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SUMMARY

The thermasl design of equipment and processes in which thermal
radiation is an important mode of heat transfer demands an adequate
knowledge of the thermal radiation properties of materials. The research
described in this thesis is directed toward the applicaticon of quantum
concepts to an interpretation of the physical basis of the thermal radi-
ation properties of metals. Emphasis is placed on the development of
theoreticﬁl relations which can be used in the routine correlation and
predietion of these properties.

A simplified model of the atomic system is proposed in which it
is assumed that absorption and emission in metals are the result of
second-order processes involving simultaneous electron-photon and elec-
tron-phonon interactions. A perturbation solution of the Schroedinger
equation is obtained and the second-order transition probabilities are
computed from which the energy expenditure of the field is determined.
The results can be interpreted in terms cof an electreon-phonon damping
coefficient which is added to démpiné terms which account for electron-
electron and electron-impurity interactions. The bulk absorptivity is
obtained when the total damping coefficient is used in the dispersion
relations., The result explicitly indicates the temperature-dependence

and frequency-dependence of the normal monochromatic emissivity.



CHAPTER I
INTRODUCTION

The expansion of aerospace technology during the past decade has
stimulated interest and ectivity in the field of radiation energy exchange
between solids and their enviromment. Heat transfer by radiation is the
principal thermodynamic process by which spacecraft maintain thefmal bal~
ance, It is also an important mede of energy transfer for high-velocity
bodies enteriné a planetary atmosphere. However, interest in thermal
radiation is no longer confined to aercspace and mi;itary hardware systems.
The demsnd for new processes and materials has led to numercus industrial
systenms in which operating temperatures are sufficiently high that radia-
tion becomes an important mode of heat transfer.

The design of equipment in which thermal radistion is important
usually involves the calculation of the net radiative heat transfer be-
tween various points in the system or between the system and Its environ-
ment, Knowledge of the thermal radiation properties of surfaces is basice
to any such analysis. The accufacy of even the most sophisticated analysis
ultimately depends on the accuracy with which the thermal radiation prop-
erties are known. The cholce of a mathematical technigque to solve the
often complicated eguations of radiative transfer is of little concernm if

only crude estimates of the surface properties are available.



Considerable effort has been devoted to the experimental determi-
nation of the.emiﬁtance, absorptance, reflectance and transmittance of
various solids and fluids under a wide variety of test conditions. How=-
ever, the theoretical aspects of thermal radiation properties have re-
ceived only limited attention. Very few researchers iIn the engineering
sciences have addressed themselves to the fundamental question of the
nature of the physical phenomena which arise when.a thermal radiation
field interacts with matter. The resgearch described in this thesis is
directed towsrd the investigation of the physical principles which underly
the phenomens manifested by the thermal radistion properties of solids.
Emphasis is placed on the use of quantum mechanics to explain and corre-
late the wevelength and temperature dependence of the emissivity with
particular attention devoted to the importance of thermsl lattice vibra-
tions., Although muqh of the theory is applicable to all solids, the final
theoretical expressions are developed only for electrically conductive

solids, i.e. metals.

Thermal Radiation Properties of Opaque Solids

The thermal radiation properties of a solid characterize the de-
gree to which that s0lid can exchange energy with a thermal radiation
field. These properties appear in an energy balance for an element of
ares on the surface of a solid which is exchanging energy by radiation

with its surroundings. Their definitions and phenomenoleogical nature



have been extensively treated in the literature (1,2). We shall adopt
the terminology convention in which terms such as emissivity, absorptivity
and reflectivity refer to properties of a material whereas terms such as
emittance, absorptance and reflectance refer to the property of a partic-
u‘.la.r specimen (3). Accordingly, emissivity, for example, is a property
of an ideal specimen which 1s homogenous, chemically clean and has sur-
faces with a roughness much smaller than the wavelength of the incident
radiation field. It is a characteristic of the material independent of
the size or shape of the specimen. Experimental measurements yield wvalues
of the emittance which depend on the conditions of the specimen surface.
For specimens which are very clean and have nearly optically smooth sur-
f'aces, the measured emittance approaches the emissivity.

The present research is concerned with the emissivity e of opaque,
electrically-conductive solids., In many engineering applications it is
assumed thﬁt Kirchh&ff's law applies in such a manner that the emissivity

and the absorptivity o« are equal,
o =€ (1)

This is never exactly valid for a system in which there is non-zero heat
transfer; nevertheless, it is nearly always assumed to be true for engi-

neering calculations.



The absorptivity and reflectivity are related by the conservation

of energy,
atp=1l (2)

The relations expressed in Egs. (1) and (2) allow a radiative heat trans-
fer analysis to be carried out when values of only one of the radistion
properties are known. The same relations hold for monochromatlie radiation

Properties, l.e.,
1-op)=axn=¢g (3)

The total emissivity is related to the monochromatic emissivity by defi-

nition,

_’;AEbldk »

¢ = }m =_?:£_q_ {eﬁbkdl (4)
Epydhr :
[o]

where be is the monochromatic emissive power of a blackbody at tempera-
ture T in the same surroundings as the specimen. Thus, for many engi-
neering calculations, it is sufficient to consider only the monochromatic

emissivity of the surfaces.



The emittance of a solid surface is a function of several param-
eters which describe the external radiation field and the nature of the
surface;

(1) The wavelength of the electromagnetic field;

(2) The state of polarization of the field;

(3} The temperature of the emitting surface;

(4) The polar and azimuth angle at which the emission of the sur-
face is observed; and

{(5) The physical and chemical condition of the surface. Mono-
chromatic emittance is determined by wmeasuring the intensity and state of
polarization of the emitted radiation at a particular wavelength and for
a range of surface temperstures in all directions azbove the surface,

This must be accompanied by a complete description of the condition of
the specimen surface.

The wavelength and state of polarization of the field and the tem-
perature of the surface are well-defined variables. Similarly, the polar
and azimuth angles are defined by the arrangement of the experimental
apparatus. However, a lack of adequate description of the surface condi-
tion has reduced the usefulness 6f much of the emittance data reported in
the literature. If heat transfer by thermal radiation is critical in an
engineering system, it is usually necessary for the designer to conduct

measurements of the emittance of the particular surfaces to be employed



in the design. He can use values from the literature only if he has care-
fully defined the surface conditions and is fortunate enough to find pub-
lished data for nearly the same surface conditions.

The surface condition of a particular specimen of a given material
can be considerably different from that of another specimen of the same
material. This can lead to markedly different wvalues of emittance. The
problem of surface condition is illusitrated in Figure 1 which shows the
total normal emittance of coated molybdenum as a function of tempera-
ture (4). The inconsistency of the data demonstrates the need for ade-
quate surface specification and also gives an indication of the enormous
amount of data which would be required to satisfy the general engineering
need.

The relatively large number of variables upon which the emittance
depends and the wide variety pf possible surface conditions provide an
explanation for the fact that experiment is, at present, more advanced
than theory in the study of the thermal radiation properties of solids.
The need for data has stimulated the development of many experimental
methods for the measurement of the emittance or reflectance of various
materials over wide temperature ranges. The theory, however, has been
neglected. Only a few preliminary attempts have been made to overcome
the serious inadequacies of the classicel theory of the optical properties

of solids first developed by Drude (5), The lack of effort devoted to
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theory is undoubtedly due in part toc the emphasis placed on experimental
studies and the difficulties encountered in attempis to develop theoret-

ical models which are useful in engineering analysis and correlation.

The Need for Theoretical Studies

One of the most important incentives for undertaking the theoret-
ical study of the thermal radiation properties of solids is a desire for
a better understanding of the fundamental physical phenomena which give
rise to these properties. Experimental studies can yield the emittance
data required in thermal design; however, unless combined with theory,
they provide no insight inte whal occurs when a thermal radiation field
interacts with a so0lid. A4s is the case with most phenomenological coef-
ficients, the thermal radiation properties can be utilized in the design
of hardware or processes without an understanding of the relaled physical
phenomena. Nonetﬁeless, it 1s reasonable to expect that a more thorough
knowledge of the physics involved would contribute to improved design and
analysis methods,

In addition to the intrinsic desirability of an enhanced basic un-
derstanding of radiation properties, an additional justification of theo-
retical studies is their use to interpolate and extrapolate property data
originally obtained over relatively short wavelength and temperature ranges.
For example, an adequate theory could be used to prepare high-temperature

monochromatic emissivity curves when only roon-temperature experimental



data were available, thereby eliminating, in some cases, the necessity
for high-temperature measurements. Empirical relations could be used

for the same purpose; however, the temperature coefficient of monochro-
matic emigsivity is a function of wavelength for most metals, as shown in
Figure 2, Therefore, it would require a considerable amount of experi-
mental data to generate empiricel relations. The availability of such
data would reduce the wvalue of the resulting relations.

