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II. ABSTRACT 

Reported evidence suggested that high abundance of intrinsic disorder in 

eukaryotic genomes in comparison to bacteria and archaea may reflect the greater need 

for disorder-associated signaling and transcriptional regulation in nucleated cells. The 

major advantage of intrinsically disordered proteins or disordered regions is their inherent 

plasticity for molecular recognition, and this advantage promotes disordered proteins or 

disordered regions in binding their targets with high specificity and low affinity and with 

numerous partners. Although several well-characterized examples of intrinsically 

disordered proteins in transcriptional regulation have been reported and the biological 

functions associated with their corresponding structural properties have been examined, 

so far no specific systematic analysis of intrinsically disordered proteins has been 

reported. To test for a generalized prevalence of intrinsic disorder in transcriptional 

regulation, we first used the Predictor Of Natural Disorder Regions (PONDR VL-XT) to 

systematically analyze the intrinsic disorder in three Transcription Factor (TF) datasets 

(TFSPTRENR25, TFSPNR25, TFNR25) and two control sets (PDBs25 and 

RandomACNR25).  PONDR VL-XT predicts regions of ≥30 consecutive disordered 

residues for 94.13%, 85.19%, 82.63%, 54.51%, and 18.64% of the proteins from 

TFNR25, TFSPNR25, TFSPTRENR25, RandomACNR25, and PDBs25, respectively, 

indicating significant abundance of intrinsic disorder in TFs as compared to the two 

control sets. We then used Cumulative Distribution Function (CDF) and charge-

hydropathy plots to further confirm this propensity for intrinsic disorder in TFs. The 

amino acid compositions results showed that the three TF datasets differed significantly 
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from the two control sets. All three TF datasets were substantially depleted in order-

promoting residues such as W, F, I, Y, and V, and significantly enriched in disorder-

promoting residues such as Q, S, and P. H and C were highly over-represented in TF 

datasets because nearly a half of TFs contain several zinc-fingers and the most popular 

type of zinc-finger is C2H2. High occurrence of proline and glutamine in these TF 

datasets suggests that these residues might contribute to conformational flexibility needed 

during the process of binding by co-activators or repressors during transcriptional 

activation or repression. The data for disorder predictions on TF domains showed that the 

AT-hooks and basic regions of DNA Binding Domains (DBDs) were highly disordered 

(the overall disorder scores are 99% and 96% respectively). The C2H2 zinc-fingers were 

predicted to be highly ordered; however, the longer the zinc finger linkers, the higher the 

predicted magnitude of disorder. Overall, the degree of disorder in TF activation regions 

was much higher than that in DBDs. Our studies also confirmed that the degree of 

disorder was significantly higher in eukaryotic TFs than in prokaryotic TFs, and the 

results reflected the fact that the eukaryotes have well-developed elaborated gene 

transcription mechanism, and such a system is in great need of TF flexibility. Taken 

together, our data suggests that intrinsically disordered TFs or partially unstructured 

regions in TFs play key roles in transcriptional regulation, where folding coupled to 

binding is a common mechanism. 
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III. INTRODUCTION 

III.A TRANSCRIPTION FACTORS 

Regulation of gene expression is essential to the normal development and proper 

functioning of complex organisms. Such regulation is primarily achieved at the level of 

gene transcription wherein the DNA is copied into an RNA transcript. To accomplish this 

process in eukaryotic cells, it requires three different RNA polymerases (RNA Pol). Each 

RNA Pol is responsible for a different class of transcription: Pol I transcribes rRNA 

(ribosome RNA), Pol II translates for mRNA (messager RNA), and Pol III is for tRNA 

(transfer RNA) and other small RNAs. Although the control of gene regulations occurs in 

multiple steps, the overwhelming majority of regulatory events occur at transcription 

initiated by Pol II. However, Pol II cannot initiate transcription in eukaryotic genes on 

their own, and they absolutely require additional proteins to be involved. Any protein that 

is needed for the initiation of transcription is defined as a transcription factor (TF).  

In general, transcription factors (TFs) are divided into two groups [Villard J. 

2004]. (1) Basal transcription factors: they are ubiquitous and required for the initiation 

of RNA synthesis at all promoters. With RNA PolII, they form a complex called the basal 

transcription apparatus surrounding the transcription start point, and they determine the 

site of initiation. (2) Gene-specific transcription factors: this is a group of proteins that 

activate or repress basal transcription. These proteins are able to bind to specific DNA 

sequences (transcription factor binding sites, TFBS) in the gene promoter and upstream 

of the transcription start site (TSS), and act in concert with co-activator or co-repressor 

proteins to activate or inhibit transcription. These proteins bind to regulatory sequences 

organized in a series of regulatory modules along the DNA. Thus, the molecular basis for 
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transcriptional regulation of gene expression is the binding of trans-acting proteins 

(transcription factors) to cis-acting sequences (binding sites) [Villard J. 2004].  

The critical importance of gene regulation by transcription is indicated by the fact 

that a growing list of human diseases is due to genetic defects in TFs. It ranges from 

developmental syndromes such as the mutation of POU4F3 that causes hearing loss [de 

Kok YJ, et al; 1995] to a wide variety of more common sporadic human cancers like 

various carcinomas, brain tumors, sarcomas, and leukemia [Sherr CJ and McCormick F, 

2002].  

In view of its pivotal role for transcription in biological processes, TF represents 

an obvious target for therapeutic drugs which could act either by stimulating the 

transcription of specific genes for a desired beneficial effect or by inhibiting the 

transcription of genes involved in an undesirable event [Latchman D.S, 2000]. Indeed of 

the 50 FDA-approved best selling drugs, more than 10% target transcription and these 

include such well-known drugs as salicylate and tamoxifen [Cai W. et al, 1996]. The 

existence of such drugs indicates that transcription does represent a suitable target for 

therapeutic drugs.  Additionally, recent advances in the design, selection, and engineering 

of DNA binding proteins have led to the emerging field of designer TFs. Modular DNA-

binding protein domains, particularly zinc finger domains, can be assembled to recognize 

a given sequence of DNA in a regulatory region of a targeted area. The potential of this 

technology to alter the transcription of specific genes, to discover new genes, and to 

induce phenotype in cells and organisms is now being widely applied in the areas of gene 

therapy, pharmacology, and biotechnology [Blancafort et al, 2004].  
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The last two decades have witnessed a tremendous expansion in our knowledge of 

TFs and their roles employed by eukaryotic cells to control gene activity. Ample 

evidence has accumulated that show eukaryotic TFs contain a variety of structural motifs 

that interact with specific DNA sequences. Besides the cis elements, some promoter 

elements, such as TATA, GC, and CCAAT boxes, are common sequence elements to 

control transcription of many genes. In addition to having such as a sequence-specific 

DNA-binding motif, TF contains a region involved in activating the transcription of the 

gene whose promoters or enhancers they have bound. Usually, this trans-activating 

region enables the TF to interact with a protein involved in binding RNA polymerase 

(Figure 1). Based on the comparison between the sequences of many available 

transcription factors and deletion  

Figure 1: The diagram indicates the TATA-box and CCAAT-box basal elements at 
positions -25 and -100, respectively. The transcription factor TFIID has been shown to 
be the TATA-box binding protein, TBP. Several additional transcription factor binding 
sites have been included and shown to reside upstream of the 2 basal elements and of 
the transcriptional start site. The large green circle represents RNA polymerase II.  

 

 

(mutation) analysis, several common types of motifs or functional regions in TFs have 

been found. These are   
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• DNA-binding domain (DBD)  

• Trans-activation or activation domain 

• Linker domain 

• Dimerization domain 

• Nuclear localization domain 

• Ligand binding domain 

It is known that not all TFs bind DNA – some just bind other transcription factors; 

not all TFs activate transcription – some indeed repress it; not all TFs have all functional 

domains listed above; characteristically, most TFs share two common functional 

components: a DNA-binding domain and a trans-activation domain.  

III.A.1  DNA Binding Domains  

Extensive structure studies of the isolated subdomains and the intact domain, 

employing both NMR spectroscopy and X-ray diffraction, have established the folding 

topology of the DNA –Binding Domain (DBD). As far as we know, most TFs share a 

common framework structure in their respective DNA binding sites, and slight 

differences in the amino acids at the binding site can alter the sequence of the DNA to 

which it binds. Several attempts for classifying TFs on the basis of their DNA-binding 

were published recently and none has the perfect solution [Stegmaier P. et al 2004]. For 

example, many TF members were found which could not yet be assigned to any group at 

all, and some members require re-assignment due to either discovering a new insight of 

structural features of many DBDs or increasing knowledge about the complexity of TF 

domain composition. Based on the current knowledge about the structural difference of 
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TF-DNA complexes, TFs are generally classified into several families, and those here are 

just some of the main types [Patikoglou G and Burley, SK, 1997; Stegmaier P. et al 2004] 

Helix-Turn-Helix: This group of proteins is well known to contain the helix-turn-

helix motif. It includes: (1) Homeodomain Proteins (Figure 2): this is a set of very 

important family of TFs. The homeodomain consists of 60 amino acids arranged in a 

helix-turn-helix. Its third helix extends to the major groove of the DNA that it recognizes.  

