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ABSTRACT 

Background: Toll and Toll-related proteins play an important role in antibacterial innate 

immunity and are widespread in insects, plants, and mammals. The completion of new 

genomes such as Anopheles gambiae has provided an avenue for a deeper understanding 

of Toll evolution. While most evolutionary analyses are performed on protein sequences, 

here, we present a unique phylogenetic analysis of Toll genes from the perspective of 

upstream regulatory regions so as to study the importance of evolutionary information 

inherited in such sequences. 

Results: In a comparative study, phylogeny on the protein products of Toll like genes 

showed consistency with earlier literature except for the single point of divergence 

between insects and mammals. On the other hand, the phylogeny based on upstream 

regulatory sequences (-3000 to +10) showed a broader distinction between the plants and 

the rest, though the tree was not well resolved probably due to poor alignment of these 

sequences. The phylogeny based on TFBs necessitated the development of a supervised 

statistical approach to determine their “evolutionary informativeness”. Employing the 

frequency of evolutionarily informative TFBs, a phylogeny was derived using pair-wise 

distances. It suggested a closer relationship between Anopheles and plants than to 

Drosophila and a significant homology among mammalian TLRs. 

Conclusions: A unique approach of using TFBs in studying evolution of Toll genes has 

been developed. Broadly, this approach showed results similar to the protein phylogeny. 

The inclusion of the evolutionary information from TFBs may be relevant to such 

analyses due to the selective pressure of conservation in upstream sequences. 
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I. INTRODUCTION 

A. Introduction to the subject 

We live in a potentially hostile world filled with an array of infectious agents of 

diverse shape, size, composition and subversive character which would use us as rich 

sanctuaries for propagating their ‘selfish genes’ had we not also developed a series of 

defense mechanisms at least their equal in effectiveness and ingenuity. The immune 

system comprises of these defense mechanisms, which can establish a state of immunity 

against infection (Latin immunitas, freedom from). The immune system has traditionally 

been divided into innate and adaptive components, each with a different function and 

role. Overwhelmingly, however, studies on immunity during the last few decades have 

concentrated on the adaptive response and its hallmarks, that is, the generation of a large 

repertoire of antigen-recognition receptors and immunological memory. Only quite 

recently has innate immunity gained renewed interest, particularly as it became apparent 

that it is an evolutionary, ancient defense mechanism1, 2.  

The innate immune system is an ancient mechanism of host defense found in 

essentially every multicellular organism from plants to humans.  In invertebrates, it is the 

only mechanism of defense.  Vertebrates also developed adaptive immune response; 

however, the innate immune system is essential for instructing the cells of the adaptive 

system (T and B cells) by presenting antigen in the context of an appropriate 

costimulatory molecule.   The innate immune system developed to not only discriminate 

self from non-self but more importantly, it can discriminate infectious non-self from 

innocuous non-self. 
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Innate Immunity – an evolutionary perspective: Innate immunity is the first-line 

host defense of multicellular organisms that operates to limit infection upon exposure to 

microorganisms. Research from the last decade has shown that there is a strong 

evolutionary relationship in the regulation of innate immunity among plants, insects, and 

mammals. The mechanistic elucidation and insight into innate immunity required very 

different methods and different perspectives, drawn from two separate domains of 

biology that involve insects and mammals. Innate immunity preceded adaptive immunity 

in evolution as it has been supported by the presence of conserved signaling pathway 

components in organisms lacking the typical adaptive immunity of vertebrates3. The last 

common ancestor of insects and mammals is thought to have lived more than half a 

billion years ago4. During that time, the physiology of insects and mammals has diverged 

considerably: innate immune defense based on antimicrobial peptides predominates in 

insects, whereas cytokine-mediated inflammation seems to hold sway in mammals.  

Toll genes and Toll-related proteins in Innate Immunity: Toll genes and Toll-

related proteins play an important role in antibacterial innate immunity and are 

widespread in insects, plants, and mammals5. Toll is a singlepass transmembrane receptor 

with an ectodomain marked by leucine-rich repeat motifs. Toll was originally identified 

as a Drosophila gene required for ontogenesis and anti-microbial resistance6. Genetic 

analysis revealed that this gene controls dorsoventral polarization in the fruit fly as well 

as immunity against fungal infection. The recognition of sequence similarity between the 

cytoplasmic portion of Toll and that of signalling interleukin-1 (IL-1) receptor (IL-1R) 

components (the Toll/IL-1R module, or TIR module) of mammals represented the 

merging point of Drosophila work with more conventional innate-immunity research7.  
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The family of Toll-like receptors recognizes pathogen-associated molecular patterns 

(PAMPs) as nonself. PAMP recognition by TLRs then leads to cytokine production and 

expression of costimulatory molecules such as CD40, which can shape up protective 

innate and adaptive immunity8.  

Some of the first phylogenetic analyses suggested that the insect Toll family of 

proteins and their mammalian counterparts evolved independently and that they shared 

one common ancestor9. This result is consistent with the conclusion of discontinuous 

evolution of innate immunity between invertebrates and vertebrates, obtained through 

phylogenetic analyses of various proteins10.  The protein motif shared by Toll and IL-1R, 

or TIR, is evident in plant proteins as well as in animal proteins11, so this motif might be 

traceable to the origins of eukaryotic life, that is, between one and two billion years ago.  

However, according to a recent phylogenetic analysis of Toll interleukin-1-receptor 

domain as reported4, Toll-9 receptor of Drosophila resembles the mammalian TLRs more 

closely than do any of other Drosophila Tolls. This phylogenetic analysis has been done 

by including plant disease resistant genes, mammalian TLR genes, IL-1/IL-

18/ST2/SIGIRR/MYD88 genes, and Drosophila Toll genes. This approach makes way 

for a comprehensive phylogenetic analysis by including the Toll genes of Anopheles in 

addition to the genes above mentioned and that is likely to answer the question of Toll 

evolution in more comprehensible manner. 

Drosophila and Mammals: Drosophila genome sequencing project reveals 

important similarities between the functioning of mammalian and invertebrate immune 

systems12. These similarities made Drosophila well suited to the study of innate 

immunity. The important functional similarity is between the transmembrane receptors. 
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These receptors, Toll in Drosophila and the IL-1 receptor in mammals, share an 

intracytoplasmic homology domain (referred to as Toll/IL-1 receptor or ‘TIR’ domain) 

that associates with adaptor molecules, leading to the activation of the homologous 

protein kinases Pelle and IRAK (IL-1 receptor-associated kinase), respectively5, 13. 

Drosophila relies for its host defense on both cellular and humoral reactions. The 

hallmark of the humoral response is the challenge-induced synthesis and secretion by the 

fat body (a functional equivalent of the vertebrate liver) of a battery of small cationic 

polypeptides. These are induced in response to immune challenge and have potent 

antimicrobial activities directed against either fungal pathogens (drosomycin, 

metchnikowin) or bacteria (diptericin, drosocin, cecropin, attacin, defensin)14, 15. The 

genes encoding these peptides have in their upstream regions nucleotide sequence motifs 

similar to mammalian NF-κB-binding sites. Establishment of transgenic fly lines with 

various reporter constructs demonstrated that these sequence motifs confer the immune-

inducibility to the corresponding genes16, 17. In the early 1990s, it was recognized that 

there were striking similarities between the control of dorsoventral patterning by the Rel 

transcription factor Dorsal in Drosophila embryos and the activation of the Rel protein 

NF-κB by the cytokine interleukin-1 (IL-1) in mammalian cells and this was interpreted 

as a point of common ancestry for Drosophila and mammals5.  