The utilization of theory in the development and evaluation of
experimental apparatus and methods is another reason for conducting theo-
retical studies of the thermal radiation properties of solids, Also, an
accurate theory, which would necessarily be based upon the atomic nature
of the material, could conceivably be applied to the formulation of nmate-
rials with specifically designed and controlied thermal radiastion charac-
teristics, This latter application is well beyond the extent of the theory
described in this thesis. Hopefully, however, the present theory might

indicate the directions to be taken in a more complete analysis.

Wave Propagation in a Conducting Medium

Energy exchange by thermal radiation is an electromagnetic wave
phenomenon and is thus closely related to the phenomena described in phys-
ical optics. Fnergy is transported through space in the form of an elec-
tromagnetic field. When the field encounters an atomic system, such as a

solid, it interacts with this system. Energy can be reflected or absorbed
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by the system or transmitted through it. If the atoms or molecules absorb
energy and are thereby excited to higher energy levels, they can emit
energy into the radiation field. It is this multi-faceted interaction be-
tween electromagnetic radiation and matter which gives rise to the thermal
radiation properties.

The nature of the thermal radiation properties depends on whether
the material is a conductor or a dielectric., The research described herein
is limited to the study of the characteristics of conducting solids, i.e.
metals. We are thus concerned with the manner in which electromagnetic
radiation propagates in a conducting medium. A metal with finite elec-
trical conductivity will exhibit Joulean heating when subjected to an
electromagnetic field., Such heating is an irreversible thermodymamic
process; hence, the field is attenuated as it penetrates the metal and
energy is absorbed. Because of their high electrical conductivity, metals
exhibit strong absorption and require only a small thickness to be essen-
tially opagque.

The thermal radiation characteristics of homogeneous materials with
smooth surfaces can be computed if the optical constants n and k are
known as functions of temperature and wavelength. The single exception
to this is the case of metals at low temperatures where the anomalous skin
effect becomes important. The index of refraction n and the extinction
coefficient k constitute the real and imaginary parts, respectively, of

the complex index of refraction of a metzal,
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n=n=~ik (5)

This parameter appears in a macroscopic analysis of the propagation of a
wave_through a conducting medivm. We shall therefore commence our analysis
with & brief review of this phenomena.

When an electromagnetic field is incident on a metal the resulting
macroscopic phénomena can be described with the aid of the classical
Maxwell field equations. If the metal is characterized by a conductivity
¢ , a dielectric constant & and a permeability y , the Maxwell equa-

tions are (6)

— e
7xB=88 ., Mg (6)
c 3t c
— z
TxB= ool (7)
) c at
. _
7+ E=0 (8)
.*
7T"H=0 (9)

= >
vhere E 1is the electrie field vector, H is the magnetic {ield wvector

and ¢ is the speed of light in vacuwm. To maintain consistency with the

pertinent literature in the field of optics, the Gaussian system of units
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shall be employed. Thus the electrical quantities will be represgented in
electrostatic units and the magnetic quantities in electromagnetic units.
Elimination of the magnetic field vector from Eqs. (6) and (7) yields the

equation for a damped wave,

. o> |
RF - u€ 3E 4 dmo ﬁ {(10)
c2 3t2 2 »t

Similarly, the magnetic field wvector also satisfies the wave equation,

P2 - uE 37 . 4y o (11)
2 3t2 c? a3t

If the field is monochromatic with angular frequency o , the field vec-
S o e
tors can be written as B = Boe %  and H = Hye ' .| he differential

operators then become 3/dt = ~iw and 32/3t2 = -0® and Eq. (10) becomes

2F . w® (;'+ i;*".‘i)? (22)
&
c

If we define a complex dielectric constant as

§=‘5+1%3 (13)
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then Eq. (12) is of the same mathematical form as the corresponding equa-
tion for dielectric media (7). In a non-conducting material the dielec-
tric constant is egual to the square of the index of refraction. Hence,
the formal analogy between conductors and dielectrics can be extended by

defining a complex index of refraction for conducting materials,
=2 . 2_-
i€ = (n-ik)< = € (14)

The permeability is defined in terms of the magnetic susceptibility

as
b= 1+ 4my (15)

For metals, throughout the visible and infraréd portions of the spectrum,
% 18 of the order 1076, Thus, to a high degree of accuracy, we can
approximate ﬁ by one dyne statamp.'2 for metals (8).

The real and imaginary parts of the complex index of refraction,
i.e._the refractive index and the extinetion coefficient, are given in

terms of the real and imaginary parts of

ﬁ2.=n2-21nk-k2=e+i4T“° (16)
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which yields

n? = 3452 (.”‘%)2}1/2 ¥ '{’ (17)

. (i:ﬁ)e}l/e - ﬂ 1)

Hence, the opfical properties of metzls can be expressed in terms of the
dielectric constant and the conductivity, both of which must be regarded
as functions of frequency and temperature., These parameters are phenomen-
ological coefficients which are defined by the constitutive relations

?= O'E and ‘B'.:’E'E where T is the electric current density and D is
the electric displacement vector. Relaticns for the optical properties
which are based on Maxwell's equations are valid regardless of the details
of the atomic system. The latter enter only into attempts to relate o
and § to the atomic parameters of the absorbing mediuwm. 'Thus, although
we might expect quantum effects to be important in the frequency and tem-
perature dependence of o and € , we shall treat Egs. (17) and (18) as
independent of the particular choice of an atomic model. Before proceeding
to the development of the atomic theory, however, it is necessary to state
the relstions between the optical properties of metals and their thermal

radiation properties.
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Reflection and Refraction at a Metallic Surface

When an electromagnetic field is incident on the surface of an
opaque body a fraction of the energy is reflected and the remainder is
.absorbed. The emissivity and absorptivity of the body can he obtained
from the reflectivity using Eq. {(3). We have seen that the equation of
propagation of a wave through a conductor is formally identical to that
for a dielectric if we introduce & complex index of refraction. Thus the
expressions which describe reflection and refraction at a surface are
also the same if we use the complex index of refraction for metals. These
expressions are the Fresnel equations (6). Consider the case of a wave
propagating through a medium of refractive index n3 and ineldent on the
surface of a metal with complex index of refraction n . Iet A be the
amplitude of the electric vector of the field., We resolve A inbto a
component A? parallel to the plane of incidence and a component A,
normal to the planelof incidence, The Fresnel equations are then

R. = neos g - nj CoO8% AP (19)
cos § + ny COS g

51

R = N1 COS § - N cos g A (20)

nj cos g + n cos o
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where RP and R, are the components of the amplitude of.the reflected
wave and 6 and 4 are the angles of incidence and refraction, respec-
tively, measured from the normal, as shown in Figure 3, The reflectivity
is defined as the ratio of the reflected eﬁergy to the incident energy,
The energy of a wave is proportional to the =square of the absolute value

of the amplitude; hence

[=° | Rl |5y
p= H = ; p =
A5 P R TP
or
- |E COoS B - Ny COS gy le (21)

il cos g + ny cos g

n) ¢os § = n cos ¢ |2 (22)

il

Pn

n; cos &+ 1 cos @

For the case of a wave incident normal to the surface from free space

(np = 1) the normal reflectivity is

2, .2
p=pp=pn= DR TE (23)

(n+1)2 + 2



Figure 3.