Figure 2.The homeodomain is a compact 60-residue DBD that consists of 
three α-helices folded around hydrophobic core and a flexible N-terminal arm 
that becomes ordered only on DNA binding (Kissinger et al., 1990; Patikoglou 
& Burley 1997) 

 

 

The amino-terminal portion of the homeodomain is a flexible arm that becomes ordered 

only when its arm binds on the DNA at the base of the minor groove [Kissinger CR, et al, 

1990]; (2) Myb: this family of TFs consists of three imperfect direct repeats, the second 

and third of which are responsible for sequence specific DNA binding. The third repeat 

of c-Myb includes three α-helices folded around a tryptophan-rich hydrophobic core and 
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resembles the HTH homeodomain [Ogata K, et al 1992]; (3) Winged-Helix/fork head 

Proteins: this is the group of TFs that contains a highly conserved 110-residue DNA-

binding domain. The winged-helix motif binds DNA by presenting the recognition helix 

to the major groove, with two wing-like loops interacting with flanking portions of the 

phosphoribose backbone and the adjacent minor groove [Clark KL, et al 1993]; (4) Cap-

like domains: these domains are the DNA-binding portions of various eukaryotic 

transcriptional activators, including heat shock factor and ETS-containing proteins [Steitz 

TA. 1990]. (5) POU domains: These proteins contain two discrete recognition helices to 

the major groove, including a POU homeodomain and a POU-specific domain, that are 

tethered to one another by a flexible linker that is not visible in the electron density map 

[Klemm JD, et al 1994]. (6) Paired domains: These domains are found in Pax proteins. It 

contains two globular sub-domains that both resemble the homeodomain. Unlike the 

POU domain, only the N-terminal subdomain presents it recognition helix to the major 

groove. 

Basic domains: This class of TFs possesses a specific domain characterized by a 

large excess of positive charges, preventing them from being structured when free in 

solution, but becoming α-helically folded when interacting with DNA [Weiss, M.A. et al, 

1990]. It functions as a homo- and /or heterodimer, using its α-helical basic regions to 

grip the double helix in a scissors-like fashion, making sequence-specific side chain-base 

contacts in the major groove. For example, (1) Basic region /Leucine zipper proteins: 

contains a characteristic leucine zipper potion to form a canonical left-handed, α-helical 

coiled-coil. X-ray and NMR solution confirmed the scissors grip model. Circular 

dichroism spectroscopy observed that the basic region undergoes a random coil-to-a-helix 
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folding transition when it binds to its cognate DNA [Saudek V, et al 1991]. (2) Basic 

region/helix-loop-helix/leucine zipper proteins: These are characterized by a highly 

conserved 60-100 residues motif comprised of two amphipathic α-helices separated by a 

loop of variable length. The helix-loop-helix motif is primarily responsible for 

dimerization. Most of these proteins posses a highly conserved basic region, that 

mediates high-affinity, sequence-specific DNA binding. The basic region undergoes a 

random coil-to-a-helix folding transition via an induced-fit mechanism to bind its cognate 

DNA. 

Zinc-Coordinating domains: Many eukaryotic DNA-binding proteins contain zinc 

as an essential cofactor.  Zinc-binding proteins account for nearly half of TFs in the 

human genome and are the most abundant class of proteins in human proteome [Tuple et 

al, 2001] (Figure 3). They could be roughly classified into following five classes: (1)  

 

 

Figure 3: The TF families shown are the largest of their category out of the 1502 human 
Protein families listed by the IPI (Tupler et al., Nature, 409: 832-833)
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Transcription factor IIIA:  It was identified as a repeated 27-residue motif that contains a 

zinc-binding Cys2His2 tetrad, now referred to as a zinc-finger. The Zif268-DNA 

complex structure revealed three zinc fingers, each presenting their recognition helices to 

the major groove (Figure 4a); (2) Steriod / nuclear receptor proteins: They are  

 

 

 

 

 

 

 

Fi
t

gure 4a: Diagram of the motif from finger 2 of Zif268 (37, 95). The side chains of 
he conserved cysteines and histidines, which are involved in zinc coordination, and 

side chains of the three conserved hydrophobic residues are shown.
 by the conserved hydrophobic core that flanks the zinc binding site (84, 113).

 

 and

 

Figure 4b: Structural organization of hormone receptor DNA-binding proteins

 

 

 

 

 

 

 (A) Generalized structure of a steroid hormone binding protein. receptor proteins. 
(B) Zinc finger DNA-binding region of the glucocorticoid receptor. 
C) The zinc finger region of the glucocorticoid receptor bound to its responsive element. 

(After Kaptein, 1992.) (http://www.devbio.com/printer.php?ch=5&id=39)
( 
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characterized by the presence of a Cys4 double loop-zinc helix DNA-binding motif 

(Figure 4b); (3) GAL4 and PPR1: A large family of Zinc-binding Cys6 TFs found in 

fungi; (4) GATA-1: This is an erythroid-specific transcription factor where DNA-binding 

domain is a small Cys4 Zn++ containing α /β motif, and has a α-helix in the major 

groove of the recognition element. In addition, random coil regions participate in 

interactions with both the major and minor grooves; (5) p53: An α-helix and a loop are 

presented to the major groove and make side chain-base interaction, and an arginine side 

chain from another loop projects into the minor groove, making phosphoribose contacts. 

β-Scaffold Domains with Minor Groove Contacts: It is hard to find a common 

DBD in this group of TFs. Any pair or subgroup may share some characteristic, but not 

all of them share the common feature, “β-Scaffold”. Several TFs that contain the β-

scaffold feature are listed here: (1) E2: It has a dimeric eight-stranded antiparallel β-

barrel structure; (2)REL: Differing from other TFs, the complete 300-amino acid Rel 

homology region is required for DNA recognition, and residues from the entire length of 

the protein contribute to the DNA-interaction surface; (3) Serum response factor: 

contains a conserved DNA-binding region-a MADS box that forms a α-β-α sandwich, 

which presents an antiparallel coiled –coil to the major grooves flanking a compressed 

minor groove in the center of a smoothly bent DNA element. Minor groove contacts are 

supported by the two N-termini that extend away from the helices bound in the major 

groove. (4) DNA-bending proteins: In addition to DNA-binding proteins, there is also a 

set of TFs that function primarily as DNA-bending proteins. Most of these proteins are 

characterized by a DNA-binding element called the HMG box, a set of approximately 80 

amino acids that mediate the binding of these proteins to the minor groove of the DNA. 
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These proteins include the Y chromosome sex-determining factor, SRY, the lymphocyte 

enhancer protein LEF-1, and the chromatin proteins HMG-1 (Y) and HMG-2. These 

proteins are not thought to activate transcription by directly interacting with the 

transcription apparatus. Rather, they are thought to bend the DNA so that the activators 

and repressors can be brought into contact [Reeves R and Beckerbauer L. 2001]. 

III.A.2 TF activation domain 

Compared to the DNA-binding domain, much less is known about another 

functional component of TFs: activation domain. Current evidence indicates that 

following DNA binding, a transcription factor exerts an influence over gene expression 

mediated through the trans-activation domain. In most cases activation domain ranges 

from 30-100 amino acids in length and contains variable functional amino acid 

arrangements such as acid block sequence with high concentration of negatively charged 

residues [Ptashne, 1988], glutamine- or proline-rich regions [Mitchell and Tijan, 1989]. 

Activation domains may act directly, or they may recruit a co-activator that possesses 

activation properties and an ability to interact with the basal transcription complex, but 

lacks any intrinsic DNA-binding capacity. 

III.B INTRINSIC DISORDER AND PROTEIN FUNCTION 

Interpretation of protein function in terms of specific three-dimensional structure 

has dominated the thinking about proteins for more than 100 years. This concept, as a 

lock-and key model for elucidating the specificity of the enzymatic hydrolysis of 

glucosides [Fischer 1894], proved to be extremely fruitful. However, the {sequence} -> 

{3 D Structure} -> {Function} paradigm is simply not true for many proteins. Numerous 

counterexamples have surfaced over the years – proteins which lack three –dimensional 
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structure still can perform biological functions [Dunker and Obradovic 2001]. Over the 

past decade, Dunker and several others have made a pioneering discovery that, under 

physiological conditions (pH 7.0 and 25˚C), some proteins and protein domains exist 

with little or no ordered structure [Dunker et al. 2002; Uversky, V. et al. 2000]. These 

proteins have often been referred to as ‘natively denatured/unfolded’ or ‘intrinsically 

unstructured /disordered’ [Gunasekaran K. et al 2003]. These disordered proteins lack a 

folded structure but display a highly flexible, random-coil-like conformation under 

physiological conditions. The cumulated experimental data shows that the intrinsic 

disorder proteins do not possess uniform structural properties, rather these proteins can 

exist in any one of the three thermodynamic states in term of the Protein Trinity Model: 

ordered forms, molten globules, and random coils [Dunker et al., 2001] (Figure 5). The 

key point of the Protein Trinity is that a particular function might depend on any one of 

these states or a transition between two of the states. Based on this Trinity model, 

Uversky added one more state called premolten globule and named a Protein Quartet 

Model. Proteins in premolten globule state are essentially more compact, exhibiting some 

amount of residual secondary structure, although they are still less dense than native or 

molten globule proteins. As order, molten globule, premolten globule, and random coil 

conformation possess defined structural differences, they could be characterized by the 

following experimental approaches and applications [for recent review see Uversky et al 

2005]: 

III.B.1  Experimental Approaches 

X-ray crystallography: It can define the missing electron density structures in 

many protein structures, which may correspond to disordered region. The absence of 
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DunkerDunker’’s Trinity Models Trinity Model
(Dunker & Obradovic: nature biotech, 
19, 805-806, 2001)

UverskyUversky’’s Quartet Models Quartet Model
(Uversky et al. Protein Science, 11: 
739-756)

 

 

 

 

 

 

 

 

 

Figure 5: Two models for the continuum of protein structure 

 

interpretable electrion density for some sections of the structure is usually associated with 

the increased mobility of atoms in these regions, which leads to the noncoherent X-ray 

scattering, making atoms invisible [Ringe & Petsko, 1986]. However, one major 

uncertainty regarding the information from X-ray diffraction is that, without additional 

experiments, it is unclear whether a region of missing electron density is a wobbly 

\domain, is intrinsically disordered, or just is the result of technical difficulties.  

NMR spectroscopy: 3D structures can be determined for proteins in solution by 

NMR. Recent advances in this technology can provide detailed insights into the structure 

and dynamics of unfolded and partly folded states of proteins [Dyson & Wright 2002, 

2005].  
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Circular Dichroism (CD) spectroscopy: Near – UV CD shows sharp peaks for 

aromatic groups when the protein is ordered, but these peaks disappear for disorder 

proteins due to motional averaging [Fasman GD et al 1996]. It, therefore, can be used to 

detect the intrinsic disorder protein. However, this method is only semi-quantitative and 

lacks residue-specific information and so does not provide clear information for proteins 

that contain both ordered and disordered regions.  