Anopheles and Drosophila: Anopheles mosquito is capable of mounting a robust 

innate immune response against Plasmodium infection. It was first shown that a set of 

diverse immune genes is transcriptionally activated both systemically and locally in 

epithelial tissues in the course of Plasmodium infection18. Recent completion of the 

Anopheles gambiae genome sequencing project resulted in an interesting revelation that 
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242 genes from 18 gene families implicated in innate immunity with marked 

diversification relative to Drosophila melanogaster19.  Out of the 18 families, the 

signaling receptor family showed the modest diversification. Anopheles has 11 Toll 

genes, of which four (Toll 6, 7, 8, and 9) are unambiguous orthologs of Drosophila 

melanogaster20. This advocates the necessity of looking for the position of Anopheles in 

the evolution of innate immunity. 

Plants: Studies of receptors and signal-transduction components that play a role in 

plant disease resistance have revealed remarkable similarities with innate immunity 

pathways in insects and mammals. Many responses involved in plant disease resistance 

are dependent upon interaction of pathogenic effector molecules with specific plant 

resistance (R) proteins21. Although the signalling pathways initiated by these interactions 

are just beginning to be unraveled, the past few years have seen dramatic advances in the 

understanding of the molecular principles of plant disease resistance. It has become clear 

that some of the molecular mechanisms involved in innate immunity in mammalian and 

insect systems are remarkably similar to the molecular mechanisms underlying plant 

disease resistance responses3. 

 

Phylogenetic Analysis of Protein Sequences: Ever since the pioneering work of 

Zuckerkandl and Pauling22, protein sequences and structures have been used extensively 

to infer organismal phylogeny and to predict biochemical functions. As these models 

cannot be easily reconstructed using conventional phylogenetic methods alone, diverse 

methodologies were applied to glean the requisite information. As a result, the most 

conserved sets of proteins and constituent domains, traceable to the Last Universal 
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Common Ancestor (LUCA) of all life forms was identified. Through a comparison of the 

homologous domains, the pre-LUCA stages of protein evolution were reconstructed. One 

of the conclusions that became apparent was that even before the extant translation 

apparatus was in place, complex protein domains, resembling extant forms, were already 

being synthesized. 

 

Phylogenetic Analysis with Regulatory Regions: Complex eukaryotic genomes are 

composed of large amounts of DNA that do not code for protein. The presence of non-

protein-coding DNA in introns and intergenic regions represents one of the major 

differences in genome structure between prokaryotes and eukaryotes, and is likely 

responsible in part for the major transition in complexity between these groups of 

organisms. Little is known about the structure or function of non-protein-coding DNA, 

although it is thought that some fraction contributes to the regulation of gene expression. 

Gene regulation has been speculated to play a major role in the evolution of animal and 

plant morphology, and thus finding the keys to understand non-protein-coding DNA 

evolution may be an important step in understanding the morphological diversity of life 

on earth. 

 

Phylogenetic analyses, in general, employ as traditional input sequences either entire 

gene sequences (including both coding and non-coding regions) or protein sequences. 

The importance of utilizing regulatory regions in phylogenetic analysis is not well known 

and hence considerably less well studied. However, the alignments of regulatory regions 

of human and rodent genes often reveal blocks of highly conserved sequences23. In a 
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recently reported study by Thomas et al.24, 302 intergenic ‘multi-species conserved 

sequences’ (MCS) have been found in the sequences upstream of the gene encoding 

cystic fibrosis transmembrane conductance regulator and nine other genes. These MCS 

overlap with 63% of functionally validated regulatory elements and some of these 

regulatory elements may be specific to the primate lineage. More recently, at a wider 

evolutionary scale, Dermitzakis et al.25 have observed the conservation of non-genic 

sequences among 14 mammalian species from primates to monotremes to marsupials. 

Observations of such strong sequence conservation suggest conserved function, thereby 

generating testable hypotheses that can be verified. 

 

B. Importance of the Subject 

Innate defense is so fundamental that vertebrates, invertebrates and plants have many 

similarities. With the given understanding of Toll genes and Toll-related proteins in 

innate immunity, we further proceed to elucidate the importance of studying these 

receptors across mammals, Drosophila, Anopheles, and plants from evolutionary point of 

view, which may unearth important patterns that could explain the basis and divergence 

of these organisms with respect to innate immunity. For a while, researchers have been 

exploring these genomes from the phylogenetic perspective and the efforts have been 

increased manifold with the completion of new genome projects. However, the explored 

similarities between Drosophila and Anopheles Toll genes result in an opportunity for the 

above-mentioned study. Undoubtedly, the intellectual input from phylogenetic studies on 

innate immunity will be invaluable in advancing the field, to the point that intervention 

through the vector immune system can be considered as part of an integrated approach to 
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the control of diseases like malaria (casual organism Anopheles) and other parasitic 

diseases. 

The usage of conserved non-coding sequences including regulatory elements for 

comparative genomic studies is gaining importance now, particularly for exploring the 

mechanism of transcriptional gene regulation across multiple organisms. But the major 

bottle neck for these studies is the small size of these conserved regulatory elements (~14 

bp). So far, efforts have been made to look at non-coding sequences including regulatory 

elements, mostly through phylogenetic foot printing. However, these efforts aimed at 

studying closely related species such as either insects or mammals alone, as there is 

considerable alignment given the evolutionary distance among those species is rather 

less. But for looking at distantly related species such as plants, insects, mammals 

together, irrespective of presence of conserved regulatory elements, these non-coding 

regulatory regions result in poor alignments and making it difficult to arrive at accurate 

phylogenetic analyses of these non-coding regulatory regions across multiple organisms. 

Hence it calls for a computational approach to extract the evolutionary information that is 

inherent in conserved non-coding regulatory regions. It holds a great potential to look at 

conserved regulatory elements with an evolutionary perspective in case of none but Toll 

genes and Toll-related proteins as they are wide spread and conserved across mammals, 

insects and functionally much similar to plant disease resistance genes.  

Protein based phylogeny of Toll genes and Toll-related proteins across mammals, 

insects and plants would give greater insight into functional conservation as did earlier 

phylogenetic analyses, which did not have an opportunity to include Anopheles Toll 
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genes. Such a comprehensive phylogenetic analysis would invariably test the hypothesis 

of single point of divergence between mammals and insects with respect to evolution of 

Toll genes and Toll-related proteins. 

In the event of similarities between protein based phylogeny and phylogeny based 

on upstream regulatory regions using a novel computational approach, one can find the 

validity of conservation of non-coding regulatory regions in studying the evolution and 

that may well explain discrepancies between phylogenetic analyses with both nucleotide 

sequences and protein sequences. 