AR RRLARALRELR LR
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The optical constants n and k are functions of frequency and
temperature. Therefore the reflectivity also depends on the frequency of
the field and the temperature of the éolid. The normal monochromatic
emissivity follows from Egs. (3) and (23),

4n
en(w,T) = 1 - pn(w,T) = y2, 2 (24)

The relation given in Eq. (24) provides a means to calculate the
normal monochromatic emissivity if n and k are known as functions of
frequency and temperature, In order to obtain the necessary relations,
some form of atomic or miecresgcopic model must be devised. The conductivity
and dielectric constant of a metal agppear in the wave propagation equa-
tions and indicate that the wave is attenuated as it propagates in the
metal. This means that the atomic system of the metal absorbs energy
from the incident field., The analysis of this absorption is a two-fold
task: first, a suitable atomic model must be devised and, secondly, the
laws of physics must be used to analyzZe the exchange of energy between
this. atomic system and the electromagnetic field. TInitial attempts to
explain the optical properties utilized the laws of classical physics.
While the resulting theory contributed a great deal to our understanding
of metals, we now recognize the fact that quantum physics is reguired to

explain many of the observed phenomena. The research described in this
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thesis is based on quantum-mechanical relations, The classical theory,
however, provides an essential introduction to the atomic concept and,

therefore, is presented in the next chapter.
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CHAPTER II

A REVIEW OF THE CLASSICAL THEORY

OF THE OPTICAL PROFERTIES OF METALS

In the previous chapter we have noted that the thermal radiation
properties of metals can be expressed in terms of the optical properties
n and k which, in turn, can be expressed as functions of the conductivity
and the dielectric constant. Experiment shows that the so-called optical
"constants” are dispersive, i.e. they are functions of frequency. Fur-
thermcre, they vary with the temperature of the metal. These observa-
tions cannot be explained sclely in terms of electromagnetic theory. The
discontinucus structure of matter must be included in a more detailed
microscopic analysis of the interaction between an atomic system and an
incident electromaénetic field.

Prior to the advent of quantum mechanics, interest in the micro-
scopic properties of metals centered arcund attempts to explain their
high electrical conductivity when compared to dielectric materials. These
attempts involved the development of a mechanical model of the atomic
system and the subsequent application of classical mechanics to desecribe
the changes induced in the model by the electrical forces due to an elec-

tromagnetic field. The most important of these early t.eories, and the
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one on which much later development and refinement was based, was the

- free-electron theory of metals proposed by Drude.

The Drude Free-Electron Theory

Considering the stage of development of atomic theory in 1800, the
model for metals proposed during that year by Drude (5) demonstrated con-~
siderable insight._ He suggested that metals can be treated as composed
of an array Df positively~charged metallic icnes through which the valence
electrons are free to move. This free-electron gas remains in thermal
equilibrium with the ionic array. In the absence of an external electro-
magnetic field, the motion of each electron is random. When an electric
field is imposed, the electrons are accelerated in the pesitive field 4i-
rection. This directed acceleration accounts for the presence of an elec-
tric current. If the electrons were free to move, however, they would
accelerate indefinitely under the influence of a constant field. This
would imply infinite conductivity. To explain the observed finite con-
ductivity of metals, Drude proposed that the valence electrons undergo
frequent collisions with the lattice ions and that these collisions result
in the loss of the drift momentum of the electrons.

The mathematical formulation of the Drude model is obtained by con-
sidering the dynamics of a free electron subjected to a damping force which
ig proportional to the électron velocity and the force due to an electrie

field., The equation of meotion of such an electron is
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2 - >
r > 3 25
m'—2-+ I‘a—r=eEOe t ( )
3 at

where m 1is the electron mass, e is the electron charge, r is the
position vector and T is a mean damping coefficient. If, according to
Drude's hypothesis, the electron drift velocity is lost during collisions,
then the average electron acceleration must vanish. For the x-component
of motion, for example, the solution of the equation of motion must cor-

respond to 3°x/3t? = 0 . Thus

(26)

oo/
Ll b

EE}C
mr

The average velceity is defined in terms of the mean time between ecolli-

sions, t5

o]
IQEE at (27)
Q

The conduction current density in the x-direction is the product of the
electron charge, the number of electrons per unit volume N and the av-

erage veloeity in the x-direction, i.e.,

(28)
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where o, 1s the d¢ conductivity corresponding to & constant field with
zexo frequency. Thus, the mean damping coefficient 1s

(29)

The current due to the motion of charged carriers is the sum of

the polarization current a'(aﬁfat) and the conduction current off (8) »

. on (30)

4=

is the polarizability of the medium related to the real dielec-

where o!
Since E = Boel®t then 3B/ot = iof

tric constant by & = 1 + 4my'

and
(31)

T=(o+ tu")E

For sufficiently long periods of time, the solution of Eq. (25) is

(32)

Thus


rn.Gr

25

= T elot (33)

- e
=Ne—={c+ lwx')E=N 7% .. .E
T (- + iTw)

Equating real and imaginary parts and noting that «' = (¥ - 1)/an ,

we have

c < Ne® (we r ) (34)

2
m \ 2, 2
From Eq. (34), when ® = o the dc conductivity is
e
Ne
GO = F (56)
Thus Eqs. {34) and (35) can be written
. =oo(____r'°’ ) (37)
e
T =1 - 4nog (__r_) (38)
w? + T2

The Drude theory treats the damping coefficient as non-dispersive

or, frequency-independent, as can be seen from Eq. (29). The existence
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of a non-zero T implies that each valence electron can move freely
through the lattice for a period of time equal, on the average, to 1/T .
It then undergoes a collision with an-ion which absorbs all of the energy
which has been gained by the electron due to the incident electromagnetic
field. In a hypothetical ideal metal in which the valence electrons do
nct interact with the lattice the damping cecefficient is zere. The

square of the complex index of refraction of such a metal is real and

(39)

For high frequencies the refractive index of én ideal metal is not only
real but also less than unity corresponding to a condition of transparency.
For freqpencies sufficiently small that 4ﬂN32/nm2 is greater than unity,
the refractive index is imaginary and total reflection occurs. The second
term in Eq. (39) is seen to contain the plasma frequency of & free-electron

gas (9)

(Eﬂﬂgg)l/Q (40)

UJP= m
In the case of a real metal, the behavior of the optical constants
depends on the relative magnitudes of the frequency and the damping coef-

ficient. If I>kw , as might occur in the far infrared, the relations



given by the Drude theory can be approximated by

2
and
2
E:luﬂgﬁ,
mF2

Then, from Egs. (17) and (18},

o emie? J[ 2, Y2 enne®
n ':e:s—z —2+l - 15
wl® w mlw

Hence, iff I75uw

mlw ) v

hoCx - (EnNe2)1/2= (2vco]l/2 i (00)1/2

were v = w/2m ., It follows from Eq. (23) that

(n - 113 ¥ no 1 1 1
B
(n+ 1)2

nd oo 2nb
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L n + ne *
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(41)

(42)

(¢3)
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Then the normal menochromatic emissivity is

€n=l—pm2/:—-'2;—+(;—) P (44)
[»] (=]

This is the familiar Hagen-Rubens formula (10), the only expression which
has been used to any appreciable extent in correlating and analyzing
thermal radiation property data. It represents a low-frequency approxi-
mation of the Drude free-electron theory. Usually only the first one or
two terms are retained.

The Hagen-Rubens formula has been used as the bagis for the deri-
vation of several other emissivity relations. Aschkinass {11) obtained
an equation for the temperature-dependent normal emissivity by combining
the first term in the Hagen-Rubens formula with an integration over the
Planck distribution using a linear temperature dependence for the conduc-
tivity. Foote {12) derived a similar relation retaining the first two
terms of the Hagen-Rubens formula. Davisson and Weeks {13) employed the
Fresnel equations to develop an expression for the hemispherical emissivity.,
This expression was later extended by Schmidt and Eckert (14) who applied
graphical integration techniques. More recently Parker and Abbott (15)
have developed emissivity relations based on the Drude theory with a con-
stant finite damping coefficient. These various relations have been sum-

marized by Richmond, Dunn, DeWitt and Hayes (16}. They are all, however,
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limited to an even smaller range of conditicns than those under which the
original Drude theory is valid since they represent only the low-freguency
limit of the classical free-electron theory.

