, Jr., Ph.D. - Chair 
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CHAPTER 1: INTRODUCTION 
 
I. Phylum Apicomplexa and Toxoplasma gondii 

There are over 4,000 members in the phylum Apicomplexa and all are 

parasitic organisms.  Electron microscopy has revealed unique structural 

features which define this phylum (Figure 1).  The defining characteristic of 

apicomplexa is a group of organelles found at the anterior end of the organism 

called the apical complex.  The apical complex includes secretory organelles 

known as micronemes and rhoptries, polar rings composed of microtubules, and 

a conoid which lies within the polar rings (Blackman and Bannister, 2001).  The 

apical organelles play a major role in parasite invasion of the host cell.  Most 

apicomplexan parasites also possess an apicoplast, an essential organelle that 

appears to have been acquired by secondary endosymbiosis of a green alga 

(Waller and McFadden, 2005).  Secondary endosymbiosis theorizes that certain 

organelles such as the mitochondrion and plastids were originally derived from 

an engulfed organism that was incorporated into the cellular structure rather than 

being digested (Marechal and Cesbron-Delauw, 2001).  The 35 kilobase genome 

of the apicoplast encodes its own genes; however most of the proteome of the 

apicoplast is encoded in the parasites nucleus (Foth and McFadden, 2003).   

Several medically important protozoan parasites belong to the phylum 

Apicomplexa.  The most notorious is the Plasmodium spp., the causative agent 

of malaria.  The various species of Plasmodium kill over 3 million people a year; 

one third of which are children (Snow et al., 1999).  The current annual malaria 

death toll equates to approximately 340 deaths every hour.  Cryptosporidium 

parvum is an apicomplexan that causes a self-limiting intestinal illness that can 

be life-threatening in immune compromised individuals.  The largest outbreak of 

C. parvum in the US occurred in Milwaukee, Wisconsin in the spring of 1993.  

Approximately 400,000 people were infected and developed severe diarrhea 

(MacKenzie et al., 1994).  The outbreak is believed to have been caused by 

ineffective filtration and treatment of the local water supply (MacKenzie et al., 

1994).  Of the 400,000 with disease, about 100 deaths occurred; all individuals 

1 



 

 
Figure 1: Transmission electron image of a tachyzoite within a host cell 
Tachyzoites possess organelles present in all eukaryotes (mitochondria, nucleus, 

and Golgi complex).  At the apical end, the micronemes, rhoptries and conoid 

form the apical complex, a group of organelles involved in host cell invasion.  The 

micronemes and rhoptries are secretory organelles and the conoid is a 

cytoskeletal structure connected to the actin-myosin motility of the parasite.  

Although not a part of the apical complex, dense granules are secretory 

organelles that also function in the invasion process.  The parasite is housed 

within a parasitophorous vacuole that is generated during host cell invasion.  

(Binder and Kim, 2004; reprinted with permission from Blackwell Publishing) 

2 



with immune deficiencies (Anderson, 1998).  Currently, there are no effective 

antimicrobials capable of treating C. parvum infections (Lane et al., 1994). 

Apicomplexans parasites also target non-human hosts causing significant 

economic burden for the livestock industry.  Avian coccidiosis is an intestinal 

disease caused by parasites of the genus Eimeria, and is a constant threat to the 

poultry industry (Allen and Fetterer, 2002).  The annual worldwide cost is 

estimated at about $800 million and about $450 million for the American poultry 

industry alone (Allen and Fetterer, 2002).  These estimates include the costs of 

prophylactic medication and losses due to mortality by Eimeria infection (Allen 

and Fetterer, 2002). 

Toxoplasma gondii, the most widely disseminated parasite in this phylum, 

infects virtually all warm-blooded vertebrates.  It is estimated that between 16-

40% of the United States population is infected and up to 80% of individuals in 

other countries (Hill and Dubey, 2002).  While both the initial and resulting latent 

infection with Toxoplasma are asymptomatic, initial infections in pregnant women 

can result in serious obstetric complications and reactivation of the latent 

infection in immunocompromised patients can cause life-threatening illness 

(Guerina et al., 1994; Wong and Remington, 1993). 

Every year between 400-4000 cases of congenital toxoplasmosis occurs 

in the US alone (Boyer, 1996).  In nations with higher infection rates, the 

frequency of neonatal complications can be as high as 1 in every 1000 births 

(Guerina et al., 1994).  In utero Toxoplasma infections can result in a wide range 

of severity from children born with asymptomatic disease to severe mental 

retardation and disability (Jones et al., 2003). 

Growing numbers of immunocompromised individuals, largely due to the 

AIDS epidemic, has created an increase in toxoplasmosis seen in the health care 

setting.  In the absence of drug therapy, 20-47% of HIV patients with latent 

Toxoplasma infections will develop toxoplasmic encephalitis (Wong and 

Remington, 1993).  Between 1992 and 1998, over 6,000 HIV infected individuals 

died from toxoplasmosis (Jones et al., 2002). 
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Because immune suppression is necessary for organ transplantation, 

these individuals are also at risk for reactivation of latent Toxoplasma.  In 

patients receiving heart transplants, 4-12% will suffer from complications 

stemming from reactivated toxoplasmosis (Hermanns et al., 2001; Wagner et al., 

1994). 

Unfortunately, for individuals threatened by Toxoplasma infections, the 

current therapies (page 14) are limited by serious side-effects (bone marrow 

suppression and hypersensitivity reactions).  Furthermore, these drugs are 

unable to target the latent infection.  Thus, novel therapeutics are seriously 

needed that possess fewer side effects and/or the ability to eradicate the latent 

infection. 

In addition to its own medical significance, Toxoplasma also serves as an 

excellent model to study other apicomplexans (Roos et al., 1999).  Clinically 

important apicomplexans such as the Plasmodium spp. and C. parvum are 

difficult to grow in vitro and are not amenable to genetic manipulation.  

Toxoplasma however, is relatively easy to cultivate in vitro and various molecular 

techniques and resources have been established to study this organism including 

transfection (Soldati and Boothroyd, 1993), gene knockout strategies (Donald 

and Roos, 1994), and an online genomic database (http://toxodb.org/; Kissinger 

et al., 2003).  Thus, for many experimental questions, Toxoplasma remains the 

best model system to study the biology of the Apicomplexa.  Our understanding 

of the mechanisms of drug resistance, the biology of the apicoplast, and the 

process of host cell invasion has been advanced by studies in Toxoplasma (Kim 

and Weiss, 2004).  Heterologous expression of apicomplexan proteins in 

Toxoplasma has frequently facilitated further characterization of proteins that 

could not otherwise be easily studied (Kim and Weiss, 2004).  Although findings 

in Toxoplasma will not always be applicable to other apicomplexan members, it is 

an important model system for understanding apicomplexan biology. 
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A. Life cycle of Toxoplasma gondii 

Toxoplasma was first isolated by Nicolle and Manceaux in 1908, from the 

African rodent Ctenodactylus gondii, which shares the same species designation 

(Petersen and Dubey, 2001).  Under the microscope, the parasite has a distinct 

crescent shape similar to a bow.  The unusual shape of the organism was used 

to derived its genus name from the Greek word toxon, meaning “bow” and 

plasma meaning “the form” (Petersen and Dubey, 2001). 

The life cycle consists of two major phases; an asexual and sexual cycle 

(Figure 2).  While the parasites can grow asexually in almost any warm blooded 

vertebrate, the sexual cycle is restricted to cat intestinal tract (Dubey et al., 

1970).  In feline intestinal epithelium the parasite differentiates into either macro- 

or microgametes that fuse to form diploid oocysts which are subsequently 

excreted in the cat’s feces (Ferguson et al., 1975).  Oocysts have a very thick 

protective wall encasing the organism (Speer, 1998).  Upon exposure to the 

external environment, the diploid organism inside the oocyst sporulate generating 

infectious sporozoites.  The sporulation process (sporogony) consists of two 

meiotic divisions and a single mitotic division, producing eight haploid 

sporozoites.  Sporulated oocysts present in the soil can remain infectious for 

more than a year (Wong and Remington, 1993). 

When oocysts are ingested, the thick protective oocyst wall is degraded by 

host digestive enzymes, releasing the infectious sporozoites.  If a cat consumes 

oocysts, the sexual cycle will take place, resulting in the formation of gametes 

and oocysts which are shed with the cat’s feces.  However, in all mammals 

(including cats) and birds that ingest oocysts, the released sporozoites will 

penetrate the intestinal epithelium and invade intestinal cells.  During this initial 

invasion of host cells, the sporozoites differentiate into tachyzoites that 

disseminate throughout the host upon reaching the blood stream (Wong and 

Remington, 1993). 

Once the parasite differentiates into a tachyzoite, it becomes an obligate 

intracellular parasite and cannot survive for long outside of a host cell.  They are 

purine auxotrophs and require certain amino acids such as glutamine and  
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Figure 2: Life cycle of Toxoplasma gondii  
The diagram depicts the sexual cycle (dotted line), which occurs only in the feline 

intestines, and the asexual cycle (solid line) which takes place in nucleated cells 

of all infected animals.  During the asexual cycle, a small portion of the fast 

growing tachyzoites will differentiate into encysted slow growing bradyzoites.  

These bradyzoite cysts persist throughout the lifespan of the host resulting in a 

permanent latent infection.  Furthermore, the bradyzoites can spontaneously 

recrudesce back to tachyzoites, potentially causing acute illness long after the 

initial infection has resolved. 
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arginine for survival (Sullivan et al., 1999; Fox and et al., 2004).  These 

biomolecules are siphoned from the infected host cell.  Because of its obligate 

intracellular lifestyle, Toxoplasma has developed a highly orchestrated invasion 

process that is quick and involves the use of the apical complex (Carruthers, 

2002). 

During the invasion process, the parasite surrounds itself within a vacuole 

derived largely from the host cell membrane (Leirião et al., 2004).  However, 

many of the host membrane proteins appear to be absent and several parasite 

proteins released during the invasion process are incorporated into the parasite 

vacuolar membrane (Sibley and Krahenbuhl, 1988; Beckers et al., 1994).  

Through an unknown process, the parasite vacuole does not fuse with host cell 

lysosomes, protecting it from normal vacuole acidification (Sibley et al., 1985).  

Inside the vacuole, the parasite undergoes asexual replication by endodyogeny, 

a specialized type of division in which the two daughter cells form within the 

mother cell (Hu et al., 2002).  The parasite continues to replicate inside the host 

cell with a generation time of six to eight hours until the vacuole becomes too 

large for the host cell and the cell ruptures (Black and Boothroyd, 2000).  The 

tachyzoites emerge from the ruptured host cell and repeat the invasion and 

replication processes inside new host cells.  The continuous cycle of invasion, 

replication, and cell lysis by tachyzoites leads to the tissue destruction associated 

with Toxoplasma infection. 

About two weeks post infection, a portion of the invasive tachyzoites will  

differentiate into bradyzoites through a poorly understood process (Lyons et al., 

2002).  Bradyzoites replicate more slowly and are housed inside of a thick, rigid 

cyst-like membrane composed of polysaccharides and chitin (Weiss and Kim, 

2000).  The cysts vary in size (10-100µm) and form inside host cells, rendering 

detection by the immune system difficult and resulting in a permanent latent 

infection. 

When an infected host animal is eaten, the bradyzoite cysts present in the 

host tissues are capable of causing infection in a manner similar to oocysts (Hill 

and Dubey, 2002).  The cyst wall protects the bradyzoites from the digestive 
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enzymes present in the stomach.  After passing through the stomach, the cyst 

wall is eventually degraded and the released bradyzoites infect the intestinal 

mucosa, differentiating back into tachyzoites (Dubey et al., 1970).  The 

tachyzoites disseminate throughout the host animal.  In the case of a feline, 

ingestion of bradyzoite cysts will also result in the formation of gametes 

producing oocysts which will be shed with the feces thus completing the life cycle 

(Dubey et al., 1970). 

 
B. Infection and pathobiology 

Humans can become infected through several routes.  Young children can 

become infected through accidental ingestion by playing in soil contaminated 

with oocysts.  People exposed to cats can acquire infection by handling cat liter 

containing oocysts.  Consumption of improperly cooked meat containing 

bradyzoite cysts can result in infection.  It is estimated that of the 750 deaths 

attributed to toxoplasmosis each year, 375 (50%) are believed to be caused by 

eating contaminated meat, making toxoplasmosis the third leading cause of food 

borne deaths in the United States (Lopez et al., 2000). 

Once ingested, the oocysts or bradyzoite cysts release infective parasites 

that invade the intestinal epithelium and differentiate into tachyzoites.  

Tachyzoites disseminate throughout the body by infected macrophages and as 

extracellular parasites in the blood stream (Wong and Remington, 1993).  The 

initial infection and parasitemia are largely asymptomatic in healthy individuals.  

However, some people may experience “flu-like” symptoms, the most common 

being fever, lymphadenopathy, and headache (Luft and Remington, 1988). 

Due to the intracellular nature of the parasite, protective immunity to 

Toxoplasma is based on a cell-mediated immune response.  A cell-mediated 

immune response relies on CD4+ helper T-cells recognizing antigen presented by 

macrophages and dendritic cells (Germain and Stefanova, 1999).  Infected 

macrophages and dendritic cells are unable to kill internal parasites, but a small 

amount of parasite specific protein is presented as antigen on the surface of 

phagocytic cells.  Antigen presentation and IL-12 secretion by infected 
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macrophages and dendritic cells activates CD4+ helper T-cells resulting in their 

production and release of interferon gamma (IFN-γ; Hunter and Reichmann, 

2001).  The released IFN-γ further activates macrophages and dendritic cells, 

leading to upregulation of inducible nitric oxide synthase (iNOS; Langermans et 

al., 1992).  Macrophages require iNOS to produce reactive nitrogen 

intermediates which inhibit parasite replication (Sibley et al., 1991).  

Nonphagocytic cells are also affected by the release of IFN-γ which activates 

indolamine dioxygenase, starving intracellular parasites of the essential amino 

acid tryptophan (Pfefferkorn, 1984).  The multiple actions of IFN-γ appear to be 

crucial in controlling acute Toxoplasma infections and in driving the infection into 

a quiescent latent stage. 

During the initial infection, the cell-mediated response is accompanied by 

the production of antibodies.  B-cells are stimulated by activated CD4+ helper T-

cells and begin producing low-affinity IgM antibodies.  As the B-cell response 

matures and isotype switching occurs, high levels of high affinity anti-toxoplasma 

IgG antibodies can be detected (Hunter and Reichmann, 2001).  However, 

because Toxoplasma is an intracellular pathogen, the utility of antibodies in 

controlling infection has been questioned.  When the parasites lyse an infected 

cell, the extracellular parasites are susceptible to antibodies.  During this 

intermittent extracellular phase, the antibodies may play a role in killing parasites 

by activating complement or by opsonizing the parasites for phagocytosis and 

killing by macrophages (Hammouda et al., 1995). 

While the immune system is attempting to thwart the initial infection, a 

portion of the invading tachyzoites will differentiate into bradyzoites housed within 

a cyst inside of a host cell (Lyons et al., 2002).  Tachyzoites that do not undergo 

differentiation will be eventually cleared by the immune system.  On the other 

hand, bradyzoites are extremely slow growing and therefore do not provoke an 

inflammatory response (Derouin, 1992).  Thus, an infected individual remains 

infected for life.  Although the bradyzoite cysts can form in any cell in the body, 

they have a preference for skeletal and cardiac muscle and the central nervous 

system (Hill and Dubey, 2002).  Currently, there is no adequate explanation for 
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this tissue preference.  It has been a long standing presumption that the 

bradyzoite cysts present in these tissues does not alter their normal physiological 

function (Yolken et al., 2001).  However, there is preliminary data showing a 

higher rate of Toxoplasma infection in the schizophrenic population suggesting 

that the bradyzoite cysts might alter CNS function and predispose individuals to 

mental illness (Yolken et al., 2001).  At this time, these studies are incomplete as 

they do not take into account several important factors such as age of infection, 

severity of infection, and/or family history of mental illness. 

Even after infected individuals have cleared the initial infection, antibody 

titers remain elevated (Ho-Yen, 1992).  The relatively high antibody titer is best 

explained by a small portion of the bradyzoites cysts spontaneously reverting 

back to tachyzoites, termed recrudescence (Lyons et al., 2002).  In response to 

the reemerging tachyzoites, the immune system is activated through similar 

mechanisms as the initial infection, only much quicker.  Thus, the reemerging 

tachyzoites are efficiently eradicated before they can cause significant tissue 

destruction (Weiss and Kim, 2000).  It is plausible that the constant priming of the 

immune system by recrudescing bradyzoites provides protection against 

reinfection, which is especially important in pregnant women as described in the 

next section. 

 
C. Congenital infection 

Virtually all births suffering complications due to Toxoplasma infection are 

the result of the mother being exposed for the first time during the pregnancy 

(Guerina et al., 1994).  Otherwise healthy, pregnant women who have been 

previously infected with Toxoplasma are able to quickly control reexposure to 

ingested oocysts or bradyzoites before the parasites can spread to the fetus 

(Jones et al., 2003).  The quick ability to control reinfection may be partly due to 

the primed immune system by recrudescing bradyzoites.  Pregnant women who 

are infected for the first time during pregnancy need time to mount an effective 

immune response (Guerina et al., 1994).  During this period, the parasite 

disseminates throughout the body, infecting various tissues including the 
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placenta.  Once the placenta is infected, tachyzoites can cross over and infect 

the developing fetus (Boyer, 1996).  Members of the cell-mediated immune 

system (macrophages and CD4+ helper T-cells) are restricted by placental 

barriers and are unable to protect the fetus from infection.  However, antibodies 

can cross placental barriers and may play a role in helping to control fetal 

infection. 

At birth, the classic triad of signs suggestive of congenital toxoplasmosis 

includes chorioretinitis (infection of the choroid and retina of the eye), 

hydrocephalus, and intracranial calcifications (Hill and Dubey, 2002).  The CNS 

appears to be the system suffering the most damage, resulting in potential 

cognitive and visual disabilities.  Congenital disease is more severe when 

infection is acquired in the first trimester versus the second or third (Guerina et 

al., 1994).  Later in gestation, the fetal immune system is better developed and 

more able to control in the infection.  Interestingly, the risk of transmitting the 

infection to the fetus is higher during the later stages of pregnancy and may be 

related to placental development and increased blood supply during the later 

stages of pregnancy making transmission more likely (Guerina et al., 1994).  In 

general, the overall risk of congenital infection from an initial acute Toxoplasma 

infection during pregnancy ranges from approximately 20 to 50 percent (Jones et 

al., 2003).  When acute Toxoplasma infection is suspected, a diagnosis is made 

on the basis of antibody detection.  Acute infection is confirmed by the presence 

of both IgG and IgM antibodies (Jones et al., 2003).  If a pregnant woman is 

suffering from acute infection with Toxoplasma, the next step is to determine 

whether the fetus is infected, which is usually done via PCR testing of amniotic 

fluid (Jones et al., 2003). 

 
D. Infection in HIV patients 

While recrudescing bradyzoites may help prevent reinfection in healthy 

individuals, they can cause serious problems in immune suppressed individuals 

(Reiter-Owona et al., 2000).  Without the protection of a fully functional immune 

system, reactivated tachyzoites can cause widespread tissue damage, blindness, 
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encephalitis, and even death (Black and Boothroyd, 2000).  In recent decades, 

the population of immune suppressed individuals has become increasingly large 

due to the AIDS epidemic. 
Patients suffering from end-stage AIDS clearly demonstrate the close 

association of T-cell function with resistance to Toxoplasma.  Unfortunately for 

these individuals, the HIV virus attacks and destroys CD4+ T-cells 

(Pattanapanyasat and Thakar, 2005).  As mentioned earlier, CD4+ T-cells are 

essential for controlling Toxoplasma infection and reactivation.  There is strong 

correlation with the clinical presentation of Toxoplasma infection and CD4+ cell 

counts.  At the time they present with clinical toxoplasmosis, AIDS patients 

usually have CD4+ T-cell counts that have fallen from 800-12000/mm3 to less 

than 100/mm3 (Hunter and Reichmann, 2001). 

Toxoplasmic encephalitis (TE) without any other organ involvement is the 

most frequent manifestation of toxoplasmosis in patients with AIDS (Mariuz and 

Steigbigel, 2001).  In one study of 86 HIV patients with TE, the most common 

general signs included fever and headache unresponsive to analgesics (Renold 

et al., 1992).  The diagnosis of TE in HIV patients is usually made by the 

combination of neurological symptoms and findings on computerized 

tomographic (CT) scan or magnetic resonance imaging (MRI).  The neurological 

symptoms can include cranial nerve palsies, confusion, lethargy, and ataxia.  CT 

or MRI scans with contrast dye often reveal the presence of intracranial 

abscesses that can be as large as a tennis ball.  If untreated, toxoplasmic 

encephalitis is uniformly fatal (Luft et al., 1993). 

 

E. Infection in HIV-negative immune suppressed 

 Besides HIV infection, other individuals with suppressed immune systems 

are threatened by Toxoplasma infection or reactivation.  Immune suppression in 

these individuals is the result of advances in the medical field and includes post 

operative organ transplant patients undergoing immunosuppressive therapy to 

prevent organ rejection and patients with neoplastic conditions receiving 

immunosuppressive chemotherapy (Wong and Remington, 1993). 
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The biggest concern in organ transplantation is the potential for the donor 

recipient to become infected via the donated organ.  A report by Speirs et al. 

(1988) stated that 57% of heart and 20% of liver transplant recipients who were 

Toxoplasma negative before transplantation and who received organs from 

Toxoplasma positive donors acquired primary infection (Wreghitt and Joynson, 

2001).  Because the parasite has a tropism for cardiac tissue, heart and heart-

lung recipients are at the greatest risk versus other transplanted tissues (Wreghitt 

et al., 1989).  When a patient becomes infected from a donated organ, it is 

probably due to bradyzoite cysts present in the donated organ recrudescing back 

into tachyzoites in the recipient (Hermanns et al., 2001).  When an uninfected 

recipient receives an infected organ, it is referred to as a “Toxoplasma mismatch” 

(Wreghitt and Joynson, 2001).  “Toxoplasma mismatches” can be avoided by 

measuring antibody titers to determine if the recipient has had previous exposure 

to Toxoplasma.  In cases where “Toxoplasma mismatches” cannot be avoided, 

immediate treatment for toxoplasmosis (page 14) may reduce the severity of 

acute Toxoplasma infection (Wreghitt and Joynson, 2001). 

Another concern in organ transplantation is the post operative immune 

suppression necessary to prevent organ rejection.  In the early years of organ 

transplantation, large amounts of immunosuppressive drugs were used resulting 

in high risk Toxoplasma reactivation (Wreghitt and Joynson, 2001).  Newer, less 

aggressive therapies including low dose cyclosporine A, steroids, and 

azathioprine have significantly reduced toxoplasmosis seen in organ transplant 

patients (Wreghitt and Joynson, 2001).  However, patients are often placed on 

prophylaxis therapy with trimethoprim/sulfamethoxazole to prevent toxoplasmosis 

and other opportunistic diseases (Wreghitt and Joynson, 2001). 

Toxoplasmosis can occur in patients with immune suppression caused by 

certain malignancies, particularly Hodgkin’s lymphoma, with extended doses of 

corticosteroids, or certain chemotherapies.  While such infections are usually 

rare, patients must undergo treatment for toxoplasmosis (page 14) and 

alternations made in the dosage of chemotherapy that can limit the treatment of 

the malignancy (Wreghitt and Joynson, 2001). 
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F. Treatment of toxoplasmosis 

The standard treatment for toxoplasmosis is with pyrimethamine 

(Daraprim) and a sulphonamide, usually sulphadiazine.  Both drugs target two 

different enzymes involved in the folate pathway and therefore work 

synergistically to inhibit replicating tachyzoites.  Toxoplasma cannot uptake 

preformed folic acid and therefore must synthesize its own (Derouin, 2001).  The 

first step in the synthesis is carried out by dihydropteroate synthase (DHPS) 

which converts para-aminobenzoic acid to dihydrofolic acid, which then is 

converted to tetrahydrofolic acid by dihydrofolic acid reductase (DHFR).  

Sulphonamides are competitive inhibitors of DHPS and pyrimethamine inhibits 

DHFR (Tracy and Webster, 1996).  However, both of these drugs have 

potentially serious side effects. 

DHPS is not expressed in mammalian cells and thus there are few serious 

adverse reaction associated with administering sulphonamides (Derouin, 2001).  

Hypersensitivity reactions are the most common and can vary in severity from 

mild dermatitis to sever dermatological reactions and anaphylaxis (McCabe, 

2001).  The development of severe mucocutaneous reactions such as Steven-

Johnson syndrome and toxic epidermal necrosis (TEN) is also a concern when 

administering sulphonamides (Schmidt-Westhausen et al., 1998).  TEN is 

characterized by widespread blisters that involve over 90% of human body.  The 

blisters usually burst and the skin sloughs off causing increased risk of 

dehydration, hypothermia, and infection secondary to substantial skin loss 

(Fritsch and Sidoroff, 2000).  Furthermore, there is evidence that adverse skin 

reactions are higher among patients with AIDS than those without AIDS (Kimura 

et al., 1991).  Because TEN is a severe, potentially fatal skin reaction, 

sulfonamide-containing drugs should be given cautiously to patients with AIDS 

(Kimura et al., 1991) 

Unlike DHPS, DHFR is expressed in mammalian cells.  While 

pyrimethamine possesses a much higher affinity for the Toxoplasma DHFR there 

is still an effect on mammalian cells at therapeutic doses (Derouin, 2001).  In 

particular, the rapidly dividing progenitor blood cells in the bone marrow are 
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suppressed resulting in decreased platelets (thrombocytopenia), macrophages 

(granulocytopenia), and red blood cells (megaloblastic anemia; Winstanley et al., 

1995).  These types of anemia can lead to bleeding problems, further infections, 

and difficulty oxygenating tissues (cyanosis).  The likelihood of bone marrow 

suppression can be reduced with folic acid (Leucovorin) supplements in 

conjunction with pyrimethamine, but it does not prevent suppression (Tracy and 

Webster, 1996).  Folic acid supplementation only benefits mammalian cells 

because parasites cannot import it (Tracy and Webster, 1996). 

AIDS patients and other immune suppressed individuals suffering from 

reactivated toxoplasmosis are usually treated with pyrimethamine and 

sulphadiazine.  Once the acute infection has resolved, these individuals are 

usually placed on prophylaxis treatment to prevent reactivated tachyzoites from 

causing further tissue destruction (Nath and Sinai, 2003).  Because there is no 

drug capable of eradicating the encysted bradyzoites the prophylaxis treatment is 

usually life long (Lane et al., 1994).  Unfortunately, prolonged treatment with 

sulphonamides increases the risk of developing a hypersensitive reaction.  If an 

adverse reaction with sulphadiazine occurs, prophylaxis treatment can be 

maintained with pyrimethamine and a macrolide antibiotic such as clindamycin 

(Lane et al., 1994).  These compounds block protein synthesis in bacteria but 

their target in Toxoplasma is unknown.  It is theorized that the bacterial-like 

ribosomes present in the apicoplast may be inhibited by these antibiotics 

(Fichera et al., 1995). 

Highly active anti-retroviral therapy (HAART) has significantly reduced the 

number of AIDS-related cases of toxoplasmosis (Samuel et al., 2002).  These 

drugs slow the destruction of CD4+ cells by the HIV virus.  If CD4+ cell counts are 

maintained above 100/mm3, AIDS patients can usually be taken off prophylaxis 

treatment (Hunter and Reichmann, 2001).  However, the HIV virus mutates 

rapidly and if the virus develops resistance to current antiretroviral drugs, the 

incidence of AIDS-associated toxoplasmosis will likely rise again (Sacktor, 2002). 

If a fetus is suspected of being infected with toxoplasmosis, treatment 

must begin immediately.  Pyrimethamine is not used in pregnant women because 
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at high doses it has been shown to be teratogenic in animals (McCabe, 2001).  

The preferred treatment is with the macrolide antibiotic spiramycin (Jones et al., 

2003).  The exact mechanism of action of this antibiotic in Toxoplasma is 

unknown, but it is preferred because high concentrations in the placenta are 

achieved and it is extremely safe (Nath and Sinai, 2003).  Spiramycin has no 

known adverse effects on the fetus (McCabe, 2001).  Despite the relative safety 

of spiramycin, it is not readily available in the United States.  The drug can only 

be obtained through direct purchase from the manufacturer which generates 

logistical barriers to fast and effective treatment of pregnant women infected with 

Toxoplasma (Many and Koren, 2006).  If the Toxoplasma infection is thought to 

have occurred before the 16th week of pregnancy, or if the fetus shows evidence 

of hydrocephalus on ultrasound, abortion should be considered because of the 

high likelihood of severe fetal central nervous system damage (McCabe, 2001). 

 

G. Bradyzoite differentiation and transcriptional control 

The bradyzoite cyst is critical to the pathogenesis of Toxoplasma, 

responsible for the permanent latent stage of infection.  Currently, there are no 

therapies capable of targeting and eradicating this form of the parasites.  The 

differentiation process from tachyzoite to bradyzoite and back to tachyzoite is 

poorly understood.  In order for better therapeutics to be designed to target 

bradyzoites conversion, a better understanding of the differentiation process 

must be established. 

Studying bradyzoite differentiation was initially limited by the ability to 

generate in vitro bradyzoites.  In 1986, Jones et al. discovered that addition of 

IFN-γ to in vitro cultures of parasites results in the formation of bradyzoite cysts.  

As previously mentioned, it is theorized that IFN-γ starves the parasites of 

tryptophan.  Other mediators of in vitro differentiation that have since been 

discovered include alkaline treatment (pH 8.1), heat shock (42°C), and chemical 

stress (2μM sodium arsenite) (Soête, 1994).  All of these treatments share a 

common feature: they are all stressors slowing down the growth of the host cell 
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and parasite (Soête, 1994).  Thus, it would seem that bradyzoite differentiation is 

a stress mediated event. 

In addition to the development of in vitro differentiation protocols, 

bradyzoite-specific antiserums have been developed.  Western blot and ELISA 

studies using these antiserums have confirmed that tachyzoites and bradyzoites 

have unique as well as shared antigens (Weiss and Kim, 2000).  The first 

bradyzoite specific antigen discovered was BAG1 (bradyzoite antigen; Bohne et 

al., 1995).  Since then there have been 6 other bradyzoite-specific antigens and 

two stage-specific enzymatic paralogues (Singh et al., 2002).  The two enzymatic 

paralogues are lactate dehydrogenase 2 (LDH2) and enolase 1 (ENO1).  The 

respective counterparts to these paralogues, LDH1 and ENO2, are expressed 

only in tachyzoites.  The bradyzoite-specific LDH2 and ENO1 have different 

enzyme kinetics than the tachyzoite-specific counterparts, and it is believed that 

these differences help facilitate the slow metabolic rate of bradyzoites (Yang and 

Parmley, 1997; Dzierszinski et al., 2001, respectively).  Additional studies are 

underway attempting to characterize the promoters of these and other 

bradyzoite-specific genes.  Bradyzoite-specific promoters will aid in the 

identification of additional bradyzoite-specific genes and transcription factors that 

regulate these promoters. 

There are currently no known transcription factors in Toxoplasma that 

control or are involved in the bradyzoite differentiation process.  Additionally, the 

signaling pathways involved in triggering the differentiation process are unknown.  

As bradyzoite differentiation is unique to parasites, there is potential that 

transcription factors and/or signaling proteins involved in mediating differentiation 

are parasite specific and would make excellent drug targets.  Drugs capable of 

targeting proteins involved in controlling differentiation could halt the 

differentiation process and thus prevent the latent stage of infection.  However, 

searches of apicomplexan genome databases suggests there are a relatively 

small number of transcription factors present in Toxoplasma and other 

apicomplexans (Saksouk et al., 2005; Templeton et al., 2004). 
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In addition to transcription factors, other classes of proteins known to be 

involved in regulating gene expression should be investigated in Toxoplasma as 

they may participate in the differentiation process.  Chromatin remodeling 

proteins in other eukaryotic organisms play a profound in role in gene 

expression, some of which are instrumental in mediating stress responses 

(Huisinga and Pugh, 2004).  Analogous chromatin remodeling homologues exist 

in Toxoplasma (Sullivan and Hakimi, 2006) and may also be involved in stress 

responses which, as mentioned above, initiate bradyzoite conversion.  Currently, 

very little is known about chromatin remodeling proteins in apicomplexans.  

Identification and characterization of chromatin remodeling proteins in 

Toxoplasma will facilitate our understanding of gene regulation in this parasite 

and other apicomplexans, and may shed new light on the bradyzoite 

differentiation process. 

 

II. Transcription Control and Chromatin Remodeling Proteins 

A. Chromatin structure and nucleosomes 

Chromatin is defined as a complex of DNA, histones, and non-histone 

proteins from which eukaryotic chromosomes are formed (Alberts et al., 2002).  

The fundamental unit of chromatin is the nucleosome which is composed of a 

core of eight histones (two molecules of H2A, H2B, H3 and H4; Figure 3).  

Around this protein core, 146 base pairs of DNA is wrapped much like thread 

around a spool (Loid, 2001).  The core histones are small proteins with a basic 

charge that share the same basic structure: a globular C-terminal domain critical 

to nucleosome formation and a flexible N-terminal tail that protrudes from the 

nucleosome core (Santos-Rosa and Caldas, 2005).  The flexible N-terminal tails 

are enriched with basic residues which are theorized to interact with the 

negatively charged backbone of DNA (Allfrey et al., 1963). 

In-between each nucleosome is a short stretch of DNA termed linker DNA.  

The nucleosomes and their linker DNA form chains like a long string of beads,  
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Figure 3: Nucleosome structure 

DNA is wrapped around the octameric histone core forming the nucleosome.  

Each nucleosome is tethered together by linker DNA which associates with one 

H1 protein forming the 10nm “bead on string” fiber.  Through interactions 

between the H1 histones the fiber coils into a solenoid structure with a diameter 

of 30nm.  (adapted from Grunstein, 1992; reprinted with permission from author 

and Scientific American) 
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known as the 10-nm chromatin fiber (Loid, 2001).  These fibers are then packed 

into a higher order structure, facilitated by another histone protein, H1.  Histone 

H1 binds to the linker DNA and interacts with neighboring H1 proteins to form a 

spiral, with 6-8 nucleosomes per turn, generating a solenoid or 30nm chromatin 

fiber (Figure 3; Grunstein, 1992).  There are higher orders of structure that 

eventually lead to the formation of the metaphase chromosomes (Grunstein, 

1992).  However, these higher order structures have not been completely 

resolved. 

 
B. Histone acetylation and transcriptional control 

In the early 1960s, two papers by Allfrey and colleagues were the first to 

demonstrate the impact histones had on gene expression.  In 1963, Allfrey and 

colleagues confirmed that DNA-histone complexes (nucleosomes) fail to act as 

primers for RNA synthesis (Allfrey et al., 1963).  The high basic charge of 

histones was theorized to interact strongly with DNA preventing DNA from being 

transcribed by a polymerase.  Allfrey also developed a trypsin treatment that 

selectively depleted nuclear histones from cells.  Treating calf thymus cells with 

his trypsin protocol resulted in a large increase in RNA synthesis.  The increase 

in transcription was caused by increases in existing message and by the 

transcription of new mRNA not present before histone depletion (Allfrey et al., 

1963).  Allfrey deduced that the new transcripts were being generated because 

the digested histones were no longer able to repress transcription. 

Based on observations made by Phillips in 1963 of the substantial 

presence of acetylated histones in the nucleus, Allfrey examined the effect of 

acetylated histones on RNA synthesis (Allfrey et al., 1964).  Unlike unmodified 

histones, DNA-acetylated histone complexes were not inhibitory to RNA 

synthesis (Allfrey et al., 1964).  It was argued that acetylation attenuated the 

highly basic charge of histone proteins preventing them from strongly interacting 

with DNA.  However, the failure to inhibit RNA synthesis was not caused by 

acetylated histones completely dissociating from DNA.  Allfrey demonstrated that 
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acetylated histones were still able to protect DNA from thermal denaturation, 

suggesting an interaction is still present (Allfrey et al., 1964). 

The studies conducted by Allfrey and colleagues clearly demonstrated that 

histones possess the ability to control gene expression.  Furthermore, unmodified 

histones are repressive to RNA synthesis and acetylated histones are correlated 

with active transcription.  Although acetylated histones still interact with DNA, 

they generate a more favorable environment for gene transcription.  Despite this 

interesting discovery, the proteins responsible for acetylation of nuclear histones 

would not be elucidated for several decades. 

 

C. Histone acetyltransferases and GCN5 

Proteins capable of acetylating histones are termed histone acetyl 

transferases or HATs.  HATs covalently modify histones by transferring an acetyl 

group from acetyl-coenzyme A to the ε-amino group of specific lysine side chains 

within the N-terminal tails of histones (Sterner and Berger, 2000). 

GCN5 (General Control of Non-derepressed 5) was the first discovered 

protein capable of acetylating nuclear histones.  GCN5 was initially identified by 

Penn et al. in a yeast mutation screen identifying genes involved in amino acid 

biosynthesis (Penn et al., 1983).  Mutations were induced by UV-light irradiation 

and clones unable to grow in media deficient in preformed amino acids were 

considered to have disruptions in the regulation of their amino acid biosynthesis 

pathways.  The screen lead to the discovery of 5 genes involved in the 

derepression (induction) and expression of proteins involved in the synthesis of 

histidine, arginine, tryptophan, and methionine (Penn et al., 1983).  The genes 

were named GCN1 through GCN5. 

Additional work by Hope and Struhl lead to the discovery that GCN4 was 

the main transcription factor of the five GCN genes responsible for upregulation 

of amino acid biosynthesis genes under starvation conditions (Hope and Struhl, 

1985; Hope and Struhl, 1987).  Increasing the amount of GCN4 protein rescues 

cells suffering from mutations in GCN1, GCN2, and GCN3, suggesting that these 

genes are involved in the upregulation and expression of GCN4 (Hinnebusch, 
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1985).  However, mutations in GCN5 are not rescued by alterations in levels of 

GCN4 (Georgakopoulos and Thireos, 1992).  Using a GCN4 promoter driven 

reporter system, it was determined that GCN5 is required by GCN4 to fully 

activate its target genes (Georgakopoulos and Thireos, 1992).  Thus, GCN5 is 

involved in potentiating GCN4 mediated transcription.  However, the mechanism 

by which GCN5 functioned remained unknown.  Georgakopoulos and Thireos 

cloned the GCN5 gene, which encoded a protein of 439 amino acids.  They 

noted the presence of a putative domain in the C-terminus, between residues 

348 and 422, which shared similarity with a class of transcriptional factors related 

to DNA helicases.  Although GCN5 does not share any similarity to DNA 

helicases, this observation lead Georgakopoulos and Thireos to postulate that 

GCN5 may be involved in regulating chromatin structure (Georgakopoulos and 

Thireos, 1992). 

While the true function of GCN5 was attempting to be ascertained, others 

were working on trying to identify proteins responsible for acetylating histones.  

Although many attempts had been made trying to purify HATs from eukaryotic 

cells, all were unsuccessful due to low level of endogenous expression.  In 1995, 

success in identifying a HAT was finally achieved by Brownell and Allis using an 

“in gel” assay system (Brownell and Allis, 1995).  Core histones were 

incorporated into standard polyacrylamide gels during acrylamide polymerization.  

Nuclear extracts from Tetrahymena (a ciliated freshwater protozoan) were 

resolved on the histone-SDS gels under native conditions.  Following 

electrophoresis, the gels were incubated in a buffer containing tritiated acetyl-

CoA.  Upon exposure to film, a single band at 55 kilodaltons was detected 

suggesting the presence of a single HAT of this size termed p55 (Brownell and 

Allis, 1995).  Peptide sequencing of p55 was performed following several 

fractionation techniques on large amounts of Tetrahymena nuclear extracts.  

Using the peptide sequence data, they were able to clone the p55 gene 

(Brownell et al., 1996).  The full-length p55 gene encoded a protein of 421 amino 

acids and possessed unequivocal homology to yeast GCN5 (Brownell et al., 

1996).  This observation established a clear biochemical function for yeast GCN5 
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as a HAT and provided a mechanistic link between histone acetylation and gene 

activation (Brownell et al., 1996). 

Since its initial discovery, GCN5 proteins have been identified and 

characterized in many eukaryotic organisms including humans, mouse, 

Drosophila, and Arabidopsis (Candau et al., 1996; Driessen et al., 1997; Smith et 

al., 1998a; Stockinger et al., 2001; respectively).  Figure 4 contains diagrams 

depicting the different GCN5 homologues in these organisms and the conserved 

domains. 

All the GCN5 homologues known to date possess three conserved 

domains.  The catalytic domain is responsible for acetyltransferase activity.  

Initial enzymatic studies demonstrated that yeast GCN5 selectively acetylates 

histone H3 in nucleosomal substrates in vivo (Ruiz-Garcia et al., 1997).  

Additional studies with recombinant yeast GCN5 indicated that acetylation 

occurred on lysines in the N-termini of histones H3 and H4 (Kuo et al., 1996).  

Although the N-termini of H3 and H4 contain several conserved lysine residues 

that can be acetylated, recombinant yeast GCN5 preferentially acetylates lysine 

14 of H3 and to a lesser degree, lysine 8 and lysine 16 of H4 in vitro (Kuo et al., 

1996). 

The two other domains, the Ada2 binding domain and the bromodomain, 

are downstream of the catalytic domain.  The Ada2 binding domain is the region 

where the Ada2 protein binds to GCN5.  Ada2 belongs to the Ada 

(alteration/deficiency in activation) group of proteins that complex with GCN5 in 

vivo (Berger et al., 1992).  Proteins that interact with GCN5 including Ada 

proteins are discussed further in a Section II-E (page 29). 

The bromodomain is a conserved motif present in many transcription and 

chromatin regulators and is the same domain first noted in the C-terminus of 

yeast GCN5 by Georgakopoulos and Thireos in 1992.  Further analysis of the 

bromodomain has revealed it binds to specific acetylated lysines in histones H4 

and H3 (Dhalluin et al., 1999).  Thus, the bromodomain appears to be involved in 

recognizing modified histones and may serve to direct the function of GCN5 to 

areas of chromatin containing modified histones (Marmorstein, 2001).  The 
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Figure 4: GCN5 homologues and domains 
Schematic diagrams comparing homologues of GCN5.  All GCN5 proteins 

contain three conserved domains: the catalytic domain responsible for 

acetylating histones, the Ada2 binding domain (ADA2) where the Ada2 protein 

interacts with GCN5, and the bromodomain (br) which has been shown to 

interact with acetylated histones (Dhalluin et al., 1999).  Upstream of the catalytic 

domain is referred to as the N-terminal extension.  The N-terminus is highly 

conserved between metazoans but not between metazoans, plants, yeast or 

protozoa. 
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potential link between the bromodomain and the enzymatic activity of GCN5 will 

be addressed in Section II-G (page 36). 

The sequence upstream of the HAT catalytic domain varies in size and is 

sometimes referred to as an N-terminal extension.  Early branching eukaryotes 

generally possess a short sequence of less than 100 residues upstream of the 

HAT catalytic domain (Brownell et al., 1996).  The N-terminal extension in plant 

homologues are of moderate length, between 150 and 250 amino acids (Bhat et 

al., 2003).  The N-terminal extensions in plants and lower eukaryotes have little 

homology to each other or other HAT proteins.  The GCN5 homologues present 

in metazoans contain rather long N-terminal extensions, approximately 500 

residues in length.  The relatively long N-terminal extensions present in mouse 

and human GCN5 have been shown to be important in substrate recognition.  

When the N-terminal extension is removed from human and mouse GCN5, they 

are no longer able to recognize and acetylate nucleosomal histones in vitro (Xu 

et al., 1998).  The ability to acetylate free histones in solution is unaffected by 

removal of the N-terminal extension.  Another role for the N-terminal extension 

might be nuclear localization.  The maize homologue of GCN5 (ZmGCN5) has an 

N-terminal extension of about 160 residues and appears to be involved in 

targeting the HAT to the nucleus (Bhat et al., 2003).  Without the N-terminal 

extension, ZmGCN5 remains cytoplasmic.  Furthermore, when the first 175 

amino acids of ZmGCN5 are fused to GFP, the fusion protein accumulates in the 

nucleus (Bhat et al., 2003).  The involvement of the N-terminal extension in the 

nuclear localization of other GCN5 homologues has not been investigated. 

In addition to amino acid starvation, GCN5 is also important in the 

activating response elements during the stress of phosphate starvation.  The 

GCN5 knock-out (Δgcn5) generated in yeast has shown GCN5 to be important 

for remodeling chromatin at the inducible PHO5 and PHO8 promoters under 

phosphate starvation (Gregory et al., 1998; Gregory et al., 1999).  Unlike wild-

type yeast, the PHO5 and PHO8 promoters in Δgcn5 are resistant to DNase 

digestion, suggesting the promoters are condensed and not properly opened 

during starvation conditions (Gregory et al., 1998; Gregory et al., 1999). 
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In addition to stress remediation pathways, several studies on GCN5 in 

various organisms have implicated this HAT in more essential and global 

processes.  In yeast, Δgcn5 cells accumulate in G2/M cell cycle checkpoint 

indicating that GCN5 is important for normal cell-cycle progression (Zhang et al., 

1998).  GCN5-null mouse embryos die 10.5 days post conception.  The embryos 

failed to form mesodermal-derived structures (precursors to muscles and bones) 

and rarely formed a recognizable neural tube implicating a critical role for GCN5 

in mammalian development (Xu et al., 2000).  In Arabidopsis, GCN5-null 

seedlings fail to form a proper root structure and have shorter stature, suggesting 

that GCN5 is critical in plant development and growth (Vlachonasios et al., 2003). 

Another HAT with striking homology to GCN5 termed PCAF (p300/CBP 

Associating Factor) has been identified and characterized.  PCAF was originally 

identified from a human cDNA database on the basis of its homology to GCN5 

(Sterner and Berger, 2000).  There is an 86% homology between the C-terminal 

portion of PCAF (containing the HAT domain, Ada2 binding domain, and 

bromodomain) and the C-terminal end of GCN5 (Yang et al.,1996).  To date, 

PCAF has only been found in vertebrates and has overlapping and separate 

roles from GCN5 (Sterner and Berger, 2000). 