C. Knowledge Gap 

Large amount of research has been performed regarding the evolution of Toll 

genes and Toll-related proteins with respect to innate immunity. It was mostly involving 

mammals, insects (Drosophila) and plants. However, the recent completion of Anopheles 

genome and its exploration by researchers revealed that there are four unambiguous 

orthologs of Drosophila Toll genes in Anopheles Toll genes. Given the importance of 

their presence, it calls for a comprehensive phylogenetic study of Toll genes and Toll-

related proteins by including Anopheles Toll genes, which forms one of the major goals 

of this research project. It would answer some important questions regarding the 

evolutionary position of Anopheles Toll genes that could be helpful in developing an 

integrated approach to the control of diseases like malaria (casual organism Anopheles). 

Though there is a general agreement on the importance of conserved non-coding 

regions with respect to evolution, not much has been done to exploit that inherent 
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evolutionarily important information. Conventional phylogenetic approaches were not 

successful given the smaller size of (<14 bp) of the conserved regulatory elements among 

these non-coding regions especially upstream regulatory regions. Towards this end the 

main goal of this research project is to develop a computational approach to utilize 

evolutionarily important information in upstream regulatory regions of highly conserved 

Toll genes and Toll-related proteins. This approach would have higher probability to 

study the evolution of transcriptional regulatory mechanism of Toll genes and Toll-

related proteins with a new insight. In addition, it would lead to the development of 

advanced computational approaches for phylogenetics that assumes a lot of potential 

when more and more researchers are convinced with the fact that in addition to protein 

sequences there is important evolutionary information in the non-coding regions, which is 

worth exploring.   
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II. BACK GROUND 

 

A.  Related research in evolutionary significance of non-coding DNA 

  In a recently published study, Dermitzakis et al.25 have quantified levels and 

patterns of conservation of 191 conserved non-geneic sequences (CNGs) of human 

chromosome 21 in 14 mammalian species. These CNGs were significantly more 

conserved than protein coding genes and non-coding RNAS (ncRNAs) within the 

mammalian class from primates to monotremes to marsupials. The pattern of 

substitutions in CNGs differed from that seen in protein-coding and ncRNA genes and 

resembled that of protein-binding regions. About 0.3% to 1% of the human genome 

corresponds to a previously unknown class of extremely constrained CNGs shared among 

mammals. 

 

 Thomas et al.23 reported substantial numbers of conserved non-coding segments 

beyond those previously identified experimentally, most of which were not detectable by 

pair-wise sequence comparisons alone. This study involved generation and analysis of 

over 12 megabases (Mb) of sequence from 12 species, all derived from the genomic 

region orthologous to a segment of about 1.8Mb on human chromosome 7 containing ten 

genes, including the gene mutated in cystic fibrosis. It resulted in an interesting revelation 

that 302 intergenic ‘multi-species conserved sequences’ (MCS) have been found in the 

sequences upstream of the gene encoding cystic fibrosis transmembrane conductance 

regulator and nine other genes. These MCS overlap with 63% of functionally validated 
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regulatory elements and some of these regulatory elements may be specific to the primate 

lineage. 

Related research in evolution of Toll genes and Toll-related proteins 

Looking at the some of the earlier research in this direction which offered 

valuable insight, Luo and Zheng9 studied the phylogeny of Toll family of proteins from 

mammals, insects and plants with amino acid sequences as input.  

 

FIGURE 1: Phylogenetic tree of Toll family of proteins. (Luo and Zheng, 2000) 
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This study revealed that valuable patterns explained in Fig. 1; the insects and 

mammalian Toll-related proteins are clustered into separate groups and rest of the Toll-

related proteins of plants clustered distantly from mammals compared to insects, which 

suggest that there may be a single point of divergence between mammals and insects with 

respect to Toll-related proteins. However the placement of MyD88 of rat as a separate 

group is not clearly explained.  The insect Toll- related proteins are further subdivided 

into four subgroups: Toll, Tehao, Tollo/Trex, and 18W. Dm Toll and Dm 18W have been 

implicated in the innate immunity of Drosophila; the functions of the other two groups 

are not yet known.  

Another genomic sequence analysis did not identify a Toll/IL-1R homologue in 

Caenorhabditis elegans26. Proteins with leucine-rich repeats (leucine-rich repeats are 

characteristic of Toll-like receptors) are present in C. elegans, however. This raises the 

question of the origin and evolution of innate immunity in higher organisms. Was a novel 

signal domain utilized after the appearance of segmented organisms? Or, were there 

several independent evolution events, with the conservation of Toll/IL-1R-like proteins 

resulting from convergent evolution? This question can be addressed looking for the Toll 

family of proteins outside dipteran insects and Insecta and further down the evolutionary 

scale10.  

 

A similar but recent study reported by Kimbrell and Beutler4 looked at the 

evolution of the Toll interleukin-1-receptor domain revealed interesting patterns as 

explained in Fig.2.  
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FIGURE 2. Evolution of the Toll interleukin-1-receptor domain (Kimbrell and 

Beutler, 2001) 
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Two great divisions in the evolution of the Toll interleukin-1-receptor (TIR) 

domain are immediately evident in the phylogenetic tree, as Metazoa (bottom) and 

Viridiplantae (top) show only weak TIR homology at the protein level. TIR domains are 

found in most plant and animal taxa. The basis of this study was that the protein motif 

shared by Toll and IL-1R, or TIR, is evident in plant proteins as well as in animal 

proteins11, so this motif might be traceable to the origins of eukaryotic life, that is, 

between one and two billion years ago.  

 

As stated earlier, the Anopheles gambiae genome sequencing project resulted in a 

significant identification of 242 genes from 18 gene families implicated in innate 

immunity and their marked diversification relative to Drosophila melanogaster19.  Out of 

the reported 18 families, the signaling receptor family showed the modest diversification. 

Anopheles has 11 Toll genes, of which four (Toll 6, 7, 8, and 9) are unambiguous 

orthologs of Drosophila melanogaster20.  

 

B. Current understanding of the subject  

The phylogenetic analysis reported by Luo and Zheng9 suggested that the insect 

Toll family of proteins and their mammalian counterparts evolved independently and that 

they shared one common ancestor. This result is consistent with the conclusion of 

discontinuous evolution of innate immunity between invertebrates and vertebrates, 

obtained through phylogenetic analyses of various proteins10. 

This study by Kimbrell and Beutler4 offers an explanation of placement of rat 

MyD88 as separate group as reported by Luo and Zheng9; MYD88 shares a proximal 
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common ancestor with the IL-1R/IL-18R/ST2 family of TIR-bearing receptors, which 

were not involved in the earlier study. Another interesting observation is that Toll-9 

receptor of Drosophila resembles the mammalian TLRs more closely than do any of other 

Drosophila Tolls.  

The presence of four unambiguous orthologs of Drosophila Toll genes in 

Anopheles Toll genes further supports the evolutionary importance of Anopheles with 

respect to evolution of innate immunity. This resulted in an opportunity for a 

comprehensive phylogenetic study with similar approaches of earlier researchers with 

addition of Anopheles Toll genes to those of mammals, Drosophila and plants.  

