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ABSTRACT 

Kaylan Lee Randolph 

 

REMOTE SENSING OF CYANOBACTERIA IN CASE II WATERS USING OPTICALLY 

ACTIVE PIGMENTS, CHLOROPHYLL A AND PHYCOCYANIN 

 

Nuisance blue-green algal blooms contribute to aesthetic degradation of water resources 

and produce toxins that can have serious adverse human health effects.  Current field-

based methods for detecting blooms are costly and time consuming, delaying 

management decisions.  Remote sensing techniques which utilize the optical properties 

of blue-green algal pigments (chlorophyll a and phycocyanin) can provide rapid detection 

of blue-green algal distribution.  Coupled with physical and chemical data from lakes, 

remote sensing can provide an efficient method for tracking cyanobacteria bloom 

occurrence and toxin production potential to inform long-term management strategies.  

In-situ field reflectance spectra were collected at 54 sampling sites on two turbid, 

productive Indianapolis reservoirs using ASD Fieldspec (UV/VNIR) spectroradiometers.  

Groundtruth samples were analyzed for in-vitro pigment concentrations and other 

physical and chemical water quality parameters.  Empirical algorithms by Gitelson et al. 

(1986, 1994), Mittenzwey et al. (1991), Dekker (1993), and Schalles et al. (1998), were 

applied using a combined dataset divided into a calibration and validation set.  Modified 

semi-empirical algorithms by Simis et al. (2005) were applied to all field spectra to 

predict phycocyanin concentrations.  Algorithm accuracy was tested through a least-

squares regression and residual analysis.  Results show that for prediction of chlorophyll 

a concentrations within the range of 18 to 170 ppb, empirical algorithms yielded 

coefficients of determination as high as 0.71, RMSE 17.59 ppb, for an aggregated 
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dataset (n=54, p<0.0001).  The Schalles et al. (2000) empirical algorithm for estimation 

of phycocyanin concentrations within the range of 2 to 160 ppb resulted in an r2 value of 

0.70, RMSE 23.97 ppb (n=48, p<0.0001).  The Simis et al. (2005) semi-empirical 

algorithm for estimation of chlorophyll a and phycocyanin concentrations yielded 

coefficients of determination of 0.69, RMSE 20.51 ppb (n=54, p<0.0001) and 0.85, 

RMSE 24.61 pbb (n=49, p<0.0001), respectively.  Results suggest the Simis et al. 

(2005) algorithm is robust, where error is highest in water with phycocyanin 

concentrations of less than 10 ppb and in water where chlorophyll a dominates 

(Chl:PC>2).  A strong correlation between measured phycocyanin concentrations and 

blue-green algal biovolume measurements was also observed (r2=0.95, p<0.0001).  

 

 Jeffrey S. Wilson, Ph.D. 
 (Committee Chair) 
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INTRODUCTION 
 
Nuisance algal blooms cause aesthetic degradation to lakes and reservoirs resulting in 

surface scum, unpleasant taste and odor in drinking water (from the production of 

metabolites such as Methyl Isoborneol and Geosmin), and possible adverse effects to 

human heath from blue-green algal toxins.  Harmful algal blooms of cyanobacteria 

(CyanoHABs) have been known to produce the following toxins: Anatoxin-a, Microcystin, 

and Cylindrospermopsin.  Anatoxin-a, produced by cyanobacterial genera such as 

Anabaena, Oscillatoria, and Cylidrospermopsis, among others, has an acute neurotoxic 

effect.  As an acetylcholine mimic, Antatoxin-a acts as a powerful acetylcholine receptor 

agonist, attaching to a cell receptor to produce a negative physiological reaction.  

Symptoms of exposure include salivation, muscle tremors, convulsions, and sometimes 

death.  Microcystins, produced by cyanobacterial genera such as Anabaena and 

Microcystis, has an acute hepatotoxic effect.  Microcystin, a microfilament disruptor, 

damages liver cell integrity.  Symptoms of exposure include vomiting, diarrhea, 

hemorrhaging of the liver, seizures, shock, and sometimes death from respiratory arrest.  

Cylindrospermopsin is also a hepatotoxin which acts by inhibiting protein phosphatase.  

Symptoms of exposure include anorexia, diarrhea, gasping respiration, enlarged liver, 

vomiting, headache, and malaise.  Though these strains have been documented as toxin 

producers, the conditions in which they produce toxins are highly variable (Backer, 

2002).  

 

Several cases of human poisoning as a result of microcystin hepatotoxicity have been 

documented.  These cases mostly include onset of severe illness and liver damage, 

however, some have resulted in death.  In 1988, a CyanoHAB containing Anabaena and 

Microcystis was found in a drinking water reservoir in Brazil.  Two thousand recipients of 
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the reservoir’s water contracted gastroenteritis, 88 of these cases resulted in death 

(Teixeira et al., 1993).  The U.S. saw its first death potentially attributed to a CyanoHAB 

in July of 2002.  In Dane County, Wisconsin a teenage boy swimming in a golf course 

pond described as scummy, suffered a seizure and died of heart failure.  Blood and stool 

tests revealed the presence of Anabaena and anatoxin-a (Behm, 2003). Because the 

acute effects of intoxication are severe, stringent monitoring programs of Cyanobacteria 

blooms in drinking water and recreational reservoirs are necessary. 

 

Predicting the locations and timing of blue-green blooms using traditional sampling 

techniques is difficult, if not impossible, due to high variability of conditions in which 

blooms form and produce toxins (Pitois et al., 2000).  Current methods consist of field 

sample collection, laboratory analysis, and identification and enumeration of 

phytoplankton, which can take days to weeks.  These methods are neither timely nor 

cost efficient for drinking water mangers since blooms can be as ephemeral as a few 

days.  Because some phytoplankton pigments are optically active and their properties 

can be measured using spectroscopy, researchers have evaluated the utility of field-

collected spectral response patterns for determining concentrations of both chlorophyll a 

and phycocyanin pigments in lake water (e.g., Gitelson et al., 1986; Schalles and 

Yacobi, 2000; Mitzenzway et al., 1992; Simis et al., 2005).  These researchers have 

developed models based on variability of spectral response gathered by medium to high 

resolution spectroradiometers (spectral range approximately 300 to 1100 nm) for sites 

with differing algal density.  Since the optical properties of nuisance algal blooms have 

been discerned in field reflectance spectra, these remote sensing techniques can be 

extended to airborne and spaceborne satellite imaging systems to map chlorophyll a and 

phycocyanin concentrations and, therefore, blue-green algal distribution in inland 

reservoirs. 
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The purpose of this research is to extend remote sensing methods for mapping the 

spatial distribution and concentration of phytoplankton in inland reservoirs.  Previously 

developed algorithms (Table 1) were chosen for evaluation.  Developed in case II 

waters, inland water where chemistry is complex including high concentrations of 

suspended material, dissolved organic matter, and yellow substances, these algorithms 

have potential to extend well to the turbid, eutrophic reservoirs in Indiana.  The 

algorithms were evaluated for accuracy in estimating analytically measured chlorophyll a 

and phycocyanin concentrations from field spectral response measurements collected in 

two Indianapolis water supply reservoirs.  Algorithm accuracy was evaluated using least-

squares regression.  Algorithm robustness was then tested through a residual analysis in 

which confounding water quality parameters were identified. The utility of field 

spectroscopy was evaluated, as it is reported in the literature, as a real-time 

cyanobacteria bloom assessment method and remote sensing algorithms were be 

established for these systems that can be extended to air and spaceborne imaging 

systems and to other water bodies. 



 

Table 1: Algorithms relating field spectral response to measured chlorophyll a and phycocyanin concentrations. 

Chlorophyll a Phycocyanin 

[R(705)][R(670)]-1 

[R(705)-R(670)][R(550)]-1 

[R(705)-R(670)][R(550)-1-R(670)-1] 

[R(705)-R(670)][R(550)-1-R(760)-1] 

[Rmaxλ(695-715)][Rminλ(665-685)]-1 

 
Gitelson et al. (1986); Mittenzwey and Gitelson (1988);  
Gitelson (1992); Mittenzwey et al. (1991); Dekker (1993) 

PC = R648/R624 
 
 
 
 
 
 
 
 
Schalles and Yacobi (2000) 

RH670-730 
SUM670-730 
R(maxred)/R(560) 
R(maxred)/R(675) 
 
 

PC = 0.5(R600 + R648) - R624 
 
 
 
 
Dekker (1993) 

               4 

achl(665) = ({[R(709)/R(665)] x [aw(709) + bb]} - bb - aw(665)) x γ1 
 
aw(λ) are pure water absorption coefficients at λ 
bb is the backscattering coefficient obtained from: 
bb = [a w(778) x R(778)] x [(f - R(778)]-1 
f  is an estimate based on average cosine of downward irradiance 
γ’

 is derived from the linear least-squares fit of measured versus 
estimated chlorophyll a absorption 

 
 
 
Simis et al. (2005) 

apc(620) = ({[R(709)/R(620)] x [aw(709) + bb]} - bb - aw(620)) 
x δ-1 - [ε x achl(665)] 
 
aw(λ) are pure water absorption coefficients at λ 
bb is the backscattering coefficient at 778 nm 
δ is derived from the linear least-squares fit of measured 

versus estimated phycocyanin absorption  
achl(665) absorption of chlorophyll a at 665 nm 

ε is a conversion factor to define absorption of chlorophyll a 
at 620 nm relative to 665 nm 

 
Simis et al. (2005) 
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Background on Remote Sensing of Water Quality 

Remote sensing allows the collection of information about water quality without obtaining 

direct contact.  Downwelling irradiant energy provided by a source such as the sun, is 

transmitted along a pathway through the atmosphere, reflected off of a target, back into 

the atmosphere, and then recorded by a sensor.  In aquatic systems, the total recorded 

radiance of water is a function of path, surface, volumetric, and bottom radiance 

(Jensen, 2005).  Path radiance is the result of atmospheric scattering and is classified as 

noise because it does not contain information about the target water feature.  Surface 

radiance describes the top few millimeters of water, the boundary layer between the 

atmosphere and the water.  Volumetric radiance penetrates the boundary layer and 

provides information about the material suspended in the water column.  Bottom 

radiance passes through the water column and reflects off of bottom sediments.  Display 

of spectral reflectance as a function of wavelength can be used to identify the properties 

and condition of the target water feature because any optically active water constituents 

will attenuate or augment the original radiance signal along the spectrum.  

 

Since any optically active particle suspended in the water column will affect the 

irradiance signal, reflectance spectra can be used to estimate productivity, as measured 

using chlorophyll a concentrations.  Green algae contain the pigment chlorophyll a and 

have two absorption maxima at approximately 425 and 675 nm.  Ocean mapping of 

chlorophyll a using spaceborne systems has produced promising results for monitoring 

productivity.  Oceans are classified as case I water, where optically active constituents 

mostly include water, phytoplankton, and its products.  Ocean color sensors with the 

necessary spectral bands for detecting phytoplankton pigments, including MODIS, 

SeaWIFS and MERIS, however, have spatial resolutions that are too coarse for mapping 
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small, inland water bodies, classified as case II.  Case II water chemistry is more 

complex, including high concentrations of suspended material, dissolved organic matter, 

and yellow substances borne from terrestrial influence.  The presence of elevated levels 

of chlorophyll a in inland water is typically an indicator of high productivity and potentially 

harmful blue-green algal blooms.  Freshwater blue-green algae have an accessory 

pigment to chlorophyll a, the biloprotein phycocyanin.  This accessory pigment allows 

cyanobacteria to have an additional absorption maximum in the red portion of the 

spectrum at approximately 620 nm (Jupp et al., 1994; Gons et al., 1992; Dekker, 1993).  

Greater variability in the optically active constituents of inland waters also requires 

increased spectral resolution. 

Summary of Spectral Reflectance Features of Case II Water 
 

Three optically active components affect the features found in the spectral reflectance 

curve of freshwater: phytoplankton pigments, particulate matter, and yellow substances.  

Previous research has identified some of the sources of the features found in this curve 

(Figure 1).  The first is an absorption feature found at approximately 440 nm (a), 

attributed to absorption by chlorophyll a (Gordon and Morel, 1983; Gitelson et al., 1999).  

This feature is used in ocean color models but not in case II waters because the 

presence of dissolved organic matter and suspended sediment significantly affect the 

signal.  An additional absorption feature within the range of 450 and 525 nm (b) is 

caused by presence of carotenoids (Rowan, 1989; Gitelson et al., 1999; Jensen 2005).  

Carotenoids are a class of yellow to red pigments that include carotenes and 

xanthophylls.  The spectral range of 550 to 600 nm (c) contains the green peak, mostly 

due to minimal absorption by phytoplankton pigments and, thus, maximum scattering by 

algal cells (Dekker et al., 1991; Gitelson, 1992; Jensen, 2005).  It has been suggested 

that a shift in this peak toward longer wavelengths is a result of absorption of the shorter 
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wavelengths by carotenoids, indicating an increased carotenoid concentration.  A shift in 

the green peak toward shorter wavelengths (540 nm) is caused by absorption of the 

longer wavelengths by phycocyanin, a pigment found in cyanobacteria, indicating an 

increase in phycocyanin concentration (Schalles et al., 1998; Gitelson et al., 1999).  The 

subsequent trough, within the range of 620 and 630 nm (d), is the result of absorption by 

phycocyanin (Gitelson et al., 1986).  The minor reflectance peak at approximately 650 

nm (e) is attributed to backscattering from dissolved organic matter (Gitelson, 1992).  

This feature is also known to be affected by phycocyanin concentration because it is the 

location of the phycocyanin fluorescence emission maximum (Ahn et al., 1992).  The 

trough feature at approximately 675 nm is the chlorophyll a absorption maximum (f) 

(Rundquist et al., 1996; Han and Rundquist, 1997).  Reflectance here depends mainly 

on the presence of non-organic suspended matter (Gitelson et al., 1993; Dekker, 1993; 

Yacobi et al., 1995).   The reflectance peak in the NIR portion of the spectrum, within the 

range of 698 and 712 nm (g), is the result of scattering from algal cells, the pigment and 

water combination, and particulate matter.  The location and height of this peak is a 

function of chlorophyll a concentration.  Peak shifts toward longer wavelengths and 

increase in height are indications of increased chlorophyll a concentration (Dekker et al., 

1991; Han and Rundquist, 1997; Gitelson, 1992; Mittenzwey et al., 1992; Rundquist et 

al., 1996; Schalles et al., 1998).  Reflectance features at wavelengths longer than 750 

nm are attributed to organic and non-organic suspended matter concentrations (Han et 

al., 1994). 
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Figure 1: Spectral Reflectance for six sites on Geist Reservoir collected September 6, 
2005 and corresponding measurements of chlorophyll a. 
 

Background on Model Types 

Although very few models exist for predicting phycocyanin concentration in productive, 

inland, case II water, many algorithms have been proposed for estimating chlorophyll a 

concentration as a proxy for measuring productivity in both case I and II systems.  Morel 

and Gordon (1980) described three methods for algorithm derivation: 

i. Empirical method – Relationships between spectral reflectance values, Rrs(λ), 
and laboratory measured constituent concentrations collected simultaneously are 
developed using statistical methods.     

 
ii. Semi-empirical method – Models are based on known spectral features and 

previously discovered empirical relationships are employed.  Measured inherent 
optical properties of the water column are included to derive absorption 
coefficients for optically active constituents.   
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iii. Analytical method – The inherent and apparent optical properties are measured 
and included in the model as specific absorption and backscatter coefficients.  
Constituent concentrations are determined using the reflectance, absorption, and 
backscatter coefficients.  Bio-optical models are constructed based on the 
biophysical characteristics of a system using radiative transfer equations with the 
purpose of separating the total radiance into its basic components. 

 
Remote sensing reflectance (Rrs) at a specific wavelength (λ) is obtained using the ratio 

of upwelling radiance (Lu) above the waters surface (0+) at a nadir viewing angle to the 

downwelling irradiance (Ed) provided by the sun: 

),0(
),0(

λ
λ

+

+

=
d

u
rs E

L
R  Equation 1

 

Statistically significant relationships between above-water remote sensing reflectance 

(Rrs(0+, λ)) and constituent concentrations, such as correlation between change in 

reflectance with change in constituent concentration as a function of wavelength, are 

sought and used in algorithm derivation.  Recent research suggests a movement from 

the empirical to an analytical or bio-optical modeling technique, where theoretical 

radiative transfer equations (RTE) based on the inherent optics (the reflection, 

absorption, and transmission of light interacting with an individual particle) are employed.  

Because bio-optical modeling is based on physical properties, it eliminates the need for 

gathering water samples to provide statistical analysis linking phytoplankton 

concentration to reflectance, thus improving the accuracy of algorithms across water 

bodies.  Likewise, bio-optical modeling techniques are more easily extended to air and 

space-borne systems.  The following Gordon et al. (1975) described the relationship 

between the inherent optical properties (IOPs), properties of a specific medium 

independent of a light source, and apparent optical properties (AOPs), properties that 

are a combination of the IOPs and the light field in which they are measured, is used in 

development of bio-optical models for homogeneous water bodies with the equation: 
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Where: 

R(0-, λ) = subsurface reflectance at a specified depth and wavelength 
f = experimental factor dependent on the light field (sun angle) and 

volume scattering function (VSF) (Morel and Gentili, 1991) 
bb(λ) = backscatter coefficient (attenuation caused deflection of energy at 

90º to 180º angle) 
a(λ) = absorption coefficient (efficiency of a material at absorbing energy) 

 
Subsurface irradiance R(0-, λ) is related to surface reflectance Rrs(0+, λ) by the inclusion 

of an empirical factor Q, which is the ratio of subsurface downwelling irradiance to Eu(0-, 

λ) subsurface upwelling radiance Lu(0-, λ).  Specifically f :Q accounts for the geometry of 

light exiting the water body on the remote sensing reflectance measured above the 

water surface.  With inclusion of the ratio f :Q, Rrs(0+,λ) is written as (Dall’Olmo and 

Gitelson, 2005): 
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∝+  Equation 3

The bio-optical modeling technique requires the inclusion of total absorption, scattering, 

and backscatter coefficients.  In the radiative transfer model for case II waters, total 

absorption and backscattering coefficients for three optically active constituents of 

natural water bodies and pure water are included: 

a(λ) = aw(λ) + aph(λ) + aISM + aCDOM(λ)  Equation 4

bb(λ) = bb,w(λ) + bb,ph(λ) + bb,ISM(λ) + bb,CDOM(λ)  Equation 5

Where: 
 

aw(λ), bb,w(λ) = absorption and backscatter coefficients for pure water at 
wavelength (λ) (Buitevled et al., 1994) 

aph(λ), bb,ph(λ) = absorption and backscatter coefficients for phytoplankton 
at wavelength (λ)  

aISM(λ), bb,ISM(λ) = absorption and backscatter coefficients for inorganic 
suspended matter at wavelength (λ)  

aCDOM(λ), bb,CDOM(λ) = absorption and backscattering coefficient for colored 
dissolved organic matter at wavelength (λ) 
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According to Beer’s Law, it is assumed that absorption and scattering properties of a 

water body are a linear function of the concentration of its constituents (Jensen, 2005).  