PCAF also possess an N-terminal extension that is 66% homologous to 

the N-terminal extension found in human and mouse GCN5 proteins (Xu et al., 

1998).  Just as in GCN5, the N-terminal extension in mouse and human PCAF is 

required for the recognition of nucleosomal substrates in vitro (Xu et al., 1998).  

PCAF possess the ability to acetylate its own N-terminus which augments its 

enzymatic activity (Herrera et al., 1997).  The acetylation of the N-terminus 

occurs by transacetylation; acetylation by second PCAF protein (Santos-Rosa et 

al., 2003).  There are five lysines in the PCAF N-terminus that are acetylated; 

lysines 416, 428, 430, 441, and 442.  Human GCN5 does not appear to acetylate 

its N-terminus (Herrera et al., 1997).  Only two of the five lysines that are 

acetylated in human PCAF are conserved in human GCN5 (lysines 428 and 

441).  Lysines 428, 430, 441, and 442 in human PCAF also appear to be 

involved in nuclear localization (Santos-Rosa et al., 2003).  When these four 
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lysines are mutated to arginine, PCAF is no longer targeted to the nucleus 

(Santos-Rosa et al., 2003).  These results suggest that transacetylation of PCAF 

may play a role in targeting it to the nucleus. 

As its name implies, PCAF interacts in vivo with another transcriptional 

regulator p300/CBP (CREB binding protein), which is another HAT.  The histone 

acetylation properties of p300/CBP will be addressed in the next section (page 

28).  Interestingly, PCAF binds to the same site on p300/CBP as does the 

oncogenic viral protein E1A (Yang et al., 1996).  In fact, the mitogenic actions of 

E1A occur by disrupting the interaction between PCAF and p300/CBP, 

suggesting a role for PCAF in cell cycle regulation through its interaction with 

p300/CBP (Yang et al., 1996). 

Recombinant PCAF, like GCN5, acetylates histones, preferring lysine 14 

of histone H3, and more weakly lysine 8 of histone H4 (Schiltz et al., 1999).  

Multiple studies have shown PCAF to be important in several cellular processes 

including myogenesis and nuclear receptor-mediated activation (Sterner and 

Berger, 2000). 

In addition to acetylating histones, PCAF also acetylates several non-

histone proteins involved in transcriptional regulation, a processes referred to 

factor acetyltransferase (FAT) activity.  The non-histone factors targeted by 

PCAF acetylation include the cell cycle regulator p53 (Liu et al., 1999), the 

general transcription factors TFIIE and TFIIF (Imhof et al., 1997), and the 

chromatin associating protein HMG17 (Herrera et al., 1999).  The acetylation of 

p53 by PCAF increases the ability of p53 to bind DNA, and the acetylation of p53 

increases in response to DNA-damaging agents (Liu et al., 1999).  Thus, PCAF 

appears to be involved in stress remediation pathways through its FAT activity. 

Unlike GCN5, mice lacking PCAF are developmentally normal without a 

distinct phenotype (Yamauchi et al., 2000).  In PCAF null homozygous mice, 

protein levels of GCN5 are drastically elevated, suggesting that GCN5 can 

functionally compensate for the loss of PCAF (Yamauchi et al., 2000).  However, 

PCAF is unable to compensate for the loss GCN5, as mice lacking GCN5 are not 
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viable.  Therefore, PCAF and GCN5 may have overlapping functions but are not 

functionally equivalent, especially in embryogenesis. 

 

D. Other HATs and HAT families 

In addition to GCN5 and PCAF, there are two other groups of HATs: the 

p300/CBP family and the MYST family.  The p300/CBP family is named after the 

two proteins p300 and CBP [CREB (cAMP responsive element binding protein) 

binding protein].  Currently, these are the only two proteins in this family.  Due to 

the considerable structural and functional homology between the two proteins, 

they are often referred to as a single entity, p300/CBP (Roth et al., 2000).  

Several studies have also determined that the two proteins have many 

overlapping functions (Goodman and Smolik, 2000).  The two proteins are found 

only in multi-cellular animals (from worms up to humans) and are highly 

conserved across these organisms (Marmorstein, 2001).  CBP and p300 have 

been implicated in many cellular processes including cell cycle control, 

differentiation, and apoptosis.  Mutations in CBP are associated with various 

types of cancer, further demonstrating their regulatory importance in cell cycle 

(Timmermann et al., 2001).  As mentioned in the previous section, p300/CBP 

binds to the HAT PCAF, an interaction that is interrupted by the adenoviral 

oncoprotein E1A (page 27). 

p300/CBP is a large protein of about 300kD and is capable of acetylating 

all four core histones.  In vitro enzymatic assays revealed it acetylates all lysines 

on the four core histones known to be acetylated in vivo.  However, it shows the 

strongest activity on lysines 14 and 18 of histone H3 and lysines 5 and 8 of 

histone H4 (Schiltz et al., 1999).  The actions of p300/CBP are not always linked 

to histone acetylation.  p300/CBP can also function as a FAT acetylating non-

histone proteins such as p53.  Acetylation of p53 by p300 increases the binding 

affinity of p53 to DNA (Gu and Roeder, 1997).  The global acetylation capabilities 

of p300/CBP versus other HATs is congruent with its multiple regulatory 

functions. 
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The MYST family of HATs is named for its founding members: MOZ 

(monocytic leukemia zinc finger protein; Borrow et al., 1996), Ybf2/Sas3 

(something about silencing 3; Reifsnyder et al., 1996), Sas2 (something about 

silencing 2; Reifsnyder et al., 1996), Tip60 (Tat-interactive protein, 60kD; Kamine 

et al., 1996).  The MYST members share a highly conserved catalytic domain 

and although similar to the GCN5 catalytic domain, it is structurally divergent and 

may explain the differing acetylation patterns between GCN5 and MYST HATs 

(Utley and Cote, 2003).  MYST members do not share the exact same 

acetylation specificities, but in general, they preferentially acetylate histone H4.  

Some MYST HATs can also acetylate H3 and H2A to a lesser degree (Utley and 

Cote, 2003).  The divergence in acetylation patterns may explain the differing 

regulatory functions in which the various MYST members are involved. 

The first MYST family member to be linked to histone acetylation was the 

Drosophila protein MOF (male absent on first; Hilfiker et al., 1997).  MOF is 

involved in dosage compensation of the “X” sex chromosome in male flies.  

Dosage compensation refers to a regulatory mechanism that ensures the 

equalization of X-linked gene products in males and females (Lucchesi et al., 

2005).  In addition to MOF, other MYST HATs have been implicated in other 

regulatory processes.  Saccharomyces cerevisiae Esa1 (essential SAS2-related 

acetyltransferase) is a MYST member shown to be important for cell cycle 

progression.  Deletion of Esa1 resulted in strains that grew 40 times slower and 

eventually died (Smith et al., 1998b).  MOZ was identified to cause acute myeloid 

leukemia when fused to CBP due to a chromosomal translocation (Timmerman 

et al., 2001).  It is believed that the resulting fusion protein is unable to be 

properly regulated and disrupts the cell cycle through aberrant histone 

acetylation (Borrow et al., 1996). 

 

E. HAT complexes 

Although histone acetylases have been studied extensively in vitro, these 

proteins do not function as single entities in vivo but as members of large multi-

subunit complexes (Roth et al., 2001).  The two best characterized HAT 
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complexes are SAGA (Spt-Ada-GCN5 acetyltransferase) and ADA (Ada 

containing complex).  Both complexes were initially discovered in yeast but 

homologous complexes have also been isolated in other eukaryotic organisms 

such as humans, mouse, and Drosophila (Sterner and Berger, 2000).  The 

catalytic core of both SAGA and ADA is GCN5 (Grant et al., 1997).  In 

metazoans, it is theorized that PCAF can also serve as the catalytic core in 

GCN5 containing complexes (Roth et al., 2001). 

The ADA complex was discovered first and is much smaller than SAGA, 

approximately 800kD (Eberharter et al., 1999).  The complex is comprised of 

several Ada (alteration/deficiency in activation) proteins (Berger et al., 1992).  

The Ada proteins were discovered using a mutational screen looking for yeast 

resistant to the growth suppressive effects of VP16 (herpes simplex viral protein 

16).  VP16 causes growth arrest by sequestering multiple general transcription 

factors, preventing them from properly regulating gene expression (Berger et al., 

1992).  The ability of VP16 to bind multiple transcriptional regulators is facilitated 

by a group of endogenous adapter proteins.  Using a chemical mutagenesis 

screen, 5 adapter proteins were isolated and determined to be involved in the 

sequestering effects of VP16 (Berger et al., 1992).  When any one of these five 

proteins is mutated, yeast cells become resistant to the growth suppressive effect 

of the VP16 (Berger et al., 1992).  These proteins were termed Ada1-5.  Upon 

further analysis, it was discovered that the Ada4 isolated in the mutagenesis 

screen was identical to GCN5, providing a link between GCN5 and the Ada 

proteins (Berger et al., 1992). 

Only Ada2 and Ada3 are found in the ADA complex (Pina et al., 1993).  In 

fact, there is a conserved domain in the C-terminus of all known GCN5 proteins 

where Ada2 interacts with GCN5, termed the Ada2 domain.  Ada3 interacts only 

with Ada2 within the complex and not with GCN5 (Pina et al., 1993).  In addition 

to the two Ada proteins, the complex also contains the protein Ahc1 (Ada HAT 

complex component 1; Eberharter et al., 1999).  Although the Ada proteins are 

present in other HAT complexes, the Ahc1 protein is not, indicating that the ADA 

complex is a unique GCN5-containing acetylation complex (Eberharter et al., 
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1999).  In vitro acetylation assays using purified yeast ADA complex revealed it 

can acetylate histone H3 at lysines 14 and 18 (Grant et al., 1999).  When the 

Ahc1 protein is knocked out, the ADA complex can no longer be purified from 

yeast, indicating the complex is not present.  The Ahc1 knockout does not have a 

readily observable phenotype indicating the ADA complex is not essential in 

yeast (Eberharter et al., 1999).  A physiological function of the ADA complex 

remains to be elucidated.  There is difficulty teasing apart its potential function 

from the much larger SAGA complex. 

SAGA is a 1.8 MDa HAT complex and 15 different subunits have been 

characterized, but it is expected that at least several more remain to be identified 

(Figure 5; Sterner and Berger, 2000).  In addition to GCN5, the complex contains 

The four remaining Ada proteins (Ada1-3 and Ada5), several Spt proteins 

(suppression of Ty insertions; Spt 1, Spt 7, Spt 8, and Spt 20), a subset of TAFIIs 

[TBP (TATA binding protein) associated factors], and Tra1 (transplantability 

associated gene 1) (Sterner and Berger, 2001). 

The Spt proteins were discovered in a mutagenesis screen isolating 

proteins capable of suppressing the effects of Ty (translocatable yeast element) 

insertions (Silverman and Fink, 1984).  Knockout studies targeting specific Spt 

family members have revealed these proteins function as important general 

transcription regulators.  Strains harboring Spt3, Spt7, Spt8, or Spt15 mutations 

showed reduced viability and had multiple transcriptional defects (Marcus et al., 

1996).  Upon further analysis, it was discovered that many of the Spt proteins 

were TBP associating factors (Dudley et al., 1999).  In fact, Spt15 is identical to 

TBP, TATA binding protein (Schroeder and Weil, 1998).  Interestingly, Ada5 is 

identical to Spt20 and is the only Ada protein to date to display a Spt phenotype 

providing a link between Spt and Ada proteins (Marcus et al., 1996). 

To date, several TAFII proteins have been isolated from SAGA including 

TAFII20/17, TAFII25/23, TAFII60, TAFII68/61, and TAFII90 (Eberharter et al.,

1999).  Not only are those proteins integral components of the SAGA complex, 

but the TAF

 

IIs found in SAGA resemble histones H3 (TAFII20/17), H4  
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Figure 5: Yeast SAGA Complex 
Above is a schematic diagram of known subunits of the yeast SAGA complex.  

The yeast SAGA complex contains Gcn5 as its HAT catalytic subunit.  SAGA has 

been shown to interact with acidic activation domains mediated by its adaptor 

components (Ada2, Ada3, Ada5, and Gcn5/Ada4).  Another subset of SAGA 

proteins (Ada1, Spt7, and Spt20/Ada5) are required for structural integrity.  The 

Spt3 and Spt8 subunits have been implicated in interaction with TBP.  The TAFII 

(Taf) group of subunits share structural homology to the four core histones.  

(adapted from Sterner and Berger, 2000; reprinted with permission from 

Microbiology and Molecular Biology Reviews) 
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(TAFII25/23), and H2B (TAFII68/61) (Roth et al., 2001).  The significance of the 

homology to histones is unknown.  Further analysis of TAFII68 revealed it was 

required for both SAGA-dependent nucleosomal HAT activity and transcriptional 

activation from chromatin templates in vitro (Grant et al., 1998).  These results 

illustrate a role for certain TAFII proteins in the regulation of gene expression 

through their association with the SAGA complex (Grant et al., 1998). 

TRA1 (transplantability associated gene 1) is an essential yeast gene 

which encodes a 3744-amino acid protein that belongs to a group of proteins 

possessing carboxy-terminal regions related to phosphatidylinositol 3-kinases 

(Saleh et al., 1998).  Despite possessing a kinase-like domain, no kinase activity 

has ever been elicited from Tra1 or its homologues (Saleh et al., 1998).  The 

human homologue of Tra1, TRRAP (transformation/transcription domain–

associated protein), has been shown to be essential for c-Myc and E2F-mediated 

oncogenic transformation in human cells (McMahon et al., 1998).  The 

identification of TRRAP as an essential cofactor for oncogenic transcription factor 

pathways implies that the recruitment of TRRAP by DNA-binding activators 

directly regulates gene expression (Grant et al., 1998).  Given the relatively large 

size of TRRAP, it is likely a central molecule in the formation and stability of the 

SAGA complex (Saleh et al., 1998). 

A relatively new collection of proteins that interact with the SAGA complex 

are SGF (SAGA associated factor) proteins (Powell et al., 2004).  They do not 

possess a common element except that are believed to function as part of the 

SAGA complex.  SGF11 (11-kD SAGA associated factor) was the first SGF 

protein to be identified and it does not appear to play a role in SAGA-mediated 

histone acetylation (Powell et al., 2004).  SAGA purified from an SGF11 deletion 

strain has reduced amounts of the deubiquitylation protein Ubp8p (Powell et al., 

2004).  Histone H2B ubiquitylation and Ubp8-mediated deubiquitylation are both 

required for transcriptional activation (Ingvarsdottir et al., 2006).  Therefore, it has 

been suggested that Ubp8 and SGF11 represent a new function for the SAGA 

complex that involves gene regulation through H2B deubiquitylation (Ingvarsdottir 

et al., 2006).  Another SGF protein recently identified is SGF73, a protein with 
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unknown molecular function (Titz et al., 2006).  The human homologue of SGF73 

is ataxin-7 which is defective in the neurodegenerative disorder spinocerebellar 

ataxia type 7 (Helmlinger et al., 2004).  Ataxin-7 is a subunit of the human SAGA-

like complex, TFTC (TATA-binding protein-free TAF-containing complex; 

Helmlinger et al., 2004).  However, the role of SGF73 or ataxin-7 within their 

respective complexes is unknown. 

Unlike the ADA complex, loss of the SAGA complex results in severe 

phenotypic changes demonstrating that the SAGA complex is an essential gene 

regulator (Roth et al., 2001).  The SAGA complex has a more expanded 

acetylation pattern than the ADA complex.  In vitro HAT assays using purified 

complexes, revealed both SAGA and ADA can acetylate at lysines 14 and 18 on 

histone H3 (Grant et al., 1999).  However, SAGA can also acetylate histone H3 

at lysines 9 and 23, which ADA cannot (Grant et al., 1999). 

Given the diversity of the subunits comprising the SAGA complex, it is 

highly likely that this complex is designed to act as a co-activator.  It bridges 

basal transcription factors such TBP and TAFIIs with transcriptional activators 

such as GCN5 and the Ada proteins (Roth et al., 2001).  The transcriptional 

activators are designed to augment basal transcription factors and help facilitate 

regulation of gene expression.  With regard to GCN5, it is theorized that HAT 

complexes guide the HAT activity to certain promoters during cellular events 

(Sterner and Berger, 2000).  HAT complexes provide a connection to histone 

acetylation from signal transduction cascades initiated by a cellular stimulus.  For 

example, the SAGA complex has been shown to be required for the proper 

remodeling and activation of the inducible yeast phosphate gene PHO8 (Gregory 

et al., 1999).  Without the SAGA complex, the PHO8 promoter is not properly 

opened and there is minimal transcription even at maximal induction.  Members 

of the SAGA complex interface with stress remediation pathways activated 

during phosphate starvation resulting in the activation of the PHO8 gene 

(Gregory et al., 1999).  How SAGA is regulated and how it interacts with various 

signaling events is still largely unknown. 
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There are complexes containing other HATs besides GCN5.  PCAF also 

functions in a complex that is very similar to SAGA.  In fact, many of the same 

proteins are found in both complexes including Ada2, Ada3, Spt3, and Tra1 and 

also some of the same TAFII proteins (Kotani et al., 1998).  As the deletion of 

PCAF does not cause a different phenotype from wild-type, it is plausible that 

SAGA can compensate for the loss of PCAF-containing complexes (Yamauchi et 

al., 2000).  However, studies to fully answer this question have not been 

conducted. 

There are three known MYST containing complexes: NuA3 (nucleosome 

acetyltransferase of histone H3; Utley and Cote, 2003), NuA4 (nucleosome 

acetyltransferase of histone H4; Utley and Cote, 2003), and MSL (male-specific 

lethal; Hilfiker at el., 1994).  The NuA3 and NuA4 are yeast complexes and MSL 

was isolated from Drosophila (Utley and Cote, 2003).  Currently, the MYST 

complexes are not as well defined as SAGA or ADA.  However, there are some 

similar proteins found between the NuA3, NuA4 and SAGA complexes.  All three 

complexes contain Spt and TAFII proteins and NuA4 contains Tra1 (Sterner and 

Berger, 2000).  NuA4 acetylates histones H4 and H2A, and NuA3 acetylates 

predominantly histone H3 (Eberharter et al., 1998).  The MSL complex contains 

MOF as its catalytic core and is integral to the dosage compensation of the X-

chromosome in male fruit flies (Taipale and Akhtar, 2005).  The MSL complex 

does not appear to possess subunits found in other HAT complexes, but rather 

contains proteins specific to interacting with the X-chromosome (Taipale and 

Akhtar, 2005). 

 

F. Histone deacetylases 

Histone acetylation is a reversible modification.  In order to reestablish the 

nucleosome structure, histone deacetylases (HDACs) are recruited to 

deacetylate the histones (Kurdistani and Grunstein, 2003).  HDACs are divided 

into three main classes.  The enzymatic domains between class I and II HDACs 

are highly conserved (Ekwall, 2005).  The class III enzymes differ in that they 

require nicotinamide adenine dinucleotide (NAD; Blander and Guarente, 2004).  
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Just like HATs, HDACs also function as subunits of large complexes, often 

referred to as repressor complexes (de Ruijter et al., 2003). 

In addition to deacetylating histones, HDACs can also deacetylate 

transcription factors.  The mammalian histone deacetylase, HDAC-1 is capable 

of deacetylating p53 acetylation by p300/CBP and thus down regulating its 

activity (Juan et al., 2000). 

Ultimately, in order for a cell to achieve a proper functioning state, there 

must be an appropriate balance between HDACs and HATs (Kurdistani and 

Grunstein, 2003).  When this balance is lost, it often leads to cancer, 

developmental disorders, or other detrimental cellular states resulting in cell 

death (Timmermann et al., 2001).  As mention above, dysregulation of CBP 

through a translocation has been implicated in leukemia and the disruption of the 

interaction between PCAF and p300/CBP by E1A results in oncogenesis.  

Dysfunction of all three classes of HDACs has been implicated in loss of cell 

cycle control and tumorgenesis (Ekwall, 2005).  In fact, treatment of colon cancer 

cells with HDAC inhibitors results in an upregulation of p21 expression and 

subsequent growth arrest (Timmerman et al., 2001). 

 

G. The histone code 

The discovery that histone acetylation facilitated gene transcription led to 

the immediate hypothesis that acetylation of lysine residues neutralized the 

positive charge of histones attenuating their interaction of DNA.  However, Allfrey 

and colleagues demonstrated that acetylated histones are still able to protect 

DNA from thermal denaturation (Allfrey et al., 1964).  Therefore, it would appear 

that acetylated histones maintain an interaction with DNA. 

In addition to acetylation, histones can also be methylated, 

phosphorylated, ubiquitinated, ADP-ribosylated, and sumolated (Strahl and Allis, 

2000).  The large number of post-translation modifications that can be made to 

histones led to the development of the histone code hypothesis.  The histone 

code hypothesis suggests that these modifications serve as a code which is 

“read” by various transcription factors and chromatin associating proteins (Strahl 
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and Allis, 2000).  For example, a particular pattern of acetylation, methylation, 

and/or phosphorylation may lead to the recruitment of specific transcription 

factors that regulate gene expression. 

There are two major lines of support for this hypothesis.  First is the 

discovery of protein domains capable of binding to post-translationally modified 

histones.  For examples, bromodomains bind acetylated lysine residues and 

chromodomains recognize methylated histone residues (Bottomley, 2004).  The 

bromodomain was the first domain discovered to bind modified histones.  It is 

found in several classes of transcription factors including the HATs GCN5, 

PCAF, and p300/CBP.  The SAGA complex is able to bind and anchor to 

nucleosomal arrays by interacting with acetylated H3 via the bromodomain of 

GCN5.  If the GCN5 bromodomain is deleted, the SAGA complex is still 

enzymatically active but cannot anchor itself to the nucleosomal array (Hassan et 

al., 2002).  In addition, a crystal structure for the GCN5 bromodomain binding 

histone H4 acetylated at lysine 16 has been resolved indicating a stable 

interaction (Owen et al., 2000).  Acetylation of H4 at lysine 16 is one of the major 

targets of the MYST family of HATs.  The ability of GCN5 to recognize MYST 

modifications suggests that histone modifications made by MYST HATs may 

direct the enzymatic activity of GCN5-containing complexes through the GCN5 

bromodomain.  The bromodomain has been shown to interact with acetylated 

non-histone proteins as well.  Acetylated p53 has been shown to be involved in 

recruiting p300/CBP and PCAF to promoters through interactions with their 

bromodomains (Barlev et al., 2001). 

The second major support for the histone code hypothesis is the discovery 

that certain modifications take place in predictable and reproducible patterns.  

However, deciphering the histone code is still in its beginning stages.  

Phosphorylation of histone H3 at serine-10 (H3S10) occurs at high frequency 

resulting in chromatin condensation as cells enter and pass through mitosis 

(Bottomley, 2004).  However, H3S10 is also phosphorylated in response to 

growth factors causing chromatin to unfold and allowing for increased 

transcription (Bottomley, 2004).  The same modification may thus cause two 

37 



completly different effects.  Upon further analysis, it was discovered that after 

H3S10 is phosphorylated in response to growth factors, H3 is heavily acetylated 

(Bottomley, 2004).  The presence of hyperacetylation allows for the upregulation 

of gene transcription. 

It has also been recognized that newly synthesized DNA incorporates 

histone H4 acetylated at lysines 5 and 12 (Turner, 2000).  However, the 

importance of such modifications is unknown.  Mutagenesis of these two 

residues does not adversely affect DNA synthesis.  Another example is the 

activation of the pS2 promoter by estrogen.  Within 15 minutes of estrogen 

stimulation, CBP is recruited to the promoter and acetylates histone H3 at lysine 

18 (H3K18) followed by acetylation of lysine 23 (H3K23) and recruitment of the 

arginine histone methyltransferase CARM1 (cofactor-associated arginine [R] 

methyltransferase 1) that methylates histone 3 at arginine 17 (Daujat et al., 

2002).  The combination of these modifications leads to the upregulation of 

estrogen sensitive promoters (Daujat et al., 2002). 

 

H. Histone variants 

Histone variants are expressed in eukaryotic cells, adding another level of 

complexity to the histone code hypothesis (Henikoff et al., 2004).  The four 

canonical core histones that comprise the nucleosome can be replaced by 

slightly different histones termed histone variants (Henikoff et al., 2004).  Histone 

variants exist for histones H2A, H2B, and H3; to date no variant exists for histone 

H4 (Kamakaka and Biggins, 2005).  Histone variants differ from core histones in 

several aspects.  There are usually multiple copies of genes encoding the core 

histone, but only a single copy of each gene encoding a histone variant 

(Kamakaka and Biggins, 2005).  The mRNA for variant histones contains introns, 

is polyadenylated, and is constitutively expressed (Pusarla and Bhargava, 2005).  

Canonical core histone mRNA is intronless, is not polyadenylated, and is only 

expressed during S-phase for incorporation into newly synthesized DNA 

(Kamakaka and Biggins, 2005).  How histone variants are regulated and the 
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mechanisms involved in directing their incorporation into the genome are poorly 

understood (Pusarla and Bhargava, 2005). 

CenH3 and H3.3 are two well known variants of H3 (Pusarla and 

Bhargava, 2005).  CenH3 is a conserved essential protein that binds to 

centromeres, the DNA locus that directs formation of the kinetochore protein 

structure that mediates chromosome segregation in eukaryotes (Kamakaka and 

Biggins, 2005).  H3.3 is the least divergent variant, containing only four amino 

acid differences compared to core histone H3 in Drosophila.  However, unlike the 

core H3 histone, H3.3 is expressed throughout the cell cycle and often localizes 

to transcriptionally active regions of the chromosome (Ahmad and Henikoff, 

2002). 

Of the core histones, H2A has the largest number of variants in higher 

eukaryotes.  The two major variants are H2A.Z and H2A.X.  H2A.X and H2A.Z 

are constitutively expressed and localize throughout the genome (Pusarla and 

Bhargava, 2005).  Interestingly, the core H2A protein in Saccharomyces 

cerevisiae is more similar to the mammalian H2A.X variant than to the 

mammalian core H2A (Malik and Henikoff, 2003). 

Histone H2B has only a few variants and they appear to have very 

specialized functions in chromatin compaction and transcription repression 

during gametogenesis (Lewis et al., 2003).  Despite extensive searching, there 

are no known variants for histone H4 (Henikoff et al., 2004). 

 

III. Histone Modification and Apicomplexan Parasites 

Although there are drugs capable of treating acute Toxoplasma infection 

and reactivation, the current therapies are limited by adverse toxicities.  

Furthermore, no currently approved therapy is capable of eradicating the latent 

bradyzoite cysts.  Therefore, research continues looking for novel therapeutics 

capable of targeting bradyzoites and/or with less severe side effects.  In the 

search for better therapeutics to treat apicomplexan diseases, Darkin-Rattray et 

al. (1996) discovered a novel antiprotozoal agent, termed apicidin.  Apicidin is a 

cyclic tetrapeptide isolated from a Costa Rican fungus (Fusarium spp.; Darkin-
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Rattray et al., 1996).  In vitro studies showed that apicidin was a broad spectrum 

antiprotozoal inhibiting the growth of drug-resistant human malaria, C. parvum, 

and Toxoplasma (Darkin-Rattray et al., 1996).  The mechanism of action of 

apicidin is the non-competitive inhibition of a histone deacetylase (Singh et al., 

2002).  Unfortunately, apicidin also inhibits human HDACs, causing an anti-

proliferative effect which is detrimental to human cells, and thus limits its clinical 

potential.  However, the potent broad spectrum antiprotozoal effect of apicidin 

illustrates that chromatin remodeling enzymes may provide urgently needed 

targets for drug research (Darkin-Rattray et al., 1996). 

 

A. GCN5 homologue in Toxoplasma 

Before the discovery of apicidin, chromatin remodeling proteins had not 

been investigated in Toxoplasma.  In 1999, Hettman and Soldati described a 

homologue of GCN5 in Toxoplasma termed TgGCN5.  They reported a cDNA of 

2.3kb, which encoded a 474 amino acid protein.  TgGCN5 possesses a high 

degree of homology to the GCN5 present in yeast and fellow Alveolate 

Tetrahymena, with a short N-terminal extension of 141 residues. 

However, in 2000 Smith and Sullivan published their cloning results of 

GCN5 in Toxoplasma, which indicated that the actual transcript was considerably 

larger.  The new sequence contained a longer, unique N-terminal extension 

encoded by a single exon in the genomic locus (Sullivan and Smith, 2000).  A 

Northern blot containing mRNA purified from Toxoplasma tachyzoites was 

probed with 2.6kb of sequence capable of hybridizing to both the long form and 

the previously reported short form of TgGCN5.  The Northern results showed 

hybridization to only one band consistent with the larger version of TgGCN5 

(Bhatti and Sullivan, 2005).  Furthermore, Hettman and Soldati reported that the 

truncated form of TgGCN5 does not localize to the nucleus when over-expressed 

in Toxoplasma tachyzoites (Hettman and Soldati, 1999).  In contrast, the full-

length protein with the longer N-terminal extension does localize to the parasite 

nucleus when fused to green fluorescent protein (Sullivan, unpublished data).  
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Collectively, the above data argues that Toxoplasma expresses only the form of 

TgGCN5 consistent with the size reported by Sullivan and Smith. 

 
B. The N-terminal extension of TgGCN5 

Figure 6 shows a comparison of TgGCN5 with other GCN5 homologues 

present in other organisms.  The conserved Ada2 and bromodomains are 

present in TgGCN5.  However, there is a striking difference in the N-terminal 

sequence between TgGCN5 and other GCN5 homologues.  As depicted in 

Figure 6, the large N-terminal extension of TgGCN5 goes against the general 

trend that GCN5 proteins from lower eukaryotes have shorter N-termini.  The 

entire TgGCN5 N-terminal extension is comprised of 820 amino acids which is 

larger than the extensions found in metazoan GCN5 homologues (approximately 

500 residues).  The closely related Tetrahymena possesses a small N-terminal 

extension.  Furthermore, unlike the large N-terminal extensions present in 

metazoan GCN5 and PCAF, the lengthy N-terminal extension present in 

TgGCN5 bears no similarity to any known protein and is devoid of known protein 

motifs. 

The presence of a parasite-specific domain in a highly conserved protein 

generates many questions regarding its function(s).  Given what is known about 

other GCN5 proteins, the N-terminus may interact with other proteins to form 

HAT complexes not present in other eukaryotes.  The unique N-terminal 

extension may play a role in regulating the acetylation activity of TgGCN5.  

Perhaps TgGCN5 has a unique histone acetylation pattern directed by the N-

terminal extension.  The N-terminus may also be involved in substrate 

recognition and facilitate the acetylation of non-histone proteins in the parasite.  

There are many theoretical functions of the unique N-terminus of TgGCN5.  

However, from the two initial reports of TgGCN5, it can be deduced that at least 

one known function of the N-terminus is involvement in nuclear localization.  As 

mentioned, the N-terminal extension present in the maize homologue of GCN5 is 

also required for nuclear targeting, but the exact sequence and mechanism  
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Figure 6: TgGCN5 and other GCN5 homologues 
Above are schematic diagrams comparing known homologues of GCN5 to 

TgGCN5.  Compared to other species, TgGCN5 possess a lengthy unique N-

terminal extension.  The N-terminal extensions present in human, mouse, and 

Drosophila are highly homologous to the N-terminal extension found in PCAF.  

The N-terminal extension in TgGCN5 shares no homology to any known protein.  

TgGCN5 also possesses the conserved catalytic domain, responsible for 

acetylating histones, an Ada2 binding domain (Ada2), and a bromodomain (br). 
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responsible for transporting the protein to the nucleus was not determined (Bhat 

et al., 2003). 

 
IV. Nuclear Import 

The histone acetylase and gene regulatory functions of GCN5 have been 

rigorously studied.  However, little attention has been directed at determining 

how the HAT gets into the cell nucleus.  Clearly the unique N-terminal extension 

of TgGCN5 is involved in nuclear targeting making it an excellent tool to resolve 

how this protein is target to the parasite nucleus.  Understanding how TgGCN5 

and other transcription factors enter the parasite nucleus may lead to the 

discovery of novel elements present in nuclear trafficking pathways in 

Toxoplasma and other apicomplexans.  Novel elements not present in higher 

eukaryotes may be exploited in the design of more selective therapeutic agents.  

Blockade of parasite nuclear trafficking could subvert parasite differentiation and 

other processes essential for parasite survival.  Additionally, the study of these 

pathways in protozoa provides a unique perspective on how these systems 

evolved in early eukaryotic cells. 

 

A. Nuclear localization signals 

In all eukaryotic organisms, the nucleus is separated from the cytoplasm 

by the nuclear envelope.  The nuclear envelope is perforated by many pores 

through which water-soluble molecules enter and leave the nucleus.  Each pore 

is an elaborate multi-protein structure termed the nuclear pore complex (NPC), 

which regulates the movement of macromolecules across the nuclear envelope 

(Pante and Kann, 2002).  The nuclear pore complex is immense, approximately 

12.5 million Daltons (Weis, 2003).  Ions, small metabolites and globular proteins 

less than 40kD can diffuse through the nuclear pore complex (Pante and Kann, 

2002).  However, large proteins and complexes cannot diffuse in and out of the 

nucleus.  Therefore, they must be actively transported through the nuclear pore 

complex.  Many proteins actively imported through the nuclear pore contain a 

nuclear localization signal (NLS; Quimby and Corbett, 2001). 
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The first NLS was discovered during mutational analysis of the large T-

antigen, an early viral protein of the simian virus SV40 (Kalderon et al., 1984a).  

In infected cells, large T-antigen normally accumulates in the nucleus.  Mutations 

within a short sequence of basic residues KKKRK (K=lysine, R=arginine) 

prevented large T-antigen from entering the nucleus (Kalderon et al., 1984a).  

Therefore the basic pentapeptide defined a region of the protein involved in 

nuclear localization.  When the basic penta-peptide was fused to two very large 

cytosolic proteins, beta-galactosidase and pyruvate kinase, both were targeted to 

the cell nucleus instead of remaining in the cytosol (Kalderon et al., 1984b). 

Since the initial discovery in large T-antigen, NLSs have been isolated in 

numerous other proteins imported into the nucleus (Quimby and Corbett, 2001).  

They are similar to the SV40 large T-antigen NLS in that they contain 

consecutive basic amino acids.  A large study looking at different NLSs by 

Boulikas reported nine distinct forms of strongly basic hexapeptides 

characteristic of nuclear proteins among all eukaryotic species (Boulikas, 1994).  

The hexapeptides contained at least four arginines and/or lysines and one or two 

non-polar residues.  The four most common NLS motifs were θθθθ, θθxθθ, 

θθθxθ, and θθxθxθ, where θ equals a basic residue (arginine or lysine) and “x” 

represents a non-polar residue.  Boulikas suggested that these streches of basic 

residues are different versions of a core NLS (Boulikas, 1994). 

Targeting proteins to the nucleus utilizing clusters of basic residues is a 

highly conserved eukaryotic phenomenon that occurred early in eukaryote 

evolution.  Using phylogenetic analysis with 16s rRNA sequence, Giardia lamblia 

represents the earliest diverging lineage in the eukaryotic line of descent (Sogin 

et al., 1989).  When GFP is expressed in Giardia lamblia, is localizes throughout 

the cytoplasm, but if the SV40 large T-antigen NLS is fused to GFP, it is targeted 

to the Giardia lamblia nuclei (Elmendorf et al., 2000).  Therefore, this early 

branching eukaryote contains machinery capable of recognizing and transporting 

proteins to the nucleus through recognition of an NLS composed of basic 

residues. 
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B. Importin alpha 

Additional experiments studying nuclear localization revealed two proteins 

involved in nuclear import through interaction with NLSs composed of basic 

residues: importin α and importin β (Gorlich et al., 1995).  Importin α (IMPα) and 

importin β (IMPβ) are also referred to as karyopherin α and karyopherin β (Chook 

and Blobel, 2001). 

The function of importin α is to recognize and bind to NLSs comprised of 

basic residues (Gorlich et al., 1994).  Importin α is a highly conserved protein 

present in virtually all eukaryotic organisms (Chook and Blobel, 2001).  A text 

search of the annotated proteins in the Giardia genomic database 

(www.mbl.edu/Giardia) revealed the presence of an importin α homologue 

present in this primitive eukaryote.  From its early origins, the importin α gene 

family has undergone considerable expansion during the course of eukaryotic 

evolution.  Whereas the yeast Saccharomyces cerevisiae genome encodes a 

single importin α, the human genome encodes six different genes (Chook and 

Blobel, 2001).  Phylogenetic analyses indicate that a single ancestral animal 

importin α gave rise to the additional paralogues in higher eukaryotes (Goldfarb 

et al., 2004).  The presence of multiple importin α genes in metazoans suggests 

they appeared during the evolution of multicellular animals and presumably 

perform cell and tissue specific roles (Goldfarb et al., 2004). 

Crystallographic analysis revealed that importin α has a rather unique 

structure that facilitates its ability to bind to an NLS (Kobe, 1999).  The structure 

of importin α can be divided into two parts.  The first part is a short N-terminal 

domain of about 60 residues in length called the importin β binding (IBB) domain 

(Goldfarb et al., 2004).  As the name implies, the IBB domain is the region of the 

protein that interacts with importin β.  The remainder of the ~60kD protein is 

comprised of repeating armadillo (ARM) motifs (Teh et al., 1999).  Each ARM 

motif is composed of three α-helices and the repeating ARM motifs associate 

together to form a superhelical tunnel-like structure.  The superhelical structure 

exposes highly conserved acidic residues on its surface which interact with the 

basic residues present in the NLS of nuclear proteins (Teh et al., 1999). 
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Although importin-α is capable of recognizing and binding an NLS, it is 

unable to translocate a protein into the nucleus.  In order to transport a protein 

into the nucleus importin α must complex with importin β through its IBB domain 

(Gorlich et al., 1995).  Importin α must also be bound by importin β before it can 

effectively bind an NLS (Goldfarb et al., 2004).  Further analysis of the crystal 

structure of importin α indicates that the IBB domain is autoinhibitory (Kobe, 

1999).  When not bound to an NLS, the IBB domain folds over and interacts with 

the ARM repeats (Kobe, 1999).  The IBB contains an NLS-like motif, KKR.  Thus, 

it appears that importin α is autoinhibited by an internal NLS.  Once importin α is 

bound by importin β, the autoinhibition is negated allowing an NLS to be bound 

(Kobe, 1999).  Once the NLS is bound by importin α, importin β facilitates 

translocation into the nucleus through interaction with components of the nuclear 

pore complex (Chook and Blobel, 2001). 

Several other proteins that interact with importin α and importin β have 

been discovered, eventually leading to the development of a model for the import 

of cytosolic proteins containing a basic NLS (Figure 7).  Once the trimeric 

complex consisting of importin β, importin α, and the nuclear protein are 

translocated through the NPC, importin β is bound by Ran-GTP causing the 

complex to dissociate (Quimby and Corbett, 2001).  Ran (ras-related nuclear 

protein) is a small GTPase that is involved in recycling importin β and importin α 

back to the cytoplasm (Bischoff and Ponsting, 1991; Chook and Blobel, 2001).  

When importin β is bound by Ran-GTP, it is transported out of the nucleus back 

into the cytoplasm where Ran-GTP interacts with RanGAP (Weis, 2003).  

RanGAP (Ran GTPase activating factor) facilitates the GTPase activity of Ran, 

causing it to hydrolyze GTP to GDP (Stewart and Rhodes, 1999).  The hydrolysis 

of GTP causes Ran to release importin β.  Ran-GDP is then translocated back 

into the nucleus where it is acted upon by RCC1 (regulator of chromosome 

condensation; Bischoff and Ponsting, 1991).  RCC1 (or RanGEF; Ran guanine 

nucleotide exchange factor), catalyzes the release of GDP from Ran and the 

regeneration of Ran-GTP (Quimby and Corbett, 2001). 
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Figure 7: Importin α and β nuclear import pathway 

A diagram of the proposed mechanism for the transport of proteins 

containing a basic NLS into the nucleus.  Importin α, Importin β, and the nuclear 

protein form a trimeric complex, that is transported through the NPC into the 

nucleoplasm.  Ran-GTP and importin β are transported back to the cytoplasm.  

Importin α is also recycled back to the cytoplasm through interactions with CAS 

and Ran-GTP.  In the cytoplasm, RanGAP stimulates conversion of Ran-GTP to 

Ran-GDP resulting in Ran to dissociate from Import β and CAS.  The released 

Importin β and α can now interact with another nuclear protein bearing a basic 

NLS.  Ran-GDP is transported back to the nucleus, where RCC1 causes it to 

release GDP and bind GTP.  (modified from Lodish et al., 2000; reprinted with 

permission from H. Freeman & Company) 
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Importin α is recycled in a similar manner, but involves a nuclear export  

protein, CAS (cellular apoptosis susceptibility gene; Stewart and Rhodes, 1999).  

CAS binds to importin α, and then CAS is bound by Ran-GTP.  The trimeric 

complex is exported out the nucleus where Ran-GTP interacts with RanGAP 

causing GTP hydrolysis and dissociation of the complex.  CAS and Ran-GDP are 

subsequently transported back into the nucleus.  The majority of Ran-GTP in the 

nucleus and Ran-GDP in the cytoplasm establishes a gradient that drives the 

recycling of importin α and β facilitating continuous nuclear import (Weis, 2003). 

 

C. Nuclear import in Apicomplexans 

Nuclear trafficking is virtually an untapped area of research in 

apicomplexans.  Homologues of importin β and importin α have been identified 

and characterized in Plasmodium (Mohmmed et al., 2003).  Plasmodium also 

possesses Ran and RCC1 (Ji et al., 1998).  However, no functional studies have 

been performed on any of these nuclear trafficking proteins.  There have been no 

reports on the identification of any proteins involved in nuclear transport in 

Toxoplasma.  The N-terminal extension of TgGCN5 may provide an excellent 

tool to begin studying the nuclear trafficking pathways in apicomplexans. 

 

D. Nuclear trafficking of GCN5 

To date, very little is known about how GCN5 is targeted to the nucleus in 

any organism.  The maize GCN5 homologue (ZmGCN5) is the only GCN5 

protein for which an NLS has been proposed.  When the entire 175 amino acid 

N-terminal extension of ZmGCN5 is fused to GFP, GFP is targeted to the maize 

nucleus (Bhat et al., 2003).  Near the beginning of the N-terminal extension of 

ZmGCN5 there is a motif comprised of four basic residues, RKRK, that has been 

proposed to be the NLS for ZmGCN5 (Bhat et al., 2003).  However, no additional 

studies have been performed to confirm that RKRK is indeed the NLS for 

ZmGCN5.  The 118 amino acid yeast GCN5 N-terminal extension reveals no 

stretches of 3 or more consecutive basic residues.  How yeast GCN5 is targeted 

to the nucleus is unknown, but it is doubtful to involve the N-terminal extension.  
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A study investigating the ability of a human importin α paralogue to target nuclear 

proteins to the nucleus used the GCN5 related HAT, PCAF as one of many bait 

proteins (Kohler et al., 1999).  The study demonstrated that importin α is required 

for PCAF to be transported to the nucleus.  However, the binding site (NLS) of 

PCAF was not identified in the study.  TgGCN5 contains several clusters of basic 

residues in its N-terminal extension that may be functioning as an NLS capable 

of associating with a putative Toxoplasma homologue of importin α and targeting 

it the parasite nucleus. 

 

V. Thesis Goals 

Bradyzoite differentiation can be replicated in vitro using physiological and 

chemical stressors such as heat, sodium arsenite, basic pH, and IFNγ.  GCN5 in 

yeast is involved in mediating stress responses, particularly amino acid and 

phosphate starvation.  Thus, it is quite possible that TgGCN5 may be involved in 

mediating stress responses in Toxoplasma and therefore involved in the 

bradyzoite differentiation process.  Characterization of TgGCN5 will facilitate our 

understanding of chromatin remodeling in apicomplexans and may bring us 

closer to understanding the differentiation process in Toxoplasma. 

TgGCN5 contains a unique N-terminal extension upstream of the catalytic 

domain that shares no homology to analogous domains found in other GCN5 

proteins, nor is it similar to any sequence in protein databases.  The goal of this 

thesis is to better understand the purpose of the unique N-terminus.  Our 
hypothesis is that this unique N-terminal extension is critical to the 
function of TgGCN5.  Three possible roles of the N-terminal domain will be 

investigated in the following aims: 

 

A. AIM 1: Determine how the N-terminal domain mediates nuclear localization 

It is clear that the N-terminal extension is involved in mediating the nuclear 

localization of TgGCN5.  Therefore, TgGCN5 makes an excellent model to study 

how a GCN5 protein is translocated into the nucleus.  Previous studies 

performed in the laboratory have narrowed the region involved in nuclear 
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localization to be between amino acids 58 and 260.  Between residues 58 and 

260 there is a single stretch of basic residues that may be function as an NLS.  

Truncations will be made in the N-terminal extension to isolate this stretch of 

basic residues to determine if it is functioning as the NLS.  Localization of the 

truncation mutants will be determined using immunocytochemistry via a fused 

FLAG tag.  If this stretch of basic residues is indeed the NLS, it will be 

determined if it is sufficient to target a cytoplasmic protein to the parasite 

nucleus.  To date, an NLS has never been mapped for any Toxoplasma protein.  

Therefore, the NLS elucidated in TgGCN5 will be the first NLS described in 

Toxoplasma.  In addition, it will be the first NLS described in a GCN5 homologue. 

 

B. AIM 2: Assess the involvement of the N-terminal extension in protein-protein 

interactions 

There are two different groups of proteins that may interact with the N-

terminus of TgGCN5.  First group of proteins would be those involved in 

mediating the translocation of GCN5 into the parasite nucleus.  Once the NLS 

has been elucidated in AIM 1, it will be used to guide our search for potential 

nuclear trafficking proteins.  If the NLS is indeed comprised of basic residues, we 

will search the Toxoplasma genomic database for a homologue of importin α.  If 

present, the homologue will be cloned and protein expressed.  Using an in vitro 

pull down assay, it will determined if the importin α homologue interacts with 

TgGCN5 and if the interaction occurs at the NLS elucidated in AIM 1.  To date, 

no one has determined if nuclear trafficking proteins exist in Toxoplasma. 