Protease digestion: Recent studies by Fontana et al provide compelling evidence 

that flexibility, not mere surface exposure, is the major determinant for digestion at 

possible cut sites. Large increasing in digestion rate has been observed after the F helix of 

myoglobin is converted to a disordered state in apomyoglobin. Thus, hypersensitivity to 

proteases is clearest evidence of protein disorder. It can give position-specific 

information. However, the requirement for protease-sensitive residues limits the 

demarcation of order/disorder boundaries by this method. 

Others: Several methods can be applied to indirectly detect the disorder state, 

including (a) diminished ordered secondary structure detected by several spectroscopic 

techniques [Smyth et al., 2001; Uversky et al., 2002], (b) the intermolecular mobility, 

solvent accessibility and compactness of a protein extracted from the analysis of different 

fluorescence characteristics, (c) the hydrodynamic parameters obtained by gel-filtration, 

viscometry, sedimentation, etc, (d) the information for protein conformational stability 

obtained by experiments, (e)H/D (Hydrogen/Deuterium) exchange, mass spectrometry 

and limited proteolysis.  

Although intrinsic disorder in proteins apparently represents a common 

phenomenon, the number of experimentally characterized intrinsic disorder proteins is 
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still relatively low. One contributing factor is that the traditional biochemical methods 

used to produce and characterize proteins are strongly biased towards folded, ordered 

proteins. However, recent technology, particularly the spectroscopic methods such as 

NMR, has advanced in sensitivity and resolution in detecting the structural propensities 

and dynamics of sizeable disordered proteins or disordered regions.  

III.B.2  Computational Approaches 

Based on the sequence, hydrophobicity, and degree of compactness, as well as the 

estimated change in surface area that is exposed upon protease cleavage, a variety of 

computational approaches for examining disorder in native proteins have been developed 

[Bracken C, et al 2004]:   

PONDR (Predictor Of Natural Disordered Regions) [Romero P. et al 1997 and 

2001]: This program is a variety of neural network predictors of disordered regions based 

on the local amino acid sequence, composition, flexibility, and other factors.  

  Hydropathy-Charge plot [Uversky, et al 2000]: This program gives a linear 

discriminant on the basis of the relative abundance of hydrophobic and charge residues to 

classify entire sequence (not regions) as ordered or disordered.  

DISOPRED (Disorder Predictor) [Jones DT and Ward JJ, 2003]: Like PONDR, 

the algorithm behind this program also is a neural network.  But the differences are that 

the inputs are derived from sequence profiles generated by PSI-BLAST instead of   

the direct protein sequence, and the output is filtered by using secondary structure 

predictions, so that regions confidently predicted as helix or sheet are not predicted as 

disordered.  
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GlobPlot (Predictor of Intrinsic Protein Disorder, Domain & Globularity) 

[Linding R, et al 2003]: It predicts disordered and globular regions on the basis of 

propensities for disorder assigned to each amino acid.  

NORSp [Liu J, et al 2002]: It predicts ‘regions of no regular secondary structure’ 

or NORS, defined as long stretches of consecutive residues (>70) with few helix or sheet 

residues.  

Using bioinformatics and data mining approach, Dunker and his colleagues have 

made fundamental discoveries showing that thousands of natively disordered proteins 

exist, representing a substantial fraction (around 25%) of the commonly used sequence 

databases [Dunker, A. K., et al 2000]. This observation has contributed to a reassessment 

of the assumption that tertiary structure is necessary for function [Wright P. E. and Dyson 

H. J. 1999].  

As intrinsic disorder has been better characterized, the functional importance of 

being disordered has been intensively analyzed. The major functional asset of disorder 

proteins properties, which function by molecular recognition, is related to their 

significant disorder-order transition. Uversky [Uversky, V. N. 2002] summarized the 

potential advantages of intrinsic lack of structure and function-related disorder-order 

transitions as described below: (1) the possibility of high specificity coupled with low 

affinity; (2) the ability of binding to several different targets known as one to many 

signaling; (3) the capability to overcome steric restrictions, enabling essentially larger 

interaction surfaces in the complex than could be obtained for rigid partners; (4) the 

precise control and simple regulation of binding thermodynamics; (5) the increased rates 

of specific macromolecular association; (6) the reduced lifetime of intrinsically 
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disordered proteins in the cell, possibly representing a mechanism of rapid turnover of the 

important regulatory molecules [Wright and Dyson 1999].  

Although the occurrence of unstructured regions of significant size (>50 residues) 

is surprisingly common in functional proteins, the functional role of intrinsically 

disordered proteins in crucial fields such as transcriptional regulation, translation and 

cellular signal transduction has only recently been recognized. Since Spolar and Record 

first introduced the concept of binding to folding [Spolar RS and Record MT, 1994] 

almost a decade ago, Wright’s group and others have made tremendous progress in the 

elucidation of the function of unstructured proteins, particularly for the crucial DNA 

binding and several other types of molecular recognition proteins [Dyson, H. J., and 

Wright, P. E. 2002; 2005]. They introduced the ‘snap-lock’ mechanism based on the 

observation of multiple zinc fingers binding to cognate DNA. Cys2His2-type zinc finger 

domains consist of well-folded domains connected by highly conserved linker sequences 

that are mobile and unstructured in the absence of the cognate DNA and behave like 

beads on a string. Upon binding to the correct DNA sequence, the linker becomes highly 

structured and locks adjacent fingers in the correct orientations in the major groove [Laity 

JH, et al 2000a]. Any alteration at this linker such as the insertion of three residues, KTS, 

by alternative splicing in Wilms tumor, will subsequently thwart the linker confirmation, 

and increases linker flexibility and impairs DNA binding, thereby both altering the 

biological function and sub-nuclear localization [Laity JH, et al 2000b]. 

As we have better characterized and understood the constitution of TFs in recent 

years, the protein–protein interactions in transcriptional regulation have become more 

intriguing and attractive for study. Accumulated evidence has suggested that many 
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transcriptional activation domains are either unstructured or partly structured, and their 

interactions with their targets involve coupled folding and binding events [Frankel AD 

and Kim PS. 1991; Dyson & Wright, 2002; Iakoucheva et al., 2002; Ward et al., 2004]. 

Recent works by several groups comprehensively examined the kinase-inducible 

activation domain of CREB (cAMP response element binding protein) [Radhakrishnan et 

al 1997], the trans-activation domain of p53 [Ayed A, et al, 2001], and the acidic 

activation domain of herpes simplex virus VP16 [Grossmann et al, 2001], and found that 

the activation domains remained unstructured in their normal functional states, and form 

a helix or helices upon binding to the target proteins (Figure 6).  

 

Dyson and Wright: Nature Reviews: mol. Cell Biol. 6:197-208

 

 

 

 

 

 

 

 

Figure 6: the example of ID in TF shows the concept of coupling to folding and 
binding. 
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IV. BACKGROUND 

IV.A RELATED RESEARCH 

Reported evidence demonstrated that high abundance of intrinsic disorder in 

eukaryotic genomes in comparison to bacteria and archaea may reflect the greater need 

for disorder-associated signaling and regulation in nucleated cells [Dyson & Wright, 

2002; Iakoucheva et al., 2002; Ward et al., 2004]. The properties of intrinsic disorder 

regions promote molecular recognition through the following features [Uversky 2005]: 

(a) intrinsic disorder proteins or disorder regions have the capability to combine high 

specificity with low affinity to couple or decouple with its functional partners; (b) the 

intrinsic plasticity enable a single disorder protein or region to recognize and bind many 

biological targets divisively  while still being specific [Wright & Dyson, 199; Dunker et 

al., 2001; Dyson & Wright 2002, 2005]; (c) the structural propensity of intrinsic disorder 

proteins or disorder regions to form  a large interaction faces such as the disordered 

region wraps-up or surrounds its partner [Meador et al., 1992; Dunker et al., 2001]; (d) 

the fast rate of association and dissociation with  the important regulatory molecules to 

make a rapid turnover and reduce life-time of intrinsic disordered proteins in the cells. 

Several experimentally well-characterized proteins, such as p53, GCN4, CBP, and 

HMGA, interact with their partners mostly via regions of intrinsic disorder strongly 

support this concept [Dunker & Obradovic 2001]. 

To fully understand the abundance of intrinsic disorder in genome-wide scale of 

transcriptional control and to decipher the conformational structure information of TF, 

several attempts have been made, and the number of intrinsically disordered proteins 

known to be involved in cell-signaling and regulation is growing rapidly. For example,  
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Iakoucheva and her colleagues applied PONDR prediction on several dataset from Swiss-

Prot and discovered that the intrinsic disordered proteins are prevalent in cell-signaling 

and cancer-associated proteins in comparison with other functional group [Iakoucheva et 

al., 2002]. The results obtained by a different group using a predictor called DISOPRED2 

to predict on Saccharomyces genome database, suggest that the proteins containing 

disorder are often located in the cell nucleus and are involved in the regulation of 

transcription and cell signaling [Ward et al., 2004]. The results also indicate that intrinsic 

disorder is associated with the molecular functions of kinase activity and nucleic acid 

binding.  

It is known that most TFs have a common frame structure and share at least two 

functional domains: DNA-binding domain and trans-activation domain. It has been 

reported that the interaction of a protein with DNA often induces local folding in the 

protein partner [Spolar & Record, 1994]. It has been suggested that one of the important 

biological implications behind this coupled binding and folding scenario is that the 

specific signal from the complex of protein with its binding partner emerges only after 

appropriate conformational changes take place [Williamson, 2000].  