The absorption coefficient for the optically active constituent of interest divided by the 

specific absorption coefficient, ai
*(λ), absorption per unit path length and mass 

concentration, can yield pigment concentration (Gons, 1999): 

[Pigmenti] = ai(λ) / ai
*(λ) Equation 6

Where: 
 

ai(λ) = absorption coefficient for the constituent of interest (i) at wavelength 
(λ) (Buitevled et al., 1994) 

ai
*(λ) = specific absorption coefficient for the constituent of interest (i) at 

wavelength (λ)  
 

Bio-optical modeling for case II waters has proven difficult because the optical properties 

of the water body are not solely dependent on phytoplankton and its byproducts, but also 

on chromophoric dissolved organic matter (CDOM), the portion of dissolved organic 

matter (humic and fluvic acids) that are colored, and inorganic suspended matter (ISM), 

mostly comprised of sands, silts and clays.  The spectral characteristics of CDOM and 

ISM are highly variable due to differences in particle shape, size, and composition 

(Morel, 2001).  Likewise, researchers exploring the optical characteristics of 

cyanobacteria have discovered that the specific absorption coefficient is highly variable 

both inter- and intra-species, dependent on the cell physiology and morphology and the 

photoadaptive response of cells to change in the environmental conditions (Morel, 

2001).  Semi-empirical models, which include both the properties of phytoplankton and 

also organic and inorganic suspended matter, sometimes referred to as bio-geo-optical 

models, have proven successful (Morel, 2001). 
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Color Ratio and Band Combination Algorithms 

Simple color ratio algorithms, also called reflectance quotients, first developed on 

oligotrophic systems (Morel and Prieur, 1977; Gordon and Morel, 1983) were modified to 

predict chlorophyll a concentration in case II, productive systems.  Color ratios utilize the 

relationship between remote sensing reflectance (R) and the ratio of backscattering from 

the surface of an algal cell to its pigment absorption efficiency (Morel and Prieur, 1977; 

Gitelson et al., 1999): 

)(
)(

λ
λ

a
b

rR b=  Equation 7

Where: 
r = a constant usually between 0.12 and 0.55 in inland turbid waters 

(Dekker, 1993) 
bb(λ) = backscattering coefficient 
a(λ) = absorption coefficient 

 

Increased algal density will cause an increase in both the absorption and scattering 

coefficients seen in the spectra.  Reflectance features for algorithm development are 

therefore chosen based on the properties of the photosynthetic pigment of interest.  

Chlorophyll a absorbs most energy in the blue and red portion of the spectrum and is 

less efficient at absorbing energy in the green portion of the spectrum.  Proposed 

chlorophyll a ratios therefore utilize the chlorophyll a absorption band in the red region 

(at approximately 670 nm) and the chlorophyll a fluorescence band in the NIR region (at 

approximately 700 nm), resulting in what is known as the NIR:red ratio.  The sensitivity 

of the features found at 700 and 670 nm to change in chlorophyll a concentration 

demonstrates that variability along a continuum of pigment density could be used to 

derive an algorithm for predicting chlorophyll a pigment concentration from spectra 

(Gitelson et al., 1986; Mittenzwey and Gitelson, 1988; Mittenzwey et al., 1992; Gitelson 

et al., 1993; Dekker, 1993).  Slight variations on the NIR:red algorithm have been 
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proposed, including R(705)/R(670) (Mittenzwey et al., 1991) and R(706)/R(676) (Dekker, 

1993), due to the change in peak position depending on water composition, specifically 

pigment, seston, and organic matter concentrations.  Strong relationships (r2=0.87-0.92) 

between the NIR:red reflectance ratio and chlorophyll a concentration were reported by 

Gitelson et al. (1986), Mittenzwey and Gitelson (1988), and Gitelson et al. (1993) with a 

low standard error of chlorophyll estimation, 13.5-19.5 ppb.  The reflectance peak found 

in the green portion of the visible spectrum, within the range 550 to 570 nm, is attributed 

to scattering by algal cells (Dekker et al., 1991; Gitelson, 1992; Jensen, 2005).  Other 

variations on the simple NIR:red reflectance ratio include the addition of the green peak, 

the reflectance feature at 550 nm and the global maximum for the spectral range 

sensitive to phytoplankton pigment concentration (Table 2).  Also included in one of the 

four-band algorithms is the reflectance peak at approximately 750 nm; features beyond 

750 nm are dependent on the presence of organic and inorganic matter but insensitive 

to phytoplankton pigments (Gitelson et al., 2000; Table 2).  Mittenzwey et al. (1991) 

reported higher r2 values for the three and four-band algorithms compared to the two-

band NIR:red ratio, suggesting algorithm accuracy increases with the inclusion of the 

green peak. 

 

Table 2: Color-ratio and band-combination algorithms presented by Gitelson et al. 
(1986), Mittenzwey et al. (1991), Dekker (1993), and Schalles and Yacobi (2000). 
Chlorophyll a Band Combinations Phycocyanin Band Combinations 

])670([)]700([ 1−× RR * )624()]648()600([5.0 RRR −+ ‡ 

])550([)]670()705([ 1−×− RRR † [R(650)][R(625) -1] • 

])670()550([)]670()705([ 11 −− −×− RRRR †  
])760()550([)]670()705([ 11 −− −×− RRRR †  

*Gitelson et al. (1986) 
†Mittenzwey et al. (1991) 
‡Dekker (1993) 
•Schalles and Yacobi (2000) 
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Chlorophyll a is found in all algal species, thus it is the chosen pigment for measuring 

the productivity of a water body using remote sensing.  The spectral response of algae is 

dependent on several factors including cell morphology and physiology (Gitelson et al., 

1999).  The same technique used to determine chlorophyll a concentration can therefore 

be applied to identify accessory algal pigments and, ultimately, the concentration of 

specific algal groups such as cyanobacteria.  Dekker et al. (1991), Gons (1999), and 

Jupp et al. (1994) identified the absorption trough found at 620 nm as the most 

prominent spectral feature specific to cyanophyte density.  Dekker (1993) devised an 

algorithm which exploits the 620 nm phycocyanin absorption feature for determination of 

phycocyanin concentration in shallow, eutrophic lakes using the following empirical 

relationship: 

[PC] = 0.5(R(0-)600 + R(0-)648)-R(0-)624  Equation 8

 
Where: 

[PC] = concentration of phycocyanin 
R(0-)λ = subsurface reflectance at a specified wavelength 

 
The algorithm was based on four identified responses within the reflectance spectra with 

increasing phycocyanin concentration:   

(i) a decrease in the reflectance at 620 nm, resulting from absorption by 
phycobilins, photosynthetic pigments efficient at absorbing yellow/red light 
(Dekker, 1993; Gitelson et al., 1995), 

 
(ii) a shift in the green peak toward shorter wavelengths (540 nm), caused by 

absorption of the longer wavelengths by phycobilins (Schalles et al., 1998; 
Gitelson et al., unpublished), 

 
(iii) an increase in the minor reflectance peak at approximately 648 nm, the 

fluorescence emission maximum of phycocyanin (Dekker, 1993; Gitelson, 
1992) , and  

 
(iv) a decrease in reflectance at approximately 440 nm attributed to the lack of 

accessory chlorophyll pigments in cyanophytes (Gitelson et al., 1999). 
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Application of the Dekker (1993) phycocyanin algorithm, however, has been reported as 

having low predictive power, with an r2 of 0.384 (Schalles and Yacobi, 2000).  Schalles 

and Yacobi (2000) further investigated the absorption feature at 620 nm, caused by the 

presence of phycocyanin, since it frequently occurred in spectral response obtained from 

Carter Lake, a turbid, eutrophic lake located on the Iowa-Nebraska border.  Schalles and 

Yacobi (2000) applied the ratio R(650)/R(625) to determine phycocyanin concentration 

(Table 2).  Regression of groundtruth phycocyanin concentration against estimates 

resulting from application of the Schalles and Yacobi (2000) ratio index to reflectance 

values resulted in an r2 value of 0.61.  Schalles et al. (1998) noted the dynamic nature of 

the green peak as a function of phycocyanin concentration change: peak height 

decreased and shifted towards shorter wavelength (540 and 550 nm) at times of high 

phycocyanin concentration and shifted toward longer wavelengths (560 to 570 nm), 

likely due to the presence of diatoms, at times of low phycocyanin concentration. 

 

Near-Infrared Peak Algorithms 

Gitelson et al. (1993, 1994) and Yacobi et al. (1995) used factor analysis and statistical 

modeling to devise an additional index for determination of chlorophyll a concentration in 

highly productive, case II waters with differing dominant phytoplankton species.  Further 

study of the nature of the NIR peak (Gitelson et al., 1993) encouraged the creation of 

two new chlorophyll a algorithms, the Reflectance Height (RH) and SUM algorithms 

(Gitelson et al., 1993): 

RH670-750 Equation 9

SUM670-750 Equation 10
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These algorithms were based on four identified responses of the NIR peak with 

increasing chlorophyll a concentration (Gitelson et al., 1993):  

(i) Increase in peak magnitude, 
(ii) Increase in peak height measured from a baseline (670 to 750 nm),  
(iii) Increase in peak area measured above a baseline (670 to 750 nm), and  
(iv) Shift in peak position toward longer wavelengths. 

 

To quantify peak height and sum, the NIR peak was normalized to a baseline from 

approximately 670 to 750 nm (drawn from the left to right edge of the NIR peak).  

Several baseline lengths have been suggested, all beginning at 670 nm, however ending 

at varying locations including 850 nm (Schalles et al., 1998), 750 nm (Gitelson et al., 

2000), and 730 nm (Gitelson, 1992).  The reason for normalization of the NIR peak to a 

baseline is simply that the slope is said to be unaffected by phytoplankton concentration 

and instead by scattering caused by other water constituents. 

 

The regression of the reflectance height index values and chlorophyll a concentration 

from data collected at Lake Kinneret, Haifa Bay, and the hypereutrophic fish ponds 

produced coefficients of determination ranging from 0.83 to 0.96 (Gitelson et al., 2000).  

Schalles et al. (1998) tested the extendibility of the RH and SUM algorithms with a 

baseline from 670 to 850 nm to estimate chlorophyll a concentration over a year period 

at Carter Lake, a turbid, eutrophic lake located on the Iowa-Nebraska border, and 

retrieved r2 values of 0.83 and 0.91, respectively between analytically measured 

chlorophyll a concentration and the regression equation obtained from the model 

development dataset.  Schalles et al. (1998) used 13 sample sites as a validation set 

and retrieved a standard error of less than 28 ppb.  Schalles et al. (1998) reported high 

positive correlations between chlorophyll a concentration, turbidity, and the presence of 

organic seston. 
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For systems with differing trophic states, the following variations on the reflectance 

height algorithm are proposed (Gitelson, 1992): 

R(maxred)/R(560) Equation 11

R(maxred)/R(675) Equation 12

Where: 
R(maxred) = is reflectance height (different notation for RH), 
R(560) = is the global maximum in the spectra, and 
R(675) = is the chlorophyll a absorption maximum 

 
Reflectance at 560 nm, the global maximum, is said to be efficient for removing errors in 

chlorophyll a prediction caused by waters with differing levels of productivity.  Because 

the presence of suspended matter affects the reflectance signal at 675 nm and at the 

Rmaxred equally, normalization of reflectance height by R(675) can reduce error 

introduced by increased suspended matter concentrations (Gitelson, 1992). 

 

Recent research performed by Dall’Olmo and Gitelson (2005) suggests movement away 

from the use of the reflectance height and sum algorithms because of an inability to 

account for backscattering between samples.  Application of the reflectance height 

algorithm to two turbid, Nebraska water bodies resulted in a low r2 of 0.57 and root mean 

square error of 28.5 ppb. 

 

Optimized Color Ratio Algorithms  

Simis et al. (2005) encouraged movement from the empirical to semi-empirical technique 

for estimating phycocyanin pigment concentration.  Simis et al. (2005) increased the 

predictive power of the simple ratio R(709)/R(620) for phycocyanin by incorporating 

measured specific absorption coefficients of phycocyanin, aPC*(620), pure water 

coefficients at specified wavelengths aw(λ) (Buiteveld et al., 1994), and backscatter 
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coefficients (bb) retrieved from 778 nm to obtain the absorption coefficients of 

phytoplankton pigments.  Spectral response was collected using a medium resolution 

imaging spectroradiometer, conforming to the spectral resolution of Medium Resolution 

Imaging Spectrometer (MERIS) to create an optical model for determining both 

chlorophyll a (Chla) and phycocyanin (PC) pigment presence in turbid inland water.  

Reflectance spectra from two hypereutrophic lakes in the Netherlands were taken using 

an instrument with a spectral range of 380 to 780 nm (4 nm spectral resolution).  The 

following simple band reflectance ratios were reintroduced: 

Chlorophyll a: R(709)/R(665) Equation 13

Phycocyanin: R(709)/R(620) Equation 14

 

Reflectance ratios were then optimized by the introduction of absorption properties, the 

backscattering coefficient, and a correction factor for the difference between observed 

and measured concentrations.  Backscattering (bb) was determined following Gons 

(1999) by the use of a 15 nm wide band at 778 nm. 
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The following algorithms for chlorophyll a and phycocyanin estimation were introduced: 

Chlorophyll a: achl(665) = ({[R(709)/R(665)] x [aw(709) + bb]} - bb - 
aw(665)) x γ’ 

Equation 15

Phycocyanin: apc(620) = ({[R(709)/R(620)] x [aw(709) + bb]} - bb - 
aw(620)) x δ-1 - [ε x achl(665)] 

Equation 16

 
Where: Simis et al. (2005) 
achl(665) = absorption of chlorophyll a at 665 nm  
R(λ) = reflectance value at a specified wavelength 
aw(λ) = pure water absorption coefficients at specified locations 

aw(709) = 0.70 m-1 (Buitevled et al., 1994) 
aw(665) = 0.40 m-1 (Pope and Fry, 1997) 
aw(620) = 0.30 m-1 (Buitevled et al., 1994) 
backscattering coefficient obtained from  
bb = [aw (778)R(778)] x [(f - R(778)-1] (Gons, 1999) 
aw(778)  = 2.71 m-1 (Buitevled et al., 1994) 

bb 

f = 0.275, estimate based on average cosine of 
downward irradiance (Gons, 1999; 
Krijgsman, 1994)  

γ’  = 0.082, a constant derived from the linear least-squares 
fit of measured to estimated chlorophyll a absorption  

aPC(620) = absorption of phycocyanin at 620 nm  
δ-1 = correction factor derived from the linear least-squares fit 

of measured versus estimated phycocyanin absorption 
ε = 0.24; correction factor to define absorption of chlorophyll 

a at 620 nm relative to 665 nm, derived from Lake 
Loosdrecht data (Simis et al., 2005) 

 
Concentration of chlorophyll a and phycocyanin can then be determined from: 
 
[Chla] = achl(665)/a*chl(665) Equation 17
[PC] = aPC(620)/a*PC(620) Equation 18
 
Where: 

achl(665) = absorption by chlorophyll a pigments at 665 nm 
a*chl(665) = 0.0153 mg Chl/m2, average pigment specific absorption 

value for chlorophyll a at 665 nm obtained for Lake 
Loosdrecht (Simis et al., 2005) 

aPC(620) = absorption by phycocyanin pigments at 620 nm 
a*PC(620) = 0.0095 mg Chl/m2, average pigment specific absorption 

value for phycocyanin at 620 nm obtained for Lake 
Loosdrecht (Simis et al., 2005) 

 

Application of the Simis et al. (2005) PC algorithm including sampling site specific values 

for ε and specific absorption coefficients (calculated from absorption measurements) 
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resulted in a 20% error in estimated PC concentrations, with an r2 value of 0.94 (n=34).  

Simis et al. (2005) measured the predictive power of applying a fixed phycocyanin 

specific absorption coefficient, taken as the average of all aPC*(620) measured from Lake 

Loosdrecht from March through November, for retrieval of phycocyanin concentration 

from the Lake IJsselmeer September cruise.  The “fixed” PC algorithm resulted in an r2 

value of 0.77 (n=12).  Simis et al. (2005) reported low predictive power of the fixed 

algorithm on Lake IJsselmeer for phycocyanin for cruises when the phycocyanin-to-

chlorophyll a ratio was low.  The algorithm was effective, however, for inland lakes 

dominated by cyanobacteria.  Since other pigments can contribute to the signal at 620 

nm, it is suggested that the Simis et al. (2005) algorithm has reduced predictive power in 

non-cyanobacterial dominated water.  For systems dominated by green algae, 

overestimation of phycocyanin concentration is suggested as a source of error without 

use of the correction factor for chlorophyll a absorption at 620.  Simis et al. (2005) also 

reported high variability among phycocyanin specific absorption coefficients a*PC(620), 

mostly due to varying cell morphology and differing phytoplankton composition. 

 

Summary of the Systems on which the Previously Developed Algorithms have been 
Tested and Validated 

 
The previously developed algorithms (Table 1) were chosen for evaluation in the current 

study because they were developed on case II waters (inland water where chemistry is 

complex due to high concentrations of suspended material, dissolved organic matter, 

and yellow substances; Table 3) with characteristics similar to the Indianapolis 

reservoirs. 

 

The robustness of the Gitelson et al. (1993) Reflectance Height and Sum algorithms 

have been evaluated internationally on lakes and reservoirs spanning a wide range of 
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trophic states.  The results of the Reflectance Height algorithm regressed against 

measured chlorophyll a concentration in international tests produced a range of 

determination coefficients from 0.83 to 0.96.  Though these algorithms seem robust, the 

heterogeneous nature of the Indianapolis reservoirs and tendency to stratify will likely 

require optimization of the Gitelson et al. (1993) algorithms.  

 

The extendibility of the Schalles and Yacobi (2000) algorithm, tested on Lake Carter in 

Nebraska, and the Simis et al. (2005) algorithm, tested on two lakes in the Netherlands, 

has not been evaluated elsewhere (Table 3).  Although these performed well for the 

reservoirs on which they were created, they have not been validated on systems in 

different locations with dissimilar water quality characteristics.  Because concentrations 

of optically active water constituents in the Indianapolis reservoirs do not necessarily 

vary together, inclusion of the spectral response patterns of other constituents will be 

required to accurately predict pigment concentration. 



 

Table 3: Summary of the systems on which the previously developed algorithms (Table 1) were created and validated 
(Gitelson et al., 2000 [1]; Simis et al., 2005 [2]; Mittenzwey et al., 1991 [3], Schalles and Yacobi, 2000 [4]. 