The second group proteins that may interact with TgGCN5 are those 

involved in forming HAT complexes analogous to the SAGA and ADA complexes 

found in yeast.  To identify proteins interacting with N-terminus, co-

immunoprecipitation experiments using anti-FLAG affinity resin will be performed 

on transgenic parasites that over-express recombinant full length TgGCN5 fused 

to FLAG tag  (FLAGTgGCN5) and TgGCN5 lacking the N-terminal extension also 

fused to a FLAG tag (FLAGΔNTTgGCN5).  Proteins isolated in pull down assays 

from FLAGTgGCN5 and that are not present in pull down assays from 
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FLAGΔNTTgGCN5 will be deemed to be interacting with the N-terminal extension 

of TgGCN5. 

 

C. AIM 3: Determine if the N-terminal extension modulates enzymatic (HAT) 

function 

The long extensions present in metazoan homologues of GCN5 are 

involved in substrate recognition.  Even though the N-terminal extensions are not 

homologous, the unusual N-terminal domain of TgGCN5 may have a role in 

regulating substrate specificity and/or acetylase function.  In vitro HAT assays will 

be performed using full length recombinant TgGCN5 and TgGCN5 lacking the N-

terminal extension on free histone substrates.  Antibodies to specific acetylated 

lysine residues will be used to determine the substrate specificity of TgGCN5 

with and without the N-terminal extension. 
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CHAPTER 2: MATERIALS AND METHODS 

 

I. Culture and Parasite Techniques 

Below is an explanation of these well established techniques, which are 

described in greater detail in Roos et al., 1994. 

 
A. Cell and parasite culture 

The RH Toxoplasma strain obtained from the AIDS Research and 

Reference Reagent Program (Division of AIDS, NIAID, National Institutes of 

Health; http://www.aidsreagent.org) was used for all experiments in this thesis.  

Tachyzoites were cultivated using confluent monolayers of human foreskin 

fibroblast (HFF) cells in T-25cm2 flasks (Fisher #10-126-30).  HFF cells 

(American Tissue Culture Company; #CRL-2522) were grown to confluency in 

host cell (HC) media.  HC media consists of Dulbecco’s Modified Eagle Medium 

(DMEM; Invitrogen #11965-126) supplemented with 10% heat-inactivated fetal 

bovine serum (Invitrogen #16000-044) and 25μg/L gentamicin (Invitrogen 

#15710-064).  After combining the components of HC media, it is filter sterilized 

using a 0.2µm filtering device (Fisher #09-740-25A).  HFF cells were grown at 

37°C in a humidified 5% CO2 environment.  All tissue culture work was 

performed under sterile conditions inside a laminar flood hood. 

Additional HFF flasks were generated using trypsin digestion.  The HC 

media from a T-150cm2 flask (Fisher #10-126-32) containing confluent HFF cells 

was aspirated.  The monolayer was washed with 3.0ml of 37°C sterile PBS which 

was subsequently aspirated.  Following the wash, 3.0ml of trypsin (Invitrogen 

#25200-056) was added to the flask.  The flask was rocked several times to allow 

the trypsin to adequately coat the monolayer and then approximately two-thirds 

of the trypsin was aspirated.  The flask was placed at 37°C for one minute.  The 

monolayer was disrupted by banging the corner of the flask against the palm of 

the hand several times.  The trypsinization was squelched by pipetting 25ml of 

fresh 37°C HC media into the flask.  The wall of the flask containing the 

monolayer was pipetted against several times to completely suspend all of the 
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trypsinized cells.  The trypsinized cells were diluted up to 400ml using fresh 37°C 

HC media.  For making additional T-25cm2 flasks, 10ml of the trypsinized cells 

were added to each new T-25cm2 flasks and for making additional T-150cm2 

flasks, 50ml of the resuspended trypsinized cells were added to new T-150cm2 

flasks.  New flasks containing resuspended trypsinized cells were placed at 37°C 

in a humidified 5% CO2 environment.  The caps on the flasks were left slightly 

loose to allow for gas exchange.  Cell growth of the new monolayers was 

monitored daily using a Leica DM IL inverted microscope at 250X and 400X 

magnification with a phase filter.  Once the monolayers were confluent, the flask 

lids were closed tightly. 

Because HFF cells are not an immortalized cell line, they cannot be 

passed an infinite number of times.  Therefore, the number of times HFF cells 

were trypsinized was recorded on each flask.  HFF cells usually senesced and 

would no longer grow to confluency after 20 rounds of trypsin digestion.  When 

this occurred, lower passage HFF cells were thawed from liquid nitrogen stocks 

as outline below (page 56).  HFF cells are routinely chosen for parasite 

cultivation because they exhibit strong contact inhibition and can be stored in 

incubators for up to 4 weeks without losing their ability to support parasites. 

For immunofluorescence assays, 12 well plates containing coverslips 

were required.  Tissue culture grade 12 well plates (Fisher #07-200-81) and 

coverslips (Fisher #12-545-83) were used.  The coverslips were sterilized by 

autoclaving prior to use in cell culture.  Using sterile flat tweezers (Fisher #09-

753-50), a single cover slip was placed in each well of the 12 well plate.  Host 

cells from a T-150cm2 flask were trypsinized as outline on the previous page.  

After squelching the trypsinization with 25ml of fresh 37°C HC media, 1.0ml of 

the trypsinized cells were diluted into 25ml of 37°C HC media in a sterile 50ml 

conical tube (Fisher #14-959-49A).  The diluted cells were mixed gently by 

inversion.  Two milliliters of the diluted cells were added to each well and the 

plate was placed at 37°C in a humidified 5% CO2 environment.  Cell growth 

within each well was monitored daily using a Leica DM IL inverted microscope at 

250X and 400X magnification with a phase filter. 
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For cloning by limiting dilution assays, 96 well plates were required.  

Tissue culture grade 96 well plates (Fisher #07-200-89) were used.  Host cells 

from a T-150cm2 flask were trypsinized as outline above (page 52).  After 

squelching the trypsinization with 25ml of fresh 37°C HC media, 5.0ml of the 

trypsinzed cells were diluted into 100ml of 37°C HC media in a sterile T-75cm2 

(Fisher #10-126-31).  The diluted cells were mixed gently by inversion.  20ml of 

the diluted cells were poured into a sterile trough (Fisher #13-681-101) and using 

a Brinkmann EasyPet automatic pipetter (Fisher #13-688-177), 200µl of diluted 

cells were added to each well generating a total of 5, 96 well plates.  The plates 

were placed at 37°C in a humidified 5% CO2 environment.  Cell growth of the 

monolayers within each well was monitored daily using a Leica DM IL inverted 

microscope at 250X magnification without a phase filter. 

Due to the obligate intracellular nature of the tachyzoite, they must 

constantly be provided with new host cells in order to sustain themselves.  Once 

a monolayer in a T-25cm2 flask has been infected with tachyzoites, the 

monolayer will be destroyed or lysed in a matter of days depending on the size of 

the inoculum.  If the parasites are not provided with a new monolayer, the 

parasites will die.  Prior to parasite inoculation, the old HC media in the flasks 

was aspirated and replaced with 9ml of parasite media (PA) which consists of 

DMEM, 1% heat-inactivated fetal bovine serum, and 25μg/L gentamicin, filter 

sterilized using a 0.2µm filtering device (Fisher #09-740-25A).  The reduction in 

fetal bovine serum is thought to minimize the exposure of parasites to serum 

antibodies and does not have detrimental effect on confluent host cells. 

The flask containing the infected monolayer is scrapped with a sterile 

spatula (Fisher #08-773-2) to completely rupture any remaining parasite 

vacuoles and to suspend the parasites into the media.  For routine parasite 

upkeep, 1.0ml of media containing the parasites from an infected flask was 

transferred to a T-25cm2 flask containing a new confluent HFF monolayer.  

Infection and subsequent destruction of the new monolayer would typically occur 

within 2-3 days yielding approximately 1X107 to 5X107 parasites.  Once the HFF 

monolayer is destroyed parasites must be transferred to a new flask containing a 
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confluent HFF monolayer.  Parasites which remain extracellular for longer than 

ten to twelve hours begin to die.  When large numbers of parasites were required 

(e.g. for immunoprecipitation) a T-150cm2 flask of HFF cells was inoculated with 

3-4ml of parasites yielding at least 1X108 parasites.  All flasks containing infected 

monolayers were grown at 37°C in a humidified 5% CO2 incubator.  The lids on 

the flasks were left loose overnight (approximately twelve to eighteen hours) to 

allow media to equilibrate with the 5% CO2 environment inside the incubator.  

The following day, the lids were tightened to minimize the risk of spillage and 

culture contamination.  Parasite infection of new host cells was monitored daily 

using a Leica DM IL inverted microscope at 400X magnification with a phase 

filter. 

 

B. Purification and quantification of parasites 

Before genetic manipulation or biochemical experiments were performed 

using parasites, tachyzoites had to be purified away from host cell debris.  Flasks 

containing infected monolayers were scrapped with a sterile spatula to 

completely rupture any remaining parasite vacuoles and to suspend the parasites 

into the media.  The suspended parasites were transferred into the barrel of a 

60ml plastic syringe (Fisher #14-841-36).  The syringe was attached to a filter 

cartridge (Fisher #NC9671597) containing a 3μm pore-size polycarbonate filter 

disk (Fisher #NC9655197).  The parasites were passed through the filter 

cartridge removing most of the host cell debris.  If the filtered parasites were to 

be maintained in tissue culture an unopened sterile syringe and autoclaved 

sterile filter cartridge were used.  The filtrate containing parasites was centrifuged 

at 800 x g for ten minutes.  The supernatant was aspirated off and the parasite 

pellet was resuspended in PBS (pH 7.0).  When necessary, tachyzoites were 

quantitated using an improved Neubauer phase hemocytometer (Fisher #02-671-

54) viewed with a Leica DM IL inverted microscope  at 400X magnification with a 

phase filter.  Following quantitation, the parasite were centrifuged again 800 x g 

for ten minutes.  The PBS was aspirated off and the parasite pellet was 
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resuspended in an appropriate buffer dictated by the intended experimental 

design. 

 

C. Freezing and thawing cells and parasites 

For long-term storage, tachyzoites were frozen in liquid nitrogen using 

DMSO (Sigma #D4540) as a cryoprotectant.  Because tachyzoites do not survive 

very long out side of a host cell, parasites were frozen before completely 

destroying the host cell monolayer.  An infected monolayer in T-150cm2 flask was 

scraped at about 70-80% destruction with a sterile spatula (Fisher #08-773-2).  

The suspended infected cells were transferred to a 15ml conical (Fisher #14-959-

70C) and centrifuged for ten minutes at 800 x g at 4°C and the pellet was 

resuspended in 1.5ml of ice cold PA media (page 54).  An equal volume of 

freezing media (FZ; DMEM with 20% heat-inactivated fetal bovine serum and 

20% DMSO) was added.  The culture was aliquoted into round-bottom, cryovials 

(Fisher #09-761-72) and placed in a pre-chilled styrofoam freezer box at -80°C.  

Frozen aliquots were moved to liquid nitrogen storage the following day. 

HFF cells were frozen in a similar manner from a confluent T-150cm2 

flask.  Trypsinized cells were resuspended in 1.5ml of ice cold HC media and 

1.5ml of FZ media.  The culture was divided into 0.5ml aliquots in round-bottom, 

cryotubes (Fisher #09-761-72) and placed in a pre-chilled styrofoam freezer box 

at -80°C.  Frozen aliquots were moved to liquid nitrogen storage the following 

day. 

When necessary, parasites and HFF cells were thawed quickly to ensure 

adequate viability.  Frozen aliquots were removed from liquid nitrogen and 

immediately placed into 37°C water.  Close to complete thawing, the tube was 

doused with 70% ethanol and dried (to minimized contamination).  Thawed HFF 

cells were quickly transferred to a T-75cm2 flask (Fisher #10-126-31) containing 

30ml of host cell media.  Thawed parasites were inoculated into a T-25cm2 of 

confluent HFF cells with 9.5ml PA media.  Freshly thawed HFF cells took up to a 

week to become confluent.  Thawed parasites could also take up to a week to 

destroy a monolayer.  After the thawed parasites had lysed the initial monolayer 
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1.0ml of parasites was transferred to a fresh HFF monolayer and the parsites 

were maintained in culture as outlined above in Section-A (page 54). 

 

D. Parasite transfection 

For the purposes of generating transgenic parasites, the RH parasite in 

which the HXGPRT (hypoxanthine-xanthine-guanine phosphoribosyltransferase) 

enzyme had been deleted was used (RHΔHX; Donald et al., 1996).  The RHΔHX 

parasite line can be selected for by the addition of the prodrug 6-thioxanthine (6-

TX; 320μg/ml Sigma #S448524 in 0.5M KOH) to PA media (Pfefferkorn et al., 

2001).  Parasites are transfected with a plasmid containing a copy of the 

HXGPRT gene and are selected for using mycophenolic acid [MPA; 25mg/ml 

Sigma #M3536 in 100% EtOH (ethyl alcohol)] supplemented with xanthine 

(50mg/ml Sigma #X4002 in 0.5M KOH).  Under MPA selection, RHΔHX parasites 

that did not incorporate the plasmid, no longer possess a mechanism to generate 

guanine nucleotides and die (Donald et al., 1996).  Transformed parasites can 

utilize their restored HXGPRT salvage pathway to generate guanine nucleotides 

from the supplemented xanthine. 

RHΔHX parasites for transfection were harvested from a freshly lysed T-

25cm2 flask and filter purified from host cells as described above.  Parasites were 

washed in 5.0ml of filter sterilized cytomix electroporation buffer (Soldati et al., 

1993).  After centrifugation, the pellet was resuspended in 300µl of cytomix 

supplemented with fresh 2mM ATP (Sigma #A6419) and 5mM glutathione 

(Sigma #G6013).  Between 30-50µg of sterile DNA was resuspended in 100µl of 

cytomix supplemented with 2mM ATP and 5mM glutathione and was added to 

the 300µl of parasites.  The parasites and DNA were mixed thoroughly and 

transferred to a 2.0mm gap cuvette (Fisher #BTX620) and electroporated using a 

single 1500V pulse with a resistance setting of 25Ω on a BTX model 630 Electro 

Cell Manipulator.  Electroporated parasites were allowed to recover for fifteen 

minutes at room temperature.  The transfected parasites were split between two 

T-25cm2 flasks containing a confluent monolayer of HFF cells.  After complete 

destruction of the monolayer, 2.0ml of parasites were passed onto a fresh 
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monolayer.  Following the destruction of the second monolayer, 2.0ml of 

parasites were passed onto a fresh monolayer adding 10µl of MPA (25mg/ml 

Sigma #M3536 in 100% EtOH) supplemented with 25μl xanthine (50mg/ml 

Sigma #X4002 in 0.5M KOH) for selection of parasites possessing the 

transfected plasmid. 

 

E. Clonal dilution 

Despite the use of MPA to select for parasites possessing the transfected 

plasmid, the population of transfected parasites is never homogenous.  In order 

to obtain a homogenous population of transfected parasites a process termed 

clonal dilution was employed to generate a parasite population originally derived 

from a single parasite. 

Following at least two rounds of MPA selection, parasite were harvested 

and filtered under sterile conditions to remove host cell debris.  The parasites 

were resuspended in PM media containing MPA and xanthine.  The 

concentration of the parasites was determined using an improved Neubauer 

phase hemocytometer (Fisher #02-671-54) viewed with a Leica DM IL inverted 

microscope at 400X magnification with a phase filter.  Ten microliters of the 

suspended parasites was added to the hemocytometer.  The hemocytometer 

contains a 5 X 5 grid generating 25 boxes when viewed on the microscope.  The 

number of parasites within 5 boxes is counted and averaged.  The counting is 

repeated with a total of 4 ten-microliter samples.  The average number of 

parasite from each round of counting is then averaged.  The purpose of multiple 

rounds of counting is to reduce the amount of error.  The final average from four 

rounds of counting is multiplied by 25 because there are 25 boxes on the grid.  

The resulting product is multiplied by 1000 because the volume of the grid in the 

hemocytometer is approximately 1 microliter.  The final number is concentration 

of parasite per milliliter in the flask.  The concentration is usually around 1X106 to 

5X106 parasites per milliliter. 

A 1:1000 dilution must be performed to bring the concentration of the 

parasites down to a useable concentration.  Ten microliters of the parasites is 
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added to 10ml of PM buffer containing MPA supplemented with xanthine.  The 

parasite concentration in the flask is divided by 1000 giving the concentration of 

the diluted parasites (usually about 1-5X103 parasites per milliliter).  The 

concentration of diluted parasites can be rewritten as parasites per microliter 

(usually about 1 to 5 parasites per microliter).  In order to separate out the 

parasite individually, 96 well plates are generated with a confluent monolayer of 

HFF cells at the bottom of each well as outlined above (page 54).  The goal is to 

get one parasite into each well.  For simplicity, the 96 wells in a single plate are 

rounded up to 100 wells which means 100 parasites are needed.  Therefore, the 

number of parasites (100) is divided by the concentration of the parasites (100 

wells / 1 to 5 parasites/μL = 20 to 100μL) giving the volume of the 1:1000 dilution 

that contains 100 parasites.  Because of the high amount of error associated with 

parasite counting, the calculated volume containing 100 parasites is usually 

multiply by 2 to ensure enough parasites are used to seed the well plate (~40 to 

200µl).  The final volume, which contains about approximately 100 parasites is 

added to 20ml of PA media containing MPA supplemented with xanthine (20ml is 

the volume of media necessary to fill one 96 well plate).  The 20ml containing 

approximately 100 parasites is then divided evenly over one 96 well plate by 

placing 200µl into each well.  The plates are allowed to grow for about seven 

days without being disturbed.  The goal will be to look for individual wells that 

contain a single plaque of destroyed host cells caused be a single parasite.  

Multiple plaques in a well indicate more than one parasite was placed in the well 

and does not represent a population derived from a single parasite.  If the plates 

are moved excessively it will suspend the parasites in the wells causing the 

appearance of multiple plaques making it difficulty to tell which wells contain 

populations derived from a single parasite and which one do not. 

Several wells, usually between 4 to 7, were picked and the parasites 

present in the well were transferred to a T-25cm2 flask containing a fresh 

monolayer of host cells with PA media containing MPA supplemented with 

xanthine.  Because of the small inoculum, it took between 7 to 14 days for the 

parasites to destroy the monolayer.  The parasites are passed through at least 
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two more T-25cm2 flasks to ensure the parasites numbers were sufficient and 

then the clonal parasites were assessed for the presence of the transfected 

plasmid.  For the purposes of this thesis, immunofluorescent assays were 

performed to assess the presence and expression of the transfected plasmid.  

Clonal dilution was used to obtain clonal parasite lines expressing full length 

TgGCN5 and TgGCN5 lacking the N-terminal extension (ΔNTTgGCN5). 

 

II. Vector Construction 

A. General PCR protocol 

All primers were ordered from Invitrogen and were resuspended at 

~100pm/µl in double-distilled deionized 18 milliohm water.  All of the reaction 

components except for the template DNA were assembled on ice in a designated 

PCR only area using barrier tips to minimize contamination.  The 50µl reactions 

were assembled in thin walled 500µL PCR tubes (Fisher #E0030 124 600).  For 

all reactions approximately ~100ng of primer was used.  All PCRs were 

conducted with 1.0µL of the proofreading DNA polymerase PfuUltra™ 

(Stratagene #600380), 5.0µl of the accompanying 10X reaction buffer, 0.5µl of 

100µM dNTP mixture, and 1.5µl of DMSO.  The ice bucket was moved out of the 

designated clean area and ~50ng of template was added to the reaction.  The 

PCR was mixed by gently flicking the tube and was spun down in a microfuge 

and placed in the thermalcycler. 

 

The general thermal-cycling protocol for all PCR is as follows: 

1. 95°C for two minutes 

2. 95°C for thirty seconds 

3. Tm for thirty seconds [Tm calculated using Cybergene Primer design 

utility software (http://www.cybergene.se/primer.html)] 

4. 72°C for one minute per kilobase of amplicon 

5. Repeat steps 2-4 for a total of 25 cycles 

6. 72°C for ten minutes 

7. 4°C indefinitely 
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PCR reactions were separated by agarose gel electrophoresis using a 

0.8% agarose gel impregnated with 0.5 µg/ml ethidium bromide run at 110V for 

approximately twenty-five mintues.  Agarose gels were place on plate glass and 

visualzed by transluminating UV light at 312nm wavelength through the glass.  

Appropriate bands were excised using a clean razor blade and purified using a 

gel extraction kit (Marligen Bioscience #11456-019).  Purified PCR products were 

subsequently TOPO® ligated into the pCR®-Blunt II-TOPO® (Invitrogen #K2800-

20) vector. 

 

B. Tranformation into E. coli 

After the TOPO® ligation, One Shot® TOP10 chemically competent E. coli 

(Invitrogen #C4040-03) were transformed with the pCR®-Blunt II-TOPO® vector 

containing the PCR product using the heat shock method outline in the product 

literature.  Following transformation, the bacteria were plated out on LB agar 

plates containing 50 µg/ml kanamycin and incubated inverted overnight in a dry 

37°C incubator.  Eight colonies were picked using sterile loops to inoculate 2ml 

LB culture media with 50 µg/ml kanamycin.  Liquid cultures were incubated for 

eight to twelve hours at 37°C in a shaking incubator.  1.5ml of each culture was 

pipetted into a 2.0ml microfuge tube and spun down at 13,000g for ten minutes.  

The remaining 0.5ml of each culture was placed at 4°C.  After centrifugation, the 

liquid media was aspirated off and plasmids from the bacterial pellet were 

isolated using the Qiagen Miniprep Kit (Qiagen #27144) according to the 

manufacture’s instructions.  Ten microliters of each purified plasmid was 

analyzed using restriction digest mapping based on restriction sites incorporated 

into the primers.  The restriction digests were incubated at overnight at 37°C.  

Digest reactions were separated by agarose gel electrophoresis using a 0.8% 

agarose gel impregnated with 0.5 µg/ml ethidium bromide run at 110V for 

approximately twenty-five mintues.  Agarose gels were place on plate glass and 

visualized by transilluminating UV light at 312nm wavelength through the glass.  

One of the plasmids that produced the predicted fragments was sequenced 

verified at the Biochemistry Biotechnology Facility (Indiana University School of 
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Medicine, IN) using the M13 primer sites present in the pCR®-Blunt II-TOPO® 

plasmid.  In addition, the remaining 0.5ml of culture at 4°C containing the plasmid 

sent for sequencing was used to generate a glycerol stock by transferring 100µl 

to a 1.5ml microfuge tube and adding 10µl of sterile glycerol.  The tube was 

mixed by through shaking and inversion and stored at -80°C. 

Once sequencing of the PCR product was verified as correct, the 

remaining pCR®-Blunt II-TOPO® vector containing the PCR product was digested 

with restriction enzymes based on the restriction sites incorporated into the 

primers to cleave the PCR product from the pCR®-Blunt II-TOPO® vector.  In 

parallel, the destination vector was also digested with the same restriction 

enzymes.  Both digests were incubated overnight at 37°C.  Digest reactions were 

separated by agarose gel electrophoresis using a 0.8% agarose gel impregnated 

with 0.5 µg/ml ethidium bromide run at 110V for approximately twenty-five 

minutes.  Agarose gels were place on plate glass and visualized by 

transilluminating UV light at 312nm wavelength through the glass.  Bands 

corresponding to the liberated PCR product and the cut destination vector were 

excised using a clean razor blade and purified using a gel extraction kit (Marligen 

Bioscience #11456-019).  One microliter of the purified PCR product and 

destination vector were analyzed by agarose gel electrophoresis using a 0.8% 

agarose gel impregnated with 0.5 µg/ml ethidium bromide run at 110V for 

approximately twenty-five mintues to establish proper ratios for the ligation 

reaction.  Agarose gels were place on plate glass and visualzed by 

transluminating UV light at 312nm wavelength through the glass.  Typically a 1:3 

or 1:5 ratio of vector to PCR product was used.  Ligation reactions were 

completed using using T4 DNA Ligase (Promega #M179A) as outline in the 

product literature and were incubated at 15°C overnight.  Two microliters of each 

ligation reaction were transformed into One Shot® TOP10 chemically competent 

E. coli (Invitrogen #C4040-03) using the heat shock method outline in the product 

literature (Invitrogen).  Following transformation the transformed cells were plated 

out on LB agar plates containing the appropriate antibiotic selection and 

incubated at 37°C overnight.  Liquid cultures from 8 different colonies present on 
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the agar plates were grown the following day and plasmids were isolated using 

the Qiagen Miniprep Kit (#27144).  Each purified plasmid was analyzed using 

restriction digest mapping as outlined above.  A plasmid displaying the 

appropriate predicted bands was sent for sequencing and a glycerol stock was 

made as outline above. 

For large amounts of plasmid (e.g. transfection), the glycerol stock was 

thawed on ice and used to inoculate a 100 to 250ml liquid culture.  The liquid 

culture was incubated for twelve to sixteen hours at 37°C in a shaking incubator 

at 250rpm.  Plasmid was purified using the Qiagen Hi-Speed MIDI-Prep Kit 

(Qiagen #12643) as outlined in the product literature. 

For the purposes of bacterial expression the expression vector was made 

as outline above.  Once sequencing analysis confirmed the correct sequence 

had been ligated into the destination vector, BL21-CodonPlus® (DE3) cells were 

transformed with the expression vector obtained from a Qiagen Hi-Speed MIDI-

Prep plasmid purification.  Depending on the base pair composition of the gene 

to be expressed, either BL21-CodonPlus® (DE3)-RIL (Novagen #230245) or 

BL21-CodonPlus® (DE3)-RP (Novagen #230255) competent cells were used for 

the transformation.  The transformation was performed as outlined in the product 

literature (Novagen). 

 

C. Constructs mapping the TgGCN5 NLS 

Constructs for immunolocalization of TgGCN5 and NLS mutants were 

based on a Toxoplasma expression vector built into pminiHXGPRT (AIDS 

Research and Reference Reagent Program, Division of AIDS, NIAID, National 

Institutes of Health; http://www.aidsreagent.org).  The Toxoplasma TUB1 

promoter was amplified from ptubP30-GFP/sagCAT (Striepen et al., 1998) using 

primers 1 and 2 (listed in Table I).  These primers incorporate a BamHI site on 

the 5’ end of the PCR product and a polylinker region at the 3’ end containing 

sites for BglII, NdeI, EcoRV, and AvrII.  The 3’UTR of Toxoplasma DHFR was 

amplified using primers 3 and 4.  The resulting PCR product contained AvrII and 

NotI sites that were digested for a 3-piece ligation with the TUB1 amplicon above  
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Table I: Primers used in PCRs detailed in Vector Construction 
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[cut with BamHI (New England Biolabs #R0136S) and AvrII (New England 

Biolabs #R0174S)] and the pminiHXGPRT vector [cut with BamHI (New England 

Biolabs #R0136S) and NotI (New England Biolabs #R0189S)].  We have 

designated this expression construct as ptubXFLAG::HX, the first “X” represents 

where the gene of interest is to be installed (Figure 8).  The “HX” refers to the 

hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) gene 

expressed by the vector, which is used as a selection marker following 

transfection.  It is important to note that while a C-terminal FLAG tag option is 

available in this vector, it was used only for the βgal constructs below.  An N-

terminal FLAG tag was incorporated into the primers generating TgGCN5 

sequences to be tested for localization (primers 5-8 in Table I) 

The sense primers 5 through 8 with the antisense primer 9 from Table I 

were used to amplify the different form of TgGCN5 using the pHAT vector 

(Sullivan and Smith, 2000) as template DNA.  PCRs were performed as outlined 

above (page 60).  All of the TgGCN5 derived inserts were cut from the pCR®-

Blunt II-TOPO® vector by digestion with NdeI (New England Biolabs #R0111S) 

and AvrII (New England Biolabs #R0174S) and were ligated into the 

ptubXFLAG::HX vector at the same restriction sites.  Prior to electroporation, 

~50μg of plasmid DNA was linearized by digestion with NotI (New England 

Biolabs #R0189S) overnight at 37°C.  Following digestion, the cut DNA was 

ethanol precipitated using 2.5 volumes of 100% ice cold ethanol and 0.1 volumes 

of sodium acetate (3M, pH 5.2).  The microfuge tube was mixed by inverting 15-

20 times resulting in a visible clump of DNA precipitating out of solution.  The 

microfuge tube was placed at -20°C for at least thirty minutes.  The precipitated 

DNA was spun down using a microfuge in a 4°C cold room at maximum speed 

(~13,000 X g) for ten minutes.  The supernatant was carefully poured off and the 

DNA pellet was washed with 500µl of 70% ethanol.  The DNA was spun down 

again using a microfuge in a 4°C cold room at maximum speed (~13,000 X g) for 

five minutes.  In the tissue culture hood, supernatant was carefully poured off 

onto paper towels.  A kemwipe twised to a point is used to remove large droplets  

65 



 

 

 

 

 

 
 

Figure 8: Schematic diagram of the Toxoplasma expression vector 
ptubXFLAG::HX 

Vector was built into the pBluescript KS+ (pKS+; Stratagene #212205) containing 

an ampicillin selection marker for plasmid propagation in E. coli.  Striped boxes 

refer to the untranslated regions of the Toxoplasma DHFR-TS gene (dihydrofolic 

acid reductase-thymidylate synthase; Donald and Roos, 1993).  TUB1 = 

Toxoplasma tubulin promoter (Striepen et al., 1998); HXGPRT = hypoxanthine-

xanthine-guanine phosphoribosyltransferase 
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of ethanol present on the sides of the microfuge tube.  The pellet is dried in 

tissue culture hood for several hours or overnight.  The microfuge tube was 

capped while in hood and transferred to -20 for temporary storage until parasites 

were ready for electroporation. 

To create the beta galactosidase (βgal) constructs verifying the NLS, two 

PCRs were performed with the sense primers 10 and 11 in conjunction with 

antisense primer 12 from Table 1 utilizing the pTUB-βgal vector (Seeber and 

Boothroyd, 1996) as template DNA.  The βgal derived inserts were cut from the 

pCR®-Blunt II-TOPO® vector by digestion with BglII (New England Biolabs 

#R0144S) and AvrII (New England Biolabs #R0174S) enzymes.  The cut PCR 

products were ligated into the ptubXFLAG::HX vector at the same two restriction 

sites.  Unlike the TgGCN5 derived inserts, the βgal inserts do not contain a 3’ 

stop codon and therefore utilized the C-terminal FLAG tag incorporated into the 

ptubXFLAG::HX vector.  Prior to electroporation, ~50μg of plasmid DNA was 

linearized by digestion with NotI (New England Biolabs #R0189S), ethanol 

precipitated, and dried under sterile conditions as outlined in the previous 

paragraph. 

 
D. pGBK-TgGCN5 and pGAD-TgIMPα vectors 

For the production of in vitro translated protein, the pGADT7 (Clontech 

#630442) and pGBKT7 (Clontech #630443) vectors were used.  PCR was 

performed with sense primers 13 and 14 and the antisense primer 15 from Table 

I (page 64) using tubFTgGCN5:HX as template to amplify inserts encoding full-

length TgGCN5 and TgGCN5 lacking the first 99 amino acids (Δ99TgGCN5), 

respectively.  The inserts were cut from the pCR®-Blunt II-TOPO® vector using 

NdeI and XmaI sites incorporated in the primers.  Full-length TgGCN5 and 

Δ99TgGCN5 were ligated into the pGBKT7 vector using the NdeI and XmaI sites. 

ΔNLS-TgGCN5 was generated by a ligation of three DNA fragments: two PCR 

products and the destination vector, pGBKT7.  The first PCR product encodes TgGCN5 

amino acids 1-93 and was amplified using the primer 13 (contains a NdeI site) and 16 

(contains a NheI site) from Table I (page 64) with tubFTgGCN5:HX as template.  The 
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first PCR product was cut from the pCR®-Blunt II-TOPO® vector by digestion with NdeI 

(New England Biolabs #R0111S) and NheI (New England Biolabs #R0131S).  The 

second PCR fragment encodes amino acids 100-1169 and was generated with primer 

17 (contains a NheI site) and primer 15 (contains an XmaI site) from Table I (page 64).  

pGBKT7 was digested with NdeI (New England Biolabs #R0111S) and XmaI (New 

England Biolabs #R0180S).  The ligation of the two PCR products and the pGBKT7 

vector resulted in a plasmid encoding a form of TgGCN5 in which RKRVKR was 

replaced by an alanine-serine dipeptide (encoded by the NheI site). 

TgIMPα insert was generated by single tube RT-PCR using primers 18 and 19 

from Table I (page 64) with Toxoplasma mRNA purified from RH tachyzoites.  The 

mRNA was purified from RH tachyzoites using the Ambion Poly(A)PureTM Kit (Fisher 

#NC9343859).  The reverse transcription step was carried out using the Omniscript 

Reverse Transcriptase (Qiagen #205110) following the single tube PCR protocol as 

outlined in the product literature (Qiagen).  The TgIMPα insert was cut from pCR®-Blunt 

II-TOPO® by digesion with NdeI (New England Biolabs #R0111S) and XmaI (New 

England Biolabs #R0180S).  The insert was ligated into the pGADT7 vector in frame 

with an N-terminal hemagglutinin (HA) tag using the same two restriction sites. 

 

E. pET28-ScGCN5 Vector 

Sacchromyces cerevisiae GCN5 (ScGCN5) was amplified from a previously 

made yeast cDNA library by PCR using the sense primer: 5’-

ATCGAgctagcGTCACAAAACATCAGATTGAAGAGG-3’ and the antisense primer: 5’-

ATCGActcgagTAATCAATAAGGTGAGAATATTCAGG-3’.  The sense primer encodes a 

NheI restriction site (lower case) and the antisense primer encodes an XhoI site (lower 

case).  The two restriction sites were used to digest the pCR®-Blunt II-TOPO® vector to 

liberate the PCR product.  The same two restriction sites (NdeI and XhoI) were also 

used as the insertion sites for ligation into the pET28 bacterial expression vector 

(Novagen #69865-3) in frame with an N-terminal poly-histidine tag. 
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F. pET28-TgGCN5 vector 

Toxoplasma gondii (TgGCN5) was amplified from the ptubXFLAG::HX vector 

containing full length TgGCN5 (ptubFLAGTgGCN5::HX) by PCR using the sense primer: 

5’-ATCGAcatatgGAGACTGTCAAGGTGCCTGCATTCC-3’ and the antisense primer: 5’-

ATCGAgcggccgcTCAGAAACTCCCGAGAGCCTCGACC-3’.  The sense primer 

encodes an NdeI restriction site (lower case) and the antisense primer encodes a NotI 

site (lower case).  The two restriction sites were used to cut the PCR product out of the 

pCR®-Blunt II-TOPO® vector and were also use as the insertion sites for ligation into the 

pET28 bacterial expression vector (Novagen #69865-3) in frame with an N-terminal 

poly-histidine tag. 

 

III. Bioinformatics 

Sequencing alignments and phylogeny trees of importin α homologues 

were generated using AlignX, a component of the Vector NTI Advance 9.0 

(Informax) program.  Other protein sequencing alignments were performed using 

the ClustalW program (http://www.ch.embnet.org/software/ClustalW.html) where 

indicated.  Protein motif searches were performed using the Pfam database (ver. 

14.0; http://pfam.wustl.edu/) and/or PROSITE database (ver. 18.35; 

http://us.expasy.org/prosite/). 
 
IV. Biochemical Techniques 

A. Immunofluorescence assay 

For immunofluorescence assays (IFA), 12 well plates containing 

coverslips were made as outlined above (Section I-A, page 53).  Prior to 

infection, the lid of the well plate(s) were labeled with the parasite line to be 

infected into each well.  The old HC (host cell) media in the wells was aspirated 

and replaced with 1.0ml of PA media (parasite media) which consists of DMEM, 

1% heat-inactivated fetal bovine serum, and 25μg/L gentamicin).  The T-25cm2 

flask containing the infected monolayer was scrapped with a sterile spatula 

(Fisher #08-773-2) to completely rupture any remaining parasite vacuoles and to 

suspend the parasites into the media.  Each well was inoculated with 200µl of 
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parasites from the T-25cm2 flask.  To maintain the parasites in culture, 1.0ml of 

parasites from the scraped flask was also is transferred to a T-25cm2 flask 

containing a new confluent HFF monolayer as mentioned above (Section I-A, 

page 54). 

The infected 12 well plates were incubated at 37°C in a humidified 5% 

CO2 environment for eighteen to twenty-four hours.  Parasite infection of the well 

plate was monitored using a Leica DM IL inverted microscope at 400X 

magnification with a phase filter.  Once the infection had progressed to the point 

where each parasite vacuole contained an average of 4-8 parasites per vacuole, 

the well plate(s) were removed from the tissue culture incubator and processed 

for IFA. 

The PA media from each well was aspirated and each well was washed 

with 1.0ml of PBS three times.  Cultures were fixed by adding 1.0ml of ice-cold 

methanol to each well and incubating the well plate at -20°C for ten minutes.  The 

methanol was aspirated and each well was washed with 1.0ml PBS three times.  

Cells were blocked with 0.5ml of PBS containing 3% Fraction-V BSA (Sigma 

#A3059), 5% goat serum (Invitrogen #10000C), and 1% fish gelatin (Sigma 

#G7765) for one hour at 25°C or overnight at 4°C.  After aspirating the blocking 

buffer, 0.5ml of polyclonal anti-FLAG (Sigma #F7425) at 1:1000 in 3% BSA 

(Sigma #A3059) in PBS was added to each well and incubated for one hour at 

25°C.  After 3 washes with 1.0ml PBS, 0.5ml of goat anti-rabbit Alexa 488 

(Molecular Probes #A11034) was added to each well at 1:3000 in 3% BSA 

(Sigma #A3059) in PBS.  Immediately after adding the Alexa conjugated 

antibody, the well plate was wrapped in aluminum foil and incubated for one hour 

in the dark at 25°C.  Each well plate was washed with 1.0ml PBS and then 0.5ml 

of 0.3µM DAPI (Invitrogen #D1306) was added to each well and incubated, 

wrapped in foil for five minutes at 25°C.  Each well was washed three times with 

1.0ml of PBS.  The last 1.0ml of PBS was left in each well to aid in removing the 

coverslips from the wells. 

A single drop of mounting reagent (~10µl) containing 50% glycerol with 

Mowiol 4-88 (Calbiochem #81381) and DABCO (Sigma #10981) to retard 
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photobleaching was placed on a microscope slide.  The next paragraph contains 

the protocol for making the mounting reagent.  The coverslips were removed 

from each well using non-sterile flat tweezers (Fisher #09-753-50) and placed 

inverted on top of the drop of mounting agent on the microscope slide.  Slides 

were air dried in the dark for approximately thirty minutes.  Slides were viewed 

with a Leica DMLB scope with a 100X HCX Plan Apo oil immersion objective.  

Images were captured using a monochrome SPOT-RTSE (Model 12) Camera 

and Spot Diagnostic Software 4.0.9 and pseudocolored using Adobe Photoshop 

7.0. 

The mounting reagent was made by dissolving 2.4 grams of Mowiol 4-88 

(Calbiochem #81381) in to 12ml of 50% glycerol in a 50ml conical (Fisher #14-

959-49A).  The solution was mixed well by vigorous vortexing.  After the Mowiol 

4-88 has dissolved, 0.5 grams of DABCO (Sigma #10981) was added.  The 

conical was taped down on the plate form of a shaking incubator.  The solution 

was shaken for two hours at room temperature to dissolve the Mowiol 4-88 and 

DABCO.  The conical was removed from the shaker and 12ml of 200mM Tris-

HCl (pH 8.5) was added to the conical.  The solution was incubated at 50°C with 

accasional mixing to until the Mowiol 4-88 was completely dissolved 

(approximately three hours).  The solution was transferred to a Beckman tube 

and spun at 5000 x g for fifteen minutes at room temperature.  The mounting 

reagent was aliquoted out into 1.5ml microfuge tubes and stored at -20°C.  Prior 

to use, the solution was thawed by hand warming an aliquot. 

 
B. Production of TgGCN5 antiserum 

The pET19-TgGCN3000 vector had been previously generated in Sullivan lab 

and had been transformed into BL21(DE3) E. coli cells.  The pET19-TgGCN3000 vector 

contains a fragment encoding 30kD of the C-terminal end of TgGCN5 (amino acids 976-

1169) in-frame with an N-terminal polyhistidine tag. 

A glycerol stock was used to inoculate 100ml of LB media which was 

grown at 37°C shaking at 250rpm until the OD600 reading was apprimately 0.5 

(usually around two to three hours).  Bacterial protein expression in the 100ml 
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culture was induced by adding 100mM IPTG stock solution to a final 

concentration of 0.5mM.  The culture was placed back at 37°C for three hours 

shaking at 250rpm.  At the end of induction, the 100ml induction was spun down 

in large Beckman centrifuge at 4°C at 10,000rpm for ten minutes to pellet the 

bacteria.  After centrifugation, the media was poured off and the pellet was 

resuspended into 10ml of cold PBS and transferred to a 25ml Beckman tube.  

The reususpended pellet was spun down at 4°C at 10,000Xg for ten minutes.  

Following spin, the PBS was poured off and the pellets were stored at -20°C.  

The histidine fustion protein was purified as outlined below (Section D, page 75).  

The purified protein was lyophilized and sent to Pocono Rabbit Farms & 

Laboratories (Canadensis, PA).  The purified protein was used as antigen to 

produce polyclonal antisera in rabbits. 

Upon receiving the antiserum from Pocono Rabbit Farms & Laboratories, 

it was tested against recombinant antigen in a western blot (Figure 9).  

Approxmiately 0.02µg and 0.2µg of antigen were resolved on a NuPAGE gel 

(Invitrogen #NP0335BOX) and transferred to a PVDF membrane (Invitrogen 

#LC2005).  The membrane was blocked overnight at 4°C in TBST (20mM Tris, 

150mM NaCl, 0.1% v/v Tween-20) containing 5% milk.  The membrane was cut 

in half and one half was incubated with TgGCN5 antiserum at 1:10,000 in TBST 

containing 5% milk for one hour and the other half was incubated for one hour in 

pre-immune rabbit serum obtained prior to antibody production also diluted 

1:10,000 in TBST containing 5% milk.  Both blots were washed 3 times, 5 

minutes each with TBST.  The secondary antibody, goat derived anti-rabbit 

conjugated to HRP (horseradish peroxidase; Amersham #NA934), was incubated 

with both membranes at 1:2500 dilution in 5% Milk-TBST for one hour, washed 3 

times, five minutes each with TBST. 

The blots were treated with 1.5ml of Amersham’s ECL™ detection reagent 

(#RPN2209).  Excess reagent was removed by gently shaking the blot over 

paper towels.  The blot was then wrapped in cellophane and taped down in a 

metal film tray.  In a photography dark room, the blot was exposed to High 

Senstive Blue photographic film (RPS Imaging #33-0810).  Following exposure, 
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Figure 9: Evalulation of TgGCN5 antisera 
Western blot shows 1:10,000 dilution of antiserum (RAB 1) reacts specifically to 

0.02 and 0.2μg of TgGCN5 antigen (Ag; ~30kD). Pre-immune (PRE) serum was 

tested as a control.  Secondary antibody (goat derived anti-rabbit, Amersham 

#NA934) was used at 1:2500.  Detection was performed using Amersham ECL 

reagent (#RPN2209) with High Sensitive Blue photographic film (RPS Imaging 

#33-0810).  kD = kilodaltons 
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the film was removed and run through an automated developer.  As shown in 

Figure 9, the TgGCN5 antiserum recognizes <0.1μg of recombinant antigen at a 

dilution of 1:10,000, while pre-bleed sera is non-reactive. 

 

C. In vitro translation and co-immunoprecipitation 

In vitro translated proteins representing full-length TgGCN5, Δ99TgGCN5, 

ΔNLS-TgGCN5, and Toxoplasma importin α (TgIMPα) were generated using the 

TNT® T7 Coupled Reticulocyte Lysate System (Promega #L4610) in the 

presence of Redivue™ L-[35S]methionine (Amersham Pharmacia #AG1094) and 

RNase Out (Invitrogen #10777-019).  Translation reaction mixtures with a total 

volume of 50μl were assembled and incubated as described by manufacturer 

(Promega).  Co-immunoprecipitations (CoIP) were performed by combining 20μl 

of the TgGCN5 in vitro translation reaction with 20μl of the TgIMPα in vitro 

translation reaction in a fresh microfuge tube.  The mixture was mixed by gently 

tapping the side of the tube and subsequently incubated at 25°C for one hour.  

Initially, CoIPs were performed by adding 10μl of a polyclonal HA antibody 

(Santa Cruz #SC-7392) and 10μl of monoclonal cMyc antibody (Santa Cruz #SC-

40).  When these antibodies failed to provide positive results, subsequent CoIPs 

were performed by adding 1.0μl of TgGCN5 polyclonal antiserum (page 71) to 

each mixtures, mixing by tapping the tube, and incubating at 25°C for one hour.  

EZ-View Protein A agarose (Sigma #P6486) was washed two times with PBS 

and 10μl washed agarose slurry was added to all CoIPs, mixed by tapping tube, 

and incubated at 25°C for one hour. 

A similar protocol was followed for immunoprecipitation of single proteins 

using 10μl of completed translation reaction and 1μl of TgGCN5 polyclonal 

antisera for TgGCN5 proteins and 10μl of a polyclonal HA antibody (Santa Cruz 

#SC-7392) for TgIMPα.  EZ-View Protein A agarose (Sigma #P6486) was 

washed twice with PBS and 10μl of washed agarose was added to 

immunoprecipitations, mixed by tapping tube, and incubated at 25°C for one hour 

For both co-immunoprecipitations and immunoprecipitations, the protein-A 

agarose was washed 5 times with 200μl of CoIP Buffer 1 [10mM HEPES (pH 
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7.7), 500mM KCl, 0.1mM CaCl2, 1mM MgCl2, 50mM Sucrose, 0.5% Nonidet P-

40 (nonionic detergent)] and twice with 300μl of CoIP Buffer 2 (10mM HEPES 

(pH 7.7), 100mM KCl, 0.1mM CaCl2 , 1mM MgCl2, and 50mM Sucrose).  Bound 

proteins were eluted by boiling the protiein A agarose in NuPAGE loading dye 

(Invitrogen #NP0007) containing 5.0% β-mercaptoethanol (Sigma #M7154) and 

resolved on 4-12% NuPAGE Bis-Tris SDS gels (Invitrogen #NP0335BOX).  Ten 

microliters of SeeBlue® Plus2 Protein Standard (Invitrogen #LC5925) was run on 

the gel and was used to estimate protein molecular weight after gel 

electrophoresis.  Gels were fixed in an aqueous solution of 5% isopropanol and 

5% glacial acetic acid overnight and rinsed in running distilled water for one hour.  

