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SUMMARY 

The thermal design of equipment and processes in which thermal 

radiation is an important mode of heat transfer demands an adequate 

knowledge of the thermal radiation properties of materials. The research 

described in this thesis is directed toward the application of quantum 

concepts to an interpretation of the physical basis of the thermal radi­

ation properties of metals. Emphasis is placed on the development of 

theoretical relations which can be used in the routine correlation and 

prediction of these properties. 

A simplified model of the atomic system is proposed in which it 

is assumed that absorption and emission in metals are the result of 

second-order processes involving simultaneous electron-photon and elec-

tron-phonon interactions. A perturbation solution of the Schroedinger 

equation is obtained and the second-order transition probabilities are 

computed from which the energy expenditure of the field is determined. 

The results can be interpreted in terms of an electron-phonon damping 

coefficient which is added to damping terms which account for electron-

electron and electron-impurity interactions. The bulk absorptivity is 

obtained when the total damping coefficient is used in the dispersion 

relations. The result explicitly indicates the temperature-dependence 

and frequency-dependence of the normal monochromatic emissivity. 
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CHAPTER I 

INTRODUCTIOH 

The expansion of aerospace technology during the past decade has 

stimulated interest and activity in the field of radiation energy exchange 

between solids and their environment. Heat transfer "by radiation is the 

principal thermodynamic process by which spacecraft maintain thermal bal­

ance, It is also an important mode of energy transfer for high-velocity 

bodies entering a planetary atmosphere. However, interest in thermal 

radiation is no longer confined to aerospace and military hardware systems, 

The demand for new processes and materials has led to numerous industrial 

systems in which operating temperatures are sufficiently high that radia­

tion becomes an important mode of heat transfer. 

The design of equipment in which thermal radiation is important 

usually involves the calculation of the net radiative heat transfer be­

tween various points in the system or between the system and its environ­

ment. Knowledge of the thermal radiation properties of surfaces is basic 

to any such analysis. The accuracy of even the most sophisticated analysis 

ultimately depends on the accuracy with which the thermal radiation prop­

erties are known. The choice of a mathematical technique to solve the 

often complicated equations of radiative transfer is of little concern if 

only crude estimates of the surface properties are available. 
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Considerable effprt has been devoted to the experimental determi­

nation of the emittance, absorptance, reflectance and transmittance of 

various solids and fluids under a wide variety of test conditions. How­

ever, the theoretical aspects of thermal radiation properties have re­

ceived only limited attention. Very few researchers in the engineering 

sciences have addressed themselves to the fundamental question of the 

nature of the physical phenomena which arise when a thermal radiation 

field interacts with matter,. The research described in this thesis is 

directed toward the investigation of the physical principles which underly 

the phenomena manifested by the thermal radiation properties of solids. 

Emphasis is placed on the use of quantum mechanics to explain and corre­

late the wavelength and temperature dependence of the emissivity with 

particular attention devoted to the importance of thermal lattice vibra­

tions. Although much of the theory is applicable to all solids, the final 

theoretical expressions are developed only for electrically conductive 

solids, i.e. metals. 

Thermal Radiation Properties of Opaque Solids 

The thermal radiation properties of a solid characterize the de­

gree to which that solid can exchange energy with a thermal radiation 

field. These properties appear in an energy balance for an element of 

area on the surface of a solid which is exchanging energy by radiation 

with its surroundings. Their definitions and phenomenological nature 
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have been extensively treated in the literature (1,2). We shall adopt 

the terminology convention in which terms such as emissivity, absorptivity 

and reflectivity refer to properties of a material whereas terms such as 

emittance, absorptance and reflectance refer to the property of a partic­

ular specimen (3)„ Accordingly, emissivity, for example, is a property 

of an ideal specimen which is homogenous, chemically clean and has sur­

faces with a roughness much smaller than the wavelength of the incident 

radiation field. It is a characteristic of the material independent of 

the size or shape of the specimen. Experimental measurements yield values 

of the emittance which depend on the conditions of the specimen surface. 

For specimens which are very clean and have nearly optically smooth sur­

faces, the measured emittance approaches the emissivity. 

The present research is concerned with the emissivity e of opaque, 

electrically-conductive solids. In many engineering applications it is 

assumed that Kirchhoff *s law applies in such a manner that the emissivity 

and the absorptivity of are equal, 

<*=.« (1) 

This is never exactly valid for a system in which there is non-zero heat 

transfer; nevertheless, it is nearly always assumed to be true for engi­

neering calculations. 
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The absorptivity and reflectivity are related by the conservation 

of energy, 

cv + P - 1 (2) 

The relations expressed in Eqs. (l) and (2) allow a radiative heat trans­

fer analysis to be carried out when values of only one of the radiation 

properties are known. The same relations hold for monochromatic radiation 

properties, i.e., 

1 - px = a\ = ex (3) 

The total emissivity is related to the monochromatic emissivity by defi­

nition, 

e = -*B " \ 1 jexEbxd^ (±) 

kx^ ^ ° 

where E ^ is the monochromatic emissive power of a blackbody at tempera­

ture T in the same surroundings as the specimen. Thus, for many engi­

neering calculations, it is sufficient to consider only the monochromatic 

emissivity of the surfaces. 
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The emittance of a solid surface is a function of several param­

eters which describe the external radiation field and the nature of the 

surface: 

(1) The wavelength of the electromagnetic field; 

(2) The state of polarization of the field; 

(3) The temperature of the emitting surface; 

(4) The polar and azimuth angle at which the emission of the sur­

face is observed; and 

(5) The physical and chemical condition of the surface. Mono­

chromatic emittance is determined by measuring the intensity and state of 

polarization of the emitted radiation at a particular wavelength and for 

a range of surface temperatures in all directions above the surface. 

This must be accompanied by a complete description of the condition of 

the specimen surface. 

The wavelength and state of polarization of the field and the tem­

perature of the surface are well-defined variables. Similarly, the polar 

and azimuth angles are defined by the arrangement of the experimental 

apparatus. However, a lack of adequate description of the surface condi­

tion has reduced the usefulness of much of the emittance data reported in 

the literature. If heat transfer by thermal radiation is critical in an 

engineering system, it is usually necessary for the designer to conduct 

measurements of the emittance of the particular surfaces to be employed 
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in the design. He can use values from the literature only if he has care­

fully defined the surface conditions and is fortunate enough to find pub­

lished data for nearly the same surface conditions. 

The surface condition of a particular specimen of a given material 

can be considerably different from that of another specimen of the same 

material. This can lead to markedly different values of emittance. The 

problem of surface condition is illustrated in Figure 1 which shows the 

total normal emittance of coated molybdenum as a function of tempera­

ture (4). The inconsistency of the data demonstrates the need for ade­

quate surface specification and also gives an indication of the enormous 

amount of data which would be required to satisfy the general engineering 

need. 

The relatively large number of variables upon which the emittance 

depends and the wide variety of possible surface conditions provide an 

explanation for the fact that experiment is, at present, more advanced 

than theory in the study of the thermal radiation properties of solids. 

The need for data has stimulated the development of many experimental 

methods for the measurement of the emittance or reflectance of various 

materials over wide temperature ranges. The theory, however, has been 

neglected. Only a few preliminary attempts have been made to overcome 

the serious inadequacies of the classical theory of the optical properties 

of solids first developed by Drude (5). The lack of effort devoted to 
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theory is undoubtedly due in part to the emphasis placed on experimental 

studies and the difficulties encountered in attempts to develop theoret­

ical models which are useful in engineering analysis and correlation. 

The Meed for Theoretical Studies 

One of the most important incentives for undertaking the theoret­

ical study of the thermal radiation properties of solids is a desire for 

a better understanding of the fundamental physical phenomena which give 

rise to these properties. Experimental studies can yield the emittance 

data required in thermal design; however, unless combined with theory, 

they provide no insight into what occurs when a thermal radiation field 

interacts with a solid. As is the case with most phenomenological coef­

ficients, the thermal radiation properties can be utilized in the design 

of hardware or processes without an understanding of the related physical 

phenomena. Nonetheless, it is reasonable to expect that a more thorough 

knowledge of the physics involved would contribute to improved design and 

analysis methods. 

In addition to the intrinsic desirability of an enhanced basic un­

derstanding of radiation properties, an additional justification of theo­

retical studies is their use to interpolate and extrapolate property data 

originally obtained over relatively short wavelength and temperature ranges. 

For example, an adequate theory could be used to prepare high-temperature 

monochromatic emissivity curves when only room-temperature experimental 



data were available, thereby eliminating, in some cases, the necessity 

for high-temperature measurements. Empirical relations could be used 

for the same purpose; however, the temperature coefficient of monochro­

matic emissivity is a function of wavelength for most metals, as shown in 

Figure 2. Therefore, it would require a considerable amount of experi­

mental data to generate empirical relations. The availability of such 

data would reduce the value of the resulting relations. 

The utilization of theory in the development and evaluation of 

experimental apparatus and methods is another reason for conducting theo­

retical studies of the thermal radiation properties of solids. Also, an 

accurate theory, which would necessarily be based upon the atomic nature 

of the material, could conceivably be applied to the formulation of mate­

rials with specifically designed and controlled thermal radiation charac­

teristics. This latter application is well beyond the extent of the theory 

described in this thesis. Hopefully, however, the present theory might 

indicate the directions to be taken in a more complete analysis. 

Wave Propagation in a Conducting Medium 

Energy exchange by thermal radiation is an electromagnetic wave 

phenomenon and is thus closely related to the phenomena described in phys­

ical optics. Energy is transported through space in the form of an elec­

tromagnetic field. When the field encounters an atomic system, such as a 

solid, it interacts with this system. Energy can be reflected or absorbed 
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by the system or transmitted through it. If the atoms or molecules absorb 

energy and are thereby excited to higher energy levels, they can emit 

energy into the radiation field. It is this multi-faceted interaction be­

tween electromagnetic radiation and matter which gives rise to the thermal 

radiation properties. 

The nature of the thermal radiation properties depends on whether 

the material is a conductor or a dielectric. The research described herein 

is limited to the study of the characteristics of conducting solids, i.e. 

metals. We are thus concerned with the manner in which electromagnetic 

radiation propagates in a conducting medium. A metal with finite elec­

trical conductivity will exhibit Joulean heating when subjected to an 

electromagnetic field. Such heating is an irreversible thermodynamic 

process; hence, the field is attenuated as it penetrates the metal and 

energy is absorbed. Because of their high electrical conductivity, metals 

exhibit strong absorption and require only a small thickness to be essen­

tially opaque. 

The thermal radiation characteristics of homogeneous materials with 

smooth surfaces can be computed if the optical constants n and k are 

known as functions of temperature and wavelength. The single exception 

to this is the case of metals at low temperatures where the anomalous skin 

effect becomes important. The index of refraction n and the extinction 

coefficient k constitute the real and imaginary parts, respectively, of 

the complex index of refraction of a metal, 
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n = n - ik (5) 

This parameter appears in a macroscopic analysis of the propagation of a 

wave through a conducting medium. We shall therefore commence our analysis 

with a brief review of this phenomena. 

When an electromagnetic field is incident on a metal the resulting 

macroscopic phenomena can be described with the aid of the classical 

Maxwell field equations. If the metal is characterized by a conductivity 

a _, a dielectric constant e* and a permeability y, } the Maxwell equa­

tions are (6) 

7 x H = ~ — + — sE (6) 
c fct c 

Vx^.itM (7) 
c dt 

7 • E = 0 (8) 

7 • H = 0 (9) 

where E is the electric field vector, H is the magnetic field vector 

and c is the speed of light in vacuum. To maintain consistency with the 

pertinent literature in the field of optics, the Gaussian system of units 
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shall be employed. Thus the electrical quantities will be represented in 

electrostatic units and the magnetic quantities in electromagnetic units. 

Elimination of the magnetic field vector from Eqs. (6) and (7) yields the 

equation for a damped wave, 

_̂  -̂  2 ^ -> 
7 2 E = y£ L J E + 4TTU,°T SE ^ 1 0 j 

c2 at2 c2 Bt 

Similarly, the magnetic field vector also satisfies the wave equation, 

72H = M. d H + 4rrU'q' M (11) 
c 2 9 t 2 c 2 a t 

If the field is monochromatic with angular frequency u) } the field vec­

tors can be written as E = E0e"
1U) and H = Hoe"1U) . The differential 

operators then become a/at = -iu) and a2/dt2 = -uo2 and Eq. (10) becomes 

7^= UW £•+ iil£)T (12) (r+iM) 

If we define a complex dielectric constant as 

e = e + i — (13) 
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then Eq. (12) is of the same mathematical form as the corresponding equa­

tion for dielectric media (7). In a non-conducting material the dielec­

tric constant is equal to the square of the index of refraction. Hence, 

the formal analogy between conductors and dielectrics can be extended by 

defining a complex index of refraction for conducting materials, 

n2 = (n-ik)2 = e (14) 

The permeability is defined in terms of the magnetic susceptibility x 

as 

U, = 1 + 4TTX (I5) 

For metals, throughout the visible and infrared portions of the spectrum, 

X is of the order 10"^. Thus, to a high degree of accuracy, we can 

approximate y, by one dyne statamp.-2 for metals (6). 

The real and imaginary parts of the complex index of refraction, 

i.e. the refractive index and the extinction coefficient, are given in 

terms of the real and imaginary parts of 

n2 = n2 - 2ink - k2 = e + iiHZ (16) 
00 



which yields 

* - *[{• * p?f}1 / 2 - *] 

Hence, the optical properties of metals can be expressed in terms of the 

dielectric constant and the conductivity, both of which must be regarded 

as functions of frequency and temperature. These parameters are phenomen-

ological coefficients which are defined by the constitutive relations 

J = crE and D = "eE where J is the electric current density and D is 

the electric displacement vector. Relations for the optical properties 

which are based on Maxwell^ equations are valid regardless of the details 

of the atomic system. The latter enter only into attempts to relate a 

and "Q to the atomic parameters of the absorbing medium. Thus, although 

we might expect quantum effects to be important in the frequency and tem­

perature dependence of <y and "e* 3 we shall treat Eqs. (17) and (18) as 

independent of the particular choice of an atomic model. Before proceeding 

to the development of the atomic theory, however, it is necessary to state 

the relations between the optical properties of metals and their thermal 

radiation properties. 

15 

(17) 

(18) 
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Reflection and Refraction at a Metallic Surface 

When an electromagnetic field is incident on the surface of an 

opaque body a fraction of the energy is reflected and the remainder is 

absorbed. The emissivity and absorptivity of the body can be obtained 

from the reflectivity using Eq. (3). We have seen that the equation of 

propagation of a vave through a conductor is formally identical to that 

for a dielectric if we introduce a complex index of refraction. Thus the 

expressions which describe reflection and refraction at a surface are 

also the same if we use the complex index of refraction for metals. These 

expressions are the Fresnel equations (6). Consider the case of a wave 

propagating through a medium of refractive index n]_ and incident on the 

surface of a metal with complex index of refraction n . Let A be the 

amplitude of the electric vector of the field. We resolve A into a 

component Ap parallel to the plane of incidence and a component An 

normal to the plane of incidence. The Fresnel equations are then 

Rp = n c o s 9 " nl c o s a A (19) 

n cos Q + n̂_ cos a 

^ , m cos e - n cos tt An (2Q) 
n̂ _ cos 0 + n cos a 
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where Rp and Rn are the components of the amplitude of the reflected 

wave and 8 and Q, are the angles of incidence and refraction, respec­

tively, measured from the normal, as shown in Figure 3. The reflectivity 

is defined as the ratio of the reflected energy to the incident energy. 

The energy of a wave is proportional to the square of the absolute value 

of the amplitude; hence 

lR|2 • n - l ^ l
2 • o - lRn!2 

-7-7-7?5- > P-p - 1 - E J — > P n - - ! — S J — 

lA|2 P IAJ2 1.12 \H\* M 

or 

Pp 

Pn = 

2 
n cos 0 - nj_ cos a i (21.) 

n cos 8 + n-i cos a ' 

nx cos 8 - n cos Q? 2 (22) 

n, cos 8 + n cos a 

For the case of a wave incident normal to the surface from free space 

(nj_ = l) the normal reflectivity is 

(n-1) + k (r>x\ 
P P = Pn = : — t — 2 

(n+l)2 + k^ 
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Figure 3 . Geometry of Reflection and Refraction 
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The optical constants n and k are functions of frequency and 

temperature. Therefore the reflectivity also depends on the frequency of 

the field and the temperature of the solid. The normal monochromatic 

emissivity follows from Eqs. (3) and (23), 

4n (24) 
en((J),T) = 1 - Pn(w,T) = ( n + l ) 2 + k2 

The relation given in Eq. (24) provides a means to calculate the 

normal monochromatic emissivity if n and k are known as functions of 

frequency and temperature. In order to obtain the necessary relations, 

some form of atomic or microscopic model must be devised. The conductivity 

and dielectric constant of a metal appear in the wave propagation equa­

tions and indicate that the wave is attenuated as it propagates in the 

metal. This means that the atomic system of the metal absorbs energy 

from the incident field. The analysis of this absorption is a two-fold 

task: first, a suitable atomic model must be devised and, secondly, the 

laws of physics must be used to analyze the exchange of energy between 

this atomic system and the electromagnetic field. Initial attempts to 

explain the optical properties utilized the laws of classical physics. 

While the resulting theory contributed a great deal to our understanding 

of metals, we now recognize the fact that quantum physics is required to 

explain many of the observed phenomena. The research described in this 
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thesis is based on quantum-mechanical relations. The classical theory, 

however, provides an essential introduction to the atomic concept and, 

therefore, is presented in the next chapter. 
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CHAPTER II 

A REVIEW OF THE CLASSICAL THEORY 

OF THE OPTICAL PROPERTIES OF METALS 

In the previous chapter we have noted that the thermal radiation 

properties of metals can be expressed in terms of the optical properties 

n and k which, in turn, can be expressed as functions of the conductivity 

and the dielectric constant. Experiment shows that the so-called optical 

"constants" are dispersive, i.e. they are functions of frequency. Fur­

thermore, they vary with the temperature of the metal. These observa­

tions cannot be explained solely in terms of electromagnetic theory. The 

discontinuous structure of matter must be included in a more detailed 

microscopic analysis of the interaction between an atomic system and an 

incident electromagnetic field. 

Prior to the advent of quantum mechanics, interest in the micro­

scopic properties of metals centered around attempts to explain their 

high electrical conductivity when compared to dielectric materials. These 

attempts involved the development of a mechanical model of the atomic 

system and the subsequent application of classical mechanics to describe 

the changes induced in the model by the electrical forces due to an elec­

tromagnetic field. The most important of these early theories, and the 
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one on which much later development and refinement was based, was the 

free-electron theory of metals proposed by Drude. 

The Prude Free-Electron Theory 

Considering the stage of development of atomic theory in 1900, the 

model for metals proposed during that year by Drude (5) demonstrated con­

siderable insight. He suggested that metals can be treated as composed 

of an array of positively-charged metallic ions through which the valence 

electrons are free to move. This free-electron gas remains in thermal 

equilibrium with the ionic array. In the absence of an external electro­

magnetic field, the motion of each electron is random. When an electric 

field is imposed, the electrons are accelerated in the positive field di­

rection. This directed acceleration accounts for the presence of an elec­

tric current. If the electrons were free to move, however, they would 

accelerate indefinitely under the influence of a constant field. This 

would imply infinite conductivity. To explain the observed finite con­

ductivity of metals, Drude proposed that the valence electrons undergo 

frequent collisions with the lattice ions and that these collisions result 

in the loss of the drift momentum of the electrons. 

The mathematical formulation of the Drude model is obtained by con­

sidering the dynamics of a free electron subjected to a damping force which 

is proportional to the electron velocity and the force due to an electric 

field. The equation of motion of such an electron is 
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d ^ . „ a? * iuut (25) 
m —;r + mr — = eE^e 

d t 2 dt ° 

where m is the electron mass, e i s the electron charge, r is the 

posi t ion vector and T is a mean damping coeff icient . If , according to 

Drude's hypothesis, the electron d r i f t veloci ty is los t during co l l i s ions , 

then the average electron accelerat ion must vanish. For the x-component 

of motion, for example, the solution of the equation of motion must cor-

2/^2 respond to d x/dt = 0 . Thus 

dx _ eEx (26) 
dt " mr 

The average veloci ty i s defined in terms of the mean time between c o l l i ­

s ions , t 0 , 

_ f
t o 

v = ^ = l _ J ^ d t (27) 
x dt t 0 o 3t 

The conduction current density in the x-direct ion i s the product of the 

electron charge, the number of electrons per unit volume N and the av­

erage veloci ty in the x-di rec t ion , i . e . , 

s0Ex • Nevx = j g - Ex (28) 
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where <JQ is the dc conductivity corresponding to a constant field with 

zero frequency. Thus, the mean damping coefficient is 

p = Ke£ (29) 
rn.Gr, 

The current due to the motion of charged carriers is the sum of 

the polarization current a '(df/dt) and the conduction current CTE (8) 

J = c ' ^ + aE
 ( 3 0 ) 

at 

where a1 i s the p o l a r i z a b i l i t y of the medium re la ted to the rea l dielec­

t r i c constant by T = 1 + 4naf . Since E = E o e 1 ^ then dE/dt = iuuE 

and 

? = (a + to1)? (31) 

For suf f ic ien t ly long periods of t ime, the solution of Eq. (25) i s 

? = e/m f0e iuj t (32) 
-au^+iruu 

Thus 

rn.Gr
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r= Ne *l = (CT + ^.j i = N £ _ J » — i ^ (53) 
d t m (-a)2 + irw) 

Equating real and imaginary parts and noting that a • = (3* - 1)/4TT , 

we have 

m \o)2 + T2) 

i—^ttt 
From Eq. (34), when u) = o the dc conductivity is 

«o • g <*) 

Thus Eqs. (34) and (35) can be written 

V + r^ 

'°(^7&) 

(37) 

e = 1 - 4na0 / — i — - - | (38) 

The Drude theory t r e a t s the damping coefficient as non-dispersive 

or , frequency-independent, as can be seen from Eq. (29). The existence 
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of a non-zero V implies that each valence electron can move freely 

through the lattice for a period of time equal, on the average, to l/r 

It then undergoes a collision with an ion which absorbs all of the energy 

which has been gained by the electron due to the incident electromagnetic 

field. In a hypothetical'ideal metal in which the valence electrons do 

not interact with the lattice the damping coefficient is zero. The 

square of the complex index of refraction of such a metal is real and 

n.2 = , = r = l - ^ (39) 
muô  

For high frequencies the refractive index of an ideal metal is not only 

real but also less than unity corresponding to a condition of transparency. 