Site Period Chla 
(mg/m3) 

Dominant 
Phytoplankton 

Trophic 
Status 

Algorithm 
Tested/Validated 

Lake Kinneret, 
Israel* [1] winter-spring 2.4 – 330 Peridinium gatunense Eutrophic NIR:red 

Lake Kinneret, 
Israel* [1] summer-fall 3.8 – 26 Chlorophytes Eutrophic RH, SUM 

Iowa Lakes,  
US† [1] summer-fall 2.0 – 55 Diatoms Mesotrophic RH, SUM 

Carter Lake,  
US† [1], [4] year round 20 – 280 Anabaena sp. Eutrophic NIR:red, RH, SUM 

R650/R625, 
Fish Ponds, 
Israel† [1] winter-spring 2.1 – 674 Microcystis aeruginosa Eutrophic RH, SUM, NIR:red 

Wastewater ponds, 
Israel† [1] spring-summer 69 – 2700 Chlorophytes Hypereutrophic NIR:red, RH, SUM, 

Haifa Bay,  
Israel† [1] spring-summer 1 – 70 Dinoflagellates, diatoms Oligotrophic NIR:red, RH, SUM 

Lake Loosdrecht, 
Netherlands* [2] spring-fall 66 

(average) 
Limnothrix/Pseudanabaena Eutrophic Simis et al. (2005) 

Semi-empirical 
Lake Ijsselmeer, 
Netherlands* [2] spring-fall 200 

(maximum) 
Microcystis sp./ 
Aphanizomenon Eutrophic Simis et al. (2005) 

Semi-empirical 

                          22 

Spree, Dahme, and Seddin-See, 
Dämeritzsee, Müggelsee 
waterways and shallow lakes, 
Berlin* [3] 

2 year 5 – 350 Unknown Mesotrophic- 
Eutrophic NIR:red 

* Reservoir on which previously developed algorithms were created 
† System on which the previously developed algorithms have been validated 
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STUDY SITE DESCRIPTION 
 
Geist and Morse Reservoirs are part of the main flood, drinking, and recreational water 

system for the City of Indianapolis.  Using the Indiana Trophic State Index, an estimate 

of lake condition based on the concept that change in nutrient influx causes change in 

phytoplankton biomass, and ultimately lake clarity, these reservoirs are categorized as 

mesotrophic to eutrophic (Table 4; Tedesco et al., 2003).  High concentrations of 

phosphorus and chlorophyll a and low transparency in the reservoirs suggest a eutrophic 

state.  These waters are referred to as case II.  Trophic status of the reservoirs is directly 

related to surrounding land use which is comprised primary of agricultural and residential 

development (Tedesco et al., 2003). 
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Table 4: Description of Geist and Morse Reservoirs and their corresponding watersheds, 
Fall Creek and Cicero Creek. 

Reservoir Geist Morse Units 
Original Purpose Water Supply Water Supply  
Date of Service 1943 1956  
Surface Area 2.9 2.3 mi2 
 7.5 6.0 km2 

Reservoir Volume 6,300 7,400 million 
gallons 

 23.8 28.0 million m3 
Maximum Depth 48 42 Ft 
 14.7 12.9 m 
Mean Depth 3.2 m 4.7 m 
 3.2 4.7 m 
Residence Time 55 70 Days 
Watershed Area 215 227 mi2 
above Dam 560 590 km2 
Trophic Status Mesotrophic* Eutrophic*  
Mean Total P 100† 94† µg P/L 
Mean Total N 2.0† 4.1† mg N/L 
% Agriculture in 
Watershed 58.3%‡ 76.9%‡  

Trunk Stream 
(median flow) 

Fall Creek 
(2.6) 
(91.8) 

Cicero Creek 
(1.0) 
(35.3) 

 
m3/s 
cfs 

Other Inflow 
Streams 

Thorpe Creek, Bee Camp, 
and Dry Branch 

Little Cicero Creek, Bear 
Slide Creek, and Hinkle 

Creek 
 

Dominant 
Phytoplankton 

Aulacoseira, 
Scenedesmus/ 

Ankistrodesmus, 
Aphanizomenon/Anabaena

Aulacoseira, 
Scenedesmus/ 

Ankistrodesmus, 
Aphanizomenon/Anabaena 

 

* (IDEM 2002, 2004, and 2006)  
† Various CIWRP studies, including this study, from 2003 – 2005 
‡ Eagle Creek Land cover assessments (Tedesco et al., 2005) and 2000 land use/land 

cover assessments for Fall Creek and Cicero Creek Watersheds (Tedesco et al., 
2003) 

 

Geist Reservoir was constructed in 1943 to regulate the flow of Fall Creek, a water 

source for the Indianapolis drinking water supply.  Geist Reservoir, located on the border 

between Marion and Hamilton counties (-85º56’29.5749”W, 39º55’32.1001”N), is a 

small, shallow (mean depth 3.2 m) reservoir, covering 7.5 km2 (USGS, 2003).  Estimated 

reservoir volume is 23,810,000 m3 (Wilson et al., 1996).  Four streams contribute the 
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majority of flow into the reservoir, with Fall Creek contributing the largest flow volume 

(Tedesco et al., 2003).  Fall Creek drains the Fall Creek Watershed, a 560 km2 area.  

USGS Stream Gage data from Fall Creek (1941-2003) show a median daily 

instantaneous flow into Geist Reservoir of 2.6 m3/s.  Residence time based on the USGS 

stream gage data from Fall Creek (1941-2003) is estimated at 55 days.  The Fall Creek 

Watershed is comprised mainly of agricultural land, 58.3% in 2000 (Tedesco et al., 

2003).  Based on research conducted by the Central Indiana Water Resources 

Partnership (CIWRP), bi-weekly monitoring of Geist Reservoir during the growing 

season from 2003-2005 showed a mean total phosphorus concentration of 100 µg/L 

(Table 4). 

 

Figure 2: Geist Reservoir and Fall Creek watershed land use/land cover (Tedesco et al., 
2003).  
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Morse Reservoir was constructed in 1956 in the center of Hamilton County 

(-86º2’17.2291”W, 40º6’16.84512”N) to regulate flow to Cicero Creek and the White 

River, a drinking water resource for the City of Indianapolis.  Morse is classified as a 

small, shallow (mean depth of 4.7 m) reservoir, covering 6 km2 (USGS, 2003).  

Estimated reservoir volume is 28,012,000 m3 (USGS, 2003).  Cicero Creek drains the 

Cicero Creek Watershed, a 590 km2 area (Figure 3).  Four streams contribute the 

majority of flow into Morse with Cicero Creek contributing the highest flow volume to the 

reservoir (Tedesco et al., 2003).  According to USGS Stream Gage data from Cicero 

Creek (2004-2006), estimated median daily instantaneous flow into Morse Reservoir is 

1.0 m3/s.  Residence time based on the USGS stream gage data from Cicero Creek 

(2004-2006) is estimated at 70 days.  Long water residence time in Morse and a high 

percentage of agricultural land use in Cicero Creek Watershed, 76.9% in 2000, 

contribute high phosphorus loading into Morse Reservoir (Tedesco et al., 2003; Figure 

3).  The mean total phosphorus concentration for Morse Reservoir during the growing 

season, sampled bi-weekly during various CIWRP studies from 2003-2005, was 94 µg 

P/L (Table 4). 
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Figure 3: Morse Reservoir and Cicero Creek watershed land use/land cover (Tedesco et 
al., 2003). 
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METHODOLOGY 

General Study Design 

On September 6 and 7, 2005, field spectral measurements and ground truth data were 

collected at 55 sampling sites on two Indianapolis reservoirs: Morse (28 sites) and Geist 

(27 sites) (Figure 4).  Duplicate samples were collected at three of the sites for each 

reservoir.  Reflectance measurements were collected using ASD FieldSpec UV-VNIR 

high resolution spectroradiometers.  Hyperspectral imagery was acquired using the AISA 

sensor, Airborne Imaging Spectrometer for Applications, concurrent with field spectra 

and groundtruth sample collection.  CALMIT, the Center for Advanced Land 

Management Information Technologies, stationed at University of Nebraska-Lincoln, 

collected the airborne imagery for the reservoirs1.  Sampling was coordinated according 

to optimal airborne imagery acquisition time and required the use of two boats, two field 

spectroradiometers, and 15 participants.  This study was designed to determine the 

relationship between ground spectral response and in-vitro phytoplankton pigment 

concentrations and blue-green algal biomass and biovolume. 

 

                                                 
1Assessment of airborne hyperspectral imagery for mapping phytoplankton pigments is a 
companion study that will use field spectral measurements to calibrate the airborne sensor. 
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Figure 4a and b: Geo-referenced sampling sites on Morse (a) and Geist (b) Reservoirs 
(March 2005, IGIC). 
 
 

Field Methodology 

The following physical parameters were measured at the 55 sampling sites on Geist and 

Morse reservoirs using YSI multi-parameter probes (model 600XLM-SV) positioned 25 

cm below the water surface: temperature (ºC), specific conductance (mS), total 

dissolved solids (g/L), salinity (ppt), DO (% and mg/L), and pH.  Secchi Depth (cm) was 

collected at each site using a Secchi disk to estimate water transparency.  A Trimble 

Pro-XRS (Trimble Navigation, Inc.) global positioning system receiver was used to 

determine the coordinates for each sample site.  The accuracy of each position is ≤10 m. 

 

Radiance measurements, recorded in a continuous spectrum in 708 bands within a 

spectral range from 348 to 1074 nm, were collected at each of the sampling sites using 

two ASD FieldSpec UV-VNIR (Analytical Devices, Inc., Boulder, CO) 

spectroradiometers.  Radiance recorded within the spectral range of 400-900 nm were 

used in this analysis.  The fiber optic cable was attached to an extendable pole pointed 
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in a nadir viewing angle and was set at a height of approximately 0.5 m above the water 

surface.  The instantaneous-field-of-view (IFOV) of the bare fiber optic cable was 0.17 

rad, producing a diameter of 0.04 m on the water surface.  Downwelling irradiance 

measurements were also collected at each sample site using a white reference panel as 

an optical standard for calibrating upwelling irradiance.  To reduce the amount of noise 

in the spectra, the radiance reflectance spectrum at each site was averaged over 15 

readings. 

 

Water Sample Analysis 

Surface water grab samples (obtained approximately 0.3 m below the surface) were 

collected at each station and analyzed for chlorophyll a, phycocyanin, and other water 

quality constituents including total suspended solids (TSS), turbidity, total Kjehldahl 

nitrogen (TKN), total phosphorus, ortho-phosphorus, and loss-on-ignition carbon (LOI) at 

IUPUI laboratories.  Other secondary physical and chemical analyses were performed 

by Veolia Water Indianapolis, LLC using Environmental Protection Agency and American 

Public Health Association standards (Appendix A). 

 

Pigment Analysis 

Samples to be analyzed for chlorophyll a and phycocyanin were collected in 1 L amber 

HDPE bottles and filtered and frozen within four hours to preserve pigments.  For each 

sample, a replicate was also filtered.  All steps in the chlorophyll a extraction process 

were performed under subdued light conditions. 
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Chlorophyll a 

Samples to be analyzed for chlorophyll a were filtered in 150 to 200 mL aliquots through 

47 mm, 0.45 micron pore size acetate filters using a filtration manifold.  Filters were then 

placed into a 15 mL falcon tube then frozen for 20-30 days, until analysis.  Prior to 

analysis, filters were dissolved in 10 mL of 90% buffered acetone and allowed to extract 

in the freezer (-3ºC) for at least 24 hours and no longer than 48 hours.  Extracted 

chlorophyll a was analyzed using the Environmental Protection Agency Method 445.0 

(1983).  After a 1:5 or 1:10 dilution, pheophytin corrected chlorophyll a was measured 

fluormetrically using a TD-700 Flourometer (Turner Designs, Inc.) equipped with a 

Daylight White Lamp and Chlorophyll Optical Kit (340-500 nm excitation filter and 

emission filter > 665 nm) and calibrated with chlorophyll a from spinach standard 

(Sigma-Aldrich 10865).   

Phycocyanin 

Samples to be analyzed for phycocyanin were filtered in 200 mL aliquots through 47 

mm, 0.7 micron pore size glass fiber filters using a filtration manifold and frozen within 

four hours to preserve pigments.  For each sample, a replicate was also filtered.  Filters 

were placed into a 10 mL falcon tube then frozen until analysis.  Prior to analysis, filters 

were transferred to a 50 mL polycarbonate centrifuge tube and suspended in 15 mL of 

50 mM phosphate buffer.  Phycocyanin was determined by homogenization of cells 

using a tissue grinder as described in Sarada et al. (1999).  Filters were broken up using 

a stainless steel spatula.  The spatula was rinsed with 5 mL of 50 mM phosphate buffer 

with the rinse collected in the centrifuge tube.  The filter and 20 mL of buffer were 

homogenized for 2 minutes using a Teflon coated pestle.  Pestles were rinsed into the 

sample with an additional 5 mL of buffer with the rinse collected in the centrifuge tube.  

Samples (now with 25 mL of buffer) were centrifuged at 5ºC, 27,200 x g for 25 minutes 
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using a Beckman J2-21M centrifuge. Filters were homogenized again and the pestle 

was rinsed using 5 mL buffer.  As before, rinse buffer was collected in the centrifuge 

tube.  The sample was centrifuged again using the same settings.  Supernatant was 

collected, diluted using a 1:5 or 1:10 dilution (Sarada et al., 1999).  Extracted samples 

were analyzed for Phycocyanin concentrations flourometrically using a TD-700 

Flourometer (Turner Designs, Inc.) equipped with a Cool White Mercury Vapor Lamp 

and a Phycocyanin Optical Kit (630 nm excitation and 660 nm emission filters) and 

calibrated using C-phycocyanin from Spirulina sp. (Sigma-Aldrich P6161).  All steps in 

the phycocyanin extraction process were performed under subdued light conditions.  

Sarada et al. (1999) reported 99% recovery of phycocyanin using this homogenization 

technique. 

 

Pigment Extraction Error Analysis 

Percent error was calculated between each sample and its replicate (
σ

−

x
).  Samples with 

error > 20% were not used in further data analysis. 

 

Phytoplankton Identification and Enumeration 
 
The identification and enumeration of phytoplankton for the samples was completed by 

research staff at the Center for Earth and Environmental Science (CEES) at IUPUI.  A 

subset of 25 samples were randomly selected and poured into 50 mL centrifuge tubes 

and preserved with 0.5 mL of Lugol’s solution.  Samples were stored at 5ºC until 

concentrating and analyzing.   Phytoplankton were identified to species and measured 

for biovolume.  A minimum of 400 natural units were counted in each sample and each 



 

 33

measured for biovolume.  Cell volumes were estimated by approximation to the nearest 

simple geometric solid (i.e., sphere, ovoid, or rod) (Lund et al., 1958). 

 

Total Suspended Solids and Inorganic Suspended Solids 
 
Samples to be analyzed for TSS were stored in a refrigerator maintained at 5ºC until 

filtration.  Samples were filtered within 48 hours of sample collection.  Samples were 

filtered in amounts of 150 – 200 mL through pre-ashed, pre-weighed 47 mm, 0.7 micron 

pore size glass fiber filters.  Samples were dried at 60ºF then placed in a dessicator.  

Dried and cooled samples were weighed using a Top Loading Pinnacle Series Balance 

(Denver Instrument Co.).  TSS in mg/L was calculated by subtracting the post-ashed 

from the pre-ashed (SM2540D). 

Loss on Ignition (LOI) Organic Carbon 
 
Samples used to determine TSS were weighed on a Micro-balance MX5 (Mettler-

Toledo) then ashed for 75 minutes at 550ºC in porcelain crucibles.  Inorganic suspended 

solids (mg/L) was calculated by subtracting the weight before ashing from the weight 

after ashing. 

Other Physical and Chemical Analyses 
 
Collected water samples were analyzed for nutrients and other water quality 

constituents.  IUPUI laboratories analyzed for ortho-phosphate colormetrically using the 

ascorbic acid-Molybdate blue method (SM 4500) on a Konelab 20 Photometric Analyser.  

Total Kjehldahl Nitrogen (TKN) was analyzed by ESG Laboratories (Indianapolis, IN).   
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The following analytes were processed by Veolia Water Indianapolis, LLC Laboratories 

using the Environmental Protection Agency and American Public Health Association 

Standard Methods (APHA, 1998): 

• alkalinity (mg/L as CaCO3) 
• total hardness (mg CaCO3/L) 
• dissolved organic carbon (mg C/L) 
• total organic carbon (mg C/L) 
• chloride (mg/L) 
• sulfate (mg/L) 
• total phosphorus (mg/L) 
• NH4-N (mg/L) 
• nitrate (mg/L) 

• nitrite (mg/L) 
• total and dissolved silica (mg/L) 
• calcium (mg/L) 
• magnesium (mg/L) 
• potassium (mg/L) 
• sodium (mg/L) 
• MIB/Geosmin 
• Turbidity 

 

Data Analysis 
 

Spectral Analysis 
 
The relationship between field spectral responses and analytically measured 

phytoplankton pigment concentrations, chlorophyll a and phycocyanin, was determined 

by the application and optimization of the previously developed algorithms (Table 1).  

The strength of the relationship between the empirical algorithm and analytically 

measured pigment concentrations were evaluated using least-squares regression 

analysis.  Statistically obtained coefficients for empirical models are reservoir specific.  

Coefficients derived using regression analysis were applied to data stratified by 

reservoir, as is suggested by previous research (Bukata et al., 1991; Gitelson, 1992; 

Gitelson et al., 1993; Schalles et al., 1998; Schalles and Yacobi, 2000).  If a strong 

relationship proved to exist between index values obtained from the algorithm 

application and analytically measured phytoplankton pigment concentrations, then 

empirical models were also applied to a combined Morse and Geist Reservoir dataset.  

The semi-empirical model employed used the Simis et al. (2005) previously published 

specific absorption coefficients for derivation of pigment concentration.  Algorithm 
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accuracy was reported using root-mean-square error (RMSE) of the estimated 

concentration. 

 

Reflectance Band Combination and Color Ratio Algorithms 

 
The Mittenzwey et al. (1991) ratio R(705)/R(670) as a predictive index to estimate 

chlorophyll a concentration was extended to the Indianapolis reservoirs by extracting the 

reflectance values at exactly 705 nm and 670 nm (Figure 5).  Also, as an attempt to 

capture the fluorescence peak and absorbance trough reflectance values, the maximum 

reflectance value between 695 and 715 nm (Figure 5, Feature b) and the minimum 

reflectance value between and 665 and 685 nm (Figure 5, Feature a) were extracted 

and input into the NIR:red ratio as: 

[Rmaxλ(695-715)][Rminλ(665-685)]-1 

 
Figure 5: Sites with high (99 ppb) and low (32 ppb) concentrations of 
chlorophyll a at Geist Reservoir.  The chlorophyll a absorption maximum 
(a) is located at approximately 670 nm and algal cell scattering 
maximum (b) at 705 nm. 
 

 

b

a

    High [Chla] 
    Low [Chla] 
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The NIR:red reflectance ratio including the addition of the green peak, the reflectance 

feature at approximately 550 nm, was also applied to Indianapolis reservoir data to 

remove errors caused by varying levels in productivity.  Similarly, to improve the 

effectiveness of the Reflectance Height algorithm in conditions of high suspended matter 

concentrations, the reflectance signal at 675 nm, a feature affected equally by 

suspended matter as the fluorescence peak at 700 nm, was applied (Table 5).  Both 

techniques, including extraction of reflectance value at the location specified by the 

algorithm and the procedure of peak and trough reflectance value extraction were 

employed (Table 5). 

 

Table 5: Color-ratio and band-combination algorithms presented by Gitelson et al. (1986) 
and Mittenzwey et al. (1991) for use in predicting chlorophyll a concentration and 
variations on the proposed algorithms for extracting absorption and scattering maximum 
values. 
Band Combinations Variation on Simple color ratios 

])670([)]700([ 1−× RR * [Rmaxλ(695-715)][Rminλ(665-685)
 -1] 

])550([)]670()705([ 1−×− RRR † [Rmaxλ(695-715)]-[Rminλ(665-685)][ Rmaxλ(540-570)
-1] 

])670()550([)]670()705([ 11 −− −×− RRRR † {[Rmaxλ(695-715)]-[Rminλ(665-685)]}{[ Rmaxλ(540-570)
-1]-

[Rminλ(665-685)
-1]} 

])760()550([)]670()705([ 11 −− −×− RRRR †  {[Rmaxλ(695-715)]-[Rminλ(665-685)]}{[ Rmaxλ(540-570)
-1]-

[Rminλ(665-685)
-1]} 

*Gitelson et al. (1986) 
†Mittenzwey et al. (1991) 
 

A similar empirical technique was used to determine the concentration of phycocyanin.  