Gels were incubated in Autoflour (National Diagnostics #LS-315) for two hours, 

wrapped in gel wrap(The Gel Company #EJA331-050), and air dried overnight.  

The excess gel wrap was trimmed away and the gel was taped down in a metal 

film tray.  In a photography dark room, a piece of High Sensitive Blue 

photographic film (RPS Imaging #33-0810) was placed over the gel and the film 

tray was closed and locked.  The film tray was placed at -80°C for twenty-four 

hours.  Following exposure, the film tray was removed and allowed to warm to 

room temperature.  In a photography dark room, the film was removed and run 

through an automated developer. 

 

D. Bacterial expression and purification of ScGCN5 and TgGCN5 

The glycerol stocks of the BL21-CodonPlus® (DE3)-RIL E. coli cells 

containing the pET28-ScGCN5 vector and BL21-CodonPlus® (DE3)-RP E. coli 

cells containing the pET28-TgGCN5 generated following transformation were 

thawed on ice and 10µl of each was used in inoculate 4ml of LB with 50µg/ml 

chloramphenicol (selection for proprietary plasmid coding for extra tRNAs) and 

35µg/ml kanamycin (pET28 vector selection).   

For both ScGCN5 and TgGCN5, The liquid culture was incubated 

overnight at 37°C shaking at 250rpm.  A 250ml flask containing 100ml of LB 

media with 35µg/ml kanamycin was inoculated with 1.0ml of the overnight 

culture.  The 100ml culture was grown at 37°C shaking at 250rpm until the OD600 
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reading was approximately 0.5 (usually around two to three hours).  Before 

inducing protein expression, a 1.0ml sample of the 100ml culture was obtained 

and placed into 1.5ml microtube.  The 1.0ml sample was centrifuged at maximum 

speed for a few minutes to pellet the bacteria.  The LB media was aspirated off, 

and the record OD600 reading of culture was written on the side of tube, and the 

bacterial pellet was stored at -20°C. 

Bacterial protein expression in the 100ml culture was induced by adding 

100mM IPTG stock solution to a final concentration of 0.5mM.  The bacteria 

culture of cells expressing ScGCN5 was placed back at 37°C for three hours 

shaking at 250rpm.  The bacteria culture of cells expressing TgGCN5 was 

incubated at 15°C for sixteen hours shaking at 250rpm.  At end of induction, two 

1.0 samples of the induced culture were obtained into 2 separate 1.5ml 

microtubes.  One of the samples was centrifuged at maximum speed for a few 

minutes to pellet the bacteria.  The media was aspirated off and stored at -20°C 

for subsequent analysis.  The second tube was used to determine the OD600 of 

the induced culture.  The sample was too turbid to perform a direct reading.  

Therefore, it was diluted 1:10 by pipeting 100µl of the culture into the cuvette and 

adding 900µl of H2O.  The dilution was mixed by inversion and OD600 reading 

was obtained and recorded. 

The remaining 100ml induction was spun down in large Beckman 

centrifuge at 4°C at 10,000rpm for ten minutes to pellet the bacteria.  After 

centrifugation, the media was poured off and the pellet was resuspended into 

10ml of cold PBS and transferred to a 25ml Beckman tube.  The resuspended 

pellet was spun down at 4°C at 10,000Xg for ten minutes.  Following spin, the 

PBS was poured off and the pellets were stored at -20°C. 

The two 1.0ml pellets were used to verify successful induction before 

attempting to purify the protein from the bacteria.  The two 1.0ml samples were 

thawed one ice for five minutes and were resuspended each in 100µl of COLD 

PBS.  The bacterial pellets were sonicated using a  microprobe 3 times for 15 

seconds with a 30 second recovery on ice between each pulse.  The sonicated 

samples were spun down using a microfuge in the 4°C cold room at maximum 
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speed (~13,000 X g) for ten minutes.  The supernatant (~100µl) was transferred 

into pre-chilled microfuge tubes and labeled as the soluble fraction. 

For SDS-PAGE analysis, 21.0µl of the soluble fraction sample was mixed 

with 7.5µl of NuPAGE Loading Dye (Invitrogen #NP0007) and 1.5µl of beta-

mercaptoethanol (β-Me; Sigma #M7154).  The samples were heated at 70°C for 

ten minutes and the entire sample was loaded onto a NuPAGE gel (Invitrogen 

#NP0335BOX).  The insoluble fraction (pellet) was resuspended in 25.0µl of 

NuPAGE Loading Dye (Invitrogen #NP0007), 5.0µl of β-Me (Sigma #M7154) and 

70.0µl of ddH2O.  If the sample was very viscous, it was sonicated 3 times for 15 

seconds with a 30 second recovery on ice between each pulse.  Each sample 

was incubated at 70°C for ten minuntes and 30µl was loaded onto the NuPAGE 

gel (Invitrogen #NP0335BOX).  The NuPAGE gel was run using MOPS buffer 

(Invitrogen #NP0001) according to manufacture’s (Invitrogen) directions.  Ten 

microliters of SeeBlue® Plus2 Protein Standard (Invitrogen #LC5925) was run on 

the gel and was used to estimate protein molecular weight after gel 

electrophoresis. 

Following gel electrophoresis, the gel was removed from the gel mold and 

was washed in deionized water three times, for ten minutes each.  To visualize 

protein in the gel, the gel was stained overnight with SimplyBlue™ (Invitrogen 

#LC6060).  The gel was destained by washing in deionized water three times, for 

ten minutes each.  If analysis of the 1.0ml samples indicated that induction was 

successful in producing protein, the large bacterial pellet was processed for 

protein purification by virtue of the polyhistidine fusion tag using nickel resin. 

The frozen bacterial pellet from the 100ml culture was thawed on ice for 

fifteen minutes.  The pellet resuspended in 4ml of lysis buffer (50mM NaH2PO4 

(pH 8.0), 300mM NaCl, 10mM of imidazole) with 4mg lysozyme (Sigma #L6876) 

and 80µl of His-Tag Protease Inhibitor Cocktail (Sigma #P8849).  The lystate was 

incubated on ice for thirty minutes with occasional mixing every five to seven 

minutes.  The lysate was transferred to a 15ml conical tube (Fisher #14-959-70C) 

and sonicated 6 times at 15 second bursts with a 30 second recovery on ice 

between each burst.  Following sonication, lysate was transferred into centrifuge 
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tube and spun at 4°C and 10,000 X g for thirty minutes.  The supernatant was 

poured into a 15ml conical tube and placed on ice.  An additional 40µl of His-Tag 

Protease Inhibitor Cocktail (Sigma #P8849) was added to the lysate in the 

conical and mix thoroughly.  Approxmiately 1.0ml of Ni-NTA agarose slurry 

(Qiagen #30210) was added to the conical and mixed by inversion.  The conical 

was taped to the platform of shaking incubator in a 4°C cold room and was 

incubated at 15°C one hour, shaking at 200rpm. 

During the shaking incubation, a column was prepared by packing a small 

wad of glass wool into the bottom of a 5ml syringe.  The syringe was clamped to 

a ring stand in the cold room.  After incubation, the contents of the conical was 

poured slowly into the syringe column and the column was pack by gravity.  

Once the supernatant flowed through the column, the column was washed twice 

with 4.0ml of wash buffer (50mM NaH2PO4 (pH 8.0), 300mM NaCl, 50mM of 

imidazole).  After the washes, protein was eluted off the column using the 

following buffers: 

Buffer A: 50mM NaH2PO4 (pH 8.0), 300mM NaCl, 100mM imidazole 

Buffer B: 50mM NaH2PO4 (pH 8.0), 300mM NaCl, 200mM imidazole 

Buffer C: 50mM NaH2PO4 (pH 8.0), 300mM NaCl, 300mM imidazole 

Protein was eluted with two treatments of 500µl of buffer A and B and 

three treatments of buffer C.  Each elution was captured in 1.5ml microfuge 

tubes.  An additional 5µl of protease inhibitors (Sigma #P8849) was added to the 

all elutions.  Each elutions was analyzed by SDS-PAGE using NuPAGE gels 

(Invitrogen #NP0335BOX).  For PAGE analysis, 21.0µl of each elution was mixed 

with 7.5µl of NuPAGE Loading Dye (Invitrogen #NP0007) and 1.5µl of beta-

mercaptoethanol (β-Me) and incubated at 70°C for ten minutes.  The NuPAGE 

gel was run using MOPS buffer (Invitrogen #NP0001) according to 

manufacturer’s (Invitrogen) directions.  Ten microliters of SeeBlue® Plus2 

Protein Standard (Invitrogen #LC5925) was run on the gel and was used to 

estimate protein molecular weight after gel electrophoresis. 

Following gel electrophoresis, the gel was removed from mold and was 

washed in deionized water three time for ten minutes each.  To visualize protein 
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in the gel, the gel was stained with SimplyBlue™ (Invitrogen #LC6060) overnight.  

The gel was destained by washing in deionized water three times for ten minutes 

each.  The elutions containing recombinant protein were pooled and 

concentrated using an Amicon Ultra-4 Centrifugal Filter Device (Fisher 

#UFC801008) as outlined in the product literature.  The concentrated elutions 

were transferred to a Slide-A-Lyzer® dialysis cassette (Pierce #PI66380) for 

dialysis to remove the imidazole.  The dialysis cassettes was placed in 1.0L of 

50mM Tris·HCl (pH 8.0) at 4°C for fifteen minutes with gentle stirring using a 

magnetic stir plate.  The cassette was transferred to another 1.0L of 50mM 

Tris·HCl (pH 8.0) at 4°C for forty-five minutes with gentle stirring using a 

magnetic stir plate.  The sample was removed from the dialysis cassette and 

quantitated using a standard Bradford assay (Fisher #PI23225). 

After protein concentration has been determined, approximately two 

samples of 1.0µg of ScGCN5 were resolved on a NuPAGe gel.  The gel was cut 

and one sample was stained with SimplyBlue™ (Invitrogen #LC6060) and the 

other gel was transferred to a PVDF membrane (Invitrogen #LC2005) for western 

blot detection.  After the transfer was complete, the blot was blocked overnight at 

4°C in TBST (20mM Tris, 150mM NaCl, 0.1% v/v Tween-20) containing 5% milk.  

The following day, the membrane was incubated with monoclonal anti-histidine 

antibody (Clontech #PT3359-2) at a dilution of 1:5000 in TBST containing 5% 

milk for one hour then washed 3 times, five minutes each with TBST.  The 

secondary antibody, goat derived anti-mouse conjugated to HRP (horseradish 

peroxidase; Amersham #NA931), was incubated with membrane at a 1:5000 

dilution in 5% Milk-TBST for one hour, washed 3 times, five minutes each with 

TBST. 

In the case of TgGCN5, two samples of 500ng of protein were resolved on 

a NuPAGE gel.  The gel was cut and one sample was stained with SimplyBlue™ 

(Invitrogen #LC6060) and the other gel was transferred to a PVDF membrane 

(Invitrogen #LC2005) for western blot detection.  After the transfer was complete, 

the blot was blocked overnight at 4°C in TBST containing 5% milk.  The following 

day, the membrane was incubated with TgGCN5 antiserum at 1:10,000 in TBST 
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containing 5% milk for one hour then washed 3 times, five minutes each with 

TBST.  The secondary antibody, goat derived anti-rabbit conjugated to HRP 

(Amersham #NA934), was incubated with membrane at 1:2500 dilution in 5% 

Milk-TBST for one hour, washed 3 times, five minutes each with TBST. 

The ScGCN5 and TgGCN5 blots were treated with 1.5ml of Amersham’s 

ECL™ detection reagent (#RPN2209).  Excess reagent was removed by gently 

shaking the blot over paper towels.  The blot was then wrapped in cellophane 

and taped down in a metal film tray.  In a photography dark room, the blot was 

exposed to a High Sensitive Blue photographic film (RPS Imaging #33-0810).  

Following exposure, the film was removed and run through an automated 

developer.  SeeBlue® Plus2 Protein Standard (Invitrogen #LC5925) transferred 

to the membrane were used to estimate protein molecular weight after gel 

electrophoresis. 

 

E. FLAG affinity purification of FLAGTgGCN5 and FLAGΔNTTgGCN5 from parasites 

Parasites overexpressing FLAG tagged TgGCN5 (FLAGTgGCN5) and/or 

TgGCN5 lacking the N-terminal extension (FLAGΔNTTgGCN5) were harvested 

from infected T-150cm2 flasks by scraping the monolayer with a sterile spatula 

(Fisher #08-773-2) to completely rupture any remaining parasite vacuoles and to 

suspend the parasites into the media.  The suspended parasites were filtered 

under non-sterile conditions and washed with PBS as previously outlined 

(Section I-B, page 55).  Following PBS washing, the parasite pellet was 

resuspended in 1.0ml of lysis buffer [50mM Tris-HCl (pH 7.4) 150mM NaCl, 1mM 

EDTA, 1% Triton X-100, and 20μl of mammalian protease inhibitors (Sigma 

#P8340)].  Lysate was sonicated 3 times for 15 seconds with 30 second recovery 

on ice between each pulse.  The lysate was placed on rocker at 4°C for thirty 

minutes.  Lysates were spun at maximum speed (~13,000 X g) at 4°C for ten 

minutes.  The supernatant was transferred to a new microtube and 60μl of 

EZviewTM Red Protein A Affinity Gel (Sigma #P6486) was added to the 

supernatant.  The mixture was placed at 4°C on a rocker for thirty minutes.  The 

purposes of this step was to pre-clear the lysate by removing “sticky” proteins 
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that non-specifically interact with affinity resins.  The lysate was spun at 8200 X g 

for one minute and the supernatant was transferred to a new tube with 60μl of 

EZviewTM Red ANTI-FLAG® M2 Affinity Gel (Sigma #F2426) and placed on 

rocker overnight at 4°C. 

The next day, affinity gel was washed 3 times with 750μl of wash buffer 

[50mM Tris-HCl (pH 7.4), 300mM NaCl, and 1mM EDTA) plus 10μl/ml of fresh 

mammalian protease inhibitors (Sigma #P8340), and then washed twice with 

750μl of HAT assay buffer (50mM Tris-HCl (pH 8.0), 50mM KCl, 0.1mM EDTA, 

1.0mM DTT, and 10% glycerol).  During the second wash with 750μl of HAT 

assay buffer, 250μl (~10μl packed resin) was transferred into a separate tube for 

western blot analysis to insure that immunoprecipitation was successful.  The 

remaining 500μl (~20μl packed resin) was used in a HAT assay (see next 

section).  Samples were spun down at 8200 X g for one minute and the HAT 

buffer was aspirated. 

Twenty microliters of 2X NuPAGE Loading Dye (Invitrogen #NP0007) 

containing 2.5μl β-mercaptoethanol (β-Me; Sigma #M7154) was added to the 

10μl of packed resin for western blot analysis.  Samples were incubated at 70°C 

for ten minutes and then loaded on a  4-12% NuPAGE Bis-Tris (Invitrogen 

#NP0335BOX) gel and run in MOPS buffer according to the manufacture’s 

(Invitrogen) directions.  SeeBlue® Plus2 Protein Standard (Invitrogen #LC5925) 

was used to estimate protein molecular weight after gel electrophoresis. 

Samples were then transferred to a PVDF membrane (Invitrogen 

#LC2005) and blocked overnight at 4°C in TBST (20mM Tris, 150mM NaCl, 0.1% 

v/v Tween-20) containing 5% milk.  The following day, the membrane was 

incubated with polyclonal anti-FLAG (Sigma #F7425) at 1:1000 in TBST 

containing 5% milk for one hour then washed 3 times, five minutes each with 

TBST.  The secondary antibody, goat derived anti-rabbit conjugated to HRP 

(horseradish peroxidase; Amersham #NA934) was incubated with membrane at 

1:2500 dilution in 5% Milk-TBST for one hour, washed 3 times, five minutes each 

with TBST. 

81 



The blot was treated with 1.5ml of Amersham’s ECL™ detection reagent 

(#RPN2209).  Excess reagent was removed by gently shaking the blot over 

paper towels.  The blot was then wrapped in cellophane and taped down in a 

metal film tray.  In a photography dark room, the blot was exposed to a High 

Sensitive Blue photographic film (RPS Imaging #33-0810).  Following exposure, 

the film was removed and run through an automated developer.  SeeBlue® Plus2 

Protein Standard (Invitrogen #LC5925) transferred to the membrane were used 

to estimate protein molecular weight after gel electrophoresis. 

 

F. Radioactive histone acetylase assays 

The in vitro HAT assays used in the thesis were based on those originally 

reported by Browell et al. (1996).  All radioactive HAT assays were 50µl reactions 

containing 2μl of 3H-Acetyl-CoA (Amersham #TRK688) and 4μl of chicken 

erythrocyte core histones (1μg/μl in H2O; Upstate #13-107).  The amount of 5X 

HAT assay buffer (250mM Tris-HCl (pH 8.0), 250mM KCl, 0.5mM EDTA, 5.0mM 

DTT, and 50% glycerol; modified from Fan et al., 2004b), and deionized water 

depended on the protein source. 

HAT assays performed with recombinant ScGCN5 contained ~1.0μg of 

protein, 10μl of 5X HAT assay buffer, and water sufficient to 50μl.  HAT assays 

performed with recombinant TgGCN5 generated in bacteria contained ~500ng of 

protein, 10μl of 5X HAT assay buffer, and water sufficient to 50μl.  Assays to 

assess the activity of FLAG tagged proteins immunoprecipitated from parasites 

contained ~20μl of packed resin from a FLAG affinity purification mixed with 6μl 

of 5X HAT assay buffer, and 18μl of deionized water.  A negative control reaction 

was made with 10μl of 5X HAT assay buffer and 34μl of water. 

All of the reactions were mixed thoroughly and incubated at 30°C for sixty 

minutes.  Reactions were remixed by gently tapping the sides of the tubes every 

ten minutes.  Reactions were stopped by adding 15μl of 2X NuPAGE loading dye 

(Invitrogen #NP0007) containing 2.5μl of β-Me (Sigma #M7154) and incubated at 

70°C for ten minutes before resolving on a NuPAGE 10% Bis-Tris gel (Invitrogen 

#NP0315BOX) using MES buffer according to the manufacture’s (Invitrogen) 
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directions.  Ten microliters of SeeBlue® Plus2 Protein Standard (Invitrogen 

#LC5925) was run on the gel and was used to estimate protein molecular weight 

after gel electrophoresis. 

The gel was removed from the mold and was washed in deionized water 3 

times, five minutes per wash.  Gels were fixed in an aqueous solution of 5% 

isopropanol and 5% glacial acetic acid overnight and rinsed in running distilled 

water for one hour.  Gels were incubated in Autoflour (National Diagnostics #LS-

315) for two hours.  A piece of Whatman paper, slighter larger than the gel, was 

added to tray with Autoflour and gently agitated for an additional five minutes.  

The gel was placed on top of the soaked Whatman paper and sandwiched 

between two pieces of gel wrap (The Gel Company #EJA331-050) and air dried 

overnight.  The excess gel wrap was trimmed away and the gel was taped down 

in a metal film tray.  In a photography dark room, a piece of High Sensitive Blue 

photographic film (RPS Imaging #33-0810) was placed over the gel and the film 

tray was closed and locked.  The film tray was placed at -80°C for twenty-four 

hours to one week.  Following exposure, the film tray was removed and allowed 

to warm to room temperature.  In a photography dark room, the film was 

removed and run through an automated developer. 

 

G. Non-Radioactive histone acetylase assays 

Non-radioactive HAT assays were performed the same as the radioactive 

assays outlined in the previous section, with the following differences: 1μl of 1mM 

acetyl CoA and 1μl of recombinant histone H3 (1μg/μl in water) were used in 

place of tritiated acetyl CoA and core histones.  The 1mM acetyl CoA was 

generated by dissolving acetyl CoA sodium salt (Sigma #A2056) in 10mM 

sodium acetate (pH 4.5) to a final concentration of 1mM.  The recombinant 

histone H3 (Upstate #14-411) is Xenopus laevis Histone H3 generated in E. coli.  

The total volume of each reaction remained 50μl and the amount of water added 

to each reaction was adjusted accordingly. 

The same positive and negative controls were used in the non-radioactive 

assay but with histone H3 substrate instead of core histones.  Reactions were 
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resolved via NuPAGE 10% Bis-Tris gel (Invitrogen #NP0315BOX) using MES 

buffer according to the manufacture’s (Invitrogen) directions.  Ten microliters of 

SeeBlue® Plus2 Protein Standard (Invitrogen #LC5925) was run on the gel and 

was used to estimate protein molecular weight after gel electrophoresis. 

Following electrophoresis, the proteins were transferred to a PVDF 

membrane (Invitrogen #LC2005) using an XCell II™ Blot Module (Invitrogen 

#EI9051) with 1X NuPAGE® Transfer Buffer (Invitrogen #NP0006-1) at 25V for 

two hours.  After transfer, the membrane was blocked overnight at 4°C in TBST 

(20mM Tris, 150mM NaCl, 0.1% v/v Tween-20) containing 5% non-fat dry milk. 

The following day, the membrane was incubated with a polyclonal 

antibody against acetylation at lysine 14 of histone H3  Polyclonal [α-AcH3(K14), 

Upstate #07-353] at 1:1000 in TBST containing 5% milk for one hour then 

washed 3 times, five minutes each with TBST.  The secondary antibody, goat 

derived anti-rabbit conjugated to HRP (horseradish peroxidase; Amersham 

#NA934) was incubated with membrane at 1:2500 dilution in 5% Milk-TBST for 

one hour, washed 3 times, five minutes each with TBST.  The blot was treated 

with 1.5ml of Amersham’s ECL™ detection reagent (#RPN2209).  Excess 

reagent was removed by gently shaking the blot over paper towels.  The blot was 

then wrapped in cellophane and taped down in a metal film tray.  In a 

photography dark room, the blot was exposed to a High Sensitive Blue 

photographic film (RPS Imaging #33-0810).  Following exposure, the film was 

removed and run through an automated developer.  SeeBlue® Plus2 Protein 

Standard (Invitrogen #LC5925) transferred to the membrane were used to 

estimate protein molecular weight after gel electrophoresis. 

Following western blot detection, the blot was removed from the 

cellophane and placed in tray with ~25ml of TBST (enough to cover the blot well).  

The blot was washed twice, five minutes each, with TBST for at room 

temperature.  The blot was covered with stripping solution and incubated at 50 to 

55°C for thirty minutes with gentle rocking.  The stripping buffer was made 

immediately prior to using it by combining stripping buffer pre-mix (67.5mM Tris 

(pH 6.7) and 2% SDS) with β-Me to a final concentration of 100mM.  
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Commercially available β-Me is 14.3M (Sigma #M7154).  Therefore, to make 

50ml of strip solution, 350µl of stock β-Me was added to 50ml of the strip solution 

pre-mix.  After incubation, the strip solution was poured down the drain with lots 

of water.  The blot was washed twice with TBST for five minutes each at room 

temperature.  The blot was blocked with 5% non-fat dry milk dissolved in TBST 

for one hour at room temp or overnight at 4°C.  Blots were stripped no more than 

two times.  Stripping a blot more than twice removed too much protein from the 

blot to provide adequate detection by subsequent staining with additional 

antibodies. 

After blocking the membrane, it was incubated with either a polyclonal 

antibody against acetylation at lysine 9 of histone H3  [α-AcH3(K9), Upstate #07-

352] or polyclonal antibody recognizing acetylation at lysine 9 and 18 of histone 

H3 [α-AcH3(K9/K18), Upstate #07-593].  Both antibodies were used at a dilution 

of 1:1000 in TBST containing 5% milk for one hour then washed 3 times, five 

minutes each with TBST.  The secondary antibody, goat derived anti-rabbit 

conjugated to HRP (horseradish peroxidase; Amersham #NA934) was incubated 

with membrane at 1:2500 dilution in 5% Milk-TBST for one hour, washed 3 times, 

five minutes each with TBST.  The blot was treated with 1.5ml of Amersham’s 

ECL™ detection reagent (#RPN2209).  Excess reagent was removed by gently 

shaking the blot over paper towels.  The blot was then wrapped in cellophane 

and taped down in a metal film tray.  In a photography dark room, the blot was 

exposed to a High Sensitive Blue photographic film (RPS Imaging #33-0810).  

Following exposure, the film was removed and run through an automated 

developer.  SeeBlue® Plus2 Protein Standard (Invitrogen #LC5925) transferred 

to the membrane were used to estimate protein molecular weight after gel 

electrophoresis. 

 

H. FLAG co-immunoprecipitations on FLAGTgGCN5 and FLAGΔNTTgGCN5 

transgenic parasites 

Figure 10 shows the general scheme used by Dr. Mohamed-Ali Hakimi’s 

laboratory at the French National Centre for Scientific Research in Grenoble,  
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Figure 10: Purification scheme of proteins interacting with FLAGTgGCN5 or 

FLAGΔNTTgGCN5. 
Scheme was developed by Dr. Mohamed-Ali Hakimi’s laboratory at the 

French National Centre for Scientific Research in Grenoble, France.  Nuclear cell 

extract (NCE) or whole cell extract (WCE) from filter-purified transgenic 

tachyzoites expressing FLAGTgGCN5 or FLAGΔNTTgGCN5 was fractionated by 

chromatography as outlined above.  The 0.35M potassium chloride (KCl) elution 

of DEAE-Sephacel column was purified using an anti-FLAG M2 affinity resin.  

The bound proteins were further separated by fractionation on a Superose 6 gel 

filtration column.  The horizontal lines indicate stepwise elution.  Concentrations 

are given in molars (M).  P11 = Whatman phosphocellulose; FT = flow through; 

TCA = trichloroacetic acid; LC-MS/MS = nanocapillary liquid chromatography 

coupled with tandem mass spectrometry  
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France for purifying protein complexes (Saksouk et al., 2005).  The same method 

was employed to identify proteins that may be interacting with full length FLAG 

tagged TgGCN5 (FLAGTgGCN5) and/or TgGCN5 lacking the N-terminal extension 

(FLAGΔNTTgGCN5) stably expressed in Toxoplasma.  Co-immunoprecipitations 

were performed using nuclear cell extract (NCE) from parasites expressing 

FLAGTgGCN5 and using whole cell (WCE) from parasites expressing 

FLAGΔNTTgGCN5. 

The appropriate lysate from freshly harvested and filtered transgenic 

extracellular tachyzoites was loaded onto a 250ml column of phosphocellulose 

(P11, Whatman) and fractionated stepwise by the indicated potassium chloride 

(KCl) concentrations (Figure 10) in buffer A [20mM Tris.HCl (pH 7.9), 0.2mM 

EDTA, 10mM β-Me, 10% glycerol, 0.2mM PMSF (phenylmethanesulfonyl 

fluoride)].  The P11 0.5M KCl fraction was loaded on a 45ml DEAE-Sephacel 

column (diethylaminoethyl; Pharmacia) and eluted with 0.35M KCl.  The 0.35M 

KCl elution was incubated with 1ml of anti-FLAG M2 affinity gel (Sigma #A2220) 

for two hours at 4°C.  Beads were washed with 50ml of BC500 buffer (20mM Tris 

(pH 8.0), 0.5M KCl, 10% glycerol, 1mM EDTA, 1mM DTT, 0.1% NP40, 0.5mM 

PMSF, and 1μg/ml aprotinin, 1μg/ml leupeptide, and 1μg/ml pepstatin).  Beads 

were subsequently washed once with 10ml BC100 buffer (20mM Tris (pH 8.0), 

0.1M KCl, 10% glycerol, 1mM EDTA, 1mM DTT, 0.1% NP40, and 1μg/ml 

aprotinin, 1μg/ml leupeptide, and 1μg/ml pepstatin).  Protein bound to the anti-

FLAG M2 affinity gel proteins were eluted stepwise with 350μg/ml of 3X FLAG 

peptide (Sigma #F4799) diluted in BC100 buffer.  Elutions enriched in 

FLAGTgGCN5 or FLAGΔNTTgGCN5 were fractionated on a Superose 6 HR 10/30 

(Pharmacia) and equilibrated in 0.5M KCl in buffer A containing 0.1% NP-40, 

1μg/ml aprotinin, 1μg/ml leupeptin, and 1μg/ml pepstatin.  Proteins were TCA 

precipitated and resolved using SDS-PAGE and stained with SimplyBlue™ 

(Invitrogen #LC6060). 
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I. Mass spectrometry peptide sequencing 

Dr. Mohamed-Ali Hakimi’s laboratory at the French National Centre for 

Scientific Research in Grenoble, France excised protein bands from 

SimplyBlue™ (Invitrogen #LC6060) stained gels.  The exised gel pieces were 

treated with 7% H2O2 and subjected to in-gel tryptic digestion as described in the 

literature (Ferro et al., 2003).  Extracted proteins were analyzed by nanocapillary 

liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS).  

Tandem mass spectra were searched against a compiled Toxoplasma database 

with their in-house software, Mascot (Matrix Sciences, London). 
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CHAPTER 3: RESULTS 

 
I. Elucidating How TgGCN5 is Targeted to the Parasite Nucleus 

This section reports the mapping of the first NLS to be identified and 

validated for any apicomplexan protein and in the process defined a function of 

the long N-terminal extension of TgGCN5.  Furthermore, the NLS elucidated in 

TgGCN5 is the first completely mapped NLS to be defined for any GCN5 protein.  

The mechanism involved in targeting GCN5 proteins to the nucleus is poorly 

understood.  Understanding how TgGCN5 is targeted to the nucleus may be 

applicable to other GCN5 proteins. 

In addition, we searched the Toxoplasma and related apicomplexan 

databases for proteins containing similar NLS motifs.  The goal of the search was 

two-fold.  If results of the search found other known or predicted nuclear proteins 

that contained a similar NLS-like sequence it would provide further evidence that 

this is a true NLS.  Secondly, the NLS may assist in the annotation of predicted 

proteins in apicomplexan databases with no homology or known function as well 

as the continued characterization of known proteins. 

 

A. Mapping the NLS of TgGCN5 

Figure 11 is the result of immunocytochemistry on transgenic parasites 

expressing the full length TgGCN5 and TgGCN5 lacking the N-terminal extension 

(residues 1-697; ΔNTTgGCN5) both fused to a FLAG tag.  To determine the 

localization of the recombinant proteins, immunocytochemistry was performed 

using a polyclonal antibody against the FLAG tag (Sigma #F-7425) followed by 

an anti-rabbit antibody conjugated to the fluorochrome Alexa-488 (Molecular 

Probes #A-11034).  As a reference, parasite nuclei were visualized with the 

fluorescent nuclear stain, 4’,6’-diamino-2-phenylindole (DAPI; Molecular Probes 

#D-1306).  Recombinant protein that co-localizes with the DAPI stain is in the 

parasite nucleus.  As shown in Figure 11, full length TgGCN5 co-localizes with 

the DAPI stain, indicating it is targeted to the nucleus.  ΔNTTgGCN5 does not co-

localize  
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Figure 11: The N-terminal extension of TgGCN5 is required for nuclear 
localization 
Recombinant protein in transgenic parasites expressing either full-length 

FTgGCN5 or TgGCN5 lacking the N-terminal extension (FΔNTTgGCN5) was 

detected by immunofluorescence assay using anti-FLAG antibodies followed by 

staining with anti-rabbit Alexa 488 (green).  4’,6’-Diamino-2-phenylindole (DAPI) 

was used as a nuclear co-stain (red).  Images were obtained at 1000X 

magnification using a Leica DMLB scope with a 100X HCX Plan Apo oil 

immersion objective.  Images were captured using a monochrome SPOT-RTSE 

(Model 12) Camera and Spot Diagnostic Software 4.0.9 and pseudocolored 

using Adobe Photoshop 7.0.  hN = host cell nucleus =  TgN, parasite nucleus, F 

= FLAG 
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with DAPI and is restricted to the parasite cytoplasm.  These results confirm the 

extension’s involvement in nuclear localization as indicated in previous studies. 

The 697 amino acid sequence for the N-terminal extension of TgGCN5 

known to be involved in nuclear localization is shown in Figure 12.  Motif 

searches of the N-terminal extension suggested an NLS between residues 488 

and 504 (Sullivan and Smith, 2000).  However, removal of this 18-amino acid 

motif from full-length TgGCN5 fused to a C-terminal green fluorescent protein tag 

did not subvert nuclear localization (Sullivan and Striepen, unpublished 

observations).  As shown in Figure 12, the N-terminal extension contains several 

clusters of basic residues that may be functioning as an NLS.  Previous studies 

performed in our laboratory have narrowed the location of the NLS to be between 

amino acids 58 and 260.  Within this region, there is only one stretch of basic 

residues, the sequence RKRVKR.  The RKRVKR sequence fits one of the nine 

groups of NLS hexapeptide motifs devised by Boulikas, θθθxθθ where θ equals a 

basic residue (arginine or lysine) and x represents a non-basic residue (Boulikas, 

1994).  However, the NLS motif, θθθxθθ, was found to be a rare motif not 

commonly used by nuclear proteins identified in yeast or multicellular organisms 

(Boulikas, 1994). 

In order to determine if the RKRVKR sequence contributed to the nuclear 

localization of TgGCN5, two truncated mutants of TgGCN5 were expressed in 

tachyzoites.  An N-terminal FLAG tag was fused to both recombinant proteins.  

The first truncation was at residue 99, just downstream of the RKRVKR 

sequence (FLAGΔ99TgGCN5).  The second truncation removed the first 93 

residues which includes all amino acids upstream of the RKRVKR sequence 

(FLAGΔ93TgGCN5).  If RKRVKR is the NLS of TgGCN5, FLAGΔ93TgGCN5 should 

localize to the nucleus and FLAGΔ99TgGCN5 should not.  To determine the 

localization of the truncated mutants, immunocytochemistry was performed using 

the same antibodies as in Figure 11 (page 91).  As shown in Figure 13, 

FLAGΔ93TgGCN5 co-localizes with the DAPI stain, indicating it is in the nucleus, 

but FLAGΔ99TgGCN5 does not co-localize with DAPI and cannot enter the 

parasite nucleus. 
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METVEVPAFLEAANSAEAPRPASPARELDVQLTVPCPRDGADAGEAVGTRKRSRGPADRAEEASG 65 

RTHSAAEEPRAKEGGLSPASRDGDSGQSRKRVKREWASGGRLEQRGPLGVAAHAVEWRRASAEAR 130 

GDARQTPDAARGSSSRVDRFAGEDGVLDEGDLFSPSPFWPFFSACDPVALAPAPTVCPDTPSVSV 195 

VSACSRLLRAPPRDLASEATLDSLAGNVHVEESLWRGCESPNILEILRDILVVFAKDPSTQLSKM 260 

FHTASLLAPYQAASCHAASDAERDKKGDEADSARRRDHHEKERNHGGGPLAVGESADSEGRHPGA 325 

TEHAAGEAAGEAADGVRTADGDACQERRAEGAGAANGVAPLGMPEPAHAVGDRERENGSLEVKKA 390 

EREDAERLENGGGGQTAGEDRDDVNDDPPDTEREPGPQQAGRRCLEANGVRGVKQEQENAGTDEE 455 

RVLYLQLKEVVLSVAAALEIQQLEPPRKRKDPKKKPHSSSASSACRRGRGNAVSSSVSCFSASAN 520 

CTSEDGERSGGDAAGARANGEIKAASDETYSDRRVPGGLHEESEKNEAAREKTREESGQTRTPAS 585 

ESGSNAFVGFAQQSESRANSGVSSRPAEERGNEETFPDKEEEGAPAQREKHVAWAETTGAETARN 650 

SDESEARRDPRLETCPLCDCQEDDAAWTRHGILPYDILYEKWKAFLM 697 

 

Figure 12: Putative NLSs in the N-terminal extension of TgGCN5 
The 697 amino acids comprising the N-terminal extension of TgGCN5 required 

for nuclear localization.  Consecutive stretches of three or more basic residues 

are highlighted in gray.  Previous work performed in the laboratory narrowed the 

region involved in mediating nuclear localization to be between residues 58 and 

260 (denoted by the underlined sequence).  The box outlines the NLS predicted 

by motif search analysis reported by Smith and Sullivan in 2000, which was later 

demonstrated to be uninvolved in nuclear localization (Sullivan and Striepen, 

unpublished observations). 
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Figure 13: The hexapeptide RKRVKR (amino acids 94-99) is necessary for 
nuclear localization of TgGCN5 
Parasites were transfected with FLAG-tagged forms of TgGCN5 lacking the first 

93 (FΔ93TgGCN5) or 99 (FΔ99TgGCN5) amino acid residues.  

Immunofluorescence assay was carried out as described in the legend to Figure 

11 (page 91).  F = FLAG 

 

94 



These results demonstrate that the hexapeptide RKRVKR is required for 

the nuclear localization of TgGCN5.  To verify whether the hexapeptide is a 

complete and sufficient NLS, RKRVKR was fused to a large cytoplasmic protein.  

The confirmation studies of the NLS from the SV40 large T antigen were 

performed fusing the basic NLS pentapeptide to beta-galactosidase, a large 

cytoplasmic protein (Kalderon et al., 1984b).  Therefore, the TgGCN5 NLS was 

fused to the N-terminus of E. coli beta-galactosidase (βgal) and expressed in 

Toxoplasma.  As shown in Figure 14, when βgal is expressed in parasites 

(βgalFLAG), it does not co-localize with DAPI.  However, when βgal is fused to the 

RKRVKR sequence (NLS-βgalFLAG), it co-localizes with DAPI indicating it can 

now access the parasite nucleus.  Interestingly, NLS-βgalFLAG is not found only in 

the nucleus, but in both the nucleus and the cytoplasm. 

There are several explanations for why NLS-βgalFLAG is present in both 

the nucleus and cytoplasm.  Beta-galactosidase might be interacting with oth

proteins in Toxoplasma.  During these interactions, the NLS may not be properly 

exposed for binding by nuclear trafficking proteins, but when β-galactosidase is 

not involved in any interactions it is transported into the nucleus.  Another 

explanation may be that beta-galactosidase contains a nuclear export signal and 

the NLS fusion protein is being shuttled back and forth between the nucleus and 

the cytoplasm.  A different possibility may be due to the high overexpression of 

NLS-βgal

er 

FLAG which is driven by the Toxoplasma beta-tubulin promoter, an 

extremely potent promoter (Striepen et al., 1998).  Overexpression of NLS-

βgalFLAG may be saturating the nuclear trafficking pathways causing the protein 

to accumulate in the cytoplasm.  However, saturation of nuclear trafficking 

pathways by a heterologous protein would mean that endogenous nuclear 

proteins would be unable to be effectively transported into the parasite nucleus.  

In other eukaryotic cell, a global disruption in nuclear trafficking is usually 

detrimental to cell survival (Zaidi et al., 2004).  There did not appear to be a 

gross defect in the growth of parasites expressing NLS-βgalFLAG indicating no 

such global defects in nuclear localization were occurring.  Nonetheless, forcing  
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Figure 14: The TgGCN5 NLS is sufficient to translocate a heterologous 
cytoplasmic protein to the parasite nucleus 

Parasites transfected with E. coli βgal fused to FLAG with or without the TgGCN5 

NLS (βgalF and NLS-βgalF, respectively) were examined by immunofluorescence 

assay as described in the legend to Figure 11 (page 91).  F = FLAG 
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the nuclear localization of a highly expressed heterologous protein could create 

perturbations in parasite nuclear trafficking resulting in the homogenous staining 

seen in Figure 14.  Regardless of the explanation, there is clearly a difference in 

the nuclear localization between βgalFLAG and NLS-βgalFLAG; βgalFLAG is 

restricted from the parasite nucleus while NLS-βgalFLAG is capable of being 

targeted to the parasite nucleus. 

It should be noted that the FLAG epitope tag in the βgal constructs was 

moved to the C-terminal end of the protein.  The FLAG epitope tag was moved 

for two reasons.  In the truncated mutant FLAGΔ93TgGCN5, the FLAG tag was 

placed directly upstream of the RKRVKR sequence.  The FLAG tag sequence, 

DYKDDDDK, (D = aspartate, Y = tyrosine, K = lysine) contains several basic and 

acidic resides that might generate artifactual localization.  Therefore, in the NLS-

βgal constructs, the FLAG tag was moved to the opposite end of the protein to 

show that the FLAG tag is not causing artifactual localization.  Secondly, placing 

the FLAG tag and the NLS sequence at opposite ends prevents the 

misinterpretation of localization data due to the cleavage of the NLS-βgal fusion 

protein.  It is possible that protein degradation of NLS-βgal in Toxoplasma could 

result in the cleaving off of the RKRVKR sequence.  If the FLAG tag was present 

on the N-terminus upstream of the NLS, the small cleaved product could freely 

diffuse into the nucleus.  As mentioned in the Chapter 1 Section IV, small 

globular proteins less than 40kD can freely diffuse into the nucleus (page 43).  

The antibodies utilized in immunocytochemistry would bind to the FLAG tag 

present in the cleavage products located in the parasite nucleus, and it would 

erroneously appear as if the NLS-βgal fusion protein was nuclear.  With the 

FLAG tag and NLS motifs on opposite ends, it insures that the difference in 

localization patterns between βgalFLAG and NLS-βgalFLAG is being generated by 

intact protein, not cleavage by-products. 
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B. Searches of apicomplexan databases for proteins containing the TgGCN5 

NLS 

To facilitate apicomplexan research, online genomic databases have been 

established for Toxoplasma (ToxoDB, http://toxodb.org; Kissinger et al., 2003), 

Plasmodium spp. (PlasmoDB, http://plasmodb.org/; Bahl et al., 2003), and 

Cryptosporidium parvum (CryptoDB, http://cryptodb.org; Puiu et al., 2004).  

These databases contain the results of extensive genomic sequencing efforts in 

these parasites and searchable EST libraries.  Each database also contains 

information about known genes and predicted and known proteins.  Predicted 

proteins are generated using gene prediction algorithms to generate proteins 

theorized to exist in the parasite.  These proteins are only theorized to exist in the 

parasite; they have not been confirmed in vivo. 

The NLS mapped in TgGCN5 is the first NLS to be elucidated for any 

apicomplexan protein.  As this is a new motif identified in apicomplexans, it would 

be important to search the databases looking for proteins that contain an 

identical motif.  Proteins that contain the sequence RKRVKR present in 

Toxoplasma and other apicomplexans should also contain other domains 

indicating a nuclear function.  Predicted nuclear parasite proteins containing the 

sequence RKRVKR would provide additional evidence that RKRVKR is indeed a 

nuclear localization signal. 

In additional to verifying RKRVKR as an NLS, searches of apicomplexan 

databases for identical or similar motifs may assist in the characterization of 

novel parasite-specific proteins.  Despite the active research into apicomplexans, 

the protein databases contain large numbers of proteins with no known function.  

Of the estimated 10,585 genes in Toxoplasma, 74% are considered to be unique 

parasite-specific proteins with no homology to known proteins and are devoid of 

any discernable protein motifs (Li et al., 2003).  In Plasmodium and Eimeria, it is 

estimated that over 50% of the genes present in both of these apicomplexan 

organisms have no clear predictable function (Li et al., 2003).  These proteins 

may be the most worthwhile to study as they might be involved in parasite-

specific functions such as virulence and differentiation.  As new functional motifs 
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are elucidated, the databases should be searched for other predicted proteins 

that contain similar domains.  Parasite-specific proteins without any recognizable 

function that contain the sequence RKRVKR would indicate a function within the 

parasite nucleus, thus aiding in the characterization of novel proteins. 

Unfortunately, searches of the ToxoDB using the TgGCN5 NLS against 

known and predicted proteins revealed no exact matches, save TgGCN5 itself.  

No known or predicted proteins present in the PlasmoDB or in CryptoDB 

possessed the motif RKRVKR, either. 

The fact that no proteins contain the exact same motif is not all together 

surprising.  The particular NLS motif θθθxθθ (“θ” representing arginine or lysine 

and the “x” representing any amino acid) is not a commonly utilized NLS motif by 

nuclear proteins (Boulikas, 1994).  Furthermore, searching for an exact match 

may not be appropriate.  Within any NLS motif arginine can be substituted for 

lysine and vice versa and the non-basic residue can be substituted for any amino 

acid (Boulikas, 1994; Hodel et al., 2001).  Therefore, our search parameters were 

expanded to include these permutations. 

When the motif RKRxKR was used (“x” defined as any amino acid), a total 

of 19 potential hits emerged from the Toxoplasma set of predicted proteins based 

on the TIGR Draft3 prediction algorithm.  Eight of the proteins had no homology 

to known proteins nor contained any known protein motifs.  Of the remaining 11, 

nine possessed domains or homology indicating a nuclear function and only two 

had domains or homology indicating a cytoplasmic function.  Thus, over 80% of 

the proteins containing the motif RKRxKR with additional motifs or homology 

appear to have a nuclear function providing further evidence that the motif 

RKRxKR is a nuclear localization signal.  The nine putative nuclear proteins are 

listed on Table II. 

As shown in Table II, 20.m03745 contains RKRKKR and possesses 

several RRM 1 (RNA recognition motif 1) domains indicating it may function as a 

nuclear RNA binding protein mostly likely involved in mRNA processing (Maris et 

al., 2005).  Protein 38.m01112 contains a region with homology to the catalytic  
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Table II: Predictive value of the TgGCN5 NLS in Apicomplexa 
 

Identifier Putative NLS Predicted Homology / Motifs 

Toxoplasma   

20.m03745 

38.m01112 

42.m03605 

44.m02721 

49.m03309 

50.m05631 

55.m05013 

80.m02168 

162.m00318 

RKRKKR 

RKRGKR 

RKRIKR 

RKRMKR 

RKRDKR 

RKRWKR 

RKRRKR 

RKRTKR 

RKRQKR 

RRM_1 repeats (RNA recognition) 

tRNA synthetase class II core domain 

auxin response element 

WD40 repeats 

MAD (mitotic checkpoint protein) 

thioredoxin 

peptidase_C50 

DNA polymerase X 

protein kinase 

Plasmodium   

PFC0425w 

PY07179 

PF10_0175 

PF10_0362 

RKRNKR 

KRKNKK 

RKKRKK 

KKKMKK 

PHD (zinc finger) 

histone deacetylase domain 

tRNA pseudouridylate synthase 

DNA polymerase B family 

Cryptosporidium   

CpEST_AA224688 

CpEST_AA253596 

RKRNKR 

KKKRRK 
histone H2B 

putative nucleolar protein 
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core domain of a tRNA synthetase.  While originally thought to be cytoplasmic, 

there is mounting evidence that tRNA synthetases are also present in the 

nucleus (Schimmel and Wang, 1999).  Interestingly, several studies have 

implicated an NLS composed of basic residues (arginine and lysine) in targeting 

tRNA synthetases to the nucleus (Mucha, 2002).  To date, none of the proposed 

NLS-like motifs present in other tRNA synthetases are exact matches to the motif 

in 38.m01112 (Mucha, 2002).  Nonetheless, the fact that the search yielded 

another protein that appears to enter the nucleus via a NLS composed of basic 

residues in other organisms provides further support that RKRxKR is an NLS 

motif.  The exact function of tRNA synthetases within the nucleus is still unknown 

(Mucha, 2002). 