For frequencies sufficiently small that 4nNe2/muu<2 j_s greater than unity, 

the refractive index is imaginary and total reflection occurs. The second 

term in Eq. (39) is seen to contain the plasma frequency of a free-electron 

gas (9) 

,2\l/2 
(JO 
T = (*fT (40) 

In the case of a real metal, the behavior of the optical constants 

depends on the relative magnitudes of the frequency and the damping coef­

ficient. If T»X) , as might occur in the far infrared, the relations 



given by the Drude theory can be approximated by 

mr ° 

and 

T = 1 -
4nNe' 

mr2 

Then, f r o m E q s . (17) and (18 ) , 

n 
2 2nNe' 

mT 

r2 " 
— + 1 

2 
CD 

1 / 2 1 2rrNe' 

mTo) 

k' 
2 2nNe' 

mT2 

r2 

2 + 1 

1 1 / 2 
+ 1 

2irNe' 
mpju 

Hence, i f n»ou 

\ mru) / ^ cu / I « 

1/2 

we re v = 0}/2rr . I t follows from Eq. (23) t h a t 

(n - l ) 2 + n 2 _ _, 2 2_ 1̂ _ 1^_ _ 1 _ 
P ^ (n + l ) 2 n2 " ^ " n + n 2 " n 3 2n5 " 2n6 
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Then the normal monochromatic emissivity is 

Sn = l-p.2 £:-2^ + (̂ f
/2-••• 

This is the familiar Hagen-Rubens formula (lO), the only expression which 

has been used to any appreciable extent in correlating and analyzing 

thermal radiation property data. It represents a low-frequency approxi­

mation of the Drude free-electron theory. Usually only the first one or 

two terms are retained. 

The Hagen-Rubens formula has been used as the basis for the deri­

vation of several other emissivity relations. Aschkinass (ll) obtained 

an equation for the temperature-dependent normal emissivity by combining 

the first term in the Hagen-Rubens formula with an integration over the 

Planck distribution using a linear temperature dependence for the conduc­

tivity. Foote (12) derived a similar relation retaining the first two 

terms of the Hagen-Rubens formula. Davisson and Weeks (13) employed the 

Fresnel equations to develop an expression for the hemispherical emissivity. 

This expression was later extended by Schmidt and Eckert (14) who applied 

graphical integration techniques. More recently Parker and Abbott (15) 

have developed emissivity relations based on the Drude theory with a con­

stant finite damping coefficient. These various relations have been sum­

marized by Richmond, Dunn, DeWitt and Hayes (16). They are all, however, 

(44) 
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limited to an even smaller range of conditions than those under which the 

original Drude theory is valid since they represent only the low-frequency 

limit of the classical free-electron theory. 

The range of validity of the Drude theory as a means of computing 

the optical properties of metals has been discussed by Schulz (17) who 

compared a considerable number of experimental values of n and k with 

corresponding values predicted by the theory. He found excellent agree­

ment for liquid mercury and gallium over the entire frequency range for 

which data were available. Correlation was good for silver and gold at 

wavelengths longer than two microns. The results for copper were also in 

good agreement for wavelengths longer than two microns if the effective 

mass of the conduction electrons was taken to be 1.45 times the electron 

rest mass. Agreement could be obtained for aluminum at long wavelengths 

if an empirical value of conductivity was used which did not correspond 

to experimental values. 

The Drude theory was extended by Lorentz (18) who applied classical 

Maxwell-Boltzmann statistics to the electron gas. The potential field of 

the positive lattice ions was assumed to be constant in space and the 

electron-electron interaction was neglected. This modification indicated 

that the resistivity should be proportional to the square root of tempera­

ture rather than the observed linear dependence. This discrepancy is due 

in part to the fact that the electron gas obeys the Fermi-Dirac quantum 

statistics rather than Maxwell-Boltzmann statistics. The theory of Lorentz 
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was presented in 1909, almost two decades before the development of the 

Fermi-Dirac statistics. Although it provided a prediction of the temper­

ature dependence of dc resistivity, it was less satisfactory in predicting 

optical properties than the simple Drude theory. 

The shortcomings of the Drude theory would appear to be related 

to the inadequacies of the atomic model. It would seem unlikely that the 

damping coefficient for a real metal is non-dispersive. Furthermore, the 

classical free-electron theory does not account for the influence of the 

metal temperature. It is postulated that the electron damping is due to 

electron-lattice collisions. Such interactions should exhibit a tempera­

ture dependence because vibrations of the lattice ions are strongly in­

fluenced by temperature. These inadequacies can be overcome only by the 

development of a quantum theory. 

Classical Multi-electron Theory 

The original model proposed by Drude included the possibility that 

two different types of charge carriers might contribute to the optical 

properties of a metal. At the time, however, this postulate appeared to 

be inconsistent with the theory of the electron and Drude abandoned it in 

favor of the single free-electron theory described above. The latter 

formulation was not adequately tested until the 1950's when its restricted 

range of validity became apparent. In 1955, Roberts (19), recognizing the 

similarity between Drude's two types of electrons and the electron and 
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hole charges "which are important in semiconductor physics, revitalized 

the original Drude hypothesis. In his initial development Roberts limited 

his formulation to two free charge carriers and included a constant to 

account for the influence of bound electrons (19). He expressed the com­

plex dielectric constant as 

n2 = (n-lk)2 = K „ - i ^ - i ( - ^ _ + ̂ L _ ) (45) 
03 03 V (13 — i(JD-i 03 - i03o / 

where (7]_ and o^ are conductivites attributed to the two different 

charge carriers, 03]_ and 032 are the corresponding relaxation frequencies 

and Koo is the bound electron constant. Roberts used this expression to 

empirically correlate the optical properties of the noble and transition 

metals at room temperature. 

In a later paper Roberts (20) generalized his formulation to in­

clude any number of free charge carriers and any number of bound electrons, 

52_1+V__^2m lV^a_ (46) 

where 03sm , oirn , 5m , crn and Kom are arbitrary coefficients which can 

be independently adjusted to characterize a particular metal. The first 

summation represents the contribution of m bound electrons and the 

second summation accounts for n types of free carriers. Roberts found 
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that three free carriers and two bound electron terms were sufficient to 

correlate the optical data of nickel at temperatures from 88°K to 473°K. 

Tungsten, from 298°K to 2400°K, required two free terms and three bound 

terms. Roberts (2l) subsequently used the same expression with three 

free terms and a single bound term to correlate the optical data of copper. 

The Drude-Roberts multi-electron theory has been successfully used 

to fit curves to normal monochromatic emittance data for a wide variety 

of metals. Edwards and deVolo (22) applied the two-electron theory to 

correlate room temperature emittance for 22 metals and high-temperature 

values for nickel and platinum. Seban (23) used the same two-electron 

theory for the transition metals at room temperature and 2000°R employing 

the values of the arbitrary parameters deduced by Roberts. Woland (24) 

found that many of the parameters exhibit a simple logarithmic dependence 

on temperature and extended the multi-electron theory to include this 

observation. He also evaluated total normal emissivity for several metals 

by integrating the expression derived from the Drude-Roberts theory. 

Although the multi-electron theory is a useful tool in fitting 

curves to emittance data, it provides no insight into the physical mech­

anism of absorptivity or emissivity. A complicated algebraic expression 

is obtained when Eq. (46) is separated into its real and imaginary parts 

and the results used in Eq. (24). The many arbitrary coefficients which 

appear in the relations are purely empirical and can be determined only 
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by curve-fitting. As yet no theoretical interpretation of these coeffi­

cients has been proposed. In the case of a metal which requires, for 

example, three free terms and three bound terms, it is necessary to eval­

uate 15 arbitrary coefficients. Even if one or two of the coefficients 

could be related to atomic parameters, the influence of the parameters 

would be lost in the complexity of the expressions. 

Electrical Resistivity 

It is apparent from the preceeding discussion that the optical 

properties of metals, and hence the thermal radiation properties, are 

closely related to the electrical conductivity or, alternately, the elec­

trical resistivity. If the free-electron model is a reasonable approxi­

mation for metals, then the resistivity can be regarded as a measure of 

the electron damping. Metals exhibit resistivities of 1.5 to 150 micro-

ohm • centimeters at room tempterature. Insulators, on the other hand, 

have resistivities which are ten to twenty orders of magnitude larger. 

To a first approximation, the resistivity of most metals varies linearly 

with temperature at high temperatures but decreases more rapidly at low 

temperatures. 

It has been observed that experimental values of resistivity tend 

to approach a constant residual value as temperature approaches absolute 

zero. The resistivity can thus be regarded as consisting of a temperature-

dependent ideal resistivity pj_(T) and a temperature-independent residual 

resistivity p0 
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P = P0 + p±(T) , uo = o (47) 

This was first observed in 1860 by Matthiessen (25) who found that the 

change in resistance caused by a small concentration of an impurity metal 

in a solid solution was independent of temperature. The residual resis­

tivity is now attributed to the effects of impurities and Eq_. (47) is known 

as MatthiessenTs rule. The important item to note here is that the resid­

ual resistivity is independent of temperature which implies that, at least 

in the far infrared, any impurity contribution to the electron damping co­

efficient would also be temperature-independent. For most metals the re­

sidual dc resistivity is a small fraction of the total resistivity at 

room temperature (see Appendix i). 

The electrical resistivity is also related to the thermal conduc­

tivity as would be expected from the fact that metals are good conductors 

of heat as well as electricity. At a given temperature the thermal con­

ductivity K and the electrical conductivity o" are related by the 

Wiedemann-Franz law (26) 

2*: = constant \^) 
G 

In 1881, Lorenz (27) found that 
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K_ _ (49) 
CT ~ L 

where L is a constant now known as the Lorenz number. Sadykov (28) has 

incorporated Eq. (49) into the Hagen-Rubens formula to obtain expressions 

for emissivity as a function of -thermal conductivity. 

Emissivity Calculations from Classical Theory 

The use of classical theory to correlate and predict the normal 

monochromatic emissivity is illustrated in Figures 4, 5, 6, and 7 for 

copper, silver, gold and aluminum. The solid line represents the Hagen-

Rubens formula, Eq. (44), using the dc conductivity values given in 

Appendix I. The Drude-Roberts two electron theory, as correlated by 

Edwards and deVolo (22), is also presented. The data are the values of 

Edwards and deVolo (22) and the data curves of Gubareff, Jansen and 

Torborg (29). The Hagen-Rubens formula predicts emissivity values which 

are low in the visible and near infrared; however, the correlation im­

proves at longer wavelengths. It is interesting to note that, for the 

cases of copper and gold, the experimental data also lie above the Hagen-

Rubens line for wavelengths greater than ten microns. This might cause 

one to question the generally accepted statement that Eq. (44) is valid 

for wavelengths greater than about six microns (l). 

The two-electron theory, of course, exhibits good agreement with 

the data for wavelengths greater than about one micron. This is merely 
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a result of the fact that the arbitrary coefficients in the theory were 

selected to correlate the data of Edwards and deVolo. It is worthwhile 

to note that if these coefficients are selected to correlate the real 

and imaginary parts of the dielectric constant, they do not necessarily 

yield a good emissivity correlation. This is a result of the magnifica­

tion of computational inaccuracies which occur when n and k are com-

puted from rr- - k and 2nk and then e is computed from the optical 

properties. For example, if the coefficients used by Roberts (18) to 

p 
correlate the real and imaginary parts of ft are used to predict the 

normal monochromatic emissivity, poor agreement with experimental data is 

obtained. The two-electron theory is, therefore, essentially a means of 

fitting empirical curves to existing emissivity data. This fact, combined 

with the inaccuracies of the Hagen-Rubens formula, demonstrates the need 

for an improved theory of the thermal radiation properties. 
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CHAPTER III 

A QUANTUM INTERPRETATION OF THE 

THERMAL RADIATION PROPERTIES OF METALS 

It has been noted that the classical theory of the optical prop­

erties of metals is developed from the solution of the equations of motion 

of the valence electrons subject to an electromagnetic field described by 

MaxwellTs equations. Such an analysis yields the classical dispersion 

relations. These relations do not indicate temperature dependence and do 

not adequately specify the frequency dependence in the high-frequency por­

tion of the spectrum. Such effects cannot be explained without the aid 

of a quantum model. Although considerable progress has been made in the 

use of quantum mechanics to explain, both qualitatively and quantitatively, 

the dc electrical properties of metals, the quantum dispersion theories 

are, as yet, incomplete. However, the optical properties of metals are 

closely related to their electrical properties. It is reasonable to ex­

pect, therefore, that quantum descriptions of the properties of a metal 

under the influence of a static electric field would provide a valuable 

tool in the study of dispersion phenomena. Furthermore, certain aspects 

of the well-developed quantum theory of semiconductors should be applicable 

because metals and semiconductors exhibit many properties which differ 

only in degree. 
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The theory developed in this chapter represents an extension of 

the quantum theory of electronic conduction in solids to include disper­

sion effects. We are concerned with a theoretical description of the 

phenomena which arise when an electromagnetic field interacts with matter. 

The conduction electrons play the central role in the transport of energy 

within a metal and the exchange of energy "between a metal and an incident 

field. We must therefore deal with several topics which are familiar to 

the solid state physicist such as electron mobility, metallic band struc­

ture, electron-lattice interactions, electron-electron interactions, elec­

tron-impurity interactions and quantum wave propagation in periodic struc­

tures. It is unfortunate that recent theoretical developments in these 

and related areas of solid state physics have "been so sparingly applied 

in the engineering study of the thermophysical properties of solids. How­

ever, the engineer who turns to the literature of the quantum theory of 

solids is usually frustrated if he seeks "basic theory concerning the ther­

mal radiation properties. He recognizes the important dependence of mono­

chromatic properties on frequency "but he finds that conductivity theory 

omits dispersion effects and that the more complex quantum theories of 

optical properties are incomplete. 

The present theory represents a first step toward overcoming these 

deficiencies from an engineering viewpoint. It is developed within the 

framework of the quantum theory of solids but in such a manner that the 

theory retains at least a qualitative usefulness in engineering analysis. 
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The solid state physicist usually develops a theory in very general terms 

based on a detailed atomic model and then attempts to apply it to a re­

stricted case. He is usually not interested in such macroscopic parameters 

as the thermal radiation properties. Instead, he is concerned with atomic 

detail and if his theory incorporates too many simplifying assumptions, 

these details are lost. His theory, therefore, usually leads to expres­

sions which can be applied to only a limited number of cases. For example, 

the modern quantum theory of vibronic emission and absorption in solids, 

which is closely related to the theory of thermal radiation properties, 

is ordinarily presented as a set of equations which yield the Hamiltonian 

matrix elements which describe the electron transitions (30). These equa­

tions, however, are expressed in terms of quantum operators which can be 

determined only if a relatively simple atomic model is assumed or if the 

analysis is restricted to a specific solid or group of similar solids. 

The present approach is somewhat different. Rather than retain the com­

plex details of a sophisticated model throughout the analysis, we shall 

incorporate several simplifications at the beginning and attempt to inter­

pret the results within the framework of these assumptions. The fact that 

we are ultimately interested in macroscopic properties tends to allow a 

simplification of the atomic model and this, in turn, enables us to ex­

tend the theory. 
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The Model of the Atomic System 

In order to obtain a theoretical understanding of absorption in 

the visible and infrared portions of the spectrum, it is necessary to 

develop analytical expressions for the rate at which energy is expended 

by the electromagnetic field as it influences the atomic processes in a 

metal. The first requirement, therefore, is an atomic model of the metal 

which defines the mechanisms by which the conduction electrons can gain 

or lose energy. We shall assume that the mechanisms by which a metal can 

absorb energy from an electromagnetic field in the frequency range of 

interest in thermal radiation are as follows: 

1. Energy is absorbed in the acceleration of free electrons. 

2. Electron motion is damped by interaction with the crystal 

lattice. 

3. Electron motion is influenced by the mutual interaction of 

free electrons. 

4. Electron motion is damped by interactions with impurities in 

the crystal lattice. 

5. Energy can be absorbed by the bound electrons. 

The classical free-electron theory accounts for the fact that the 

external field provides energy to accelerate the conduction electrons. 

It also includes a simplified model of electron damping, as described in 

Chapter II, but does not account for the details of the damping mechanism. 

The positively-charged ions which constitute the lattice array contribute 
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an internal potential field to which the conduction electrons are sub­

jected. It is reasonable to assume that the motion of the electrons is 

influenced by this potential and that an electron can thereby exchange 

energy with the ions. Because each electron is negatively charged, they 

exhibit a mutual repulsion which can also affect their individual motion. 

The presence of impurities at lattice sites provides an additional damping 

mechanism because the interaction between an electron and an impurity ion 

is usually different in nature from the interaction between the electron 

and an ion of the metal. Finally, an electromagnetic field of sufficient 

strength might influence the local motion of the outer bound electrons 

of the ion. This provides another mechanism by which a metal can absorb 

energy from the field. 

The theoretical task is that of developing analytical expressions 

which account for as many of these interactions as possible and which re­

late the thermal radiation properties of a metal to its temperature and 

the frequency of the incident electromagnetic field. This requires a 

solution of the equation of motion of an electron which is subject to the 

interactions. From the quantum viewpoint, this equation of motion is 

Schroedinger1s equation rather than the Newtonian relation used in classi­

cal theory (3l). Each mechanism by which the electron energy is changed 

contributes a term to the Schroedinger equation. To obtain a solvable 

form of the Schroedinger equation it is usually necessary to make assump­

tions concerning the relative importance of the various mechanisms. We 
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shall begin by assuming that the dominant interactions are the accelera­

tion of the electron by the incident field and the damping of its motion 

by interaction with the lattice ions. The following arguments can be 

made to justify this assumption in a first analysis. 

Both the electron-lattice interaction and the electron-electron 

interaction can be studied in terms of the relaxation time and mean free 

path of the electron. Kittel (9) shows that, except at very low tempera­

tures, the mean free path for electron-electron collisions in a free elec­

tron gas is at least ten times longer than the mean free path for electron-

lattice interactions. This means that, on the average, an electron will 

undergo ten interactions with lattice ions for each interaction with 

another electron. This observation also results from a study of the 

various terms which contribute to the thermal conductivity of metals (32). 

Because electrons play an important role in the transport of heat through 

a solid, the high thermal conductivities of metals indicate that electron-

electron interactions do not significantly inhibit heat transfer. Such 

observations support the assumption that electron-lattice interactions 

have a much more significant influence on the motion of electrons in metals 

than do electron-electron interactions. 

Matthiessenfs rule, discussed in Chapter II, indicates that the 

effect of impurities on electron mobility in metals is not a function of 

temperature. Furthermore, because the residual resistivity which repre­

sents the influence of impurities is very small compared with the resistivity 
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at room rempterature for commercially pure metals, it follows that the 

electron damping is predominantly due to mechanisms other than electron-

impurity interactions except perhaps at very low temperatures. We shall 

therefore assume that the effects of impurities are small compared with 

the electron-lattice interaction. 

The arguments given above lend strong support to the assumption 

that the electron-lattice interaction is the principal damping mechanism. 

This assumption is made even more valid by the fact that we are concerned 

with the temperature-dependence of the thermal radiation properties above 

room temperature. Nonetheless, although neither will be included in the 

initial stages of the analytical development, we shall later consider the 

qualitative influence of both the electron-electron and the electron-

impurity interactions. 

The influence of bound electrons becomes important near field fre­

quencies which excite resonant vibrations. The resulting bound resonance 

terms enter directly into the classical dispersion relations for insula­

tors (7). No such resonant frequencies appear in the classical free-

electron theory of metals. Experimental measurements of the optical prop­

erties of metals, however, reveal irregularities at various frequencies 

in the ultraviolet. These are generally attributed to the absorption of 

energy by surface and volume plasmons as well as core electrons bound to 

the metal ions and appear only when the energy density of the field is 

sufficient to excite such electrons (33). The analysis of resonance 
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absorption involves a sophisticated application of quantum theory usually 

limited to a specific class of metals. Because this type of absorption 

depends on the degree to which the outer ion electrons are bound to the 

core, it varies with the position of a metal in the periodic table of 

elements. The fact that resonance occurs at relatively high frequencies 

reduces its importance in a study of thermal radiation properties. Accord­

ingly, we shall assume that resonance absorption, like the influence of 

the electron-electron interaction, is small compared to the effects of the 

electron-lattice interaction. This assumption carries with it some impli­

cations which enter into the quantum analysis and, in effect, defines the 

high frequency limit to which the theory applies. We shall find, however, 

that some account must be taken of this absorption mechanism if we wish 

to apply the theory to the transition metals. 

The theory which follows makes repeated use of the definitions and 

concepts of elementary quantum mechanics and the quantum theory of solids. 

Because this thesis represents a dissertation in the engineering sciences, 

not all readers will be familiar with the necessary background material. 

Some of the pertinent concepts of elementary quantum theory are outlined 

in Appendix II. For additional background information, the reader is 

urged to consult the standard literature in these areas. Most of the 

fundamental concepts are treated by Schiff (3l) and Slater (34). The ele­

mentary theory of solids is presented by Seitz (35) and Kittel (9) and 

applied to metals by Wilson (36). The text by Mott and Jones (37) continues 
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to be important in the field. The more advanced quantum theory of solids 

is treated by Kittel (38) and Ziman (39). An excellent elementary account 

of electronic conduction in solids is given by Blatt (40). 

The Quantum Interaction of Radiation and Matter 

For the purpose of developing expressions for the thermal radiation 

properties of metals, we shall consider conditions defined as follows. 