Following Dekker (1993), an algorithm exploiting the absorption features (Figure 6, 

Feature a) and fluorescence (Figure 6, Feature b) of phycocyanin was employed: 

PC = )624()]648()600([5.0 RRR −+  Equation 19 

 

Reflectance values at 600 nm, 648 nm, and 624 nm were extracted from reflectance 

spectra collected at each sampling site.  Likewise, application of the Schalles and 
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Yacobi (2000) ratio R(648)/R(620) to retrieve phycocyanin concentration required the 

extraction of reflectance 648 and 620 nm.  Because of the dynamic nature of the 

reflectance and absorption peaks as a function of phycocyanin, chlorophyll a, seston and 

suspended sediment concentration, both of these algorithms were adjusted to be flexible 

to peak and trough shift.  The variations on the simple color reflectance ratios were also 

applied to reflectance data (Table 6). 

 
Figure 6: Sites with high (132 ppb) and low (2 ppb) concentrations of 
phycocyanin at Morse Reservoir.  The phycocyanin absorption 
maximum (a) is located at approximately 620 nm and the phycocyanin 
fluorescence maximum (b) at 648 nm. 

 

Table 6: Color-ratio and band-combination algorithms presented by Dekker (1993) and 
Schalles and Yacobi (2000) for use in predicting phycocyanin concentration and 
variations on the proposed algorithms (this study) for extracting absorption and 
scattering maximum values. 
Phycocyanin Band Combinations Variation on Simple Color Ratios 

)624()]648()600([5.0 RRR −+ ‡ 0.5[R(600) + R(maxλ645-655) - [Rminλ(665-685)
 -1] 

[R(650)][R(625)-1] • [Rmaxλ(640-660)][Rminλ(615-635)
 -1] 

‡Dekker (1993) 
•Schalles and Yacobi (2000) 

 

b 
a 

    High [PC] 
    Low [PC] 
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Near-Infrared Peak Algorithms 

Implementation of the reflectance height algorithm, RH670-850, required normalization of 

the NIR peak to a baseline from 670 to 850 nm (Gitelson, 1992; Gitelson et al., 1994; 

Yacobi et al., 1995; Schalles et al., 1998).  The algorithm, originally developed on Lake 

Kinneret, was later modified to better fit Midwestern, inland lakes by adjusting the 

baseline from 670 to 750 nm (Gitelson et al., 1994) to 670 to 730 nm (Gitelson et al., 

2000), due to a narrower NIR peak.  The NIR peak in Indianapolis reservoir data was 

found within 670 and 730 nm.  The algorithm was modified to reflect this difference and, 

therefore, maximum height of the NIR peak was determined from a baseline of 670 to 

730 nm, thus RH670-730 (Figure 7).  Implementation of the second algorithm, SUM670-730, 

required the extraction and summation of all reflectance values under the NIR peak and 

above a baseline drawn from 670 and 730 nm (Figure 8). 
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Figure 7: Reflectance Height (RH) of the NIR peak is determined from a 
baseline drawn from 670 to 730 nm. 
 

 

Figure 8: Reflectance Sum (SUM) of the NIR peak is the addition of all 
reflectance values (highlighted in red) above a baseline drawn from 670 
to 730 nm. 
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Because the inclusion of reflectance at 560 nm, often the global maximum, is said to be 

efficient for removing errors in chlorophyll a prediction caused by waters with differing 

levels of productivity, the following variation on the Reflectance Height algorithm 

(denoted here as R(maxred)) was employed (Gitelson, 1992): 

R(maxred)/R(560) Equation 20

 

The reflectance signals at 675 nm and at Rmaxred are affected equally by suspended 

matter concentrations, thus to improve the effectiveness of the reflectance height 

algorithm when suspended matter concentrations are high, the chlorophyll a absorption 

maximum is included, resulting in the following (Gitelson, 1992): 

R(maxred)/R(675) Equation 21

 

To account for the dynamic nature of the reflectance features used in the Reflectance 

Height algorithms, change in position and magnitude as a function of water constituent 

composition, the following variations on the band combination algorithms were 

introduced to predict chlorophyll a concentrations: 

R(maxred)/Rmaxλ(540-570) Equation 22
R(maxred)/Rminλ(665-685) Equation 23
 
Where: 

R(maxred) = The maximum reflectance value of the NIR peak above a 
baseline drawn from 670 and 730 nm 

Rmaxλ(540-570) = The maximum reflectance value within a wavelength range 
540 to 570 nm 

Rminλ(665-685) = The minimum reflectance value within a wavelength range 
665 to 685 nm 

 

Regression equations relating the index values (x) to measured chlorophyll a and 

phycocyanin concentrations resulted in site specific coefficients a and b from the linear 

least squares regression analysis of the following form: 



 

 41

[pigment] = a + bx Equation 24

Regression equations developed using the calibration datasets were then applied to 

validation datasets to obtain measured chlorophyll a concentration. 

 

Semi-empirical Algorithms 
 
The following Simis et al. (2005) algorithm, a further modification of the Mittenzwey et al. 

(1992) ratio R(709)/R(670), was implemented for determining the chlorophyll a 

absorption coefficient at 665 nm, achl(665): 

achl(665) = ({[R(709)/R(665)] x [aw(709) + bb]} -bb-aw(665)) x 
γ’ 

Equation 25

 
Where: 

achl(665) = absorption of chlorophyll a at 665 nm  
R(λ) = reflectance value at a specified wavelength 
aw(λ) = pure water absorption coefficients at specified locations 

aw(709) = 0.70 m-1 (Buitevled et al., 1994) 
aw(665) = 0.40 m-1 (Pope and Fry, 1997) 
= backscattering coefficient obtained from bb=[aw(778) α R(778)] x [(δ– 
R(778))-1] (Gons, 1999; Astoreca et al., 2006) 
aw(778)  = 2.71 m-1 (Buitevled et al., 1994) 
α = 0.60, constant accounting for refraction and reflection at 

the water’s surface (Gordon et al., 1988; Astoreca et al., 
2006)  

bb 

δ = 0.082, accounts for the reflectance-IOP model, taken from 
Astoreca, 2006 (based on Gordon et al., 1988) 

= correction factor derived from the linear least-squares fit of measured 
versus estimated chlorophyll a absorption 

γ' 

Algorithm adapted from Simis et al., 2005
 
Concentration of chlorophyll a can then be determined from: 
 
[Chla] = achl(665)/a*chl(665) Equation 26
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The following Simis et al. (2005) algorithm was implemented for the determination of the 

phycocyanin absorption coefficient at 620 nm, aPC(620): 

aPC(620) = ({[R(709)/R(620)] x [aw(709) + bb]} - bb - aw(620)) x ς - ε x 
achl(665)] 

Equation 27

 
Where: 

aPC(620) = absorption of phycocyanin at 620 nm  
R(λ) = reflectance value at a specified wavelength 
aw(λ) = pure water absorption coefficients at specified locations 

aw(709) = 0.70 m-1 (Buitevled et al., 1994) 
aw(620) = 0.30 m-1 (Pope and Fry, 1997) 
= backscattering coefficient obtained from bb=[aw(778) α 
R(778)] x [(γ’– R(778))-1] (Gons, 1999; Astoreca et al., 2006) 
aw(778) = 2.71 m-1 (Buitevled et al., 1994) 
Α = 0.60, constant accounting for refraction and 

reflection at the water’s surface (Gordon et al., 
1988; Astoreca et al., 2006)  

bb 

γ’ = 0.082, accounts for the reflectance-IOP model, 
taken from Astoreca et al., 2006 (based on 
Gordon et al., 1988) 

ς = correction factor derived from the linear least-squares fit of 
measured versus estimated phycocyanin absorption, derived 
from Lake Loosdrecht data (Simis et al., 2005) 

achl(665) = absorption of chlorophyll a at 665 nm, determined using the 
equation ({[R709 / R665] x [aw(709) + bb]} -bb-aw(665)) x γ’  
= 0.24; conversion factor to define absorption of chlorophyll a at 
620 nm relative to 665 nm, derived from Lake Loosdrecht data 
(Simis et al., 2005) 

ε  

Algorithm adapted from Simis et al. 2005 

Concentration of phycocyanin can then be determined from: 

[PC] = aPC(620)/a*PC(620) Equation 28

 

Measuring Algorithm Accuracy and Robustness 

The algorithms’ accuracy in predicting chlorophyll a and phycocyanin concentrations in 

Indianapolis reservoirs was tested through a least-squares regression.  The coefficients, 

and their corresponding standard error (STE), obtained from the linear least-squares 

regression analysis of measured versus estimated concentrations of phytoplankton 
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pigments describe the algorithms’ fit.  Overall model performance was reported using the 

root-mean-square error (RMSE) of the estimated chlorophyll a and phycocyanin 

concentration: 

RMSE
)2(

)( 2
^

1

−

−
=
∑
=

n

YY i

n

i
i

 Equation 29

Where: 
^

iY  = estimated concentration of pigment i  

iY  = measured concentration of pigment i 
n = number of observations 

 
Confounding parameters were investigated through a residual analysis where residuals 

(ei) were calculated as:  

^

iii YYe −=  Equation 30

 
 

Empirical Algorithm Validation and Transferability 

When a strong relationship was obtained between the empirical relationship proposed 

and analytically measured pigment concentrations, calibration and validation datasets 

were built to test the algorithms’ accuracy in predicting phytoplankton pigment 

concentration from spectral response across an aggregated dataset.  A calibration 

dataset was created by selecting every other sample site from the aggregated dataset, 

including both Geist and Morse Reservoir data.  The validation dataset included the 

remaining sites.  The retrieved algorithm, including coefficients obtained from the linear 

least-squares regression of algorithm index values versus analytically measured pigment 

concentrations from the calibration dataset, was applied to the algorithm index values 

from the validation dataset to obtain an estimated pigment concentration value.  

Algorithm accuracy was reported using the RMSE of measured to estimated chlorophyll 

a and phycocyanin concentration values. 
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Semi-empirical Algorithm Validation and Transferability 

Morse and Geist Reservoir data served as a validation dataset for the semi-empirical 

algorithms introduced by Simis et al. (2005) for estimation of chlorophyll a and 

phycocyanin pigment concentration. 
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RESULTS AND DISCUSSION 

Water Quality Data 

Water Clarity 
 
The Geist and Morse Reservoir combined dataset yielded an average secchi disk depth 

of 70 cm.  The lowest secchi measurements were collected at Geist Reservoir, with a 

minimum depth of 30 cm.  The low Geist Reservoir average secchi depth of 48 cm 

coincided with the high total suspended solids (TSS) measurements collected at Geist 

(average of 20 mg/L) (Table 7).  TSS measurements for more than half of the Geist 

Reservoir sampling sites measured above 20 mg/L (Figure 9a).  Geist turbidity 

measurements were also high, with an average of 10.3 NTU.  Over half of the Geist 

Reservoir sampling sites showed turbidity measurements > 11 NTU (Figure 12b). 

 

The lowest TSS and greatest secchi depth measurements were observed at Morse 

Reservoir (4.4 mg/L and 135 cm, respectively; Table 7).  TSS measurements for more 

than half of the sampling sites on Morse were less than 10 mg/L (Figure 10a).  Likewise, 

turbidity measurements for over half of the Morse sampling sites were low (<5 NTU; 

Figure 10b).  Morse yielded a much larger range of turbidity and TSS values (50 mg/L 

and 27.7 NTU, respectively) compared to Geist (16 mg/L and 11 NTU, respectively). 
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Table 7: Summary statistics of water quality parameters for Geist and Morse Reservoirs. 
Parameter Mean Median Minimum Maximum Σ N 
Geist Reservoir       
Secchi Depth (cm) 48 45 30 75 12 27 
Turbidity (NTU) 10.3 9.8 7.0 18.0 2.1 27 
TSS (mg/L) 20.4 19.4 13.2 29.2 4.2 27 
TDS (g/L) 0.322 0.306 0.300 0.369 0.028 27 
DOC  (mg C/L) 3.9 4.2 0.5 4.86 1.0 27 
TOC  (mg C/L) 6.2 5.9 4.4 10.3 1.2 27 
Chlorophyll a (ppb) 71.3 64.4 34.7 118.9 26.0 27 
Phycocyanin (ppb) 96.2 100.4 25.2 185.1 43.8 27 
Chl a-to-PC Ratio 0.9 0.8 0.4 2.9 0.5 27 
Total P (µg P/L) 111.2 113.0 38.0 191.0 39.1 27 
Total N (mg N/L) 2.0 2.0 0.6 2.8 0.4 27 
Morse Reservoir       
Secchi Depth (cm) 92 90 35 135 36 28 
Turbidity (NTU) 6.7 4.6 2.3 30.0 6.4 28 
TSS (mg/L) 15.1 8.4 4.4 54.4 15.0 28 
TDS (g/L) 0.267 0.268 0.260 0.281 0.005 28 
DOC  (mg C/L) 4.4 4.2 3.9 5.2 0.4 23 
TOC  (mg C/L) 5.6 5.1 4.6 7.7 0.9 28 
Chlorophyll a (ppb) 57.2 35.6 18.0 168.6 42.9 27 
Phycocyanin (ppb) 41.8 28.6 2.0 135.1 43.4 24 
Chl a-to-PC Ratio 4.0 1.6 0.7 12.7 3.8 24 
Total P (µg P/L) 64.0 50.0 23.0 204.0 44.3 28 
Total N (mg N/L) 1.5 1.5 0.6 2.3 0.3 28 
Aggregated Dataset       
Secchi Depth (cm) 70 57 30 135 35 55 
Turbidity (NTU) 8.5 9.1 2.3 30.0 5.2 55 
TSS (mg/L) 18.1 17.2 4.4 54.4 11.7 55 
TDS (g/L) 0.294 0.281 0.260 0.369 0.034 55 
DOC  (mg C/L) 4.1 4.2 0.5 5.2 0.8 50 
TOC  (mg C/L) 5.9 5.8 4.4 10.3 1.1 55 
Chlorophyll a (ppb) 64.7 57.2 18.0 168.6 36.5 54 
Phycocyanin (ppb) 71.3 73.2 2.1 185.1 50.3 51 
Chl a-to-PC Ratio 2.0 1.0 0.4 12.1 2.7 50 
Total P (µg P/L) 88.1 72.0 23.0 204.0 49.0 55 
Total N (mg N/L) 1.7 1.7 0.6 2.8 0.4 55 
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Figure 9a and b: Distribution of optically active constituents (a) total 
suspended solids (TSS; mg/L; n=28) and (b) turbidity (NTU; n=27) 
measured in Geist 
Reservoir.
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Figure 10a and b: Distribution of (a) total suspended solids (TSS; mg/L; 
n=27) and (b) turbidity (NTU; n=28) measured in Morse Reservoir. 
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Dissolved Substances 
 
Average total dissolved solids (TDS) and dissolved organic carbon (DOC) 

measurements for a combined dataset were 0.294 g/L and 4.1 mg C/L, respectively.  

The highest TDS measurement was collected at Geist Reservoir (0.369 g/L) while the 

highest DOC measurement was collected at Morse Reservoir (5.2 mg C/L; Table 7).  

Samples from Geist showed higher overall concentrations of TDS and lower overall 

concentrations of DOC compared to Morse samples. 

 

Pigments (Chlorophyll a and phycocyanin) 
 
The combined Morse-Geist dataset showed a large range in both phycocyanin (2 to 135 

ppb) and chlorophyll a concentration (25-185 ppb).  The highest concentration of 

chlorophyll a was recorded in Morse Reservoir and the highest phycocyanin 

concentration in Geist Reservoir.  The range of phycocyanin and chlorophyll a pigment 

concentrations collected from Morse Reservoir were large (151 and 133 ppb, 

respectively; Figure 12).  Ten sampling sites at Morse Reservoir showed phycocyanin 

concentrations of less than 10 ppb (Figure 12a).  These sites also showed low 

concentrations of chlorophyll a, ranging from 18 to 32 ppb (Figure 12b).  The range of 

phycocyanin concentrations was also large for Geist (160 ppb, Figure 11a); however, 

Geist chlorophyll a analysis yielded the lowest range in pigment concentration of 84 ppb 

(Figure 11b).  Morse Reservoir showed a much higher average chlorophyll a-to-

phycocyanin ratio (4.0) compared to Geist reservoir (0.9), suggesting that four times 

more chlorophyll a is present in the water column at Morse compared to phycocyanin.  

The low chlorophyll a-to-phycocyanin ratio obtained from Geist suggests that 

phycocyanin is more prevalent than chlorophyll a in the water column (Table 7). 
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Figure 11a and b: Distribution of (a) phycocyanin (ppb; n=24) and (b) 
chlorophyll a concentrations (ppb; n=27) measured in Morse 
Reservoir. 
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Figure 12a and b: Distribution of (a) phycocyanin (ppb, n=27) and (b) 
chlorophyll a concentrations (ppb; n=27) measured in Geist Reservoir.
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Pigment Extraction Accuracy Analysis 

Calibration Accuracy 

Extracted chlorophyll a and phycocyanin, measured flourometrically using a TD-700 

Flourometer (Turner Designs, Inc.) were calibrated with chlorophyll a from spinach and 

C-phycocyanin from Spirulina sp. standards, respectively (Sigma-Aldrich 10865 and 

Sigma-Aldrich P6161). 

 

When compared to chlorophyll a calibration standards from spinach, prepared to 

measure 0 (90% buffered acetone only), 5, 20, 40, 100, and 150 ppb, the concentrations 

measured flourometrically yielded errors ranging from 0-3.8 ppb.  Flourometric 

measurements of chlorophyll a were consistently lower than known calibration 

standards.  Highest error was obtained at the ends of the calibration curve, where 1.4%, 

2.1%, and 1.8% error was calculated for 5, 100, and 150 ppb, respectively. 

 

Slightly higher errors were measured when calibrating for phycocyanin.  Overall, 

phycocyanin concentrations measured flourometrically were lower than the known 

calibration standards prepared to measure 0 (phosphate buffer only), 20, 40, 60, 80, and 

100 ppb, from Spirulina sp.  Error between known and flourometrically measured 

phycocyanin concentrations were 0-5.3 ppb.  The highest error value of 5.3 ppb was 

obtained for the 100 ppb standard, suggesting higher error will result when measuring 

high concentrations of phycocyanin. 

Precision between Samples and Replicates 

Pigment extraction precision was assessed by calculating percent error between 

samples and their replicates.  Samples with extraction error greater than 30% were not 
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used in algorithm testing or validation.  For most samples, an extraction error of less 

than 20% was measured, average error was 11% and 8% for phycocyanin and 

chlorophyll a, respectively (Figure 13; Figure 14).  Two sampling sites, GR 238 and MR 

297, were not used in further analysis due to high error (39% error for chlorophyll a and 

66% error for phycocyanin, respectively).  High error between replicate phycocyanin 

samples was also calculated for Morse Reservoir site 275 (40% error obtained from 

phycocyanin extraction).  This site was included in further analysis since the 

concentration of phycocyanin in the sample was very low.  For extraction of both 

pigments, error was higher for lower concentrations.
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Figure 13: Relationship between flourometrically measured chlorophyll a 
and error (%) between samples and their replicates. Mean error is 8% 
(n=60). 
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Figure 14: Relationship between flourometrically measured phycocyanin and 
error (%) between samples and their replicates. Mean error is 11% (n=57). 
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Relationships between Optically Active Constituents 

 
Strong relationships between phytoplankton pigments and other optically active 

constituents (OACs), (i.e., turbidity and TSS) were observed in Morse Reservoir.  The 

relationship observed from Morse data between the measured phytoplankton pigments, 

chlorophyll a and phycocyanin yielded an r2 of 0.81 when a single outlier was removed 

(Figure 15a).  The relationship between phycocyanin and turbidity and TSS in Morse 

also yielded r2 values of 0.80 for both, with the same single outlier removed (Figure 16a 

and d).  Likewise, a strong relationship exists between chlorophyll a concentration and 

turbidity and TSS, yielding r2 values of 0.74 and 0.83, respectively (Figure 16b and c).  A 

strong relationship between TSS and turbidity was also observed for Morse Reservoir, 

yielding an r2 value of 0.93 (Figure 18a; Table 8).  The strong relationships observed 

between pigment concentration and TSS measurements at Morse Reservoir suggest 

that turbidity is mostly a function of phytoplankton in the water column. 