One of the illustrative examples is the basic DNA-binding region of the leucine 

zipper protein GCN4 that interacts with DNA. Functional studies using circular 

dichroism spectroscopy document that the basic region undergoes a random coil-to-α-

helix transition when it binds to its cognate AP-1 DNA site [Weiss et al., 1990]. It is 

interesting to note that the basic region of α-helices of GCN4 was used to recognize the 

specific DNA binding site via a side chain-base contact. The DNA binding-induced 

folding of the basic region helix is accompanied by a considerable decrease in 
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conformational entropy [Bracken et al., 1999]. This was assumed to enhance the 

specificity of DNA binding, as the helical content of the basic region is greater when 

bound to a specific rather than to a non-specific DNA site [O'Neil et al., 1990]. 

Another well-characterized example for transcriptional activation domain is the 

kinase-inducible activation domain of CREB (cAMP-response element binding protein).  

The kinase activation domain is intrinsically disordered, both as an isolated peptide and 

in full-length CREB, but it folds to form a pair of helices upon binding to the KIX 

domain of the transcriptional co-activator CBP (CREB-binding protein) [Radhakrishnan 

et al., 1997] (also see figure 6).  

Although several well-characterized examples of intrinsic proteins in 

transcriptional regulation have been reported and the biological functions associated with 

the corresponding structural properties have been examined [Dyson, H. J., and Wright, P. 

E. 2002; 2005], so far no specific systematic analysis of intrinsically disordered proteins 

in gene regulation has been reported.  

IV.B PROSOSED HYPOTHESIS 

As mentioned earlier, much higher prevalence of intrinsic disorder in eukaryotic 

genomes in comparison to bacteria and archaea may reflect the greater need for disorder-

associated signaling and regulation in nucleated cells. The major advantage for intrinsic 

disorder proteins or disordered regions is their inherent plasticity for molecular 

recognition, and this advantage promotes disordered proteins or disordered regions in 

binding their targets with high specificity and low affinity and binding with numerous 

partners. Hence, our hypothesis proposes that since TFs are regulatory proteins 

interacting with DNA and multiple protein partners, they would be wholly disordered 
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proteins or carry regions of intrinsic disordered at a significantly higher level compared 

to a collection of random proteins. To prove this hypothesis in a pilot study, we randomly 

retrieved 10 TFs and 10 non-TF proteins respectively from Swiss-Prot for disorder 

prediction using PONDR VL-XT. The preliminary results looked intriguing and 

promising. It showed that TFs had remarkably higher average disorder score (0.56) than 

the random control set (0.29).  

IV.C INTENDED PROJECT 

In this project, we intend to apply a neural network predictor of natural disordered 

regions (PONDR VL-XT), cumulative distribution functions (CDFs) and charge-

hydropathy plots to predict intrinsic disorder on three different TF datasets. We also aim 

to bring together the analysis of intrinsic disorder in TFs with a survey of the local and 

overall amino acid composition biases observed in TFs.   A detailed computational 

analysis of the unstructured regions associated with its functional properties of TF 

domains and sub-domains will be presented. The conformational differences between 

DNA-binding and activation domain, and the differences of TF regions that bind DNA 

major groove and minor groove will be studied and analyzed. The properties of TF 

domain and sub-domain will be cross-examined in comparison with those observed 

previously using experimental approaches. 
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V. MATERIALS AND METHODS 

V.A DATASETS 

Five different data sets have been created and used for this study as described 

below: 

V.A.1 Dataset sources and sequence retrieving methods 

To construct the non-redundant, representative datasets for transcription factors 

from Swiss-Prot, 2683 protein sequences were downloaded from Swiss-Prot only, and 

total of 7195 entries were retrieved from Swiss-Prot and TrEMBL together (Swiss-Prot 

Release 46.2 of 01-Mar-2005, 172233 entries; TrEMBL Release 29.2 of 01-Mar-2005, 

1631173 entries) by using “transcription factor” as a key word in a full-text search. 

Swiss-Prot is a curated protein sequence database that strives to provide a high level of 

annotation (such as the description of the function of a protein, its domain structure, post-

translational modifications, variants, etc.) with a minimal level of redundancy and high 

level of integration with other databases. TrEMBL is a computer-annotated supplement of 

Swiss-Prot that contains all the translations of EMBL nucleotide sequence entries not yet 

integrated in Swiss-Prot. Swiss-Prot/TrEMBL in no doubt contains many more sequences 

than either Swiss-Prot or TrEMBL alone.  However, since TrEMBL has not yet been 

integrated with Swiss-Prot, it may cover some sequences that already exist in Swiss-Port, 

and cause some degree of redundancy in the combining Swiss-Prot/TrEMBL database.  

The third dataset contains1186 protein sequences, and was retrieved from the 

TRANSFAC database (TRANSFAC FACTOR TABLE, Rel.3.2 26-06-1997) 

(http://www.gene regulation.com/pub/databases.html#transfac) based on the availability 

of both sequence and domain feature. TRANSFAC® is a well-established database that 

 28



contains only eukaryotic cis-acting regulatory DNA elements and trans-acting factors. It 

covers the whole range from yeast to human. TRANSFAC® started in1988 with a printed 

compilation (Wingender, E 1988) and was transferred into computer-readable format in 

1990. The TRANSFAC® data have been generally extracted from original literature; 

occasionally they have been taken from other compilations (Faisst and Meyer, 1992; 

Dhawale and Lande, 1994).  

For the controls, we first obtained a dataset called PDBs25 [Hobohm U. et al. 

1992] from Dr. Dunker’s laboratory. This set contains1771 chains with 297372 residues, 

and is a non-homologous subset of the structures in PDB consisting of a single 

representative structure for protein families whose members have < 25% sequence 

identity 

(ftp://ftp.emblheidelberg.de/pub/databases/protein_extras/pdb_select/2002_Apr.25).  

Although PDBs25 is a non-redundant and a well-represented (theoretically one member 

per family) dataset, it has been reported that trans-membrane, signal, disordered, and low 

complexity regions are significantly underrepresented in PDB, while disulfide bonds, 

metal binding sites, and sites involved in enzyme activity are overrepresented. 

Additionally, hydroxylation and phosphorylation, post-translational modification sites 

were found to be under-represented while acetylation sites were significantly 

overrepresented [Peng K. et al, 2004]. Compared to several complete genomes with a 

non-redundant subset of PDB, evidence indicated that the proteins encoded by the 

genomes were significantly different from those in the PDB with respect to sequence 

length, amino acid composition and predicted secondary structure composition. To 

overcome this bias and redundancy in PDB, we built a dataset with randomized NCBI 
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(GenBank) accession number.  Four thousand 6-digit GenBank accession numbers were 

generated randomly, and then 2387 sequences were fetched from GenBank after 

redundant accession number elimination. We believe that this set is a representative of 

broad sequence diversity and reflect the natural environmental complexity.  

V.A.2 Non-redundant representative dataset preparation 

 Biological sequence databases are highly redundant for two main reasons: (1) 

various databanks keep redundant sequences with many identical and nearly identical 

sequences; (2) natural sequences often have high sequence identities due to gene 

duplication from the same ancestor [Park J et al 2000]. It causes uneven sequence 

coverage and concentrates only small number of gene families and organisms. To address 

this problem, we have constructed four non-redundant, representative datasets called 

TFNR25, TFSPNR25, TFSPTRENR25, and RandomACNR25. Briefly, we first used CD-

HIT (Cluster Database at High Identity with Tolerance) program from 

http://bioinformatics.org/project/?group_id=350 [Li et al., 2001, 2002] to reduce the 

homology to 80%, and then to 40% sequence identity according to the recommended 

procedures. CD-HIT is a fast and flexible program for clustering large protein databases 

at different sequence identity levels. This program can remove the high sequence 

redundancy efficiently. To achieve that no two sequences in the resulting dataset has 

more than 25% sequence identity, we aligned these sequences against one another using a 

global pair-wise sequence alignment program called stretcher 

(http://emboss.sourceforge.net/apps/stretcher.html). Two sequences with identity >25% 

will be stripped off from dataset. Traditionally, the sequence global alignment program 

using the Needleman & Wunsch algorithm, for instance, as implemented in the program 
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needle, requires O(MN) space and O(N) time. It will take a long time, and computer 

memory will rapidly be exhausted as the size of the aligned sequences increases. The 

stretcher program calculates a global alignment of two sequences using a modification of 

the classic dynamic programming algorithm that uses linear space. This program 

implements the Myers and Miller algorithm for finding an optimal global alignment in an 

amount of computer memory that is only proportional to the size of the smaller sequence, 

O(N). The computing time has been shortened from two weeks to 4 hours after the needle 

program was replaced with stretcher for the global pair-wise sequence alignment in one 

dataset (TFSPTRENR25) (Figure 7). 

V.B DISORDER PREDICTIONS 

Prediction of intrinsic disorder in TF was performed using PONDR VL-XT [Li, 

X., et al, 1999; Romero, P., Z., et al, 1997 and 2001; http://www.pondr.com], CDF 

[Dunker AK, et al 2000], and Charge-Hydropathy Plots [Uversky, V. et al. 2000].  

V.B.1 PONDR VL-XT 

PONDR (Predictor Of Natural Disordered Regions) is a set of neural network 

predictors of disordered regions on the basis of local amino acid composition, flexibility, 

hydropathy, coordination number and other factors.  These predictors classify each 

residue within a sequence as either ordered or disordered. The algorithm behind the 

predictors is a feed-forward neural network that uses sequence information from 

windows of generally 21 amino acids. Attributes, such as the fractional composition of 

particular amino acids or hydropathy, are calculated over this window, and these values 

are used as inputs for the predictor.  One of the PONDR predictors, the VL-XT predictor 

integrates three feed forward neural networks: the VL1 predictor from Romero et al.  
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Figure 7: Flowchart for dataset construction and non-redundancy preparation 

 

2000 and the N- and C- terminal predictors (XT) from Li et al. 1999. VL1 was trained 

using 8 disordered regions identified from missing electron density in X-ray 

crystallographic studies, and 7 disordered regions characterized by NMR. The XT 

predictors were also trained using X-ray crystallographic data. Output for the VL1 

predictor starts and ends 11 amino acids from the termini. The XT predictors output 

provides predictions up to 14 amino acids from their respective ends. A simple average is 

taken for the overlapping predictions; and a sliding window of 9 amino acids is used to 
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smooth the prediction values along the length of the sequence. Unsmoothed prediction 

values from the XT predictors are used for the first and last 4 sequence positions. 