Protein 42.m03605 not only contains an NLS like motif but also contains 

an auxin response factor (ARF) which modulates gene expression in response to 

the plant hormone auxin (Liscum and Reed, 2002).  No studies have been 

conducted to determine if Toxoplasma generates or responds to auxin.  The 

apicoplast present in the parasites is of plant ancestry and ARF proteins may be 

apart of its function. 

Proteins containing WD40 repeats like 44.m02721 form a large family of 

proteins found in all eukaryotes, and are named because the repeats usually end 

in a tryptophan-aspartic acid (W-D) dipeptide (Smith et al., 1999).  This family of 

nuclear proteins is implicated in a variety of functions including transcription 

regulation and cell cycle control (Smith et al., 1999). 

The MAD (mitotic arrest deficient) domain present in 49.m03309 suggests 

a function within the nucleus and the motif, RKRDKR may be its NLS.  Proteins 

with MAD domains function as mitotic checkpoint proteins in other eukaryotic 

organisms (Glotzer, 1996). 

The predicted protein 50.m05631 contains a thioredoxin domain.  Proteins 

possessing thioredoxin domains are important in protection against reactive 

oxygen species (Byrne and Welsh, 2005).  Although thioredoxin proteins are 

typically found in the cytoplasm, stress conditions have been shown to cause the 

proteins to translocate into the nucleus (Karimpour et al., 2002).  The mechanism 
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behind how these proteins are targeted to the nucleus is still unknown, but the 

motif KRDKR in 50.m05631 may be involved. 

Protein 55.m05013 contains a peptidase family C50 domain which is a 

type of cysteine peptidase of the separase family (Uhlmann, 2003).  The 

separases are caspase-like proteases present in the nucleus, and they play a 

central role in chromosome segregation (Uhlmann, 2003).  Interestingly, the NLS 

in protein 55m05013 is located within the peptidase motif (Figure 15).  Usually, 

NLSs are not found within other domains as demonstrated by other proteins in 

Figure 15.  However, an exception is DNA and RNA binding proteins in which 

there is often overlap between the binding domain and the NLS (LaCasse and 

Lefebvre, 1995).  Although the mechanism for nuclear localization in other 

peptidase C50 family members has not been deduced, it is plausible given their 

function that the NLS is imbedded within the peptidase domain as is with other 

DNA binding proteins.  However, the hexapeptide RKRRKR in 55m05013 may 

simply be a functional part of the peptidase domain and does not function as an 

NLS. 

The protein 80.m02168 is undoubtedly a DNA polymerase and contains 

the motif, RKRTKR, which may contribute to its nuclear compartmentalization.  

The protein kinase 162.m00318 contains an NLS-like motif suggesting that the 

target of its phosphorylation may be within the parasite nucleus. 

Figure 15 shows schematic representations of TgGCN5 and the nine 

Toxoplasma proteins listed in Table II.  The NLS has been depicted as a black 

vertical line and the domains indicating nuclear function are in gray boxes.  The 

image was generated to determine if there was a trend in the position of NLSs 

within Toxoplasma proteins.  Figure 15 demonstrates that the putative NLS-like 

domains can be found anywhere within a protein.  Six of the proteins have the 

NLS present in the first half of the protein with three of them being with in the first 

5% of the protein.  The other three proteins have the NLS in the C-terminal half 

with 2 of them located within the last 10% of the protein.  Thus, there does not 

seem to be a clear consensus on the location of this particular NLS.  These nine 

proteins are no doubt a very small fraction of all the nuclear proteins present in  
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Figure 15: TgGCN5 and nine putative Toxoplasma nuclear proteins 
Schematic diagrams of TgGCN5 and the nine putative nuclear proteins in 

Toxoplasma from Table II comparing the location of the NLS within each protein.  

Each protein is depicted by a horizontal black line.  As indicated in the top right 

corner, 1cm is equal to 300 amino acids.  The NLS-like motif (RKRxKR) is 

depicted as a single vertical black line.  Other motifs indicating nuclear function 

present in the proteins are represented as gray boxes.  The motifs within each 

protein are labeled according to their function.  As is seen in other eukaryotes, 

the NLS in these Toxoplasma proteins can be located anywhere within the 

protein.  aa = amino acid, HAT = histone acetylase, A2 = Ada2 domain, Br = 

bromodomain, RRM1 = RNA recognition motif 1 repeats, tRS = tRNA synthetase, 

ARF = auxin response factor, WD40 = tryptophan-aspartic acid domain repeats, 

MAD = mitotic arrest deficient domain, TR = thioredoxin domain, DPX = DNA 

polymerase X, PK = protein kinase 
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Toxoplasma.  As more NLSs are identified, a trend may emerge indicating that 

NLSs with Toxoplasma proteins tend to be located in one particular area within a 

protein.  It should be noted that in other organisms there does not appear to be a 

general trend in the position of an NLS within other nuclear proteins (Dingwall 

and Laskey, 1991). 

The Toxoplasma proteins listed in Table II (page 100) contain domains 

implicating function within the nucleus which supports the hypothesis that the 

TgGCN5 NLS has value in predicting the localization of proteins.  Therefore, the 

eight Toxoplasma proteins with unknown function containing RKRxKR motifs 

should be targeted to the parasite nucleus.  However, two of the 19 proteins from 

the database search contained ribosomal motifs in addition to an NLS-like motif.  

Despite the presence of an NLS-like motif, the ribosomal domains suggest a 

cytoplasmic function, which demonstrates the limitation of database searches.  

The presence of an NLS-like domain within a protein does not guarantee it is a 

nuclear protein.  The presence of an NLS-like domain must be taken into context 

with other domains present in the protein.  Ultimately, localization studies must 

be performed to confirm if any of these hits are truly nuclear proteins. 

Table II also displays results from similar searches of the Plasmodium 

database with permutations of the TgGCN5 NLS.  For example, searching the P. 

falciparum annotated protein data set with RKRxKR revealed 14 hits, including 

the predicted nuclear protein PFC0425w which contains three PHD fingers.  PHD 

fingers are zinc finger-like motifs present in nuclear proteins that are involved in 

transcriptional regulation (Aasland et al., 1995). 

Searches with the less stringent criteria allowing for the basic residues to 

be either lysine or arginine (R/K)(R/K)(R/K)X(R/K)(R/K) revealed 1500 hits in the 

annotated protein data sets from P. falciparum.  Cursory analysis of some of 

these candidate nuclear proteins revealed a putative histone deacetylase 

(PY07179; KRKNKK), a nuclear protein tRNA pseudouridine synthase (PF10 

0175; RKKRKK), and a putative DNA B family polymerase with a zeta catalytic 

subunit (PF10_0362; KKKMKK). 
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Searches of the Cryptosporidium expressed sequence tag database in 

CrytptoDB for instances of (R/K)(R/K)(R/K)X(R/K)(R/K) were also successful in 

identifying nuclear proteins; among the nine hits were histone H2B 

(CpEST_AA224688; RKRRKR) and a putative nucleolar protein 

(CpEST_AA253596; KKKLRK). 

The fact that a Toxoplasma NLS is able to identify nuclear proteins in 

other apicomplexans indicates that the Plasmodium and Cryptosporidium may 

also utilize a similar NLS to target nuclear proteins to the nucleus. 

 

II. Identifying Proteins Interacting with the N-terminus of TgGCN5 

Two groups of proteins proposed to be interacting with the N-terminus of 

TgGCN5 are those involved in nuclear trafficking and those forming HAT 

complexes analogous to the yeast SAGA and ADA complexes. 

The previous section presented data that the hexapeptide RKRVKR in the 

N-terminus of TgGCN5 is required for nuclear localization.  In other organisms, 

proteins containing NLSs composed of basic residues are transported into the 

nucleus through an interaction with the nuclear trafficking protein, importin α 

(Gorlich et al., 1994; Figure 7, page 47).  Therefore, it is likely that the NLS within 

the N-terminus of TgGCN5 interacts with importin α.  However, an importin α 

homologue in Toxoplasma has not been identified. 

 

A. Cloning and characterization of an importin α homologue in Toxoplasma 

The Toxoplasma database (Release 2.1; http://toxodb.org) was screened 

for sequences encoding possible importin α homologues using the BLAST 

algorithm and text queries.  The genomic database entry Tgg_994532 in Release 

3.0 (52.m00001 in version 4.0) exhibited a high degree of similarity to importin α 

proteins from other species.  Primers designed to the genomic sequence data 

were employed to obtain the full length cDNA for Toxoplasma importin α 

(TgIMPα, AY267540).  Based on the results of the cDNA sequence, we have 

deduced that the ~9.5-kb TgIMPα genomic locus is comprised of 11 exons and 

10 introns. 
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TgIMPα possesses an open reading frame of 1638 nucleotides with a 

consensus start ATG (Kozak, 1991) that is preceded 156 nucleotides upstream 

by an in frame stop codon.  The deduced 545 amino acid sequence has a 

calculated molecular mass of ~60kD and shows unequivocal similarity to importin 

α orthologues present in other eukaryotic organisms, especially the fellow 

apicomplexan parasite P. falciparum (Mohammed et al., 2003; Figure 16A).  

TgIMPα contains the well conserved importin β binding (IBB) domain and 

armadillo (ARM) repeats found in all other importin α proteins known to date 

(Herold et al., 1998; Figure 16A).  The autoinhibitory motif (KRR) observed in 

other importin α proteins is present in the importin β binding (IBB) domain, but 

the corresponding sequence in TgIMPα is more akin to the one in plants (KKR).  

The Toxoplasma IMPα also possesses a CAS (cellular apoptosis susceptibility) 

binding site within its C terminus required to recycle importin α back to the 

cytoplasm (Kobe, 1999). 

Phylogenic analysis of apicomplexan importin α proteins (Figure 16B) 

illustrates that they are more similar to those found in plants, a characteristic that 

has been noted in other apicomplexan proteins (Huang et al., 2004). 

 

B. Interaction of TgIMPα with TgGCN5 though the NLS 

Co-immunoprecipitation studies were performed to assess whether 

TgGCN5 physically interacts with TgIMPα and, furthermore, whether such an 

interaction occurred by virtue of the NLS, RKRVKR. 

Recombinant HA-tagged TgIMPα and full-length cMyc tagged TgGCN5 

were generated using a commercially available in vitro translation system 

(Promega; Chapter 2, Section IV-C, page 74).  The in vitro translation system 

incorporates radiolabeled methionine into the synthesized proteins.  The two 

proteins were purified from the translation reaction using commercially available 

anti-HA and anti-cMyc affinity resins (Clontech).  The immunoprecipitated 

proteins were resolved by SDS-PAGE gel and visualized by autoradiography.  

Figure 17 shows the purification of each protein generated by the in vitro 

translation system in detectable quantities and effectively purified from the  
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Figure 16: Toxoplasma importin α (TgIMPα) 
A – protein sequences of importin α proteins from various species were aligned 

using the AlignX module in Vector NTI Advance 9.0.  Tg, Toxoplasma 

(AY267540); Pf, P. falciparum (AAO85774); At, Arabidopsis thaliana (Q96321); 

Sc, Saccharomyces cerevisiae (Q02821); Hs, Homo sapiens (P52294).  Black 

inversed letters indicate identical residues in all species, gray inversed letters are 

functionally conserved residues, and gray highlighted letters are identical or 

functionally conserved residues in more than 50% of the species examined; ↓ 

denotes residues not conserved in Toxoplasma; * denotes conservation in 

apicomplexans only, and ¥ denotes elements conserved between apicomplexans 

and A. thaliana.  IBB, importin β binding domain; ARM, armadillo repeats 1–8.  

The boxed region within the importin β binding domain is the autoinhibitory 

sequence, and the boxed region within armadillo repeat 8 is the CAS binding 

domain involved in nuclear export.  B – phylogenic analysis obtain from the 

AlignX module in Vector NTI Advance 9.0 of importin α orthologues from 

representative species with the calculated distance values in parentheses (Bhatti 

and Sullivan, 2005). 
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Figure 17: Successful in vitro translation and purification of TgGCN5 and 
TgIMPα 
Autoradiography results from the purification of TgGCN5 (129kD) and TgIMPα 

(60kD) using both anti-cMyc (lane 1) and anti-HA (lane 2) affinity resins.  

TgGCN5 and TgIMPα were generated using in vitro translation (Promega 

#L4610) and gel was exposed to High Sensitive Blue photographic film (RPS 

Imaging #33-0810).  Molecular weights are displayed in kilodaltons (kD). 
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reaction without significant degradation.  As a negative control, Figure 17 shows 

that TgGCN5 cannot be isolated with anti-HA affinity resin and TgIMPα cannot be 

purified with anti-cMyc affinity resin.  This negative control was necessary to rule 

out potential cross reactivity between the recombinant tags and affinity resins.  

Therefore, if TgIMPα and TgGCN5 co-immunoprecipitate, it cannot be argued 

that it is due to non-specific interaction between the proteins and the affinity 

resin. 

Once protein production was verified, a small amount of the translation 

reaction containing TgIMPα was mixed with a small amount of the reaction 

containing TgGCN5.  The mixture was then split between the anti-HA and anti-

cMyc resin.  The anti-cMyc affinity resin will pull down TgGCN5 by virtue of its 

cMyc epitope tag.  If TgIMPα interacts with TgGCN5 then it will be pulled down 

with the TgGCN5 resulting in two bands when resolved via SDS-PAGE and 

visualized by autoradiography.  The reverse would happen with the anti-HA resin.  

TgIMPα would be immunoprecipitated by its HA-tag and if the two proteins 

interacted, TgGCN5 would be co-precipitated.  Again, two protein bands would 

be visualized by autoradiography.  However, if the two proteins do not interact, 

only single bands would be present corresponding to the immunoprecipitated 

protein by virtue of the recombinant tag (i.e. HA or cMyc). 

Figure 18 contains the results of TgGCN5 and TgIMPα co-

immunoprecipitation experiments using cMyc and HA affinity resins.  

Unfortunately, the co-immunoprecipitation efficiency was very low.  The band 

intensity in lane 1 is very strong for the protein containing the recombinant tag.  

There is a faint band in lane 1 in both co-immunoprecipitations corresponding to 

a potential co-precipitated protein.  However, it is not nearly intense enough to 

state these two proteins interact with one another.  Either something is interfering 

with the interaction or TgGCN5 and TgIMPα do not strongly interact with each 

other.  Lane 2 contains proteins not bound by the affinity resin and demonstrates 

that both proteins were produced in sufficient quantities in the in vitro translation 

system to allow for good purification.  Therefore, it cannot be argued that protein 

production was insufficient. 
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Figure 18: TgGCN5 and TgIMPα co-immunoprecipitations with cMyc and 
HA affinity resins 
The above figure is a representative of three replicate experiments.  TgGCN5 

(129kD) and TgIMPα (60kD) were expressed using in vitro translation and 

subsequently mixed together.  Co-immunoprecipitations were performed with 

anti-cMyc and anti-HA affinity resin.  Following resolution using SDS-PAGE, gel 

was exposed to High Sensitive Blue photographic film (RPS Imaging #33-0810).  

Lane 1 contains the proteins eluted off the affinity resin and lane 2 contains 

proteins from the in vitro translation reaction that did not bind to the affinity resin.  

Molecular weights are displayed in kilodaltons (kD). 
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The possibility that TgGCN5 and TgIMPα do not strongly interact was not 

initially surprising.  Biophsyical experiments have shown that the interaction 

between importin α and an NLS is extremely weak (Catimel et al., 2001).  The 

weak interaction is due to the importin β binding domain, which possesses an 

autoinhibitory function (Kobe, 1999).  When importin α is bound by importin β 

through the importin β binding domain, the autoinhibition is attenuated allowing 

importin α to strongly interact with an NLS (Goldfarb et al., 2004).  While this 

model is the general excepted method of NLS binding by importin α, there are 

exceptions.  In plants, it has been shown that importin α is capable of binding an 

NLS and transporting a protein to the nucleus without importin β (Hubner et al., 

1999).  Because apicomplexans have a propensity to possess plant like functions 

(Huang et al., 2004), it still seemed plausible that TgIMPα could bind to TgGCN5 

without requiring an importin β protein.  As noted in the previous section, 

phylogenic analysis of TgIMPα illustrated that it was more closely related to plant 

importin α proteins (Figure 16B, page 108).  Therefore, the possibility that 

something was interfering with the interaction or with the co-immunoprecipitation 

needed to be ruled out. 

The cMyc and HA epitope tags fused to TgGCN5 and TgIMPα that are 

utilized for co-immunoprecipitation are located at the N-terminus of both proteins.  

Thus, the epitiope tags are proximal to where the two proteins may be interacting 

and therefore masked during an interaction.  If the epitopes were masked during 

the interaction, it would prevent them from being purified by the affinity resin.  In 

order to determine if this was occurring, the epitope tags would have to be 

moved to the C-terminal end, or a different method of purification needed to be 

employed.  Others working in the Sullivan Lab had generated a polyclonal 

TgGCN5 antiserum against the C-terminus of TgGCN5 (Chapter 2, Section IV-B, 

page 71).  Since the TgGCN5 NLS lies within the N-terminal extension, a C-

terminal antibody should bind to an area of the protein not involved in a potential 

TgGCN5-TgIMPα interaction.  Therefore, it would be an excellent tool to 

determine if TgGCN5 and TgIMPα actually interact.  As shown in Figure 19, Lane 

1 shows the antiserum effectively purifies TgGCN5 from the in vitro translation  
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Figure 19: Immunoprecipitation with TgGCN5 antiserum 
An autoradiogram of immunoprecipitation reactions preformed with the TgGCN5 

antiserum.  Following resolution using SDS-PAGE, gel was exposed to High 

Sensitive Blue photographic film (RPS Imaging #33-0810).  Lane 1 is 

immunoprecipitation of full-length TgGCN5 and Lane 2 is of TgIMPα.  Lane 3 is 

the flow through or unbound proteins from the TgIMPα immunoprecipitation with 

the TgGCN5 antiserum.  Molecular masses are displayed in kilodaltons (kD). 
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reaction mixture but does not cross react with TgIMPα (Lane 2).  Lane 3 in Figure 

19 is a small sample of the unbound fraction from Lane 2 indicating that TgIMPα 

was synthesized by in vitro translation in sufficient quantities. 

After evaluating the TgGCN5 antiserum, TgGCN5 and TgIMPα proteins 

were generated and mixed together.  Co-immunoprecipitation was performed 

using the TgGCN5 antiserum.  The immunoprecipitated proteins were resolved 

by SDS-PAGE gel and visualized by autoradiography.  If TgGCN5 interacts with 

TgIMPα, the antiserum will pull down TgIMPα through its interaction with 

TgGCN5.  When resolved on a gel, two bands will be present, one from TgGCN5 

and the other corresponding to TgIMPα.  If the two proteins do not interact, then 

the antiserum will only pull down TgGCN5 resulting in a single band on the gel.  

Lane 1 in Figure 20-B is the result of mixing full-length TgGCN5 with TgIMPα.  

Two bands are present indicating the two proteins interact in vitro. 

Once it had been established that TgGCN5 and TgIMPα interacted with 

each other, a truncated version of TgGCN5 starting just downstream of the 

RKRVKR NLS (Δ99TgGCN5; Figure 20-A) was expressed in the in vitro 

translation system and mixed with TgIMPα.  Lane 2 in Figure 20-B shows only 

one band corresponding to the size of this truncated TgGCN5 (118kD).  The 

single band indicates that without the first 99 residues, TgGCN5 no longer 

interacts with TgIMPα.  The single band runs slightly lower than full-length 

TgGCN5 indicating a lower molecular weight congruent with it being the 

truncated form. 

To definitively show that the NLS is the interaction point between TgGCN5 

and TgIMPα, a deletion mutant was generated removing the RKRVKR 

hexapeptide (ΔNLSTgGCN5).  It was replaced with a restriction enzyme site to 

facilitate construction of the expression construct which encodes the two amino 

acids alanine and serine (Chapter 2, Section II-D page 67).  Thus, the 

hexapeptide RKRVKR was replaced with an alanine and serine dipeptide.  

Following in vitro translation, ΔNLSTgGCN5 was mixed with TgIMPα.  Lane 3 of 

Figure 20-B shows the results of co-immunoprecipitation with only one band  
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Figure 20: TgGCN5 interacts with TgIMPα via the NLS RKRVKR 

A – Schematic diagrams drawn to scale depicting the different co-

immunoprecipitations that were performed to demonstrate that TgGCN5 interacts 

with TgIMIPα via the NLS RKRVKR.  Each diagram corresponds to a lane in the 

gel below (C = cMyc epitope tag, NLS = nuclear localization signal, ADA2 = Ada2 

binding domain, br = bromodomain, H = HA epitope tag, IBB = importin β binding 

domain, ARM = armadillo superhelical repeats).  B – Autoradiogram of 

immunoprecipitation reactions using High Sensitive Blue photographic film (RPS 

Imaging #33-0810).  Lane 1, full-length TgGCN5 + HA-TgIMPα; lane 2, 

Δ99TgGCN5 + HA-TgIMPα; lane 3, ΔNLSTgGCN5 + HA-TgIMPα; lane 4, HA-

TgIMPα.  Lanes 1-3 were immunoprecipitated with TgGCN5 antiserum and lane 

4 was precipitated with anti-HA affinity resin.  The top arrow points to the forms of 

TgGCN5 used (~118 - 130kD), and the bottom arrow points to HA-TgIMPα 

(~60kD).  Molecular masses are displayed in kilodaltons (kD). 
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present, corresponding to the size of ΔNLSTgGCN5 (128kD).  The lack of 

TgIMPα in this lane confirms that TgIMPα interacts with TgGCN5 at the NLS 

elucidated in the previous section.  Lane 4 in Figure 20-B is an anti-HA 

immunoprecipitation of the TgIMPα translation reaction used in the co-

immunoprecipitations in the previous lanes.  The immunoprecipitation provides 

evidence of adequate TgIMPα protein production. 

 

C. Identification of proteins interacting with TgGCN5 to form HAT complexes 

It is plausible that the N-terminus of TgGCN5 also interacts with parasite 

proteins to form complexes analogous to yeast SAGA and ADA.  Given the 

divergent nature of the N-terminal extension of TgGCN5, it may also interact with 

novel, parasite-specific components.  Several methods were considered in trying 

to identify proteins interacting with the N-terminus of TgGCN5. 

Yeast two-hybrid could be employed using the N-terminus as a bait 

protein to screen a cDNA library.  However, yeast two-hybrid has several 

limitations.  First, yeast two-hybrid screens notoriously generate false positives.  

Second, not all Toxoplasma proteins are going to be expressed properly in yeast 

because of codon bias, improper folding, and post-translational modification.  

The expression of certain Toxoplasma proteins may also be lethal to yeast. 

Another option would be to co-immunoprecipitate protein complexes from 

wild-type parasite lysate.  Our lab has developed an antiserum directed at the C-

terminal end of TgGCN5 with the potential to immunoprecipitate TgGCN5 

containing complexes.  However, attempts to purify native HAT complexes using 

endogenously expressed protein in other organisms have been largely 

unsuccessful because HAT proteins are not expressed at high levels. 

One of the more promising methods for purifying complexes is to over-

express one of the complex members fused to an epitope tag.  The N-terminal 

extension portion of TgGCN5 could be over-expressed in the parasites fused to a 

FLAG tag.  Using affinity resin, anti-FLAG co-immunoprecipitations could be 

performed on parasite nuclear extract.  The proteins would be eluted from the 

affinity resin and resolved via SDS-PAGE.  Bands present in the gel would be 
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excised and sent for sequencing analysis.  Unfortunately, multiple attempts at 

trying to stably express just the N-terminal extension of TgGCN5 in Toxoplasma 

were unsuccessful.  It appears that expression of only the N-terminus of TgGCN5 

is deleterious to the parasite.  If the N-terminus interacts with proteins in the 

parasite, expression of the N-terminus could have acted as a dominant negative.  

The recombinant N-terminal extension may have sequestered proteins away 

from fully functional complexes causing a depletion of HAT complexes resulting 

in dysregulation of histone acetylation and parasite death.   

An alternate strategy was developed using the viable transgenic parasites 

expressing recombinant full length TgGCN5 and TgGCN5 lacking the N-terminal 

extension (ΔNTTgGCN5) fused to a FLAG tag.  As shown in a previous section, 

both of these proteins can be stably expressed in the parasites.  FLAG co-

immunoprecipitations could be performed on these two parasites lines.  Proteins 

that are present in purifications using full length TgGCN5 and absent in 

purifications with ΔNTTgGCN5 would be considered to be interacting with the N-

terminus of TgGCN5. 

To isolate TgGCN5 containing complexes from these two transgenic 

parasite lines, a collaboration was established with Dr. Mohamed-Ali Hakimi’s 

laboratory at the French National Centre for Scientific Research in Grenoble, 

France.  His laboratory has developed a successful method to purify histone 

deacetylase complex members from the parasites using anti-FLAG co-

immunoprecipitation.  However, Dr. Hakimi’s protocol requires enormous 

amounts of parasite lysate; approximately 100 T-150cm2 cell culture flasks.  The 

research facility at Grenoble has a large centralized tissue culture facility allowing 

for the growth and cultivation of large numbers of parasites.  In addition, 

laboratories at the research center have free access to a protein sequencing 

facility.  Therefore, the two transgenic parasite lines over-expressing 

FLAGTgGCN5 and FLAGΔNTTgGCN5 were sent to Hakimi’s laboratory for a 

preliminary attempt to co-immunoprecipitate interacting proteins.  Unfortunately, 

the protein sequencing facility in Grenoble does not release the results of its 
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protein sequencing data and thus we are unable to confirm or make our own 

interpretations of the protein sequencing data. 

Large quantities of both of our parasite lines were cultivated by Dr. 

Hakimi’s laboratory.  Co-immunoprecipitations with anti FLAG affinity resin was 

performed on parasite lysate from the transgenic parasites using the same 

protocol that had been successful in purifying members of histone deacetylation 

complexes (Saksouk et al., 2005; Chapter 2, Section IV-H, page 85).  Once the 

purification was complete, elutions containing TgGCN5 were pooled, TCA 

precipitated, and resolved by SDS-PAGE. 

Figure 21 contains two gels (A and B) loaded with two different sets of 

pooled elutions from the affinity purification of nuclear cell extract from parasites 

over-expressing full-length FLAGTgGCN5.  Gel A contains proteins present in the 

first few elutions off the purification column.  The gel does not contain significant 

amounts of TgGCN5, but has very intense bands of low molecular weight that 

correspond to the size of histone proteins.  The four bands labeled with arrows A, 

B, C, and D were excised and sent for sequencing analysis.  The results of the 

sequencing confirmed that they are histone proteins.  Band D is the core histone 

H4.  The remaining bands are not the typical core histones, but rather variant 

histones H3.3, H2A.1, and H2AF/Z.  No known histones variants exist for histone 

H4.  The existence of histone variants has been previously established in 

Toxoplasma (Sullivan et al., 2006).  As mentioned in the introduction, histone 

variants differ from core histones in several ways.  The main difference is that 

variant histones are associated with restructuring transcriptionally active 

chromatin (Kamakaka and Biggins, 2005).  Finding variant histones interacting 

with TgGCN5 agrees with the predicted role for TgGCN5 being involved in 

remodeling chromatin. 

Gel B in Figure 21 represents a second pool of fractions that contained 

large amounts of TgGCN5.  The numbered rectangles correspond to locations in 

the gel that were excised and sent for sequencying analysis by nanocapillary 

liquid chromatography coupled with tandem mass spectrometry.  The sequencing  
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Figure 21: Chromatographic purification and identification of proteins 
interacting with FLAGTgGCN5 

Gel A and Gel B contain different sets of pooled elutions resolved by SDS-

PAGE (4% - 12%) and visualized by colloidal blue staining.  Molecular weight 

markers in kilodaltons (kD) are indicated on the left.  In Gel A, the arrows point to 

four low molecular weight bands that were excised and sent for sequencing 

analysis.  The results of the sequencing are listed below the gel.  In Gel B, the 

white rectangles represent the location and size of the excised bands sent for 

sequencing.  Each rectangle has a number that corresponds to the sequencing 

results listed below in the gel.  Two numbers next to a rectangle indicates both 

proteins were identified in the same excised gel slice.  Data preseted in this 

figure was generated by Dr. Mohamed-Ali Hakimi’s laboratory at the French 

National Centre for Scientific Research in Grenoble, France. 
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data was used to determine the identity of the proteins present within the gel 

slice.  A total of 7 gel slices were sequenced.  The numbers refer to the protein 

identity listed below the gel.  In some of the gel slices, more than one protein was 

present.  In cases where sequencing analysis detected two proteins, two 

numbers were placed next to the rectangle to denote the identity of two distinct 

proteins. 

The band labeled “2” corresponds to the size of FLAGTgGCN5 (~130kD).  

Sequencing data for band 1 suggests that this is also FLAGTgGCN5, but it is 

running about 30kD too large.  It is likely that this is a post-translationally 

modified version of TgGCN5 causing it to migrate slower.  There is evidence that 

GCN5 can be phosphorylated (Barlev, 1998) and the related HAT PCAF can be 

transacetylated (Herrera, 1997).  These same modifications may occur to 

TgGCN5. 

The gel slice of the band observed at about 100kD yielded sequence data 

consistent with two different Ada2 proteins (proteins 3 and 4 in Figure 21).  It has 

been shown that humans and plants possess more than one homologue of Ada2 

(Stockinger et al., 2001; Barlev et al., 2003), but to date all unicellular organisms 

such as yeast only express one Ada2 protein.  Searches of ToxoDB have 

revealed the presence of two Ada2 proteins (TgAda2-A and TgAda2-B), which 

our lab has subsequently cloned (Bhatti et al., 2006).  Consistent with our 

preliminary data, protein 3 agrees with the predicted size for TgAda2-A (~102kD), 

but protein 4 is much smaller than the predicted size of 238kD for TgAda2-B.  It 

is possible that protein 4 is an alternative splice variant of TgAda2-B or a 

proteolytically processed form resulting in a smaller protein.  Alternatively, it 

could be a degradation product.  Splice variants are known to exist for Ada2 

proteins but their functional importance is still unknown (Kusch et al., 2003). 

Protein 9 possesses homology to heat shock protein 70 (hsp70), which 

has been shown to be involved in bradyzoite to tachyzoite conversion in 

Toxoplasma (Weiss et al., 1998; Silva et al., 1998).  The Hsp70 family contains a 

number of highly-related protein isoforms ranging in size from 66kD to 78kD 

(Tavaria et al., 1996).  Protein 9 is migrating too low to fit within this size range 
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and therefore is either a unique shorter hsp70 member or breakdown from a 

larger hsp70 member.  Nonetheless, the presence of hsp70 interacting with 

TgGCN5 is a strong possibility despite the lack of full intact protein.  

Transcriptional studies have shown that histone acetylation can significantly 

enhance both the basal and the inducible expression of hsp70 gene in 

Drosophila (Chen et al., 2002).  It is plausible that a TgGCN5 containing complex 

is involved in remodeling and regulating hsp70 expression.  A similar 

phenomenon may occur in Toxoplasma.  A TgGCN5 containing complex may be 

activated under stress conditions resulting in the upregulation of hsp70 

expression and ultimately leading to bradyzoite differentiation.  Following the 

increase in hsp70 expression, the hsp70 protein may interact with TgGCN5 

containing complexes to further direct their activity to other stress responsive 

promoters or it may act as a negative feed back, repressing the activity of the 

TgGCN5 containing complex once TgGCN5 differentiation is complete. 

Proteins 7 and 10 have homology to previously described heat shock 

proteins 90 and 60 in Toxoplasma (Weiss and Kim, 2000).  These two heat 

shock proteins have also been linked to bradyzoite differentiation (Echeverria et 

al, 2005; Toursel et al., 2000).  If this is a true interaction, it links TgGCN5 to 

stress-induced pathways and possibly bradyzoite differentiation.  It should be 

noted that heat shock proteins are among the most abundant proteins in 

eukaryotic cells (Schlesinger, 1990) and are often contaminants in co-

immunoprecipitations.  Co-immunoprecipitations with in vitro translated heat 

shock proteins and full length TgGCN5 can be utilized to verify if these 

interactions are real. 

Protein 8 was identified as a homologue of yeast cdc48 (cell division 

control) which is a member of the type II AAA proteins (ATPase associated with a 

variety of activities; Neuwald et al., 1999).  As the class name suggests, cdc48 

has been implicated in many cellular functions including cell cycle regulation, 

stress response, transcriptional regulation, and protein degradation.  All of these 

activities seem to revolve around its involvement in the ubiquitin-proteosome 

system (Hershko and Ciechanover, 1998).  A link between acetylation and 
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ubiquitination pathways was established when cdc48 was shown to interact with 

a histone deacetylase (HDAC) complex in mice (Seigneurin-berny et al., 2001).  

Additionally, the yeast deubiquitinating enzyme, Ubp8 is a component of SAGA 

and mediates the removal of ubiquitin from histone H2B (Daniel et al., 2004).  

The deubiquitination of H2B by SAGA coincides with its acetylation of histone H3 

at lysines 9 and 14 (Daniel et al., 2004).  Therefore, ubiquitination may direct the 

function of GCN5 containing complexes.  A similar process might exist in 

Toxoplasma between TgGCN5 containing complexes and ubiquitination.  Thus, 

cdc48 may be involved in ubiquitinating histones while a TgGCN5 containing 

complex is responsible for removing the ubiquitin modification and acetylating 

histones.  However, cdc48 is highly abundant in cells (great than 1% of total 

protein) making it a potential contaminant in co-immunoprecipitations (Wang et 

al., 2004).  Therefore, this potential interaction must be confirmed in additional 

experiments such as co-immunoprecipitation of purified recombinant proteins.   

The two remaining proteins, 5 and 6, do not have homology to any known 

proteins nor do they possess any recognizable motifs.  These two proteins may 

be parasite-specific components of a TgGCN5 acetylase complex.  However, 

these two proteins are migrating between 100 to 150kD, which is much higher 

than their predicted molecular weights according to the Toxoplasma database 

(ToxoDB; ~61kD for protein 5 and ~71kD for protein 6).  Another band 

corresponding to protein 5 migrated to approximately 55kD which is close to its 

predicted molecular weight.  The larger version of proteins 5 and 6 may be 

alternative splice variants.  Further characterization of the ORF (open reading 

frame) encoding these two proteins is needed to clarify the discrepancy in sizes 

of these parasite proteins. 

 

D. Identification of proteins interacting with ΔNTTgGCN5 to form HAT complexes 

Similar purifications of whole cell lysate from parasites over-expressing 

FLAGΔNTTgGCN5 were analyzed (Figure 22).  Despite using the same purification 

protocol, the final elutions following purification of FLAGΔNTTgGCN5 whole cell 
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Figure 22: Chromatographic purification of proteins that may interact with 

FLAGΔNTTgGCN5 
Elutions were pooled, TCA precipitated, resolved by SDS-PAGE (4% - 12%), and 

visualized by colloidal blue staining.  Molecular weight markers in kilodaltons (kD) 

are indicated on the left.  Gel slices were made corresponding to the location of 

the numbers on the gel and were sent for protein sequencing.  Proteins identified 

by mass spectrometry sequencing are indicated on the right.  Data presented in 

this image was generated by Dr. Mohamed-Ali Hakimi’s laboratory at the French 

National Centre for Scientific Research in Grenoble, France. 
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extract were not as pure as the elutions following purification of full length 

TgGCN5 nuclear cell extract.  The three most intense bands were excised from 

the gel and sent for sequencing.  All three bands appear to contain 

FLAGΔNTTgGCN5.  The estimated size of FLAGΔNTTgGCN5 is 54kD, which 

corresponds to the size of band 3.  The slower migrating TgGCN5 found in bands 

1 and 2 may be posttranslationally modified. 

Also found in large abundance in the first gel slice is an unknown 

predicted protein (TgGlmHMM_3281) containing a leucine zipper domain.  

Leucine zipper domains are commonly found in gene regulatory proteins 

(Robinson and Lopes, 2000).  However, it is running smaller than the 140 

kilodaltons predicted in the ToxoDB.  The protein present as this size may be 

degradation product or it could be a protein prediction error. 

Heat shock protein 70 is also present in band one.  As mentioned earlier, 

this protein is associated with stress pathways potentially linking TgGCN5 to 

bradyzoite conversion.  All three predicted hsp70 proteins appear to be different 

and are not overlapping entries.  Thus, the possibility exists for multiple hsp70 

proteins in Toxoplasma.  TgGlmHMM_2161 is predicted to be approximately 

133kD, but this may be an error in the prediction algorithm used by the 

Toxoplasma database. 

The third gel slice contains several bands in addition to TgGCN5.  

However, the only protein migrating at its predicted size is TgGlmHMM_1548, an 

hsp60 homologue.  The same homologue was found in the co-

immunoprecipitation with full length TgGCN5.  TgGlmHMMM_1999 is a protein of 

unknown function and possesses no known motifs but is predicted to be 43kD.  It 

is possible that this protein is a parasite-specific component of an acetylase 

complex.  Predicted heat shock protein 70 and catalase are present but both of 

these proteins are running smaller than predicted size (72kD for hsp70 and 88kD 

for catalase), indicating these may be breakdown products or potential splice 

variants.  The hsp70 protein overlaps with the TgTwinScan_7546 entry found in 

band one and therefore maybe a splice variant from the same genomic loci.  

Splice variants for heat shock proteins are known to exist in mammals, but their 
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function in stress remediation is still unknown (Yamada et al., 1999).  To date, 

the possibility of splice variants of the heat shock proteins 60, 70 and 90 that are 

involved in bradyzoite conversion has not been addressed in Toxoplasma. 

Catalase is an enzyme involved in oxidative stress remediation 

responsible for catalyzing the conversion of hydrogen peroxide into water and 

oxygen (Chelikani et al., 2004).  A homologue has been characterized in 

Toxoplasma and it appears to serve a protective function against macrophage 

reactive oxygen specie formation (Murray and Cohn, 1979; Murray et al., 1980) 

and maybe involved in parasite virulence (Ding et al., 2004).  A potential 

interaction between GCN5 and catalase provides another link between HATs and 

stress remediation in the parasite.  However, catalyse is an abundant 

cytoplasmic protein in Toxoplasma (Ding et al., 2004) and therefore it could be a 

contaminant in the purification of FLAGΔNTTgGCN5. 

 

III. Characterization of the enzymatic activity of TgGCN5 

All GCN5 homologues and the closely related HAT PCAF preferentially 

acetylate histone H3 at lysine 14.  To a lesser degree, GCN5 and PCAF can also 

acetylate lysines 9 and 18 on histone H3 in vitro (Grant, 2001).  Given the high 

homology of the catalytic domain of TgGCN5 to other GCN5 proteins (Sullivan 

and Smith, 2000), it was expected to also preferentially acetylate histone H3 at 

lysine 14.  Therefore, recombinant TgGCN5 was obtained and in vitro HAT 

assays were performed to determine its acetylation pattern on core histones. 

The N-terminal extension in mammalian GCN5 proteins is not required for 

the acetylation of free histones (Xu et al., 1998).  As the N-terminal extension of 

TgGCN5 is divergent from mammalian homologues, it is important to investigate 

this function for the N-terminal extension in TgGCN5.  If the N-terminus of 

TgGCN5 is required for the acetylation of free histones, it would provide evidence 

that the N-terminus has a parasite-specific function not present in its mammalian 

counterparts. 
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A. Development of a positive control for in vitro HAT assays 

Before the enzymatic activity of TgGCN5 could be assessed, a positive 

control needed to be created for the in vitro HAT assay.  The catalytic activity of 

the Saccharomyces cerevisiae GCN5 homologue (ScGCN5) has been rigorously 

studied and well characterized using published in vitro assays (Sternglanz and 

Schindelin, 1999).  Therefore it seemed excellently suited to be used as a 

positive control for our purposes.  Recombinant protein is commercially available 

but it is extremely expensive.  Thus, it was decided to generate our own 

recombinant yeast GCN5 protein using a bacterial cell line. 

As outlined in Chapter 2 (Section IV-D, page 75), ScGCN5 was expressed 

using a BL21-CodonPlus® E. coli strain (Stratagene) in frame with an N-terminal 

6X histidine fusion tag to allow for purification using nickel-NTA resin.  The 

CodonPlus bacterial strains have been designed to solve the problem of codon 

bias which can limit efficient expression of heterologous proteins in bacteria. 

Codon bias refers to the observation that there is a bias in the genome of 

an organism for one or two codons for almost all degenerate codon families 

(Makrides, 1996).  The codon bias is different between organisms, reflected in 

the abundance of their cognate tRNAs.  Therefore, heterologous genes enriched 

with codons that are rarely used by E. coli may not be efficiently expressed 

(Gustafsson et al., 2004).  Forced high-level expression of heterologous proteins 

can deplete the pool of rare tRNAs and stall translation.  BL21-CodonPlus® 

strains are engineered to contain extra copies of genes that encode the tRNAs 

that most frequently limit translation of heterologous proteins in E. coli 

(Stratagene, 2002).  Increased availability of these rare tRNAs allows for high-

level expression of recombinant genes in BL21-CodonPlus® cells that are poorly 

expressed in conventional BL21 strains (Stratagene, 2002). 

There are two different BL21-CodonPlus® stains, RIL and RP.  

CodonPlus-RIL® cells contain extra copies of the argU, ileY, and lueW tRNA 

genes (Stratagene, 2002).  These genes encode tRNAs that recognize the 

arginine codons AGA and AGG, the isoleucine codon AUA, and the leucine 

codon CUA, respectively.  The CodonPlus-RIL® strains express extra tRNAs that 
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most frequently restrict translation of heterologous proteins from genes that are 

AT-rich (Stratagene, 2002).  BL21-CodonPlus-RP® cells contain extra copies of 

the argU and proL genes (Stratagene, 2002).  These genes encode tRNAs that 

recognize the arginine codons AGA and AGG and the proline codon CCC, 

respectively.  The BL21-CodonPlus-RP® strains are enriched with tRNAs that 

most frequently restrict translation of heterologous proteins of organisms that 

have GC-rich genomes (Stratagene, 2002).  For the expression of yeast GCN5, 

the BL21-CodonPlus-RIL® strain was used because the yeast GCN5 gene has 

an AT ratio of 62% suggesting that the BL21-CodonPlus-RIL® strain would be 

best suited for optimal protein expression. 

The CodonPlus® strains have been engineered using the lac operon for 

IPTG (isopropyl β-D-1-thiogalactopyranoside) induced protein expression.  

Protein induction was carried out as outlined in Chapter 2 (Section IV-D, page 

75).  Figure 23-A shows SDS-PAGE analysis of a small scale pilot induction of a 

BL21-CodonPlus-RIL bacterial clone expressing ScGCN5.  The first two lanes 

are from the uninduced (UN) bacteria to serve as a negative control.  The first 

lane contains the soluble (S) fraction and the second lane contains the pellet (P) 

or insoluble fraction from the bacterial cells just prior to protein induction.  The 

last two lanes are after three hours of protein induction (IN) at 37°C.  Again, the 

first lane contains the soluble (S) fraction and the second lane is the pellet (P) or 

insoluble fraction.  When compared to the uninduced sample, there is a band at 

approximately 55 kilodaltons in the induced sample that is ScGCN5.  The 

calculated size of ScGCN5 is 48kD, but ScGCN5 has been shown to migrate 

slightly higher than its calculated size during SDS-PAGE analysis (Candau et al., 

1997). 

The induced protein appears to be in sufficient quantities in the soluble 

fraction to be processed for purification.  Recombinant protein within the soluble 

fraction is desirable because it is more likely to possess enzymatic function 

(Makrides, 1996).  Protein in the pellet or insoluble fraction is contained within 

inclusion bodies and is less likely to be enzymatically active due to improper 

folding (Makrides, 1996). 
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Figure 23: Protein induction and purification of ScGCN5 
A – SDS-PAGE of a pilot induction of ScGCN5 in BL21-CodonPlus-RIL stained 

with Simply Blue (Invitrogen) colloidal stain.  The first two lanes are from 

uninduced (UN) bacteria cells just prior to protein induction.  The last two lanes 

are after three hours of protein induction (IN) at 37°C.  (S = soluble fraction; P = 

pellet or insoluble fraction).  The band present at 55kD presumed to be ScGCN5 

is denoted by an arrow.  B – SDS-PAGE of washes and subsequent elutions 

from the purification of a large scale induction of ScGCN5 stained with Simply 

Blue.  Following incubation with bacterial lysate, the nickel-NTA resin was 

washed twice (W1 and W2) with 20mM imidazole.  Recombinant protein was 

eluted from the resin using increasing concentrations of imidazole: E1 and E2 = 

100mM imidazole, E3 and E4 = 200mM imidazole, and E5, E6, and E7 = 

300mM. 
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Once expression of soluble protein had been confirmed, a large scale 

induction was performed and the ScGCN5 protein was purified by virtue of the 

6X histidine tag using nickel-NTA resin (Qiagen) as outlined in Chapter 2 

(Section IV-D, page 75).  Figure 23-B shows the results of the nickel purification.  

Elutions E2 through E6 contain significant portions of ScGCN5 in reasonable 

purity.  Therefore, these five elutions were pooled and concentrated using an 

Amicon Ultra-4 Centrifugal Filter Device (Fisher #UFC801008).  The protein 

concentration of the pooled elutions was determined using a standard Bradford 

assay. 

Figure 24-A shows an SDS-PAGE analysis of ~1.0μg of ScGCN5 protein 

and a Western blot stained with an anti-histidine antibody confirming the 

production of a histidine tagged protein.  The SDS-PAGE and Western blot show 

several additional bands that are not full-length ScGCN5.  The bands are either 

contaminating bacterial proteins that co-purified with the ScGCN5 during nickel 

resin purification or possibly ScGCN5 degradation products that were generated 

during purification.  A commercially available His-Tag Protease Inhibitor Cocktail 
(Sigma #P8849) was added to all solutions used during purification to minimize 

degradation.  Alternatively, the lower weight bands could also be truncation 

products from incomplete translation of the recombinant protein.  As the 6X 

histidine tag is located at the N-terminus, truncation products would co-purify with 

full length protein. 