When an electromagnetic field is incident on a metal, energy is absorbed 

when a conduction electron absorbs a quantum of electromagnetic energy 

(a photon) and undergoes a transition from a state characterized by wave 

vector k to one characterized by wave vector k' . Energy is emitted 

when a conduction electron undergoes a transition to a lower energy state 

with the emission of a photon into the field. Simultaneously, the con­

duction electrons can exchange energy with the lattice by transitions 

which involve the absorption or emission of a quantum of lattice vibra­

tional energy (a phonon). We define P^ (k->k') as the probability per 

unit time for a conduction electron to make a transition from state k 

to a final state k' with simultaneous photon and phonon emissions and 

absorptions when the state k is completely filled and the state k' is 

completely empty. The subscript "r" denotes the photon process and will 

be written "e" for photon emission and "a" for photon absorption. Simi­

larly, the superscript "s" refers to the phonon process and will also be 

written "e" for emission and "a" for absorption. Because electrons obey 
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the Fermi-Dirac statistics, the probability that state k with energy 

E k is filled at temperature T is given by the Fermi function 

g(E) = -; ^7 (5°) 
e(E-Ef)/KT + ! 

where Ef is the Fermi energy and K is the Boltzmann constant. Thus, 

the total probability that an electron will make a transition from an 

initial state k to any other state which is empty by any of the four 

processes designated by the phono.n and photon subscripts is 

Pr® = 2 2 L1 " g(Ek')J Pr(""^?) (51) 
k' 

where the factor 2 accounts for the Pauli exclusion principle that two 

electrons of opposite spin can occupy a s ta te with the same wave vector 

and energy. 

The effects of these electron t rans i t ions are represented by the 

average of t h i s probabi l i ty over a l l of the in i t ia l ly-occupied s ta tes 

according to Fermi-Dirac s t a t i s t i c s . This average is 

^ i H 8(Ek) [1 - g(Ek.)] 4fc~t>) (52) 
k k k ' 

The power expenditure of the electromagnetic field is the total power 

absorbed minus the power emitted into the external field, or 
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W(UJ,T) = y ^ ( p | - P|) (53) 

Part of the temperature dependence of W is due to the Fermi-Dirac sta­

tistics of the electron distribution and part is due to the Bose-Einstein 

phonon distribution which enters into the Hamiltonian average over the 

phonon states. 

If Y-̂. is the wave function representing the initial electron 

state with wave vector k and Ŷ t is the wave function representing the 

final electron state with wave vector kT , the probability per unit time 

that an electron will undergo a transition from state Ŷ . to state Y-̂ J 

can be written in Dirac notation as (30) 

P ( M ) =^k.|2g(Ek0 (54) 
r 1 ' 

where g(Ej£t) i s the density of f inal s ta tes given by Eq. (50) and M î 

is defined as 

M [k' = <Yk|H ' |V> (55) 

where HT is the Hamiltonian operator for the interactions between the 

electron and both the incident field and the lattice. In order to eval­

uate the Hamiltonian and the corresponding elements of the transition 

matrix, it is necessary to consider the Schroedinger equation. 
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The Schroedinger Equation and the Hamiltonian 

In the development of the Hamiltonian function we shall treat the 

electromagnetic field classically, i.e. we shall assume that the field 

can be represented by a vector potential A and a scalar potential § . 

A complete treatment of the field in the framework of quantum electro­

dynamics is beyond the scope of this research; nonetheless, we shall re­

tain the essential feature of quantization of the field in that we recog­

nize that the field and the atomic system can exchange energy only in 

quanta of fw . The formulation of the Hamiltonian function follows the 

treatment by Sokolov (4l). 

Consider an electromagnetic field described by an electric field 

vector E and a magnetic induction vector B . The field can be expressed 

in terms of a vector potential A and a scalar potential $ which are 

related to E and B by (8), 

~B = 7 x"A (56) 

and 

E" = - •# - l !f (57) 
c dt 

The equation of motion for an electron in an electromagnetic field is (34) 
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92? 
m = e 

at2 
[f+(fx!)] (58) 

We can obtain a relation for the quantum-mechanical Hamiltonian operator 

by determining the classical Hamiltonian function for this equation of 

motion and by replacing the variables with their corresponding quantum 

operators. This can be done by demonstrating the equivalence of Eq. (58) 

with the Hamilton form of the equations of motion, 

^i=L2 ;
 bJ±=-*JL (1 = 1,2,3) (59> 

St dpi St bx± 

where p^ is the component of momentum in the x^ di rect ion and 'Jf i s 

the c l a s s i ca l Hamiltonian. Equations (58) and (59) are equivalent if 

the Hamiltonian is of the form, 

tf = ±-(T-Zlf + e* (60) 
2m \ c / 

Because the quantum operator corresponding to momentum is p = - ih7 , 

we can write the Hamiltonian for an electron in an electromagnetic f ie ld 

as 

H = i - / - ih7 - £ ^ 2 + e$ 
2m V c / 

(61) 
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In our particular problem, however, we have additional complexi­

ties. We must account for the periodic potential of the lattice ions 

and the deformation of this potential caused by thermal vibrations. 

These factors contribute some form of potential which is a function of 

the position of the electron. We can therefore express the quantum 

Hamiltonian operator as 

H = ~ (-in7 - - l)2 •+ etf + V (?,t) (62) 
2m c 

where the potential V (r,t) accounts for the interactions. The first 

term on the right side of Eq. (62) can be written 

($ - £ I ) 2 = ( $ * - £ A x )
2 + (£y - £ A y )

2 + (£z - £ A 2 )
2 

c c c c 

Each of these terms can be written in the following form: 

p 
/& e A \2 /& e . \ /A e . \ AP e . A e A e rt2 
(Px - - V = (®x - - Ax) (PX - -

 Ax) = Px - - AxPx - - PxAx
 + ^ Ax 

= Fx2 " ̂  P^x + ^ A^ + f ($XAX - A A ) 
C cc: C 

We can now employ the following commutation relation for the momentum 

operator (38) 
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[Px> Ax] - ( ^ x - Ax£x) = - in ^ (63) 
ax 

Then 

( $ X - £ A X ) 2 = ^ - 2 e £ x A x - i ^ + £ ! A X 
c c c dx c2 

Similar re la t ions hold for the other coordinate d i rec t ions ; therefore 

($ - 1 A)2 = f- - SS. $A - i§* 7 -T+ £ A2 

<"> 

If the Coulomb gauge transformation is used, it is always possible 

to select the vector potential so that 7 • A = 0 and $ = 0 (42). 

Furthermore, for fields of the magnitude encountered in thermal radiation 

the term in A is negligible compared with the term in A (43). The 

p 
term in A is related to processes in which two photons simultaneously 

participate. Such processes do not enter into emission .and absorption 

phenomena but are important in treating the interaction of matter with 

static magnetic fields. 

If these simplifications are introduced into Eq. (62), the 

Hamiltonian operator can be written, 
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H = - %- 72 + - ^ 7 • f + V ( f » (65) 
2m mc v ' 

From the vector relation 7 • (AY) = A • 7HI + Y (7 • ! ) = 1 • 7Y , we 

can write, 

H = - 5 f 7 2
+ ^ A • 7 + V (?,t) (66) 

2m mc 

Thus the Schroedinger equation for an electron subjected to a perturbing 

external electromagnetic field and a perturbing interaction potential 

V (r^t) is 

" £ - « - - £ * * • S ^ - ' ^ f r t ^ «"> 

The Electron-Lattice Interaction 

A time-dependent perturbation solution of the Schroedinger equation 

provides the transition probabilities necessary to compute the dispersion 

properties of a solid. In order to carry out such a solution of Eq. (67) 

we must have available some mathematical form for the interaction poten­

t i a l . Our model of the atomic system includes interactions between the 

conduction electrons and the ions which constitute the lattice array. 

Hence> the interaction potential V (r , t ) represents the potential which 

gives rise to the electron-phonon interaction. 
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Consider an electron moving among the ions of a crystal lattice 

in the absence of an external electromagnetic field. The potential to 

which the electron is subjected can be treated as consisting of two parts 

First, there is an ideal periodic potential field due to the charges of 

the ions if the ions remained stationary in the lattice. The spatial 

periodicity of this potential Vj_ (r) is related to the ion spacing and 

the potential is a function only of the position of the electron. The 

ions, however, do not remain stationary. They are thermally excited 

and vibrate about some equilibrium position. This vibration causes a 

time-dependent distortion of the crystal potential field which can be re­

garded as the source of the second part of the total potential. Hence, 

we can write 

V = V (r,t) = Vd (?,t) + Vi (?) (68) 

where Vj_ (r) represents the potential field in an array of ideal sta­

tionary ions and V^ (r,t) represents the change of potential caused by 

thermal vibrations. 

It has been found that when a particle moves in a perfect periodic 

potential, such as that represented by Vj_ (r) , and is acted upon by an 

external force F, it does not exhibit an acceleration F/m but rather 

F/m* , where m* is termed the effective mass of the particle (44). The 

effective mass accounts for the interaction between the particle and the 
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ideal periodic lattice potential V- (r) . It can be greater or less 

than the rest mass of the particle and, for an isotropic lattice, is given 

by 

*2 
m* = (69) 

d^E/dk£ 

From the concepts of band theory (9) it can be seen that m* is negative 

for states near the top of a band, positive for states near the bottom 

and infinite for some energy level within the band. By imposing certain 

limitations on the type of transitions which can occur, an analysis can 

be conducted with constant values of the effective mass. Thus the effects 

of the periodic lattice potential can be included in the analysis by using 

the effective mass rather than the rest mass of the electron. 

It follows from Eq. (69) that the effective mass is constant if 

the energy is a quadratic function of the wave vector, Such a relation­

ship holds in the case of a spherical Fermi surface. The concept of the 

Fermi surface arises in the study of the properties of a free-electron 

gas. At absolute zero temperature the electrons occupy states in wave 

vector space whose outer boundaries form a surface of constant energy which 

is termed the Fermi surface. For free electrons, this energy surface is 

spherical. The atomic model postulated earlier in this chapter is one of 

nearly free electrons, i.e. the conduction electrons are assumed to move 
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approximately freely between interactions with the lattice. For a model 

of this type, the Fermi surface is nearly spherical except in regions 

near the boundaries of the Brillouin zones and the electron energy is 

given by (36) 

Ek = *Hr (70) 

2m* 

The assumption of a spherical Fermi surface is made in nearly every 

analysis of the electrical transport properties of metals. This is a re­

sult of two factors. First, a theory which attempts to account for the 

intricate topological details of the Fermi surface would be extremely 

complex and would certainly be beyond the scope of a study designed to 

gain insight into the nature of the thermal radiation properties of metals. 

Secondly, very little is known about the shape of the Fermi surface of 

most metals. Sodium and aluminum are examples where detailed work has 

been done to define the topology of the Fermi surface. A discussion of 

Fermi surface topology is presented by Ziman (39). 

It is also difficult to evaluate the inaccuracy introduced by the 

assumption of spherical Fermi surfaces. Although some qualitative state­

ments can be offered, it is usually necessary to evaluate the errors 

based on the ultimate results of the theory. For example, part of the 

error in theoretical values of electrical conductivity can be attributed 
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to the assumption of a spherical Fermi surface. It has been found that 

the spherical assumption introduces very little error in values of the 

dc donductivity of most of the face-centered, body-centered and hexagonal 

cubic lattices (36). Schocken (45) finds that the spherical approximation 

is even adequate for a polycrystalline sample of a metal which exhibits 

energy anisotropy in single crystal form. Of course, considerable error 

is involved in the use of such an approximation for the transition metals 

because of their overlapping band structure. This will be discussed when 

we qualitatively treat the transition metals in a later section. 

Thus, we shall assume a spherical Fermi surface in our analysis. 

This enables us to use the concept of an isotropic effective mass to 

account for the periodic lattice potential. We shall also assume iso­

tropic lattice characteristics on the atomic scale. This assumption, 

which is valid for the cubic lattice structures, allows us to treat the 

effective mass as a scalar rather than a tensor. If we replace the rest 

mass in Eq. (67) by the effective mass of the electron, the Schroedinger 

equation becomes 

1*1* ="4 7 % + (̂ t-7 + Vd(?,t)U (71) dt 2m* [m*c J 

The time-dependent deformation potential V^ (r,t) , which repre­

sents the distortion of the periodic lattice potential caused by thermal 
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vibrations, is the field which gives rise to the electron-phonon inter­

action. Bardeen and Schockley (46) have shown that the deformation po­

tential can be expressed as 

V, (?,t) = EdA (72) 

where E^ is a constant with units of energy and A = 6v/v is the lat­

tice dilation caused by thermal vibration. For an isotropic lattice, the 

dilation can be written as (38), 

i(?'t) = iIfek) 
q v P q.7 

1/2 
-*• I -» 

(a<1e
1(l-r - a^e" 1 ^) | 4 (73) 

where pp is the phonon density, q is the phonon wave vector, UJ is 

the phonon angular frequency given by the quantum condition Eg = fwjg 

and a and a are the phonon creation and annihilation operators 

respectively. These boson operators are such that, if nq is the num­

ber of phonons in state q , then (40) 

< nq ": a. Uq> v q 
(74) 

<*q+1 
or = Jnr + 1 (75) 
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By including the time-dependence e" 1^* of the phonon state vector, 

it follows that the phonon operators can "be written 

aq = J^e-^ (76) 

a; = > ^ e"̂ * (77) 

where the number of phonons in state q is given the Bose-Einstein dis­

tribution function 

n 1 eVKT - 1 
(78) 

If Eqs. (76) and (77) are used in Eq. (73), the deformation potential 

can be expressed as 

_ / \ 1/2.._ ^> -̂  . . ,-> *. r\ 
Tr r> .\ ._ \ / h \ I * i(q«r-cunt) / T~? i(q-r-u)atj /„_x 
Vd (r,t) = iEd 2 , k — - <1 L/n e ^ <1 ' - > + 1 e <1 '] (79) 

q ^Pp^qy L ^ * 

where q = q 

With this relation for the deformation potential we can use stand­

ard time-dependent perturbation theory to obtain an approximate solution 

of the Schroedinger equation. There are several assumptions implicit in 

the form given by Eq. (79) for the deformation potential. First, it in­

cluded the effect of longitudinal acoustic phonons only; it does not 
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account for transverse waves. This assumption can be justified for our 

problem by noting, from a more general analysis (38), that the effects 

of transverse waves are included in terms which contain the very small 

scalar product of the phonon wave vector and the unit vector in the trans• 

verse direction. 

A second assumption implicit in Eq. (79) is that the analysis is 

limited to the normal or N processes for which the wave vectors of the 

electron, k and k' , are related to that of the phonon by momentum 

conservation in the form 

k - k* + q = 0 (80) 

The second possibility is the Umklapp or U process for which 

k - "k* + "q = GT (81) 

where G i s a wave vector in the reciprocal l a t t i c e . This process in­

fluences the e lectron-electron interact ion and is discussed in Appendix 

I I I . 

Electron Transition Probabi l i t ies 

The Schroedinger equation given by Eq. (7l) can be wri t ten 



62 

(H° + H') ¥ = i * ^ (82) 
ot 

where H° is the unperturbed (zero-order) Hamiltonian, 

•£_ 

2m* 
H° = - 2L_ 72 (83) 

and H1 is the perturbation term, 

H' = nr A ' 7 + vd (£*) (84) 
m*c a 

The stationary states of the conduction electrons are given by the solu­

tion of the unperturbed wave equation, 

H°Y° = in 201 (85) 
St 

These states are represented by the wave functions 

= _i (?• f - Ekt/n) 
Yo = ei u - r - ju^/n; (86) 
k 

The energy of the stationary states is a function of k = k | only and 

is given by Eq. (70). 
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The t o t a l Hamiltonian, H° + H1, includes the influence of the 

external electromagnetic f ie ld and the thermal vibrations of the l a t t i c e . 

These effects are t rea ted as perturbations of the electron motion and are 

separated into the perturbation Hamiltonian H' . We then u t i l i z e the 

familiar methods of time-dependent perturbation theory to determine the 

e lec t ron t r a n s i t i o n p robab i l i t i e s . 

I t i s convenient to express the perturbation Hamiltonian as the 

sum of two terms, one of which gives r i s e to the electron-photon in t e r ­

act ion H-, , and one which represents the electron-phonon interact ions 

H^ . The vector po ten t i a l of the f ie ld can be expressed in terms of the 

e l e c t r i c f ie ld vector E0 and the photon wave vector p (41) 

T = ^ [ e i (p . * - art) _ e - i ( p . f - u)t)] ( 8 ? ) 
2iu) L-

Then 

H { = ^ £ [e l(p-*-«rt) - e - K P " - ? - w t ) ] 
2m*iu 

(88) 

and from Eg. (79) 

1/2 
^ • «dHi^r) » l & l t ~ - ^ - J ^ i e - ^ . t - r t ) ] (89) 

<r p <i 
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If these relations are used in a time-dependent perturbation analysis 

(see Appendix II), the time rate-of-change of the wave function expan­

sion coefficients is 

^YbJ^lK- 2ak(t) h { t ^ re^-t) e-i(?.̂ t)J (go) 

1/2 

ql^q) 

The electron can undergo four possible transitions: 

1. It can absorb a photon of wave vector p from the radiation 

-> ->• - ^ 

field and go from state k to state k + p . 

2. It can emit a photon into the field and go from state k to 

state k - p . 

3. It can absorb a phonon of wave vector q and go from state 

k to state k + q . 

4. It can emit a phonon and go from state k to state k - q . 

The Hamiltonian contains a term corresponding to each of these processes. 

The first term on the right in Eq. (90) involves a photon absorption, the 

second a photon emission, the third a phonon absorption and the fourth a 

phonon emission. If we proceed with the perturbation analysis, following 
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the steps outlined in Appendix I I , we obtain a first-order coefficient 

given by (see Appendix IV) 

(1) ne(Eo-k) i(%+p,k-tu)t-l 
a ( i ; = ne^Q.K; /e-^k+Pjk-^-lx . * 

k ' . " 2im*w L6kf,k+pl fi(wk+p,k-u>) / 

/ e iK-p ? k + ^) t , 1 > i - ] 

*'*-*[ tK.p^-HD) j j 

•* V / ft \ 1 / 2 T, r - / e i K - P ? k - ^ ) t . u 

where 6 ^ is the Kroenecker delta and 

<%,m = (Ek - Em)/h (92) 

Because of the presence of the Kroenecker delta terms in Eq. (9l), 

the first-order coefficient and the corresponding transition probability 

is non-zero only if the initial and final electron wave vectors are the 

same, that is, if k = k i p or k = k ± q . But we have assumed a 

spherical Fermi surface; hence the initial and final energies are the 
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same if the initial and final electron states are characterized by the 

same wave vector. Energy conservation in the case of absorption of a 

photon by a free electron, for example, would require that 

E k - Ê t + %x> = 0 . But if Ek = Ek» , energy would not be conserved 

because -nuo is never zero. Hence, interactions between a free electron 

and either a photon or a phonon, within the framework of the specific 

model which we have adopted, must yield only virtual transitions, that 

is, transitions in which energy is not conserved (47). It follows that, 

according to our model, visible and infrared absorption is a result of 

processes in which a photon is absorbed and a phonon emitted. This also 

includes the acceptable process of absorption or emission of both a 

photon and a phonon. Similarly, emission involves the simultaneous 

absorption of a phonon and emission of a photon. Such processes do not 

appear in the first-order coefficients. They are represented by the 

terms in the second-order coefficients which are bilinear in the photon 

and phonon matrix elements. 

The second-order terms are obtained by substituting Eq. (9l) into 

the relation for the time rate-of-change of the coefficients, collecting 

terms bilinear in the photon and phonon Hamiltonians and integrating 

over time from 0 to t . The result is 
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^-*£(4A{y^hlM^ (93> 

+ k \ e ^ l ^ - l _ k+g / e ^ g ^ - l X 

^ K t p ^ J Wl " ̂ Ktq^q) \ 2̂ / 

k / e
l w 5 V ^ - l \ - | 

*K±p,k+w) \ W3 / J 

where t h e upper term i n the b racke t a p p l i e s t o phonon emiss ion , the 

lower te rm a p p l i e s t o phonon abso rp t i on and 

W l = * K ± p + q , k + <»q. + «>) = Ek+p±q " E k + Eq. + *"> ( 9 4 ) 

W2 = ft(tt)]E±q+p,3s±q + ^ = Ek±q±p " Ek±q + **» ( 9 5 ) 

W3 = * (<Vq+p ,k±p + < V = Ek±ci+p- Ek±p + Eq. ( 9 6 ) 

The details of this derivation are presented in Appendix IV. 

According to the usual perturbation methods, the transition prob­

abilities are represented by the squares of the absolute values of the 

expansion coefficients. Thus, the probability per unit time that an 

electron initially in state k will undergo a transition to any of the 

states k ± p + q. under the simultaneous influence of an external elec­

tromagnetic field and thermal lattice vibrations is 
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P (k*k5tq) = lim i 42J - (97) 
t-*« t k+p+q 

The transition probability will approach a constant finite value for 

large t if and only if one or more of the denominator terms in Eq. (93) 

approaches zero for large values of t. 

The transitions which involve simultaneous photon and phonon proc­

esses are represented by the energy relation given by Eq. (94). When 

the transition probabilities obtained from Eq. (93) are used in Eq. (53) 

to evaluate the energy expenditure of the field, the terms in W2 and 

W3 cancel. Therefore, it is sufficient to consider only the case when 

a singularity occurs at W]_ = 0 . Accordingly we can reduce Eq. (93) to 

aSk"1 A ( ^ ) qE* [vi] V [11(0^^^ (98) 

iWit/ft.-L 

+ ^Vp.k^'-J Wl 

For transitions in the visible and infrared portions of the spectrum the 

photon momentum can be neglected in comparison with either the electron 

momentum or the crystal momentum except in those terms which give rise 

to resonance. We can then write, 
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~kT = ~ k + ~ p + ~ q ^ k + ~ q 

I t follows t h a t 

fi2 ft2k2, £ v 2
 fi2k2 

Hence, terms such as E^+p-E^ , which r e p r e s e n t a r e l a t i v i s t i c c o r r e c ­

t i o n , w i l l be neg lec t ed in express ions which con ta in o the r a d d i t i v e 

energy t e r m s . We s h a l l l e t 

B(4) = ± ^ - ( ^ M 1 qEd 09) 
2m*u) \ 2 P p < V 

->• -> -* -^ 
Consider first the transition k-> k + p + q. . The parenthetical 

term in Eq. (98) becomes 

k(Uik+p,k+U)k+q,k-"'q-
Ui) + ̂ "W,^) 

'('W.k-V K+p^"1") 

The coefficient of k can be approximated by 

Ek+p- Ek + E
k +q-

Ek-%-^ = Ek+p"Ek+Wi « 0 
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where the term W, is taken as zero. Deviations of Ŵ_ from zero re­

main important in the resonance term. 