V.B.2 Cumulative Distribution Functions (CDFs) 

The output of PONDR VL-XT is <0.5 for a residue predicted to be ordered and 

>0.5 for a residue predicted to be disordered, so disordered and wholly disordered 

proteins tend to lie on either side of this boundary. Alternatively, the prediction can be 

displayed as a histogram. From each histogram, a cumulative distribution function (CDF) 

[Sprent, P. 1993], can be calculated by determining the fraction of the distribution that 

lies below a given value [Dunker, et al, 2000; Oldfield CJ, et al, 2005].  On other hand, 

this method summarizes these per-residue predictions by plotting PONDR scores against 

their cumulative frequency, which allows ordered and disordered proteins to be 

distinguished based on the distribution of prediction scores.  

V.B.3 Charge-Hydropathy Plots  

Another established method of order-disorder classification is Charge-Hydropathy 

Plots [Uversky, V. et al. 2000]. Ordered and disordered proteins plotted in charge-

hydropathy space can be separated to a significant degree by a linear boundary. The 

hydrophobicity of each amino acid sequence was calculated by the Kyte and Doolittle 

approximation within a window size of 5 amino acids. The hydrophobicity of individual 

residues was normalized to a scale of 0 to 1 in these calculations. The mean 

hydrophobicity is defined as the sum of the normalized hydrophobicities of all residues 

divided by the number of residues in the polypeptide. The mean net charge is defined as 

the net charge at pH 7.0, divided by the total number of residues. The absolute value of 

the return is the formal euclidian distance of a protein in charge/hydropathy space from a 
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previously calculated order/disorder boundary. The sign of the return is positive if the 

protein is disordered (above the boundary) or negative if the protein is ordered (below the 

boundary). 

The computer programs of CDFs and Charge-Hydropathy Plots used in this 

project to classify proteins as completely disordered or completely ordered were written 

by Christopher J. Oldfield at Molecular Kinetics, Inc.  For CDF, the program returns the 

value of all VL-XT based CDF bins for a protein and the classification of the protein 

based on a default 7 points scheme for both majority vote and unanimous methods. For 

Charge-Hydropathy Plots, the program will return the mean net charge, hydropathy, the 

formal euclidian distance, and class (ordered or disordered). 

V.C TF DOMAIN INFORMATION  

All the domain information was extracted from the section of ‘Feature Table 

Data’ in each entry in “Swiss-Prot” format. The FT (Feature Table) lines provide a 

precise but simple means for the annotation of the sequence data. The table describes 

regions or sites of interest in the sequence. In general, the feature table lists 

posttranslational modifications, binding sites, enzyme active sites, local secondary 

structure or other characteristics reported in the cited references. The FT lines have a 

fixed format. The column numbers allocated to each of the data items within each FT line 

are shown in table 1 (column numbers not referred to in the table are always occupied by 

blanks). 

An example of a feature table for human CREB1 is shown in table 2.The residue 

positions (shown in table 1 as ‘From’ endpoint and ‘To’ endpoint in Feature Table 

respectively) for each feature were used to retrieve the corresponding domain sequence 
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Table 1:  the ‘Feature Table’ 

Columns Data item 

1-2 FT 

6-13 Key name 

15-20 'From' endpoint 

22-27 'To' endpoint 

35-75 Description 

  

Table 2: The feature table for human CREB  

FT   Key Name    From   To        Description 

FT   DOMAIN      101    160       KID. 
FT   DNA_BIND    284    305       Basic motif. 
FT   DOMAIN      311    332       Leucine-zipper. 
FT   MOD_RES     133    133       Phosphoserine. 
FT   MOD_RES     142    142       Phosphoserine (By similarity). 
FT   VARSPLIC     88    101       Missing (in isoform CREB-B). 
FT                                /FTId=VSP_000596. 
FT   CONFLICT      4      4       E -> D (in Ref. 5). 
FT   CONFLICT      8      8       E -> D (in Ref. 5). 
FT   CONFLICT    160    160       T -> A (in Ref. 5). 
FT   CONFLICT    167    167       T -> A (in Ref. 5). 
FT   CONFLICT    169    169       T -> A (in Ref. 5). 
FT   CONFLICT    176    176       Q -> R (in Ref. 5). 
FT   CONFLICT    184    184       A -> T (in Ref. 5). 
FT   CONFLICT    188    188       G -> R (in Ref. 5). 
FT   CONFLICT    195    195       N -> S (in Ref. 5). 
FT   CONFLICT    210    210       T -> A (in Ref. 5). 
 
 

(Swiss-Prot user manual http://au.expasy.org/sprot/userman.htm) and VL-XT PONDR 

prediction score for the local disordered prediction and the amino acid composition 

calculation.  

V.D AMINO ACID COMPOSITION PLOTS 

 35



To compare the compositions of three different TF datasets with two control sets, 

we first calculated the frequency of occurrence for each residue type in each dataset, and 

then expressed the composition of each amino acid in a given TF dataset as  

(TF-control)/(control). Thus, negative peaks indicate that TF are depleted compared with 

control in the indicated amino acids, and positive peaks indicate the reverse.  
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VI. RESULTS AND DISCUSSION 

VI.A DATASET CHARACTERIZATION 

The overview of five datasets used in this study is shown in table 3 and 4, and 

figure 8: TFSPTRENR25 is a non-redundant, representative database from SWISS-PROT  

 

Table 3: Dataset construction  
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and TrEMBL. This set contains 1851 sequences where no two sequences have more than 

25% sequence identity after a serial sequence redundancy reduction from initially 7195 

sequences retrieved. TFSPNR25 contains 1082 representative TF sequences and is similar 

to TFSPTRENR25 after serial sequence redundancy reductions as described in the 

Material and Methods section. The difference from TFSPTRENR25 is that all entries in 
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the latter set were retrieved from Swiss-Port only, and feature table data (domain 

information) for every entry has been well annotated and defined in Swiss-Prot format. 

TFNR25 was constructed based on the availability of both sequence and feature table data 

(domain information). 1186 TF sequences were initially retrieved from TRANSFAC®, 

which covers only eukaryotic cis-acting regulatory DNA elements and trans-acting 

factors.  The final set contains 460 non-redundant sequences whose homology is less  

 

Table 4: Description of Five Non-redundant TF Datasets (NR25) 
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than 25%. PDBs25 is well known as a set of non-homologous proteins and no two 

proteins have sequence similarity higher than a certain cutoff (25% identical residues for 

aligned subsequences), yet all structurally unique protein families are represented. As the 

main database of experimentally characterized structural information, Protein Data Bank 

(PDB) [H.M. Berman et al 2000] contains more than 20,000 structures of proteins, 
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nucleic acids and other related macromolecules characterized by methods such as X-ray 

diffraction and nuclear magnetic resonance (NMR) spectroscopy. However, current 

information in PDB is highly biased in the sense that it does not adequately cover the 

whole sequence/structure space. Evidence that trans-membrane, signal, disordered, and 

low complexity regions are significantly underrepresented in PDB has been reported 

reflected to the nature of the structural database of PDB [Peng K et al 2004]. To avoid 

this bias, we constructed a database called randomACNR25. We started with 4000 

computer generated and randomized NCBI accession numbers and 2387 sequences were 

retrieved from Genbank. 1935 sequences survived after removing the sequence 

redundancy to less than 25%.  
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Figure 8: Average Protein Length (a. a.) in Five Datasets (NR25) 
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To better understand the degree of sequence redundancy in each preliminary 

dataset, one measure we called strip-off rate was introduced (strip-off rate= (the number 

of sequences that are stripped off after reaching 25% identity) / (the original number of 

sequences)). Interestingly, we notified that the randomACNR25 dataset has much lower 

strip-off rate (18.9%) compare to other three TF datasets. The rate for TFSPTRENR25, 

TFSPNR25, and TFNR25 are 74.3%, 59.7%, and 61.2%, respectively (Table 3 and 4). 

Perhaps the constitution of sequence homology in the different datasets is the major 

contributor to the difference in the strip-off rate.  As we described in the Material and 

Methods section, the sequences in randomACNR25 set was retrieved by randomized 

accession number and resulted in a wide range of diversity. In contrast, all sequences in 

other three TF datasets are TFs, and some of them have probably been derived from same 

superfamily and have similar highly conserved motifs such as the zinc-finger, leucine-

zipper, and homeobox, etc.  

VI.B DISORDER PREDICTION ON TFS 

To test for a generalized prevalence of intrinsic disorder in transcriptional 

regulation, we first used the Predictor Of Natural Disorder Regions (PONDR VL-XT) to 

 

Table 5: Disorder prediction result on five datasets by VL-XT  

Num. of 
sequences

Average num. 
residues

Average num. 
Disorder res.