The presence of contaminating bacterial proteins does not pose a serious 

concern for the use of ScGCN5 in the in vitro HAT assay for our purposes.  

Bacteria do not possess histones, so it is highly unlikely that the contaminating 

bacterial proteins will adversely affect the enzymatic activity of ScGCN5 in the 

HAT assay.  To date, no bacterial proteins have been discovered that are 

capable of acetylating histones (Roth et al., 2001).  The lack of histone modifying 

enzymes in bacteria is one of the advantages of expressing HAT proteins in 

bacteria.  Any contaminating bacterial proteins that co-purify with the 

recombinant protein should not cause aberrant acetylation in the HAT assay. 
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Figure 24: Recombinant ScGCN5 possesses HAT activity 
A – Lane 1 is an SDS-PAGE of ~1.0μg of ScGCN5 stained with Simply Blue (SB, 

Invitrogen) colloidal stain.  Lane 2 is a Western of 500ng of TgGCN5 stained with 

a monoclonal anti-histidine antibody (α-his, Clontech #PT3359-2) at a dilution of 

1:5000 and the secondary antibody was goat derived anti-mouse (Amersham 

#NA931) used at 1:5000.  Detection was performed using Amersham ECL 

reagent (#RPN2209) with High Sensitive Blue photographic film (RPS Imaging 

#33-0810).  B – Autoradiograph of in vitro HAT assay with ~1.0μg of ScGCN5 

and core histones exposed to High Sensitive Blue photographic film (RPS 

Imaging #33-0810).  Markers are displayed on left in kilodaltons (kD). 
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It is doubtful that the truncated proteins and/or degradation products will 

interfere with full length enzymatically active ScGCN5 in the HAT assay.  The 

truncated proteins and degradation products probably do not possess enzymatic 

function.  However, the presence of truncated protein, degradation products, and 

contaminating bacterial proteins prevents accurate determination of the 

concentration of full length ScGCN5.  The amount of full length ScGCN5 protein 

present in the pooled elutions is an unknown percentage of the total protein 

concentration determined by Bradford assay.  Therefore, the actual amount of full 

length ScGCN5 protein used in our HAT assays is unknown.  Fortunately, our 

experiments do not require the exact amount of active HAT protein used in the 

HAT assay to be known. 

After obtaining recombinant ScGCN5 in sufficient quantity, the 

functionality was assessed in an in vitro HAT assay.  The mostly commonly used 

in vitro HAT assay reported in the literature measures HAT activity using tritiated 

acetyl CoA and core histones (Brownell et al., 1996).  A protein that possesses 

HAT activity will transfer the tritiated acetyl group from the acetyl CoA to the core 

histones present in solution.  The reaction is then resolved by SDS-PAGE and 

processed for autoradiography.  Histones modified with the radioactive tritiated 

acetyl group will form bands when the gel is exposed to film. 

Figure 24-B contains the autoradiograph of a HAT assay with ~1.0μg of 

ScGCN5 (lane 1) demonstrating that the recombinant ScGCN5 possesses HAT 

activity in our in vitro HAT assay based the assay published by Brownell et al. 

(1996).  As a negative control (lane 2), a HAT assay was performed containing 

only histones and tritiated acetyl CoA.  Clearly, the HAT activity of the 

recombinant ScGCN5 far exceeds the minor activity within the negative control.  

The small activity present in the negative control suggests that these histones 

are being acetylated.  Background activity has been a constant problem in HAT 

assays in other labs (Cote, J; unpublished observations).  The histones used in 

the HAT assay are commercially available histones (Upstate) purified from 

chicken erythrocytes.  It is plausible that they are contaminated with minor 

amounts of chicken HATs which generate minor background activity in the assay. 
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Regardless of the cause of the background activity, ScGCN5 possesses 

activity much higher than the activity in the negative control.  Thus, we have 

successfully reproduced the published in vitro HAT assay with a functionally 

relevant positive control.  As predicted from the literature, ScGCN5 shows a 

strong preference for acetylating histone H3 and has minor transferase activity 

on histone H4 (Kuo et al., 1996).  ScGCN5 also appears to acetylate histone H1.  

Other GCN5 homologues have been shown to also acetylate histone H1 in vitro 

but not in vivo (Herrera et al., 1997). 

 

B. Impact of the TgGCN5 N-terminus on histone acetylation 

Once the in vitro HAT assay had been successfully tested and a working 

positive control had been generated, the next objective was to obtain pure 

recombinant TgGCN5 protein.  As a result of the success in expressing ScGCN5 

in BL21-CodonPlus cells, an attempt was made to also express TgGCN5 in 

bacteria fused to an N-terminal 6X histidine tag.  Unlike ScGCN5, TgGCN5 has a 

GC ratio of 60% making the RP strain of the BL21-CodonPlus cell line better 

suited for expression. 

TgGCN5 is over twice the size of ScGCN5, therefore the protein induction 

protocol was altered to maximize expression of soluble protein in the bacteria.  

Lowering the temperature of bacterial cultures during induction has been shown 

to facilitate increased expression of soluble protein (Shirano and Shibata, 1990).  

Therefore, the protein induction of TgGCN5 was performed at 15°C instead of 

37°C.  Lowering the temperature of induction slows the bacterial translation 

machinery allowing for more efficient translation (Makrides, 1996).  The 

drawback of using a lower temperature is a reduction in the total amount of 

protein expressed.  However, a greater fraction of the protein that is expressed 

will be in the soluble fraction and be more likely to possess enzymatic activity 

(Shirano and Shibata, 1990).  To compensate for the reduction in the rate of 

protein synthesis the duration of induction was extended from three hours to 

sixteen hours.  The induction protocol used for generating TgGCN5 is outlined in 

greater detail in Chapter 2 Section IV-D (page 75). 
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Figure 25-A shows an SDS-PAGE analysis of a pilot induction of a BL21-

CodonPlus-RP bacterial clone expressing TgGCN5.  As a negative control, the 

first two lanes are from uninduced (UN) bacteria.  The first lane contains the 

soluble (S) fraction and the second lane contains the pellet (P) or insoluble 

fraction from the bacterial cells just prior to induction.  The last two lanes are after 

sixteen hours of protein induction (IN) at 15°C.  The first lane contains the soluble 

(S) fraction and the second lane is the pellet (P) or insoluble fraction.  When 

compared to the uninduced sample, there is a very abundant band between 

105kD and 160kD which is congruent with the 130kD size of TgGCN5.  A 

sufficient amount of recombinant protein is present in the soluble fraction to be 

process for purification. 

After confirming adequate expression of soluble protein, a large scale 

induction was performed and TgGC5 was purified via the 6X histidine tag using 

nickel-NTA resin (Qiagen) as outlined in Chapter 2 Section IV-D (page 75).  

Figure 25-B shows the results of the nickel resin purification.  Elutions E1 through 

E7 contain significant portions of TgGCN5 in reasonable purity.  Therefore, all 

seven elutions were pooled and concentrated using an Amicon centrifugal filter 

concentrator (Millipore).  The protein concentration of the pooled elutions was 

determined using a standard Bradford assay. 

Figure 26-A shows SDS-PAGE analysis of 500ng of TgGCN5 protein and 

a Western blot stained with an anti-histidine antibody (Clontech) confirming the 

production of a histidine tagged protein.  The SDS-PAGE and Western blot show 

several additional bands that are not full-length ScGCN5.  The bands are either 

contaminating bacterial proteins that co-purified with the TgGCN5 during nickel 

resin purification or are truncated products from incomplete translation of the 

recombinant protein.  Despite the presence of additional proteins, the major 

protein present is full length TgGCN5. 

The enzymatic activity of the purified recombinant TgGCN5 was assessed 

in an in vitro HAT assay (Figure 26-B).  Lane 1 is the positive control performed 

with 1.0μg of ScGCN5 and Lane 2 is the HAT assay performed with 500ng of 

TgGCN5.  As a negative control (lane 3), a HAT assay was performed containing 
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Figure 25: Bacterial protein induction and purification of TgGCN5 
A – SDS-PAGE of a pilot induction of TgGCN5 in BL21-CodonPlus-RP stained 

with Simply Blue colloidal stain (Invitrogen).  The first two lanes are from 

uninduced (UN) bacteria cells just prior to protein induction.  The last two lanes 

are after an overnight protein induction (IN) at 15°C.  (S = soluble fraction; P = 

pellet or insoluble fraction).  The band present at 130kD presumed to be 

TgGCN5 is denoted by an arrow.  B – SDS-PAGE of washes and subsequent 

elutions from the purification of a large scale induction of TgGCN5 stained with 

Simply Blue.  Following incubation with bacterial lysate, the nickel-NTA resin was 

washed twice (W1 and W2) with 20mM imidazole.  Recombinant protein was 

eluted from the resin using increasing concentrations of imidazole: E1 and E2 = 

100mM imidazole, E3 and E4 = 200mM imidazole, and E5, E6, and E7 = 

300mM.  Markers are on left displayed in kilodaltons (kD). 
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Figure 26: Recombinant TgGCN5 produced in bacteria lacks HAT activity 
A – Lane 1 is an SDS-PAGE of 500ng of TgGCN5 stained with Simply Blue 

colloidal stain (SB, Invitrogen).  Lane 2 is a Western of 500ng of TgGCN5 stained 

with a monoclonal anti-histidine antibody (α-his, Clontech #PT3359-2) at a 

dilution of 1:5000 and the secondary antibody was goat derived anti-mouse 

(Amersham #NA931) used at 1:5000.  Detection was performed using 

Amersham ECL reagent (#RPN2209) with High Sensitive Blue photographic film 

(RPS Imaging #33-0810).  B – In vitro HAT assay with 1μg of ScGCN5 (Lane 1), 

500ng of TgGCN5 (Lane 2), and core histones alone as a negative control (Lane 

3) exposed to High Sensitive Blue photographic film (RPS Imaging #33-0810).  

Markers are on left displayed in kilodaltons (kD). 
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only histones and tritiated acetyl CoA.  Unfortunately, the recombinant TgGCN5 

produced in BL21-CodonPlus-RP strain does not appear to possess significant 

HAT activity above background.  The positive control (ScGCN5, Lane 1) shows 

intense HAT activity on core histones suggesting that no error was made in 

performing the HAT assay.  The HAT assay was repeated two more times but no 

HAT activity was detected.  Recombinant TgGCN5 was purified from two 

additional BL21-CodonPlus-RP bacterial clones but the recombinant protein from 

these different clones did not possess HAT activity in the in vitro assay, either. 

Several explanations are possible for the lack of activity of TgGCN5.  The 

most plausible is that the BL21-CodonPlus-RP strain is unable to produce 

enzymatically active protein.  Unlike eukaryotic organisms, bacteria lack the 

ability to perform many of the posttranslational modifications found in eukaryotic 

proteins and they have limited ability to facilitate extensive disulfide bond 

formation (Makrides, 1996).  Bacteria do not possess chaperone proteins that 

may be required to assist in folding proteins into their proper conformation.  

Protocols have been established to solve the problem of disulfide bond formation 

and proper protein folding increasing the likelihood of obtaining functionally active 

recombinant protein from bacteria.  Many of these protocols involve the use of 

different bacterial strains, additional fusion tags or co-expression of chaperone 

proteins (Derman et al., 1993; Cole, 1996; Terpe, 2003).  While it is possible that 

these methods may have been successful in producing enzymatically active 

TgGCN5 in bacteria, a large amount of time would have been spent optimizing 

protein expression conditions without any guarantee of success.  Therefore it 

seemed best to try alternative methods for obtaining recombinant protein. 

To obtain active TgGCN5 protein, several options were possible.  One 

method would be to purify TgGCN5 directly from parasite lysate.  A TgGCN5 

antiserum has been developed in our lab and it was used in previous 

experiments exploring the interaction between TgGCN5 with importin α.  It is 

theoretically possible to purify endogenous TgGCN5 from wild type parasite 

using the same TgGCN5 antiserum.  However, low level expression of 

endogenous TgGCN5 would limit our ability to obtain sufficient amounts of the 
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protein to use in an in vitro assay.  An alternative would be to express 

recombinant protein in a eukaryotic expression system such as yeast or 

baculovirus-insect cell systems (Schmidt and Hoffman, 2002).  Eukaryotic cells 

possess chaperon proteins and are capable of readily generating disulfide bonds 

offering a greater likelihood that the recombinant protein would possess 

enzymatic activity (Schmidt and Hoffman, 2002).  However, these expression 

systems require laborious setup and optimization for efficient expression of large 

quantities of protein.  A third possibility, that had the potential to offer abundant 

pure protein without significant setup time, was to express the TgGCN5 protein in 

Toxoplasma.  Others have had success in expressing and purifying recombinant 

proteins directly from transgenic parasites (Donald and Liberator, 2002).  The 

advantage of expressing recombinant protein in Toxoplasma is that it guaranteed 

the proper folding and posttranslational modifications required for full HAT 

activity.  Furthermore, the two parasite lines necessary for our experiments had 

already been generated as part of the TgGCN5 NLS mapping experiments: (1) 

full length TgGCN5 fused to a FLAG tag (FLAGTgGCN5) and (2) the truncated 

from lacking the N-terminal extension also fused to a FLAG tag 

(FLAGΔNTTgGCN5).  Recombinant protein from the parasites could be purified 

from parasite lysate via the N-terminal FLAG tag using commercially available 

anti-FLAG affinity resin. 

Commercially available anti-FLAG affinity resin (Sigma) was used to purify 

FLAGTgGCN5 and FLAGΔNTTgGCN5 from transgenic parasites (Chapter 2, 

Section IV-E, page 80).  The purified recombinant protein was eluted from the

affinity resin using competitive elution via a concentrated solution of 3XFLAG 

peptide (Sigma).  The elution peptide was removed by dialysis and a standard 

Bradford assay was used to determine the concentration of the recombinant 

protein.  Unfortunately, no protein was detectable by Bradford assay in eithe

the dialyzed elutions of 

 

r of 

as FLAGTgGCN5 or FLAGΔNTTgGCN5.  The purification w

repeated several more times with similar results.  The most likely causes of low 

protein yield were either inefficient affinity purification and/or sample loss during 
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dialysis.  To determine the efficiency of the affinity purification, a Western blot 

stained with anti-FLAG was performed on transgenic parasite lysate, the elution  

before dialysis and the affinity resin from which protein had been eluted (Figure 

27).  To analyze the resin by Western blot, the resin was boiled in SDS- 

PAGE loading buffer following the elution step.  The loading buffer was run on a 

gel and transferred to a Western blot.  As shown in Figure 27, Lane 2, there 

appears to be no FLAGTgGCN5 or FLAGΔNTTgGCN5 present in the elutions that is 

detectable by Western blotting.  However, in Figure 27, Lane 3 there is a strong 

band at the size expected for FLAGTgGCN5 (130kD) and a faint band at the size 

expected for FLAGΔNTTgGCN5 (52kD) protein bound to the resin.  Therefore, it 

appears that the affinity purified protein is not being efficiently eluted from the 

affinity resin.  An alternative method of elution using acidic glycine was 

attempted, but the elutions also failed to have detectable protein following 

dialysis.  Harsher conditions could have been employed to elute the protein such 

as high salt concentration, adding detergents, or using denaturants such as urea 

or guanidine to elute FLAGTgGCN5 and FLAGΔNTTgGCN5.  However, these 

elution conditions would have partially or completely denatured the HAT protein 

making it unusable for enzymatic analysis (Rutkowska and Skowron, 1999). 

The Western blot results in Figure 27 indicate that the anti-FLAG affinity 

resin appears to be purifying sufficient protein from the parasite lysate for 

enzymatic assays.  Therefore, an in vitro HAT assay was attempted without 

eluting the protein from the resin.  The resin with FLAGTgGCN5 or 

FLAGΔNTTgGCN5 still bound was added directly to the HAT assay.  Following 

purification, resin containing the bound FLAGTgGCN5 or FLAGΔNTTgGCN5 was 

split between Western blot analysis and the HAT assay.  One third of the resin 

was boiled in SDS-PAGE loading buffer and processed for Western blot analysis.  

The remaining two-thirds of resin was used in an in vitro HAT assay.  By dividing 

up the resin in this manner, a qualitative comparison can be made between the 

amount of protein obtained from affinity purification and the overall activity 

elicited in the HAT assay.
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Figure 27: Elution of TgGCN5 and ΔNTTgGCN5 from FLAG affinity resin 

A – Western blot assessing the efficiency of the anti-FLAG affinity purification 

and elution of FLAGTgGCN5.  Lane 1 = lysate from parasites overexpressing 

FLAGTgGCN5, Lane 2 = elution from anti-FLAG resin using 3X FLAG peptide, 

Lane 3 = Resin boiled in SDS loading buffer following elution with 3X peptide. 

B – Western blot assessing the efficiency of the anti-FLAG affinity purification 

and elution of FLAGΔNTTgGCN5.  Lane 1 = lysate from parasites overexpressing 

FLAGΔNTTgGCN5, Lane 2 = elution from anti-FLAG resin using 3X FLAG peptide, 

Lane 3 = Resin boiled in SDS loading buffer following elution with 3X peptide.  

For both Western blots, the primary antibody was polyclonal anti-FLAG (Sigma 

#F7425) used at 1:1000 and the secondary antibody was goat derived anti-rabbit 

(Amersham #NA934) used at 1:2500.  Detection was performed using 

Amersham ECL reagent (#RPN2209) with High Sensitive Blue photographic film 

(RPS Imaging #33-0810).  Markers are on left displayed in kilodaltons (kD) 
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As shown in Figure 28A, the affinity purification pulled down adequate 

amounts of FLAGTgGCN5 (Lane 1) and FLAGΔNTTgGCN5 (Lane 2) protein.  Lane 

3 in Figure 28A is of wild type lysate carried through anti-FLAG affinity 

purification to serve as a negative control in the HAT assy.  As expected, it 

contains no FLAG tagged proteins. 

in 

Both FLAGTgGCN5 and FLAGΔNTTgGCN5 while still bound to the affinity 

resin are enzymatically active and acetylate core histones (Figure 28B).  In figure 

28-B, Lane 1 is a HAT assay performed with ~1.0μg ScGCN5 to serve as a 

positive control.  Lane 4 is a negative control HAT assay performed with anti-

FLAG affinity resin from the purification of wild type lysate.  In addition to the 

recombinant HATs expressed in the parasites, Toxoplasma also expresses other 

HAT proteins (Sullivan and Hakimi, 2006).  The negative control demonstrates 

that the anti-FLAG affinity resin is not capable of purifying these endogenous 

Toxoplasma HATs through non-specific interactions.  The results shown in 

Figure 28-A and -B are representative of three duplicate experiments which all 

yielded similar results. 

As shown in Figure 28-B, both TgGCN5 and ΔNTTgGCN5 are able to 

acetylate free non-nucleosomal histones in solution.  As expected for a GCN5 

HAT, the preferred substrate of both proteins is histone H3 and to a lesser extent 

H4.  Full length TgGCN5 appears to be able to acetylate H1.  The truncated form 

of TgGCN5 also shows detectable activity on H1 as well.  The acetylation of H1 

and H4 by GCN5 are believed to occur in vitro but not in vivo (Herrera et al., 

1997). 

The HAT assay results also suggest that full length TgGCN5 has higher 

activity than the truncated form.  Although there appears to be more 

ΔNTTgGCN5 present in the Western blot versus full length TgGCN5, 

ΔNTTgGCN5 appears to have much weaker activity than TgGCN5 in the HAT 

assay.  It is possible that the N-terminal extension stabilizes full length prote

and provides stronger catalytic activity.  However, the FLAG tag in both 

recombinant proteins is fused to the amino-terminal end.  In FLAGΔNTTgGCN5, 
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this places the catalytic domain in close proximity to the affinity resin, possibly 

impeding its activity.  Finding a 
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Figure 28: HAT activity of TgGCN5 and ΔNTTgGCN5 

A – Western blot of the anti-FLAG affinity purification.  Primary antibody 

(polyclonal anti-FLAG, Sigma #F7425) used at 1:1000 and secondary antibod

(goat derived anti-rabbit, Amersham #NA934) u

y 

sed at 1:2500.  Detection was 

perform  Blue 

T 

cyte 

  

.  

ed using Amersham ECL reagent (#RPN2209) with High Sensitive

photographic film (RPS Imaging #33-0810).  B – Autoradiogram with High 

Sensitive Blue photographic film (RPS Imaging #33-0810) of an in vitro HA

assay using 3H-Acetyl CoA (Amersham #TRK688) with chicken erythro

histones H1 (~30kD), H2A (~14kD) H2B (~15kD), H3 (~17kD), and H4 (~10kD).

LANES: 1 = ~1.0g of ScGCN5, 2 = over-expressing FLAGTgGCN5, 3 = over-

expressing FLAGΔNTTgGCN5, and 4 = wild-type lysate as a negative control

Markers are on left displayed in kilodaltons (kD). 
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method to effectively elute the proteins o  the affinity resin would give a better 

comparison.  Alternatively, the FLAG tag could be moved the C-terminus in both 

proteins and the activity reassessed.  Nevertheless, it is clear that both forms of 

TgGCN5 preferentially acetylate histone H3 in vitro. 

 

C. Determining the lysine(s) acetylated by TgGCN5  

The development of antibodies capable of recognizing specific 

modifications to histone proteins has made it possible to easily determine which 

lysine residues are targeted by HAT proteins using standard Western blot 

techniques (White et al., 1999).  Once it had been determined that TgGCN5 

preferentially acetylated histone H3, additional HAT assays were performed to 

identify which lysine(s) were being acetylated. 

Since Western analysis was employed to determine the residues that are 

acetylated by TgGCN5, radioactively labeled acetyl CoA was not required in the 

HAT assay.  Detection was obtained using chemiluminescence via a secondary 

antibody conjugated to horseradish peroxidase and exposing the blot to film.  

Therefore, the HAT assay protocol was altered, switching the radioactively 

labeled acetyl CoA with a similar solution of non-radioactive acetyl CoA (Sigma) 

dissolved in acidic sodium acetate.  In addition, the substrate was changed from 

core histones to commercially available recombinant histone H3, the preferred 

substrate for GCN5 proteins.  A detailed protocol of the non-radioactive HAT 

assay is in Chapter 2, Section IV-G (page 83). 

As in the previous HAT assays, anti-FLAG affinity purification was 

performed on parasites overexpressing FLAGTgGCN5 or FLAGΔNTTgGCN5.  

Affinity purification with anti-FLAG resin was also performed on wild type 

parasites to serve as a negative control for the HAT assay.  Following 

purification, the affinity resin was split between Western analysis (Figure 29-A) 

and HAT assay (Figure 29-B).  ScGCN5 continued to serve as a positive control 

in these HAT assays (Figure 29-B, Lane 1).  Following the HAT assay, the 

reactions were run on a gel and transferred to a PVDF membrane.  Acetylated 

lysines were detected by Western analysis using antibodies capable of detecting  

ff
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Figure 29: Specific lysine acetylation of TgGCN5 and ΔNTTgGCN5 

A – Western blot of the anti-FLAG affinity purification.  Primary antibody 

(polyclonal anti-FLAG, Sigma #F7425) used at 1:1000 and secondary antibody 

(goat derived anti-rabbit, Amersham #NA934) used at 1:2500.  Detection was

performed using Amersham ECL reagent (#RPN2209) with High Sensitive Blue 

photographic film (RPS Imaging #33-0810).  Markers are on left in kilodaltons 

(kD).  B – Western blots of in vitro HAT assay stained with different antibodies to 

specific acetylated (Ac) lysine residues.  Primary antibodies (α-AcH3(K9), 

Upstate #07-352; α-AcH3(K14), Upstate #07-353; α-AcH3(K9/K18), Upstate

593) were used at 1:1000 and secondary antibody (goat derived anti-rabbit; 

Amersham, #NA934), was used at 1:2500.  Detection was performed using 

Amersham ECL reagent (#RPN2209) with High Sensitive Blue photograp

(RPS Imaging #33-0810).  Markers are on left in kilodaltons (kD).  FL = full

length; ΔNT = lacking the N-terminus; Sc = Saccharomyces cerevisiae GCN

Tg = Toxoplasma GCN5; RH = wild type parasite lysate as a negative co
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specifi .  Given the activity 

of other GCN5 homologues (Kuo et al., 1996), antibodies recognizing acetylation 

on lysi ibody 

blot 

 

d 

e (Kuo et al., 1996), ScGCN5 strongly acetylates histone H3 on lysine 14 

(Figure

 

tivity on 

ow 

 

e 

 

e of acetylating lysine 14 

of histo rity, 

 

c acetylated lysine residues in histone H3 (Figure 29-B)

ne 14, lysine 9, and on lysine 9+18 were used.  The lysine 9+18 ant

was used because there is not a reliable antibody available for Western 

analysis that recognizes acetylation only on lysine 18 in H3. 

The first antibody used in the Western blot analysis recognizes acetylation

of lysine 14 on histone H3 (α-AcH3(K14); Upstate).  In agreement with publishe

literatur

 20B, middle panel).  Surprisingly, α-AcH3(K14) did not react with 

recombinant histone H3 incubated with TgGCN5 suggesting that TgGCN5 does 

not acetylate lysine 14.  Therefore, acetylation of lysines 9 and 18 were also 

examined.  As expected, ScGCN5 is able to acetylate lysines 9 and 18, but to a

lesser extent than lysine 14.  TgGCN5 does not appear to have any ac

lysine 9 in histone H3 (Figure 29-B, top panel).  However, histone H3 does sh

acetylation by TgGCN5 when probed for acetylation on lysines 9 and 18 (Figure

29-B, bottom panel).  Given the lack of TgGCN5 activity on lysine 9 alone, 

(Figure 29-B, top panel) this suggests that TgGCN5 specifically acetylates lysin

18.  ΔNTTgGCN5 shows the same acetylation pattern as full-length TgGCN5.  

Therefore it does not appear that the N-terminal extension is involved in 

determining the lysines that are acetylated.  There is a modest amount of 

background with anti-FLAG affinity purified RH (wild type) parasite lysate.  

However, the activity of TgGCN5 and ΔNTTgGCN5 is much higher than

background levels on lysine 18 in histone H3. 

To date, TgGCN5 is the first GCN5 HAT incapabl

ne H3 in vitro.  The bias for H3 lysine 18 is also an intriguing peculia

and begs the question if other HAT(s) are preset in Toxoplasma that can

acetylate the other lysine residues of H3 
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CHAPTER 4: DISCUSSION AND FUTURE STUDIES 

 

Phylum Apicomplexa is home to numerous intracellular protozoan 

parasites of tremendous medical and economical importance, including 

Plasmodium (malaria) and Cryptosporidium (cryptosporidiosis).  Toxoplas

gondii is another apicomplexan, capable of causing congenital birth defe

serious complications in immunocompromised patients (Black and Boothroyd, 

2000). 

Apicomplexan parasites typically have complex life cycles and interconvert 

between various stages.  The differentiation of Toxoplasma from its invasive form

(tachyzoite) into an encysted form (bradyzoite) is central to its pathology and 

transmission (Weiss and Kim, 2000).  Interfering with this process may lead to 

novel therapeutic strategies, but the processes orchestrating parasite 

differentiation 

ma 

cts and 

 

have not been completely resolved.  It is well established that 

stage-specific genes are present in Toxoplasma, indicating that transcriptional 

rol of differentiation (Singh et al., 2002).  

Furthe

e 

 

regulation participates in the cont

rmore, microarray analysis of differentiating tachyzoites has shown that 

several genes are expressed during the entire differentiation process and som

are expressed only at certain time points during differentiation suggesting a 

highly orchestrated and controlled event (Cleary et al., 2002).  There are 

currently no known transcription factors that are involved in governing the 

bradyzoite differentiation process.  Searches of apicomplexan genome 

databases indicate a lack of conventional transcription factors conserved in other 

species (Saksouk et al., 2005; Templeton et al., 2004). 

Tachyzoites develop into bradyzoites in vitro after being exposed to 

various stresses (e.g. pH, chemical, or heat shock; Soête et al., 1994), 

suggesting that stress response pathways may be involved in mediating signals 

to initiate differentiation.  Chromatin remodeling proteins in other eukaryotic 

organisms play a key role in gene expression, some of which are instrumental in

mediating stress responses (Huisinga and Pugh, 2004).  Thus, chromatin 

152 



remodeling proteins should be investigated in Toxoplasma as they may 

participate in the differentiation process. 

The GCN5 histone acetyltransferase (HAT) is involved in regulating 

genome, most of which are induced by stress 

(Huisin

e 

N5 

 

he 

 

e, the GCN5 

ry 

short 

es, 

extens ue 

sis 

N5 

approximately 10% of the yeast 

ga and Pugh, 2004).  An unusual GCN5 HAT has been cloned in 

Toxoplasma (Sullivan and Smith, 2000), but no work has been done to 

characterize the novel aspects of this unique HAT.  TgGCN5 contains a uniqu

N-terminal “extension” that bears no similarity to known proteins and is devoid of 

known protein motifs.  Elucidating the function of the N-terminus will facilitate our 

understanding of gene regulation in this parasite and other apicomplexans, and 

may shed new light on the bradyzoite differentiation process as well as other 

aspects of parasite biology.  For example, the N-terminal extension of TgGC

has been used a tool to explore the understudied area of nuclear trafficking in

Toxoplasma. 

 

I. The N-terminus and TgGCN5  

The TgGCN5 N-terminal extension is comprised of 820 amino acids.  T

large size of the N-terminal extension in TgGCN5 distinguishes it from GCN5

homologues found in other lower eukaryotic organisms.  For exampl

homologue expressed in the related alveolate Tetrahymena possesses a ve

small N-terminal extension of 69 residues.  Yeast GCN5 also possesses a 

N-terminal extension composed of 118 amino acids.  Although metazoan GCN5 

homologues contain longer N-terminal extensions of approximately 500 residu

they are still smaller than TgGCN5.  Furthermore, unlike the large N-terminal 

extensions present in metazoan GCN5 and the related HAT PCAF, the lengthy 

N-terminal extension present in TgGCN5 bears no similarity to the N-terminal 

ions found in other GCN5 homologues.  Our hypothesis is that this uniq

N-terminal extension is critical to the function of TgGCN5.  The goal of this the

was to ascertain functions for the novel N-terminus providing evidence that it is 

critical to the function of TgGCN5.  Based on what is known about other GC

proteins, three roles for the N-terminal domain of TgGCN5 that were investigated 
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in this thesis include nuclear localization, protein-protein interactions, and 

modulation of enzymatic function. 

 

A. Mapping the NLS of TgGCN 

Discussion: The data reported in this thesis demonstrates that the 

TgGCN5 N-terminal extension contains a nuclear localization signal (NLS) th

required for targeting TgGCN5 to the parasite nucleus.  Previous work in the 

Sullivan Lab had established that the N-terminal extension was essential for the 

nuclear translocation of TgGCN5.  Therefore, TgGCN5 made an excellent mode

to study how a GCN5 protein is transported into the nucleus.  Before our work 

elucidating the nuclear localization of TgGCN5, no NLS had been reported for 

any GCN5 homologue.  Furthermore, no NLS had ever been mapped in a 

Toxoplasma protein.  Additional studies had narrowed the region involved in 

nuclear localization to between amino acids 58 and 260. 
Stretches of 5-6 basic residues have been discovered to function a

nuclear targeting sequences in many nuclear proteins (Boulikas, 1994).  The 

mostly likely candidate for an NLS between amino acids 58 and 260 was the 

hexapeptide R

at is 

l 

on 

s 

KRVKR.  Truncations were made to the N-terminal extension 

isolatin

e and the hexapeptide 

was ab

y. 

g 

g this stretch of basic residues within the N-terminus.  Using 

immunocytochemistry, it was determined that the RKRVKR sequence was 

required for the nuclear localization of TgGCN5.  To demonstrate that the 

hexapeptide was a complete NLS, it was fused to the cytoplasmic protein, beta 

galactosidase.  The fusion protein of beta galactosidas

le to enter the parasite nucleus.  The ability for the hexapeptide to target a 

non-nuclear protein to the nucleus provides strong evidence that the hexapeptide 

is a complete NLS recognized by the parasite’s nuclear trafficking machiner

The sequence RKRVKR is the first NLS to be described in any GCN5 

protein.  Searches for the TgGCN5 NLS in other GCN5 proteins revealed no 

matches including metazoan GCN5 and PCAF homologues which possess lon

N-terminal extensions.  However, there are clusters of 4–5 basic residues 

present in the N-termini of metazoan GCN5 and PCAF homologues that are 

154 



potential candidates for an NLS.  The putative maize GCN5 NLS, RKRK, is

similar to the NLS isolated in TgGCN5 (Bha

 

t et al., 2003).  However, it is not 

terrupted by a non-basic residue.  The divergence between the maize and 

TgGCN CN5 

ite 

within 

 

CN5 

 

eptide RKRVKR is the first NLS that has ever been mapped for 

any Toxoplasma protein.  The RKRVKR sequence does fit one of the nine motifs 

st and is not 

commo

 

wever, 

in

5 NLS suggests that there may not be a conserved NLS between G

homologues.  Furthermore, yeast GCN5 (ScGCN5) does not possess any 

stretches of basic residues within its relatively short N-terminus.  The signal 

sequenced responsible for targeting yeast GCN5 to the nucleus is unknown, but 

it is doubtful that the N-terminal extension is involved.  There is a stretch of basic 

residues, RRKIR, within the Ada2 domain of ScGCN5 that is very similar to the 

NLS motif of TgGCN5 (Boulikas, 1994).  The hexapeptide RRKIR may be the 

putative NLS for ScGCN5.  Interestingly, the beginning four residues, RRKI are 

conserved in the Ada2 domain of TgGCN5.  However, these residues within 

TgGCN5 do not appear to be involved in targeting the protein to the paras

nucleus.  Furthermore, the stretch of basic residues RRKIR is not conserved 

the Ada2 domains of other GCN5 homologues.  Additional studies 

determining if this stretch is involved in targeted yeast GCN5 are warranted as it

may provide further evidence that there is not a conserved NLS among G

homologues. 

Small proteins less than 40kD are capable of passively diffusing through

the nuclear envelope (Pante and Kann, 2002).  The calculated size of yeast 

GCN5 is approximately 51kD.  The size of yeast GCN5 exceeds the threshold for 

passive diffusion through the nuclear envelope, and therefore requires a form of 

active transport in order to be present in the nucleus. 

The hexap

described by Boulikas, but this particular NLS motif is the rare

nly utilized by nuclear proteins (Boulikas, 1994).  The presence of a rare 

NLS motif suggests that Toxoplasma and perhaps other apicomplexans may 

utilize NLSs that differ slightly in composition from those utilized by yeast and

multicellular animals.  Differences in NLS composition may mean differences in 

nuclear trafficking pathways which could be exploited in drug design.  Ho
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additional NLS motifs will need to be elucidated in Toxoplasma and other 

apicomplexans to determine if this is true. 

 

Future Studies: While RKRVKR fits a recognized NLS motif pattern 

(Boulikas, 1999), it may not be the minimal requirement for targeting TgGCN5 

the parasite nucleus.  It is plausible that the three basic residues in fron

valine, RKR, could be the entire NLS.  Although most NLSs are composed of 4 

more basic residues, there are rare NLSs composed of only three basic residues 

(Boukilas, 1999).  Fusing only RKR to β-galactosidase would confirm whether or 

not three basic residues are enough to target a protein to the parasite nucleus.  

Alternatively, site-directed mutagenesis could be performed on the NLS present 

in TgGCN5 changing the basic residues to alanine.  The results would narrow the 

to 

t of the 

or 

NLS d he 

s 

n 

s-

  

e of 

e 

ium 

own to its minimal size and may indicate which residues within t

hexapeptide are the most important in targeting the HAT to the parasite nucleus. 

It would be interesting to ascertain if TgGCN5 is localized to the nucleu

when expressed in mammalian cells.  The purpose of such a study would be to 

determine if mammalian nuclear trafficking proteins could recognize the 

hexapeptide NLS and transport TgGCN5 into the nucleus.  Several transfectio

and expression methods for mammalian cells have been developed (Recilla

Targa, 2004).  If TgGCN5 is transported into the nucleus, it would argue that 

nuclear localization via the importin pathway is a highly conserved phenomenon.

However, if the TgGCN5 is not recognized by the nuclear transport machinery it 

would indicate that differences exist between mammalian and apicomplexan 

nuclear import.   

 

B. Apicomplexan database searches with the TgGCN5 NLS 

Discussion: Defining motifs such as an NLS has the potential to assist in 

the annotation efforts of apicomplexan genomics.  The NLS of TgGCN5 is on

the first fully mapped nuclear targeting sequences in an apicomplexan.  Th

online genomic databases for Toxoplasma, Plasmodium, and Cryptosporid

were searched for proteins containing identical and similar motifs.  If the 
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RKRVKR sequence was able to identify other proteins with a high probability of

possessing nuclear function based on homology or other domains prese

protein than it provided additional evidence t

 

nt in the 

hat the hexapeptide was a nuclear 

targeti

 

 indicate 

es may 

 

bases.  The 

lack of

 

 

ns 

ble homology to any known proteins nor contained any 

recogn

ng sequence and had the capability of identifying other nuclear proteins.  

The NLS could also aid in characterizing parasite proteins without any known 

function.  It is estimated that over 50% of the predicted proteins in the 

Toxoplasma and Plasmodium databases are parasite specific and possess no 

discernable homology to any known proteins (Li et al., 2003).  Proteins that have

no readily identifiable function but possess the sequence RKRVKR may

a function within the parasite nucleus.  Additionally, searching the databas

provide further insight into nuclear proteins that have already been characterized

suggesting a method for how these proteins are targeted to the parasite nucleus. 

Interestingly, searches of the predicted proteins present in the 

Toxoplasma genomic database revealed no exact matches to the TgGCN5 NLS 

sequence except for TgGCN5 itself.  Additionally, no proteins possessing the 

hexapeptide were found in the Plasmodium or Cryptosporidium data

 additional proteins possessing the exact same NLS suggests that the 

hexapeptide is a rare NLS not commonly used by apicomplexans.  However, 

searching for an exact match to the RKRVKR hexapeptide is not the most 

appropriate search.  Within an NLS motif, arginine can be substituted for lysine 

and vice versa and the non-basic residue can be substituted for any amino acid 

and nuclear targeting can still be achieved (Boulikas, 1994; Hodel et al., 2001).  

Therefore, the searches of the three apicomplexan databases were expanded to

include these permutations. 

The first variation was to search for the sequence RKRxKR where “x” can

be any amino acid.  A search of the Toxoplasma database of predicted protei

revealed a total of 19 potential hits.  Eight of the proteins were parasite-specific 

and had no discerna

izable protein motifs.  Of the remaining 11 proteins, nine contained 

additional domains or homology indicating a nuclear function and two had 

additional elements indicating a function within the cytoplasm.  Therefore, over 
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80% of the proteins containing additional motifs or homology appear to have a 

nuclear function indicating the motif RKRxKR has predictive function in 

identifying nuclear proteins in Toxoplasma. 

The nine proteins containing additional domains or homology implying a 

nuclear function included a RNA recognition protein, tRNA synthetase, a DNA 

polymerase, and several potential transcription factors.  The tRNA synthase 

(38.m01112, Table II, page 100) belongs to a group of proteins that function in 

both the cytoplasm and nucleus (Schimmel and Wang, 1999).  Several studies

have implicated an NLS enriched with basic residues in targeting tRNA 

synthetases to the nucleus (Mucha, 2002).  The NLS-like motif present in 

38.m01112, RKRGKR, does not match the proposed NLS m

 

otifs in other tRNA 

synthe N5 

tif to identify other nuclear proteins indicates 

that it possesses value in predicting the localization of proteins.  Therefore, the 

NLS ca function.  

otifs 

 

 

eus 

 

eins 

e 

 TgGCN5 NLS.  Searching the P. 

 10 

tases homologues (Mucha, 2002).  Nonetheless, the ability of the TgGC

NLS to identify other nuclear proteins including a tRNA synthetase that appears 

to enter the nucleus via an NLS composed of basic residues in other organisms 

provides additional evidence that RKRxKR is a nuclear targeting sequence and 

has the potential to assist in further characterizing known proteins. 

The ability of RKRxKR mo

n assist in deciphering the functions of proteins with unknown 

The eight Toxoplasma proteins with unknown function containing RKRxKR m

should be targeted to the parasite nucleus.  However, two of the 19 proteins from

the database search contained ribosomal motifs in addition to an NLS-like motif. 

The presence of a ribosomal domain indicates a function outside of the nucl

which illustrates the limitation of database searches.  The presence of an NLS

like-motif does not guarantee that the protein is nuclear and must be taken into 

context with other domains expressed in the protein.  Ultimately, localization 

studies will need to be performed to confirm the distribution of these 19 prot

within the parasite. 

Similar searches of the Plasmodium and Cryptosporidium databases wer

also performed looking for permutations of the

falciparum annotated protein data set with the RKRxKR motif returned over
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proteins.  One protein contained multiple zinc finger-like motifs suggesting it may 

be involved in transcriptional regulation and function within the nucleus (Aasland

et al., 1995).  A second search of the P. falciparum database was performed with 

less stringent parameters by allowing the five basic residues in the TgGC

to be either lysine or arginine and the non-basic va

 

N5 NLS 

line to be any amino acid.  

The se y 

 

 NLS 

t 

LS like-

oridium 

mic databases have been established.  Theileria 

parva, a tick-borne apicomplexan, is responsible for causing East Coast fever, a 

se of cattle in Africa (Graham et al., 2006).  

East C

r 

t 

(www.genedb.org/genedb/etenella/).  As new apicomplexan genomes are 

arch produced 1500 hits from the annotated protein data set.  Preliminar

analysis of some of these potential nuclear proteins included a putative histone 

deacetylase, a tRNA synthase, and a putative DNA polymerase subunit.  The

same criteria was also used to search the Cryptosporidium parvum expressed 

sequence tag database, which identified nine proteins with an NLS-like motif 

including the histone H2B and a putative nucleolar protein. 

The ability of permutations in the TgGCN5 NLS hexapeptide to identify 

nuclear proteins in other apicomplexans suggests that there may be shared

sequences between Toxoplasma, Plasmodium and Cryptosporidium that targe

nuclear proteins to their respective nuclei.  However, the ability of these N

motifs to target a protein to the nucleus in Plasmodium and Cryptosp

remains to be confirmed in vivo. 

 

Future Studies: Since the completion of this thesis, additional 

apicomplexan online geno

highly fatal lymphoproliferative disea

oast fever kills over 1 million cattle each year in sub-Saharan Africa, 

resulting in economic losses exceeding $200 million annually (Gardner et al., 

2005).  Results from sequencing efforts of the Theileria parvum genome are now 

available online (http://www.tigr.org/tdb/e2k1/tpa1/).  Eimeria tenella is anothe

apicomplexan that causes avian coccidiosis (Allen and Fetterer, 2002).  E. 

tenella is a constant threat to the poultry industry with an annual worldwide cos

estimated at about $800 million (Allen and Fetterer, 2002).  An online genomic 

database is also available for Eimeria tenella 
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 preventing 

localiz

C. Importin pathway in Toxoplasma 

mportin 

 

, 

port 

 early in eukaryotic evolution. 

ce and made available online, the TgGCN5 NLS will be an importan

to begin searching for nuclear proteins.  Searches with the RKRVKR se

and its appropriate permutations should be performed on these new database

Proteins that possessing sequences similar to RKRVKR NLS should be 

investigated further as potential nuclear proteins. 

While it has been demonstrated that RKRVKR NLS has the potential to 

assist in the identification of putative nuclear protein in silico, these results need 

to be confirmed in vivo.  Expression of recombinant proteins and 

 with putative nuclear proteins will need to be performed to determine

true potential of the TgGCN5 NLS to identify other nuclear proteins.  Expression 

systems and techniques are well established in Toxoplasma for this purpose 

(Soldati and Boothroyd, 1993).  Other members of the phylum Apicomplexa are 

not as readily amenable to genetic manipulation in the laboratory (Kim and 

Weiss, 2004).  Therefore, Toxoplasma could be utilized as a model system to 

determine the cellular localization of putative nuclear proteins from other 

apicomplexans.  Following heterologous expression in Toxoplasma, 

immunofluorescence assays could be employed to ascertain if the protein is 

targeted to the nucleus.  However, it is possible that the expression of certain 

heterologous apicomplexan proteins may be lethal in Toxoplasma

ation experiments. 

 

Discussion: Proteins that possess an NLS composed of basic residues are 

transported through the nuclear envelop by interacting with two proteins: i

α and importin β (Gorlich et al., 1995).  The role of importin α is to recognize and

bind to NLSs (Gorlich et al., 1994).  Importin α is a highly conserved protein 

present in virtually all eukaryotic organisms (Chook and Blobel, 2001).  In fact

the Giardia genomic database (www.mbl.edu/Giardia) contains an annotated 

entry of an importin α homologue indicating that the use of importin α to trans

proteins into the nucleus occurred
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Despite the extensive ongoing research in apicomplexans, nuclear 

trafficking is a greatly understudied area of parasite biology.  Although 

homologues of importin α and importin β have been identified in Plasmodium 

falciparum (Mohmmed et al., 2003), no functional studies have been performed 

on either of these nuclear trafficking proteins.  Furthermore, there are no reports

on the identification of any nuclear transport proteins in Toxoplasma.  Thus, the

newly mapped NLS in the N-terminal extension of TgGCN5 provided an ex

tool to studying the nuclear trafficking pathways in Toxoplasma. 

As the NLS of TgGCN5 is composed of highly basic residues, it was 

logical to theorize that Toxoplasma possessed a homologue of im

 

 

cellent 

portin α.  The 

Toxop h the 

f 

nt in 

 

. 

ow GCN5 and other 

proteins enter the parasite nucleus.  Discovering how to block chromatin 

ctors from entering the parasite nucleus 

may su  

he 

lasma protein database was screened using the BLAST algorithm wit

P. falciparum importin α sequence.  One search result revealed a high degree o

similarity to importin α.  Using the genomic database information, the gene was 

subsequently cloned.  The Toxoplasma homologue of importin α (TgIMPα) is 

composed of 545 amino acids and possesses two conserved domains prese

all known importin α proteins.  The importin β binding (IBB) domain is near the N-

terminus and is the region bound by importin β (Goldfarb, et al., 2004).  A long 

series of armadillo (ARM) repeats in the C-terminal half of the protein recognizes

and binds the basic NLS of nuclear proteins (Teh et al., 1999). 