In addition there is significant accumulation of evidence for the importance of 

conserved non-coding regulatory sequences in studying evolution 24, 25. Being widely 

dispersed across plants, insects and mammals, Toll genes offer an excellent opportunity 

to explore the evolution of transcriptional regulatory mechanisms by using non-coding 

regulatory sequences. 

 

C. Research Question: 

This research project is mainly intended to answer the following questions. 

1. Does the addition of Anopheles gambiae genes to the phylogenetic analysis 

prove/disprove the earlier hypothesis4, 9 of divergence between insect and mammalian 

Toll and Toll-related proteins? 

2. Although Toll and Toll-related proteins are well conserved across diverse species, is 

there any conservation of transcriptional regulatory sequences upstream of the coding 

sequences? In highly conserved genes, regions of homology have been shown to extend 
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into upstream transcriptional regulatory sequences indicating selective pressure against 

random changes in these regions of functional conservation23-25. 

 

D. Intended Research Project: 

To evaluate the significance of evolution of Toll genes in general as well as from 

the perspective of upstream regulatory regions (-3000 to +10), phylogenetic analyses 

would be conducted in the following two approaches: 

(1) A comprehensive phylogenetic analysis with protein sequences and upstream 

regulatory regions (-3000 to +10) of insect (Anopheles and Drosophila) Toll genes, 

mammalian Toll – like receptors (TLRs), mammalian Toll interleukin-1-receptor (TIR) 

domain, and plant disease resistance genes. 

(2) An approach based on the presence of “evolutionarily informative” transcription 

factor binding sites (TFBs) in upstream regions (-3000 to +10) of the genes involved in 

the first approach. The “evolutionary informativeness” of TFBs would be determined by 

a supervised statistical approach. 

 

The resultant phylogenies would be used for comparative analysis to analyze the 

similarities and dissimilarities between the two approaches and to look for evolutionarily 

interesting patterns as well to answer the proposed research questions. 
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III. METHODS 
 

A. Materials and Instruments: 

The sequence data for upstream regions (-3000 to +10) and proteins of 

mammalian TLR, mammalian TIR domain, Drosophila Toll genes and MyD gene, 

Anopheles Toll genes, and plant disease resistance genes were obtained from 

GENBANK27. Upstream sequences (-3000 to +10) were retrieved based on assigning the 

transcription start site (TSS) as the +1 site. The list of genes is provided in Table 1. 

 
TABLE 1: List of genes involved in the study. 
 

Group Gene Name    TFBs presence in upstream region  
           (-3000 to +10) as predicted by EZ-retrieve                     
                                                                                                                                                (%)   
 
Anopheles Toll genes* Anatoll10        25.78 
   Anatoll11        20.86 
   Anatoll1B        23.82 
   Anatoll5A        18.83 
   Anatoll5B        19.40 
   Anatoll6        21.69 
   Anatoll7        24.18 
   Anatoll8        17.14 
   Anatoll9        20.59 
 
Drosophila Toll genes** DMTOLL1       15.34 
   DMTOLL2       16.74 
   DMTOLL3       18.57 
   DMTOLL4       16.91 
   DMTOLL5       17.40 
   DMTOLL6       24.15 
   DMTOLL7       20.29 
   DMTOLL8       26.04 
   DMTOLL9       21.99 
 
Plant disease   At1g27170 (T7N9.23; similar to N protein from Nicotiana glutinosa)   22.29 
Resistance genes**  At1g27180 (T7N9.24; similar to flax rust resistance protein)    25.28 
   At1g65390 (T8F5.18; Disease resistance)     20.83 
   At2g17050 (AC002354 putative disease resistance protein)   20.83 
   At3g44410 (T22K7.90 RPP1)      18.33 

At4g04110 (T24H24.18; domain signature TIR exists,  
suggestive of a disease resistance protein)    20.13 

At4g11170 (T22B4.150; domain signature TIR-NBS-LRR,  
suggestive of a disease resistance protein)    20.29 

AT4g16860 (AL161545) (strong similarity to  
Downy Mildew Resistance Protein RPP5)    25.31 

   At4g19500 (F24J7.60; downy mildew resistance protein RPP5)  19.56 
   At4g19520 (F24J7.80; downy mildew resistance protein RPP5)   20.20 
   At4g19530 (F24J7.90; TMV resistance protein N, Nicotiana)   20.16 
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Group Gene Name    TFBs presence in upstream region  
           (-3000 to +10) as predicted by EZ-retrieve  
                                                                                                                                                (%)   

 
At4g23510 (F16G20.210)       22.92 
At4g36140 (F23E13.40; domain signature TIR-NBS-LRR 

disease resistance protein)     21.10 
   ATAC002342 (T19K24.2 Disease resistance)    17.90 
   ATAC005167 (F12A24.5 disease resistance)    22.12 
   Z97342 (dl4460c disease resistance RPP5 like protein)   24.91 

Z97342 (dl4470c similarity to Downy mildew resistance protein RPP5)  21.66 
Z97342 (dl4475c strong similarity to Downy mildew resistance protein RPP5)  25.78 

   Z97342 (dl4480c disease resistance RPP5 like protein)   23.05 
 
Mammalian TLR Domain** HUMTLR1       22.49 
   HUMTLR2       23.72 
   HUMTLR3       17.54 
   HUMTLR4       20.00 
   HUMTLR5       25.35 
   HUMTLR6       24.58 
   HUMTLR7       24.48 
   HUMTLR8       18.81 
   HUMTLR9       23.02 
   HUMTLR10       17.24 
   MUSTLR2       19.63 
   MUSTLR4       23.78 
   MUSTLR5       25.78 
   MUSTLR6       20.43 
   MUSTLR7       22.03 
   MUSTLR8       21.79 
   MUSTLR9       21.89 
 
Mammalian TIR domain** HUMIL1R1       23.89 
   HUMIL1R2       23.02 
   HUMIL1RAP       21.03 
   HUMIL18RAP       25.41  
   HUMMYD88       22.16 
   MUSIL1RAP       17.80 
   MUSIL18RAP       20.60 
   RATIL1R1       21.16 
   RATIL1R2       27.77 
   RATIL1RAP       22.86 
    
Drosophila MYD gene** DMMYD88       19.07 
* Christophides et al.19,  **Kimbrell and Beutler4

The percentage of TFB presence in the upstream regulatory regions (-3000 to +10) in included in the table. 

  

The following software and web tools were used at various stages of this study for 

different purposes. 

 ClustalX28 – This software is used for multiple sequence alignment of both 

upstream regulatory regions and protein sequences. 
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 EZ-Retrieve29 – This web based tool is used to predict the presence of TFBs in 

upstream regulatory regions of genes involved in the study. This web tool is available at 

the following web address:  http://www.cag.icph.org/bioinformatics.html

 PAUP 4.030 – This software is used for phylogenetic analysis of protein 

sequences involved in the study using Neighbor Joining method. 