 

Unlike Morse Reservoir, concentrations of optically active constituents in Geist Reservoir 

do not appear to co-vary.  The strongest relationship between any two OACs at Geist 

was observed between chlorophyll a and phycocyanin, yielding an r2 value of 0.53 

(Figure 15b).  The relationship between phycocyanin and turbidity and TSS at Geist 

Reservoir yielded r2 values of 0.01 and 0.21 (Figure 17a and b).  Weak relationships also 

exist between chlorophyll a concentration and turbidity and TSS, yielding r2 values of 

0.04 and 0.16, respectively (Figure 17c and d).  A weak relationship also exists between 

and turbidity and TSS with an r2 value of 0.43 (Figure 18b, Table 9).  Weak relationships 

among pigment concentrations and TSS values suggest higher amounts of non-algal 

turbidity in the Geist water column. 

 



 

Table 8: Correlation Matrix of water quality parameters for Morse Reservoir.  Strong relationships between optically active 
constituents are highlighted. 

 

 

Secchi 
Depth 

(m) 

TDS 
(g/L) 

Chla 
(ppb) 

PC 
(ppb) 

Turbidity 
(NTU) 

DOC 
(mg C/L)

TOC 
(mg C/L) TSS 

Secchi Depth 
(m)  -0.201 -0.870 -0.826 -0.781 -0.808 -0.864 -0.841 

Total Dissolved Solids (TDS) 
(g/L) -0.201  0.465 0.036 0.633 0.376 0.177 0.596 

Chlorophyll a 
(ppb) -0.870 0.465  0.810 0.740 0.793 0.821 0.830 

Phycocyanin 
(ppb) -0.826 0.036 0.810  0.820 0.655 0.876 0.880 

Turbidity 
(NTU) -0.781 0.633 0.740 0.820  0.783 0.826 0.930 

Dissolved Organic Carbon 
(DOC) 
(mg C/L) 

-0.808 0.376 0.793 0.655 0.783  0.684 0.787 

Total Organic Carbon (TOC) 
(mg C/L) -0.864 0.177 0.821 0.876 0.826 0.684  0.864 
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Total Suspended Solids 
(TSS) 
(mg/L) 

-0.841 0.596 0.830 0.880 0.930 0.787 0.864  



 

Table 9: Correlation Matrix of water quality parameters for Geist Reservoir.  Strong relationships between optically active 
constituents are highlighted. 

 

 

Secchi 
Depth 

(m) 

TDS 
(g/L) 

Chla 
(ppb) 

PC 
(ppb) 

Turbidity 
(NTU) 

DOC 
(mg C/L)

TOC 
(mg C/L)

TSS 
(mg/L) 

Secchi Depth  
(m)  0.854 -0.583 -0.727 -0.305 0.052 -0.545 -0.674 

Total Dissolved Solids (TDS) 
(g/L) 0.854  -0.565 -0.865 0.002 -0.085 -0.652 -0.453 

Chlorophyll a  
(ppb) -0.583 -0.565  0.530 0.090 0.047 0.505 0.378 

Phycocyanin 
(ppb) -0.727 -0.865 0.530  -0.060 0.095 0.650 0.418 

Turbidity  
(NTU) -0.305 0.002 0.090 -0.060  -0.048 0.142 0.699 

Dissolved Organic Carbon 
(DOC)   
(mg C/L) 

0.052 -0.085 0.047 0.095 -0.048  0.109 -0.115 

Total Organic Carbon (TOC) 
(mg C/L) -0.545 -0.652 0.505 0.650 0.142 0.109  0.488 
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Total Suspended Solids 
(TSS) 
(mg/L) 

-0.674 -0.453 0.460 0.210 0.480 -0.115 0.488  
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Figure 15a and b: Relationship between phytoplankton pigment 
concentrations, phycocyanin and chlorophyll a, for (a) Morse Reservoir 
(r2=0.81), excluding outlying site MR297 (n=26) and (b) Geist reservoir 
(r2=0.53, n=26). 
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Figure 16a, b, c and d: Morse Reservoir relationships between optically active constituents, turbidity and total 
suspended solids, and phytoplankton pigment concentration chlorophyll a (n=27) and phycocyanin (n=24). 
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Figure 17a, b, c and d: Geist Reservoir relationships between optically active constituents, turbidity and total suspended 
solids, and phytoplankton pigment concentration chlorophyll a (n=26) and phycocyanin (n=26). 
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Figure 18a and b: Relationship between total suspended solids (mg/L) 
and turbidity (NTU) measurements from (a) Morse Reservoir (r2=0.93) 
and (b) Geist reservoir (r2=0.48). 
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Algorithm Application 
 

Color ratio and band combination algorithms for estimation of chlorophyll a 
concentration 

 
The color ratio and band combination algorithms for estimation of chlorophyll a 

concentration were applied using two methods.  The first method required selection of 

the reflectance value at a specified band.  The second method required the extraction of 

a peak or trough value within a feature of interest.  The first method proved to be 

consistently less successful than the second; therefore results using the first method are 

not reported. 

 

The most successful of the NIRpeak:redtrough band combination algorithms, including 

variations of the form R(λ2)/ R(λ1), where R(λ2) was chosen as Rmaxλ(695-715) and R(λ1) as 

Rminλ(665-685), to Geist and Morse Reservoirs yielded r2 values of 0.44 (Table 10a; Figure 

19a) and 0.80 respectively (Table 10b; Figure 20a).  Application of the variations on the 

NIRpeak:redtrough algorithm yielded lower coefficients of determination compared to the 

original, two band ratio (Table 10a and b).  Derivation of chlorophyll a concentration, 

[Chla], required the application of the regression equation obtained from the linear least-

squares regression of the index value from [Rmaxλ(695-715)][Rminλ(665-685)
 -1] and the 

analytically measured chlorophyll a concentration, where: 

[Chla] = 87.01x + 105.05 (Geist) and Equation 31

[Chla] = 76.23x - 70.69 (Morse) Equation 32



 

Table 10a and b: Performance summary of band combination algorithms for prediction of chlorophyll a concentration for (a) Geist 
Reservoir (p<0.001, n=27) and (b) Morse Reservoir (p<0.0001, n=27), including the slope and intercept of the regression equation for 
determining [Chla] Estimated, slope and intercept of the linear relationship between [Chla] Measured and [Chla] Estimated with 
standard errors of estimation (STE), RMSE of [Chla] Estimated, and the linear least-squares fit (r2) of the model to [Chla] Measured. 

(a) 
Geist 

Chlorophyll a Empirical 
Algorithm 

Peak 
reflectance 

location 

Trough 
reflectance 

location 

Slope, 
Intercept 

Intercept 
(STE) 

Slope 
(STE) RMSE r2 Figure 

Rmaxλ(695-715)][Rminλ(665-685)
 -1] 

87.01 
105.05 

39.86 
(7.53) 

0.44 
(0.09) 

19.67 0.44 Figure 
19 

[Rmaxλ(695-715)]-[Rminλ(665-685)] 
[Rminλ(540-570)

-1] 
180.14 
8.90 

44.33 
(7.35) 

0.38 
(0.10) 

20.74 0.38  

{[Rmaxλ(695-715)]-[Rminλ(665-685)]} 
{[ Rminλ(540-570)

-1] -[Rminλ(665-685)
-1]} 

84.85 
4.37 

49.64 
(6.89) 

0.31 
(0.09) 

21.95 0.31  
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{[Rmaxλ(695-715)]-[Rminλ(665-685)]} 
{[ Rminλ(540-570)

-1] -[Rminλ(665-685)
-1]} 

700<R(λ2)<707 670<R(λ2)<676 

81.15 
19.06 

49.03 
(7.03) 

0.31 
(0.09) 

21.81 0.31  

 
 63 

 

(b) 
Morse 

Chlorophyll a Empirical 
Algorithm 

Peak 
reflectance 

location 

Trough 
reflectance 

location 

Slope, 
Intercept 

Intercept 
(STE) 

Slope 
(STE) RMSE r2 Figure 

Rmaxλ(695-715)][Rminλ(665-685)
 -1] 

76.23 
-70.69 

10.72 
(5.5) 

0.80 
(0.08) 

19.34 0.80 Figure 
26 

[Rmaxλ(695-715)]-[Rminλ(665-685)] 
[Rminλ(540-570)

-1] 
163.13 
-7.34 

12.43 
(5.8) 

0.77 
(0.08) 

20.82 0.77  

{[Rmaxλ(695-715)]-[Rminλ(665-685)]} 
{[ Rminλ(540-570)

-1] -[Rminλ(665-685)
-1]} 

86.17 
9.02 

14.03 
(6.0) 

0.74 
(0.09) 

22.12 0.74  
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n 
al

go
rit
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{[Rmaxλ(695-715)]-[Rminλ(665-685)]} 
{[ Rminλ(540-570)

-1] -[Rminλ(665-685)
-1]} 

688<R(λ2)<706 668<R(λ2)<675 

80.00 
18.34 

14.97 
(6.1) 

0.72 
(0.09) 

22.85 0.72  
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Figure 19a and b: (a) Geist Reservoir NIR:red algorithm index values versus 
analytically measured chlorophyll a concentrations (r2=0.44; n=27) and (b) 
analytically measured chlorophyll a concentrations versus NIR:red algorithm 
estimated chlorophyll a concentrations (RMSE=19.67). 

1:1 

r2=0.44 
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Figure 20 a and b: (a) Morse Reservoir NIR:red algorithm index values versus 
analytically measured chlorophyll a concentrations (r2=0.80; n=27; outliers 
indicated by circle) and (b) analytically measured chlorophyll a concentrations 
versus NIR:red algorithm estimated chlorophyll a concentrations (RMSE=19.84 
ppb). 

1:1 

MR 297 

MR 296 

r2=0.80 

MR 297 
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Though the relationship between analytically measured chlorophyll a concentrations and 

the NIR:red algorithm application to Geist Reservoir data was weak (r2=0.44; Figure 

19a), application of the regression equation yielded a RMSE of only 19.67 ppb (Figure 

19b), the result of a lack in extreme outliers in the Geist Reservoir dataset.  The small 

range in chlorophyll a concentrations measured at Geist (84 ppb) also explains the weak 

relationship resulting from the linear least-squares regression and the low RMSE 

resulting from algorithm application.  The relationship between Morse Reservoir 

analytically measured chlorophyll a concentrations and the values produced by the 

application of the NIR:red algorithm however, yielded a much stronger relationship 

(r2=0.80; Figure 20a), but produced nearly the same RMSE of 19.34 ppb (Figure 20b), a 

discrepancy due to the inclusion of two extreme outliers.  Also, unlike Geist Reservoir, 

chlorophyll a measurements collected from Morse Reservoir span a much larger range 

of values (151 ppb), thus providing a more robust model and stronger relationship. 

 

Morse Reservoir sampling sites 296 and 297 are the only two sites with chlorophyll a 

concentrations greater than 150 ppb (152 and 169 ppb).  Residuals of measured to 

estimated chlorophyll a concentrations proved to have a strong positive correlation with 

TSS and turbidity, yielding an r2 values of 0.72 and 0.80, respectively (Figure 21a and b).  

For both outlying sampling sites, the model underestimated chlorophyll a concentration 

by 52 and 58 ppb, respectively.  Omission of the outliers from the dataset yielded an r2 

value of 0.93 and RMSE of 8.57 ppb (p<0.0001, n=25; Figure 22a and b).  The results of 

the Morse Reservoir residual analysis lends explanation for the low predictive power of 

the NIR:red ratio on Geist Reservoir.  Predictive power was high for sampling sites with 

turbidity measurements from 2 to 10 NTU.  Turbidity in Geist Reservoir was typically 

greater than 10 NTU.  The results suggest that the NIR:red ratio is highly effected by 

scattering in the water column from colored non-algal material.  Attempting to correct for 
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this effect by employing a band in the spectral region beyond the NIR peak resulted in a 

low r2 value (0.31) using the ])760()550([)]670()705([ 11 −− −×− RRRR  model. 
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Figure 21a and b: The relationship between (a) TSS (mg/L) (r2=0.72) and 
(b) turbidity (NTU) (r2=0.80) and residual values from the application of 
the NIR:red algorithm to Morse Reservoir for derivation of chlorophyll a 
concentration.

r2=0.72 

r2=0.80 

MR 298 
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MR 298 

MR 297 
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Figure 22a and b: (a) Morse Reservoir NIR:red algorithm index values 
versus analytically measured chlorophyll a concentrations (r2=0.93) and (b) 
analytically measured chlorophyll a concentrations versus NIR:red 
algorithm estimated chlorophyll a concentrations excluding two outliers 
(RMSE=8.57). 

1:1 

r2=0.93 
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The relationship between the NIR:red color ratio and analytically measured chlorophyll a 

concentrations for the combined dataset yielded an r2 value of 0.71 (p<0.0001, n=54).  

To test the robustness of the algorithm, the data was divided into two sets, including a 

calibration set and a validation set.  An aggregated dataset, including sampling sites 

from Morse and Geist Reservoirs, was divided in half by selecting every other sampling 

site, resulting in the calibration set.  The remaining sites were used for validation.  Each 

dataset was comprised of 26 sampling sites.  A linear least-squares regression was 

used to relate the index values resulting from the empirical algorithm application to 

analytically measured chlorophyll a concentration (r2 =0.71, p<0.0001, n=26; Figure 

23a).  Chlorophyll a concentration, [Chla], was derived for the validation set by the 

application of the regression equation obtained from the linear least-squares regression 

of the index value from [Rmaxλ(695-715)][Rminλ(665-685)
 -1] and the measured chlorophyll a 

concentration from the calibration dataset: 

[Chla] = 78.71x - 81.33 Equation 33

 

Regression of measured to estimated chlorophyll a yielded slope and intercept values of 

0.85 and 9.70 respectively (RMSE=20 ppb; Figure 23b).  Omission of the two outliers 

from the Morse Reservoir dataset, sites 296 and 297, improved algorithm performance, 

yielding an r2 value of 0.75 and reducing the RMSE to 16 ppb (p<0.0001, n=24). 
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Figure 23a and b: (a) NIR:red algorithm index values from the training dataset 
(n=26) versus analytically measured chlorophyll a concentrations (r2=0.71) 
and (b) analytically measured chlorophyll a concentrations versus NIR:red 
algorithm estimated chlorophyll a concentrations for the validation dataset 
(n=26). 

1:1 

r2=0.71 

MR 297 

MR 297 



 

 72

Near-infrared Peak Algorithms 

 
Estimation of chlorophyll a concentration using only the near-infrared peak feature was 

accomplished by utilizing the Reflectance Height (RH) and Sum (SUM) algorithms 

(Gitelson et al., 2000).  To employ the Reflectance Height algorithm (RH670-730), the 

height of the NIR peak was measured from a baseline from 670 to 730 nm.  The  

SUM670-730  algorithm required the summation of all reflectance values within the NIR 

peak using the aforementioned baseline (Gitelson et al., 2000).  Two variations on the 

RH algorithm, R(maxred)/Rmaxλ(540-570) and R(maxred)/Rminλ(665-685), were applied to Geist and 

Morse data (Gitelson, 1992). 

 

The strength of the relationship between RH670-730 algorithm and analytically measured 

Geist and Morse Reservoir chlorophyll a concentrations yielded r2 values of 0.41 

(RMSE=20.15; Table 11; Figure 24) and 0.80 (RMSE=19.34; Table 11, Figure 25), 

respectively, nearly equal to those obtained using the NIR:red ratio.  Reflectance Height 

algorithm variations, R(maxred)/Rmaxλ(540-570) and R(maxred)/Rminλ(665-685), consistently yielded 

weaker relationships between algorithm index values and measured pigments for both 

reservoirs and were not pursued further in the analysis (Table 11).  Chlorophyll a 

concentration, [Chla], was obtained using coefficients from the linear least-squares 

regression of the index values from RH670-730 and the measured chlorophyll a 

concentration, where: 

[Chla] = 102.42x - 47.33 (Geist) and Equation 34

[Chla] = 83.87x - 10.91 (Morse) Equation 35



 

Table 11a and b: Performance summary for the NIR peak algorithms for prediction of chlorophyll a concentrations for (a) 
Geist (p<0.001, n=27) and (b) Morse Reservoirs (p<0.0001, n=27) including the slope and intercept of the regression 
equation for determining [Chla] Estimated, the slope and intercept of the linear relationship between [Chla] Measured and 
[Chla] Estimated with their corresponding standard errors of estimation (STE), the root mean square error (RMSE) of 
[Chla] Estimated, and the linear least-squares fit (r2) of the model to [Chla] Measured. 

(a) Geist Chlorophyll a Empirical 
Algorithm 

Slope, 
Intercept 

Intercept 
(STE) 

Slope 
(STE) RMSE r2 Figure 

RH670-730 
102.42 
-47.33 

41.85 
(7.47) 

0.41 
(0.09) 

20.15 0.41 Figure 24 

R(maxred)/Rmaxλ(540-570) 
1.40 

21.25 
52.41 
(6.70) 

0.27 
(0.09) 

22.55 0.27  

R(maxred)/Rminλ(665-685)      
0.60 

21.91 
51.72 
(6.78) 

0.28 
(0.09) 

22.40 0.28  

N
IR
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SUM670-730 
3.71 

61.88 
32.39 
(7.54) 

0.54 
(0.09) 

17.73 0.55 Figure 27 
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(b) Morse Chlorophyll a Empirical 
Algorithm 

Slope, 
Intercept 

Intercept 
(STE) 

Slope 
(STE) RMSE r2 Figure 

RH670-730 
83.87 
-10.91 

11.07 
(5.52) 

0.80 
(0.08) 

19.68 0.80 Figure 25 

R(maxred)/Rmaxλ(540-570) 
2.27 
-8.41 

23.84 
(6.80) 

0.56 
(0.10) 

28.84 0.56  

R(maxred)/Rminλ(665-685)      
1.12 

-14.96 
21.33 
(6.69) 

0.61 
(0.10) 

27.28 0.61  

N
IR

 p
ea
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s 

SUM670-730 
2.83 

-18.04 
11.00 
(5.51) 

0.80 
(0.08) 

19.60 0.80 Figure 26 
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Figure 24a and b: (a) Geist Reservoir  RH670-730 algorithm index values 
versus analytically measured chlorophyll a concentrations (r2=0.41) and (b) 
analytically measured chlorophyll a concentrations versus RH670-730 
algorithm estimated chlorophyll a concentrations (RMSE=20.15 ppb). 