The range of validity of the Drude theory as a means of computing
the optical properties of metals has been discussed by Schulz (17) who
compared a considerable number of experimental values of n and k with
corresponding values predicted by the theory. He found excellent agree-
ment for liquid mercury and gallium over the entire frequency range for
which data were available. Correlation was good for silver and gold at
wavelengths longer than two microns. The results for copper were also in
good agreement for wavelengths longer than two microns if the effective
mass of the conduction electrons was taken to be 1.45 times the electron
rest mass. Agreement could be obtained for aluminum at long wavelengths
if an empirical value of conductivity was used which did not correspond
to experimental values.

The Drude theory was extended by Lorentz (18) who applied classical
Maxwell-Bdltzmann statistics to the electron gas. The potentisl field of
the positive lattice ions was assumed to be constant in space and the
electron-electron interaction was negiected. This modification indicated
that the resgistivity should be pfoportional to the sguare root of tempera-
ture rather than the observed linear dependence. This discrepancy is due
in part to the fact that the electron gas obeys the Fermi-Dirac quantum

statistics rather than Maxwell-Boltzmann statisties. The theory of lorentgz
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was presented in 1909, almost two decades before the development of the
Fermi-Dirac statistics. Although it provided a prediction of the temper-
ature dependence of de resgistivity, it was less satisfactory in prediecting
optical properties than the simple Drude theory.

The sghortcomings of the Drude theory would appear to be related
to the inadequacies of the atomiec medel. It would seem unlikely that the
damping coefficient for a real metal is non-dispersive, Furthermore, the
classical free-electron theory does not account for the influence of the
metal temperature. It is postulated that the electron damping is due to
electron-lattice collisions. Such interactions should exhibit a tempera-
ture dependence because vibrations of the lattice ions are strongly in-
fluenced by temperature., These inadequacies can be overcome only by the

development of a quantum theory.

Classlical Multi-electron Theory

The original model proposed by Drude included the possibility that
two different types of charge carriers might contribute to the optiecal
properties of a metal. At the time, however, this postulate appeared to
be inconsistent with the theory of the electron and Drude abandoned it in
favor of the single free-electron theory described above. The latter
formulation was not adequately tested until the 1850’z when its restricted
range of validity became apparent. In 1955, Roberts (19), recognizing the

similarity between Drude's two types of electrons and the electron and
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hole charges which are important in semiconductor physices, revitalized

the original Drude hypothesis. In his initial development Roberts limited
his formulation to two free charge carriers and included a constant to
account for the influence of bound electrons (12). He expressed the com-

plex dielectric constant as

where 03 and OJp are conductivites attributed to the two different
charge carriers, w] and wp are the corresponding relaxation frequencies
and K, is the bound electron ccnstant. Roberts used this expression to
empirically correlate the optical properties of the noble and transition
metals at room temperature.

In a later paper Roberts (20) gereralized his formulation to in-

clude any number of free charge carriers and any number of bound electrons,

X e
-0 om®sm 1 On¥yn
no=1+ 2 + i T iw (46)
w%m -w OOy W n W = UWypp

m

where wgm , Wy s Oy > Op and K., are arbitrary coefficients which can
be independently adjusted to characterize a particular metal. The first
summaticn represents the contribution of m bound electrons and the

second summation accounts for n types of free carriers. Roberts found
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that three free carriers and two bound electron terms were sufficient to
correlate the optical data of nickel at temperatures from 88°K to 473°K.
Tungsten, from 298°K to 2400°K, required two free terms and three bound
terms. Roberts {21) subsequently used the same expression with three
free terms and a single bound term to correlate the optical data of copper.
The Drude-Roberts multi-electron thecory has been successfully used
to fit curves to normal monochromatic emittance data for a wide varilety
of metals. FEdwards and deVolo (22) applied the two-electron thecry to
correlate room temperature emittance for 22 metals and high-temperature
values for nickel and platinum. Seban {23} used the same two-electron
theory for the transition metals at room temperature and 2000°R employing
the values of the arbitrary parameters deduced by Roberts. Noland (24)
found that many of the parameters exhibit a simple logarithmic dependence
on temperature and extended the multi-electron theory to include this
observation. He also evaluated total normal emissivity for several metals
by integrating the expression derived from the Drude-Roberts theory.
Although the multi-electron theory is a useful tool in fitting
curves to emittance data, it provides nc insight into the physical mech-
anism of absorptivity or emissivity. A complicated algebraic expression
is obtained when Eg. (46) is separated into its real and imaginary parts
and the results used in Eq, (24). The many arbitrary cocefficients which

appear in the relations are purely empirical and can be determined only
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by curve-fitting. As yet no theoretical interpretation of these coeffi-
cients has been proposed. In the case of a metal which requires, for
example, three free terms and three bound terms, it is necessary to eval-
nate 15 arbitrary ccefficients. Even if one or two of the coefficients
could be related to atomic parameters, the influence of the parameters

would be lost in the complexity of the expressions.

Electrical Resistivity

It is apparent from the preceeding discussion that the optical
properties of metals, and hence the thermal radiation properties, are
closely related to thé electrical conductivity or, alternately, the elec-
trical resistivity. 3If the free-electron model is a reascnable approxi-
mation for metals, then the resistivity can be regarded as a measure of
the electron damping. Metals exhibit resistivities of 1.5 to 150 micro-
ohm - centimeters at room tempterature. Insulators, on the other hand,
have resistivities which are ten to twenty orders of magnitude larger.

To a first approximation, the resistivity of most metals varies linearly
with temperature at high temperatures but decreases more rapidly at low
temperatures.

It has been cobserved that experimental values of resistivity tend
to approach a constant residual value as temperature approaches absclute
zero. The resistivity can thus be regarded as consisting of a temperature-

dependent ideal resistivity p;(T) and a temperature-independent residual

resistivity pq

]
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P =ps*ri{T), w=o (47)

This was first observed in 1860 by Matthiessen (25) whe found that the
change in resistance caused by a small concentration of an impurity metal
"in a solid solution was independent of tempergture. The residual resis-
tivity is now attributed to the effects of impurities and Eq. {(47) is known
23 Matthiessen's rule. The important item to note here is that the resid-
ual registivity is independent of temperature which implies that, at least
in the far infrared, any impurity contribution to the electron damping co-
efficient would also be temperatire-independent. For most metals the re-
sidual de resistivity is a small fraction of the total resistivity at

room temperature (see Appendix I).

The electrical resistivity is also related to the thermal conduc-
tivity as would be expected from the fact that metals are good conductors
of heat as well as electricity. At a given temperature the thermal con-
ductivity K and the electrical conductivity o are related by the

Wiedemann-Franz law {26)

K = conztant (48}
o]

In 1881, Lorenz (27) found that
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¥ (49)

where I is a constant now known as the Iorenz nuber. Sadykov (28) has
_ incorporated Bg. (49) into the Hagen-Rubens formuls to obtain expressions

for emissivity as a function of -thermal conductivity.

Emissivity Calculations from Classical Theory

The use of classical theory to correlate and prediet the normal
monochromatic emigsivity is illustrated in Figures 4, 5, 6, and 7 for
copper, silver, gold and aluminum. The solid line represents the Hagen-
Rubens formula, Eq. {44), using the dc conductivity values given in
Appendix I. The Drude-Roberts two electron theory, as correlated by
Edwards and deVolo (22), is also presented., The data are the values of
Edwards and deVoleo (22) and the data curves of Gubareff, Jansen and
Torberg {(29). The Hagen-Rubens formula predicts emissivity values which
are low in the visible and near infrared; however, the correlation im-
proves at longer wavelengths. It is interesting to note that, for the
cases of copper and gold, the experimental data also lie above the Hagen-
Rubens line for wavelengths greater than ten microns. This might cause
one to question the generally éccepted statement that Eq. (44) is valid
for wavelengths greater than about six mierons (1).