 RASA31 – This web based tool is used for noise reduction in order to improve the 

phylogenetic signal in the upstream regulatory regions of all the genes involved in the 

study. This web tool is available at the following web address: 

http://bioinformatics.upmc.edu/RASA.html

 MEGA 2.132 – This software is used for phylogenetic analysis of upstream 

regulatory regions of all genes involved in the study under Neighbor Joining method as 

well as for phylogenetic analysis using evolutionarily informative TFBs based on pair-

wise distance matrix using Neighbor Joining method. 

 MATLAB 6.5.1 Statistics Tool Box – This software is used to calculate the pair-

wise distance matrix from the frequencies of highly evolutionary TFBs using Euclidean 

distance. 

 Neighbor Joining Method: It is the most common phylogenetic method 

developed by Saitou and Nei33 to construct the phylogenetic trees from evolutionary 

distance data. In this study this method is applied for all the phylogenetic analyses. The 

principle of this method is to find pairs of operational taxonomic units (OTUs [= 

neighbors]) that minimize the total branch length at each stage of clustering of OTUs 

starting with a star-like tree. The branch lengths as well as the topology of a parsimonious 

tree can quickly be obtained by using this method. 
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B. Samples and Subjects: 

 The data involved in this study are upstream regulatory sequences (-3000 to +10) 

and protein sequences of 65 genes (mammalian TLR (16 genes), mammalian TIR domain 

(11 genes), Drosophila Toll genes (9 genes) and MyD gene, Anopheles Toll genes (9 

genes), and plant disease resistance genes (19 genes)) that were obtained from 

GENBANK27. The frequencies of 126 TFBs across the genes were obtained by using EZ-

Retrieve29. 

 

C. Procedures: 

 The complete methodology followed in this study was presented in the following 

Figure 3. 

 

FIGURE 3: Methodology for comparative phylogenetic analysis. 
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 Protein Phylogeny: In this conventional approach, protein sequences of all genes 

were obtained from GENBANK27 and multiple sequence alignment was performed with 

ClustalX27. Then, the phylogenetic analysis was done with PAUP 4.030 using the 

Neighbor Joining method with p-distance; 1000 bootstrap replicates were done and a 

bootstrap consensus tree was obtained. 

Phylogeny based on upstream regulatory regions (-3000 to +10): Upstream 

regions (-3000 to +10) of all genes were obtained from GENBANK27 and multiple 

sequence alignment was performed with ClustalX28. However, there was not much of a 

significant alignment observed. The aligned data was subjected to noise reduction 

employing the RASA31 (Relative Apparent Synapomorphy Analysis) algorithm to reduce 

the noisy data and improve the phylogenetic signal. The resultant data was subjected to 

phylogenetic analysis with MEGA 2.132 using Neighbor Joining Method with p-distance; 

1000 bootstrap replicates were done and a bootstrap consensus tree was obtained. 

Identification of TFBs among genes: Upstream regulatory regions (-3000 to 

+10) of all genes were arranged in a FASTA format and searched for TFBs with EZ-

Retrieve29 using a threshold of 90%.  The resultant frequencies of each TFB were 

tabulated. 

Selection of evolutionary informative TFBs: We followed a supervised 

statistical approach to calculate the “evolutionary informativeness” of TFBs. All genes 

involved in the study were divided into four groups as follows: (1) insect Toll genes 

(Anopheles and Drosophila), (2) mammalian TLR genes, (3) mammalian TIR Domain, 

and (4) plant disease resistance genes.  From EZ-Retrieve29, frequencies of TFBs were 
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obtained and tabulated per each gene in these groups.  These frequencies of TFBs were 

normalized by using the maximum frequency value for each TFB across all genes.  

 
Selection of evolutionarily informative TFBs was performed by a supervised statistical 

approach34. For these normalized frequencies of TFBs, Between Sum of Squares (BSS) 

and Within Sum of Squares (WSS) were calculated across the four groups based on 

formulas given below. 
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overall average normalized frequency. In particular,  represent the number 

of TFBs in the insect toll genes (Anopheles and Drosophila), mammalian TLR genes, 

mammalian TIR genes, and plant disease resistance genes respectively. The selection of 

evolutionary informative of TFBs was based on the BSS/WSS ratio of TFBs among the 

four groups. For this study, we used the TFBs with a BSS/WSS ratio above 0.2 as highly 

evolutionarily informative TFBs with respect to Toll-like genes.  

),,,( 4321 nnnn

  

TFB based Phylogeny: Twelve highly evolutionarily informative TFBs were 

chosen and all genes were represented in vector form based on the normalized 

frequencies of these TFBs. For these vectors, pair-wise distances were calculated 

employing Euclidean distance (as distance between vectors) using MATLAB 6.5.1 

Statistics Tool Box. 
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Euclidean distance: d(x, y) = ⏐x - y⏐= [(x1 - y1)2 + (x2 - y2)2 + …….. + (xn - yn)2]1/2 

Pair-wise distances were calculated by using “pdist function (Y = pdist (X, 

'Euclid')”, where pair-wise distance matrix Y was computed for vectors in data matrix X 

by employing Euclidean distance. Using the resultant pair-wise distance matrix, 

phylogenetic analysis was performed with MEGA 2.132 using the Neighbor Joining 

Method. 

 

D. Statistical Analysis: 

 

FIGURE 4: Non-Parametric Bootstrap Analysis 

(Source:http://artedi.ebc.uu.se/course/bioinfo/Phylogeny/Phylogeny-

Credibility/Phylogeny-Credibility.html) 
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 Bootstrap analysis was done by PAUP 4.030 as well as MEGA 2.132 as a 

statistical procedure during the construction of phylogeny in this study. This bootstrap 

analysis was done when the phylogenetic tree was constructed from sequences of both 

upstream regulatory regions and proteins. In case of the TFB based phylogeny, bootstrap 

analysis could not be done as the input data for constructing phylogenetic tree was 

distance matrix rather than sequences. The bootstrap procedure (Fig. 4) starts by creating 

a new data set by randomly drawing (with replacement) the same number of characters as 

in the original data set. Thus, some of the original characters (sites) may be represented 

more than once while others may be missing completely from then new data set. This 

new data set is than analyzed in the same way as the original data; we get a tree. The 

procedure is repeated a number of times (100-1000) and each pseudo-replicate produce 

one (or several) trees as result. At the end, one has to evaluate all these trees in some 

way, usually by a majority-rule consensus tree. 

 

E. Expected Results: 

 This study is partially discovery driven and partially hypothesis driven; hence the 

results of this study could either confirm results from earlier relevant research or may 

deviate. However, there would be some findings that are of our prime interest. If the 

phylogenetic analysis with protein sequences result in clustering of Anopheles and 

Drosophila Toll genes and if this cluster joined to the cluster of mammalian counter parts, 

while being distant from all the plant disease resistance genes; that would lend the 

support for single point of divergence between insects and mammals with respect to Toll 

genes and Toll like proteins. In that case addition of Anopheles Toll genes to the 
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phylogenetic analysis would not have resulted in significant difference and it could be 

suggesting that Anopheles Toll genes also have similar function of antibacterial 

immunity and ontogenesis. In case of a contrary result, it would be worth while to 

analyze more into the function of Anopheles Toll genes to see if they have only 

antibacterial immunity as their function. 