1:1 

r2=0.41 
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Figure 25a and b: (a) Morse Reservoir RH670-730 algorithm index values 
versus analytically measured chlorophyll a concentrations (r2=0.80) and (b) 
analytically measured chlorophyll a concentrations versus RH670-730 
algorithm estimated chlorophyll a concentrations (RMSE=19.68 ppb).

1:1 

r2=0.80 
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For Morse Reservoir, the Reflectance Height and Sum algorithms performed equally 

well, both yielding a relatively strong relationship between measured chlorophyll a 

concentration and algorithm indices (r2=0.80; Table 11; Figure 25a; Figure 26a) and 

nearly equal RMSE between measured and estimated chlorophyll a concentrations 

(19.68 and 19.60 ppb, respectively; Table 11; Figure 25b; Figure 26b).  Concentration of 

chlorophyll a in Geist Reservoir however, was most accurately estimated using the SUM 

algorithm, yielding the strongest relationship between the algorithm index and measured 

chlorophyll a concentrations (r2=0.55; Table 11; Figure 27a) and the lowest RMSE 

(RMSE=17.73; Table 11; Figure 27b) for the Geist dataset.  These results suggest that 

the Sum algorithm, compared to the Reflectance Height algorithm, more efficiently 

accounts for small variability in chlorophyll a pigment concentration, likely because it 

utilizes information about the NIR feature as a whole, rather than only in a single band.  

More extreme differences in concentrations of chlorophyll a, as seen in the Morse 

dataset (Figure 28), can be deciphered using only peak height since change in peak 

height is also significant between samples.  The only slight height differences in the 

spectra of Geist Reservoir, yet more significant change in width of the NIR feature lend 

explanation for the improved performance of the Sum algorithm (Figure 29). 
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Figure 26a and b: (a) Morse Reservoir SUM670-730 algorithm index values 
versus analytically measured chlorophyll a concentrations (r2=0.80) and (b) 
analytically measured chlorophyll a concentrations versus SUM670-730 
algorithm estimated chlorophyll a concentrations (RMSE=19.60 ppb). 

1:1 

r2=0.80 
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Figure 27a and b: (a) Geist Reservoir SUM670-730 algorithm index values 
versus analytically measured chlorophyll a concentrations (r2=0.55) and 
(b) analytically measured chlorophyll a concentrations versus SUM670-730 
algorithm estimated chlorophyll a concentrations (RMSE=17.73 ppb). 

 

 

1:1 

r2=0.55 
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Figure 28: Morse Reservoir spectral responses show significant variability in NIR 
peak height.  (NIR feature indicated by arrow.) 
 

Figure 29: Geist Reservoir spectral response shows little variability in NIR peak 
height.  (NIR feature indicated by arrow.) 

Geist Reservoir Field Spectral Response

Morse Reservoir Field Spectral Response
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Residuals of observed to SUM and Reflectance Height estimated chlorophyll a 

concentrations for Morse Reservoir showed strong positive correlations with TSS and 

turbidity, yielding a r2 values of 0.70 and 0.80 respectively, as was seen in the NIR:red 

residual analysis for Morse data.  Again, the models underestimated chlorophyll a 

concentration for the two outlying sites, sites 296 and 297, by more than 50 ppb.  The 

results of the residual analysis indicate high algal turbidity and low non-algal turbidity at 

Morse, as was seen with the strong relationship between pigment concentration and 

turbidity and TSS measurements (Figure 16b and d). 

 

To test the robustness of the Reflectance Height and SUM algorithms, the combined 

reservoir data was divided into a calibration set (n=26) and a validation set (n=26).  A 

linear least-squares regression was used to relate the index values resulting from the 

empirical algorithm application to analytically measured chlorophyll a concentrations, 

resulting in r2 values of 0.68 and 0.72 for the Reflectance Height and SUM algorithms 

respectively (p<0.0001, n=26; Figure 30a; Figure 31a).  Chlorophyll a concentration, 

derived for the validation set by the application of the regression equation obtained from 

the linear least-squares regression of the index value from RH670-730 and SUM670-730 and 

the measured chlorophyll a concentration from the calibration dataset, yielded RMSE of 

22 and 20 ppb, respectively.  
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Figure 30a and b: (a) RH670-730 algorithm index from the Morse and Geist 
training dataset (n=26) versus analytically measured chlorophyll a 
concentrations (ppb) (r2=0.68) and (b) analytically measured chlorophyll a 
concentrations versus RH670-730 algorithm estimated chlorophyll a 
concentrations for a validation dataset (RMSE 22 ppb, n=26). 

1:1 

r2=0.68 
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Figure 31a and b: (a) SUM670-730 algorithm index from the Morse and Geist 
training dataset (n=26) versus analytically measured chlorophyll a 
concentrations (ppb) (r2=0.72) and (b) analytically measured chlorophyll a 
concentrations versus SUM670-730 algorithm estimated chlorophyll a 
concentrations for a validation dataset (RMSE 20 ppb, n=26). 

1:1 

r2=0.72 
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Color ratio and band combination algorithms for estimation of Phycocyanin concentration 
 

Phycocyanin estimation was completed through the implementation of a band ratio, 

introduced by Schalles and Yacobi (2000), and three-band combination method by 

Dekker (1993).  Both utilize the bands of maximum absorption (at approximately 620 

nm) and fluorescence (at approximately 645 nm) for phycocyanin. 

 

Implementation of the Schalles and Yacobi (2000) color ratio algorithm of the form  

R(λ2)/ R(λ1), where R(λ2) was chosen as Rmaxλ(640-660) and R(λ1) as Rminλ(615-635), to Geist 

and Morse Reservoirs yielded a r2 values of 0.67 and 0.51, respectively (Table 12; 

Figure 32a; Figure 33a).  For both Geist and Morse, the Dekker (1993) algorithm proved 

to have the lowest predictive power, yielding r2 values of 0.10 (RMSE=39 ppb) and 0.32 

(RMSE=21 ppb), respectively (Table 12).  The Dekker (1993) algorithm was not pursued 

for further analysis. 

 

Derivation of phycocyanin concentration, [PC], using the Schalles and Yacobi (2000) 

algorithm, required application of the equation obtained from the linear least-squares 

regression of the index value from [Rmaxλ(695-715)][Rminλ(665-685)
 -1] and the measured 

phycocyanin concentration, where: 

[PC] = 1035.7x - 1021.0 (Geist) and Equation 36

[PC] = 932.67x - 908.83 (Morse) Equation 37

 
 

Root-mean-square error of the measured to Schalles and Yacobi (2000) algorithm 

estimated pigment concentrations for Geist and Morse Reservoirs was 24 and 32 ppb, 

respectively (Table 12; Figure 32b; Figure 33b). 



 

Table 12a and b: Performance summary for the Schalles and Yacobi (2000) band ratio and Dekker (1993) band combination 
algorithms for prediction of phycocyanin concentration for (a) Geist Reservoir (n=25) and (b) Morse Reservoir  (n=24) including the 
slope and intercept of the regression equation for estimating [PC], the slope and intercept of the linear relationship between [PC] 
Measured and [PC] Estimated with their corresponding standard errors of estimation (STE), RMSE of the [PC] Estimated value, and 
linear least-squares fit of the model to [PC] Measured (r2). 

(a) 
Geist 

Phycocyanin empirical 
algorithm 

Peak 
reflectance 

location 

Trough 
reflectance 

location 

Slope 
Intercept 

Intercept
(STE) 

Slope 
(STE) RMSE r2 

 figure 

[Rmaxλ(640-660)][Rminλ(615-635)
 -1] 

646<R(λ2)<651 626<R(λ2)<633 1035.7 
-1021.0 

30.17 
(9.76) 

0.66 
(0.09) 23.72 0.67 

 
Figure 

32a 
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nd
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0.5[R(600)+R(648)]-R(624) 

  32657.9 
193.3 

81.8 
(6.34) 

0.10 
(0.06) 39.05 0.10 
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(b) 
Morse 

Phycocyanin empirical 
algorithm 

Peak 
reflectance 

location 

Trough 
reflectance 

location 

Slope 
Intercept 

Intercept 
(STE) 

Slope 
(STE) RMSE r2 

 figure 

[Rmaxλ(640-660)][Rminλ(615-635)
 -1] 

649<R(λ2)<653 626<R(λ2)<640 932.67 
-908.83 

20.76 
(6.52) 

0.51 
(0.11) 31.94 0.51 Figure 

33 
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C
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n 

A
lg
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m
s 

0.5[R(600)+R(648)]-R(624) 

  99235.79 
-39.8851 

29.16 
(0.32) 

0.31 
(0.09) 37.85 0.32  
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Algorithm application to Geist data yielded two outliers, sampling sites 241 and 249 

(Figure 32a).  For these sites, residuals of measured to estimated phycocyanin 

concentrations did not yield a strong relationship to TSS or turbidity, however both sites 

measured higher than average TSS concentrations of 26 and 29 mg/L respectively.  The 

model underestimated phycocyanin concentration by more than 47 ppb for both 

sampling sites.  Omission of the outliers from the dataset yielded an r2 value of 0.78 and 

RMSE of 19 ppb (p<0.0001, n=23; Figure 34). 

 

When applied to Morse Reservoir data the algorithm resulted in one extreme outlier, 

sampling site 298, with a residual of 97 ppb (Figure 33a).  Site 298 showed the highest 

measured turbidity recorded for Morse reservoir of 30 NTU and the highest TSS 

concentration overall of 54 mg/L.  Omission of this site improves the predictive power of 

the Schalles and Yacobi (2000) algorithm, resulting in an r2
 value of 0.66, with a RMSE 

of 19.96 ppb (p<0.0001, n=24; Figure 35). 
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Figure 32a and b: (a) Geist Reservoir Schalles and Yacobi (2000) algorithm 
index values versus measured phycocyanin concentrations (r2=0.67, n=25) 
and (b) measured phycocyanin concentrations versus the Schalles and 
Yacobi (2000) algorithm estimated phycocyanin concentrations  
(RMSE=24 ppb). 
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Figure 33a and b: (a) Morse Reservoir Schalles and Yacobi (2000) algorithm 
index values versus measured phycocyanin concentrations (r2=0.67, n=24) and 
(b) measured phycocyanin concentrations versus the Schalles and Yacobi 
(2000) algorithm estimated phycocyanin concentrations (RMSE=23.72 ppb). 
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Figure 34a and b: (a) Geist Reservoir Schalles and Yacobi (2000) algorithm 
index values versus measured phycocyanin concentrations (ppb) (r2=0.78; 
n=23) and (b) measured phycocyanin concentrations versus Schalles and 
Yacobi (2000) algorithm estimated phycocyanin concentrations excluding two 
outliers (RMSE=19 ppb). 
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Figure 35a and b: (a) Morse Reservoir Schalles and Yacobi (2000) algorithm 
index values versus measured phycocyanin concentrations (ppb) (r2=0.66, 
n=23) and (b) measured phycocyanin concentrations versus Schalles and 
Yacobi (2000) algorithm estimated phycocyanin concentrations excluding one 
outlier (RMSE=19.96 ppb).
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r2=0.66 
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When applied to a combined dataset, the relationship between the Schalles and Yacobi 

(2000) color ratio and analytically measured phycocyanin concentration (ppb) was 

relatively good, yielding an r2 value of 0.70 (p<0.0001, n=48).  To test the robustness of 

the algorithm, the data was divided into a calibration and validation set, both comprised 

of 24 sampling sites.  The linear least-squares regression used to relate the index values 

resulting from the empirical algorithm application to analytically measured phycocyanin 

concentration resulted in an r2 value of 0.74 (p<0.0001, n=26; Figure 36a).  Phycocyanin 

concentration, [PC], was derived for the validation set by the application of the 

regression equation obtained from the linear least-squares regression of the index value 

from [Rmaxλ(640-660)][Rminλ(615-635)
 -1] and the measured phycocyanin concentration from the 

calibration dataset: 

[PC] = 1013.76x - 995.25 Equation 38

 

Application of the Schalles and Yacobi (2000) color ratio algorithm to an aggregated 

dataset resulted in the same Morse Reservoir extreme outlier, sampling site 298, with a 

residual of 82 ppb.  Omission of this site improved the predictive power of the Schalles 

and Yacobi (2000) algorithm for the validation dataset, yielding a RMSE of 18.91 ppb 

(p<0.0001, n=23). 
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Figure 36and b: (a) Schalles and Yacobi (2000) algorithm index values from the 
training dataset (n=24) versus measured phycocyanin concentrations (ppb) 
(r2=0.74) and (b) measured phycocyanin concentrations versus Schalles and 
Yacobi (2000) algorithm estimated phycocyanin concentrations for a validation 
dataset (RMSE=26 ppb, n=24 including outlying site).

1:1 

r2=0.74 
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Semi-empirical Algorithms 

Chlorophyll a 

A modified version of the Simis et al. (2005) algorithm was implemented for estimation of 

the chlorophyll a absorption coefficient at 665 nm, achl(665) and ultimately the 

concentration of chlorophyll a for Geist and Morse Reservoir data: 

achl(665) = ({[R(709)/R(665)] x [aw(709) + bb]} -bb-aw(665)) 
 

Where:  
= [aw(778) α R(778)] x [(γ’– R(778))-1]  
(Gordon, 1988; Gons, 1999; Astoreca et al., 2006) 
aw(778)  = 2.71 m-1 (Buitevled et al., 1994) 
α = 0.60, constant accounting for refraction and reflection at the 

water’s surface (Gordon, 1988; Astoreca et al., 2006)  

bb 

γ’ = 0.082, accounts for the reflectance-IOP model, taken from 
Astoreca et al., 2006 (based on Gordon, 1988) 

Adapted from Simis et al. (2005) 
 
Application of the Simis et al. (2005) algorithm for retrieval of the chlorophyll a 

absorption coefficient achl(665) to Geist Reservoir data yielded a low r2 value of 0.41 from 

the linear least-squares regression of achl(665) to measured chlorophyll a (Table 13; 

Figure 37a).  Estimated chlorophyll a concentration, [Chla], was obtained using the 

chlorophyll a specific absorption coefficient at 665 nm, a*chl(665), as reported by Simis et 

al. (2005) for Lake Loosedrect data.  Concentration of chlorophyll a was then determined 

from: 

Where: 

a*chl(665) = 0.0153, specific absorption coefficient of chlorophyll a at 665 nm 
(taken from Simis et al. (2005) Lake Loosedrect data) 

 

 

 

[Chla] = achl(665)(m-1)/a*chl(665)(m2 mg pigment-1) Equation 39
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Simis et al. (2005) estimated chlorophyll a yielded a RMSE of 21 ppb (n=27,  

p<0. 001; Table 13; Figure 37b).  The average residual value of measured to estimated 

chlorophyll a concentration for Geist Reservoir was 15.71 ppb, with minimum and 

maximum residuals of 1.27 and 45.56 ppb, respectively (Table 13; Figure 37).  No strong 

relationship was determined between the Geist Reservoir residual values and other 

optically active constituents; however the two outlying sites with the highest residual 

values (sites 236 and 239) also proved to have the highest analytically measured 

chlorophyll a concentrations.  For both sites, the model underestimated chlorophyll a 

concentration. 

 

The Simis et al. (2005) algorithm proved more successful for retrieval of the chlorophyll a 

absorption coefficient achl(665) from Morse Reservoir data, yielding a higher r2 value of 

0.79 from the linear least-squares regression of achla(665) to analytically measured 

chlorophyll a concentration (Table 13; Figure 38a). 

 

Morse Reservoir measured to estimated chlorophyll a yielded RMSE of 20 ppb 

(p<0.0001, n=27; Table 13; Figure 38b).  The average residual value of measured to 

estimated chlorophyll a concentration for Morse Reservoir was 13.63 ppb, with minimum 

and maximum residuals of 1.99 and 59.15 ppb, respectively (Table 13; Figure 38).  Like 

Geist, no strong relationships were found between the Morse Reservoir residual values 

and other optically active constituents and, yet again, two outlying sites with the highest 

residual values (sites 296 and 297) also proved to have the highest analytically 

measured chlorophyll a concentrations.  The Simis et al. (2005) algorithm 

underestimated the chlorophyll a concentrations for both sampling sites. 
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When applied to a combined dataset, an r2 value of 0.69 was obtained from the linear 

least-squares regression of Simis et al. (2005) estimated aChla(665) to analytically 

measured chlorophyll a (Table 13; Figure 39a).  The combined dataset yielded a RMSE 

of 21 ppb (p<0.0001, n=54) (Table 13; Figure 39b).



 

Table 13: Performance summary for the Simis et al. (2005) algorithm for estimation of chlorophyll a concentration for Geist and 
Morse Reservoirs and for a combined dataset, including the slope and intercept of the linear relationship between [Chla] 
Measured and [Chla] Estimated with their corresponding standard errors of estimation (STE), the root-mean-square error 
(RMSE) of [Chla] Estimated, and the linear least-squares fit (r2) of achl(665) to [Chla] Measured. 

  Reservoir Intercept 
(STE) 

Slope 
(STE)

RMSE 
(ppb) 

r2 
(p-value) 

min/max 
residuals 

(ppb) 

Average 
Residual

(ppb) 
n figure 

Geist 41.67 
(6.07) 

0.33 
(0.08) 21.49 0.41 

p<0.001 
1.27 
45.56 15.71 27 Figure 37 

Morse 17.60 
(5.19) 

0.74 
(0.07) 20.32 0.79 

p<0.0001 
1.99 
59.15 13.63 27 Figure 38 
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Figure 37and b: (a) Geist Reservoir Simis et al. (2005) algorithm derived 
absorption coefficients for chlorophyll a at 665 nm, achl(665) versus analytically 
measured chlorophyll a concentrations (r2=0.41) and (b) analytically measured 
chlorophyll a concentrations versus estimated concentrations using a*Chl(665) 
(RMSE=21.49 ppb).  The circle identifies the site with the largest residual. 
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Figure 38a and b: (a) Morse Reservoir Simis et al. (2005) algorithm 
derived absorption coefficients for chlorophyll a at 665 nm, achl(665) 
versus analytically measured chlorophyll a concentrations (r2=0.79) and 
(b) analytically measured chlorophyll a concentrations versus estimated 
concentrations using a*chl(665) (RMSE=20.32 ppb). 
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Figure 39a and b: Combined dataset, including both Morse and Geist 
Reservoirs, Simis et al. (2005) algorithm derived absorption coefficients for 
chlorophyll a at 665 nm, achl(665) versus analytically measured chlorophyll 
a concentrations (r2=0.69) and (b) analytically measured chlorophyll a 
concentrations versus estimated concentrations using a*chl(665) 
(RMSE=20.51 ppb). 