The two-electron theory, of course, exhibits good agreement with

the data for wavelengths greater than about one miecron. This is merely
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a result of the fact that the arbitrary coefficients in the theory were
selected to correlate the data of Edwards and deVolc. It is worthwhile
to note that if these coefficients are selected to correlate the real

and imaginary parts of the dielectric constant, they do not necessarily
yield a good emissivity correlation. This is a result of the magnifica-
tion of computational inaccuracies which oceur when n and k are com-

2

puted from n2 - ¥° and 2nk and then e is computed from the optical

properties. For example, if the coefficients used by Roberts (18) to

correlate the real and imaginsry parts of ne

are used to prediet the
normal monochromatic emissivity, poor agreement with experimental data is
obtained. The two-electron theory is, therefore, essentially a means of
fitting empirical curves to existing emissivity data, This fact, combined

with the inaccuracies of the Hagen-Rubens formula, demonstrates the need

for an improved theory of the thermal radiation properties.
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CHAPTER IIX

A QUANTUM INTERPRETATION OF THE

THERMAL RADIATION FPROPERTIES OF METALS

It has been noted that the classical theory of the optical prop-
erties of metals is developed from the solution of the equations of motion
of the wvalence electrons subject to an electromagnetic field desgcribed by
Maxwell's equations. Such an analysis yields the classical dispersion
relations. These relations do not indicate temperature dependence and do
not adegquately specify the frequency dependence in the high-frequency por-
tion of the spectrum. Such effects cannot be explained without the aid
of a quantum model. Although considerable progress has been made in the
use of guantum mechanics to explain, both gqualitatively and quantitatively,
the de electrical propefties of metals, the quantum dispersion theories
are, as yet, incomplete. However, the optiecal properties of metals are
clogely related to their electrical properties. It is reascnable to ex-
pect, therefore, that quantum descriptions of the properties of a metal
under the influence of a static eleetric field would provide a valuable
tool in the study of dispersion phenomena. Furthermore, certain aspects
of the well-developed quantum theory of semiconductors should be applicable

because metals and semiconductors exhibit many properties which differ

only in degree,
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The theory developed in this chapter represents an extension of
the quantum theory of electronic conduction in solids to include disper-
gion effects. We arse concerned with a theoretical description of the
phenomena which arise when an electromagnetic field interacts with matter.
The conduction electrons play the central role in the transport of energy
within a metal and the exchange of energy between a metal and an incident
field. We must therefore deal with several topics which are familiar to
the s0lid state physicist such as electron mobility, metallic band struc-
ture, electron-lattice interactions, electron-electron interactions, elec-
tron-impurity interactions and quantum wave propagation in periediec struc-
tures. It is unforbunate that recent theoretical developments in these
and related areas of s0lid state physics have been so sparingly applied
in the engineering study of the thermophysical properties of solids. How-
ever, the engineer who turng to the literature of the quantum theory of
solids is usuwally frustrated if he seeks basic theory concerning the ther-
mal radiation propertieg. He recognizes the important dependence of mono-
chromatic properties on frequency but he finds that conductivity theory
omits dispersion effects and that the more complex quantum theories of
optical properties are incomplete.

The present Theory represents a first step toward overcoming these
deficiencies from an engineering viewpoint. It is developed within the
framework of the quantum theory of sgolids but in such a manner that the

theory retains at least a qualitative usefulness in engineering analysis,
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The solid state physicist usually develops a theory in very general terms
based on a detailed atomic model and then attempts to apply it to a re-
stricted case. He is usually not interested in such macroscopic parameters
as the thermsl radiation properties. Instead, he is concerned with atomic
.detail and if his theory incorporates tooc many simplifying assumptions,
these details are lost. His theory, therefore, usually leads to expres-
sions which can be applied to only a limited number of cases. For example,
the modern quantum theory of vibronic emissicn and absorption in scolids,
which is closely related to the thecory of thermsl radiation properties,

is ordinarily presented as a set of equations which yield the Hamiltonian
matrix elements which describe the electron transitions (30). These equa-
tions, however, are expressed in terms of quantum operators which can de
determined only if a relatively simple atomic model is assumed or if the
analysis is restricted to a specific solid or group of similar sclids.

The present approach is somewhat different. Rather than retain the com-
plex details of a sophisticated model throughout the analysis, we shall
incorporate several sgimplifications at the beginning and attempt to inter-
pret the results within the framework of these agsumptions. The fact that
we are ultimately interested in macroscopic properties tends to allow a
gimplification of the atomic model and this, in turn, enables us to ex-

tend the theory.
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The Model cof the Atomic System

In order to obtain a theoretical understanding of absorption in
the visible and infrared portions of the spectrum, it is necessary to
develop analytical expressions for the rate at which energy is expended
by the electromagnetic field as it influences the atomic processes in a
metal. The first reguirerment, therefore, is an atomic medel of the metal
which defines the mechanisms by which the conduction electrons can gain
or lose energy. We shall assume that the mechanisms by which a metal can
absorb energy from an electromagnetic field in the frequency range of
interest in thermal radiation are as follows:

1. Energy is absorbed in the acceleration of free elecdtrons.

2. Electron motion is damped by interaction with the crystal
lattice.

3. Electron motion is influenced by the mutual interaction of
free electrons,

4. Tlectron motion is damped by interactions with impurities in
the crystal lattice.

5. Energy can be absorbed by the bound electrons.

The classical free-electron theﬁry accounts for the fact that the
external field provides energy to accelerate the conductlon electrons.

It also includes a simplified model of electron damping, as described in
Chapter 1Y, but does not account for the details of the damping mechanism.

The positively-charged ions which constitute the lattice array contribute



43

an internal potential fiesld teo which the conduction electrons are sub-
Jected. It is reasonable to assume that the motion of the electrons is
influenced by this potential and thét an electron can thereby exchange
energy with the lons. Because each electron is negatively charged, they
‘exhibit a mutual repulsicn which can also affect their individual motion.
The presence of impurities at latfice sites provides an additional damping
mechanism because the interaction between an electron and an impurity ion
is usually different in nature from the interaction between the electron
and an icn of the metal. Finally, an electromagnetic field of sufficient
strength might influence the local motion of the outer bound electrons

of the ion. This provides another mechanism by which a metal can absorb
energy from the field.

The theoretiecal task is that of developing analytical expressions
which account for as many of these interactions as possible and which re-
late the thermal radiation propertieg of a metal to its temperature and
the frequency of the incident electromagnetic field. This requires a
solution of the equation of motion of an electron which is subject to the
interactions. From the quantum viewpoint, this eqguation of motion is
Schroedinger's equation rather than the Newtonlan relation used in classi-
cal theory (3l). Each mechanism by which the electron energy is changed
contributes a term to the Schroedinger equation. To obtain a solvable
form of the Schroedinger equation it is usuallf necessary to make assump-

tions concerning the relative importance of the various mechanisms. We
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shall begin by assuming that the dominant interactions are the accelera-
tion of the electron by the incident field and the damping of its motion
by interaction with the lattice ions. The following arguments can be
made to justify this assumption in a first analysis.

Both the electron-lattice interaction and the electron-electron
interaction can be studied in terms of the relaxation time and mean free
path of the electron. Kittel (9) shows that, except at very low tempera-
tures, the mean free path for electron-electron collisions in a free elec-
tron gas is at least ten times longer than the mean free path for electron-
lattice interactions. This means that, on the average, an electron will
undergo ten interactions with lattice ions for each interaction with
another electron. This observation also results from a study of the
various terms which contribute to the thermal conductivity of metals (32).
Because electrons play an important role in the transport of heat through
a $0lid, the high thermal conductivities of metals indicate that electron-
electron interactions de not significantly inhibit heat transfer, BSuch
observations support the assumption that electron-lattice interactions
have a much more significant influence on the moticn of electrons in metals
than do electron-electron interactions.

Matthiessen's rule, discussed in Chapter II, indicates that the
effect of impurities on electron mobility in metals is not a function of
temperature. Furthermore, because the residual.resistivity which repre-

sents the influence of impurities is very small compared with the resistivity
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at room rempterature for commercially pure metals, it follows that the
electron damping is predominantly due to mechanisms other than electron-
impurity interactions except perhaps.at very low temperatures. We shall
therefore assume that the effects of impurities are small compared with
£he electron-lattice interaction.

The arguments given above lend strong support to the assumption
that the electron-lattice interacticn is the principal damping mechanism,
This assumption is made even more valid by the fact that we are concerned
with the temperature-dependence of the thermal radiation properties above
room temperature. Nonetheless, although neither will be included in the
initial stages of the analytical development, we shall later consider the
qualitative influence of both the electron-electron and the electron-
impurity interactions.