 Another important result would be the similarity between phylogeny based on 

proteins and phylogeny based on upstream regulatory regions. However, we could not 

expect well-resolved phylogenetic tree from upstream regulatory regions due to the poor 

alignment owing to the smaller size (<14 bp) of conserved regulatory elements. The 

evolutionarily distant nature of involved species (plants, insects and mammals) could be 

an additive factor for such poor resolution. Under such circumstances, emphasis would be 

laid on the perceived similarities between phylogeny based on proteins and TFB based 

phylogeny. Given the greater difference in the methodology as well as the input data, the 

results may not be highly similar. However, in the event of any similarity, that would not 

only validate evolutionary importance of upstream regulatory regions by suggesting the 

conserved transcriptional elements could be an extension of conserved function, but also 

would lend credibility for the novel supervised statistical approach to determine the 

evolutionary informativeness of TFBs in this study.  

 

F. Alternate Plans 

The Neighbor Joining method that was used in this study for all the phylogenetic 

analyses is mainly for comparative purposes as the TFB based phylogeny can be done 

only using distance method. In the event of poorly resolved phylogeny from protein 
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phylogeny from this method, we planned to do the phylogenetic analysis in Maximum 

Parsimony and Maximum Likelihood method, while latter being computationally 

intensive.  

For the TFB based phylogeny, our approach is mainly based on the frequency of 

TFBs across the involved genes, while the information of their location and the distances 

between different TFBs in a sequence could not be exploited. In the event of complete 

dissimilarity between phylogeny based on proteins and TFB based phylogeny, we would 

be further planning to devise a more evolutionarily pertinent distance rather than 

Euclidean distance, which is commonly being used in many clustering algorithms. Such 

more evolutionarily pertinent distance between vectors should incorporate frequency of 

TFBs along with location and the distances between different TFBs in a sequence. 

However, it is expected that calculating that type of distance would be computationally 

more intensive as incorporating the information of location of TFBs demands very high 

number of combinations of the order of presence of the TFBs in the upstream regulatory 

sequences. 
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IV. RESULTS 

A. Introduction 

In comparison to earlier research in Toll evolution, this project resulted in some 

similar as well as dissimilar, but interesting outcomes that are capable of offering new 

insights; hence these outcomes are worth deep exploration. In this section, the results of 

this exploration are presented. 

Protein Phylogeny:  

 

FIGURE 5: Phylogeny based on protein sequences of Toll-like genes. The 
phylogenetic analysis has been performed by PAUP 4.0 using Neighbor Joining method 
with p-distance. The bootstrap consensus tree was obtained from 1000 bootstrap 
replicates. The numbers on the branch nodes are the bootstrap values. 
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The bootstrap consensus tree (Fig 5) constructed from the protein sequences of 

Toll like genes suggested some important inferences. As expected, the tree resolved into 

four major clusters namely, (1) insect Toll genes (Anopheles and Drosophila), (2) 

mammalian TLR genes, (3) mammalian TIR Domain, and (4) plant disease resistance 

genes. However, all insect Toll genes were not completely clustered together and both 

mammalian and Drosophila MyD88 genes clustered along with plant disease resistance 

genes. Unlike the earlier results of Luo and Zheng9, this phylogeny contradicts the 

hypothesis of single point of divergence between mammals and insects with respect to 

Toll-related proteins. As the tree shows, all insect Toll genes were clustered distantly to 

that of both their mammal and plant counter parts. This difference might have been 

induced due to the addition of Anopheles Toll genes to the analysis in this study. The fact 

that the ANATOLL1B, 5B, and 5A genes clustered distantly to all other genes is an 

interesting deviation. The distant appearance of ANATOLL1B, 5B, and 5A to the rest of 

insect Toll genes might be due to the reduplication of single type 1 and 5 genes in 

Anopheles. The mammalian TIR domain is closer to the plant disease resistance genes 

than the mammalian TLR domain suggesting significant homology between the plant 

genes and the mammalian TIR domain at protein level. This result is consistent with the 

fact that the protein motif shared by Toll and IL-1R, or TIR, was evident in plant disease 

resistance proteins as well as in animal proteins as reported by Meyers et al11. The 

clustering of human MyD88 and Drosophila MyD88 with plant disease resistance genes 

is another contradictory result observed as both these genes clustered with mammalian 

TIR domain in an earlier phylogenetic analysis using protein sequences4. 
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Phylogeny based on upstream regulatory regions (-3000 to +10): 

 

FIGURE 6: Phylogeny based on upstream regulatory sequences (-3000 to +10) of 
Toll-like genes. The phylogenetic analysis has been performed by MEGA 2.1 using 
Neighbor Joining method with p-distance. The bootstrap consensus tree was obtained 
from 1000 bootstrap replicates. The numbers on the branch nodes are the bootstrap 
values. 
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The phylogeny (Fig 6) resulting from the upstream region sequences (-3000 to 

+10) was not well resolved even after noise reduction This is most likely due to poor 

alignment, which might be the result of the predominantly short (<14 base pairs) 

transcription factor binding site (TFBs) sequences being swamped by the unaligned 

background of ~3 kb upstream sequences. The percentages of sequences present as TFBs 

(as predicted by EZ-Retrieve29) in the upstream regions (-3000 to +10) of all genes 

involved in the study are shown in Table 1 and range from 15 – 28% indicating long 

unaligned stretches. In spite of these unaligned sequences, the resultant tree (Fig 6) shows 

some significant clustering with higher bootstrap values for plant disease resistance 

genes, the TLR domain and rat and human IL1RAP genes, which suggests strong 

conservation of upstream regulatory regions for these genes. A broader assessment of the 

phylogenetic tree (Fig 6) reveals that plant disease resistance genes dominate the upper 

one-third of the tree, while lower two-thirds comprises of mammalian Toll-like and insect 

Toll genes. This suggests that mammalian and insect Toll genes have some homology at 

the level of transcriptional regulatory sequences, while plant disease resistance genes 

appear distant to both these groups. This suggests some extension of the homology of the 

antibacterial immunity into upstream sequences as the Toll genes have significant 

homology at protein level between mammals and insects. 

 

 Selection of evolutionarily informative TFBS: As discussed in Section III 

(Methods), we followed a supervised statistical approach34 to select the evolutionarily 

informative TFBs across the four groups of Toll-like genes in the study. The selection of 

evolutionarily informativeness of TFBs was based on the BSS/WSS ratio of TFBs among 
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the four groups, where the BSS and WSS were determined by a supervised statistical 

approach34. For this study we used the TFBs with a BSS/WSS ratio above 0.2 as highly 

evolutionarily informative with respect to Toll like genes. The list of highly 

evolutionarily informative TFBs and their corresponding BSS/WSS values were shown in 

Table 2 as well as in Figure 6 below. 

 

 

FIGURE 7: BSS/WSS ratio of TFBs in the upstream regulatory sequences (-3000 to 
+10) of Toll-like genes.  
 