These simplifications reduce Eq. (98) for the transition 

k—»k + p + q to 

(2) 4 4 + q = B ( q ) ^ 
(E0-q) eiWit/f!..! 

fm Wn 
(100) 

Thus 

P (k^k+p+q) = = [B(q)|2n( 
(")2 lim 1 e 1 ^ / ^ 

q. * 2 2 t -»co t 
Ti m 

Wn 
(101) 

We can express this result in terms of the function 6(x) defined "by 

Heitler (47) 

S(x) 
lim 1 
t-*co 2nt 

1 - e ixt 

x 

Thus 

P (k-^k+p+t) = -|^ [B(a)]2nq (?0.q)
2 6 (wx) (102) 

This can he generalized to include the other processes as 
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-».-»,->. P (k^k±p±q) = 2nr 

fi3uo2 
B(q) 

2 A ft,*)' n q + l 
(103) 

* 6 (Ejj. t -E-^.+fiujq^'huo) 

where we have denoted the final electron state as k'. 

Substituting Eq. (103) into Eq. (5l) yields 

p* (t) = x ^ B(q) *V;+M M * 

[l-g(Ek»r| 6(Eki-Ek+*toq+fii)) 

(104) 

The summation over the final states can be replaced by the corresponding 

-> -> -3* 

integral over k-space. Furthermore, because k' ?» klq , the summation 

over k' is equivalent to a summation over q . Thus the wave vector 

sum can be converted to an integral by (38) 

i'i 1 

k' 
(2ny / / / 

d°q 

The wave vector element can be written (3l) 

3-* 2 2 
d q = q dqdQ = q dq sin YdydS . Because we have assumed a spherical 

Fermi surface, the energy relations are spherically symmetric. If we 
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also take the average field direction with respect to the phonon wave 

vector9 we can write 

(Eo.<T)2 = | q2E2 

We can then express Eq. (104) as (see Appendix IV) 

I>2TT B? 
f > ) ~ l « I <l4dq | | B ( 4 ) | ^ _ \ ^ (105) 

• d(cos y) l-g(Ekt)l 6(Ekt-Ek+hu)(1+hou) 

where y is "the angle between k and q . 

The maximum phonon wave vector is determined by the phonon dis­

persion. We shall adopt the familiar Debye distribution for which the 

maximum wave vector is related to the longitudinal acoustic phase velo­

city va by (36) 

W - g- (106) 

where 9 is the characteristic Debye temperature. 

We can express the argument of the 6-function in Eq. (105) as 
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2|-*" "*• I 2 2 2 

2m* 2m* 

ft29,2 + SS^L cos Y + -nu>n + fio 
-x- " * 4-

2m m 

I t fol lows from Eq.. ( lOl ) t h a t f i n i t e t r a n s i t i o n p r o b a b i l i t i e s occur 

only when the argument of the 6- funct ion v a n i s h e s . Wilson (36) has 

e s t a b l i s h e d t h e e x i s t e n c e of a r e a l cos Y such t h a t the argument vanishes 

fo r a l l phonon wave vec to r s between zero and q^ax when no e x t e r n a l f i e l d 

i s p r e s e n t . A more gene ra l argument, a p p l i c a b l e t o the case of a pe r ­

t u r b i n g f i e l d , i s p re sen ted i n Appendix IV. I f we u t i l i z e t h i s f e a t u r e 

of t he e lec t ron-phonon i n t e r a c t i o n t o perform the i n t e g r a t i o n over cos Y 

(see Appendix I V ) , Eq.. (105) becomes 

e E ^ /•qmax
/ x f n 1 -. 

p r00 = _ . P * 4 / q5 [J-T- ( n +x f I 1 " g ( E k ± % > ) J A* (107) 

The average value of t h i s t r ans i t i on probabi l i ty i s obtained as 

in Eq. (52), 

P 
r 

I 
s _ k 

— 4 l s(Ek-)P?(k) (108) 

I g(Ek t) 
k' 
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We shall assume that the visible and infrared transitions occur near the 

Fermi level because it is only at this energy level that close-by un­

occupied states are available. Hence, the numerator of Eq. (108) is 

different from zero only when E^ « Ef , the Fermi energy. The summa­

tions over the initial electron states can be replaced with energy inte­

grals and the density of states can be approximated by the value at the 

Fermi level. The average transition probability then becomes (see Appen­

dix IV) 

F _ &&% (TLL-\ J M a i f °*dz (109) 

r Sftriftftuffif J o
q W > V I V H ^ 6 L ( e z + a +l ) (e z +l ) 

where 

3 = I/KT 

z = ^(E^t-E^-fiojq-fiu)) 

a = 0 (+f5u)qH3w>) 

The energy in tegra l can be evaluated in closed form, 
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* - i 
/ . 

ezdz 

* /.= (ez+a
+l)(e

z
+l) p(e

a-l) 
(no) 

Then, from Eq.. (53), the power expenditure of the external field is 

W(OJ,T) = 

e2E§E^ 
d o 

• # 

32rrhm kt<o3E.£> J
fQmax r * 
n \ W IV1! L dq I KS-KS 

n +1 L a e 
q. 

( I l l ) 

S u b s t i t u t i n g from Eq. ( l lO) we have, a f t e r cons iderab le a l g e b r a i c manip­

u l a t i o n (see Appendix IV"), 

Eo f'M2
 /T \ 5 

W^>T) = c o ^ i ( - j (e)'J(^T) (112) 

where 

J(<O,T) = -is-ril F5(H,0 - | (e^-U^Ou) - (el-UVru) (113) 

F J T U ) = 
n 1 C n , x dx  

(ex_eT])(eTl-e-x) 
(114) 
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Tl = — ; C = - ( H 6 ) 

and C0 i s a constant which is independent of both frequency and tem­

pera ture , 

9rr3n2NE? 
Cn = * (11^) 

2 ^2m*E5 We 

The Electron-Fhonon Damping Coefficient 

The opt ica l conductivity i s defined as the energy absorbed per 

unit volume per uni t time divided by the mean square of the e l e c t r i c 

f ie ld vector (37) 

c(«) = ^ (118) 
Eo 

where E:~/2 is the f ie ld energy density and N is the effective num­

ber of e lec t rons . Subst i tut ing for W from Eq. (112), we have 

a(uj'T) = h °o ( ? ) £'5j(»>T) (ll9) 
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The term C0£~ J"(UJ,T) has the units of sec."1 and can be conveniently 

interpreted as a damping coefficient. Furthermore, we note from Eq. (113) 

that 

lim mS f£
 x

5ax „0 ,,s (120) -(uJ,T) . / *J* = F° (C) 
" ° ' ' Jo (ex-l)(l-e-x) 

which is the integral which appears in the Block-Griineisen relation for 

dc conductivity (39). Thus, if we define a quantum correction factor 

for the electron-phonon interaction as 

Q(H,C) - ^ ^ (i2i) 
F°(0 

such that 

l i m q(n,c) = i 
(JD—»0 

then we can formulate the electron-phonon damping coefficient as 

rCn,c) = C0C_5F°(C)Q(TI,C) = r°(c)Q(n,c) (122) 

If this relation is used in Eq. (34) and taken to the dc limit of zero 

frequency, we have 
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lim , _x lim Ne2 / T \ _ We2 
CTo = ... - - c(u,T) = 

w-^o uj -*o m* VOJ2 + r2/ m*r° 

which is the familiar relation for dc conductivity where r°(C) is 'the 

dc damping coefficient. 

We shall be interested in the application of this theory for tem­

peratures "between room temperature and the melting temperature of the 

particular metal and for frequencies in the range of interest in thermal 

radiation analysis, that is, for wavelengths between about 0.5 and 100 

microns which corresponds to an angular frequency range of about 

4.7 x 10liD to 1.9 x 10 sec. . The frequencies greater than about 

14 -1 

2 x 10 sec. are of particular interest because it is at such fre­

quencies that significant deviations from the Hagen-Rubens formula are 

observed. The corresponding ranges of the independent variables T] 

and £ are shown in Figure 8. 

Several digital computer subprograms were developed to evaluate 

the various mathematical functions which appear in the theory. These 

subprograms were later used as external routines in the program for the 

calculation of emissivity and are discussed in Appendix V. The function 

Fc(£) 9 as defined by Eq. (120), is familiar from dc conductivity theory. 

The curve shown in Figure 9 was obtained using a numerical integration 

with Simpson^ rule. The values can be compared with tabulations from 

the literature (40). 
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The electron-phonon quantum correction factor Q(Tj,£) represents 

the degree to which the quantum effects included in the model cause a 

change in the electron damping coefficient. It can be seen from Eq. (122) 

that when Q(T|,£) is unity the damping coefficient corresponds to the 

dc case and the relation for conductivity reduces to the Block-G-runeisen 

relation. Although the latter is a consequence of an elementary quantum 

analysis, it represents only a limiting case, that is, the zero-frequency 

limit. The functions Fn(7],£) and Gn(T],C) were evaluated with sub­

programs which utilize Simpson's rule for integration. These routines 

and the subprogram for F°(C) were used in a program to evaluate the 
o 

electron-phonon quantum correction factor. The results are shown in 

Figure 10 where the quantity 1-Q(T|,C) is plotted as a function of £ 

for different values of T) . It can be seen that 1-Q(T],£) is much more 

sensitive to temperature than to frequency. It increases by three orders 

of magnitude as £ goes from 0.1 to 3. On the other hand, it increases 

only 40 to 50 per cent as 7] increases from 10 to 1000. Because the dc 

damping coefficient r°(C) is, of course, independent of frequency, the 

electron-phonon damping coefficient, given by Eq. (122) is only slightly 

dependent on frequency, that dependence arising solely from the quantum 

correction factor. 

The constant C0, defined by Eq. (117), is a function of the mi­

croscopic parameters of the metal. It involves the Debye temperature 9, 
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the ionic mass M, the electron effective mass m*, the Fermi energy Ef 

and the deformation potential energy term E^. The evaluation of this 

constant from first principles is complicated by the lack of accurate 

data on the microscopic parameters. Although the ionic mass, Fermi 

energy and Deb ye temperature are known with reasonable accuracy for a 

variety of metals, effective mass data are available for only a few met­

als and almost no values of E^ are given in the literature. There is, 

however, a convenient indirect method by which CQ can be evaluated. From 

Eq. (122) we can write 

c = c5™-
° U n 

We can then use Eq. (36) to express the dc damping coefficient in terms 

of the dc conductivity; hence 

C = C5 Me2 = (fmV)2 (L) _L_ (123) 
° n»0Fg(£) W 2 W Fg(£) 

The term fiajp is the plasmon energy of the metal. Values of -huup ex­

t rac ted from the l i t e r a t u r e are tabulated in Appendix I . Experimental 

values of the dc conductivity and the plasmon energy can be used in Eq. 

(123) to evaluate C0 where £ and Fc(C) a r e evaluated for the tem­

perature a t which CT0 and -nti) were measured. The resu l t s are l i s t e d 
ir 

for several metals in Appendix I. 
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The damping coefficient which appears due to the electron-phonon 

in te rac t ion i s p lot ted as a function of temperature in Figure 11 for 

copper and s i l v e r . The curves apply for the wavelength range from 0.1 

to 10 microns for which the dependence on wavelength i s very s l igh t . 

The Electron-Electron In terac t ion 

One of the assumptions employed in the preceeding theore t i ca l 

formulation was tha t the contribution of the mutual electron interact ions 

to the t o t a l electron damping coefficient was small compared with tha t of 

the electron-phonon in te rac t ions . This i s not always the case. The 

t o t a l damping coefficient T^ can be expressed as the sum of the e lec­

tron-phonon damping coefficient T , the e lect ron-electron damping co­

ef f ic ien t r t and the electron-impurity damping coefficient Tj_ , 

rT(Ti,G) = r(Tj,c) + r e 0 i , c ) + r± (124) 

It was previously assumed that, because the mean free path for electron-

electron collisions in a free electron gas was much larger than the mean 

free path for electron-phonon collisions, then Te « T . This enabled 

us to obtain a perturbation solution of the Schroedinger equation and 

arrive at the relation for the electron-phonon damping coefficient. In­

deed, if only normal electron transitions (N-processes) are considered, 

the electron-electron interaction cannot contribute to the electrical 
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resistivity because no momentum can be transferred to the crystal lattice 

as a result of such collisions (40). However, if Umklapp processes 

(U-processes) are considered, the lattice can exchange momentum with the 

electrons due to mutual electron interaction. 

The electron-electron interaction was ignored in most early quan­

tum studies of the optical properties of metals. More recently, however, 

the effect of interelectronic collisions on the electrical conductivity 

has been studied by Ginzburg and Silin (48), Silin (49), Gurzhi (50) and 

Appel (5l). The work of Silin and of Gurzhi was based on the theory of 

Fermi liquids. There remains considerable controversy over the importance 

of the electron-electron interaction. However, we shall find that, as 

it is formulated in the present theory, it can make a significant contri­

bution to the overall damping coefficient. 

We shall not treat mutual electron interactions in detail. In­

stead we shall employ the relation presented by Gurzhi (50) for the elec­

tron-electron damping coefficient. 

re(n,c) = r°(c) [i + ( J ) 2 ] (125) 

where r°(£) i-s the classical electron-electron collision frequency which 

is known to be proportional to T (35). Hence, the term 1 + (T|/2TT) 

can be regarded as an electron-electron quantum correction factor. The 

damping coefficient re(T),C) increases with increasing temperature and 
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with increasing frequency. The frequency dependence enters only in the 

quantum correction term. 

The classical damping term can be written 

re(c) = ce(c)~2 (126) 

where Ce is a constant characteristic of a given metal but independent 

of both frequency and temperature. Very little experimental data is 

available concerning the term r (£). Padalka and Shklyarevskii (52) 

report values for silver and gold. These were used to obtain the values 

of Ce for silver and gold listed in Appendix I. The following rela­

tion (48) was used to estimate Te(Q) for other metals, 

2 

^=i;~ Se*©v f (127) 

or 

C w S N /K§\ v- (128) .. - v (^ .f 

where I is the mean free path between electron-electron collisions and 

S is the effective collision cross-section which was assumed to be 

-it- o 

10 cm. (9). The most complete data on the number of conduction 
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electrons per unit volume N and the electron velocity at the Fermi level 

vf appears to be that of Dingle (53) (see Appendix i). 

The Electron-Impurity Interaction 

Electron-impurity interactions include all forms of electron 

scattering by stationary crystal imperfections. The impurity damping 

coefficient is a result of electron interactions with not only impurity 

atoms but also planar imperfections such as grain boundaries and stacking 

faults, linear imperfections such as edge and screw dislocations and 

other point imperfections such as vacancies and interstitial atoms. The 

boundaries of a metallic specimen can also be regarded as planar imper­

fections; however, we shall qualitatively account for the effect of sur­

face potentials when we discuss skin effects in a later section. A sum­

mary of stationary crystal imperfections and related scattering mechan­

isms in metals is presented by Blatt (40). 

The difficulties encountered in any attempt to analytically de­

scribe electron damping by stationary crystal imperfections are obvious. 

The mechanisms are many and complex; furthermore, such damping will de­

pend on the purity of the metal and the manner in which a specimen is 

prepared. Matthiessen's rule, Eq> (47), indicates that the residual 

resistivity and, therefore, the impurity damping coefficient are inde­

pendent of temperature. Hence, an estimate of the impurity damping 
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coefficient can be obtained from measured values of the residual resist­

ance because, according to Mott and Jones (37), 

2 

Po = ̂  ri = J I"! (129) 
We2 " 4TT 

Thus 

I"i = % Po (130) 
(JU~ 

^p 

The values of Tj_ for silver and gold have been measured experimentally 

(52) and are listed in Appendix I. The other values listed were computed 

from Eq. (130) using the residual resistivity data compiled by Meaden (54) 

The values of Ce and rj_ computed for silver and gold using 

Eqs. (128) and (130) are appreciably smaller than the experimental values 

obtained by Padalka and Shklyarevskii (52). This would indicate that the 

free-electron theory underpredicts both Ce and Tj_ ; that is, the 

effects of mutual electron collisions and impurity interactions are some­

what greater than predicted by classical theory. More accurate estimates 

of Ce and Tj_ could be obtained by fitting the present theory to room-

temperature values of the optical properties. The constants could then 

be used to predict the thermal radiation properties at other temperatures. 

This means of determining C and r. is discussed in the next chapter. 
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The Bulk Absorptivity 

The theory, subject to its many assumptions and qualifications, 

can now be applied to the theoretical calculation of the bulk absorp­

tivity, or bulk emissivity, of metals. The electron-phonon damping co­

efficient can be obtained from Eq. (122) and the electron-electron damp­

ing coefficient from Eq. (125). These are added to the constant electron-

impurity damping coefficient to obtain the overall damping coefficient, 

Eq. (124), which is a function of both temperature and frequency. This 

is then used in Eqs. (34) and (35) to determine the optical conductivity 

and the dielectric constant. The optical constants n and k are given 

by Eqs. (17) and (18) and are used in Eq. (24) to find the normal mono­

chromatic bulk absorptivity (or emissivity). Theoretical calculations 

are presented and discussed in Chapter IV. 

Skin Effects 

The bulk absorptivity a^ accounts for the internal processes 

such as the electron-phonon, electron-electron and electron-impurity 

interactions. It does not, however, include skin effects which account 

for the interaction of the conduction electrons with the surface poten­

tial. It is common practice to express the absorptivity of an opaque 

solid as the sum of the bulk absorptivity and a skin absorptivity ots , 

a?(u>,T) = ab(w?T) + <*s (131) 
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The formal theory of the skin effect was developed by Renter and 

Sondheimer (55) and Dingle (56). We shall not present a detailed account 

of the theory; rather, we shall utilize the familiar first-order rela­

tion for the skin absorptivity (4l), 

3 vf 

1 7 <*s = 7 - (132) 

where Vf is the e lectron veloci ty at the Fermi level which is given by 

O) 

v = !_ ( s A ) 1 ^ (133) 
1 m* 

The values of Vf/c given in Appendix I are mostly those reported by 

Dingle (53). The relation for the skin absorptivity, Eq. (132), is the 

final requirement in the theory. We are now in a position to compute 

the optical properties and emissivity of a metal as functions of tem­

perature and wavelength. The computational results for several metals 

and their comparison with available experimental data are presented and 

discussed in the next chapter. 
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CHAPTER IV 

EVALUATION AMD APPLICATION OF THE THEORY 

The theory developed in the preceeding chapter might be cate­

gorized as a modified free-carrier theory of absorption and emission. 

It retains several of the features of free-electron theory, notably the 

assumption of a spherical Fermi surface. However, it includes modifica­

tions such as the concept of effective mass and the qualitative electron-

electron and electron-impurity interaction terms. In this chapter we 

shall assess the theory by computing values of the damping coefficient, 

index of refraction, extinction coefficient and normal monochromatic 

emissivity and by comparing the results with experimental data. We shall 

also discuss in more detail the limitations of the theory which deter­

mine the metals to which it can be applied and the temperature and fre­

quency ranges over which it remains reasonably valid. 

In the development of the theory we have assumed that the Fermi 

surface is spherical and that no interband transitions occur. These are 

the most far-reaching assumptions of the theory. We know that the Fermi 

surface is truly spherical only for a free-electron Fermi gas. However, 

we also know that the assumption of a spherical Fermi surface has been 

used with considerable success in the theory of the electrical properties 
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of many metals, particularly the alkali and noble metals. At a tempera­

ture above absolute zero the width of the rapidly varying part of the 

Fermi distribution is approximately KT as shown in Figure 12. Unoc­

cupied electron states are thus available within a range KT about the 

Fermi level. An electron can absorb a photon only if the photon energy 

hu) is sufficient to raise the electron to a higher unoccupied state. 

Thus if ftu) > KT , quantum absorption can occur in the free-electron gas. 

If -RUJ « KT , as would be the case in the far infrared, the electrons 

absorb electromagnetic energy only as a result of their acceleration in 

the field. This explains the limitations of a classical analysis of 

absorption to the long-wavelength and/or high-temperature regions. 

Noland (24) has demonstrated that the region over which the Hagen-Eubens 

formula is valid extends to shorter wavelengths as temperature is in­

creased. 

A convenient measure of the validity of the assumption of a spher­

ical Fermi surface is the degree to which the valence electrons of a 

specific metal can be approximated by a free-electron gas. A qualitative 

estimate of this can be obtained from the electronic structure of the 

metal. The monovalent alkali metals have a single electron in an s-state 

outside a complete -closed shell. It would be expected, therefore, that 

they might exhibit certain features characteristic of the free-electron 

model. The monovalent noble metals, Cu, Ag and Au , also have a single 

s-state electron outside a complete shell; however, in this case, 
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Figure 12. The Fermi-Dirac Distribution 



95 

the d-electrons of the complete shell form a hand which overlaps the s-

band. Although available evidence (39) indicates that the Fermi surfaces 

of the noble metals deviate from a spherical shape, their electronic 

structure is such that the outer s-state electrons would be expected to 

conform with reasonable accuracy to a free-electron model. The alkali 

metals are rarely used as surfaces in thermal radiation systems and, 

hence, we shall treat them only from the viewpoint of verification of the 

theory. The noble metals, however, are important in many engineering 

systems and will be studied in detail. 

Aluminum is another important metal which is frequently used in 

thermal radiation systems, particularly for aeronautic and space appli­

cations. It is the only one of the trivalent metals which has been 

studied in detail. It is a good electrical conductor and the general 

topology of the Fermi surface closely approximates a sphere (39). 

Another very important class of engineering metals are the transi­

tion metals. The first group, V, Cr, Mn, Fe, Co and Ni , have an 

argon core configuration plus electrons in the 3d and 4s shells. The 

second group, Nb, Mo, Tc, Ru, Rh and Pd , have a krypton core configu­

ration plus electrons in the 5d and 6s shells. Because the d-shells are 

incomplete, the d-state electrons can influence many of the properties 

of the transition metals. The complexity of the d-states makes it very 

difficult to obtain reliable information concerning the Fermi surface. 
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Certainly the shape of the surface would be expected to deviate consid­

erably from spherical and the free-electron model would be a poor repre­

sentation of the transition elements. 

However, our theory is not strictly a "free-electron theory" in 

the exclusive sense of that terminology. We have attempted to improve 

on the free-electron model by including terms to account, at least quali­

tatively, for such factors as electron-electron interactions and skin 

effects. We might, therefore, expect better agreement with experimental 

data than if we had developed a truly free-electron theory. Correlation 

of data for the transition metals, however, is limited by our restriction 

of the theory to intraband transitions. In the case of the alkali and 

noble metals, if fm > KT , states are available for transitions within 

the s-band and at energies near the Fermi level. Relatively large photon 

energies would be required to cause a transition from the d-band to the 

s-band in the noble metals. In the transition metals, however, inter-

band absorption can occur at frequencies of interest in thermal radia­

tion because of the relatively small photon energy required to cause a 

d—>s transition. 