1:1 

achl(665) 

r2=0.69 
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Phycocyanin 
 

The following modified Simis et al. (2005) algorithm was implemented to obtain the phycocyanin 

absorption coefficient at 620 nm, aPC(620), and ultimately the estimated phycocyanin 

concentration from Geist and Morse Reservoir data: 
 
apc(620) = ({[R(709)/R(620)] x [aw(709) + bb]} - bb -aw(620)) – 

[ε x achl(665)] 
Equation 40

Where: 
= backscattering coefficient obtained from bb=[aw(778) α R(778)] x [(γ’– 
R(778))-1] (Gons, 1999; Astoreca et al., 2006) 
aw(778)  = 2.71 m-1 (Buitevled et al., 1994) 
α = 0.60, constant accounting for refraction and reflection 

at the water’s surface (Gordon et al., 1988; Astoreca et 
al., 2006)  

bb 

γ’ = 0.082, accounts for the reflectance-Inherent Optical 
Property model, taken from Astoreca, 2006 (based on 
Gordon et al., 1988) 

 
Adapted from Simis et al. (2005) 
 
Concentration of phycocyanin was then determined from: 
 
[PC] = aPC(620) (m-1)/a*PC(620) (m2 mg pigment-1) Equation 41
 
Where: 

a*PC(620) = 0.0049, the minimum specific absorption coefficient of phycocyanin 
at 620 nm (taken from Simis et al. (2005) Lake Loosedrect data) 

 

Application of the Simis et al. (2005) algorithm for retrieval of the phycocyanin absorption 

coefficient aPC(620) from Geist and Morse Reservoir data yielded r2 values of 0.74 and 

0.91, respectively from the linear least-squares regression of aPC(620) to analytically 

measured phycocyanin (Table 14; Figure 40a, Figure 41a).  Estimated phycocyanin 

concentration, [PC], was obtained using the phycocyanin specific absorption coefficient 

at 620 nm, a*PC(620), as reported by Simis et al. (2005) for Lake Loosedrect data. 



 

Table 14: Performance summary for the Simis et al. (2005) algorithm for estimation of phycocyanin concentration for Geist (n=26) 
and Morse Reservoirs (n=23) and for a combined dataset (n=49) including the slope and intercept of the linear relationship between 
measured phycocyanin and estimated phycocyanin with their corresponding standard errors of estimation (STE), the root mean 
square error (RMSE) of the estimated [PC] value, and the linear least squares fit (r2) of the phycocyanin absorption coefficient at 620 
nm to analytically measured phycocyanin concentration. 

 Reservoir Intercept 
(STE) 

Slope 
(STE) 

RMSE 
(ppb) 

r2 
 

|min/max 
Residuals| 

(ppb) 

n 
(p-value) figure 

Geist 30.87 
(6.14) 

0.51 
(0.06) 27.59 0.74 

 
0.23 
66.07 

26 
p<0.0001 Figure 40 

Morse 25.96 
(2.81) 

0.66 
(0.05) 22.04 0.91 1.11 

34.68 
23 

p<0.0001 Figure 41 
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Figure 40a and b: (a) Geist Reservoir Simis et al. (2005) algorithm derived 
absorption coefficients for phycocyanin at 620 nm, aPC(620) versus analytically 
measured phycocyanin concentrations (r2=0.74, n=26, p<0.0001) and (b) 
analytically measured phycocyanin concentrations versus estimated 
concentrations using a*PC(620) (RMSE=27.59 ppb). 

1:1 

r2=0.74 
n=26 

GR 241 

GR 236 

aPC(620) 
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Figure 41a and b: (a) Morse Reservoir Simis et al. (2005) algorithm derived 
absorption coefficients for phycocyanin at 620 nm, aPC(620) versus 
analytically measured phycocyanin concentrations (r2=0.91, n=23, p<0.0001) 
and (b) analytically measured phycocyanin concentrations versus estimated 
concentrations using a*PC(620) (RMSE=22.04 ppb)
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r2=0.91 
n=23 

aPC(620) 

MR 296 
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Geist Reservoir measured to Simis et al. (2005) estimated phycocyanin yielded a RMSE 

of 28 ppb (p<0.0001, n=26; Table 14; Figure 40b).  The average residual value of 

observed to Simis et al. (2005) estimated phycocyanin concentration for Geist Reservoir 

was 20.20 ppb, with minimum and maximum residuals of 0.23 and 66.07 ppb, 

respectively.  The linear least-squares relationship between measured phycocyanin 

concentration and residual values showed a relatively strong positive correlation 

(r2=0.55, n=26).  The two outlying sites (sites 241 and 236) with the highest residual 

values also proved to have high analytically measured phycocyanin concentrations (156 

and 160 ppb, respectively; Figure 40a).  The model underestimated phycocyanin 

concentrations at these sites by approximately 60 ppb (Figure 40b). 

 

Morse Reservoir Simis et al. (2005) estimated phycocyanin concentrations were closer 

to a one-to-one relationship than those retrieved using Geist data, with a RMSE of 22 

ppb (p<0.0001, n=23; Table 14; Figure 41b).  The average residual value of observed to 

Simis et al. (2005) estimated chlorophyll a concentration for Morse Reservoir was 18.34 

ppb, with minimum and maximum residuals of 1.11 and 34.68 ppb, respectively.  The 

sites yielding the largest residual values (sites 274 and 293) resulting from the algorithm 

estimation also served as the most extreme values found in the measured phycocyanin 

dataset (2 ppb and 125 ppb, respectively; Figure 41a).  The algorithm produced an 

overestimation of phycocyanin greater than 30 ppb for site 274, with a very low 

measured concentration (2.19 ppb).  The sampling site 296, with a high measured 

phycocyanin concentration (114 ppb) was underestimated by the algorithm by greater 

than 30 ppb (Figure 41b).  

 

When applied to a combined dataset, an r2 value of 0.85 was obtained from the linear 

least squares regression of Simis et al. (2005) estimated aPC(620) to analytically 



 

 104

measured phycocyanin (Figure 42a).  The combined dataset yielded a RMSE of 21 ppb 

(p<0.0001, n=54; Figure 42b).   

 

A potential explanation for the consistent underestimation of phycocyanin for Geist 

Reservoir sampling sites with measured phycocyanin concentrations greater than 120 

ppb could simply be that the Simis et al. (2005) algorithm assumes that the absorption 

by phytoplankton pigments at 709 nm is negligible, thus absorption at this location is 

attributed only to pure water.  It is therefore possible to underestimate the absorption 

coefficient of phycocyanin at 620 nm if phycocyanin is also absorbing energy at 709 nm.  

An underestimation of aPC(620) will cause an underestimation in retrieved pigment 

concentration that will increase with increasing concentration (Simis et al., 2005). 
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Figure 42a and b: (a) Combined dataset including both Morse and Geist 
Simis et al. (2005) algorithm derived absorption coefficients for phycocyanin 
at 620 nm, aPC(620) versus analytically measured phycocyanin 
concentrations (r2=0.85, n=49, p<0.0001) and (b) analytically measured 
phycocyanin concentrations versus estimated concentrations using a*PC(620) 
(RMSE=24.61 ppb). 
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Evaluation of Phycocyanin Pigment Concentration as a Measure of Blue-green Algal 
Abundance 

 
To ensure that the remote sensing of optically active pigments, phycocyanin and 

chlorophyll a, is an accurate method for estimating in-vitro phytoplankton pigment 

concentrations, the relationship between ground spectral response and extracted 

phycocyanin and chlorophyll a was determined.  It is the relationship between in-vitro 

phytoplankton pigment concentration and measures of blue-green algal biomass and 

biovolume, however that ultimately determined the effectiveness of remote sensing of 

phytoplankton pigments as a proxy for blue-green algal abundance.  A subset of 25 

samples were randomly selected from an aggregated dataset and analyzed for 

phytoplankton identification, enumeration, and biovolume, a density measure of blue-

green cell biomass.  A strong correlation between measured phycocyanin concentrations 

and biovolume measurements was observed (r2=0.9460, p<0.0001; Figure 43).  

Measures of blue-green algal biovolume and natural units can be determined using the 

equations obtained from the linear least squares regression of measured phycocyanin 

concentration to blue-green biovolume and natural units from the 25 sample subset: 

 
Variation in the size and shape of algal cells cannot be accounted for when performing 

phytoplankton counts, but can when measuring algal biovolume.  Sampling sites with 

high algal counts could have low algal biovolume if the taxa present are small in size.  

For Morse Reservoir, sampling site 274 was often seen as an outlier, where small taxa 

accounted for 77% of the natural units but only 21% of the biovolume.  Algorithms 

consistently overestimated phycocyanin concentration at this site.  The disparity was 

caused by the prevalence of small blue-green taxa such as Merismopedia minima and 

Blue-green Biovolume (mm3/m3) = 110.1 + (3.56 x [PC] (ppb)) Equation 42

Blue-green Natural Units / mL = 3,629 + (67 x [PC] (ppb)) Equation 43
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Pseudanabaena limnetica, which contribute little to overall biovolume and phycocyanin 

concentrations but can dominate counts.  The strong relationship observed between in-

vitro pigment concentration and blue-green algal biovolume suggests measurements of 

pigment concentration are an accurate measure of blue-green algal abundance. 

 

 
 

Figure 43: Relationship between phycocyanin concentrations and measures 
of blue-green algal biovolume (r2=0.95, p<0.0001, n=25). 
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CONCLUSIONS 
 
The data presented suggests that hyperspectral remote sensing, coupled with the 

established empirical and semi-empirical algorithms for inland, turbid waters, is an 

effective method for rapid cyanobacteria bloom assessment.   

 

Application of the Gitelson et al. (1986) NIR:red and SUM and the Schalles and Yacobi 

(2000) empirical algorithms for retrieval of chlorophyll a and phycocyanin, respectively 

proved to be accurate and robust when applied to a combined dataset.  Coefficients 

obtained from the linear least-squares regression of empirical algorithm index values, 

obtained using above surface remote sensing reflectance, and analytically measured 

phycocyanin concentration need to be further validated through algorithm application to 

spectra collected over the entire bloom season and under varying conditions.  For 

increased predictive power, empirical algorithms need to be modified further to account 

for the influence of non-algal turbidity on reflectance spectra, potentially by including a 

third band in the NIR portion of the spectrum, as described by Dall’Olmo and Gitelson 

(2005). 

 

The Simis et al. (2005) semi-empirical models for estimation of chlorophyll a and 

phycocyanin concentrations also proved to be robust.  When applied to a combined 

dataset, a strong relationship resulted from the linear least-squares regression of 

chlorophyll a absorption coefficients and analytically measured pigment concentrations.  

When applied to Geist Reservoir data only, the Simis et al. (2005) algorithm yielded a 

relatively weak relationship (r2=0.41) between the chlorophyll a absorption coefficient at 

665 nm, achla(665), and measured chlorophyll a, the result of model application to a low 

range of chlorophyll a values.  Ultimately, the model performed well in estimating 



 

 109

chlorophyll a concentration, yielding a low root-mean-square error of 21 ppb between 

measured and estimated pigment concentrations. 

 

A strong relationship also resulted from the linear least-squares regression of the Simis 

et al. (2005) phycocyanin absorption coefficients, obtained from remote sensing 

reflectance, and analytically measured pigment concentrations (r2=0.85, RMSE=24.61 

ppb).  Algorithm error in concentration estimation could be attributed to several potential 

sources including error in the estimation of pigment specific absorption coefficients, 

change in pigment absorption efficiency, the presence of non-algal particles, and error in 

prediction for non-cyanobacteria- dominated waters. 

 

Error Associated with Algorithm Application 

The specific absorption coefficients used for retrieval of pigment concentrations in this 

study were measured by Simis et al. (2005), where absorption coefficients obtained from 

Lake Loosdrecht data were divided by extracted pigment concentrations.  Several 

sources of error could be attributed to the estimation of specific absorption coefficients, 

and the application of the Lake Loosdrecht coefficients to Indianapolis reservoir data.  

According to Simis et al. (2005), high variability exists in phycocyanin specific absorption 

coefficients, as was seen in data obtained from Lakes Loosedrect and IJsselmeer.  

Therefore, applying a fixed specific absorption coefficient, as was done in this study, has 

a tendency to produce error in the estimation of phycocyanin concentration.  Simis et al. 

(2005) suggested that the application of a fixed a*
PC(620) to sites exhibiting low 

phycocyanin concentration consistently produced an overestimation of pigment 

concentration.  This effect was observed in Morse Reservoir data, where phycocyanin 

concentrations measuring 2-10 ppb where estimated to have 20-30 ppb phycocyanin. 
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Pigment absorption efficiency is suggested to be a function of the season, environmental 

conditions, nutrient and light availability, phytoplankton composition and species 

competition (Tandeau de Marsac, 1977; Metsamaa et al., 2005).  Different strains of 

cyanobacteria also exhibit different absorption efficiencies per mass unit (Ahn et al. 

1992; Metsamaa et al., 2005).  This identified source of error could be one potential 

explanation for the underestimation of phycocyanin concentrations for Geist Reservoir 

sites, where measured pigment concentrations were greater than 120 ppb.  It is possible 

that, at high concentrations, pigments no longer absorb energy proportional to the 

concentration, rather absorption efficiency of the cyanobacterial cell decreases.  A non-

linear relationship appears to exist between the phycocyanin estimated using the 

absorption coefficient at 620 nm and in-vitro phycocyanin with measured concentrations 

greater than 120 ppb. 

 

Simis et al. (2005) also described two major simplifications employed in the semi-

empirical algorithm: the assumption that absorption by phytoplankton pigments at 709 

nm is insignificant or absent (absorption here is attributed to pure water only) and 

absorption by non-algal material is not quantified.  The first simplification is said to cause 

an underestimation of phycocyanin.  Absorption at 709 nm by phytoplankton pigments 

will increase as concentration increases, resulting in a miscalculation of the absorption 

coefficient.  To correct for the simplification, Simis et al. (2005) proposed the use of a 

correction factor (δ) obtained by relating laboratory measured to algorithm derived 

phycocyanin absorption coefficients.  The correction factor calculated and employed by 

Simis et al. (2005) was applied for this study.  Application of these simplifications was 

successful for Morse Reservoir, where concentrations of non-algal material was low, 

however the correction proved less successful for Geist, where concentrations of non-
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algal material were high.  This simplification could also have been the cause of an 

underestimation of phycocyanin concentrations for Geist Reservoir by 30-66 ppb. 

 

The semi-empirical algorithm introduced by Simis et al. (2005) is suggested to function 

best in cyanobacteria-dominated systems.  This assumption was supported by this 

study.  As was suggested, the highest error in Indianapolis data occurred at sites 

dominated by chlorophyll a, indicative of the presence of green-algae.  For sites where 

Chla:PC > 2, a consistent underestimation of phycocyanin resulted and errors of greater 

than 14 ppb occurred (Figure 44). 
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Figure 44: Relationship between residual values from measured to Simis 
et al. (2005) estimated phycocyanin concentrations and the Chla:PC ratio, 
with Chla:PC >2 identified by red circle. 

 

As the ratio of phycocyanin-to-chlorophyll a decreases, error in the estimation of 

phycocyanin concentration is likely to occur.  Simis et al. (2005) specifically identifies an 

Chla:PC > 2.0 
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acute increase in estimation error for waters with PC:Chla of less than 0.4.  This 

threshold was observed in Indianapolis reservoir data.  For sites with PC:Chla > 0.5, 

percent error between measured and estimated phycocyanin concentration was less 

than 40% (Figure 45). 
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Figure 45: Relationship of PC:Chla for Indianapolis reservoir sites and 
percent error between measured and estimated phycocyanin 
concentrations (r2=0.87). 

 

Simis et al. (2005) identified an inverse relationship between the phycocyanin-to-

chlorophyll a ratio and the specific absorption coefficient for cyanobacteria at 620 nm.  

Thus, for low concentrations of phycocyanin, low aPC(620), a*PC(620) should be higher 

compared to that of cyanobacteria dominated waters.  The fixed specific absorption 

coefficient would therefore result in an overestimation of phycocyanin concentrations, 

also observed in Indianapolis reservoir data. 

 

r2=0.87 
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Error Related to Data Collection 

Errors introduced by data collection rather than algorithm application also exist.  To 

minimize effects of atmospheric interference, data were collected under cloudless, dry 

sky conditions where intensity of solar irradiance was constant.  A total of 15 spectra 

were averaged for each site, reducing the signal-to-noise ratio and, thus error induced 

by in-situ reflectance collection.  The optic was positioned at nadir on a mount extending 

1 m from the boat to reduce the influence of reflectance off of the vessel on collected 

spectra.  Though the water was placid, the potential for error due to surface refraction 

also exists.  Some researchers suggest a viewing geometry where the optic is positioned 

at a 45º angle from the water’s surface to avoid noise attributed to surface refraction.  

The empirical relationships employed likely reduce error resulting from skylight surface 

reflection since this error is likely to affect reflectance along the spectral range of interest 

similarly. 

 

Error Introduced in Analytical Analysis 

Error in the estimated values obtained using the phycocyanin empirical and semi-

empirical algorithms mentioned could have arisen from the analytical method used for 

pigment extraction.  Though several methods for phycocyanin extraction have been 

tested, adequate validation for these methods has not yet been provided, thus no 

method is widely accepted.  Simis et al. (2005) suggested that low extraction efficiency 

would result in an overestimation of the phycocyanin specific absorption coefficient and 

a corresponding underestimation of phycocyanin concentration.  It is possible that, 

because the average specific absorption coefficient obtained from Lakes Loosdrecht and 

Ijsselmer data was too high, the phycocyanin extraction efficiency for this study was 

better than that of Simis et al. (2005). 
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Though elimination of or reduction in the aforementioned sources of error has potential 

to increase algorithm predictive power, overall the empirical and semi-empirical 

algorithms for retrieval of blue-green algal abundance performed well, are robust and 

transferable.  The use of remote sensing as a rapid assessment tool for the spatial 

distribution and concentration of blue-green algae can provide an efficient method for 

tracking blue-green algal occurrence over time and relative to management strategies 

indicating areas for treatment and mitigation.  The effectiveness of management 

strategies for controlling algal abundance can also be efficiently measured using remote 

sensing methods.  Most importantly, coupled with physical and chemical data from the 

reservoir, remote sensing of cyanobacteria can aid in understanding bloom formation 

and can facilitate bloom prediction.   



 

 115

FUTURE WORK 

 
Bio-optical modeling has been pursued for water quality assessment to eliminate the 

need for gathering water samples to provide statistical analysis linking phytoplankton 

concentration to reflectance, thus improving the accuracy of algorithms extended to air 

and space-borne systems.  However, both semi-empirical and bio-optical models require 

the specific absorption coefficients for algal pigments to be known or to be constant.  

Unfortunately, the specific absorption coefficient of phycocyanin is highly variable Simis 

et al. (2005) suggest that the absorption coefficient should be adjusted for cell size, 

intracellular pigment content, and environmental conditions.  Dall’Olmo and Gitelson 

(2005) suggested that certain spectral regions are highly affected by variability in the 

chlorophyll a specific absorption coefficient (achla*) and chlorophyll a fluorescence 

quantum yield (η), the efficiency at which a cell will emit absorbed light (photons emitted: 

photons absorbed), introducing high error to the prediction of chlorophyll a from remote 

sensing reflectance.  To resolve this issue, Dall’Olmo and Gitelson (2006) suggested a 

band tuning method, reducing the requirement for parameterization of the optical 

properties of natural water constituents by selecting bands that are least affected by 

achla* and η.  Based on the hypothesis that bands used in a semi-empirical model for 

determination of chlorophyll a concentration can be tuned to reduce the sensitivity of the 

model to variation in the phytoplankton specific absorption coefficient and chlorophyll a 

fluorescence quantum yield, Dall’Olmo and Gitelson (2005) presented the following 

three-band algorithm for chlorophyll a estimation, reducing the standard error of 

estimation to less than 30%: 

)())()((][ 32
1

1
1 λλλ RRRpigment ×−∝ −−  Equation 44
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Where: 
R(λ1) = reflectance value at wavelength location λ1 most sensitive to 

pigment absorption (chlorophyll a or phycocyanin), but also 
affected by particulate material induced scattering and absorption 
of accessory pigments 

 
R(λ2) = reflectance value at wavelength location λ2 that is least sensitive 

to absorption by the pigment of interest and is most sensitive to 
absorption by other constituents (correcting for the absorption by 
other pigments at λ1) 

 
R(λ3) = reflectance value at wavelength location λ3 least affected by 

absorption of all pigments and therefore used to quantify 
scattering 

 
The Dall’Olmo and Gitelson (2005) algorithm is based on the absorbance of chlorophyll 

a, thus the reciprocal of the remote sensing reflectance to inherent optical property (IOP) 

relationship proposed by Gordon et al. (1975). 