 
 
TABLE 2: List of highly evolutionarily informative TFBs  
Transcription factor binding site       BSS/WSS 
 
ADR1 (alcohol dehydrogenase gene regulator 1)    0.733019922 
HSF (heat shock transcription factor (Drosophila))   0.708738594 
STRE (stress-response element)      0.683149481 
StuAp (Aspergillus Stunted protein)     0.64874741 
v-Myb (AMV, avian myeloblastosis virus)     0.535117365 
SRY (sex-determining region Y gene product)    0.50357773 
MZF1 (the myeloid zinc finger protein MZF1)    0.491608776 
cap (cap signal for transcription initiation)    0.468023143 
E2F (E2F transcription factor)       0.440753429 
GATA-1(GATA-binding factor 1)      0.290438638 
MyoD (myoblast determining factor)     0.264242705 
Sox-5 (SRY-related HMG-box gene 5)     0.212790012 
 
* The cut-off for determining highly evolutionarily informative TFBs is 0.2 (BSS/WSS) 
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TFB based Phylogeny:  

 

FIGURE 8: Phylogeny based on “evolutionary informativeness” of TFBs in the 
upstream regulatory sequences (-3000 to +10) of Toll-like genes. The phylogenetic 
analysis has been performed by MEGA 2.1 using Neighbor Joining method with pair-
wise distance (Euclidean) matrix, which is derived from the frequencies of highly 
evolutionarily informative TFBs in the upstream regulatory sequences (-3000 to +10) of 
Toll like genes. The numbers on the branch nodes are corresponding to branch lengths. 
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The phylogenetic tree based on the TFBs (Fig 8) resolved into two major clusters, 

one of which is dominated by insect Toll genes and the other by mammalian TLR 

domain. It shows only a weak homology between mammalian TLRs and insect Toll 

genes with respect to the presence of TFBs, and this result is similar to the distance 

between these two groups as revealed at the protein level. From a broader look at the tree 

(Fig 8), it can be inferred that the insect Toll genes are much closer to the plant genes 

than to mammalian TLRs at the level of transcriptional regulatory sequences. Unlike in 

protein phylogeny, the TFBs of Drosophila Toll genes are comparatively distant from 

those of Anopheles. The upstream regions of Drosophila Toll genes may have two 

different sets of TFBs, one controlling the expression for antibacterial immunity and the 

second for ontogenesis. So far, no such ontogenic role for Toll genes has been 

demonstrated in Anopheles. It is possible that the TFBs of Anopheles Toll genes are 

primarily responsible for controlling antibacterial immunity, which is a role closer in 

function to controlling plant disease resistance and this may explain the closer appearance 

of Anopheles to plants in this analysis. 

 

Plant disease resistance genes and mammalian TIR genes appeared in both 

clusters. The clustering of At4g36140 (a plant disease resistance gene) with HUMIL1R2 

was concurrent with the homology between amino acid motifs of plant disease resistance 

genes and the cytoplasmic region of mammalian interleukin-1 receptor35. In this case, 

such a clustering may suggest the extension of the amino acid conservation in the TIR 

domain into the upstream regulatory sequences of these two genes. Compared to the 

phylogeny from upstream regulatory regions (Fig 6), where plant disease resistance genes 
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showed significant clustering, phylogeny based purely on TFBs showed no such 

significant conservation except for four plant disease resistance genes. This suggests that 

there maybe significant homology among plant disease resistance genes with respect to 

upstream regulatory regions rather than the presence of common TFBs.  

 

Overall, the mammalian TLRs are clustered distantly from all plant and insect 

genes with respect to the TFBs of evolutionary importance. This may be due to sets of 

TFB sequence segments that have diverged from those of plants and insects to perform 

functionally different transcriptional controlling events in mammals, though the 

downstream innate immunity function is similar. 

 

B. Important Highlights 

 Important highlights of this project are the major similarities and dissimilarities in 

comparison with earlier research in the evolution of Toll like genes. Phylogeny based on 

amino acid sequences of Toll-like genes (Fig 5) results in four distinctly resolved clusters 

namely, (1) insect Toll genes (Anopheles and Drosophila), (2) mammalian TLR genes, 

(3) mammalian TIR Domain, and (4) plant disease resistance genes. While this being an 

expected result, the distant clustering of insect Toll genes from their mammalian and 

plant counterparts suggested a major contradiction to earlier hypothesis of single point of 

divergence9 between insects and mammals. This observation is again corroborated by the 

closer homology between plant disease resistance genes and mammalian TIR domain. 

The closer homology between Anopheles and Drosophila Toll genes19 could be the major 

reason for this distant clustering of insect Toll genes, while the functional conservation11 
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between plant disease resistance genes and mammalian TIR domain cannot be 

discounted. 

 

 The phylogeny (Fig 6) resulting from the upstream regulatory sequences (-3000 to 

+10) of Toll like genes is highlighted by insignificant resolution. Poorly resolved 

phylogeny can be attributed to the significantly lower presence (15 – 28%) of small 

(<14bp) but conserved regulatory elements, which leads to poor alignment of the ~3kb 

upstream sequences. However, the broader assessment of this phylogeny suggests some 

homology between mammalian and insect Toll - like genes as well as among plant 

disease resistant genes at the level of transcriptional regulatory regions. 

 

 The major highlight of TFB based phylogenetic approach is that it showed only a 

weaker homology between mammalian TLRs and insect Toll genes, while showing 

similarity of distance between these two groups at protein level.  However, in totality, the 

mammalian TLRs are clustered distantly from all plant and insect genes with respect to 

the TFBs of evolutionary importance. Comparatively farther distance between Drosophila 

and Anopheles based merely on the presence of TFBs is an interesting revelation as it 

suggests possible conservation of only the transcriptional apparatus that regulates 

antibacterial immunity in the Toll genes of these two organisms.  

 

C. Specific Findings 

 In case of protein phylogeny, the distant appearance of ANATOLL1B, 5B, and 

5A to the rest of insect Toll genes is an interesting deviation, which might be due to the 
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reduplication of single type 1 and 5 genes in Anopheles. The clustering of human MyD88 

and Drosophila MyD88 with plant disease resistance genes is another contradictory result 

observed as both these genes clustered with mammalian TIR domain in an earlier 

phylogenetic analysis using protein sequences4. This lends support to the functional 

conservation11 between plant disease resistance genes and mammalian TIR domain, but 

this specific finding had been revealed by the addition of Anopheles Toll genes in our 

study to the earlier phylogenetic analyses of Toll like genes4. 

 

 In case of evolutionarily informative TFB based phylogeny, the clustering of 

At4g36140 (a plant disease resistance gene) with HUMIL1R2 was concurrent with the 

homology between amino acid motifs of plant disease resistance genes and the 

cytoplasmic region of mammalian interleukin-1 receptor35. In this case, such a clustering 

may suggest the extension of the amino acid conservation in the TIR domain into the 

upstream regulatory sequences of these two genes. 