We shall evaluate the theory by comparing the computed results 

with experimental data for several metals. We shall treat sodium as 

typical of the alkali metals and present the results only as an indica­

tion of the accuracy of the theory since the alkali metals are of limited 

engineering value in thermal radiation systems. Copper, silver and gold 
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will be treated in detail. Aluminum will be analyzed to further assess 

the limitations of the theory. Nickel will be treated as characteristic 

of the transition metals mainly as a means of illustrating the possible 

modifications required to account for interband transitions. In each 

case the specific limitations of the theory will be discussed. 

The Alkali Metals 

The alkali metals, Li, Na, K, Kb and Cs, have the least compli­

cated electronic structure of all the metallic elements and should most 

closely conform to the free-electron model. Because of their chemical 

reactivity and softness, they are rarely used as thermal radiation sur­

faces and, therefore, are only of academic interest to this study. It 

is worthwhile, however, to assess the ability of the theory to predict 

the optical properties of the alkali metals because we would expect the 

atomic model to be most applicable to these metals. We select sodium as 

typical of the alkali metals and use the atomic parameters given in 

Appendix I to compute the optical and thermal radiation properties. 

The optical conductivity of sodium at room temperature is pre­

sented in Figure 13. The theoretical values are in good agreement with 

the experimental data of Hodgson (57) and slightly higher than the data 

of Mayer and Heitel (58) for wavelengths greater than about one micron. 

At wavelengths less than one micron the data seem to indicate resonance 

phenomena; that is? the energy of the field is sufficient to excite bound 
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electrons in the 2p shell and interband transitions probably occur. A 

theory which accounts only for intraband free-electron transitions would 

yield a straight line in Figure 13. In the present theory the shape of 

the curves at short wavelengths is strongly influenced by the electron-

electron interaction term which we have chosen in Eq. (125). This im­

portant observation holds for each of the metals which we shall study 

and will be discussed in more detail later in this chapter. 

Hodgson (57) finds that the onset of interband transitions in 

sodium occurs at a photon energy of 1.2 ev. This corresponds to a wave­

length of 1.03 microns and serves as an indication of the lower wave­

length limit of application of a theory restricted to intraband transi­

tions. The present theory, however, does exhibit structure at shorter 

wavelengths, although not exactly of the nature required for the inter­

band transitions. 

The optical properties of sodium are shown in Figure 14. Unfor­

tunately, very little experimental data exist for wavelengths in the near 

infrared. Theoretical values of the emissivity at room temperature are 

plotted in Figure 15. Because the alkali metals are not used as thermal 

radiation surfaces, no experimental emissivity data are available. The 

theoretical curve indicates the marked increase in emissivity at wave­

lengths less than one micron caused by quantum absorption. 
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The Noble tfetals 

The noble metals have been the subject of more experimental and 

theoretical optical studies than any other group of metals. They form 

face-centered cubic (fee) lattice structures and, at ordinary and high 

temperatures, are the best electrical conductors of all metals. The 

Fermi surfaces of the noble metals are known to contact the first 

Brillouin zone at the center of each hexagonal face. A review of the 

optical properties and band structure of the noble metals has been pre­

sented by Suffczynski (59). 

The total electron damping coefficient} as well as its individual 

components, are shown in Figure 16 for silver at room temperature. At 

short wavelengths the electron-electron interaction term dominates whereas 

for wavelengths above about 3 microns the electron-phonon and impurity 

interaction terms become most important. As would be expected, the total 

damping coefficient approaches a constant value in the far infrared. The 

rapid increase of Tm as wavelength decreases below about one micron 

would indicate a region of strong absorption. This, of course, is ob­

served experimentally and is usually attributed to interband transitions. 

In the present model it is a result of our formulation of the electron-

electron interaction. This might indicate a close relationship between 

Gurzhi's expression for the electron-electron damping coefficient, Eq. 

(125), and interband transition phenomena. The theoretical curves of 

Figure 16 are compared with the experimental results of Beattie and 
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Conn (60), who deduced a value of T = l/FT from optical data over the 

wavelength range of 2 to 12 microns, and Shklyarevskii and Padalka (6l), 

who used data from 1 to 12 microns. Hodgson (62) obtained a value very 

near that of Shklyarevskii and Padalka. 

The theoretical nature of the damping coefficient at high tempera­

tures is illustrated for silver at 1000°K in Figure 17. The electron-

phonon interaction term has assumed even greater importance as would be 

expected because of the increased thermal activity of the lattice. How­

ever, the electron-electron term still dominates at short wavelengths. 

As temperature increases the damping coefficient increases and the region 

of strong absorption shifts to include longer wavelengths. One would 

expect, therefore, that absorptivity (or emissivity) would increase with 

temperature as is indeed the case. The values of Ce and T± used to 

obtain the theoretical damping coefficient were those deduced from the 

experimental results of Padalka and Shklyarevskii (52) and given in 

Appendix I. 

The values of the optical constants n and k predicted by the 

theory for silver at room temperature are compared with experimental data 

in Figures 18 and 19. Agreement is generally very good. The theory pre­

dicts slightly low in the case of the index of refraction and even less 

slightly high for the extinction coefficient at wavelengths above one 

micron. 
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The normal monochromatic emissivity of silver at room temperature 

is shown in Figure 20. Agreement between theoretical and experimental 

values is good although difficult to evaluate quantitatively because of 

the scatter of the measured data. Ehrenreich and Philipp (66) list the 

threshold for interband transitions in silver as 3.9 ev which corresponds 

to a wavelength of 0.32 microns. From Figure 20 it can be seen that this 

is very near the wavelength below which the theory predicts emissivity 

values smaller than the available experimental data. The variation of 

the emissivity of silver with temperature, as predicted by the theory, is 

shown in Figure 21. 

The normal monochromatic emissivity of gold at room temperature is 

shown in Figure 22. The experimental values of Ce and Tj_ obtained 

from the data of Padalka and Shklyarevskii (52) were used to compute the 

theoretical emissivity values. The theoretical curve lies below most of 

the experimental data. This was a general trend for the metals studied 

and will be discussed later in this chapter. The interband transition 

threshold for gold is at about 2.4 ev or 0.52 microns. The theory, how­

ever, predicts reasonable values of the emissivity for even shorter wave­

lengths. Figure 23 shows the temperature dependence of the normal mono­

chromatic emissivity of gold. The only high-temperature data available 

are those of Maki and Plyler (70) for wavelengths between 4 and 13 microns. 

Copper is of particular interest among the noble metals. It is 

lighter than silver or gold and, for this reason, has been the subject 
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of more band structure studies. Considerable experimental data are 

available concerning the electronic structure, optical properties and 

thermal radiation properties of copper at room temperature. Nonetheless, 

no data are available from which we can directly obtain the frequency-

and temperature-independent constants Ce and r^ as was the case for 

silver and gold. Because their electronic structures are similar, we 

would expect that values of Ce and T^ for copper would be comparable 

with those of silver and gold. As shown in Appendix I, however, the 

values obtained from Eqs. (128) and (130) are appreciably smaller in 

both cases than the experimental results would indicate. We find that 

if we use the computed values in the calculation of the emissivity, the 

theoretical values are smaller than the available data in all portions 

of the spectrum. 

The results of an investigation to determine the influence of the 

constants Ce and Tj_ on the theoretical values of the emissivity of 

copper are shown in Figure 24. The lower curve, numbered 1, was obtained 

using the values of Ce and r.j_ computed from Eqs. (128) and (130) and 

listed in Appendix I. The family of curves immediately above this, num­

bered 2 through 5, represent the same value of T^ but different values 

of C . The curves labeled A and B represent adjustments of both Ce 

and T^ . The effect of an independent increase in Ce can be seen to 

be a shift of the high absorption range to longer wavelengths; however, 

the long wavelength values remain unaffected. This is reasonable when 
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one considers the influence of the electron-electron interaction model 

on the damping coefficient as shown for silver in Figure 16. When Ce 

is increased the electron-electron damping coefficient increases. At 

short wavelengths this results in an increase in absorption. However, 

at longer wavelengths where re « T a change in Ce does not appre­

ciably influence the total damping coefficient. Conversely, because of 

the relative magnitudes of the electron-phonon and impurity damping terms, 

an increase in T± causes an increase in absorption except in that part 

of the spectrum where Te » Tj_ . 

It is reasonable to expect that, if the values of Ce and Y^_ 

obtained for silver and gold from the data of Padalka and Shklyarevskii 

(52) are reasonably accurate, then the corresponding values for copper 

(and other metals) should be greater than those computed from Eqs. (128) 

and (130). It is also interesting to compare the influence of Tj_ on 

the emissivity with the effect of surface roughness. An increase in 

surface roughness generally causes an increase in the infrared emissivity. 

This is related to the irregularities in the metal at the surface which 

might also be regarded as a source of stationary imperfections which con­

tribute to Fj_ . The value of the impurity damping coefficient obtained 

from Eq. (130) represents a bulk metal parameter because it is based on 

the residual resistivity. It does not, therefore, include the subsurface 

imperfections created by surface irregularities or methods of specimen 

preparation. Such effects would tend to increase the value of T± . 
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The normal monochromatic emissivity of copper at room temperature 

-| -z 1 

is plotted in Figure 25. The theoretical curve is for Ce = 10-^ sec. 

and Tj_ = 5 x 1013 sec."1. The threshold for interband transitions in 

copper is 2.1 ev or 0.59 microns. This is very near the point where the 

theoretical curve in Figure 25 falls below the experimental data although 

the theory also predicts reasonably accurate values of emissivity at 

shorter wavelengths. The variation of the emissivity of copper with 

temperature is shown in Figure 26. 

Aluminum 

The thermal radiation properties of aluminum are of interest be­

cause aluminum is important as an engineering structural material and 

finds considerable use in thermal radiation systems. Its electronic 

structure has been studied by Ehrenreich, Phillip and Segal (74) who 

found that the most significant structure in the dielectric constant 

occurs at about 1.5 ev (0.83 microns) and that no appreciable structure 

is observed at higher energies. The data presently available indicate 

that the general topology of the Fermi surface of aluminum closely ap­

proximates that of the free-electron sphere, perhaps even more so than 

some of the noble metals (39). 

Figure 27 shows the normal monochromatic emissivity of aluminum 

"IP -l at room temperature. Values of C = 7.5 x 10^ sec. and T$_ = 

13 -1 2 x 10 sec. were used to obtain the theoretical curve. The structure 
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L A , . 

u A o 
oo 0 

ALUMINUM, 295°K 
O Edwards and deVo!o(22) 
D Boettcher(75) 
A Twldle(76) 
• Hass, et a 1.(77) ^ 

Present theory: Ce = 7.5x10 
TT = 2.0xl01 3 

ALUMINUM, 295°K 
O Edwards and deVo!o(22) 
D Boettcher(75) 
A Twldle(76) 
• Hass, et a 1.(77) ^ 

Present theory: Ce = 7.5x10 
TT = 2.0xl01 3 

ALUMINUM, 295°K 
O Edwards and deVo!o(22) 
D Boettcher(75) 
A Twldle(76) 
• Hass, et a 1.(77) ^ 

Present theory: Ce = 7.5x10 
TT = 2.0xl01 3 

ALUMINUM, 295°K 
O Edwards and deVo!o(22) 
D Boettcher(75) 
A Twldle(76) 
• Hass, et a 1.(77) ^ 

Present theory: Ce = 7.5x10 
TT = 2.0xl01 3 

ALUMINUM, 295°K 
O Edwards and deVo!o(22) 
D Boettcher(75) 
A Twldle(76) 
• Hass, et a 1.(77) ^ 

Present theory: Ce = 7.5x10 
TT = 2.0xl01 3 

ALUMINUM, 295°K 
O Edwards and deVo!o(22) 
D Boettcher(75) 
A Twldle(76) 
• Hass, et a 1.(77) ^ 

Present theory: Ce = 7.5x10 
TT = 2.0xl01 3 

ALUMINUM, 295°K 
O Edwards and deVo!o(22) 
D Boettcher(75) 
A Twldle(76) 
• Hass, et a 1.(77) ^ 

Present theory: Ce = 7.5x10 
TT = 2.0xl01 3 

ALUMINUM, 295°K 
O Edwards and deVo!o(22) 
D Boettcher(75) 
A Twldle(76) 
• Hass, et a 1.(77) ^ 

Present theory: Ce = 7.5x10 
TT = 2.0xl01 3 

ALUMINUM, 295°K 
O Edwards and deVo!o(22) 
D Boettcher(75) 
A Twldle(76) 
• Hass, et a 1.(77) ^ 

Present theory: Ce = 7.5x10 
TT = 2.0xl01 3 

0.1 .0 10 
Wavelength, microns 

100 

Figure 27 . Monochromatic E m i s s i v i t y of Aluminum a t Room Temperature 



120 

observed in the dielectric constant at 1.5 ev due to interband transi­

tions is also observed in the experimental emissivity data. The theory, 

of course, cannot duplicate the resulting region of high absorptivity 

which occurs over a relatively narrow wavelength band. The normal mono­

chromatic emissivity of aluminum at different temperatures is shown in 

Figure 28. 

Nickel 

The transition metals are characterized by the fact that both 

d-band and s-band electrons can occupy states at the Fermi level. The 

resulting electronic structure is complex and band structure calculations 

are complicated. We would not expect, therefore, that the simple model 

employed in the present theory would provide very reliable correlation 

of thermal radiation property data for the transition metals. However, 

experiments show that the monochromatic emissivity of the transition 

metals differs from that of the noble metals, for example, by the fact 

that the region of high absorption begins at longer wavelengths. This 

same shift occurs in the computed values if the constant Ce is in­

creased. Thus one might anticipate improved theoretical correlation in 

the case of the transition metals if sufficiently large values of Ce 

are used. 
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The normal monochromatic emissivity of nickel at room temperature 

is plotted in Figure 29. Reasonably good correlation between experi­

mental and theoretical values for wavelengths above about one micron is 

obtained for an electron-electron interaction constant of Ce = 8 x 
1013 

sec."" . This is somewhat higher than the values used for the monovalent 

and multivalent metals, as would be expected. The free-electron plasmon 

energy, 8.3 ev, was used in the theory and the electron velocity of the 

Fermi level was assumed to be that of the s-state electrons (v^/c = 0.0033, 

see Appendix i). Ehrenreich, Phillip and Olechna (80) have observed 

structure in the dispersion of the dielectric constant at photon energies 

of 0.3 and 1.4 ev which corresponds to 4.1 and 0.9 microns, respectively. 

The low energy transition appears to coincide with the beginning of the 

region of high absorption. The second structure at 0.9 microns is also 

observed in the experimental emissivity data but, of course, is not pre­

dicted by the theory. This high energy structure appears in the case of 

the other transition metals also as is evident from the data of Edwards 

and DeVolo (22) for chromium, molybdenum, platinum, tungsten and vanadium. 

The variation of the normal monochromatic emissivity of nickel 

with temperature is shown in Figure 30. The theoretical curve for 1400°K 

lies between the two sets of data obtained by Seban (23) (73). 
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Discussion of the Theory 

The analysis of the thermal radiation properties of metals pre­

sented in this thesis represents an attempt to utilize several concepts 

and analytical methods of solid state physics to formulate a theory 

which is useful in the engineering sciences. A limited number of in­

vestigations have been reported in the literature which were directed 

toward the study of quantum absorption phenomena in metals. Notable 

among these is the work of Gurzhi (81) (82) who derived a quantum-mechan­

ical form of the Boltzmann transport equation for electrons in a metal 

subjected to an electromagnetic field. Gurzhi's analysis was concerned 

mainly with absorption at low temperatures but presents an example of an 

approach somewhat different from that used herein. Unfortunately, these 

studies, including the work of Gurzhi, do not yield relations which can 

be readily interpreted in an engineering sense. The present theory pro­

vides a number of interesting insights into the fundamental physical proc­

esses which give rise to the thermal radiation properties. 

The principal analytical objective of the theory is to provide a 

means to compute the electron damping coefficient which serves as a quan-

V 
titative measure of the ability of a metal to absorb thermal radiation. 

The radiation field expends energy by exciting the conduction electrons. 

But the electronic motion is damped by interaction with the other atomic 

constituents of the metal. The damping provides a mechanism by which 
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energy is transferred from the electrons to the lattice structure. Hence, 

the metal absorbs energy and its temperature rises. The conduction elec­

trons also absorb energy from the lattice and emit energy into the radia­

tion field. At thermal equilibrium these mechanisms are balanced and 

the metal maintains a constant temperature. For these reasons the damp­

ing coefficient is perhaps the most interesting parameter of the theory. 

Experimental measurements show that as the wavelength of the mono­

chromatic radiation field is decreased from the far infrared, the emis-

sivity of a metal increases gradually until a wavelength region in the 

near infrared or visible part of the spectrum is reached at which the 

emissivity increases markedly to a value near unity in the near ultra­

violet. This rapid increase in emissivity is attributed to the onset of 

quantum absorption. It can occur only when the photon energy is suffi­

cient to induce quantum transitions between electronic states in the 

metal. According to the model used in the present theoretical develop­

ment, the electron transitions are a result of simultaneous electron-

photon and electron-phonon processes. A second-order perturbation 

analysis of such transitions yields a parametric grouping which can be 

interpreted as an electron-phonon damping coefficient. To this are 

added a term to account for the effects of interelectronic collisions and 

a constant term to account for the presence of impurities and stationary 

imperfections. 
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If the only mechanisms considered in the atomic model are the 

electron-photon and electron-phonon interactions, we find that the damp­

ing coefficient T is nearly independent of frequency as shown in Figure 

11. However, it is influenced "by temperature as would "be expected from 

the fact that the phonon dispersion is a measure of the thermal energy 

of the lattice. The electron-phonon damping coefficient is the dominant 

damping term in the far infrared portion of the spectrum as shown for 

silver in Figure 16„ Thus, in the far infrared, even if the electron-

electron term is included in the model, the total electron damping coef­

ficient is nearly frequency independent. This explains the utility of 

the simple Drude theory at long wavelengths. The Drude theory treats the 

damping coefficient as a phenomenological constant and relates it neither 

to frequency nor temperature. The empirical coefficients determined in 

the application of the Drude theory undoubtedly contain some contribution 

of impurity damping. 

The relations developed in the present theory would "be useful 

even if the model were restricted to the electron-phonon process and the 

application restricted to the far infrared because the theory gives the 

temperature-dependence of the electron-phonon damping coefficient. If 

Eq. (122) was used to determine the damping coefficient, the theory would 

provide a means of computing the monochromatic thermal radiation prop­

erties as a function of temperature at wavelengths above about 5 microns 
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for the monovalent metals. The inclusion of the electron-electron term 

extends the application of the theory to shorter wavelengths and to metals 

with more complex electronic structures. 

The theory based on the electron-phonon interaction only is suffi­

cient to predict the region of quantum absorption. However, even in the 

case of the monovalent metals, it appears necessary to include the elec­

tron-electron term in order to properly locate this region in the spec­

trum. If only the electron-phonon theory is used, the calculated emis­

sivity values are less than experimental data although the shape of the 

curve is correct. The influence of the electron-electron interaction 

term is to shift the quantum absorption region to longer wavelengths. 

It thus becomes particularly influential in the correlation of the emis­

sivity of the transition metals which is larger at longer wavelengths 

than that of the monovalent metals. 

As was mentioned previously, the effect of the impurity damping 

term is appreciable only in the infrared where an increase in Tj_ causes 

an increase in emissivity. It is interesting to relate this observation 

with the fact that an increase in surface roughness or a degradation of 

surface condition also causes an increase in emissivity. It is not 

unreasonable to interpret this as representing a relationship between 

what we have described as damping caused by stationary imperfections and 

what is regarded in experimental studies as a deviation from optically 

smooth surfaces. Perhaps if high purity specimens with extremely smooth 
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surfaces could be prepared, we would find that the experimental data 

would correlate more nearly with the values of T± obtained from Eq. 

(130). 

The theory provides a means of obtaining reasonably accurate cal­

culated emissivity values at much shorter wavelengths than is possible 

with the Hagen-Rubens formula. Furthermore, it yields the temperature 

dependence which cannot be explained by the Drude theory. Correlation 

is possible even at wavelengths below the interband transition threshold. 

This can be attributed largely to the inclusion of the electron-electron 

term which is proportional to the square of the angular frequency. A 

discussion of the possible connections between interelectronic damping 

and interband transitions, however, is beyond the scope of this research. 

Accurate correlation requires the selection of two temperature-

and frequency-independent constants: the electron-electron collision 

constant and the impurity damping coefficient. Although these constants 

have some basis in the physical model, the most satisfactory results are 

obtained if they are determined by matching the theory to an experimental 

point. Even so, this represents a considerable improvement over the 

Drude-Roberts theory which requires the empirical determination of many 

arbitrary constants at each temperature. Furthermore, the constants in 

the present theory can be traced to their role in the electron inter­

actions whereas the Drude-Roberts constants have no relation to an atomic 
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model. Once Ce and Tj_ have been determined at a specific frequency 

and temperature the values are applicable at all other frequencies and 

temperatures for which the theory is valid. 

The temperature dependency of the emissivity is correctly pre­

dicted by the theory although it is difficult to assess the accuracy of 

the calculated values at high temperatures because of the lack of precise 

high-temperature emittance measurements. The theory correctly indicates 

that the temperature coefficient of emissivity is positive in the far 

infrared and decreases to near zero at some point in the visible or near 

infrared depending on the particular metal. However, the transition to 

very small negative temperature coefficients at even shorter wavelengths, 

which is observed with some metals, (the x-point) is not theoretically 

predicted. This would indicate that the x-point is the result of some 

phenomena not included in the atomic model; for example, the effects of 

bound electrons which are excited in the ultraviolet. 

The quantum absorption region observed in the experimental emit­

tance data of the monovalent metals and predicted by the theory coin­

cides with the interband transition threshold which is determined by 

measurement of the dielectric constant. In the case of the multivalent 

and transition metals, the experimental data exhibit more dispersion 

structure but can also be correlated with the multiple interband thres­

holds. Therefore, if precise emittance measurements are coupled with 

the information provided by the theory, it should be possible to study 
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many of the microcharacteristics of metals. For example, if the theory 

is fitted to normal monochromatic emittance data, the various components 

of the total electron damping coefficient can be determined. 