The influence of bound electrons becomes important near field fre-
quencies which excite résonant vibrations. The resulting bound resonance
terms enter directly into the clazsical dispersion relations for insula-
tors (7). No such resonant frequencies appear in the classical free-
electron theory of metals. Experimental measurements of the optical prop-
erties of metals, however, reveal irregularities at various frequencies
in the ultraviolet. These are generally attributed to the absorption of
energy by surface and volume plasmons as well as core electrons bound to
the metal ions and appear only when the energy density of the field is

sufficient to excite such electrons (33). The analysis of resonance
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absorption involves a sophisticated application of quantum theory usually
1limited to a specific class of metals. Because this type of absorption
depends on the degree to which the outer ion electrons are bound to the
core, it varies with the position of a2 metal in the pericdic table of
eleménts. The fact that resomance occurs at relatively high frequencies
reduces its importance in a study of thermal radiation properties. Accorde
ingly, we shall assume that resonance absorption, like the influence of
the electron-electron interaction, is small compared to the effects of the
electron-lattice interaction. This assumption carries with it some Iimpli-
cations which enter into the guantum analysis and, in effect, defines the
high frequency limit to which the theory applies. We shall find, however,
that some account must be taken of this absorption mechanism if we wish
to apply the theory to the transition metals.

The theory which follows makes repeated use of the definitions and
concepts of elementary quantum mechanics and the quantum theory of solids.
Because this thesis represents a dissertation in the engineefing sciences,
not all readers will be familiar with the necessary background materisl,
Some of the pertinent concepts of elementary quantum theory are outlined
in Appendix II. For additional background information, the reader is
urged to consult the standard literature in these areas. Most of the
fundamental concepts are treated by Schiff (31) and Slater (34). The ele-
mentary theory of solids is presented by Seitz (35) and Kittel (9) and

applied to metals by Wilson {36). The text by Mott and Jones (37) continues



47

to be important in the field. The more advanced guanium theory of solids
is treated by Kittel (38) and Ziman (39). An excellent elementary account

of electronic conduction in solids is given by Blatt (40)}.

The Quantum Interaction of Radiation and Matter

For the purpose of developing expressions for the thermal radiation
properties of metals, we shall consider conditions defined as follows.
When an electromagnetic field is incident on a metal, energy is absorbed
when a conduction electron absorbs a quantum of electromagnetic energy
(a photon) and undergoes a transition from a state characterized by wave

i . —

vector k to one characterized by wave vector k' . Energy is emitted

when a conduction electron undergoes a transition to a lower energy state

with the emission of a photon into the field. Simultaneously, the con-

duction electrons can exchange energy with the latdtice by transitions

which involve the absgorption or emissgsion of a quantum of lattice vibra-

. . . . = _'*_b. =
tional energy (& phonon). We define P {(k=k') as the probability per
—-
unit time for a conduction electron to make a transition from state k
-

to a final state k' with simultaneous photon and phonon emissions and
— -

absorptions when the state k 1is completely filled and the state k' is

completely empty. The subscript "r" denotes the photon process and will

be written "e™" for photon emission and "a" for photon absorption. Simi-

larly, the superscript "s" refers to the phonon process and will also be

fn_tr
e

written for emission and "a" for absorption. Because electrons obey
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the Permi-Dirac statistics, the probability that state -E’ with energy

"E is filled at femperature T is gilven by the Fermi function

2(E) = 1 (50)

where E¢ 1s the Fermi energy and K is the Boltzmann constant. Thus,

the total probability that an electron will make a transition from an
—

initial state %k +to any other state which is empty by any of the four

processes designated by the pheonon and photon subscripts is

P (K) =2 Z [1 - e )] Bi(E—=K") (51)
k'

where the factor 2 accounts for the Pauli exclusion principle that two
electrons of opposite spin can cceupy a state with the =same wave vector
and energy.

The effects of these electron transitions are represented by the
average of this probebility ﬁver all of the initislly-occupied states

according to Fermi-Dirac statistics. This average is

- _ o) g -9'__,"9" :
PS gd'_EﬂZ % g(E) [1 - a@e)] &K (s2)

The power expenditure of the electromagnetic field is the ftotal power

absorbed mipus the power emitted into the external field, or
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Wo,T) =) ra(E - F) (53)

Part of the temperature dependence of W 1s due to the Permi-Dirac sta-
tisties of the electreon distribution and part is due %o the Bose-Einstein
phonon distribution which enters into the Hamiltonian average over the
phonon states.

If Yy is the wave function representing the initial electron
state with wave vector _k> and ‘i‘k, is the wave function representing the
final electron state with wave vector E:" , the probability per unit time
that an electron will undergo a transition from state ¥, to state Y.
can be written in Dirac notation as (30)

=2

p(k>k') = 3"’5|1v1kt|2g(mk.) (54)
1

where g(Eyt) is the density of final states given by Eg. (50) and My

ig defined as

M s = <‘fk|H'|‘i’k> (55)

where H' is the Hamiltonian operator for the interactions hetween the
electron and both the incident field and the lattice. In order to eval-

uaté the Hamiltonian and the corresponding elements of the transition

matrix, it is necessary to consider the Schroedinger equation.
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The Schroedinger Equaticon and the Hamiltonian

In the development of the Hamiltonian function we shall treat the
electromagnetic field classically, i.e. we shall assume that the field
can be represented by a vector potential j; and a scalar potential §
A.complete treatment of the field in the framework of quantum electro-
dynamics is beyond the sccpe of this research; nonetheless, we shall re-
tain the essential feature of quantization of the field in that we recog-
nize that the field and the atomic system can exchange energy only in
quanta of fw . The formulation of the Hamiltonian function follows the
treatment by Sokolov (41).

Consider an electromagnetic field described by an electric field
vector -E-} and a magnetic induction vector B . The field can be expressed

in terms of a vector potential 7 and a scalar potential & which are

- —
related to E and B by (8),

—- e
B=7%xA (56)
and
- 138
= - - =22 57
E -5 (57)

The equation of motion for an electron in an electromagnetic field is (34)
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ol >
mé—r=e[§'+(a—rx5ﬂ (58)
Bte at

We can obtain a relation for the quantum-mechanical Hamiltonian operator
by determining the classical Hamiltonizn function for this equation of
mofion and by replacing the variables with their correspondiﬁg quantum
operators. This can be done by demonstrating the equivalence of Eq. (58)

with the Hamilton form of the equations of motion,

OX s " op;
i_ 31{ ; Pi - _ ajf (i =1, 2, 3)
at Apri ot 9xi

(59)

where ©p; is the component of momentum in the =xj direction and H is
the classical Hamiltonian. Equations (58) and (59) are equivalent if

the Hamiltonian is of the form,

. 1 =2
Jf=—(§'-9A) + ed (60)
2m C
Because the quantum operator corresponding to momentum is ﬁ = - in? ,

we can write the Hamiltonian for an electron in an electromagnetic field

as

(—ih'? - 2'3)2 + ed {(61)
c

Bl



In our particular problem, however, we have additional complexi-
ties. We must account for the periodic potential of the lattice ions
and the deformation of this potential caused by thermal vibrations.
These factors contribute some form of potential which is a function cof
the position of the electron. We can therefore express the quantum
Hamiltonian operator as

H= = (-in7 - -2—1)2 +ef +V (F,8) (62)

i
2m

where the potential V (¥,t) accounts for the imteractions. The first

term on the right side of Eq. (62) can be written

B-2B2 = B - 2807+ By - 287+ (B, - 2 4)°

n

Bach of these terms can be written in the following form:

n

(B - 2208 = By - 280 (B -2 =12 - 248 - 28,

2

2y

2e e2 2
- ££ + 52 a% +
e ﬁxAX 02 X

I

(%xﬂx = Axﬁx)

o lo

We can now employ the following commutation relation for the momentum

operator (38)
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-7
[Be 8] = B - 8,8 = - 18 = (65)
ax
Then
. JA 2 g2
Y )2 = $2 _ 2e _ieh TPx &7 4
(%X c * x e ﬁxAx c ax o2 X

Similar relations hold for the other coordinate directions; therefore

(5 -

. 2
T2 292 -2 4% _deh o Ta el 4P (64)
c e o

o o

If the Coulonkc gauge transformation is uged, it iz always possible
. =
to select the vector potential so that 7 - A =0 and & =0 (42).
Furthermore, for fields of the magnitude encountered in thermal radiation
-
the term in A2 is negligible compared with the term in A (43). fThe

term in Ae

is related to processes in which two photons simultaneously
participate. Such processes do not enter into emission and absorption
phencmena but are important in treating the interaction of matfer with
static magnetic fields.