Overall% 
disorder DO Score

PDBs25 1583 173.69 39.89 23% 0.31
RandomACNR25 1930 480.09 146.22 30% 0.33

TFNR25 460 549.19 283.73 52% 0.52
TFSPNR25 1080 568.20 263.91 46% 0.46

TFSPTRENR25 1819 454.21 216.55 48% 0.47  
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systematically analyze the intrinsic disorder in the three TF datasets.  As shown in Table 

5, the PONDR VL-XT predictions demonstrate that predicted disorder followed the 

ranking TFNR25 > TFSPTRENR25 > TFSPNR25 > RandomACNR25 > PDBs25.  The 

difference between TFSPNR25 and TFSPTRENR25 is near negligible (46% and 48% for 

overall disorder; 0.46 and 0.47 for average disorder score, respectively) compared to the 

differences among other sets. The same ranking was observed in Figure 9 when the 

percentages of TF with 30 or more consecutive disordered residues were calculated using 

two methods (Figure 9 (a) and (b)).  The percentages for consecutive disordered regions  
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of >=30 residues in five datasets, TFNR25, TFSPNR25, TFSPTRENR25, 

RandomACNR25, and PDBs25, were 94.13%, 85.19%, 82.63%, 54.51%, and 18.64%, 

respectively (Figure 9(a)). All three TF datasets, TFNR25, TFSPNR25, and 

TFSPTRENR25 have 5.0, 4.6, 4.4 fold more predicted disordered regions of >=30 

consecutive residues as compare to PDBs25, respectively. When we compared to 

RandomACNR25, the increases for >=30 consecutive disordered residues in TF datasets, 

TFNR25, TFSPNR25, and TFSPTRENR25, were smaller. It is 1.7, 1.6, and 1.5, 

respectively. The nature of sequence collection and representation in these control sets 

may explain the fold differences for the disorder prediction. As described in the Materials 

and Methods, most proteins in PDB are ordered or partially ordered; in contrast, the 
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RandomACNR25 covers much wide range of sequence diversity, and have many more 

disordered proteins in the set and more closer to the nature of random sequence space.  

As shown in Figure 9 (a), the percentages of the proteins that have disordered 

regions of >= 100 residues in five datasets, TFNR25, TFSPNR25, TFSPTRENR25, 

RandomACNR25, and PDBs25, is 34.78%, 28.24%, 20.62%, 8.65%, and 0.06%, 

respectively.  TF datasets have significant higher percentage of proteins that have long 

disordered regions (>=100 residues) in comparison to RandomACNR25 and PDBs25.  

The comparison among the three TF datasets suggested that TFNR25 set was 

enriched in predicted disorder than the other two TF datasets, TFSPNR25 and 

TFSPTRENR25, although the difference between the later two sets is insignificant.  We 

believe that TFNR25 constructed from TRANSFAC® is a dataset that covers only 

eukaryotic TFs, and recent evidence suggests that eukaryotes have high percentage of 

native disorder than others [Dunker et al 2000]. 

Surprisingly, on or above 70% of the proteins in the three TF datasets are 

predicted to be wholly disordered by CDF (Figure 10), and similar degree of disorder  

was observed when the prediction was performed with PONDR VL-XT based on the 

single residue disorder score. It is a significant amount of wholly disordered proteins in 

the TF datasets compared to the two other control sets, 28.81% for RandomACNR25 and 

17.75% for PDBs25. Disorder enables complexes with low affinity coupled with high 

specificity and also facilitates the binding of one molecule to many partners [Dyson and 

Wright 2005]. These two characteristics may help us to understand why a large amount 

of wholly disordered proteins exist in the TFs data set as it might relate to the great need 

for control and regulation of gene transcription by these proteins. 
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Figure 10: Prediction of Wholly Disordered TFs by Cumulative Distribution 
Functions (CDF) 
 

We also noted that there are 17.75% proteins predicted to be wholly disordered in 

PDBs25. Wholly disordered proteins should not be expected to form crystals, so any such 

proteins predicted to be wholly disordered in PDB would be candidates for prediction 

errors. However, predicted disordered proteins in PDB might not all associated to 

prediction errors.  There are several exceptions: (1) Sometimes fragments of proteins 

sometimes rather than whole proteins are crystallized; (2) Many intrinsically disordered 

proteins become ordered upon binding to partners. Such proteins can appear in PDB as 

ordered because the complex, not the individual protein, has been crystallized; (3) 

Proteins in PDB may contain segments of disorder that are associated with the putative 

wholly disordered proteins; (4) As shown in table 4 and figure 8, the average size of 

proteins in PDBs25 set is 173 residues and most are much smaller fragments compared to 
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other datasets. It has been reported that small fragments could not be predicted well using 

PONDR VL-XT [Romero, P et al, 2001]. 

To apply the Charge-Hydropathy Plots for disorder prediction, the mean net 

charge and the mean normalized Kyte-Dollittle hydropathy were calculated for each 

protein in all five datasets, and the optimal boundary between the ordered and disordered 

proteins in charge-hydropathy space was determined by the procedure described.  The 

percentage of wholly disordered proteins in three TF datasets is 28.70% for TFNR25, 

23.80% for TFSPNR25, and 26.06% for TFSPTRENR25 (Figure 11). The percentages are 

much smaller than that predicted by VL-XT, but it is still substantially higher in 

comparison with RandomACNR25 (10.36%) and PDBs25 (16.99%). Comparing the 

percentage of wholly disordered proteins in all five datasets predicted by CDF and  
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Figure 11: Prediction of Wholly Disordered TF by Charge-hydropathy Plots 
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Charge-Hydropathy methods, we found that the discrepancy in all datasets (except 

PDBs25) caused by the two different predictors was sizeable. The wholly disordered rate 

in all 4 datasets (TFNR25, TFSPNR25, TFSPTRENR25, and RandomACNR25) predicted 

by CDF was much higher (from 2.78 - to 2.94) than that predicted by Charge-Hydropathy 

plots. Surprisingly, the wholly disordered percentages in PDBs25 predicted by these two 

methods are almost the same (17.75% vs 16.99%). This different magnitudes of disorder 

predicted between these two methods is similar to other published estimates that CDF 

analysis predicts from 1.2 – to 2.2 – fold more sequences to be disordered than charge-

hydropathy [Oldfield, CJ et al, 2005].  As argued in these reports the difference in 

predictions by these two classifiers may be physically interpretable, in terms of the 

protein trinity model [Dunker, AK and Obradovic, Z.: 2001] or related protein quartet 

model [Uversky, V. N 2002]. On other hand, these two predictors probably caught two 

different stages (model) of proteins for their prediction.   Proteins predicted to be 

disordered by the Charge-Hydropathy approach are likely to belong to the extended 

disorder class, on other hand, PONDR-based approaches can discriminate all disordered 

conformation (coil-like, premolten globules and molten globules) from rigid well-folded 

proteins, suggesting that charge-hydropathy classification is roughly a subset of PONDR 

VL-XT, in both predictions of disorder and feature space.  

Regardless of the differing degree of disorder between these two prediction 

methods, both approaches predicted TF datasets to contain a significant higher portion of 

disordered proteins than either of the two control sets. It confirms the trends discovered 

by several individual case studies on a small number of TFs crystallized to date [Dyson 

HJ and Wright PE. 2005]. 
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VI.C TF COMPOSITIONAL SPECIFICITY  

The residue-wise composition of the TF sets (TFSPTRENR25, TFSPNR25, and 

TFNR25) and the two control datasets (RandomACNR25 and PDBs25) were calculated to 

assess any specificity present therein.  To visualize the differences between TF datasets 

and controls, the relative compositions were calculated as described by Romero et al, 

2001. The amino acids in Figure 12 (a) and (b) are arranged from the most rigid at the 

left to the most flexible at the right according to the scale of Vihinen et al. This scale is  

based on the averaged B-factor values for the backbone atoms of each residue type as 

estimated from 92 proteins. As the developers of this scale pointed out, the ranking does 

not reflect intrinsic flexibility, in which case G would have the highest rank. Rather, the 

ranking depends on the degree to which a given side chain tends to be buried (low 

ranking) or exposed (high ranking) in the crystal structure of globular proteins. The  
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Figure 12 (a): Amino Acid Compositions of TF compared to PDBs25 
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Figure 12 (b): Amino Acid Compositions of TF compare to RandomACNR25 

 

amino acids to the left have been called order-promoting and those to the right disorder-

promoting [Dunker et al 2001]. 

Overall, the amino acid compositions of TFNR25, TFSPNR25, and 

TFSPTRENR25 are similar to each other but different from the two control sets. Like 

most other intrinsically disordered proteins [Dunker et al 2001, Romero et al 2001], all 

three TF datasets are substantially depleted in W, F, I, Y, and V from 20% to 50% (shows 

as the negative peaks in Figures 12(a) and 12 (b)), and significantly enriched in Q, S, and 

P from 30% to over 60% (e.g. the positive peaks for Q, S, and P in Figure 12(a) and 12 

(b)) with only a few exceptions (especially H at left side, and G, and N at right side). 

Obviously, the results of the composition for all three TF datasets not only exhibit most 

of the amino acid compositional bias presented by disordered proteins, but also reflect the 
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signature of TFs for DNA and protein binding. For example, H and C are highly over-

represented in TF datasets because nearly a half of TFs contain several zinc-fingers 

[Tuple et al 2001] and one popular type of Zinc-finger is C2H2. Zinc-finger has been 

characterized to play an important role in the overall recognition of DNA targets [Wolfe 

et al 1999].  Additionally, high occurrence of proline and glutamine in these proteins also 

suggests that these residues may contribute to conformational flexibility needed during 

the process of co-activators or repressors binding in transcriptional activation.  

VI.D DISORDER IN TF DOMAIN AND SUBDOMAIN 

To better understand and gain insight into the association between TF functions 

(DNA binding and transcriptional regulation) and their intrinsically disordered or ordered 

structure, we systematically dissected various annotated domains in one of the TF 

datasets (TFSPNR25) to analyze the region of disorder or order coupling with established 

function. The domain annotation was extracted from TFSPNR25 dataset in the Swiss-Prot 

format. The disorder predictions were calculated, and grouped based on the ‘key name’ 

combined with ‘description’ in corresponding feature table as described in the Materials 

and Methods section. One may notice that some subdomain (motif) name is different 

from the list of 53 DNA-binding domains in Pfam models reported by several groups 

[Zupicich J et al, 2001; Stegmaier P. et al 2004]. This is because of the varied methods 

for domain annotations and classifications used in Swiss-Prot.  

Table 6 shows the intrinsic disorder prediction with PONDR VL-XT on DBDs. 