The wavelength region in which the theory appears to be valid 

for the metals studied includes the near infrared and, in some cases, 

part of the visible region as well as the far infrared. In the case of 

copper, for example, good agreement between experimental and theoretical 

emissivity values is obtained for wavelengths as short as 0.6 microns. 

For a copper surface at a temperature near the melting point (1356°K), 

the radiant power emitted in the wavelength region above 0.6 microns is 

more than 99.99 per cent of the total radiant power emitted by the sur­

face. On the other hand, the same surface at the same temperature emits 

only 14 per cent of its total radiant power at wavelengths above 6 microns, 

the generally-accepted lower limit of the Hagen-Rubens formula. Thus, 

the theory provides analytical access to a wavelength region which is of 

considerable importance to thermal radiation analysis but which is out­

side the region of applicability of the simple classical theory. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Engineering studies of the thermal radiation properties of solids 

have rarely given more than passing reference to the basic fact that 

absorption and emission are quantum phenomena. The engineer is usually 

satisfied with experimental data and phenomenological investigations. 

Hopefully, the research described in this thesis indicates that useful 

and interesting results can be obtained by the application of elementary 

quantum concepts to the theoretical study of the thermal radiation prop­

erties of metals. 

The following conclusions result from the study reported herein: 

1. The theoretical relations which result from an analysis of 

the second-order processes involving electron-photon and electron-phonon 

interactions predict the existence of the experimentally-observed region 

of quantum absorption in metals. 

2. The electron-electron interaction, as expressed by Gurzhi's 

relation, is important as an absorption mechanism in the visible and near 

infrared parts of the spectrum for metals at room temperature and above. 

3. The impurity interaction can be treated as a constant addi­

tion to the total electron damping coefficient and can be important at 
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long -wavelengths and moderate temperatures. At high temperatures its 

influence is diminished by the increased significance of the electron-

phonon interaction. 

4. The location of the region of quantum absorption in the spec­

trum is influenced by the value of a temperature- and frequency-indepen­

dent constant, Ce , associated -with the electron-electron interaction. 

The value of this constant increases with the complexity of the elec­

tronic structure of the metal. 

5. The region of quantum absorption predicted by the theory occurs 

at frequencies which correspond with the threshold for interband transi­

tions. This suggests a possible connection between the model used for 

electron-electron processes and interband transition phenomena. 

6. With the proper selection of two constants, the theory can be 

used to correlate the normal monochromatic emissivity of not only the 

noble metals but also the transition metals, although not all details 

of the latter are predicted. 

7. The theory suggests that the following mechanisms account for 

the absorption phenomena observed in metals at various parts of the spec­

trum: At short wavelengths the electron-electron interaction is the 

dominant absorption mechanism. This is the indication even at high tem­

peratures, although the importance of the electron-phonon process in­

creases as the temperature increases. The wavelength below which the 
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electron-electron process is dominant depends on the particular metal 

but usually lies in the visible or near infrared. At longer wavelengths 

the electron-phonon mechanism is dominant and is nearly independent of 

frequency, which explains the fact that application of the Drude free-

electron theory is limited to the far infrared. The impurity interaction 

contributes to absorption in the far infrared but is usually appreciably 

less important than the electron-phonon process. 

8. The relations which result from the theory provide an explicit 

formulation for both the frequency and temperature dependence of the 

normal emissivity. Neither the classical Drude theory nor the empirical 

Drude-Roberts theory provide the temperature dependence. 

9. The theory significantly extends the wavelength range over 

which theoretical emissivity values can be obtained. The Hagen-Rubens 

formula is accurate only for wavelengths greater than about six-to-ten 

microns whereas the present theory provides adequate correlation at wave­

lengths in the visible spectrum for some metals. This extended range 

encompasses a part of the spectrum which is very important in high-tem­

perature thermal radiation analysis. 

10. The theory does not predict the short-wavelength x-point 

observed in the case of some transition metals. This suggests that the 

x-point is a result of some phenomena not included in the theoretical 

model? perhaps the high-frequency excitation of core electrons. The 



135 

theory does, however, indicate that the temperature coefficient of emis-

sivity becomes vanishingly small as the wavelength is decreased. 

11. The theory is sufficiently simple that it could be easily 

used in the routine correlation of emissivity data. An analysis of 

experimental thermal radiation property data within the framework of the 

theory indicates that the data reveal many features usually studied only 

in more sophisticated investigations of optical properties. 

The results of this study indicate that several areas of closely-

related research deserve attention in the future. Specific recommenda­

tions include: 

1. There continues to be a need for precise experimental measure­

ments of the emittance of engineering solids, particularly at high tem­

peratures. Very little high temperature data is available even for the 

common metallic elements. The development of experimental methods for 

the precise measurement of the monochromatic emittance or reflectance of 

carefully prepared specimens at temperatures to 2500° K or above would 

contribute considerably to our understanding of these important thermo-

physical properties. The present theory might assist in the evaluation 

of the accuracy of such measurements. 

2. The theory can be easily extended to provide the capability 

of calculating total normal emissivity as a function of temperature. 

This merely requires integration of the monochromatic values over wave­

length. 
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3. Additional theoretical effort is required to obtain an under­

standing of the high-frequency contributions of interband transitions to 

the absorptivity of metals. Such study would be particularly useful in 

the theoretical study of the properties of the transition metals. Avail­

able evidence (36) on the electron specific heat of transition metals 

indicates that the s-»-d transitions are the most important interband 

transitions. 

4. The role of the Umklapp process in absorption phenomena in 

metals is worthy of more study than it has received in the present in­

vestigation, although this might be beyond the sophistication required 

in an engineering analysis. U-processes would be expected to influence 

both electron-electron and electron-phonon interactions. 

5. A study of the degree to which the core electrons are influ­

enced by a thermal radiation field might contribute to a theoretical 

understanding of the small negative temperature coefficient of emissivity 

observed at very short wavelengths for some metals. 

6. The theory does not treat metallic alloys or conductive re­

fractory compounds which are important in many thermal radiation systems. 

Additional effort in this area is warranted. 

The study reported in this thesis, while representing only an 

initial approach toward an improved theoretical understanding of absorp­

tion phenomena in metals, demonstrates that quantum concepts and analyt­

ical methods can be used to advantage in a simplified analysis without 
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involving complications which reduce the engineering utility of the 

analysis. As is the case with most research, this study has generated 

a number of questions which deserve further investigations. There appear 

to be many potentially fruitful avenues along which to direct further 

studies. The situation encountered is somewhat analogous to that facing 

Alice when Lewis Carroll wrote: 

"Which way ought I to go to get from here?" 
"That depends a good deal on where you want to get to," said the Cat. 
"I don't much care where-" said Alice. 
"Then it doesn't much matter which way you go," said the Cat. 
"--So long as I get somewhere," Alice added as an explanation. 
"Oh3 you're sure to do that," said the Cat, "if you only walk long 
enough." 
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APPENDIX I 

ATOMIC CHARACTERISTICS OF METALS 

The theoretical prediction of the thermal radiation properties of 

metals requires the use of several atomic parameters which characterize 

the electronic structure of a particular metal. Except for the alkali 

and noble metals, the required data are difficult to obtain. Values of 

the Fermi energy and the electron velocity at the Fermi level, for ex­

ample, are usually defined in terms of the free electron structure. If 

interband transitions occur, different values of Ef and v« are nec­

essary to characterize the various transitions. In order to carry out 

calculations of the optical and thermal radiation properties utilizing 

the theory developed in this thesis, it is necessary to have available 

values for the following atomic properties: 

1. The Debye temperature - The characteristic Debye temperature 

can be determined from either specific heat or electrical resistivity 

measurements. For most metals the value obtained from specific heat 

data, 6-pj , is not exactly the same as that obtained from resistivity 

data 9R . Because our use of the Debye temperature is closely related 

to its use in resistivity theory, we are interested in values of 9̂  . 

Both 9̂  and 9-n are tabulated in Table 1-1. The values are those 
D & 

compiled by Meaden (54). 
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M a l t i n g 

P o i n t * 
°K 

a* 

°K 

a* 
9R 
°K 

p 2 7 3 
| in -em e v Ref 

- 3 
cm Ref ev Ref Ref 

* 
Co 

Mif2-cm 

CQ x 1 0 " 1 3 

s e c " E q . (128) Used Eq . (130) Used 

Na 11 mono . ) b e e 3 7 1 160 195 8 . 4 9 4 7 .12 9 2 . 5 9 3 . 1 9 1 .1 9 0 . 0 0 1 8 . 3 8 0 . 0 8 " 0 . 0 8 0 . 0 0 8 0 . 0 0 8 

Mg 12 ( d i v a l . ) cph 924 325 340 3 . 9 4 1 5 . 3 9 0 .004 0 . 1 2 

A l 13 t r i v a l . ) f e e 933 385 395 2 . 5 0 1 7 . 7 33 6 . 0 53 1 1 . 8 74 4 . 7 53 0 . 0 0 0 1 7 7 . 6 0 . 0 7 7 . 5 0 . 0 1 2 

T i ­ 22 t e t r a . ) cph 1941 355 342 3 9 . 0 0 . 0 3 2 . 4 

e r 24 t r a n s . ) b e e 2140 450 485 1 2 . 1 

Fe 26 t r a n s . ) b e e 1807 8 . 7 

Ni 28 t r a n s . ) f e e 1726 390 6 . 2 8 . 3 80 9 . 1 85 8 . 0 86 3 .3+ 85 0 . 0 2 5 5 . 7 0 . 1 5 80 0 . 3 5 0 . 5 

Cu 29 mono. ) f e e 1356 320 320 1 .55 9 . 3 33 8 . 5 53 7 .0 9 5 . 3 53 0 . 0 3 1 3 . 8 0 . 2 1 10 0 . 6 7 5 

Zn 30 d i v a l . ) cph 6 9 2 . 6 245 175 5 . 4 5 9 . 8 83 0 . 0 0 5 0 . 1 2 

Mo 42 t r a n s . ) b e e 2890 380 4 . 8 

Ag 47 mono . ) f e e 1234 220 200 1.47 9 .2 33 5 . 9 53 5 . 5 9 4 . 7 53 0 . 0 0 1 7 . 6 7 0 . 4 3 * * 0 . 4 3 1.9** 1 .9 

Sn 50 t e t r a . ) — 5 0 5 . 1 165 183 1 0 . 1 14 33 3 . 7 53 4 . 0 53 0 . 0 0 0 1 0 . 0 1 

W 74 t r a n s . ) b e e 3670 315 333 4 . 8 6 . 3 53 4 . 8 53 

P t 78 t r a n s . ) f e e 2042 225 240 9 . 5 9 6 . 7 53 4 . 8 53 

Au 79 mono . ) f e e 1336 185 200 2 . 0 1 9 84 5 . 9 53 5 . 5 9 4 . 7 53 0 . 0 0 1 1 0 . 0 4 1 .03** 1.03 1 . 1 * * 1 . 1 

Pb 82 t e t r a . ) f e e 6 0 0 . 6 88 100 1 9 . 3 14 33 3 . 3 53 3 . 8 53 0 .004 0 . 2 0 

* Reference (54) 
** Reference (52) 
+ s-band e lec t rons 



140 

2. The dc r e s i s t i v i t y - The dc conductivity (or i t s rec iprocal , 

the dc r e s i s t i v i t y ) i s required in Eq. (123) to obtain values of the 

atomic constant C0 . The functions a and F? {a) are evaluated at 

273.15°K for use in Eq. (123); hence, we require the dc r e s i s t i v i t y at 

tha t temperature. The data compiled by Meaden (54) are l i s t e d in Table 

I - l . 

3 . The volume plasmon energy - The plasma frequency ID i s r e -
Jr 

quired at several points in the theory. Experimental data of electron 

plasma oscillations are usually reported in terms of the plasmon energy 

-fiUp . The plasmon is the quantum excitation representing the quantized 

plasma oscillations (33). It is analogous to the phonon which represents 

the quantized lattice vibrations. Values of the plasmon energy, as re­

ported by several authors, are listed in Table I-l. 

4. The number of conduction electrons per unit volume - The 

electron-electron atomic constant, given by Eq. (128), is a function of 

several atomic parameters including the number of conduction electrons 

per unit volume N. The values of N given in Table I-l are mostly those 

used by Dingle (53) in his analysis of reflectivity. 

5. The Fermi energy - The electron kinetic energy at the Fermi 

level, E,, , also enters into the approximate evaluation of Ce in Eq. 

(128). The values in Table I-l for Na, Cu, Ag and Au are those reported 

by Kittel (9). That for Al is from Pines (33) and the free-electron 

value for Ni is from Ehrenreich (86). 
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6. Electron velocity at the Fermi level - The velocity of an 

electron at the Fermi level, Vf , is required to estimate Ce in Eq. 

(128) and to estimate the skin absorption from Eq. (132). Values of 

Vf/c are listed in Table 1-1. 

7. Residual resistivity - The influence of impurity interactions 

is estimated from the residual resistivity p0 . Calculation of the 

approximate impurity damping coefficient using Eq. (130) requires values 

of both the residual resistivity and the plasma frequency. The values 

of pQ listed in Table 1-1 are those compiled by Meaden (54). 

The values of C0 given in Table 1-1 were computed using Eq. 

(123) and the atomic constants given in the table. The values of Ce 

and Tj_ were computed fromEqs. (128) and (130), respectively, with the 

exception of the values for Ag and Au which were taken from the experi­

mental results of Padalka and Shklyarevskii (52). If Eqs. (128) and (130) 

are used to calculate Ce and T^_ for Ag and Au, the results are appre­

ciably smaller than the available data. For both metals the computed 

values are Ce = 0.08 x 10
12 and Ti = 0.02 x 10 . The influence of 

stationary imperfections would be expected to differ considerably de­

pending on the purity of the specimen and the manner in which it was 

prepared. Surface imperfections would also have a greater effect on 

optical measurements, such as those of Padalka and Shklyarevskii, than 

on bulk measurements of residual resistivity. Since the theory deals 
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with the optical phenomena, the larger measured values of Tj_ are un­

doubtedly more applicable than the computed values. 

The discrepancy between the measured and computed values of Ce 

might be attributed to an underestimation of the electron-electron col­

lision cross-section. As pointed out in the text, improved agreement 

with experimental data is obtained if values of Ce are used which are 

more in agreement with the values of Padalka and Shklyarevskii. Unfor­

tunately, very little experimental information is available regarding 

the electron-electron processes in the other metals. The present theory 

affords one means of obtaining such data. 
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APPENDIX II 

PERTINENT CONCEPTS OF QUANTUM MECHANICS 

This appendix presents a brief outline of the elementary concepts 

of quantum mechanics as they apply to the subject matter of the thesis. 

It is intended to serve as a guide to the basic literature for the reader 

who is unfamiliar with the concepts and application of quantum theory. 

The Basic Postulates of Quantum Theory 

Quantum mechanics can be regarded as the system of dynamics which 

attempts to describe fundamental atomic phenomena. Many useful quantum-

mechanical relations can be obtained by analyzing a physical system from 

the viewpoint of classical mechanics and then applying the fundamental 

postulates of the quantum theory. The most general physical system con­

sists of a group of particles which can interact with each other and re­

spond to external forces. The dynamics of such a system is described 

in classical mechanics by Hamilton's equations of motion, 

!*i = - M.; 53* = M (i) 
dt dqj_ St dpi 

where the q^ are the coordinates which specify the location of each 

particle in space and the Pj_ represent the momenta of the particles. 

The function "}f is the classical Hamiltonian and is a representation of 
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the total energy of the system (87). According to classical mechanics, 

the exact state of a system at a future time can be determined by the 

solution of the Hamilton equations subject to a known set of initial con­

ditions. That is, if the coordinates and momenta of each particle are 

known for some initial time, all dynamic variables of the system can be 

calculated exactly for some future time. One of the basic concepts of 

quantum mechanics is that such a precise specification of the state of a 

system is impossible. The Heisenberg uncertainty principle of quantum 

theory asserts that two conjugate variables cannot both be determined 

with arbitrary precision. The product of the uncertainties of the x-

coordinate and x-component of momentum, for example, must obey the in­

equality 

Ax Apx £ ft (2) 

where -n = h/2n = 1.054206 x 10"27 erg-sec. Therefore, the specifica­

tion of the state of a system is, according to quantum theory, treated 

in terms of probabilities. We have the following basic postulates: 

Postulate 1. The probability P(q. ,t) that a system will be 

found with coordinates between q^ and q̂  + dqj_ at time t is given 

in terms of a complex state function ¥(qj_,t) , 
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P(q.i,t)dq1dq2---dqn = ̂ (qi?t)Y(qi?t)dq1dq2* •'d.qn 

where the asterisk denotes the complex conjugate. The state function 

is usually normalized such that 

/ 
Y*YdT = 1 

where dT denotes an element of configuration space. 

Postulate 2. For every observable dynamic variable of a system 

A 
there i s associated a corresponding l inear hermetian operator S . The 

value of the observable s obtained by a measurement on a system which 

i s in a s ta te described by s ta te function ¥ i s given by the expectation 

value of the corresponding operator 

<£> = I WWr 

The expectation value i s a r ea l number because of the hermetian property 

of the operator, 

I Y*SYdT = i ' Y*SYdT = I ^(SY)*dT 
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Postulate 3. The function ¥(qj.3t) represents a solution of the 

time-dependent Schroedinger equation 

& = in 51 (3) 
dt V ' 

A 
where H is the quantum-mechanical Hamiltonian operator. The operator 

is obtained by determining the classical Hamiltonian of the system and 

replacing each dynamic variable by its corresponding quantum-mechanical 

operator. 

If the Hamiltonian operator does not explicitly depend on time, 

the state function can be separated 

Y(?,t) = u(f*)f(t) 

Then 

f(t) = a iEt/n 

and the function u(r) must satisfy the time-independent Schroedinger 

equation 

Hu = Eu (4) 
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This is an eigenvalue equation and the eigenvalue E is the energy of 

the system. Because the energy does not depend on time (the energy ex­

pectation value is equal to the eigenvalue), the system is said to be in 

a stationary state. 

Consider two eigenfunctions u^ and un which are solutions of 

Then 

A / \ 
Sum - smum > ^ u n ~~ s n u n 

J [ ^ " m - V ^ n ) * ] d T = (sm-sn) J u^dr = 0 

where the last equality is a result of the hermetian property of the quan­

tum operator. Hence, either sm=sn , in which case the eigenvalues are 

said to be degenerate, of /unumdt = 0 , that is, the eigenfunctions are 

orthogonal. In the degenerate case it is always possible to select linear 

combinations of the eigenfunctions that are mutually orthogonal. We there­

fore have the important result that the total set of eigenfunctions of a 

quantum operator S forms a complete orthogonal set. Furthermore, any 

wave function Y which represents a solution of the Schroedinger equa­

tion can be expressed as a linear combination of the eigenfunctions of 

the orthogonal set, 
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OD 

X-T ^ = "i a-i"U-j 

d=o 

The expectation value corresponding to the operator S for the state 

with wave function Y is 

/ 
Y*SYdt = Y ajaksk 

k=o 

If the system is in state ¥ and we measure the variable s , the mea­

surement will yield one of the eigenvalues SJ . The probability that 

the measured value is a particular eigenvalue s^ is proportional to 

* 
a k a k = 

a k The matrix element of S which connects two s ta tes m 

and n i s defined as 

A > n d t =<p|3|n>=Smn (5) 

The bas ic concepts of quantum mechanics are discussed in many 

elementary tex ts such as Dirac (88), Eyring, Walter and Kimball (89), 

Schiff (31) and Sla ter (34). 
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Stationary Perturbation Theory 

Most problems of physical interest are sufficiently complex that 

exact solutions of the Schroedinger equation cannot be obtained. It is 

then necessary to utilize approximate methods. One of the most useful 

techniques is perturbation theory in which a small disturbance applied 

to the system is treated as a perturbation of the Hamiltonian. We con­

sider first the theory as applied to the approximate solution of the time-

independent Schroedinger equation. We assume that the Hamiltonian can 

be expressed as the sum of two parts: the zero-order, or unperturbed, 

Hamiltonian H° and a perturbation term H! . The zero-order term is 

selected such that the eigenvalue equation 

H°u = E u n n n 

is satisfied by known eigenvalues and eigenfunctions. We assume that 

H' represents a small perturbation and write 

H = H° + \H' 

where A is a parameter which is set equal to unity in the final result. 

The energy level and wave function are written 
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Y = Y(°) + \Y ( ! ) + xM 2 ) + 

E = E ( ° ) + XE^1) + X 2 E ( 2 ) + 

and subst i tu ted into the time-independent Schroedinger equation. Equating 

coefficients of equal powers of X we find that YW = un and E ' 0 ' 

= En . 

The f i r s t -o rde r perturbation i s obtained by expanding YW i n 

terms of the i^ , 

Y(D = y a(Du 
/ . n n 
n 

The expansion coefficients are found to be (3l) 

aW = -£*S (6) 
k Em-Ek 

where 

/ * • H'v m= l^'njir (?) 
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Time-Dependent Perturbation Theory 

The problem of concern in this thesis involves a solution of the 

time-dependent Schroedinger equation. In this case perturbation theory 

also involves the assumption that the Hamiltonian is the sum of two parts 

H = H° + H' (8) 

and that the eigenfunctions and eigenvalues of 

* % = En^n 

are known. Now, however, we proceed by expanding the wave function in 

terms of the eigenfunctions u^"2^^/^ 

Y = 2a„(t)une-^nt/fi ( 9 ) 

n 

where the expansion coefficients are functions of time. They are deter­

mined by substituting Eq. (9) into the Schroedinger equation, multiplying 

-x-
on the left by u, , integrating over configuration space and noting the 

orthonormal properties of the eigenfunctions. We find that the time-rate-

of change of the expansion coefficients is given by (31) 
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a 
k 

(o) = 0 . ^ 1 ) . i_ ^H'kna(P)e-knt ; p . 0 ) 1 J 2 J... (lo) 

n 

where 

"kn = "V 5 (11) 

If the system is known to be in a particular state u^ before the 

perturbation HT is applied at t=o , then a4 = &kn and 

a k l ) ( t ) = f e | H'j^tje^^t (12) 
Jo 

Several simplifications are possible if the perturbation Hamiltonian is 

independent of time except to be initiated at time t=o and terminated 

at some later time t=t' . However, such is not the case for the prob­

lem investigated in this thesis. 