 

D. Summary 

 In an attempt to summarize the results from three different phylogenetic 

approaches to determine evolution of Toll like genes, it can be reported that the protein 

phylogeny is consistent with most of the earlier studies of Toll evolution. However, the 

resulted deviations are most likely due to the addition of Anopheles Toll genes. 

  

Though there is accumulated evidence for conservation of non-coding regulatory 

regions, the phylogeny based on the upstream regulatory sequences (-3000 to +10) 
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resulted in a poorly resolved tree. In spite of this poor resolution, it suggests some 

homology between mammalian and insect Toll-like genes as well as among plant disease 

resistant genes at the level of transcriptional regulatory regions. The considerable 

homology between mammalian and insect Toll-like genes suggests some extension of the 

function of antibacterial immunity as the Toll genes have significant homology at protein 

level between mammals and insects. 

 

 The phylogeny based on evolutionarily informative TFBs resulted in some 

significant observations regarding conservation of transcriptional regulation between 

Drosophila and Anopheles Toll genes as well as across all four groups involved in the 

study. Though this approach may not give a complete picture of Toll evolution, the 

broader similarity of this tree with the phylogeny from protein sequences advocates the 

importance of the contribution of regulatory regions in studying evolution. 
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V. CONCLUSION 

 

A. Overview of significant findings 

 This study was undertaken to analyze the phylogeny of Toll and Toll-like genes 

based on the evolutionary informativeness of TFBs in upstream regulatory sequences in 

comparison to protein sequences. Toll and Toll-like genes are well conserved across 

multiple organisms at the protein level. In addition, a significant amount of evidence has 

been accumulating in regards to the conservation of upstream and intergenic sequences in 

evolutionarily related organisms and orthologous genes. Our rationale for this analysis 

was to analyze the evolutionary importance of upstream regulatory sequences of Toll 

genes, particularly TFBs. 

 

Except for the single point of divergence between insects and mammals, protein 

phylogeny of Toll genes (Figure 5) was consistent with results published earlier and this 

deviation is most likely due to the addition of Anopheles genes. On the other hand, the 

phylogeny based on upstream regulatory sequences (-3000 to +10) showed a broader 

distinction between the plants and the rest (Figure 6) , though the tree was not well 

resolved probably due to poor alignment of these sequences. This poor alignment could 

be attributed to the predominantly short (<14 base pairs) TFB sequences being swamped 

by the unaligned background of ~3 kb upstream sequences. Finally, a phylogeny was 

derived using pair-wise distances employing the frequencies of evolutionarily 

informative TFBs. Broadly, this TFB based phylogeny (Figure 8) showed results similar 

to the protein phylogeny. It suggested a closer relationship between plants and Anopheles 
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than that between plants and Drosophila and this may be due to the fact that the upstream 

regions of Drosophila Toll genes contain two different sets of TFBs, one controlling the 

expression for antibacterial immunity and the second for ontogenesis. The mammalian 

TLRs are clustered distantly from all plant and insect genes probably due to the 

evolutionary divergence of their TFB sequence segments with respect to the 

transcriptional controlling function. Though this approach may not give a complete 

picture of Toll evolution, the broader similarity of this tree with the phylogeny from 

protein sequences advocates the importance of the contribution of regulatory regions in 

studying evolution, particularly with instances of highly conserved gene families. 

 

B. Consideration of findings in context of current knowledge 

 The closer association of mammalian TLRs with insect Toll genes, while 

mammalian TIR domain is closer to plant disease resistance genes is a significant 

observation given that much of the related research has supported the single point of 

divergence between mammals and insects. As this could be due to the result of the 

addition of Anopheles Toll genes to the phylogenetic analysis, it could be helpful in 

developing a therapeutic solution for malaria that is caused by Anopheles. However, it 

requires a deeper understanding of the functional similarities among these organisms with 

respect to antibacterial immunity. 

 

 The suggested extension of amino acid conservation into upstream regulatory 

regions adds to the evolutionary importance of non coding regulatory regions. The 

approach of using evolutionarily informative TFBs for phylogenetic analysis offers a new 
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computational direction to extract vital information in regulatory regions. This approach 

provides an excellent computational framework since more evidence is being 

accumulating for the conservation of these non coding regulatory regions and not many 

such computational solutions have been established given the smaller size of these 

conserved regulatory elements. 

 

C. Theoretical implications of the findings 

  The significant homology between mammalian TLRs and insect Toll genes at 

protein level coupled with similar observation from the approach of employing 

evolutionarily informative TFBs suggests functional conservation. However, it remains 

unclear whether antibacterial immunity is the only function that is conserved across these 

organisms as there was no evidence regards to conservation of ontogenic function of 

Drosophila Toll genes in mammals. In this context, the weaker but significant homology 

between mammalian and insect Toll genes in the upstream regulatory regions suggests 

that only the transcriptional apparatus that regulates antibacterial immunity might have 

been conserved. 

 

 The homology between mammalian TIR domain and plant disease resistance 

genes assumes greater importance as there are some recent unpublished reports 

suggesting that rice genes have the TIR signature in their amino acid sequences. A deeper 

understanding of such homology might be helpful in mitigating bacterial diseases of rice 

as well as other monocot staple food crops. 
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VI. DISCUSSION 

A. Limitations of the study 

 While this approach is based on the frequency of the presence of evolutionarily 

informative TFBs, it does not take into account the location of those TFBs in the 

upstream region. We view this as a limitation and by resolving this limitation, it may be 

possible to arrive at a result that offers better insight into the similarities and differences 

between phylogenies based on regulatory regions and protein sequences. In addition, this 

approach may require a more evolutionarily pertinent distance measure(s) that can be 

applied between the gene vectors. Such a distance measure should incorporate frequency 

of TFBs along with location and the distances between different TFBs in a sequence, 

which would be computationally more intensive. 

 

 This study employed only the neighbor joining method of phylogeny for 

comparative analysis as evolutionarily informative TFB based phylogeny could be 

performed by employing a distance method only. The other computationally intensive 

methods such as maximum likelihood and maximum parsimony should be explored, but 

with more developed computational approaches to capture the essential evolutionary 

information from non coding regulatory regions. 

 

B. Recommendations for further research 

 The logical extension of this project would be to develop a evolutionarily more 

pertinent distance that can be applied between gene vectors, which should include the 

location of TFBs as well as the distance that separates them in the upstream regulatory 
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sequence. With the advent of such a distance it could be expected that the similarity of 

conservation between protein sequences and upstream regulatory sequences can be 

precisely captured. In addition, more advanced TFB predicting algorithms would add to 

the accuracy of analysis as not all TFBs can be predicted by EZ-Retrieve. 

 

 It is worthwhile to include additional insect species to explore functional 

separation between antibacterial immunity and ontogenesis as in Drosophila since so far 

only the antibacterial immunity of Drosophila Toll genes seems to be conserved. 

Exploration of silencing elements of the Toll genes across various organisms would be 

another area of potential research. 

 

 Development and use of a better noise (evolutionarily irrelevant, background 

information) reduction algorithm other than RASA would be beneficial since 

computationally intensive phylogenetic methods can applied for analysis and this may 

result in an accurate and complete picture of Toll evolution from the perspective of 

regulatory regions. 
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