If these simplifications are introduced into Eq. (62), the

Hamiltonian operator can be written,
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g - B g2, e
2m me

-
7« A+ 7V (Tt) (65)
From the vector relation 7 (I‘f) =-K T+ Y (7 _K) =-f -, we
. can write,
ife

_ 2
= - Je + . + t
H vl SRR (T,t) (66)

Thus the Schroedinger equaticn for an electron subjected to a perturbing
external electromagnetic field and a perturbing interaction potential

v (F,t) is

2 .
.p oY vt o ife K :a-
ﬁ — H‘f o — ‘f + { ——— . )
* at 2m v {mc VAL, (67)

The Electron-Lattice Interaction

A time~dependent perturbation solution of the Schroedinger equation
provides the transition probabilities necessary to compute the dispersion
properties of a sclid. 1In order to carry out such a solution of Eq. (67)
we must have available some mathematical form for the interaction poten-
tial. Our model of the atomic system includes interactions between the
conduction electrons and the ions which constitute the lattice array.
Hence, the interaction potential V (¥,t) ‘represents the potential which

gives rise to the electron-phonon interaction,
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Consider an electron moving among the ions of a crystal lattice
in the absence of an external electromegnetic field. The potential to
which the electron is subjected can'be treated as conaisting of two parts.
First, there is an ideal periocdic potential field due to the charges of
'the ions if the ions remained stationary in the lattice. The spatial
pPericdicity of this potential V3 (;3 is related to the lon spacing and
the potential is a function only of the pogition of the electron. The
ions, however, do not remain stationary. They are thermally excited
and vibrate about some equilibrium position. This vibration causes s
time-dependent distorticn of the crystal potential field which can be re-
garded as the source of the second part of the total potential. Hence,

we ¢an write

V=V (F,t) =V (Ft) + vy (@) (68)

where Vj (;) represents the potential field in an array of ideal sta-
ticnary ions and Vg4 (?:t) represents the change of potential caused by
thermal vibrations.

It has been found that when & particle moves in a perfect periocdic
potential, such as that represented by Vj (?) , and is acted upon by an
external force F, it does not exhibit an scceleration F/m but rather
F/m* , where m* is termed the effective mass of the particle (44). The

effective mass accounts for the interacticn between the particle and the
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ideal periodic lattice potential Vi (?) . It can be greater or less
than the rest mass of the particle and, for an isotropic lattice, is given

by

12

m = ———
4R /K

(69)

From the concepts of band theory {9) it can be secen that m* is negative
for states near the top of a band, positive for states near the bottom
and infinite for some energy level within the band. By imposing certain
limitations on the type of transitions which can occur, an anslysis can
be conducted with constant values of the effective mass. Thus the effects
of the pericdic lattice potential can be included in the analysis by using
the effective mass rather than the rest mass of the electron.

It follows from Eq. (69) that the effective mass is constant if
the energy is a quadratic function of the wave vector, Such a relation-
ship holds in the case of a spherical Fermi surface. The concept of the
Fermi surface arises in the study of the properties of a free-electron
gas. At absolute zerc temperature the electrons occupy states in wave
vector space whose outer boundaries form a surface of constant energy which
is termed the Fermi surface. UFor free electrons, this energy surface is
spherical. The atomic model postulated earlier in this chapter is one of

nearly free electrons, i.e. the conduction electrons are assumed to move
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approximately freely between interactions with the lattice. For a model
of this type, the Fermi surface is nearly spherical except in regions
near the boundaries of the Brillouin zones and the electron energy is

given by (36)

2.2
s (70)
on*

=
-
il

The assumption of a spherical Fermi surface is made in nearly every
anaiysis of the electrical transport properties of metals. This is a re-
sult of two factors. First, a theory which attempts to account for the
intricate topological details of the Fermi surface would be extremely
complex and would certainly be beyond the scope of a study designed to
gain insight into the nature of the thermal radistion properties of metals.
Secondly, very little is known about the shape of the Fermi surface of
most metals. Sodium and aluminum are examples where detailed work has
been done to define the topology of the Fermi surface. A discussion of
Fermi surface topology is presented by Ziman (39).

It is also difficult to evaluate the Inaccuracy introduced by the
assumption of spherical Fermi surfaces. Although some qualitative state-
ments can be offered, it is usually necessary to evaluate the errors
based on the ultimate resulits of the theory. For example, part of the

error in theoretical values of electrical conductivity can be attributed
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to the assumption of a spherical Fermi surface., It has been found that
the spherical assumption introduces very little errdr in values of the
de donductivity of most of the face-centered, body-centered and hexagonal
cubic lattices (36). Schocken {45) finds that the spherical approximation
is even adequate for a polycrystalline sample of a metal which exhibits
energy anisotropy in single erystal form, Of course, considerable error
is involved in the use of such an approximation for the transition metals
because of their overlapping band structure. This will be discussed when
we gualitatively treat the transition metals in a later section.

Thus, we shall assume a spherical Fermi surface in our analysis.
This enables us to use the concept of an isotropic effective mass to
account for the periodic lattice potential. We shall also assume iso-
tropic lattice characteristics on the atomic scale. This assumption,
which is valid for the cubic lattice structures, allows us to treat the
effective mass as a scalar rather than a tenscor. If we replace the rest
mass in Eq. (67) by the effective mass of the electron, the Schroedinger

equation becomes

2 .
o} 4 Lol o ite > -
e = - — 7Y + — A - T+ YV t ¥ 71
* ot on* e d(r’) (1)

The time-dependent deformation potential V3 (¥,t) , which repre-

sents the distortion of the periodic lattice potential caused by thermsl
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vibrations, is the field which gives rise to the electron-phonon inter-

action., Bardeen and Schockley (46} have shown that the deformation po-

tential can be expressed as
I
LA (r,t) = Egd (72)
where Egq is a constant with units of emergy and 4 = 8V/V is the lat-

tice dilation caused by thermal vibration. For an isotropiec lattice, the

dilation can be written as (38},

1/2 e 3 g
N e I i ] KT
q Ppa

where pyp is the phonon density, 7? is the phonon wave vector, Wy is
the phonon angular frequency given by the quantum condition Eq = ﬁwq
and a; and aq are the phonon creation and annihilation operators
respectively. These boson operators are such that, if ng is the num-

ber of phonons in state gq , then (40)

<og -1 ag| n> = JA] (74)

_<<@q +1 |aa nq>> ng t1 (75)
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By including the time-dependence e~1%qt of the phonon state vector,

it follows that the phonen operators can be written

aq = h}nq e':""”qt {76)
a.; = an ¥ 1 o lugh (77)

=N
where the number of phonons in state q 1is given the Bose-REinstein dis-

tribution function

1
nn

-1 (78)
9 eEg/ET .1

If Bgs. (76) and (77) are used in Eq. {73), the deformation potential

can be expressed as

Va (?ﬁt)

%q

n A i (g r-wqt) 1 (2 -T-wyt)

. sT-0) r-

iBg Z ” q’:, /nq et'd g/~ {nq +1le q (79)
q

S
3l

With this relation for the deformation potential we can use stand-

where 4q

ard time-dependenf perturbation theory to cbtain an approximate sclution
of the Schroedinger eguation. There are several assumptions implicit in

the form given by Eq. (79) for the deformation potential. First, it in-

cluded the effect of longitudinal acoustic phonons only; it does not
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account for transverse waves. This assumpbion can be Justified for our

problem by noting, from a more general analysis {38), that the effects

of transverse waves are included in terms which contain the very small

scalar product of the phonon wave vector and the unit vector in the trans-

verse direction.