Perturbation theory is discussed in detail by Schiff (3l) and 

Eyring, Walter and Kimball (89). Its application to radiation problems 

is treated by Heitler (47). 
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APPENDIX III 

THE UMCLAPP PROCESS 

When an electron undergoes a transition from state k to state 

k1 by the absorption or emission of a phonon of wave vector q , momen­

tum is conserved if 

"k-k'+q = G (l) 

where G is a vector in the reciprocal lattice. If a, b and c are 

the primitive axes of the crystal lattice (9), then the reciprocal lat­

tice is defined by the fundamental vectors 

~T r^. bxc A = 2TT 
a • (bxc) 

B = 2n C x a 

a* (bxc) 

"T r^- a x b 
C = 2n 

a- (bxc) 
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Then a vec to r i n the r e c i p r o c a l l a t t i c e i s def ined as 

"G = JBA = mB + nC (2) 

where £ , m and n are integers. 

In the process described by Eq. (l) there are two distinct cases. 

First, if G = 0 the electron-phonon interaction is referred to as a 

normal process, or N-process. In this case the final total wave vector 

k'+q must equal the initial electron wave vector k . If a phonon is 

— » - » • - » • 

created (k-k'+q = 0) the momentum of the electron is reduced by the 

_». —»•-».». 
amount nq . If a phonon is absorbed (k-k'-q = o) the electron momentum 

is increased by fiq. . Because the phonon energy is usually much smaller 

than the electron energy, an electron in an initial state near the Fermi 

surface will be scattered to another state near the Fermi surface as 

illustrated in Figure III-l. 

The other scattering process, for which G ^ 0 , is termed the 

Umklapp process, or U-process. Before discussing this type of electron-

phonon interaction it is helpful to recall the concept of a Brillouin 

zone (9). From the study of x-ray propagation in crystals it is known 

that there are certain wave vectors (that is, certain wavelengths and 

propagation directions) for which the x-rays satisfy the Bragg relation 

and total reflection occurs. Because of the concept of wave-particle 

duality, the same conditions prevail for the propagation of electrons 
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through a crystal. For certain values of the electron wave vector k, 

Bragg reflection occurs and there exists a discontinuity in the allowed 

electron energy. The boundaries in k-space within which the electrons 

have allowed wave vectors are the Brillouin zones. They are concentric 

about the k-space origin and correspond to allowed energy bands. The 

first Brillouin zone is formed by constructing planes normal to the re­

ciprocal lattice vectors at their mid-point when the vectors originate 

at the origin in k-space. 

In the Umklapp process an electron is scattered by a phonon and 

also undergoes a Bragg reflection at the boundary of the Brillouin zone 

as shown in Figure III-2, An electron initially in state k interacts 

with a phonon of wave vector q, resulting in the electron state kT 

indicated by the vector PI which terminates near the Fermi surface. The 

wave vector k' is displaced by the reciprocal lattice vector G to 

the final state represented by OF. The Umklapp process can also occur 

in the electron-electron interaction (39). 

Very little information, either quantitative or qualitative, is 

available concerning the effect of the Umklapp process on absorption 

phenomena. It is generally thought that they may be important especially 

at high temperatures where the phonon energy can become appreciable. 

Gurzhi (50) concludes that no electron-electron interactions occur unless 

the Umklapp process is present. It is therefore possible that our quali­

tative inclusion of an electron-electron interaction term includes some 
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Figure III-l. Normal Scattering of an Electron on a Spherical 
Fermi Surface in a Cubic Lattice 

Figure III-2. Umklapp Scattering of an Electron on a Spherical 
Fermi Surface in a Cubic Lattice 
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allowance for the Umklapp process. The reader is urged to consult Ziman 

(39) and Kittel (9) for further discussion of this phenomenon. 
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APPENDIX IV 

MATHEMATICAL CONSIDERATIONS 

The absorption and emission of thermal radiation by a metal in­

volves the interactions between the conduction electrons and the photons 

which represent the external field and between the electrons and the 

phonons which represent the thermal vibrations of the lattice. In order 

to obtain an expression for the net amount of energy absorbed by the 

metal it is necessary to determine the probability that the electron 

undergoes a transition which involves the absorption or emission of a 

photon. This requires a solution of the Schroedinger equation for an 

electron subjected to the perturbing influences of the external electro­

magnetic field and the lattice potential. This appendix presents the 

mathematical considerations involved in obtaining an approximate solu­

tion of the Schroedinger equation and utilizing the solution to determine 

energy expenditure of the thermal radiation field. The analysis leads 

to the theoretical equations presented in Chapter III. 

The Perturbation Hamiltonians 

According to the model of the atomic system outlined in Chapter 

III, the conduction electrons are subjected to perturbations described 



159 

by four Hamiltonian operators. The first-order perturbation Hamiltonians 

are: 

1. Photon absorp t ion (k—»>k + p ) : 

fteEo e i (p .7 -wt) . A H» = - e-L^,J-"u;u^-A m 
1 n * 2m a) 

2 . Photon emiss ion (k-*-k - p ) : 

E, _^eUv--*t).A ( 2 ) 
^ 2m* u) 

3 . Phonon abso rp t ion (k-»-k + q ) : 

,1/2 
H ' 3 = UId ?(^) ^^"^^ 

4 . Phonon emiss ion (k—»-k - q ) : 

n^X^We-^-V) 
4 ' * " * ' 

The elements of the transition matrix are defined as 

/ 

(3) 

(*) 

H'mn = / ^ ' V 7 (5) 
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where the in tegra t ion is over configuration space and the normalized 

electron eigenfunctions are 

uk = e l k*? (6) 

The Bohr frequency relating the energy of an initial state n to that 

of a final state m is 

!5d5s (7) 
ft v 

First-Order Transitions 

The dynamic equation of the first order perturbation expansion 

coefficients is (3l) 

^ ? - = ki1} = h: 7 H'^°)e™"t (8) 

St m ifi —̂i 

n 

The zero-order coefficients are taken to be a i ^mn • There are four 

possible f i r s t -o rde r t r a n s i t i o n s . 

Case I ( k - ^ k + ~p): 

The t r ans i t i on matrix element for the absorption of a photon is 



H*. 
/ 

k+p,k= K ^ ' l ^ H ' , u , d T = / . - * 
k+p)«rj 'fteE 

.2m GO 

o i ( p . r - o u t ) „ 
— e • / ik«r- , e dT 

But 7e = i k e ; hence 

^ e ( E 0 ' k ) _ i ( J ) t 
h k + p 5 k x * e 

2m uo 

Thus 

k+p 
^r i f l

 e ( E ° , k ) i e i ( ^ , ^ ) t _ e ( v k )
 e i ( «^ ,^ ) t 

u 2 m uo - 1 2 m uu 

and 

a 
( i ) 

"k+p 
/ 

' . ( 1 ) n e ( E 0 - k ) e i ( o ) k + p 5 k - a j ) t _ 1 

a d t = - r — 
k + P 2im*u) * ( ^ k + p 3 k - ^ ) 

Case I I (k—*"k - p ) : 

The t r a n s i t i o n m a t r i x e l e m e n t f o r t h e e m i s s i o n of a p h o t o n i s 

f H 'k-p,k = J V P
H ' 2

u k d T " 
Te-i [(k-p).?j r ?^-i(^-~-urt).7~|eik-

= - l 
f i e (E 0 *k) ±wt 

2m ou 
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Thus 

aW = i- [- Ml ̂ ^ V K - p ^ H = . e ( E ° ' k )
 e i(%-P jk^)t 

k~p ifi L 2m*uo J 2m*w 

and 

m f (i) fte(E -k) ei(ci)k-p,k-Hi))t_1 

k-p J k-p 2 i m * ^K-Pjk+U3) 

Case I I I ( k - * k + q ) : 

The t r a n s i t i o n matrix element for the absorption of a phonon i s 

(J. 

q. 

Thus 

^-hhl^f^^^^ 
5* Y M " ^ 2W=: eiK+q.k-^)* 

g " 
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and 

« = f 4i>*t = - ^ y(-M 1 / 2
 a y ? • 1 ( 7^ ' f c - < B f l ) ; - 1 ( I D a 

k+q 
q. 

Case IV ( k ^ k - q ) : 

The transition matrix element for the emission of a phonon is 

H'k-q,k =JX-qH>k^ «J e"*[£"*> ̂  [-IE* J ^ ) ' ' *J^F 

. e - i (q . r -u ) q t ) J p ik- r r •>] •*••?* - - ^ Z ( 4 r J i ^ - * * 

Thus 

s-fet^Hi^r1-^'^]'^'1'* 

fi 2(i4) ^ • ' ( - « . ^ , t 

and 
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a) - f 4(D« = ^ y (_*q1 / 2
a^ e^-^^.i m 

k-q J k-q ^ ^ J <W q % ^ ) 

I f we l e t k ' = k + p , k - p , k + q, k - q, the f i r s t -o rde r coefficients 

can be wr i t ten 

(1) _*e(E Q -k) r /•ei(u)k+p,k-u')t.1N ( ] 3 ) 

k ' " 2 iA l > ' > k M *K + P , k - ) j"6k"'k-P 

/ ^ 0 % - p ^ t ^ x V / t vV2 r „ 

1 *K-P,^) j "** Z ( i^J * [>* . ^ ^ 

. /e
1^k+q,k-^q)t_ lN ' / _ _ 7 / e i K - q . k - V t . ^ 

i * K + q , W J ^ ^ ^ I *(%-q,^ ) J 

This is Eq. (9l) in Chapter III. 

Second-Order Transitions 

The t r ans i t ions represented by the f i r s t -o rde r coefficients are 

t r ans i t ions to v i r t ua l s t a t e s . Absorption and emission of photons by 

conduction electrons at equilibrium requires second-order t r a n s i t i o n s , 

that i s , t r ans i t i ons which involve simultaneous photon and phonon proc­

esses . The dynamic equation of the second-order perturbation expansion 

coefficients i s (3l) 
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a(2) = i_ Y H' aCDe1^* 
m -i* Z_i mn n 

(U) 
a' 

lft a 

where n represents the intermediate states k + p, k - p, k + q, and 

k - q. We consider a specific phonon state and .neglect second-order 

transitions which involve the simultaneous absorption and emission of 

two photons or two phonons. We must treat four transitions: photon 

absorption plus phonon absorption (k—»»k + p + q), photon absorption plus 

phonon emission (k—»k + p - q.), photon emission plus phonon absorption 

(k —*»k - p + q.) and photon emission plus phonon emission (k -*-k - p - q). 

Case I (k-»-k + p + q.): 

The time-rate-of-change of the second-order coefficient for the 

process which involves the absorption of a photon and a phonon is ob­

tained from Eq.. (14). The electron state can be reached either from 

the k + p state by the absorption of a phonon or from the k + q. state 

by the absorption of a photon. Thus 

4!L • y=wwifr1"***'^ 

+ H1 a ^ e ^ k + p + q ^ k + q t l 
k+p+q,k+q k+q. J 

The t r a n s i t i o n ma t r ix elements are 



H 
f \ly/2 

Vp+q,k+P =JUk+P+qHT3uk+pdT = ^ ^ V q J ^ e ^ V 

• / 

* __. - ifeLE0-(k+q)_ 
H 'k+p+q,k+q " I u k+p+q H ' l u k+q d T ~ 

-icut 
2m ci) 

Thus 

»V2 

foAsppOuJ * d ^ 1 ° L V^* = akta^ I **• 
k 

^K+p^-^) 

• ^ ^ k + p + q ^ + p ^ k + p ^ - V ^ ^ - e
i(u jk+p+q5k+p-ujq)t I 

i ( k + ( l ) J i(wk+p+q5k+q+Wk+q5k-Wq-w)t 

^ K + g , ^ ' 

- e i ^k+p+q ,k+q- ( W ) t 

We note t h a t 

^ ^ k + p + q j k + p ^ k + p j k ) ~ Ek+p+q~Ek+p+Ek+p -Ek " ft(%+p+q5k) 

^ K + p + q ^ + q ^ k + q , ^ = Ek+p+q-"Ek+q+Ek+q"Ek = ^K+p+q^) 
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W l + " ^ ^ k + p + q ^ + p ^ k + p ^ - ^ q ^ ) = 'h(UJk+p+q,k+q+%+q,k- t uq-^) 

.++ W2 = ^ k + p + q ^ + q - ^ 5 
.++ W3 = "Fl(UJk+p+q,k+p--q> - u u , 

Then 

a ( 2 ) 

k+p+q 

l e , 

2nf 

1/2 

K(*fc) a E*^ f°'~ k 

• ^ V P , * - * ) 

,iWi t / n 

++ ^ ++ 
_ e iW3 t / f i I + (k+q) J^iWi t /f i iW2 t/f i 

and 

a — = i a ^ ' d t = - fte / ft \ l / 2 r ^ j T [ 7 (£*•£) 
k+p+q ) k+p+q 2JIL*V\2PJP<L) d q ° L^K+q^q) 

o 

(2) . j ( a ) J 
.„++, .++. 

+ k \ 5 - 1 ( k ^ e - l \ 
^ ( ^ k + p j k ^ ) / W^+ ^ (^k+q ? k-^q) \ W++ / 

k 

*K:+p,k-w) \ y++ 

/ e iW5 + t / f i . 1 v 

I wr J. 
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Case I I (k -*>k + p - q ) : 

The s t a t e k + p - q can be reached e i t h e r from k - q by the absorp-

t i o n of a photon or from k + p by the emission of a phonon; hence 

a<2> - i -
k+p-q ift 

H , a ( l ) e ^ k + p - q , k - f p t 
k+p-q,k+p k+p 

+ H' _,. . a ^ e ^ k + p - q ^ - q t 
k+p+q,k-q k-q * 

The t r a n s i t i o n ma t r ix elements are 

• / 

•X" / *n 

H'VJ-^_^ v+^ = IUVJ-^ ~H'AUV4-T4T = - iE^ k+p-q,k+p ~ l ^ + p - q 1 1 4uk+pc 
2p ou KP q 

1/2 
W n n + 1 e . 1 ^ LA/1 

• / • 

H V p - q , k - q = K + p - q H ' l U k - q d T = 
i f i [ f o • (k-"q)J „iu,t 

2m*(ju 

Thus 

ie / fi (2) 

k + P - ^ 2m*uA2PpWq 

1/2 

<lEd ̂ /n + I ' E * -
" q ° U 

k 

• f i ^ , k - * ' 

iW^~t/fi 

- e 
iW3"t/n ^ + ("k-q) f iWi~t/fi _ ^ i w l ' t / h 

ft(^k-q,k+^q) £ 



169 

where 

V = ^ ^ k + p - q ^ + p ^ k + p ^ ^ q - ^ ) = ^K+p-q^-q^k-q^q-w) 

\ = ^(^k+p-q5k+p^) 5 W 3 _ = *K+p-q5k-q+V 

Then 

t ( 2 ) 

W < 1 2m^V2Pp^q 

1/2 

2m*aA2Pp«J ^ d ^ q ° 
(k-q) k (16) 

^(wk-q5k+Wq) ^(^k+p 5 k-^) 

. e ^ ' ^ - l (t-T) / e 1 ^ " ^ - ! 
W-.+- *K-q,k+ U Jq) \ Wj-

ft^k+P?k
_a)) 

iW3"t /h_ 1 

W. .+-

Case I I I ( k ^ U - ~p +~q): 

The s t a t e k - p + q can be reached e i t h e r from k - p by the 

a b s o r p t i o n of a phonon or from k + q by the emission of a photon; thus 



a(2) = ±-
k-p+q ifi 

H' ^ . a ^ e ^ k - p + q ^ k - p 1 3 

k-p+q,k-p k-p 

+ H ' k -p+q 5 k+q a 
O-Je^k-pfq^qtl 

The transition matrix elements are 

H» k-p+q,k-p 

HT. 

• / 

H' u ^ d T = -k-p+q,k+q I V - p + q , 2uk+q' 
ine 

[E0-(k+q)J 
icut 

2m*w 

Hence 

. (2 ) 
k-p+q 

1/2 
— f ) qE^ V n E, 
* \ 2p (JO i a q c 

2m u)^pF*'q. ^ K . ^ v+«0 
,iWi t / h_ iW3+ t /n 

k - p , k 

(k+q) J iwj t / n 1W2 t / n 
e -e + ft(^k+q,k-^q) 

where 
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Wi+ = ' f l(%-p+q Jk-p+ a jk-p Jk-U Jq+ U J) = ^ K - p + q ^ k + q ^ k + q ^ k ^ q ^ ) 

W2 = ^(^k-p+q,k+q+ U J) 5 W~+ = ft(wk-p+q5k-p-wq) 

Then 

(2) _ ne / ft 

k-p+q 2m*uA2PptiJq 

1/2 

qEd ^ n q EQ * 
(k+g) k 

P ^ k + q , k - ^ q ) ^ ( % - P j k
+ c l J ) 

(17) 

-+ iw£ t/ft_1 ^ _ ^ / Q iwi' t /fi 

W--+ * K + q , k ^ q ) \ W§+ 
e "- ' - 1 

k 
ftK-p,k+ciJ) 

iW3 t / h 
- 1 

W--+ 

Case IV (k - » k - p - q ) : 

The s t a t e k - p - q can be reached e i t h e r from k - p by the 

emiss ion of a phonon or from k - q by the emission of a photon; hence 

af2) =U~H\ n a^W-p-q^k-pt 
k-p-q i n L k - p - q , k - p k-p 

+ E\ n a ^ ^ e ^ k - p - q j k - q ^ l 
11 k - p - q , k - q a k - q e * * ' * J 

The transition matrix elements are 



H' Ju*-> k - p - q , k - p " I uk-p-q IX 4 -k-p 
* . .H'„u_dT = - i % ( ^ t r ) q ^ - l ' e 1 ^ 

2pp0)q 

1/2 
-v 

H*. - I n * H« u IT ^ H o - ^ - ^ l c i^t 

• / 

k - p - q , k - q " I "k-p-q11 2"k-q- 2m a) 

Thus 

42 ) 

k-p-q 

ie / -ft 

2m*a)\2PpUJq 

1/2 

qEd7V! V U(ck_p?k^) iiW£"t/!i _eiW3~t 

(k-g) J iWT't/^ iw£'t/hl 
ft(%-q,k+a)q) 

•where 

w " = ̂ ( ^ . p ^ ^ - p ^ k - p , ^ ^ ) - ^ H - p - ^ k - q ^ - C b k + V ^ 

W" = fiC^-p-q^-q^) > «3~ = *K-p-CL,k-p-*V 

Therefore 
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a 
(2) = 

k-p-q 2ni 

,1/2 

L W P V * d/̂  q o 
(k-q) 

_ W % - ( l , k + W q ) 
(18) 

I f we l e t 

^ K . r , V+UJ) k - p , k y / w 

iWn""~t/n ,-» *, 
> 1 -1 (k-q) 

1 
*K--n.Tc+U}n) k-q,k ^q> 

. / e 
iW2 t / f i ^ x J / e 1 ^ " ^ - ! 

w; *K_p?k+aO \ w"-

B(q) = ID fie / fi 

a o W P p ^ q 

1/2 

qE, 

and 

w l = ^(^k+p+qjk^q^) 

W2 = ^(%+p+q jk+q+a)) 

W 3 = fiK±piq,k+P
;V 

then t h e second-order c o e f f i c i e n t s can be gene ra l i z ed as 
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48±q = B(*) Jn^ 

7na+l l 
•E, M) >iWit/h_ 

1 (19) 

J^K±q,k+V ^ K t p , ^ ) / ¥1 

k l q 

^ K i q ^ q ) V W: 

i ¥ o t / h _ 
! ^ ' - 1 

i W s t / f i ^ x - i 

ft( k+p,k +0)) l W; 

This appears as Eq. (93) i n Chapter I I I . The fol lowing t a b l e def ines 

the s t r u c t u r e of the e q u a t i o n : 

k -»- k + p - q +1 ^ n q + 1 

k - * k - p + q +1 ^V 
k -»>k - p - q - 1 A l + 1 ' 

T r a n s i t i o n b Bracket Term Sign of q Sign of u) Sign of mq 

k - *k + p + q -1 Jn^ +q -uu -ou q 

^ -"q -oo +0Jq 

+q +uo -w 
* q. 

-"cf +ou +0) 
q. 

The Transition Probabilities 

The net absorption of photons is a result of terms involving Wi 

because the terms in W2 and W3 contribute equally to both absorption and 

emission of photons; hence we need evaluate the transition probability 

only for those terms containing W]_. We can therefore write 

( 2 ) < 1 vfE * -•^•B^1j5^_ 
k±q 

J^K^k+V *H*p,k+̂ -
^ l ^ - l (20) 

Wn 



175 

Consider first the transition k —»>k + p + q; the term containing the wave 

vectors can be written 

^K+p^k+q^-V^ + ̂ K + p , ] ^ 
^K+^'^K+v,^ 

The c o e f f i c i e n t of k i s 

Mwk+p,k + ^k+q5k -Wq - 0)) = E k + p + Ek+q - 2Ek - itt)q - "fiu) 

Ek+q - E k - Ru)q - ^ 

Thus 

Ek+q " E k - % - *» = W l - (Ek+p+q " Ek+q) ~ ° 

where we have assumed t h a t k » p and we take W]_ & 0 except in t he 

resonance t e rms . I t follows t h a t 

Ek+q - E k " toq « - (Ek+p " E k " *">) » *"> 

We can now write Eq. (20) as 



(2) - „ / A / — ( E ° ' q ) e»lV*-I 

The transition probability is 

P("k-^k+p+q) = 
lim 

t—oo 
(2) 

^ p + q 

2 . 1 
t 

B(q) 
2 (Eo,(l) lim 1 
Rq n2«,2 *"*-* 

.iWit/ft^ 

W. 