In contrast to multicellular organisms, it appears that both Toxoplasma 

and P. falciparum possess only one importin α (Stewart and Rhodes, 1999)

 

Future Studies: It is important to continue elucidating h

remodeling proteins and transcription fa

bvert parasite differentiation and other processes essential for its survival. 

Novel elements found in the nuclear import pathway may be exploited in t

design of more selective therapeutic agents.  Additionally, the study of these 

pathways in protozoa provides a unique perspective on how these systems 

evolved in early eukaryotic cells. 
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The presence of an importin α homologue in Toxoplasma suggests that 

other components of the importin trafficking pathway should also be expressed 

by the parasite.  Bioinformatic searches using keywords or sequence data from 

other species reveals that Toxoplasma possesses homologues of other importin 

pathwa  

P. 

 

t 

 

onstrates the importance of continuing to 

charac

 an 

N5 

m.  

y components including: importin β, Ran, RCC1, CAS, and RanGAP1. 

Similar components of the importin pathway have been cloned previously in 

falciparum, including importin α, importin β (Mohammed et al., 2003), Ran 

(Dontfraid and Chakrabarti, 1994), and RCC1 (Ji et al., 1998).  These 

observations are consistent with the notion that the importin-mediated nuclear 

transport pathway is ancient in origin (Chook and Blobel, 2001). 

A screen of parasites that were treated with a non-specific mutagen 

revealed several clones defective in bradyzoite cyst formation in mice.  One of 

the mutations disrupted the genomic loci of the Toxoplasma homologue of RCC1

(Frankel et al., 2006).  RCC1 is a GTPase activating protein (GAP) involved in 

the importin trafficking pathway that activates the GTPase activity of Ran to 

hydrolyze GTP to GDP (Bischoff and Ponsting, 1991; see Figure 7, page 47).  I

has been hypothesized that the clone is defective in nuclear trafficking rendering 

the parasite unable form cysts making it susceptible to the host immune system 

(Frankel et al., 2006).  Additional studies have shown that the cyst formation is 

restored when recombinant Toxoplasma RCC1 is expressed in the defective

clone (Frankel et al., 2006).  The loss of RCC1 resulting in the defective to 

bradyzoite formation in mice dem

terize nuclear trafficking pathways in apicomplexans. 

 

D. Interaction of TgGCN5 with TgIMPα 

Discussion: Once it had been established that Toxoplasma possessed

importin α homologue, the next logical step was to determine if TgGC

interacted with TgIMPα and if that interaction occurred through the hexapeptide 

RKRVKR.  Both proteins were generated using an in vitro translation syste

The expression vectors used by the translation system incorporated an N-

terminal cMyc tag on TgGCN5 and an N-terminal hemagluttin (HA) tag on 
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TgIMPα.  Affinity resins directed to each tag were used in co-immunoprecipit

experiments to determine if the two proteins interacted.

ation 

  Unfortunately, the two 

protein  

s 

van 

f 

s 

N5 

 

 

tion 

immun gIMPα.  

s did not co-immunoprecipitate indicating that TgGCN5 and TgIMPα did

not interact. 

However, it was theorized that an interaction between the two protein

could mask the N-terminal fusion tags on both proteins and prevent the two 

interacting proteins from being co-immunoprecipitated.  Therefore, additional co-

immunoprecipitations were performed using an antiserum directed towards the 

C-terminal end of TgGCN5 that had been previously developed in the Sulli

Lab (Chapter 2, Section IV-B, page 71).  The antiserum targeted a region o

TgGCN5 that is away from the region involved in a potential interaction with 

TgIMPα alleviating the problem of masked fusion tags.  Co-immunoprecipitation 

experiments using the antiserum were able to pull down both proteins indicating 

they interacted with each other.  Control experiments were performed indicating 

that the antiserum is incapable of interacting with TgIMPα.  Therefore, the only 

way TgIMPα could have been isolated during the co-immunoprecipitation wa

through an interaction with TgGCN5.  The fact that the co-immunoprecipitation 

failed with the HA and cMyc affinity resins but was successful with the TgGC

antiserum supports the theory that the N-terminal tags were masked during an 

interaction between the two proteins.  Therefore, the concealment of the N-

terminal fusion tags provides a second line of evidence supporting an interaction

between TgGCN5 and TgIMPα. 

After it had been established that TgGCN5 and TgIMPα interacted with

each other, additional experiments were employed to determine if the NLS 

hexapeptide was involved in mediating the interaction.  A co-immunoprecipita

was performed using a truncated form of TgGCN5 lacking the first 99 amino 

acids (Δ99TgGCN5), which is just down stream from the NLS.  In co-

oprecipitation experiments, Δ99TgGCN5 was unable to pull down T

To further isolate the NLS as the element responsible for interacting with 

TgGCN5, a deletion mutant was generated (ΔNLSTgGCN5) removing the NLS 

and replacing it with an alanine-serine dipeptide.  ΔNLSTgGCN5 was also 
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incapable of pulling down TgIMPα indicating that the RKRVKR sequence is 

responsible for the mediating interaction with TgIMPα. 

It is important to note that the apicomplexan versions of importin α are 

more plant-like, which may have relevant functional and pharmacological 

implications.  In order for most proteins to be translocated into the nucleus, 

importin α must first be bound by importin β through an interaction with the IBB 

domain  

 may also possess the ability to translocate 

roteins to the nucleus without interacting with importin β.  Like all importin α 

homolo .  

ortin α 

in 

e IBB 

ne 

een in 

 

t TgGCN5 to the parasite nucleus.  

Therefore, it follows that TgIMPα is involved in trafficking TgGCN5 into the 

 (Kobe, 1999).  Once bound by importin β, importin α can interact with the

NLS of a nuclear protein.  However, importin α homologues in plants are able to 

translocate their cargo into the nucleus without being bound by importin β 

(Hubner et al., 1999).  TgIMPα

p

gues known to date, TgIMPα possess an IBB domain in its N-terminus

The IBB domain contains an autoinhibitory sequence which prevents imp

from binding an NLS (Kobe, 1999).  When the IBB domain is bound by import

β, the autoinhibiton is abolished and importin α is able to bind to an NLS.  The 

co-immunoprecipitation performed between TgIMPα and TgGCN5 used the 

entire native TgIMPα sequence which included the IBB domain.  Despite th

domain being present, TgIMPα was able to bind the TgGCN5 in vitro.  O

explanation is that TgIMPα does not require importin β to bind an NLS as s

plants.  Another explanation is the presence of an importin β protein in the 

translation system used to generate the TgIMPα and TgGCN5 proteins.  The in 

vitro translation system uses a cell fraction from rabbit reticulocytes, so it is 

possible that the cell fraction contains the rabbit homologue of importin β.  If 

present, the rabbit importin β may be facilitating the interaction between TgIMPα 

and TgGCN5.  Co-immunoprecipitation experiments performed with purified 

recombinant protein would provide a more accurate assessment of TgIMPα’s 

ability to bind TgGCN5 in the absence of importin β. 

In summary, the nuclear trafficking protein TgIMPα, interacts with 

TgGCN5 in vitro by binding the hexapeptide RKRVKR.  The sequence RKRVKR

has also been shown to be required to targe
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parasit tion, 

 

 

ites.  

5 was that TgIMPα did not require a prior 

interac

 

 

 

site 

s (Chapter 2, Section IV-E, 

page 8

5 

ate 

the 

e nucleus via an interaction with the hexapeptide RKRVKR.  In addi

the interaction of TgIMPα with TgGCN5 illustrates that the N-terminal extension 

participates in protein-protein interactions.  However, the interaction between 

TgIMPα and TgGCN5 has only been demonstrated through in vitro studies and

additional in vivo studies will need to be performed to confirm if TgIMPα is truly 

involved in trafficking TgGCN5 into the parasite nucleus.   

It is important to mention that these are the first studies elucidating how a

nuclear protein may be transported into the nucleus in apicomplexan paras

Furthermore, it is also the first study characterizing how a GCN5 protein is 

transported into the nucleus. 

 
Future Studies: An interesting finding in demonstrating the interaction 

between TgIMPα and TgGCN

tion with an importin β protein to alleviate the autoinhibition of the IBB 

domain.  It has been proposed that the cell lysate used in the in vitro translation 

system may contain a homologue of importin β that was facilitating the interaction

between TgIMPα and TgGCN5.  In order to remove potential artifact from

additional unknown proteins present during immunoprecipitation, pure 

recombinant proteins could be employed in future co-immunoprecipitation 

experiments.  TgIMPα could be expressed in Toxoplasma and purified by virtue

of an inframe fusion tag.  TgGCN5 would be purified from the transgenic para

line used to obtain protein for the in vitro HAT assay

0).  Purified recombinant TgGCN5 and TgIMPα could be mixed together 

and co-immunoprecipitated without the interference of other proteins.  If TgGCN

and TgIMPα interacted in the absence of any other proteins, it would provide 

fairly conclusive evidence that TgIMPα does not require importin β to bind an 

NLS indicating a sharp difference between Toxoplasma and other animal 

importin α homologues.  However, if the proteins do not interact, it would indic

that some element present in the in vitro translation system was facilitating 

interaction between TgGCN5 and TgIMPα. 
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The putative importin β homologue discovered in our bioinformatic 

searches of the Toxoplasma database could be cloned and overexpressed in t

parasites.  Following purification from parasite lysate, the Toxoplasma importin

homologue (TgIMPβ) would be added to co-immunoprecipitation experiments 

determining if it interacted with importin α through its IBB domain.  Additionall

performing co-immunoprecipitations comparing the ability of TgIMPα to pulll 

down TgGCN5 in the presence and absence of TgIMPβ would be the definiti

experiment to determine if TgIMPβ is required for TgIMPα to interact with 

TgGCN5.  If co-immunoprecipitations showed an increase in the amount of 

protein pulled down in the presence TgIMPβ, it would argue that TgIMPβ 

increases the strength of the interaction between TgIMPα and TgGCN5.  

Furthermore, it would indicate that TgIMPβ is probably required for TgIMPα to 

interact with an NLS in vivo. 

Once a stable transgenic parasite line overexpressing TgIMPα has b

generated, the thought of performing co-immunoprecipitations attempting to p

down TgGCN5 is tempting.  However, co-immunoprecipitations of TgIM

parasite lysate would pull down a multitude of nuclear proteins hindering 

detection of TgGCN5.  Furthermore, the interaction between TgGCN5 and 

TgIMPα is transient resulting in low yields of co-immunoprecipitated TgGCN5

making detection even more difficult.  The converse is also true.  Attempting t

perform co-immunoprecipitations using lysate from parasites overexpressing 

TgGCN5 would be plagued with similar limitations. 

he 

 β 

y, 

ve 

een 

ull 

Pα using 

 

o 

Another important aspect in studying the nuclear localization of TgGCN5 

nt to transport the protein 

into the ol 

tact 

rs 

.  

tors (Adam and Gerace, 1991).  The 

advantage of this system is it allows for the selective addition of transport 

is determining if its interaction with TgIMPα is sufficie

 nucleus.  Treating living cells with digitonin permeabilizes the cholester

rich plasma membrane, but leaves the cholesterol poor nuclear membrane in

(Liu et al., 1999).  Digitonin permeabilization depletes the cytoplasm of facto

and proteins required for efficient nuclear import (Adam and Gerace, 1991)

Therefore, the import of nuclear substrates in digitonin-permeabilized cells 

requires the addition of purified transport fac
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et 

uclear 

ccurred.  A method has been reported for permeabilizing cells in 

suspen

 in 

assist in 

members of TgGCN5 HAT complexes 

s to determine which are involved in translocating TgGCN5 into the 

nucleus.  The only limitation is the ability to generate pure transport factors t

add back to the permeabilized cells.  If parasites overexpressing TgIMPα and 

TgIMPβ are successfully generated, they would provide an excellent source of

recombinant transport factors.  Once cells are permeabilized, the proteins of

interested are added to a HEPES-buffered acetate solution containing an ATP-

regenerating system (1mM ATP, 5mM creatine phosphate, 20U/ml creatine 

phosphokinase) to provide energy necessary to facilitate active transport (Liu 

al., 1999).  Immunofluorescent assays would be employed to determine if n

transport o

sion (Liu et al., 1999) that may work on freshly harvested extracellular 

tachyzoites.  If the permeabilization of parasites fails, the experiment may work

a mammalian cell line.  However, obtaining results using Toxoplasma parasites 

would be more meaningful as the nuclear pore complex may be divergent 

between parasite and mammal.  The basic experimental outline would be to 

assess the translocation of TgIMPα and TgGCN5 with and without the 

hexapeptide NLS and to determine if the addition of TgIMPβ is necessary to 

localize TgGCN5 to the nucleus.  If TgIMPα can transport TgGCN5 into the 

parasite nucleus without TgIMPβ it provides additional evidence that nuclear 

trafficking pathways in Toxoplasma are more similar to plants than animals.  

Establishing a digitonin permeabilization method in Toxoplasma will also 

characterizing the trafficking of other parasite nuclear proteins. 

 
E. Identifying 

Discussion: In addition to TgIMPα, we wanted to identify other proteins 

that could be interacting with TgGCN5.  GCN5 in other organisms does not 

function singly to remodel chromatin, but rather as a member of large multi-

subunit complexes (Roth et al., 2001).  The most likely candidate proteins 

interacting with TgGCN5 are those forming HAT complexes analogous to the 

SAGA and ADA complexes found in yeast. 
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Both the SAGA and ADA complexes possess GCN5 as their catalyt

(Grant et al., 1997).  The ADA complex is much smaller than SAGA, and is 

composed of three different proteins: Ada2, Ada3, and Ahc1 (Eberharter et

1999).  SAGA is a very large complex, approximately 1.8MD

ic core 

 al., 

a in size and has 

over 1

f 

e 

o a 

 

 

l HAT 

tion 

 

 on 

  

not 

interacting with the N-terminal extension.  Dr. Mohamed-Ali Hakimi’s laboratory 

5 different subunits including four Ada proteins, several Spt and TAF 

proteins and Tra1 (Sterner and Berger, 2000).  In addition to proteins known to 

exist in the SAGA and ADA complexes, TgGCN5 may interact with parasite 

specific proteins not present in other GCN5 HAT complexes.  Novel proteins 

present in TgGCN5 complexes may interact with the unique N-terminus o

TgGCN5. 

To identify proteins interacting with the N-terminus, an attempt was mad

to overexpress the N-terminal extension of TgGCN5 in Toxoplasma fused t

FLAG tag.  Co-immunoprecipitations performed on parasite nuclear extract from

the transgenic parasites using FLAG affinity resin would identify interacting 

proteins.  However, attempts at trying to generate a transgenic parasite line 

expressing just the N-terminal extension of TgGCN5 were unsuccessful.  

Overexpression of only the N-terminus of TgGCN5 appears to be deleterious to

the parasite.  The deleterious nature of expressing the N-terminus of TgGCN5 

may be due to sequestering interacting proteins away from fully functiona

complexes causing a depletion of complex members resulting in a dysregula

of histone acetylation and parasite death.  Despite the failure of trying to 

overexpress the N-terminal extension of TgGCN5, it does provide preliminary

evidence that the N-terminal extension is involved in mediating protein 

interactions. 

A second option to identifying proteins interacting with TgGCN5 was to 

employ co-immunoprecipitation experiments using anti-FLAG affinity resin

parasites overexpressing recombinant full length TgGCN5 fused to FLAG tag

(FLAGTgGCN5) and TgGCN5 lacking the N-terminal extension also fused to a 

FLAG tag (FLAGΔNTTgGCN5).  Proteins isolated from FLAGTgGCN5 that are 

present in pull down assays from FLAGΔNTTgGCN5 would be judged as 
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at the French National Centre for Scientific Research has had success in 

purifying protein complexes from Toxoplasma.  Therefore, a collaboration was 

establi

e 

ve 

d 

 (Fan et al., 2004).  It is unknown why Toxoplasma would possess two 

Ada2 p

that at least two different HAT complexes containing 

TgGCN  

 

shed with Dr. Hakimi’s lab to biochemically purify proteins that may 

interact with full length FLAGTgGCN5 and FLAGΔNTTgGCN5. 

The co-immunoprecipitation from parasites overexpressing full length 

FLAGTgGCN5 revealed several interesting results.  The most interesting was th

identification of two different Ada2 homologues in Toxoplasma.  Ada2 is a well 

characterized protein known to associate with GCN5 in acetylation complexes 

(Eberharter et al., 1999).  Ada2 proteins associate with GCN5 acting as 

coactivators bridging the HAT complex to the acidic activation domains of DNA-

binding transcription factors and TATA-binding protein (Barlev et al., 1995).  It 

was unexpected to find two novel Ada2 homologues in an early branching 

eukaryotic cell like Toxoplasma.  While most metazoans and land plants ha

two Ada2s, our search results indicate that most protozoa, like yeast, have only 

one.  T. gondii appears to be an exception to this observation.  The related 

apicomplexan Plasmodium falciparum expresses a single Ada2 protein, terme

PfAda2

roteins when all other similar eukaryotes evidently only express one.  It is 

possible that one of the TgAda2 homologues operates independently of 

TgGCN5.  Drosophila has two Ada2 homologues, but only one (dAda2b) is 

incorporated into the SAGA complex (Kusch et al., 2003).  Data argues that 

dAda2a may have novel roles in transcription that are independent of GCN5 

(Kusch et al., 2003; Muratoglu et al., 2003).  Two different Ada2 proteins 

generates the possibility 

5 exist in Toxoplasma.  The different complexes may have independent

roles in regulating chromatin structure.  The apicomplexan Ada2 proteins 

PfAda2, TgAda2-A,  TgAda2-B are much longer than the Ada2 homologues 

present in other species, containing large regions flanking the Ada2 domain that

have no similarity to other protein sequences or known motifs (Bhatti et al., 

2006).  The function of these unique domains remains to be ascertained.  The 

169 



presence of unique domains suggests that apicomplexan Ada2 proteins may 

possess parasite specific functions not seen in other Ada2 proteins. 

In addition to the two Ada2 proteins, the full length FLAGTgGCN5 also 

pulled down four histone proteins: H3.3, H2A.1, H2AF/Z, and H4.  The hist

proteins H3.3, H2A.1, and H2A F/Z, are not the canonical core histones, but 

variant histones.  Histone variants are expressed in eukaryotic cells, and can

replace the four canonical histones that comprise the nucleosome (Henikoff e

al., 2004).  The existence of histone variants for histones H3 and H2A has b

previously reported in Toxoplasma and Plasmodium (Sullivan, 2003; Su

al., 2006; Miao et al., 2006).  Variant histones are associated with restructuring 

transcriptionally active chromatin (Kamakaka and Biggins, 2005).  Finding varia

histones interacting with TgGCN5 agrees with the TgGCN5’s predicted rol

remodeling chromatin.  The mechanisms involved in incorporating histone 

variants into the genome are poorly understood (Pusarla and Bhargava, 2005

is theoretically possible the HATs participate in depositing variant histones into

areas of the genome where active transcription is taking place (Kusch et a

2004). 

As the N-terminus is parasite-specific, proteins interacting with this region 

may also be unique to the parasite.  Parasite-specific proteins present in 

acetylation complexes may provide novel drug targets to combat apicomplexan

disease.  Two candidates, TgTwinScan_2624 and TgTigrScan_8186, were 

present in the co-immunoprecipitation of full length 

one 

 

t 

een 

llivan et 

nt 

e in 

).  It 

 

l., 

 

 

uitful as 

 

FLAGTgGCN5.  However, 

further experiments are required to determine if these two proteins interact with

N-terminus of TgGCN5. 

The co-immunoprecipitations of FLAGΔNTTgGCN5 were not as fr

full length TgGCN5.  In hindsight, the experimental design may have been limited 

because FLAGΔNTTgGCN5 is cytoplasmic (Chapter 3, Figure 11, page 91).  As 

FLAGΔNTTgGCN5 is not localized to the nucleus, a proper comparative analysis 

between the two co-immunoprecipitations cannot be adequately performed.  It is

possible that HAT complexes may be completely or partially assembled in the 

cytoplasm before being transported into the nucleus.  Once assembled, an 
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interaction between one of the complex members (e.g. TgGCN5) and nuclear 

trafficking proteins would result in transport through the nuclear pore into the 

nucleus.  The nuclear pore complex has a rather large diameter pore capabl

translocating macromolecules and protein complexes exceeding 1.0MDa 

(Fahrenkrog and Aebi, 2003).  A “piggy back mechanism” has the advantage 

enabling the cell to provide equimolar concentrations of each subunit to the 

nucleus (Steidl et al., 2004).  Such a mechanism has been observed for the 

translocation of a heterotrimeric CCAAT-binding complex to the nucleus of 

Aspergillus nidulans.  A single subunit (HapB) within in the complex is 

responsible for nuclear localization of the entire complex (Steidl et al., 2004).

plausible that HAT complexes in Toxoplasma are assembled in the cytoplasm, 

with TgGCN5 serving as the critical member responsible for directing the 

complex into the nucleus.  Therefore, co-immunoprecipitations performed on 

parasites overexpressing 

e of 

of 

  It is 

ct rather than nuclear extract was used in the co-

immun xtract 

e 

ving 

ed 

 

and Hsp 70.  Full length FLAGTgGCN5 also revealed potential interactions with 

Hsp60  

t al., 

FLAGΔNTTgGCN5 may still provide a way to identify 

complex members.  However, because FLAGΔNTTgGCN5 is not present in the 

nucleus, whole cell extra

oprecipitations experiments.  The disadvantage of using whole cell e

versus nuclear extract is the large amount of background proteins present in th

lysate.  The large amount of background proteins resulted in difficulty resol

the elutions following co-immunoprecipitations with FLAGΔNTTgGCN5 parasite 

lystate.  Furthermore, the high amount of background proteins may have mask

potential complex members from being identified.  Thus, the interpretation of the

results from the FLAGΔNTTgGCN5 co-immunoprecipitation is limited by artifact 

caused by signification background proteins and lack of proper localization. 

Despite the limitations mentioned, co-immunoprecipitation with 

FLAGΔNTTgGCN5 indicated an interaction with the heat shock proteins Hsp60 

 and Hsp 70 as well as Hsp90.  Bradyzoite differentiation in Toxoplasma

can be generated in vitro under thermal and pH stress conditions (Soête e

1994).  The three heat shock proteins, Hsp60, Hsp 70, and Hsp90, have been 

shown to be involved in the transition between the two different parasite stages 
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(Weiss et al., 1998; Weiss and Kim, 2000).  In other organisms, GCN5 is 

involved in stress remediation.  GCN5 has been linked to activating stress 

respon

 

in response to stressful stimuli in Toxoplasma.  Therefore, 

TgGCN

 

5-containing 

 

, 2000).  Hsp70 and hsp90 have been shown 

to aid i

HAT 

plexes 

N5.  As outlined in the 

introdu

 the 

se pathways during amino acid and phosphate starvation in yeast 

(Georgakopoulos and Thireos, 1992; Gregory et al., 1998).  In Arabidopsis, 

GCN5 appears to be involved in the activation of stress response proteins during

exposure to low ambient temperatures (Stockinger et al., 2001).  Evidence of an 

interaction between heat shock proteins and TgGCN5 indicates that TgGCN5 

may also be involved 

5 may be involved in the bradyzoite differentiation process.  The 

mechanisms involved in recruiting GCN5-containing complexes to remodel areas 

of the chromatin during stress are poorly understood.  Heat shock proteins which

are expressed in higher levels during stress events (Schlesinger, 1990) may 

participate in directing the chromatin remodeling activity of TgGCN5-containing 

complexes leading to the upregulation and expression of genes involved in 

bradyzoite conversion.  The same process may occur with GCN

complexes in other organisms during stressful stimuli. 

Another reason for the interaction between heat shock proteins and 

TgGCN5 may be their involvement in the assembly of HAT complexes.  Heat

shock proteins function as chaperones in the construction of large protein 

complexes (Kimmins and MacRae

n the assembly of steroid receptors (Kimmins and MacRae, 2000) and 

Hsp 90 is involved in the initial formation of the kinetochore complex (Bansal et 

al., 2004).  Heat shock proteins may play a similar role in the assembly of 

complexes in Toxoplasma.  It is theoretically possible that TgGCN5 com

change composition under bradyzoite conditions.  Heat shock proteins may 

facilitate the change in composition TgGCN5 preceding bradyzoite conversion. 

 
Future Studies: Bioinformatics could aid significantly in the pursuit of 

identifying potential proteins interacting with TgGC

ction, many of the proteins present in GCN5-containing complexes have 

been identified in other species.  Table III is the result of a BLAST search of
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T

known members of yeast S

Interestingly, the database contains no homologues for the members of 

th omp Ada1 da 2.  T T 

search did confirm the presence of two Ada2 proteins in Toxoplasma.  The lack 

of additional ADA complex members hat eith plasma does not 

posse ADA comp n ana plex co ivergent me bers 

not present in yeast. 

 of the cha zed S e yeas

complex appear to present in Toxop oplasm ancient euka yote 

and its GCN5-containing complexes may be more streamlined lacking many of 

the proteins in yeast or metazoans. , addi T compone ts 

lack s t homolog  detec LAST  The only pr eins 

for which putative homologues could d were Taf60, and a1.  

These proteins were not isolated in the full length TgGCN5 co-

immunopreciptiation.  The Taf90, Taf60, and Tra1 proteins may have been in too 

low ce to b d in th opr dditio  

siz tive Tra xoplas 3383  to be

kilod hich exe resolu  of the ed to resolv  the 

co-immunoprecipitated proteins. 

In fact, the sizes of the putative SAGA subunit homologues in Toxoplasma 

are larger than their yeast counterpar Toxoplasma 

homologues for Tra1, Ada2-B, and G er tw  of the

corres ng homolo he la  com mbers in 

Toxo suggests they have functions beyond their yeast counterparts.  The 

additional function may compensate for the limited number of complex members.  

As these HAT complexes ma

such  and Ada  have  into th r subunits p esent 

If additional complex members exist, they are either novel members not 

seen in other GCN5 containing complexes, or they are too divergent to be  

oxoplasma database predicted proteins based on the Draft3 algorithm with 

AGA and ADA complexes. 

e yeast ADA c lex (Ahc1, , Ada3, or A 5) besides Ada he BLAS

 suggests t er Toxo

ss an lex or a logous com ntains d m

None racteri pt or SGF prot ins found in the t SAGA 

lasma.  Tox a is an r

 Alternatively tional HA n

ufficien y to be ted by the B search. ot

 be identifie  Taf90, Tr

 in abundan e isolate e co-immun ecipitation.  A nally, the

e of the puta  1 in To ma, 59.m0 , is predicted  909 

altons, w eds the tion capacity  gels us e

ts.  As shown in Table IV, the 

CN5 are ov ice the size ir 

pondi gues.  T rge size of the plex me

plasma 

evolved, the larger Toxoplas  subunit homologues 

 as Tra1 2-B may  fragmented e smalle r

in yeast, each with their own specialized function. 

173 



174 

Table III: Results of BLAST search of Toxoplasma database for ADA and 
SAGA complex members 

 

Protein Name B t Potential Hits Identity 
Score 

Co
Found 

mplex last Wi h 

Ahc1 ADA Y NONE  OR023C 

Ada1 SAGA YPL254W NONE  

35.m00936 - A <1e-100 
Ada2 Both 3

55.m04988 - B 4.1e-67 
AAA3439 .1 

Ada3 Both YDR176W NONE  

Ada5/Spt20 SAGA AAB07900 NONE  

Spt 3 NONE  SAGA YDR392W 

Spt 7 NONE  SAGA YBR081C 

Spt8 SAGA 0 C NONE  YLR 55

Taf5/Taf90 SAGA YBR198C 641.m01468 1.7e-13 

Taf6/Taf 60 A  1.8e-6 S GA YGL112C 86.m00838 

Taf9/17 SAGA Y NONE  MR236W 

Taf1 f25 SAGA YDR167W NONE  0/Ta

Taf1 f68 SA  Y 1 W NONE  2/Ta GA DR 45  

Tra1 SAGA AF076974 59.m03383 3.6e-66 

Sin4 SAGA A 4 NONE  AA3504 .1 

SGF11 SAGA YPL047W NONE  

SGF29 SAGA NONE  YCL010C 

SGF73 SAGA YGL066W NONE   

list of complex members adapted from R ., 20

 

oth et al 01 
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Table IV: Size comparison 

Protein Name S. cerevi
Identifi

of Toxoplasma and Saccharomyces cerevisiae SAGA complex

siae 
er 

Estimated 
Size (kD) 

Toxoplasma 
Identifier 

Estimated 
Size (kD) 

P
Diff

 members 

ercent 
erence 

GCN5 YGR252W 51.1 AAF29981 126.8 248.1% 

35.m00936 (A) 109.9 108.3% 
Ada2 AAA34393.1 101.5 

55.m04988 (B) 248.9 245.2% 

Taf5/Taf90 YBR198C 57.9 641.m01468 89.3 154.2% 

Taf6/Taf 60 YGL112C 88.9 86.m00838 117.9 132.6% 

Tra1 AF076974 433.2 59.m03383 909.0 209.8% 
kD = kilodaltons 

 



detecte nique 

T 

site 

5 

esis.  To better ascertain the involvement of the N-terminal extension 

in prot

rom 

sed to 

t in 

 

  The 

d with nuclear 

xtract from wild-type parasites.  The immobilized N-terminus would be bound by 

ct.  The N-terminus protein complexes would 

be elut  

d using bioinformatic techniques.  Therefore, a large screening tech

such as additional co-immunoprecipitations, a yeast two hybrid screen, or a GS

pull down assay could be employed to identify additional complex members.  

Assays pertinent to this thesis would focus on identifying complex members that 

interact with the unique N-terminus of TgGCN5. 

As mentioned in the discussion, the co-immunoprecipitations from para

overexpressing FLAGΔNTTgGCN5 had limited utility because FLAGΔNTTgGCN

does not localize to the parasite nucleus.  FLAGΔNTTgGCN5 is cytoplasmic, 

hence it prevented the use of nuclear extract resulting in a higher amount of 

background proteins and subsequent poor resolution of elutions using gel 

electrophor

ein-protein interactions, a different protein could be expressed in the 

parasites.  For example, fusing the TgGCN5 NLS sequence, RKRVKR, to 

FLAGΔNTTgGCN5 should localize it to the parasite nucleus.  A protein that is 

targeted to the nucleus would allow for the use of nuclear extract in co-

immunoprecipitations, lowering the amount of background interference f

cytoplasmic proteins.  Co-immunoprecipitations with FLAGΔNTTgGCN5 fu

the TgGCN5 NLS would provide a better comparison to FLAGTgGCN5 in 

identifying proteins associating with the N-terminal extension of TgGCN5.  In 

addition, elutions from additional co-immunoprecipitation experiments could be 

resolved using 2D gel electrophoresis to provide better resolution and assis

identifying more potential interacting proteins. 

Other biochemical approaches that could be used include a GST pull 

down assay.  The N-terminal extension of TgGCN5 would be expressed in

bacteria or yeast fused to glutathione S-transferase (GST) tag.  The recombinant 

N-terminus is purified, concentrated, and immobilized on a glutathione resin.

glutathione resin containing the N-terminus would be incubate

e

various proteins present in the extra

ed off the GST affinity resin and resolved using 2D gel electrophoresis. 

Spots present on the 2D gel could be excised and sent for sequencing analysis. 
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A yeast two-hybrid screen is currently being performed using the N-

terminus as bait to screen a tachyzoite cDNA library for potentially interacting 

proteins.  The advantage of yeast-two-hybrid is a large number of proteins 

be rapidly screened searching for potential complex members.  However, yeas

two hybrid screens are often limited by the potential for false positives.  

Furthermore, some parasite proteins may be toxic to yeast and expressed in 

either low at levels or not at all.  Depending on how the library is gene

proteins expressed in low abundance might not be adequately represented i

such a screen.  Nevertheless, a yeast two hybrid screen has the potential to 

provide a start

can 

t 

rated, 

n 

ing point from which to begin elucidating additional complex 

memb

x.  

, 

 stress caused by mitochondrial 

dysfun

te 

 

ers. 

There are variants of the yeast SAGA complex that have been identified 

and appear to be more involved in stress remediation than the SAGA comple

A variant of the SAGA complex, termed SALSA (SAGA altered, Spt8 absent) 

lacks the Spt8 subunit (Sterner et al., 2002).  The SALSA complex has been 

reported to be more actively involved in the upreglation of histidine and 

tryptophan biosynthetic pathways during amino acid starvation over the 

traditional SAGA complex (Sterner et al., 2002).  The SLIK (SAGA-like) complex 

is another SAGA variant that also lacks Spt8, contains an altered form of Spt7

and potentially includes a number of additional components not found in SAGA 

(Pray-Grant et al., 2002).  The SLIK complex appears to be involved in the 

expression of certain nuclear genes during

ction (Pray-Grant et al., 2002).  The HAT complexes in Toxoplasma may 

also alter their compositions during stress (i.e. bradyzoite differentiation).  

Therefore, it would be important to include bradyzoite nuclear extract in the GST 

pull down assays or a bradyzoite cDNA library in a yeast two hybrid screen 

searching for potential GCN5-containing complex members. 

 

F. Histone acetylation by TgGCN5 

Discussion: All GCN5 homologues known to date selectively acetyla

histone H3 in nucleosomal substrates in vivo (Ruiz-Garcia et al., 1997).  Histone
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H3 possesses several conserved lysine residues that can be acetylated, and 

GCN5 preferentially acetylates lysine 14 (Kuo et al., 1996).  Recombinant 

also weakly acetylates lysine 8 and lysine 16 of histone H4 in vitro but it is 

doubtful GCN5 mediates modifications of histone H4 in vivo once it has been 

incorpo

GCN5 

rated into the SAGA complex (Grant et al., 1999).  The unique N-terminal 

extens atic 

 and 

on the 

ability e not 

 

 

 the 

assess the enzymatic activity of TgGCN5, a positive control and in vitro 

HAT a

N5 

N-

HAT 

 

or 

 H1 but 

ion of TgGCN5 raised the possibility that it may influence the enzym

activity of TgGCN5, making it different from previous study of GCN5 

homologues.  However, the catalytic domain of TgGCN5 is well conserved, 

sharing approximately ~60% with the yeast GCN5 catalytic domain (Sullivan and 

Smith, 2000). 

The relatively long N-terminal extensions present in mouse and human 

GCN5 and PCAF are involved in substrate recognition.  When the N-terminus is 

deleted in mouse and human GCN5 and PCAF, the ability to recognize

acetylate nucleosomal histones is lost (Xu et al., 1998).  However, deletion of the 

mouse and human GCN5 and PCAF N-terminal extension has no effect 

of these GCN5 enzymes to recognize and acetylate histones that ar

incorporated into nucleosomes.  Even though the N-terminal extensions are not 

homologous, the unusual N-terminal domain of TgGCN5 may also have a role in

regulating substrate specificity and/or acetylase function.  It was of interest to

determine if the long and divergent N-terminus of TgGCN5 was required for

acetylation of non-nucleosomal histones in solution and the specific histone and 

lysine residue(s) acetylated by TgGCN5. 

To 

ssay were developed based on previously described assays in the 

literature (Brownell et al., 1996).  Recombinant Saccharomyces cerevisiae GC

(ScGCN5) was express in E. coli bacteria and purified by virtue of an in-frame 

terminal 6X histidine fusion tag.  ScGCN5 was used in an in vitro radioactive 

assay measuring HAT activity using tritiated acetyl CoA and core histones.  In

our in vitro assay, ScGCN5 showed a strong acetylation of histone H3 and min

activity on histone H4, consistent with activities reported previously in the 

literature (Kuo et al., 1996).  ScGCN5 also appears to acetylate histone
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additional studies indicated that GCN5 homologues do not acetylate H1 in vivo

(Herrera et al., 1997).  Thus, we successfully recreated the in vitro assay 

published in the literature and generated an in-house positive control allowing for 

 

the an  

 

onds, 

ins that may be required to 

assist 

d 

 

 

s from 

re, in vitro HAT assays were performed with 

alysis of TgGCN5 and any additional Toxoplasma HATs identified in the

future. 

Since enzymatically active ScGCN5 was able to be expressed and

purified from bacteria, an attempt was made to express TgGCN5 in bacteria.  

Despite our best efforts, we were unable to elicit significant acetylase activity in 

our HAT assay from recombinant TgGCN5 produced in bacteria.  The most likely 

explanation for the lack of activity is the inability of bacteria to perform the 

necessary posttranslational modifications required by TgGCN5 to generate full 

acetylase activity.  Bacteria have a limited capacity to generate disulfide b

which restricts their ability to generate functional eukaryotic proteins.  

Additionally, bacterial do not possess chaperone prote

in folding TgGCN5 into its proper conformation (Makrides, 1996). 

Multiple methods are available for improving the odds of obtaining 

functional protein from bacteria (Derman et al., 1993; Cole, 1996; Terpe, 2003).  

Alternatively, eukaryotic expression systems such as yeast and baculovirus are 

capable of generating active recombinant eukaryotic proteins (Schmidt and 

Hoffman, 2002).  Any one of these methods could have been successful in 

producing enzymatically active TgGCN5, but a significant amount of time woul

have been spent optimizing expression conditions without any guarantee of 

success. 

To obtain active TgGCN5 with minimal time devoted to optimizing protein

expression, we purified protein from the transgenic parasites overexpressing 

FLAGTgGCN5 and FLAGΔNTTgGCN5.  The advantage of obtaining recombinant

protein from Toxoplasma is that it was very likely to have proper folding and 

posttranslational modifications required for HAT activity.  Using commercially 

available anti-FLAG affinity resin, the recombinant proteins were purified from 

parasite lysate.  However, difficulty arose when trying to elute the protein

the affinity resin.  Therefo
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FLAGTg

itro.  

rential acetylation 

f histone H3 is not surprising.  Loss of the N-terminal extension does not appear 

to affe

mal 

 

as 

nt HAT protein present in the ΔNTTgGCN5 HAT assay versus the full 

ngth reaction (Figure 28-A, page 146).  The N-terminal extension may stabilize 

 is evidence that human 

PCAF  

ll lower 

n 

still bo

ytic 

lly 

GCN5 or FLAGΔNTTgGCN5 still bound to the affinity resin.  Fortunately, 

both proteins retained enzymatic activity and acetylated core histones while still 

bound to the affinity resin 

Both TgGCN5 and ΔNTTgGCN5 are able to acetylate free histones in 

solution suggesting that the N-terminal extension is dispensable for the 

acetylation of non-nucleosomal histones.  As expected for a GCN5 HAT, 

TgGCN5 preferentially acetylates histone H3 and to a lesser extent H4 in v

Given the homology of the TgGCN5 catalytic domain, the prefe

o

ct the histones that are acetylated by TgGCN5 suggesting that the N-

terminal extension does not play a role in the recognition with non-nucleoso

histones.  The dispensability of the N-terminal extensions in TgGCN5 for 

acetylation of non-nucleosomal histones parallels observations of the N-terminal

extensions present in metazoan GCN5 homologues. 

At first glance, the HAT assay results indicate that full length TgGCN5 h

a stronger acetylation activity than the truncated form (Figure 28-B, page 146).  

Furthermore, the Western blot performed in parallel suggests that there is more 

recombina

le

TgGCN5 generating stronger catalytic activity.  There

appears to transacetylate its own N-terminus, potentially stabilizing the

enzyme (Herrera, 1997).  The TgGCN5 N-terminal extension may undergo 

similar transacetylation.  Loss of the N-terminal extension and subsequent 

modification would result in a less stable form of TgGCN5 and an overa

activity.  However, it may also be an artifact caused by using recombinant protei

und to the affinity resin.  The FLAG tag in both recombinant proteins is 

present on the amino-terminal end.  Therefore, the FLAG tag places the catal

domain of FLAGΔNTTgGCN5 in close proximity to the affinity resin, potentia

impeding its HAT activity.  Finding a method to effectively elute the proteins off 

the affinity resin or moving the FLAG tag to the C-terminus would give a 

meaningful comparison. 
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As with ScGCN5, TgGCN5 appears to be able to acetylate H1.  Unlike 

other eukaryotic organisms, apicomplexan parasites do not appear to possess a 

histone H1 homologue (Sullivan et al., 2006).  It is possible that the H1 ortholo-

gue present in apicomplexa is too divergent to detect.  A histone H1 knockout 

Tetrahymena, a protist related to Toxoplasma, grows normally, indicating that H

may not be necessary in protozoa (Shen et al., 1995).  Nonetheless, the abilit

acetylate histone H1 in vitro is conserved in TgGCN5 despite the fact that 

Toxoplasma does not express a canonical histone H1 protein. 

 

in 

1 

y to 

 and 

e the in vivo substrate of 

GCN5

 

le 

ibodies specific to 

 

Future Studies: The N-terminus does not appear to play a role in the 

acetylation of non-nucleosomal histones.  It still remains possible for the N-

terminus of TgGCN5 to be involved in the recognition of nucleosomal histones.  

As mentioned previously, the long N-terminal extensions present in human

mouse GCN5 are required for the recognition and acetylation of nucleosomal 

histones.  Therefore future studies should assess the enzymatic activity of full 

length TgGCN5 and ΔNTTgGCN5 on nucleosomal substrates.  Measuring 

activity on nucleosomal histones is desirable as these ar

 proteins. 

 

G. Determining the lysine(s) acetylated by TgGCN5 

Discussion: Once it had been established that TgGCN5 preferentially 

acetylated histone H3, we wanted to identify which of the conserved lysine 

residues were acetylated by TgGCN5 and if the unique N-terminal extension

influenced which residues were acetylated.  To date, all known GCN5 

homologues preferentially acetylate lysine 14 in histone H3 (Kuo et al., 1996).   

To determine the acetylation target of TgGCN5, in vitro HAT assays were 

performed with TgGCN5 and FLAGΔNTTgGCN5 using commercially availab

recombinant histone H3 instead of core histones.  The HAT assays were 

subsequently transferred to a Western blot and stained with ant

acetylated lysine residues.  Given the acetylation patterns of previously studied 

GCN5 homologues (Kuo et al., 1996), antibodies detecting acetylation on lysine
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14 were initially used.  As predicted, the recombinant ScGCN5 (positive control) 

generated in bacteria strongly acetylated histone H3 on lysine 14.  However, both 

gGCN5 and FLAGΔNTTgGCN5 failed to show significant acetylation of lysine 14 

in histo

AT 

o 

 

eference 

nked 

8 

rase 1; Daujat et al., 

2002).

 

T

ne H3.  The lack of acetylation by TgGCN5 on lysine 14 of histone H3 

was a very surprising and unprecedented result.  TgGCN5 represents the first 

GCN5 protein that does not acetylate lysine 14.  However, our previous H

assays performed with core histones clearly indicate that TgGCN5 acetylates 

histone H3.  Therefore, acetylation of lysines 9 and 18 in histone H3 were als

examined. 

As expected, ScGCN5 showed strong acetylation on lysines 9 and 18, but 

TgGCN5 and FLAGΔNTTgGCN5 appeared to only acetylate lysine 18.  Of the 

three lysine residues examined, lysine 18 of histone H3 appears to be the only 

one acetylated by TgGCN5, which is highly unusual for a GCN5 protein.  

However, despite the unusual acetylation pattern, removal of the N-terminus did 

not have any effect on which lysines were acetylated.  Therefore, the N-terminal 

extension does not appear to play a role in dictating which lysine residues are

acetylated by TgGCN5 in non-nucleosomal histone H3. 

Selective acetylation of lysine 18 has not been reported for any other 

GCN5 HAT.  As seen with ScGCN5, it was expected that TgGCN5 would be 

capable of acetylating lysine resides 9, 14, and 18, but with a stronger pr

for lysine 14.  In humans, acetylation of lysine 18 in histone H3 has been li

to subsequent methylation at arginine 17.  In humans, the acetylation of lysine 1

in vivo is catalyzed by the HAT CBP followed by arginine 17 methylation by 

CARM1 (cofactor-associated arginine [R] methyltransfe

  A CBP homologue is absent in Apicomplexa and is not present in other 

early eukaryotes (Sullivan et al., 2006).  It is plausible that TgGCN5 has adopted 

a CBP-like function in acetylating lysine 18 of histone H3 in Toxoplasma.  

Recently, a homologue of CARM1 has been cloned in Toxoplasma (TgCARM1) 

that methylates arginine 17 (Saksouk et al., 2005).  Chromatin 

immunoprecipitation (ChIP) experiments revealed a strong correlation between

lysine 18 acetylation and arginine 17 methylation suggesting that TgGCN5 and 
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TgCARM1 may work in concert to facilitate chromatin remodeling in Toxoplasma 

(Saksouk et al., 2005). 

 

Future Studies: The selective acetylation of lysine 18 and not 14 in histo

H3 by TgGCN5 was a most unexpected result.  The selective acetylation of o

one lysine seems to be highly unsual when compared to other HATs that 

possess the ability to acetylate multiple residues.  The Plasmodium homolog

of GCN5 (PfGCN5) has been demonstrated to acetylate lysines 9 and 14

histone H3 (Miao et al., 2006).  It is important to n

ne 

nly 

ue 

 of 

ote that the in vitro HAT assays 

with Pf

nd 

 

e 

sma 

tone H3 

or the recombinant Xenopus laevis histone H3 

used in

s 

er, 

5 on histone H3, its activity on histone 

H4 ma

d 

GCN5 were performed using recombinant Plasmodium histone H3 (PfH3; 

Miao et al., 2006).  The homology between the catalytic domain of PfGCN5 a

TgGCN5 is very high (~ 85%).  The high degree of homology suggests that the

acetylase activity of both proteins should be comparable.  The only differenc

between the PfGCN5 HAT assay and the assay used to assess TgGCN5 assay 

was the source of histones.  Therefore, it may be worthwhile to use Toxopla

histones in future enzymatic assays.  The four canonical core histones have 

been identified and characterized in Toxoplasma (Sullivan et al., 2006).  

Toxoplasma histone H3 differs very little from the chicken erythrocyte his

used in the radioactive assay 

 the non-radioactive assay (Sullivan et al., 2006).  Nevertheless, 

enzymatic assays should be performed to confirm that TgGCN5 does not 

acetylate endogenous histones differently.  The divergent N-terminal extension 

may interact with endogenous histones differently than heterologous histones 

resulting in a different enzymatic activity for TgGCN5. 