 

The following three-band optical model for obtaining the phytoplankton absorption 

coefficient (by utilizing the band in the red region which is proportional to chlorophyll a 

concentration) in natural waters requires the selection of three specific wavelength 

locations based on the sensitivity of that wavelength region on the constituent properties 

of interest: 

aphy(λ1)=m(λ1, λ2, λ3) x (λ1, λ2, λ3) + b( λ1, λ2, λ3) Equation 45
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Where: 

aphy = phytoplankton absorption coefficient 
m = coefficient obtained from regression analysis 
x = value obtained from the reflectance index to assess the absorption 

of a pigment of interest 
b = coefficient obtained from regression analysis 

 
The first band location (λ1), is selected as the spectral feature most sensitive to 

chlorophyll a pigment absorption: 

b

bwTDChla
rs b

baaa
f
QR

+++
∝− )()()(

)( 111
1

1 λλλ
λ  Equation 46

 
Where: 

Rrs
-1 = the reciprocal of the remote sensing reflectance function as 

defined by Gordon et al. (1975) 
(λ1) = spectral region chosen as most sensitive to chlorophyll a 

absorption 
aChla = chlorophyll a absorption coefficient 
aTD = total absorption coefficient for the non-algal particles (tripton) and 

colored dissolved organic matter (aCDOM) combined (sometimes 
called aNAP) 

aw(λ1) = pure water absorption coefficient at the specified wavelength 
location 

bb = total backscattering coefficient 
f :Q  = a function of the sun and viewing angles 
 

The second spectral region is selected as the wavelength where absorption of non-algal 

particles is equal to that of the first spectral region and absorption by chlorophyll a is 

minimized.  Because the absorption efficiency of CDOM and inorganic suspended 

matter (ISM) decreases as wavelength increases, then λ2 > 700 nm.  Tuning for λ2 is 

written as: 

b

wwChla
rsrs b
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f
QRR
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Where: 
 
aChla = chlorophyll a absorption coefficient 
aTD = total absorption coefficient for the non-algal particles colored 

dissolved organic matter (aCDOM) and tripton (atripton) combined 
(sometimes called aNAP) 

 
Wavelength location λ3 is selected according to the location least affected by absorption 

of all pigments, therefore absorption at λ3 can be attributed solely to that of pure water 

and can be used to quantify scattering.  Reflectance at λ3 is proportional to the product 

of f:Q ratio and total backscattering, written as: 

)()()]()([ 132
1

1
1 λλλλ Chlarsrsrs aRRR ∝− −−  Equation 48

 

In the case that the absorption of CDOM and tripton is far less than that of chlorophyll a 

at location λ1 and the backscattering coefficient is far less than the total absorption at λ1, 

then λ2 can be removed from the equation so that: 

)()750()]710()675([ 1
11 λChlarsrsrs aRRR ∝− −−  

 
)()()([ 131

1 λλλ Chlarsrs aRR ∝−  
 
The following steps are employed for adoption of the initial spectral regions:  

 
(1) Tuning of λ1 by use of the initial band locations λ2=710nm and λ3=750 nm and a 

moving location for λ1 between 400 and 800 nm, thus: 
)()750()]710()800400([ 1

1
1

1 λλ Chlarsrsrs aRRR ∝−<< −−  regressed against 
chlorophyll a concentration to obtain the lowest standard error of estimation 

 
(2) Tuning of λ2 by use of the tuned λ1 location (λ1=671 nm from step 1) and initial 

λ3=750 nm and a moving location for λ2 between 700 and 750 nm, thus: 
)()750()]750700()671([ 12

11 λλ Chlarsrsrs aRRR ∝<<− −−  regressed against 
chlorophyll a concentration to obtain the lowest standard error of estimation  
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(3) Tuning of λ3 by use of the tuned λ1 location (λ1=671 nm from step 1), a tuned λ2 

location (λ2=710 nm from step 2) and a moving location for λ3 between 730 and 
750 nm, thus: )()750730()710()671([ 13

11 λλ Chlarsrsrs aRRR ∝<<− −−  regressed 
against chlorophyll a concentration to obtain the lowest standard error of 
estimation 

 
(4) Verification of λ1 by use of a tuned λ2 and λ3 and a moving λ1 regressed against 

chlorophyll a concentration to obtain the lowest standard error of estimation, 
giving the final algorithm: )()740()710()671([ 1

11 λChlarsrsrs aRRR ∝− −−  
 
For datasets where the effect of the backscattering (compensated for by the addition of 

λ3) on reflectance at λ1 is greater than that of the combination of tripton and CDOM, the 

λ2 can be omitted, resulting in the following two-band algorithm: 

aphy(λ1)=m(λ1, λ3)x(λ1, λ3) + b( λ1, λ3) 

Where: 

aphy = phytoplankton absorption coefficient 
m = coefficient obtained from regression analysis 
x = value obtained from the reflectance index to assess the absorption 

of a pigment of interest 
b = coefficient obtained from regression analysis 

 
The following is the tuned algorithm: 
 

)()740()671([ 1
1 λChlarsrs aRR ∝−  

 
The final three and two-band algorithms was tuned to variability in η and achla* using the 

same method of adjusting both bands one and three (650≤λ1≤700 and 700≤λ3≤750) to 

minimize standard error of estimation by isolating each factor from the dataset used.  

The following three algorithms were presented as having the highest predictive power 

and lowest sensitivity to variability in η and achla*:    

)()740()710()671([ 1
11 λChlarsrsrs aRRR ∝− −−  

)()735()673([ 1
1 λChlarsrs aRR ∝−  

)()725()665([ 1
1 λChlarsrs aRR ∝−  

( ) )740()710()671([ 11
1 rsrsrsChla RRRa −− −∝λ  
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Using simulated data, Dall’Olmo and Gitelson (2006) further investigated bio-optical 

parameter induced error on estimated chlorophyll a as a function of wavelength.  It is 

shown that the bands most sensitive to chlorophyll a concentration are also most 

sensitive to variability in bio-optical parameters.  The following observations regarding 

reduced Chla predictive power as a result of variability in bio-optical properties (as a 

function of wavelength) were made: 

(i) Phytoplankton specific absorption coefficient (aphy
*) and chlorophyll a 

fluorescence quantum yield (η) variability decreases as λ1 moves from 678 nm 
toward 670 nm and as λ3 moves from 700 nm toward 750 nm.  The two-band 
algorithm performs better than the three-band in circumstances with high 
variation in aphy

*
.  

 
(ii) The specific absorption coefficient of non-algal particles (anap

*) mostly effects 
features in the blue portion of the spectrum and causes only negligible change in 
Chla prediction for a range in anap

* variability of up to fourfold. 
 
(iii) Total particle specific backscatter coefficient (bb,P

*) causes only minimal changes 
in estimated Chla.  The three-band algorithm performs better than the two-band 
in conditions with highly variable bb,P

*. 
 
(iv) Concentration of total suspended particles P increases error in Chla prediction 

most significantly for low Chla concentrations (i.e. 10 ppb), though variation in P 
is said to affect the entire red-NIR region.  For low (10 ppb) to medium (36 ppb) 
concentrations of chlorophyll, the three-band algorithm (with λ1, λ2, and λ3 set at 
675, 700, 750 nm respectively) has the best predictive power.  For high Chla 
concentrations (100 ppb) the two-band algorithm (with λ1 and λ2 set at 675 and 
750 nm respectively) reports the lowest error.  

 

Dall’Olmo and Gitelson (2006) suggest that, although the tuning technique and 

coefficients used in this model are dependent on the optical composition of the water on 

which it was built, the large range of constituent concentrations and optical properties 

included in the model derivation suggest that it could be extended to similar systems.     

 

Following Dall’Olmo and Gitelson (2006), a similar band tuning technique could be 

applied to derive phycocyanin concentration from remote sensing reflectance using the 

three-band optical model.  The phytoplankton absorption coefficient could be obtained 
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by utilizing a band in the red region which is proportional to phycocyanin concentration in 

natural waters.  Reflectance values at wavelength location λ2 could be tuned to that is 

least sensitive to absorption by phycocyanin and potentially most sensitive to absorption 

by other constituents (correcting for the absorption by other pigments at λ1).  And 

reflectance value at wavelength location λ3 least affected by absorption of all pigments 

and therefore used to quantify scattering. 

The following steps should be employed:   

(1) Adoption of the following initial spectral regions: 
)()750()]710()620([ 1

11 λChlarsrsrs aRRR ∝− −−  
 
(2) Tuning of λ1 by use of the initial band locations λ2=710nm and λ3=750 nm and a 

moving location for λ1 between 400 and 800 nm, thus: 
)()750()]710()800400([ 1

1
1

1 λλ Chlarsrsrs aRRR ∝−<< −−  regressed against 
phycocyanin concentration to obtain the lowest standard error of estimation 

 
(3) Tuning of λ2 by use of the tuned λ1 location (λ1≈620 nm from step 1) and initial 

λ3=750 nm and a moving location for λ2 between 700 and 750 nm, thus: 
)()750()]750700()620([ 12

11 λλ Chlarsrsrs aRRR ∝<<− −−  regressed against 
chlorophyll a concentration to obtain the lowest standard error of estimation  

 
(4) Tuning of λ3 by use of the tuned λ1 location (λ1≈620 nm from step 1), a tuned λ2 

location (λ2≈710 nm from step 2) and a moving location for λ3 between 730 and 
750 nm, thus: )()750730()710()620([ 13

11 λλ Chlarsrsrs aRRR ∝<<− −−  regressed 
against chlorophyll a concentration to obtain the lowest standard error of 
estimation 

 
(5) Verification of λ1 by use of a tuned λ2 and λ3 and a moving λ1 regressed against 

chlorophyll a concentration to obtain the lowest standard error of estimation, 
giving the final algorithm: )()740()710()620([ 1

11 λChlarsrsrs aRRR ∝− −−  
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APPENDIX A 

Summary of Analytical Methods 
 

Sample Analytical 
Method 

Detection 
Limit 

Method 
Description Description 

Alkalinity 
(mg/L as 
CaCO3) 

EPA (310.1) 2.0 Titrametric 

Alkalinity by titration to pH 4.5. Acid neutralizing 
capacity  (sum of all titratable bases). Primarily a 
function of carbonate, bicarbonate, and hydroxide 
content (usually an indicator of the concentration of 
these consituents). 

DOC (mgC/L) SM (5310C) 0.5 Persulfate Oxidation-Amount of TOC that passes through a 
0.45µm-pore-diam filter. 

TOC (mgC/L) SM (5310C) 0.5 Persulfate 

Oxidation-Persulfate and Ultraviolet Oxidation with IR 
detection. Carbon atoms covalently bonded in organic 
molecules are broken down to be measured 
quantitatively. Organic Carbon is oxidized into CO2 by 
persulfate using UV light. CO2 is removed from the 
sample, dried, and transferred with a carrier gas to an 
IR analyzer.  

Chloride 
(mg/L) EPA (300.0) 8.0 Ion 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector.  
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, 
analytical column, supressor device, and conductivity 
detector.  

Sulfate 
(mg/L) EPA (300.0) 8.0 Ion 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, 
analytical column, supressor device, and conductivity 
detector.  

O-Phos 
(mg/L) EPA (300.0) 0.05 Ion 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, 
analytical column, supressor device, and conductivity 
detector.  

Total P 
(mg/L) SM (4500-P E.) 0.010 Colorimetric 

Ascorbic Acid Colorimetric method-Ammonium 
molybdate and potassium antimonyl tartrate react in 
acid with orthophosphate to form phosphomolybdic 
acid that is reduced to colored moltybdenum blue by 
ascorbic acid.   

Nitrite (mg/L) EPA (300.0) 0.0 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, 
analytical column, supressor device, and conductivity 
detector. 

Nitrate (mg/L) EPA (300.0) 0.10 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, 
analytical column, supressor device, and conductivity 
detector.  
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Sample Analytical 
Method 

Detection 
Limit 

Method 
Description Description 

Silica (mg/L) 
unfiltered EPA (370.1) 0.10 Colorimetric 

Heteropoly acids are produced by the addition of 
Ammonium molybdate (at pH 1.3) to sample containing 
silica and phosphates. Molybdosilicic acid is preserved 
and molybdphosphoric destroyed with the addtion of 
oxalic acid. Intensity of yellow color is indicative of 
concentration of molybdate-reactive silica. 

Ca (mg/L) EPA (300.7) 3.0 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, 
analytical column, supressor device, and conductivity 
detector. 

Mg (mg/L) EPA (300.7) 1.0 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, 
analytical column, supressor device, and conductivity 
detector. 

K (mg/L) EPA (300.7) 0.05 IC 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, 
analytical column, supressor device, and conductivity 
detector. 

Na (mg/L) EPA (300.7) 1.0 C 

Method 300.0 is an ion chromatograph method using a 
Dionex DX-600 system with a conductivity detector. 
Sample is added to an ion chromatograph. Anions are 
separated and measured using a gaurd column, 
analytical column, supressor device, and conductivity 
detector. 

Total 
Hardness 

(mg) 
SM (2340 B) 12.0 Calculation Total hardness is calculated from the sum of Calcium 

and Magnesium Concentrations (mg CaCO3/L). 

MIB 
(ng/L) SM (6040) 3.0 Mass 

Spectrometric 

Organics are extracted from water by closed-loop 
stripping. Extracted organics are injected into a gas 
chromatograph/mass spectrometer for identification 
based on retention time and spectrum comparison. 
Single-ion current integration is used to quantify MIB. 

Geosmin 
(ng/L) SM (6040) 3.0 Mass 

Spectrometric 

Organics are extracted from water by closed-loop 
stripping. Extracted organics are injected into a gas 
chromatograph/mass spectrometer for identification 
based on retention time and spectrum comparison. 
Single-ion current integration is used to quantify 
Geosmin. 

NH4-N 
(mg/L) SM (4110) 0.02 IC 

Sample injected into carbonate-bicarbonate and 
passed through series of ion exchangers. Anions are 
separated by their relative affinities for for a strongly 
basic anion exchanger. Anions passed through s fiber 
supressor coated with a strong acid solution to conv ert 
anions to highly conductive acid form, conductivity is 
measured. Concentration is determined from 
measurement of peak height or area.      

TKN (mg/L) EPA (351.4) 0.30 Contracted 
Out 

Determined by digestion, followed by ammonia 
determination by ion selective Electrode by a contract 
lab. 



 

CURRICULUM VITAE 

Kaylan Lee Randolph 
 
   
Education   
Indiana University-Purdue University Indianapolis, Geographic Information Science 
Masters of Science, March 2007 
 
Indiana University, Bloomington, Environmental Management 
Bachelors of Science, May 2004 
   
 
Funding and Awards 

 Masters Thesis Funded by a grant from the Indiana Department of Natural 
Resources Lake and River Enhancement Program ($20,062) and funds from the 
Central Indiana Water Resources Partnership ($198,612)  

 Indiana Water Resources Association Outstanding Graduate Student Researcher 
Award (2006) 

   
Research Collaborators 

 Veolia Water Indianapolis, LLC 
 Indiana Department of Natural Resources, Lake and River Enhancement Program 
 IUPUI Department of Geography 
 University of Nebraska, CALMIT (AISA Sensor Fly-over) 

 
Professional Experience   

 Center for Earth and Environmental Science (CEES), IUPUI 
March 2006 - Present Visiting Research Associate 

Aug. – Feb. 2006 CIWRP Remote Sensing Research Assistant 
May - Oct. 2005 CIWRP Water Quality Summer Research Assistant  

  
 Family Practice Center and Department of Geography, IUPUI 

May 2005 - Present Research Assistant  
  

Publications   
Journal Articles   
Randolph, K.L., J. Wilson, L. Tedesco, L. Li, and A. Wilans.  In preparation. 

Hyperspectral remote sensing of cyanobacteria in case II waters using optically 
active pigments, chlorophyll a and phycocyanin. 

   
Research Reports   
Li, L., D.L. Pascual, L.P. Tedesco, K.L. Randolph, R.E. Sengpiel, and B.E. Hall. 2006. 

Developing a survey tool for the rapid assessment of blue-green algae in Central 
Indiana’s reservoirs.  2005 Lake and River Enhancement Report, Indiana 
Department of Natural Resources.  44 pp. 



 

Contributor to 
Tedesco, L.P., D.L. Pascual, L.K. Shrake, L.R. Casey, B.E. Hall, P.G.F. Vidon, F.V. 

Hernly, R.C. Barr, J. Ulmer, and D. Pershing.  2005.  Eagle Creek Watershed 
Management Plan:  An Integrated Approach to Improved Water Quality.  Eagle 
Creek Watershed Alliance, CEES Publication 2005-07, IUPUI, Indianapolis, 182 
pp. 

   
Conference Presentations 
Randolph, K.L., L. Li, L.P. Tedesco, and J. Wilson. 2006. Remote Sensing of 

phytoplankton in case II waters using optically active pigments, chlorophyll a and 
phycocyanin. North American Lake Management Society 2006 International 
Symposium, November 8 – 10. Indianapolis, Indiana. 

 
Randolph, K.L., L. Li, L.P Tedesco, J. Wilson, and D.L. Pascual. 2006. Remote Sensing 

of Phytoplankton Using Optically Active Pigments, Chlorophyll a and 
Phycocyanin. Indiana Water Resources Association Spring Symposium, June 21 
– 23, 2005.  Purdue University, Lafayette, Indiana. 

   
Seminars and Meetings   
Randolph, K.L., J. Wilson, L. Li, L.P. Tedesco. 2006.  Remote sensing of cyanobacteria 

in case 2 waters using optically active pigments, chlorophyll a and phycocyanin. 
Central Indiana Water Resources Partnership December 2006 Meeting, 
Indianapolis, Indiana.  

 
Randolph, K.L., R.E. Sengpiel, D.L. Pascual, L. Li, L.P. Tedesco, J. Wilson. 2006.  A 

rapid assessment tool for mapping blue-green algae. Veolia Water Indianapolis, 
LLC, Technical Advisory Group October 2006 Meeting, Indianapolis, Indiana.  

 
Tedesco, L.P., L. Li, D.L. Pascual, K.L. Randolph, R.E. Sengpiel, B.E. Hall. 2006.  

Indianapolis Water Resources Research. Veolia Water Australia July Meeting, 
Adelaide, Australia. 

 
Tedesco, L., L. Li, D.L. Pascual, K.L. Randolph, R.E. Sengpiel, B.E. Hall. 2006. Eagle 

Creek Reservoir Conditions Associated with June 2006 Pseudanabaena Bloom. 
Veolia Water Indianapolis, LLC, Technical Advisory Group June 2006 Meeting, 
Indianapolis, Indiana. 

 
Randolph, K.L., L. Li, L.P. Tedesco, and J. Wilson. 2005.  Remote sensing of 

phytoplankton pigments, chlorophyll a and phycocyanin, in small, inland 
reservoirs. Joint Remote Sensing Seminar. Purdue University, Lafayette, Indiana.  

 