We make use of the functions 6(x) and 5(x) defined as (47) 

6(x) = 
lim 1 1-costx _ lim 1. __1 

t -*oo t J2. t -*°° TT 2 t 

5(x) = _ l im 1 - i x t 

t -*•» x 

Thus 

c / N l im 1 
o(x) = 

t - ^ * 2rrt 

1 - e i x t 

x 

l im 1 
t -*-co 2nt 

e i x t - 1 

x 

We l e t z = Wi/fi and w r i t e 
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l i m 1 
t - * c o t 

. ^ l V f t . l 

W-i 

2rr l i m 1 

-h 2 t -*oo 2rrt z I ^2 

- o - l B u t (31 ) 6 ( a x ) = a - 1 6 ( x ) ; hence 6(W]_/n) = tf6(W]_) = 6 ( z ) . Thus 

2 
P ( k ^ k + p + q ) = _?I I_[B(q) j n q ( E Q - q ) 2 6(WX) 

fl 0) 

This can be generalized to include the other transitions, 

P(k—>"k£q+p) = -§^[B(q)l J \ \ 6(Ek±p±cl-Ek+fiu;cl+^ 
ft-^L _l ] n n 1 

2 . The a v e r a g e v a l u e of ( E 0 * q ) i s 

/ • 
( E 0 - " ) 2 = i - | E o q 2 c o s 2 6 d n = E 2 q 2 

Hence 

P(k—»-"k±p±q) 
Tre2E2E2

 x n, 

. , 0 *2 4 p„a)n n n + l 
12m u) ^P q. q. 

(21 ) 

. . 4 q 4 6(E k ± p ± a -E k +hu> q +hu)) 

The p r o b a b i l i t y o f a t r a n s i t i o n from i n i t i a l s t a t e k t o any f i n a l s t a t e 

k ' i s 



178 

pS(k) = 2^T [l-g(Ek,)] P?(k-—"k') 
k' 

Thus 

*Sr® - X ! : 5 T ( T V ) \ n \ \ ** [>-S<Ek'>] ^ r t ^ V M 
kT 6m*HJU* VPp^q/ n q L L J 

The summation over kT can be regarded as a summation over q because 

k' » k - q and the initial states are fixed. Hence, we can replace the 

sum with a unit volume integral over q, 

i V^ (*o3 J j J d°q 

3-i». p 2 

where d q = q dqdQ = q dq s i n ydyd§ • The energy r e l a t i o n s are s p h e r i ­

c a l l y symmetric and s in ydy = d(cos y ) . Thus we can w r i t e 

s ^ e"E§E0 j d. J ^ d q J^ d(cos Y) ( ^ ) ^ 
ps^) = ^ l _ d$ q-dq I cucos y ; | — " > + 1 

^ ^ 48TTW J0 J0 I V P ^ ; I q 

[ l - g ( E k - ) ] 6(Ekt-Ek+fH)q+ftD) 
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T r a n s i t i o n s can occur only i f the argument of the 6-funct ion 

vanishes fo r a l l q such t h a t 0 ^ q £ q^ax because the t r a n s i t i o n 

p r o b a b i l i t y i s non-zero only under such c o n d i t i o n s . That i s , energy i s 

conserved for the second-order t r a n s i t i o n s . We can w r i t e 

E k t - E k + n o j q+?XD tff k±CLl2 - # ? ^ + fiu„ + fm 
2m ,* nJ* * 2nf 

^ Q + ^ kc3- cos Y + *m>n + -*5io 
2m m 

k • a -> ~* 
where cos y = — - and y i s the angle between q and k. The argument 

kq 

of the 6 - func t ion i s t h e r e f o r e zero i f 

cos Y = ± 
;2v„ L om* <1 " J n 2 k q L 2m: 

+ £L nf̂ cuq rn^uj 
2k tfkq -nkq 

We wish t o i n v e s t i g a t e the r e l a t i v e magnitudes of these terms (86 ) . We 

can w r i t e u)a = v a q where v a i s the a c o u s t i c v e l o c i t y ; a l s o , because 

the e l e c t r o n s a re i n s t a t e s near the Fermi l e v e l , we have k « v^m / n . 

Thus, wi th (jo = 2 n c / \ , 
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cos Y » + ̂ - + — + 
va . 2nc 

2k v^ \qyf 

The free-electron velocity at the Fermi surface for metals is 

Vf » 10 cm/sec; the acoustic velocity in metals is va «=J 5 x 10
5 cm/sec 

at room temperature and decreases slightly with increasing temperature. 

Thus va/vf < ~ 0.005. At room temperature and higher, electrons are 

scattered "by phonons in the Debye maximum state 

% = (K8/nva) » 10 cm. cm/sec, we can specify the scattering angle 

such that the argument of the 6-function vanishes, 

2 W M 2 „ n 
cos^ Y ̂  — £ 1 

\ 2* j 

If c^ > wk the upper limit of integration must be 2k. We have thus 

restricted the zeros of the 6-function to lie within the allowable phonon 

wave vector range. Because the 6-function exhibits a strong maximum at 

the zero of its argument and is everywhere else nearly zero, we can re­

place the limits by » and -» . We can write 

1 [jL-g(Ekr)] 6(Ek,-EkTRa)^fb)d(cos Y ) 

I [l-g(Ek,)] 6(Ek,-Ek+fiwq+nu;) - ^ - dEk* 
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• * 

7:1 t because E v t = q + 2kq cos y + k 2 ; d(cos Y ) = — — dE 
2m* " fi2kq 

We have the following relation for the 6-function: 

L f ( x ) 6 ( x - a ) d x = f ( a ) 

Thus 

/•CO 

/ 0 L " g ( E k , ^ | 6(Ekt-Ek+«o)(1+n(ju)d(cos y ) 

m* rr 
fi2kq 

[l-g(Ek±«u)q±&))] 

We can now w r i t e Eq. (22) as 

P S (k ) = -
r 24nfi' 

^ i ^ iP^max 

Sh *5 (rH i ^ P1-^^1^] (23> 

The average value i s 

^ g (E k , )P^ (k ) 

pf(S) = k „ , , (24) 
Vg(Ek') 
k' 
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The t r a n s i t i o n s occur near the Fermi l e v e l ; thus we can convert t o 

energy i n t e g r a l s and use the d e n s i t y of s t a t e s a t the Fermi l e v e l ( 40 ) , 

Now 

4TT^*T 

Hence, i f we l e t 

J-eo 

g(E)p (E) d E = N = V ( g m * ) 5 / g £/2 

3rr ft 

p - l/KT 

z = p(Ek . -Ek+ft juq t*u)) 

a = p(+fiuu +RJU) 

we have 

T?2_2 /•clmax 

JTS ? ? o i 
r 32nn2m*kiju4:Ef 

~o 
J VPp^qilVM P J (eZ+a+l)\ez-i-l/ 
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The energy integral can he evaluated in closed form; we let x = ez and 

h = ea , then 

1 f ezdz = I f 

* JL (eZ+a+D(ez+l) 3 J 
Ks = i I e_az = i I to = _ 1 l n ^x+1 

1 1 ' W IV1' r 

where 

= _e
2E|E§ 

32ntfi2m*taju4Ef 

(26) 

r ^ J (ez+a+l)(e
z+l) 3 J (bx+1)U+1) pft-l) ^x+h 

3 U"1/ H(ea-1) 

We can now write the transition prohahility as 

s _ „ I .5 / 1 \ J 0. I ̂ „ (27) 

The Power Expendi ture of the F i e ld 

The average power expendi ture of the e x t e r n a l e l ec t romagne t i c 

f i e l d can now he w r i t t e n 

J -̂max f~ "^ 
W(uo3T) = c Y t o I .5 / 1 \ J n q L . HrS VB1 (28) 

s 
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We note t h a t -fiu)q = ^ v
aQ. = Eq . We l e t 

Then 

frlJU 
1 KT 

« - ! 

V a ^ x = 
KT 

_ K 6 _ K T _ Q _ 
^m&x fiv ^— ^ a x > xmax ~ T 

a a 

£ii(+vaq+uO = +x+T| 

1 1 
n„ = q e P E q - l e x ~ l 

x 
n^+1 = 
^ >x e A - l 

The power expenditure can then he written 
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dx W(»,T)-C i- f S . f r fCx* ( - M jLsiD 2S3L. 
M*vaJ LJ0 Ux-J Pje-^-l e ^ - l 

+ f x4 / e x \ 1 I x-n x+Tl 1 ^ " 1 

J X Lx-J Mex"il " ex+Tl-lf J 

where C! - Cftiu/p^ . After considerable algebraic manipulation, we have 

WKT) - ^ l ' 0 ' 5 ( i-f ^ - D F5(^> <29> 
32nftv<,m PrJairE-r \ * v a / " L. 

- (eH-l)2!! F4(H,£) - 2(en-l)2Tl G 4 0 U ) ] 

where 

I F„(H,C)- ' x d x 

o (eTl-e-x)(eX-eTl) 

1 
c 

b ( e ^ l j f e ^ - e ^ j f e ^ e 7 1 ) 

Gn(Tl,C) = | xPftc 

We have (9) 

fS.fr
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Thus 

But 

g- - <*V 

k^|jS^7 

p = N M 
P 

^K =4n^/J^E?L\ jlC"5 J: 
32irftvam*pp]mJ

3Ef m* 1 1 6 ^ 2 m * E | k e ' A ^ 

4irNe2 _ 

Thus we can express Eq. (29) as 

E o / % ) \ 2 , - 5 T / mN (30) wM8Coffl(?)f5jM 

where 

Co 
= 9rT5^%pB| ( 3 1 ) 

A/2m*E^ JMK9 



J(«,T) = i S ^ l i l F5(n,C) - \ (e^-l)2 F4(H,C) - (e^-D2 G4(T|,C) 

The r e l a t i on for the power expenditure of the f i e ld , given by Eq. 

appears as Eq. (112) in Chapter I I I . 
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APPENDIX V 

THE COMPUTER PROGRAMS 

The calculations necessary to obtain theoretical values of the 

optical and thermal radiation properties of metals were carried out with 

the assistance of a digital computer program. The program was written 

in FORTRAN V for the UNIVAC 1108 digital computer. It consists of a 

main program, HETR, and a series of subprograms which are repeatedly 

called by the main program. The main program and subprograms are as 

follows: 

1. HETR. The main program performs algebraic manipulations on 

functions supplied by the subprograms to obtain the optical properties 

and emissivity. It requires the following input: 

a. the number of elements in the array required by the sub­

program DEFINT for integration, 

b. the electrical resistivity at 273°K in microohm-centimeter, 

c. the plasmon energy in electron volts, 

d. the Debye temperature in degrees Kelvin, 

e. the constant Ce in reciprocal seconds, 

f. the constant T- in reciprocal seconds, 

g. the constant skin absorptivity. 
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This input is different for each metal and is all entered by means of a 

single card. 

The output of the main program consists of: 

a. the plasma frequency in reciprocal seconds, 

b. the value of the function F°(£) at 273°K, 
5 

c. the constant CQ in reciprocal seconds, 

d. the dc damping coefficient in reciprocal seconds, 

and, for each frequency and temperature: 

e. the value of the paremter T) , 

f. the total damping coefficient in reciprocal seconds, 

g. the optical conductivity in reciprocal seconds, 

h. the dielectric constant, 

i. the index of refraction, 

j. the extinction coefficient, and 

k. the normal monochromatic emissivity. 

2. F0N5. This subprogram is an external function which computes 

values of the function F°(£) which is defined by Eq. (120) in Chapter 

III. F0N5 uses subprogram DEFINT. 

3. QFACT. This subprogram is an external function which com­

putes the quantum correction factor defined by Eq. (l2l) in Chapter III. 

QFACT uses subprograms FUEL and GUM. 
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4. FUNL. This subprogram is an external function which computes 

the function Fn(Tl,C) which is defined by Eq. (114) in Chapter III. 

FUEL uses subprogram DEFINT. 

5.. GUM. This subprogram is an external function which computes 

the function Gn(T],C) which is defined by Eq.. (115) in Chapter III. 

GUNR uses subprogram DEFINT. 

6. DEFINT. This external function consists of a generalized 

Simpson's rule routine for integration. It is used to evaluate all 

integrals. 

The relationships of the various subprograms are illustrated in 

Figure V-l. The extensive use of external functions makes the overall 

program compact and efficient. Compilation and execution time for a 

typical run of 14 temperatures and 22 wavelengths at each temperature 

(2793 output values) is less than 30 seconds on the UNTVAC 1108 computer. 
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HETR 

F0N5 QFACT 

DEFINT DEFINT 
FUNL GUNR FUNL GUNR 

DEFINT DEFINT 

Figure V-1. Computer Program Hierarchy 



1* C THIS PROGRAM COMPUTES THE OPTICAL ANO THERMAL RADIATION PROPERTIES 
2* C OF METALS FRc-M QUANTUM ELECTRON PHONON INTERACTION THEORY 
3* READ(5.500)N.RES.PLAS,THETA»eEE»eAMO>SK!N 
4* 500 FORMAT(I10,F10.3i2F10.2.E10.2.E10.2»F10.4) 
5* WRITE(6»581) 
6* 581 F0RMAT(1H1,41H0PTICAL ANO THER RAD PROPERTIES OF GOLD/) 
7* PLF = 1.5l9498*PLAS 
8* BFAC = PLF**2 
9* AFAC = BFAc/12.566371 
10* ALO = THETA/273.15 

11* FAL = F0N5{NfAL0) 
12* XMIC = (2.569008*RES*(PLAS**2)*(ALO**5))/(12.566371»FAL) 
13* XM2 = XMIC*(10.**12> 
14* PLF2 = PLF*(1Q.**15> 
15* SIGO = <89.8758/RES)*C10.**16) 
16* GAMO = (UMIC*FAL)/(ALO**5))*<10.**12) 

17* WRITE(6»582)PLF2 
18* 582 FORMAT(1H0,20HPLASMA FREQUENCY = #1PE12.6#3XI7HPER SEC/> 
19* WRITE(6»583)SIG0 
20* 583 FORMAT(1H0,32HDC CONDUCTIVITY AT 273 OEG K = »lPEl2.6r3X»3HESU/> 
21* WRITE<6»584)THETA 
22* 584 FORMAT(1H0,25HRESISTANCE DEBYE TEMP = »F10.2»3X,10HOEG KELVIN/) 
23* WRITE(6.585)PLAS 
24* 585 FORMAT(1H0,16HPLASM0N ENERGY s »F10.2i3X,2HEV/> 
25* WRITE(6»586)FAL 
2b* 586 FORMAT(1H0,26HDC INTEGRAL AT 273 OEG K = »lPEl2.6/> 
27* WRITE(6»587)XM2 
28* 587 FORMAT(1HO,19HATOMIC CONSTANT s »1PE12.6,3X,7HPER SEC/) 
29* WRITE(6.56a)GAMO 
30* 588 FORMAT(1H0,32HDC DAMPING COEF AT 273 DEG K = »1P£12.6»3X, 
31* 1 7HPER SEc//| 
32* 50* READ(5#505)T 
33* 505 FORMAT(F10.2) 
34* WRITE«6»502)T 
35* 502 FORMAT(1H1,24HDATA FOR TEMPERATURE = .F8.2#3X#10HOEG KELVIN//) 
36* WRITE(6»503) 
3 7 * 503 F O R M A T ( 1 H O , 2 X , 4 H W A V E # 6 X » 4 H F R £ Q » 9 X # 3 H X M U » 9 X » 4 H D A M P , 1 2 X » 3 H S I G # 1 0 X # 
3 8 * 1 6HDIELEC,lQX#5HINDEXrl lX»4HABC0,UX»4HEMlS/ /> 
39* ALFA = THETA/T 
40* XA = XMIC/(ALFA**5) 
41* DO 511 1=1,22 
42* XI = I 
43* IF(I.LE.10)GO TO 561 
44* IF(I.GT.10.AND.I.LE.15)GO TO 562 
45* IF(I.GT.15.AND.I.LE.17)G0 TO 563 
4b* IF(I.GT.17.AND.I.LE.20)G0 TO 564 
47* IF(I.GT.20)GO TO 565 
48* 561 WAVE = 0.1*XI 
49* GO TO 570 
50* 562 WAVE = (0.2*XI)-1. 
51* GO TO 570 
52* 563 WAVE = (0.5*XI)-5.5 
53* GO TO 570 
54* 564 WAVE = XI-14.0 
55* GO TO 570 
56* 565 WAVE = (2.*XI)-34. 
57* 570 FREQ = 1.883678/WAVE 
58* XMU = 7637.752*FREQ/T 
59* XQF = QFACT<N»ALFA»XMU) 
60* GAME = CEE*(ALFA**(-2)>*(1.0*(<XMU/6,283185)**2)) 
61* GAMP = XA*xQF*(10.**(-3)) 
62* GAM1 = GAMp + GAME + GAMD 
63* DEN = (FREQ**2) + (GAM1**2) 

64* SIG1 = AFAC*(GAM1/DEN) 
65* EPE = 1. - (BFAC/DEN) 
66* IF(EPE)506,5U9»5Q7 
67* 506 ZC = -1. 
68* GO TO 508 69* 507 ZC = 1. 70* 508 ZA = SORT(ABS(EPE)/2.) 71* ZB = (12.566371*SIG1)/(FREQ*EPE) 72* ZD = SQRT(i« • 1ZB**2>) 73* ZN = ZC • ZD 74* ZK = ZD - ZC 75* XREF = ZA*sGRT(ZN) 76* XAB = ZA*SQRT(ZK) 77* EMIS = (4.*XREF)/<UXREF«-1.)**2>*<XAB**2>> • SKIN 78* GO TO 510 79* 509 XREF =0.0 80* XAB =0.0 81* EMIS = 0.0 62* 510 SIG = SIG1*(10.**15) 83* XOMEG = FREQ*T10.**15> BH* GAM = GAM1*(10.**15) 85* 511 wRITE(6»5l2)WAVE.XOMEG,XMU»GAM.SIG»EPE»XREF»XAB»EMIS 86* 512 FORMAT(1HO,F6I2#3X.1PE9.3.3X.F9.3.6<3X»1PE12.6)> 87* GO TO 504 88* END 



1* C THE FUNCTION FONb EVALUATES AN INTEGRAL no* 
2* FUNCTION FQNb(N»ALFA> ° 
3* DIMENSION Y ' 1 0 0 ) 

4* 1 = 1 
b* Y(I) = 0. 
b* XN = N-l 
7* DX = ALFA/xN 
a* DO 103 1=2,N 
y* x i = i 

1U* X = < XI-1.)*UX 
11* 103 Y(I) = (X**5)*(EXP(X))/((EXP(X)-1.)**2) 
12* F0N5 = DEFjNl(Y»DX»N) 
13* RETURN 
1*+* END 

1* C THE FUNCTION Q F A C T EVALUATES AN ELECTRON PHONON QUANTUM FACTOR 
2* FUNCTION UpACT(N»ALFA»XMU) 
3 * DIMENSION y d O U ) 
4 * I F ( X M U . G E . I 5 . ) ( J O TO 403 
b* XMUL = ( E X p ( 2 . * X M U ) - l . ) / ( 2 . * X M U ) 
b* YMUL = ( E X p ( X M U ) - l . ) * * 2 
7 * Ml J = b 
B* XA = FUNL(M»NN»ALFA»XMU) 
9 * MN = 4 

1 0 * XB = F U N L ( M ' N N » A L F A » X M U > 
1 1 * XC = G U N R ( M » A L F A » X M U ) 
1 2 * TRM2 = < Y M u L * X B ) / ( 2 . * X M U L ) 
1 3 * TKM3 = <YMijL*XC)/XMUL 
14* QFACT = XM(jL*(XA-TRM2-TRM3) 
lb* GO TO 40b 
lu* 403 1 = 1 
17* Y(I) = 0. 
lti* XN = N-l 
19* DX = ALFA/xN 
20* DO 404 1=2,N 
21* XI = I 
22* X = (XI-1.)*uX 
23* 404 Y d ) = (X**4)/(EXP(X)-1.) 
24* XA =-bEFIhT<Y,DX#N) 
2b* XB = (ALFA**b)/10. 
2b* XC = (ALFA**o)/(12.*XMU) 
27* QFACT = XA + Xd - XC 
2d* 405 RETURN 
29* END 

1* C THE FUNCTION r,UNR EVALUATES AN INTEGRAL 
2* FUNCTION GuNRlN»ALFA»XMU) 
3* DIMENSION ydOO) 
4* 1 = 1 
b* Y d ) = 0. 
o* XN = N-l 
7* DX = ALFA/xN 
6* DO 300 1=2,N 
9* XI = I 

10* X = (XI-1.)*UX 
11* 300 Y(I) = (X**4)/< (EXPU)-EXP(XMU))*<EXP(XMU)-EXP<-X>>*<EXP<X)-l.n 
12* GUNR = DEFlNt(Y»DX»N) 
13* RETURN 
14* END 
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1* C THE FUNCTION FUNL EVALUATES AN INTEGRAL 
2* FUNCTION Ft.|NHN»NN»ALFA»XMU) 
3* DIMENSION YdOO) 
** 1 = 1 
b* Y(I) = 0. 
o* XN = N-l 
7* DX = ALFA/xN 
6* DO 203 1=2,N 
H* XI = I 
1U* X = (XI-1.)*uX 
11* ^03 Y(I) = (X**MN)/((EXPlX)-EXP(XMU))*(EXP(XMU)-t.XP(-X))) 
12* FUNL = DEFiNl(Y»DX»N) 
13* RETURN 
14* FND 

1* C THE FUNCTION UEFINT INTEGRATES USING SIMPSONS KUt_t 
2* FUNCTION UF.F1NT(Y»DX»N) 
3* DIMENSION y(N) 
*** IF(N-3)lU»i»2 
b* 1 DEFINT = (DX/3.)*(Y(1)+H.*Y(2)+Y(3)) 

b* PETURN 
7* 2 IF(N-4)10»s»4 
6* 3 PEFIf'T = (3.*DX/8.)*IY(1)+3.*(Y(2)+Y(3>)+Y(|t)) 
9* PEL TURN 
lu* H SEVE = 0. 
11* SODD = 0. 
12* Nl = N/2 
13* N2 = 2*N1 
1*+* M = N 
lb* MC = M-N2 
lb* IF(NC.EG.U) M=N-1 
17* MODD - M-l 
lo* NEVE = M-2 
19* DO 7 K=2»NnPL>»2 
2U* 7 SODD = SODn+Y(K) 
21* 00 8 K=3»INI^VL»2 

2'^* B SEVE = SEVf + YtK) 
2^>* DEFINT=(uX/3.)*(Y(1)+Y(M)+*W*S0DD+2.*SEVE) 
2U* IF(NC)10»9,10 
2b* 9 DEFINT = DEFINT-MDX/24.)*<9.*Y<N)4l9.*Y(N-l>-b.*Y(U-2)+Y(N-3>) 
2b* in RETURN 
27* END 
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