When core histones were used as substrates, TgGCN5 showed modest 

activity on histone H4.  The activity was dismissed as an in vitro artifact that ha

been seen in other GCN5 proteins that is not believed to occur in vivo.  Howev

given the selective acetylation of TgGCN

y not be artifact and should be investigated further.  Commercial 

antibodies recognizing residue specific acetylation of histone H4 are available 

and could be used to determine which lysines in histone H4 are being acetylate
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by TgGCN5.  However, the western blot approach is limited by the availability of 

antibodies to recognize specific histone modifications.  An alternative detec

method is to use MALDI/TOF (matrix-assisted laser desorption/ionization time-o

flight) and tandem mass spectrometry to identify the acetylation sites (Cocklin 

and Wang, 2003).  The advantage of using MALIDI/TOF is it allows for a full 

post-translational modification analysis on an entire histone protein assess

any place that TgGCN5 acetylates the protein.  It would be important to use 

recombinant histone proteins produces in bacteria to limit the amount of 

background acetylation present on the histones. 

It should be noted that two MYST homologues, TgMYST-A and –B, h

been cloned in Toxoplasma (Smith et al., 2005).  In other organisms, MYST 

HATs are the prote

tion 

f-

ing 

ave 

ins typically responsible for acetylating histone H4.  In vitro 

HAT a

ts that 

ible 

.  Future studies to assess this possibility will be 

ddressed in a latter section. 

mplexes are elucidated, their enzymatic activity 

should n profile 

 

 

, 

insight on the promoters that are remodeled through acetylation at lysine 18 in 

ssays with TgMYST -A demonstrate it strongly acetylates histone H4 

(Smith et al., 2005).  The presence of MYST HATs in Toxoplasma sugges

the parasite already possesses proteins capable of acetylating histone H4, 

reducing the likelihood that TgGCN5 acetylates histone H4 in vivo.  It is plaus

that TgGCN5’s primary function is to acetylate other transcription factors or 

proteins in the parasite

a

As TgGCN5-containing co

 be assessed as well.  TgGCN5 may have an expanded acetylatio

once it is incorporated into a complex.  Recombinant yeast GCN5 is capable of 

acetylating multiple lysine residues, but has a strong preference for lysine 14 in

histone H3 (Grant et al., 1999).  In vitro HAT with yeast ADA and SAGA

complexes indicated that the ADA complex acetylates both lysines 14 and 18

and SAGA acetylates to all four lysines in H3.  These results indicate that the 

association of yeast GCN5 with different proteins within HAT complexes may 

alter the substrate specificity of GCN5. 

The unusual acetylation specificity of TgGCN5 may have specific 

functions in the parasite.  Chromatin immunoprecipitation (ChIP) may yield some 
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histone H3.  The transgenic parasite line overexpressing FLAGTgGCN5 has been

used in 

 

preliminary ChIP assays showing TgGCN5 present at the SAG2A 

(surfac

d to 

 

 

ther GCN5 homologue (Bhatti et al., 2006).  Two GCN5 

homolo d 

al., 

 

wild ty

 

gGCN5 

e antigen 2-A) promoter (Saksouk et al., 2005).  SAG2A is a tachyzoite 

specific gene (Lekutis et al., 2001) suggesting that TgGCN5 may be involved 

regulating tachyzoite gene expression.  Additional ChIP assays are warrante

determine if TgGCN5 is associated with other tachyzoite promoters.  It is 

possible that TgGCN5 may be involved in the genetic switching that occurs 

during reactivation of bradyzoites back into tachyzoites.  Recrudescence of 

bradyzoites is the major cause of illness in humans with suppressed immune 

systems (Reiter-Owona et al., 2000).  The possibility that TgGCN5 may be 

involved in this process is exciting as it would represent the first factor associated

with this process. 

The fact that TgGCN5 does not acetylate histone H3 at lysine 14 suggests 

that either lysine 14 is not acetylated in Toxoplasma or another protein is 

responsible for the acetylation.  Searches of the Toxoplasma database revealed

the presence of ano

gues present in a lower eukaryote is unprecedented and will be discusse

in a following section. 

 

II. A TgGCN5 Deletional Mutant 

Experiments performed by others in the Sullivan Lab lead to the 

development of a stable deletional mutant of TgGCN5 (ΔTgGCN5; Bhatti et 

2006).  No observable phenotype difference is noted for the ΔTgGCN5 clone.  

When the expression of GCN5 is disrupted in yeast, there is no readily 

observable phenotype, either (Georgakopoulos and Thireos, 1992).  Further 

analysis revealed no appreciable difference in parasite growth rates between the

pe and ΔTgGCN5 (Bhatti et al., 2006).  In collaboration with Dr. David 

Sibley (Washington University, St. Louis, MO), mice were infected with 

ΔTgGCN5 to determine if loss of TgGCN5 impaired virulence in vivo.  Loss of

TgGCN5 did not have any effect on parasite virulence suggesting, that T
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does not play a significant role during the acute stage of infection (Bhatti et al., 

2006). 

While a viable knockout of TgGCN5 suggests the protein is not essential 

in tachyzoites, it offers the opportunity to identify genes that may be controlled by 

this HAT in the parasite.  Others in the Sullivan Lab have employed 2D gel 

analysis to assess the differential expression between wild-type and ΔTgGCN5 

parasites.  The 2D-gel analysis revealed several proteins down-regulated in the 

ΔTgGCN5 that are associated with host cell invasion including MIC4, MIC5, and 

MIC11 (Bhatti et al., 2006).  The MIC proteins are found within the micronemes, 

a secretory organelle apart of the apical complex that facilitates invasion of h

cells (Achbarou et al., 1991).  Despite the apparent reductions in the expression 

and secretion of these microneme proteins, any difference in parasite attachment

or invasion was undetectable (Bhatti et al., 2006).  It is possible that the obs

deficiencies on the 2D gel are not profound enough to alter the invasion process

or other invasion proteins are compensating for the reduced amounts of MIC4, 

MIC5, and MIC11. 

Interestingly, one of the enzymes that was upregulated in the ΔTgGCN

mutant was enolase I.  There are two paralogues of enolase in Toxoplasma that 

are stage specific (Singh et al., 2002).  Enolase 2 (ENO2) is expressed only in 

tachyzoites (Dzierszinski et al., 2001).  Enolase 1 (ENO1) is bradyzoite-spec

and possesses different enzyme kinetics that are believed to slow the metabolic 

rate of bradyzoites (Dzierszinski et al., 2001).  During the tachyzoite stage, 

enolase 1 expression is repressed (Kibe et al., 2005).  The increased levels of 

ENO1 suggest that TgGCN5 may play a role in maintaining the repression of the

ENO1 promoter during the tachyzoite stage.  The dysregulation of a brad

specific-gene provides evidence that TgGCN5 is linked to stage differentiation. 

Comprehensive microarrays for Toxoplasma are in the final stages of 

development.  When they are complete, it will be important to compare an

contrast mRNA expression between wild-type and the TgGCN5 knockout.  It 

ost 

 

erved 

 

5 

ific 

 

yzoite 

d 

would provide another tool to search for genes regulated by TgGCN5.  
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Microarray analysis would also determine if the differences detected by 2D gel 

results are reflected in the mRNA pool. 

There are three different strains of Toxoplasma (Howe and Sibley, 1995).  

 virulent strains because they are 

 al., 2002).  Types II and III 

grow m d 

 of 

e 

molecu

 

re 

nd Sibley, 1995).  Since 

the typ

r, 

he 

ess 

f TgGCN5 on the 

develo

The type I strains, like the RH strain, are termed

fast growing and uniformly lethal in mice (Sibley et

uch slower and mice often survive infection with these parasite lines an

remain chronically infected and seropositive (Sibley et al., 2002).  The majority

human toxoplasmosis cases are caused by a member of the type II strain (How

and Sibley, 1995).  Interestingly, the three lineages of T. gondii differ by only 1–

2% at the DNA sequence level (Su et al., 2002).  The ΔTgGCN5 clone was 

generated in the RH strain which belongs to the type I group and used in routine 

lar experiments because the fast growing nature of the parasite makes it 

more amenable to genetic manipulation (Bhatti et al., 2006).  However, the 

virulent, type I, RH strain of Toxoplasma, has largely lost its ability to convert to 

the bradyzoite cyst form (Dubey et al., 1999).  Therefore, it is not the ideal strain 

to assess the deletional effect of TgGCN5 on bradzyoite differentiation.  A more 

appropriate study would be to generate a deletional mutant in a type II strain

such as ME49 or Pru.  The type II strains are much slower growing and therefo

easier to differentiate into bradyzoites in vitro (Howe a

e II parasites are more commonly found human infections, making a 

TgGCN5 deletional mutant in these strains is more clinically relevant.  Howeve

generating a deletional mutant in a type II strain is much more challenging 

because of the slow growing nature of the parasites.  Nonetheless, a deletional 

mutant of TgGCN5 in a type II strain would allow for a better assessment of t

potential involvement of TgGCN5 in differentiation (Dubey et al., 1998).  

Additionally, a deletional mutant in a type II strain provides the ability to ass

bradyzoite differentiation in vivo using animal models and can also be fed to 

felines under laboratory conditions to assess the loss o

pment of micro- and macrogametes and oocysts (Dubey et al., 1970). 

Continued characterization of the ΔTgGCN5 strain will provide further 

information about role of TgGCN5 histone and protein acetylation in the parasite 
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and may provide a better understanding of bradyzoite differentiation and host ce

invasion. 

 

III. Additional HATs in Apicomplexan Parasites 

A. A second homologue of GCN5 in Toxoplasma 

From the studies conducted during this thesis, we have concluded that

TgGCN5 is unable to acetylate histone H3 at lysine 14.  In addition, w

ll 

 

hen the 

genom

 that 

g 

 

sence 

nd 

ATs in 

 the second homologue of 

GCN5 w 

cids, 

 

 

-B, 

GCN5 orthologue in Toxoplasma (Bhatti et al., 2006).  Furthermore, TgGCN5-B 

ic loci for TgGCN5 is disrupted, there is no observable phenotype even 

under stress conditions (Bhatti et al., 2006).  These two pieces of data argue

there must be another protein expressed in Toxoplasma capable of acetylatin

histone H3 at lysine 14 with the potential to compensate for the loss for TgGCN5.

Subsequent searches of the Toxoplasma database revealed the pre

of a second GCN5 homologue (Bhatti et al., 2006).  Mammals possess a seco

GCN5 family member, PCAF, but there are no reports of multiple GCN5 H

other animals or plants.  Our lab subsequently cloned

 (termed TgGCN5-B) and the TgGCN5 protein previously reported is no

referred to as TgGCN5-A.  Thus, Toxoplasma appears to be unique among 

invertebrates in harboring two independent GCN5 HATs, and the relevance to 

parasite physiology is subject to future investigation. 

The TgGCN5-B ORF encodes a predicted protein of 1032 amino a

which is 137 residues shorter than TgGCN5-A.  The HAT domains are nearly

identical, but the putative Ada2-binding domain and bromodomain are less 

conserved.  Most striking is the lack of homology in the N-terminal extensions of

both proteins.  Neither one of these N-terminal extensions has homology to 

protein sequences in other species, nor are any known protein motifs evident.  

Furthermore, the N-termini have no homology to each other.  The studies 

outlined in this thesis will serve as a template to begin investigating TgGCN5

particularly the role of its unique N-terminal extension. 

Preliminary enzymatic data produced in our lab indicates that TgGCN5-B 

acetylates histone H3 at the expected lysine 14, indicating it may be the true 
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is able to acetylate lysine residues 9 and 18 suggesting that it can compensate 

for the loss of TgGCN5-A explaining the lack of an observable phenotype in the 

TgGCN5-A knock out (Bhatti et al., 2006).  TgGCN5-A may be the result of a 

specific function in chromatin 

remod ine 18 

s 

e 

of 

ozygous null for 

murine PCAF (mPCAF) are developmentally normal without any distinct 

as been proposed that mGCN5 can 

functio

 likely 

 

fore, 

 similar 

gene duplication event that has evolved a highly 

eling in these parasites, as suggested by its proclivity to acetylate lys

of H3.  Finally, elucidating the proteins TgGCN5-B interacts with will provide 

additional insight into the overall function of this HAT in the parasite. 

Repeated attempts by our lab to disrupt the TgGCN5-B genomic loci have 

been unsuccessful.  The inability to knock out TgGCN5-B suggests that the 

protein is essential in tachyzoites.  Furthermore, it argues that TgGCN5-A i

unable to compensate for the loss of TgGCN5-B.  Given the completely different 

acetylation patterns between the two HATs, the inability for TgGCN5-A to 

compensate for the loss of TgGCN5-B is not surprising.  The similarities and 

differences between the two GCN5 proteins in Toxoplasma is akin to th

relationship between GCN5 and PCAF in mammals. 

When murine GCN5 (mGCN5) is deleted in mice, the embryos do not 

survive past day 10 post conception due to developmental defects (Xu et al., 

2000).  Thus a deletion of mGCN5 is lethal and the same appears to be true 

TgGCN5-B in Toxoplasma tachyzoites.  Mice that are hom

phenotype (Yamauchi et al., 2000).  It h

nally compensate for the loss of mPCAF (Yamauchi et al., 2000).  The 

deletional mutant of TgGCN5-A possess no phenotypic anomaly and it is

TgGCN5-B is able to compensate for the loss of TgGCN5-A.  The lethality of a

mGCN5 knockout suggests that mPCAF is unable to compensate for the loss 

mGCN5.  Given the inability to obtain a TgGCN5-B knockout, argues that 

TgGCN5-A is unable to compensate for the loss of TgGCN5-B.  There

TgGCN5-A may be analogous to mPCAF and TgGCN5-B is a functional 

equivalent to mGCN5.  However, the acetylation pattern of PCAF is highly

to GCN5 showing strong activity on lysine 14 of histone H3 with modest activity 
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on lysi N5-A 

extens  to 

gy to 

ontains the conserved domains present in other GCN5 

proteins: the catalytic HAT domain, Ada2 binding domain, and the bromodomain.  

 (Miao et al., 2006).  Plasmodium also 

posses

 

C. A M

-

ately 

T-A 

 vitro bradyzoite induction (Smith et al., 2005).  The decrease in 

expres

nes 9 and 18 (Schiltz et al., 1999).  Thus, the analogy between TgGC

and PCAF is not flawless. 

 

B. GCN5 homologue in Plasmodium falciparum 

A GCN5 homologue was also identified and cloned in Plasmodium 

falciparum (PfGCN5; Fan et al., 2004a).  PfGCN5 also contains a long N-terminal 

ion upstream from its catalytic domain, currently the longest one known

date (1126 amino acids).  The N-terminus in PfGCN5 possesses no homolo

any known protein and it is completely divergent from the N-termini in TgGCN5-A 

and -B.  PfGCN5 c

Enzymatic studies have shown that PfGCN5 acetylates histone H3 at lysines 9 

and 14 of Plasmodium histone H3 in vitro

ses a single Ada2 protein, (PfAda2; Fan et al., 2004b).  Unlike 

Toxoplasma, searches of the Plasmodium genome indicate that Plasmodium 

expresses only one Ada2 and GCN5 protein.  The lack of additional copies of 

Ada2 and GCN5 in Plasmodium suggests that the Toxoplasma has generated 

duplications of Ada2 and GCN5.  The purpose of these gene duplications in

Toxoplasma is unknown and warrants additional studies. 

 

YST homologue in Toxoplasma 

Two MYST HATs have been isolated in Toxoplasma termed TgMYST-A 

and -B (Smith et al., 2005).  The TgMYST-A genomic locus generates a 

transcript of approximately 3.5-kb that can encode two proteins of 411 or 471 

amino acids (Smith et al., 2005).  The longer protein has been termed TgMYST

A(L) and the shorter one TgMYST-A(S).  TgMYST-B mRNA is approxim

7.0kb and encodes a second MYST homologue (Smith et al., 2005).  

Interestingly, there is a decrease of in the expression of both forms of TgMYS

during in

sion suggests that both forms of TgMYST-A are predominantly expressed 

in tachyzoites. 
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Both the long and short forms of recombinant TgMYST-A acetylate 

histone H4 in vitro at lysines 5, 8, 12, and 16 (Smith et al., 2005).  Wh

family members show a bias towards acetylating H3, the MYST family of HATs 

display a preference for acetylating H4 (Utley and Cote, 2003).  The ability for 

TgMYST-A to acetylate all for residue in histone H4 suggests that TgMYS

may be an orthologue of Esa1/Tip60 since it can target every lysine in the H4 tail

Similar studies assessing the expression of TgMYST-B in tachyzoites 

versus bradyzoites and determining the acetylation pattern have yet to be 

completed.  It is conceivable that the second MYST may be expressed during

bradyzoite stage. 

 

IV. Additional Future Studies for TgGCN5-A 

A. Acetylation of non-histone substrates 

The unusual acetylation pattern of TgGCN5-A and the presence of

ile GCN5 

T-A 

. 

 the 

 a 

second  

 

r 

or p53 

ss 

).  The 

.  

is involved in stress remediation pathways through its FAT 

activity

tone 

 homologue capable of acetylating histone H3 at all the lysine residues

suggests that TgGCN5-A may involved in additional processes beyond chromatin 

remodeling.  It has been suggested that TgGCN5-A may represent a functional 

equivalent to mammalian PCAF.  In addition to acetylating histones, PCAF

possesses the ability to acetylate non-histone proteins.  Therefore, it is possible 

that TgGCN5-A may also acetylate non-histone proteins. 

The process of acetylating non-histone proteins is referred to as facto

acetyltransferase or FAT activity (Roth et al., 2001).  The cell cycle regulat

is one the of most widely study targets of the FAT activity of PCAF.  The 

acetylation of p53 by PCAF appears to be triggered in response to the stre

caused by DNA damage due to UV or ionizing radiation (Liu et al., 1999

acetylation of p53 by PCAF increases the affinity of p53 to bind DNA, 

augmenting its ability to upregulate stress response proteins (Liu et al., 1999)

Therefore, PCAF 

. 

PCAF also acetylates the chromatin associating protein HMG-17 (Herrera 

et al., 1999).  HMG (high mobility group) proteins are a group of non-his

191 



proteins which modulate the structure chromatin altering the accessibility of DNA 

(Bustin et al., 1995).  HMG-17 specifically binds to the 146 base pair 

nucleosomal core particle and modulates the chromatin structure of active genes 

(Bustin et al., 1995).  The acetylation of HMG-17 by PCAF reduces the affinity of 

HMG-17 for nucleosome cores.  Therefore, PCAF acetylation can affect 

chromatin structure through the acetylation of non-histone proteins.  The overall

affect of acetylating HMG-17 on gene transcription is still controversial.  The 

binding of HMG-17 to nucleosomes unfolds the higher-order chromatin fi

enhances the accessibility of various factors to the chromatin (Herrera et al., 

1999).  Acetylation appears to weaken the interaction of HMG-17 with DNA 

suggesting it may cause the chromatin to refold generating a repressive ef

transcription.  Alternatively, the acetylation of HMG-17 may have the same e

as the acetylation as histones, reducing the affinity for DNA and further opening 

chromatin allowing for an increase in transcription (Herrera et al., 1999). 

If TgGCN5-A possess FAT activity, it may also acetylated non-hist

proteins involved in stress remediation.  Therefore, it may ac

 

ber and 

fect to 

ffect 

one 

etylate DNA-binding 

transcr

ium 

gGCN5-A and recombinant non-histone substrates such as HMG would 

 acetylate non-histone 

substra

 substrates.  A 

ith 

iption factors that are involved in bradyzoite differentiation.  Searches of 

the Toxoplasma database indicate that the parasite does not containing a 

homologue of p53.  However, HMG proteins have been identified in Plasmod

and similar proteins may exist in Toxoplasma (Nambiar et al., 1997).  The 

presence of HMG proteins presents another level of chromatin remodeling 

present in apicomplexan parasites.  Apicomplexan HMG proteins may be 

acetylated by GCN5 proteins such as TgGCN5-A.  In vitro HAT assays with 

T

determine if TgGCN5-A possesses the ability to

tes.  If activity on non-histone substrates exists, HAT assays with 

FΔNTTgGCN5 would determine if the N-terminus is required to acetylate non-

histone proteins. 

A screen could be established to further identify non-histone

protocol has been established for monitoring acetylation by incubating cells w

with tritiated acetate (Zhang and Nelson, 1988).  The tritated acetate is 
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incorporated into the cellular acetyl CoA pool and is utilized by HATs to acetylat

proteins.  Both wild-type and the TgGCN5-A knock out parasites could be 

incubated in tritiated acetate.  Any proteins capable of being acetylated would b

marked with a radiolabeled acetyl group in the parasites.  The parasites would b

fractionated between nuclear and cytoplasmic fractions.  The nuclear fractio

would be resolved via 2D gel electrophoresis.  The gel would be processed fo

autoradiography and exposed to film.  Dots on the exposed film would indicate 

the presence of radioactive acetylation.  The knock out would provide a 

necessary comparison to establish which proteins were ac

e 

e 

e 

n 

r 

eylated by TgGCN5-A.  

Dots p

ed 

 

 MIC5, and 

MIC11

ential to be post-translationally 

g 

ed-

resent on film from wild type lysate that are missing on the film from the 

knock out would indicate a loss of aceyltation.  Proteins that appear to be 

differentially acetylated between wild-type and knock out would be sent for 

sequencing analysis.  Proteins that were acetylated could be eventually clon

and recombinant protein expressed.  The recombinant protein would be used as

substrate in an in vitro acetylation assay with TgGCN5-A to confirm that 

TgGCN5-A is responsible for the acetylation of the protein. 

The differential expression of proteins revealed in the 2D gel analysis of 

ΔTgGCN5-A may have been caused by decreased protein acetylation.  The 

decreased acetylation may have caused proteins such as MIC4,

 to migrate differently in the ΔTgGCN5-A 2D gel versus the wild type 2D 

gel.  Therefore, it would be interesting to see if the differences in the 2D gel 

analysis are paralleled in the acetyl Co-A labeling experiment.  No studies have 

been completed determining if the MIC (microneme) proteins are acetylated. 

 
B. Posttranslational modification of TgGCN5-A 

Like other proteins, GCN5 has the pot

modified.  The co-immunoprecipitations performed on parasites overexpressin

FLAGTgGCN5 and FLAGΔNTTgGCN5 through our collaboration with Dr. Moham

Ali Hakimi support this possibility.  The SDS-PAGE analysis of co-

immunprecipitations with both proteins produced multiple bands migrating at 

sizes larger than expected for FLAGTgGCN5 and FLAGΔNTTgGCN5 (Figures 21 
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and 22 on pages 121 and 126, respectively).  The slower migrating versions of 

FLAGTgGCN5 and FLAGΔNTTgGCN5 can be explained by the presence of post 

translational modifications that are retarding their migration through the gel.  A 

single  

AF can 

r 

kinase 

n is 

he 

g 

DNA repair is unknown however it may be to 

preven

-A 

N-

that are acetylated in 

phosphorylation can impede the SDS-PAGE migration of a protein by up

to 5 kilodaltons (Smith et al., 1989).  As more modifications are added, the 

retardation of migration becomes more pronounced.  There is evidence that 

GCN5 can be phosphorylated (Barlev et al, 1998) and the related HAT PC

be transacetylated (Herrera et al., 1997).  These same modifications may occu

to TgGCN5-A and may impact the activity of TgGCN5-A. 

Phosphorylation of human GCN5 (hGCN5) by the DNA-dependent 

Ku70 attenuates the HAT activity of hGCN5 (Barlev et al, 1998).  The kinase 

Ku70 interacts with the bromodomain of hGCN5 and through this interactio

believed to phosphorylate the amino terminus of recombinant hGCN5.  T

precise residues acetylated by Ku70 are still being resolved.  Using siRNA, the 

expression of Ku70 was knocked down in human cells resulting in an increased 

sensitivity to DNA damage caused by ionizing radiation suggesting the kinase 

has a role in DNA repair (Ayene et al., 2005).  The purpose of down regulatin

the HAT activity of GCN5 during 

t the remodeling of chromatin containing damaged DNA. 

Additionally, human PCAF appears to transacetylate its N-terminus, which 

is essential for it to be transported into the nucleus and may potentially stabilize 

the enzymatic function of the enzyme (Santos-Rosa et al., 2003; Herrera 1997).  

TgGCN5-A may be capable of similar transacetylation.  There are five lysines in 

the PCAF N-terminus that are acetylated; lysines 416, 428, 430, 441, and 442 

(Santos-Rosa et al., 2003).  Based on the alignment between TgGCN5-A and 

human PCAF using the Clustal W algorithm 

(http://www.ch.embnet.org/software/ClustalW.html), TgGCN5-A only possess 

one of these lysine residues, lysine 430, which corresponds to lysine 712 in 

TgGCN5-A.  The lack of conserved lysine residues suggests that TgGCN5

may not be transacetylated.  Human GCN5 does not appear to acetylate its 

terminus (Herrera et al., 1997).  Only two of the five lysines 
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human PCAF are conserved in human GCN5 (lysines 428 and 441).  However, 

es present in the N-terminal extension of TgGCN5-

A that 

ys 

al 

 

 determined that lysines in the N-terminus are being acetylated, site 

directed mutagenesis switching the lysine for arginine would provide information 

e of acetylating these residues.  Arginine is not susceptible to 

acetyla  

 

a in 

there are 25 other lysine resid

are potential acetylation sites. 

The acetylation mechanism of the N-terminus occurs via an interaction 

with a second PCAF protein (Santos-Rosa et al., 2003).  The in vitro HAT assa

used in this thesis could be modified using recombinant TgGCN5-A N-terminin

peptide as a substrate instead of histones.  Radioactive assays could be 

performed by comparing the acetylase activity of full length TgGCN5-A and a 

catalytically inactive mutant TgGCN5-A on the N-terminal peptide.  Following the 

in vitro assay, the proteins would be resolved via SDS-PAGE and the gel 

processed for autoradiography.  If a band corresponding to the size of the N-

terminal peptide developed on film after being exposed to the gel, it would 

indicate that the N-terminal extension is acetylated by TgGCN5-A.  The 

catalytically inactive mutant TgGCN5-A would serve as a negative control and 

should be unable to acetylate the N-terminal peptide.  In addition, non-radioactive

acetylation assays could be performed and the N-terminal peptide excised from 

the gel, and sent for MALDI/TOF analysis to determine which, if any, lysine 

residue(s) are being acetylated. 

If it is

about the importanc

tion but is positively charged like lysine and therefore should not generate

significant change it the conformation of TgGCN5-A when exchanged for lysine 

(Santos-Rosa et al., 2003).  Immunofluorescence assays performed on parasites 

expressing mutated TgGCN5-A with the lysine exchanged for arginine would 

determine if acetylation has an effect on nuclear localization as it does in human

PCAF.  The enzymatic function of recombinant protein purified from parasites 

expressing the same mutated versions of TgGCN5-A could be assessed vi

vitro HAT assays to determine if acetylation has any effect of the ability of 

TgGCG5-A to acetylate histone.  The enzymatic activity of human PCAF is 

increased when it is acetylated (Santos-Rosa et al., 2003). 
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V. HAT and HDAC Inhibitors 

Histones were originally thought to be no more than simple scaffolding 

protein

me 

 

lar 

d 

sis 

g 

 

 

e 

003).  Trichostatin A (TSA), a well-known HDAC 

inhibito

l., 

 

s, providing a mechanism for compacting DNA into the nucleus.  However, 

in the past few decades it has become abundantly clear that histones can be 

posttranslationally modified altering the structure of chromatin.  The resulting 

changes in chromatin structure have profound impact on the expressed geno

resulting differentiation, activation of stress response pathways, apoptosis, and 

cell-cycle regulation.  Acetylation of histones is the most well studied modification

and is carried about by histone acetyltransferases (HATs) and histone deacetyl 

transferases (HDACs).  HATs and HDACs work cooperatively to provide the 

proper balance of histone and protein acetylation to maintain a functional cellu

state (Kurdistani and Grunstein, 2003).  Disruption in the balance of histone an

protein acetylation is deleterious to cells resulting in cell death or carcinogene

(Timmermann et al., 2001).  HAT and HDAC inhibitors hold the promise of bein

able to restore the acetylation balance and may be effective antitumor agents.  

Alternatively, HAT and HDAC inhibitors can be used to unbalance acetylation in

pathogenic organisms providing potential therapies for HIV and apicomplexan

infections. 

 

A. HDAC Inhibitors 

Interestingly, the involvement of histone modification in regulating global 

processes was originally discovered through screening compounds to aid in th

treatment of cancer (Kim et al., 2

r, was originally reported as a fungistatic antibiotic (Tsuji and Kobayashi, 

1978).  The treatment of a leukemia cell line with TSA resulted in differentiation 

and inhibition of the cell proliferation at very low concentrations (Yoshida et a

1987).  Additional analysis revealed that cells treated with TSA caused an 

accumulation of acetylated histones in a variety of mammalian cell lines.  

Furthermore, TSA strongly inhibits the activity of the partially purified histone

deacetylases in vitro. (Yoshida et al., 1990).  The same story is true for 
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depudecin which was isolated from a screening project for agents capable of 

reverting malignant carcinogenic cells to a normal phenotype and was later 

identified as targeting HDACs (Kim et al., 2003). 

The mechanism of HDAC inhibition leading to reversion of cancerous cells

is not entirely understood.  Direct alterations in the HDAC genes have not bee

demonstrated in human

 

n 

 cancers (Cress and Seto, 2000).  Typically HDACs are 

seen a g 

 

 proliferation (Vigushin and Coombes, 2004).  Thus, it would 

eem that inhibiting HDACs would push a cell further into carcinogensis, but 

opposite occurs with HDAC inhibitor exposure.  It has been 

theoriz

 of 

rman et al., 

 

 

autosomal dominant neurodegenerative 

disorde e 

ne 

tin 

s repressive proteins causing the deacetylation of histones restorin

chromatin into its condensed state.  Furthermore, cell cycle regulators such as 

Mad (mitotic arrest deficient) and the retinoblastoma (Rb) protein associate with

HDAC complexes to mediate transcriptional repression leading to differentiation 

and suppressing

s

paradoxically, the 

ed that the HDAC proteins act upstream of the dysregulated proteins 

allowing for histone hyperacetylation at promoters of cell regulatory proteins.  

The tumor suppressor protein p21 is a cyclin-dependent kinase (CDK) inhibitor 

which binds defective cell cycle regulators and inhibits their activity, leading to 

suppression of cell proliferation (Vigushin and Coombes, 2004).  Inhibition of 

HDACs results in hyperacetylated histones, markedly increasing transcription

p21.  In fact, treatment of colon cancer cells with HDAC inhibitors results in an 

upregulation of p21 expression and subsequent growth arrest (Timme

2001).  Given the impressive antitumor activity of HDAC, several inhibitors are

currently in phase I clinical trials for the treatment of the treatment of cancer  

(Vigushin and Coombes, 2002). 

The inhibition of HDACs may be beneficial to other disease states besides

cancer.  Huntington's disease (HD) is an 

r caused by a polyglutamine repeat expansion in the huntingtin gen

(Davies and Ramsden, 2001).  Recent studies have indicated transcriptional 

dysregulation as a mechanism of HD pathogenesis through disruption of histo

acetylation (Sadri-Vakili and Cha, 2006).  Several HATs including CBP and 

PCAF are depleted by the sequestration into the aggregates of mutant hunting
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resulting in a globally hypoacetylated state in a cell culture model (Butler a

Bates, 2006).  The inhibition of histone deacetylases is theorized to compensate 

for the reductions in HAT protein and restore the proper balance of acetylated 

histones in HD models (B

nd 

utler and Bates, 2006).  The use of HDAC inhibitors in 

HD an s (Sadri-

f 

bition 

 

isease, and systemic lupus erythematosus 

(Huang

ate 

e” 

 

 

betwee ash 

imal models has shown promise as potential therapeutic agent

Vakili and Cha, 2006). 

The inhibition of HDACs has also been linked to the repression o

proinflammatory cytokine production (Barnes et al., 2005).  Therefore, inhi

of HDACs may provide novel therapeutic treatments for inflammatory disease

such as asthma, inflammatory bowel d

, 2006). 

 

B. HAT inhibitors 

Aberrant lysine acetylation has also been implicated in carcinogenesis.  

As mentioned previously, the HAT protein p300/CBP has the ability to acetyl

non-histone proteins like p53 (Liu et al., 1999).  The acetylation of p53 augments 

its ability to bind DNA.  p53 is often referred to as the “guardian of the genom

and its importance is emphasized by the fact that 50% of all human cancers 

possess mutations in p53 (Balasubramanyam et al., 2004b).  Acetylation by 

p300/CBP and PCAF is key in activating p53 when DNA damage occurs (Liu et 

al., 1999).  Loss or a defect in the ability to acetylate p53 may lead to 

carcinogenesis.  A disruption in the p300 gene has been demonstrated to be 

common in colorectal and gastric cancer samples (Muraoka et al., 1996).  It is 

estimated that 80% of glioblastoma, the most aggressive form of primary brain 

tumors) cases have been associated with the loss of heterozygosity of the p300

gene (Balasubramanyam et al., 2004b). 

Chromosomal translocations resulting in the three different fusions

n p300/CBP and a MYST member are associated with leukemia (D

and Gilliland, 2001).  The three fusion proteins are MLL/CBP, MLL/p300 and 

MOZ/CBP and incorporate the well characterized transcriptional co-activators 

CBP/p300 to either the monocytic leukemia zinc finger (MOZ) gene or to MLL 
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(mixed linage leukemia; Timmerman et al., 2001).  The acetyltransferase 

domains of the MYST member and p300/CBP remain intact in the fusion protein

resulting in unregulated HAT activity and aberrant histone acetylation leadi

leukemia (Yang, 2004). 

Mutations in human CBP have also been associated with the 

developmental disorder, Rubinstein-Taybi syndrome (RTS; Timmerma

2001).  RTS occurs in 1/125,000 b

s 

ng to 

n et al., 

irths and is characterized by growth 

retarda

n 

 

of cellular 

us 

tional 

f 

ti-retroviral 

therap

 

tion and psychomotor developmental delay (Coupry et al., 2002).  

Interestingly, patients with RTS have a 5% increased incidence in childhood 

tumors (Miller and Rubinstein, 1995). 

Protein acetylation has also been implicated in the regulation of HIV-1 

gene transcription.  The histone deacetylase inhibitor trichostatin A (TSA) is a 

potent inducer of HIV-1 transcription in latently infected T-cell lines through 

hyperacetylation of histones (Sheridan et al., 1997).  Furthermore, the acetylatio

of histone H3 and H4 by HAT complexes stimulate HIV-1 transcription from 

preassembled nucleosomal templates (Steger et al., 1998).  The HIV viral protein

Tat (trans-activator protein) appears to highjack various acetyltransferases 

including Tip60, hGCN5 , p300/CBP and PCAF (Quivy and Van Lint, 2002).  Tat 

interacts with Tip60 (Tat-interactive protein) to hinder the expression 

genes which normally interfere with the replication and propagation of the vir

(Creaven et al., 1999).  p300/CBP, hGCN5, and PCAF appear to each acetylate 

Tat at specific lysine residues within the protein, stimulating the transcrip

activity of Tat (Col et al., 2001).  It has been suggested that the requirement o

histone and Tat acetylation in the replication of HIV defines HATs as new targets 

for HIV drug design (Quivy and Van Lint, 2002).  HAT inhibitors could maintain 

infected cells in the latent state and may augment highly active an

y (HAART) in controlling HIV infection (Quivy and Van Lint, 2002). 

Although significant progress has been made in the field of histone 

deacetylase inhibitors, there are only a few HAT inhibitors (Balasubramanyam et

al., 2003).  Two synthetic peptide-CoA conjugates have been generated that are 

specific inhibitors of PCAF and p300.  Lysyl CoA (Lys-CoA) specifically inhibits 
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p300 and PCAF is inhibited by H3-CoA-20 (Lau et al., 2000).  Interestingly, Lys-

CoA does not effectively inhibit PCAF and H3-CoA-20 only affects p300 at very 

high concentrations (Lau et al., 2000).  The difference between these two 

inhibitors demonstrates that different HATs can be selectively inhibited despite 

homology between their catalytic domains.  Unfortunatley, Lys-CoA is unable to 

permate cell membranes limiting its usefulness to only in vitro assays 

(Balasubramanyam et al., 2003). 

Newer HAT inhibitors that are permeable to cell membranes are being 

cashew

3).  A 

ve 

ment 

 

d of 

an 

 

6).  

ng HAT inhibitors to derive more 

selecti  

 

ndent 

derived from naturally occurring substances.  Anacardic acid is derived from 

 nut shell liquid, and has been shown to exhibit antitumor activity 

(Balasubramanyam et al., 2003).  Further in vitro analysis demonstrates that it 

inhibits the HAT activity of p300 and PCAF (Balasubramanyam et al., 200

p300 selective inhibitor curcumin (diferuloylmethane) is derived from the spice 

turmeric (Kang et al., 2005).  Curcumin is selective for p300 and does not ha

any effect on the activity of PCAF (Balasubramanyam et al., 2004b).  Treat

of HIV infected cells with curcumin significally repressed the multiplication of the

virus and inhibited the acetylation of HIV-Tat protein (Balasubramanyam et al., 

2004b).  Garcinol, a polyisoprenylated benzophenone derivative from the rin

Garcinia indica berries, is capable of inhibiting both p300 and PCAF 

(Balasubramanyam et al., 2004a).  Garcinol and curcumin displayed strong 

growth inhibitory effects and induction of apoptosis in human leukemia cells (P

et al., 2001).  Furthermore, curcumin also appears to selectively induce 

apoptosis in mouse and human cancer cell lines but has minimal effect upon

exposure to healthy primary mouse and human cell cultures (Jiang et al., 199

However, it is still unknown if the apoptotic effects of garcinol and curcumin are 

caused by acetylase inhibition or through different mechanisms. 

Work has been done using natural occurri

ve inhibitors as potential theraputics and tools to further characterize HAT

proteins.  Compound MC1626 (2-methyl-3-carbethoxyquinoline) is an analog of

anacardic acid (Ornaghi et al., 2005).  It is able to permeate cell membranes and 

treatment of yeast cells with MC1626 inhibits cell growth in a Gcn5p-depe
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way (Ornaghi et al., 2005).  Cell growth inhibition was significantly diminished in 

a null gcn5Δ and a HAT catalytic mutant strain (Ornaghi et al., 2005).  M

represents the first membrane permeable inhibitor of GCN5.  While MC1626 

have potential as a therapeutic compound, it may be an even more important a

molecular tool facilitating continued dissection of GCN5-mediated expr

chromatin remodeling.  It may also provide a starting point from which a

GCN5 inhibitors or activators can be derived. 

 
C. Apicomplexan HDAC and HAT inhibitors 

Compounds able to inhibit HDAC and HAT proteins eventually made i

way into the apicomplexan world led by the discovery of apicidin.  Apicidin is a 

fugal metabolite isolated from a Costa Rican fungus (Fusa

C1626 

may 

s 

ession and 

dditional 

ts 

rium spp.) and 

posses  

ealed 

 

been 

oal effect of apicidin 

illustra otential 

m 

 are 

ites 

ses a tetrapeptide structure (Darkin-Rattray et al., 1996).  When cultured

parasites were treated with apicidin, it inhibited the growth of drug-resistant 

human malaria, C. parvum, and Toxoplasma, demonstrating it as a broad 

spectrum antiprotozoal (Darkin-Rattray et al., 1996).  Further analysis rev

that apicidin inhibits the histone deacetylases in apicomplexan parasites (Singh

et al., 2002).  Unfortunately, apicidin has a narrow therapeutic window and 

inhibits human HDACs resulting in an anti-proliferative effect on human cells, 

limiting its clinical potential to treat apicomplexan diseases.  Attempts have 

made by Merck Research Laboratories at modifying the parent compound to 

increase the selectivity for parasite HDACs.  However, none of the related 

compounds were active against parasites in vivo (Tucker-Samaras, 2003).  

Nevertheless, the potent and broad spectrum antiprotoz

tes the importance of pursuing chromatin remodeling enzymes as p

therapeutic targets to combat apicomplexan diseases (Darkin-Rattray et al., 

1996). 

Disruption of HATs in other systems is often deleterious to the organis

(Timmerman et al., 2001).  HATs in Toxoplasma and other apicomplexans

involved in regulating gene expression.  In fact, progression of malarial paras

through different life cycle stages has been linked to changes in histone 
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acetylation (Miao et al., 2006).  Therefore, disrupting HAT and HDAC complexes 

could influence stage differentiation in apicomplexans.  Evidence exists 

suggesting that TgMYST-A and TgGCN5-A HATs are involved in regulating 

tachyzoite expression (Saksouk et al., 2005; Smith et al., 2005).  Inhibition of 

these proteins may lock the parasite in the tachzoite stage or prevent 

recrudescence from bradyzoites back into tachyzoites.  The inability to 

succes s 

 the 

remely 

 selective inhibitors are 

obtaina  1 still 

 HAT 

ivo 

).  Therefore, 

anacar

sfully generate a TgGCN5-B and TgMYST-A deletional mutants suggest

that these two chromatin remodelers are essential to the tachyzoite state of 

Toxoplasma (Bhatti et al., 2006; Smith et al., 2005).  Therefore, HAT inhibitors 

able to target these HATs may inhibit parasite growth.  A limiting step in

inhibition of HATs and HDACs in parasites is finding an inhibitor that is selective 

for parasites and has little to no effect on human tissues. 

A screening of several HAT inhibitors identified a candidate compound, 

Compound 1, with good parasite selectivity and broad-spectrum antiprotozoal 

effects (Tucker-Samaras, 2003).  Unfortunately, Compound 1 was ext

toxic in vivo but it provides evidence that parasite

ble (Tucker-Samaras, 2003).  The selective nature of Compound

makes it an excellent investigational tool for further characterizing parasite

proteins.  Compound 1 may also provide a starting point upon which to design 

further compounds that maintain its parasite selectivity but lower its in v

toxicity (Tucker-Samaras, 2003).  The in vivo toxicity of Comound 1 was very 

rapid suggesting that it was mediated by a mechanism other than HAT inhibition 

(Tucker-Samaras, 2003).  Additional studies indicate that Compound 1 targets 

one of the MYST acetyltransferases in apicomplexans. 

Future experiments testing the effect of anacardic acid, curcumin, 

garcinol, and compound MC1626 on parasite growth are warranted.  Toxoplasma 

does not possess a homologue of p300 (Nallani and Sullivan 2005

dic acid, curcumin, and garcinol may have no effect on the growth of 

Toxoplasma.  However, it has been suggested that TgGCN5-A may be a 

functional equivalent of PCAF.  The ability of garcinol and anacardic acid to 

inhibit its HAT activity would provide further evidence of a PCAF-like function.  
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However, all four of these compounds may possess activity against Toxoplasma

HATs.  As compound MC1626 has been demonstrated to inhibit yeast

 

 GCN5, it 

would be of particular interest to demonstrate its ability to inhibit parasite growth.  

If compound MC1626 is able to inhibit parasite growth, it is highly probable that it 

is targeting TgGCN5-B and not TgGCN5-A, because a knock out of TgGCN5-A 

is viable (Bhatti et al., 2006). 

In vitro HAT assays could also be employed to determine the targets of 

HAT inhibitors in Toxoplasma.  Different inhibitors may display selectivity against 

different HATs expressed in Toxoplasma.  Additionally, as new HAT inhibitors 

are discovered they should be tested against known and newly cloned 

apicomplexan HATs.  It is important to investigate compounds that are ineffective 

or weak inhibitors of mammalian HATs.  These inhibitors may selectively inhibit 

apicomplexan HATs.  Thus, when they are added to parasites in culture, they will 

injure the parasites but have no effect on the host cells.  Inhibitors with parasite 

selectively have the potential to be novel therapeutics in treatment of 

Toxoplasma and other apicomplexan infections. 

Novel inhibitors of apicomplexan HATs and HDACs may also be 

applicable to other disease caused by dysregulated histone acetylation.  

Although originally discovered to thwart apicomplexan disease, apicidin is now 

being investigated as a potential anticancer agent.  Treatment of v-ras-

transformed mouse fibroblasts with apicidin induced morphological alteration 

towards differentiation due to hyperacetylation of histone H4 (Kim et al., 2004).  

Furthermore, apicidin strongly inhibited angiogenesis of vascular endothelial cells 

(Kim et al., 2004).  Angiogensis is the formation of new vessels and is a key step 

in the spread of metastatic cancer and has been linked to histone acetylation 

(Kim et al., 2003).  Therefore, the anti-angiogenic and anti-oncogenic potential of 

apicidin may lead to its use as a new type of drug to treat cancer. 

Clearly, the continued characterization of Toxoplasma HATs and other 

chromatin remodeling proteins will aid in understanding parasite biology and the 

bradyzoite differentiation process.  Furthermore, it will assist in the development 

of development of HAT and HDAC inhibitors which have the therapeutic potential 

203 



to treat not only in apicomplexa  disorders including 

cancer, HIV infection, genetic diseases, and inflammatory conditions. 

n infections but many other
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C MARY 

  N-terminal extension of TgGCN5 is required for the nuclear 

9 

 ic protein to the 

n. 

 

s 

Pα). 

 teracts with TgIMPα via the RKRVKR NLS in vitro, 

 

HAPTER 5: SUM

 

The

localization of TgGCN5-A. 

The motif RKRVKR present in the N-terminus between r esidues 93 and 9

is required for TgGCN5-A nuclear localization. 

The motif RKRVKR is capable of targeting a cytoplasm

parasite nucleus. 

 RKRVKR is the first NLS to be described in any apicomplexa

The RKRVKR NLS is not present in any other known GCN5 proteins. 

 Permutations of RKRVKR have predictive value in bioinformatic searche

of apicomplexan sequence databases. 

 A homologue of importin α was identified and cloned in Toxoplasma 

(TgIM

TgGCN5-A in

demonstrating that the N-terminus can participate in protein-protein 

interactions. 

In collaboration with Dr. Mohamed-Ali Hakimi’s laboratory at the French 

National Centre for Scientific Research in Grenoble, France, proteins 

associating with TgGCN5-A were identified in co-immunoprecipitation 

experiment suggesting that HAT complexes exist in Toxoplasma. 

TgGCN5-A preferential ly acetylates histone H3 only at lysine 18 in vitro.  

The selective acetylation of lysine 18 in histone H3 has not been 

described for any other GCN5 homologue. 

Rem oval of the TgGCN5-A N-terminal extension does not affect the 

acetylation of free histones in vitro. 
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