From this table, we observed that Basic Domains was one of the most popular motifs 

among the DBDs of TFSPNR25. Its average length is 18.1, and the shortest and longest  
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Table 6: The Order/Disorder Region in TF DBD 

Motif Name
Num. of 

Motif 
Average 
Length Shortest Longest 

Disorder 
Residues

Overall 
Disoder 

Disorder 
Score

DNA-BIND 8 81.38 1 111 17.75 21.81% 0.3061
DNA_BIND: A.T hook 19 12.21 9 15 12.11 99.14% 0.9703
DNA_BIND: AP2/ERF 12 58.42 58 59 25.75 44.08% 0.4947
DNA_BIND: Basic motif 98 18.12 4 33 17.51 96.62% 0.9156
DNA_BIND: By-similarity 20 100.20 7 191 16.50 16.47% 0.2416
DNA_BIND: Copper-fist 4 40.00 40 40 12.75 31.88% 0.3624
DNA_BIND: CUT 7 87.86 87 88 38.14 43.41% 0.4517
DNA_BIND: DM 3 47.33 47 48 19.33 40.85% 0.4450
DNA_BIND: DNA-binding motif 2 23.50 10 37 0.00 0.00% 0.1035
DNA_BIND: ETS 14 82.00 81 85 17.43 21.25% 0.2748
DNA_BIND: Fork-head 20 92.75 87 97 16.00 17.25% 0.2238
DNA_BIND: H-T-H motif (potential 19 20.05 19 22 7.58 37.80% 0.4177
DNA_BIND: HMG box 39 70.33 65 114 32.41 46.08% 0.4504
DNA_BIND: Homeobox 91 60.73 56 81 28.42 46.80% 0.4897
DNA_BIND: Mef2-type (potential) 5 29.40 29 30 3.80 12.93% 0.1903
DNA_BIND: Myb 15 50.73 26 77 24.60 48.49% 0.4911
DNA_BIND: Nuclear-receptor-type 8 73.38 66 77 28.88 39.35% 0.3763
DNA_BIND: Potential 10 76.30 2 141 30.10 39.45% 0.4559
DNA_BIND: T-box 13 164.69 64 188 20.08 12.19% 0.1638
DNA_BIND: TF-B3 5 103.00 103 103 16.00 15.53% 0.2451
DNA_BIND: Tryptophan pentad re 5 102.20 101 103 28.60 27.98% 0.3163
DNA_BIND: WRKY 66 66.61 65 71 20.80 31.23% 0.3632
DNA_BIND: Zn(2)-Cys(6), fungal-t 13 28.62 27 31 13.77 48.12% 0.4572
ZN_FING: C2H2-type 1016 23.69 12 38 2.25 9.50% 0.1584
ZN_FING: PHD-type 29 52.97 44 62 4.34 8.20% 0.1337
ZN_FING: C4-type 21 24.10 18 36 6.33 26.28% 0.2593
ZN_FING: GATA-type 21 25.10 25 26 0.81 3.23% 0.0969
ZN_FING: C2HC-type 19 24.42 18 27 1.89 7.76% 0.1538
ZN_FING: RING-type 17 44.24 36 57 5.35 12.10% 0.1540
ZN_FING: B box-type 13 45.62 41 54 4.38 9.61% 0.1592
ZN_FING: MYM-type 9 40.67 35 59 0.22 0.55% 0.0799
ZN_FING: Zn-ribbon 9 26.44 23 39 0.11 0.42% 0.2034
ZN_FING: Dof-type 7 55.00 55 55 16.00 29.09% 0.3199
ZN_FING: MYND-type 3 37.00 37 37 1.67 4.50% 0.1099
ZN_FING: CHC2-type 2 23.00 23 23 0.00 0.00% 0.0111
ZN_FING: RanBP2-type 2 30.00 30 30 3.00 10.00% 0.1569
ZN_FING: U1-type 2 25.00 25 25 6.50 26.00% 0.2928

Average 0.3107  

 

lengths are 4 and 33 residues, respectively.  The average number of disordered residues is 

17.5 and the overall percentage of disorder is significantly high, 96.6%. This data 

demonstrated that the region of basic motif in TF is highly unstructured or disordered. 

Our computational prediction has been strongly supported by following experimental 

data. In the early 90’s, it was demonstrated that the basic regions of the bzip protein Fos 

and Jun [Patel, L et al 1990], C/EBP [Shuman J.D. et al 1990] and GCN4 [O’Neil, KT et 

al 1990] are unfolded off their DNA sites. The basic motifs were characterized by a large 
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excess of positive charges, preventing them from being structured when free in solution, 

but becoming α-helically folded when interacting with DNA [Weiss, M.A. et al 1990]. 

Usually, basic motif appears in tight connection with a dimerization domain like a leucine 

zipper (ZIP) helix (HLH). The flexible highly disordered basic region mediates the high-

affinity and sequence-specific DNA binding after a prerequisite of dimerization via an 

induced-fit recognition of DNA [Anthony-Cahill SJ et al 1992; Drew H and Travers A. 

1985; Ferre-D’Amare’ AR et al 1994].  

The results shown in Table 6 demonstrated that C2H2 zinc finger domain was not 

only the most prevalent, but also one of the highest ordered DNA-binding protein motifs 

among DBDs. Its overall percentage of disorder is as low as 9.5%.   Five classes 

currently populate the super-class of zinc coordinating domains. The five classes are 

C2H2, C4, DM, GCM and WRKY. zinc finger motifs were originally identified as DNA 

binding structures in the RNA polymerase III transcription factor TFIIIA, which binds to 

the internal control region of the 5S RNA gene [J. Miller, et al 1985]. Since Wright and 

coworkers determined the first structure of an isolated zinc-finger domain by solution 

NMR [Lee MS, et al 1989], at least two types of zinc fingers (the classic ‘zinc finger’ 

proteins and the steroid receptors) have also been found in TFs that mediate transcription 

mediated by PolII. C2H2 type of zinc finger motif is prevalent in the mammalian TFs and 

other higher or lower eukaryotes [Tuple, et al 2001] (Figure 3). It consists of average 24 

amino acids (the shortest is 12, and the longest is 38 residues as shown in Table 6) with 2 

cysteine and two histidine residues that bind zinc ion and folds the relatively short 

polypeptide sequence into a compact domain. The highly ordered zinc motif provides a 
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rigid and stable structure for docking arrangement and base recognition to insert its α-

helix into the major groove of DNA [Wolfe SA et al 1999].  

One of extremely important DBDs is Helix-Turn-Helix domain. There are five 

classes in the helix-turn-helix superfamily. It includes Homeobox, Paired, Forked/winged 

helix, Tryptophan clusters, and Myb domain. The analysis of PONDR VL-XT predictions 

on this class of protein domains demonstrates that predicted disorder followed the 

ranking Myb>Homeobox>Tryptophan clusters> Forked/winged helix (Table 6). The 

percentage of overall disordered residues is 48.49% 46.8%, 27.98%, 19.22%, and 

17.25%, respectively.  

The motif that has near 100% of overall disorder among the DBDs (Table 6) is 

the ‘A-T hook’. AT-hook is a small DNA-binding protein motif that was first described 

in the high mobility group non-histone chromosomal protein HMGI/Y, and it 

preferentially binds to the narrow minor groove of stretches of AT-rich sequence. HMG-

type and T-box are classified to be the group of B-scaffold domains with minor groove 

contacts according to this specific DNA binding feature. HMGI/Y was first identified by 

high electrophoretic mobility among the nuclear proteins, and participates in a wide 

variety of cellular processes including regulation of inducible gene transcription. Recent 

advances have contributed greatly to our understanding of how the HMGI/Y proteins 

participate in the molecular mechanisms underlying these biological events. Various 

physical studies, including NMR spectroscopy, have demonstrated that, as free molecules 

in solution, the HMGI/Y proteins have no detectable secondary or tertiary structure.   
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Like many other eukaryotic proteins, most of zinc finger motifs act as 

independently folded globular domains (ββα) that are separated by flexible linker 

regions. The linker region is an important structural element that helps control the 

spacing of the fingers along the DNA site. To better understand the requirements for the 

linker and its role in DNA recognition, we dissected the linker region connecting two 

C2H2 zinc fingers in TFSPNR25 set to predict its intrinsic disorder, and to analyze the 

amino acid composition in this region. The results presented in Table 7 indicate that  

 

Table 7: Intrinsic Disorder in C2H2 linker 
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linker sequences between two C2H2s vary greatly in length and composition, but more 

than half of linkers (518 in length of five-residues out of total 878 in various lengths) 

have five residues between the final histidine of one finger and the first conserved 

aromatic amino acid of the next finger. Over one quarter of the fingers (141 out of 518 in 
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lengths of five residues) with this linker length have a consensus sequence of the form 

TGEKP. The PONDR prediction (6.9% for overall disorder) for TGEKP suggests that the 

TGEKP linker is actually well ordered. It has been reported that the TGEKP linker 

between fingers is flexible in the free protein in NMR studies, but becomes more rigid 

upon binding DNA (Foster MP, et al, 1997; Bowers PM et al 1999; Wuttke DS et al 

1997). We also found that the magnitude of disorder increased as the length of linkers 

extended. The overall percentage of disorder is high as 65% when the linker length 

reaches 100 residues. The amino acid composition results also show that the zinc linkers 

not only have high occurrence of the five residues of the consensus sequence, TGEKP, 

but also show increased prevalence of some polar, uncharged amino acids (such as Ser 

and Gln), and are substantially depleted in order-promoting amino acids such as W, C, F, 

I, Y, V, L, and N (Figure 13).  Conclusive evidence that the linker length and composition  
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Figure 13: Amino Acid Composition for C2H2 Zinc-finger Linker 
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can influence both binding specificity and affinity, independently of the DNA-binding 

subdomains has come from several recently published studies  [Leeuwen HC et al 1997; 

Peisach E and Pabo CO, 2003; Jantz D and Berg JM, 2004].  

TF transcriptional activation depends on regions of as few as 30 to 100 amino 

acids that are separate from the DNA binding domain. So far, three different primary 

sequence motifs identified as the activation domains are acidic, glutamine-rich, and 

proline-rich. Deletion analyses of numerous transcription factors from mammals and 

Drosophila have identified several other classes that are rich in serine and threonine or 

other hydroxyl groups. However, some strong activation domains that are not particularly 

rich in any specific amino acid also have been identified. A few repression domains have 

also been identified; the best characterized is alanine-rich. Poor conservation of 

activation domain not only suggests that there are many targets and/or the interactions are 

generally non-specific, but also bring out the difficulty in completely covering the 

activation domain analysis in this study. Here we took only five different primary 

sequence motifs mentioned above for our study. The PONDR prediction indicates that 

the activation domain has highly tendency to be disordered (Table 8).  The overall 

disorder is from 77% to 94%. The structure of not even one activation domain has yet 

been solved so far, although the 3-D structures of the DNA-binding domains from 

numerous eukaryotic transcription factors have been determined. This fact has indirectly 

confirmed our finding that most transcriptional activation domains are either unstructured 

or partly structured (Table 7). The intrinsically unstructured nature of these activation 

domains provides strong supporting evidence of a physiological role for coupled folding  
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Table 8: Disorder in TF Activation Domain 
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and binding processes in transcriptional activation. Their inherent flexibility allows their 

local and global structure to be modified in response to different molecular targets, 

allowing one protein to interact with multiple cellular partners and allowing fine control 

over binding affinity. 

VI.E TOP 15 PREDICTIONS OF DISORDERED TFS  

  To provide illustrative examples of novel predictions of disordered TFs, the 15 

highest ranked TFs were then selected from a single organism, Homo sapiens, to avoid 

redundant orthologs in one of the TF datasets, TFSPNR25 (Table 8).  As a consequence 

of ranking TFs by overall percentage (above 80%) of disordered residues predicted by 

PONDR, these proteins represent extremes of long disordered regions and high 

disordered scores.  It is surprising to find that four wholly unfolded native proteins 

(HMGI-14, HMCI-C, SOX-15, and SOX-3) among these top 15 disordered TFs belong to 
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one superfamily, High Mobility Group (HMG). HMG is composed of three different 

families that have recently been renamed HMGA (a.k.a. HMGI/Y), HMGB (a.k.a. HMG-

1 and -2) and HMBN (a.k.a. HMV-14 and -17) [Bustin, 2001]. HMG proteins are the 

founding members of a new class of regulatory elements called ‘architectural  

 

Table 9: Top 15 Human TFs from TFSPNR25 with >80% of Residues Predicted 
to be Disordered 
 

 

 

 

 

 

 

 

 

 

 

 

 

transcription factors’ that participate in a wide variety of cellular process including 

regulation of inducible gene transcription, integration of retroviruses into chromosomes  
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and the induction of neoplastic transformation and promotion of metastatic progression of 

cancer cells [Reeves R. and Beckerbauer 2001]. All members of the HMGA family are 

characterized by the presence of three similar, but independent copies of a conserved  

DNA-binding peptide motif (P-R-G-R-P) named AT-hook. Various physical studies, 

including NMR studies of a co-complex of individual AT hooks with a synthetic DNA 

substrate [J.R. Huth et al 1997], have elucidated the physical basis for recognition of the 

minor groove of AT-DNA by HMGA proteins. These studies also have demonstrated that 

the intrinsic flexibility of the unstructured HMGA proteins is a critical factor for substrate 

recognition.  

In addition to their unique AT-hook DNA-binding characteristics, another 

principal reason why the HMGA proteins are able to physically interact with a large 

number of other proteins, most of which are TFs is because of the intrinsic flexibility 

associated with the unstructured properties. It has been reported that at least 18 different 

TFs so far were shown to be specifically associated with HMGA proteins as determined 

by various experimental methods (Figure 14). The intrinsic flexibility and binding 

diversity of unstructured proteins has laid down the physical foundation for HMGA to act 

as hubs of nuclear function, and play the central role in the nucleus as sensors of a wide 

variety of different intra- and extra- cellular signaling events and as integrators and 

effectors of the plethora of cellular responses to these stimuli [Reeves, 2001].  

It is known that proteins, nucleic acids, and small molecules form a dense 

network of molecular interaction in a cell. Molecules are nodes of this network, and the 

interactions between them are edges. The architecture of molecular network can reveal 

important principles of cellular organization and function, similar to the way that protein 

 58



structure/unstructured tells us about the function and organization of a protein [Spirin V 

and Mirny LA 2003]. Regulation of gene expression involves a complex molecular  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: The HMGA1 protein acts as a ‘hub’ of nuclear function and interacts 
with at least 18 TFs in the nucleus.  
 
 
network. DNA-binding transcription factors (TFs) are one of the important components 

in this network. Recently, it has been reported [Jeong et al 2000 and 2001] that the more 

highly connected a protein node is (i.e. the more physically interacting partners it has), 

the more important it is for normal cellular function and the more likely that its removal 
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will be lethal to a cell. Since one of the major functional advantages for intrinsically 

disordered proteins is the ability to bind to multiple different targets without sacrificing 

specificity to form the flexible nets [Dunker et al., 2005], and is responsible for the 

binding diversity of the broad cascade of protein-protein interactions, it is reasonable 

assume that disordered TFs are prime candidates for being essential protein ‘hubs’ for 

controlling many aspects of biological activity. The HMGA could be a typical example 

for this model. 

Sox genes are a subgroup of specific HMG-box factors defined by similarity to 

Sry [Gubbay J, 1990], the mammalian testis-determining factor encoded by the Y 

chromosome, and are part of a larger family of transcription factors with DNA binding 

domains related to the general chromatin protein HMG1. Like other members in the 

HMG superfamily, the HMG-domain of Sox genes has interesting properties; it binds in 

the minor groove and induces a large bend in the DNA helix, prompting the suggestion 

that these proteins may have a chromatin architectural function. Unlike many members of 

the family, SOXs have restricted tissue specificity and exhibit a moderate degree of 

sequence specificity. Genetic analyses of Sox genes in humans, mice, and Drosophila 

melanogaster have demonstrated essential roles in specific cell fate decisions [Wagner T, 

et al 1994; Schilham MW, 1996]  

So far, the free-solution structure of neither hSRY nor mLEF-1 has been 

determined. Using calorimetric measurements, the mSox-5 HMG box have shown that 

significant levels of protein refolding occur on association, in addition to the DNA 

bending [Crane-Robinson C et al 1998; Privalov et al. 1999].   
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The undergoing DNA-dependent order-disorder transition of Sox domains 

appears to play an important role for the adaptability of the motif’s angular surface to 

enable a Sox protein to induce different architectures in different functional contexts. We 

can imagine that target genes for a given factor will differ, for example, in the precise 

sequence of Sox binding sites and its combinatorial relation to other factor-binding sites 

in the same promoter or enhancer. Because context-dependent changes in overall 

architecture may differentially affect transcription, a single factor may exert fine control 

over relative levels of expression within a set of target genes.   

VI.F TF DISORDER IN DIFFERENT SPECIES 

Table 10 lists top 11 popular species and its prediction of disorder in the 

TFSPNR25 dataset. The results demonstrate that there are clear patterns show that TFs 

from eukaryotes have more intrinsic disorder than those from bacteria. TFs in eukaryotes 

are distinguished from these in bacteria by having the highest percentage of sequences 

predicted to have disordered segments >=50 in length: from 56% for Mouse-ear cress to 

77% for human. In contrast, the percentage of sequences predicted to have disordered 

segments >=50 in length in prokaryotes ranged from 12.5% to 15%.  One argument is 

whether the length of sequences contributes to the percentage difference between 

eukaryotes and bacteria since the average length of sequence in eukaryotes is longer than 

that in bacteria. The overall percentage of disordered, one measurement regardless of 

sequence length, indicates clearly that eukaryotic TFs have higher overall disordered rate 

than prokaryotic TFs. There is so far no conclusive evidence but there are some hints to 

explain why there is a large increase in intrinsic disorder for the eukaryotes. One of the 

explanations is that eukaryotes have well-developed elaborated gene transcription system, 
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and this system is in great need of TF flexibility. The intrinsically disordered TFs or 

partially unstructured regions can offer such important advantage in response to different  

 

Table 10: TF Disorder in Different Species 
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molecular targets, allowing one protein to interact with multiple cellular partners and 

allowing fine control over binding affinity.  In contrast, prokaryotes are subject to strong 

selective pressure on biochemical efficiency and do not have highly-regulated gene 

regulation system.  

 

 

 

 

 

 62



VII. CONCLUSIONS 

Our results have demonstrated that the percentages of intrinsically disordered 

proteins in the three TF datasets were significantly higher than in the other two control 

sets. This prevalent phenomenon implies that intrinsic disorder in TFs may play a critical 

role in molecular recognition, DNA binding, and transcriptional regulation. Intrinsic 

disorder enables DNA-protein or protein-protein interaction with low affinity coupled 

with high specificity and also facilitates the binding of one molecule to many partners.  

The amino acid compositions of the three TF datasets differ significantly from the 

two control sets. All three TF datasets are substantially depleted in order-promoting 

residues such as W, F, I, Y, and V, and significantly enriched in disorder-promoting ones 

such as Q, S, and P. The TF compositional specificity not only exhibits most of the 

amino acid compositional bias presented by disordered proteins, but also reflects the 

signature of TFs for DNA and protein binding. 

Disorder predictions on TF domains showed that the AT-hook and basic region of 

DBDs were highly disordered. The C2H2 zinc-fingers were predicted to be highly 

ordered; however, the longer the zinc finger linkers, the higher the predicted magnitude 

of disorder. Overall, the degree of disorder in TF activation regions is much higher than 

that in DBDs.  

Our data confirmed that the degree of disorder was significantly higher in 

eukaryotic TFs than in prokaryotic TFs, and suggested that eukaryotes have well-

developed elaborate gene transcription system, and this system is in great need of TF 

flexibility. The intrinsically disordered TFs or partially unstructured regions can offer 
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such important advantage in response to different molecular targets, allowing one protein 

to interact with multiple cellular partners and allowing fine control over binding affinity. 
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