A second assumption implicit in Eq. {(79) is that the analysis is
limited to the normal or N processes for which the wave vectors of the
== e

electron, k and k' , are related to that of the phonon by momentum

conservation in the form
- >
k- k' ¢

T=0 (80)

The second possibility is the Umklapp or U process for which

-
E-T+3=C (81)
where 75 is a wave vector in the reciprocal lattice. This preocess in-

fluences the electron-electron interaction and is discussed in Appendix

IT1T,

Electron Transition Probabilities

The Schroedinger equation given by Eq. (71) can be written
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(H°+H‘)'¥=ih% (82)

where H° is the unperturbed (zero;order) Hamiltonien,

. _F¥ 2
HO---Q-;l;v (83)

and H' is the perturbation term,

ihe

H' = 3

A7+ Vg (T8) (84)

=]

C

The stationary states of the conduction electrons are given by the solu-

tion of the unperturbed wave equation,

HOYO = i B¥° (85)
3t

These states are represented by the wave functions

&;i - ei (f- 7 - Ekt/‘ﬁ) (88)

.
The energy of the stationary states is a function of k = Ik I only and

is given by Egq. (70).
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The total Hamiltonian, H° + H', includes the influence of the
external electromagnetic field and the thermal vibrations of the lattice.
These effects are treated as perturbations of the electron motion and are
separated into the perturbation Hamiltonian H'. We then utilize the
femiliar methods of time-dependent perturbation theory to determine the
electron transition probabilities.

It is convenient to express the perturbation Hamiltonian as the
sum of two terms, one of which gives rise to the electron-photcon inter-
action Hi > and one which represents the electron-phonon interactions

'

Hy . The vector potential of the field can be expressed in terms of the

electric field vector 7§; and the photon wave vector B (41)

-
?: EcEi‘% [ei(f‘ _I." = mt) - e-i(-ﬁ‘-? - U)t)] (8?)

Then

5 > : -_-
=__2[e:|.p'r-wt)_e-.1p-r-wt)] (88)

and from Eq. (79)

% m e oL E

Qpﬁwq
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If these relations are used in a time-dependent perturbation analysis
(see Appendix II), the time rate-of-change of the wave function expan-

sion coefficients is

x Zaic—(—l‘f Z k( ) 1he(—) k) [ p r-u:t) —l(P r—wt)] (90)

K "
x OF K

+1EdZ(

) [J—\ el(q r-mqt)
2ppvg

- JogT emi(TFeugt )]}Y%

The electron can underge four possible transitions:
—_
1. It can absorb a photon of wave vector p from the radiation
. - - o
field and go from state k to state k + p .
"N
2. It can emit a photon into the field and go from state k to
- .
state k - _f)- .
—
5. It can absorb a phonon of wave vector g and go from state

— —= =
kK to state k + q .

== > >
4. It can emit a phonon and go from state k to state k- g .

The Hamiltonian contains a term corresponding to each of these processes.

The first term on the right in Eq. (90) involves a photon sbsorption, the

second a photon emissgion, the third a phonon absorption and the fourth a

phonon emission. If we proceed with the perturbation analysis, following
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the steps outlined in Appendix II, we obtain a first-order coefficient
given by (see Appendix IV)
- =
(1) _ 2e(Bo-k) [ (ei(wk+p,k-w)t-1
L k'sktp \ {wgeyp y-w) )

. ¥
2im w

_ 6k' N (ei(LUk.P’k"'LU)t_l)]
4 -P ﬁ(UJk_P,k'HD)

1/2

503 (5l o[ (SRR

1wy t0)E
-p,k -1
-6 /o +1 S

X',k-g q ( f](wk_q’k+wq )]
where 6, is the Kroenecker delta and

wi,m = (By = E,) /B (92)

Because of the presence of the Kroenecker delte terms in Eq. {91),
the first-order cocefficient and the corresponding transition probability
is non-zero only if the initial and final electron wave vectors are the

- -

—- g = -
same, that is, if k=kt p or k =%kt q . But we have assumed a

spherical Fermi surfacej hence the initial and final energies are the
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same if the initial and final electron states are characterized by the
same wave vector. Energy conservation in the case of absorption of a
photon by a free electron, for example, would require that
By - Eyxr * 4w = 0 , But if Fyx = Ex' , energy would not be conserved
because ‘+w 1is never zero. Hence, interactions between a free electron
and either a photon or a phonon, within the framework of the specific
model which we have adopted, must yield only virtual transitions, that
is, transitions in which energy is not conserved (47). It follows that,
according to ocvur model, visible and infrared gbsgorption is a reéult of
processes in which a photon is absorbed and a phonon emitted. This also
ineluvdes the acceptable process of absorption or emission of both a
photon and a phonon. Similarly, emission invoives the simultanecus
abgsorption of a phonon and emission of a photon. Such processes do not
appear in the first-order coefficients. They are represented by the
terms in the second-order coefficients which are bilinear in the photon
and phonon metrix elements.

The second-order terms are obtained by substituting Eq. (91) into
the relation for the time rate-of-change of-the coefficients, collecting
terms bilinear in the photon and phonon Hamiltonians and integrating

over time from O to t . The result is
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(2) - He § o - 2 ktq 93
Pktprq T ¥ - (2ppwq) Fq {an + 1 [ o (*h(wktq,k-ﬁuq) (%)

p )ei"‘lt/‘h-.l = (ei"’et/ﬁ-l)
W1 h(wktq,k;wq)

-

" o) (emfr:/ﬁ-l)]

where the upﬁer term in the bracket applies to phonon emission, the

lower term applies to phonon absorption and

+1

W2 = Blogsgrp xeq ¥ @) = Bryqup = Bhag + 10 (95)

+1

(96)

+1
=

W3 = Blogsqrn wip ¥ 9g) = Birqip Bitp

The details of this derivation are presented in Appendix TV.

According to the usual perturbation methods, the transition prob-
abilities are represented by the sguares of the absolute values of the
expansion coefficients, Thus, the probability per unit time that an
electron initially in state 'E will underge a transition o any of the

- -l - .
~ states k t p %+ 9 under the simultaneous influence of an external elec-

tromagnetic field and thermal lattice vibrations is
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i . _ 1iml (2) 2

The transition probablility will approach a constant finite value for
large t 4if and only if one or more of the demominator terms in Eq. {93)
approaches zero for large values of §,

The transitions which inwolve simultaneous photon and phonon proc-
esses are represented by the energy relation given by Eq. (94). When
the transition probabilities obtained from Eq. (93) are used in Eq. (53)
to evaluate the energy expenditure of the field, the terms in Wp and
Wz cancel. Therefore, it is sufficient to consider only the case when

8 singularity occurs at Wp; = 0. Accordingly we can reduce Ed. (93) to

1/2

(2) o + _Be h g | > kg 98)
=2 B+ - o8
ak'ﬁP'.'-'q onw ( 2ppq ) T ngtlf ¢ I:ﬁ(“’ktq, KH0g) (
* iwyt/n_y

k e
' ﬁ(wk-_l;p,k;w):l L]

For trensitions in the visible and infrared portions of the spectrum the
photon momentum can be neglected in comparison with either the electron
momentum or the crystal momentum except in those terms which give rise

to resonance. We can then write,
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T =kt ptamxkil
It follows that
2 722 2 g2y 2
_ _n% 2 _ Ry X

Hence, terms such as Ek+p'Ek » Which represent' a relativistic correc-
tion, will be neglected in expressicns which contain other additive
energy terms. We shall let

1/2

fie h - .
B(g) = ( ) oE (99)
om¥w \2Ppig d

. . > e
Consider first the transition k3> k + p + q . The parenthetical

term in Eq. (98) becomes

- o )
k(“’1rc+p,1:"1”1';+<:_.[,k'""q:m) ' q({-"1;+p R
ﬁ(wlﬁq,k"wq) (‘”k+p,k“‘”)

-
The coefficient of k can be approximated by

Ek“"p-Ek-'-Ek +q'Ek"'ﬁUJq"‘flﬂJ = Ek+P'Ek+wl = O
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where the term Wi is taken as zZerco. Deviations of Wy from zero re-
mein important in the resonance term.

These simplifications reduce Eq. (98} for the transition

"—-_£+_§+Eto

1 t
al(;f;)wq = B(q) A/ng (E 9 M/ (100)

Wy

( ‘9 lim 1

ﬁ2 2 t=a L

; 2
elWlt/h_l ' (101)

Wy

P (F55%) - [5(2)] %y ——

We can express this result in terms of the function 6(x) defined by

Heitler {47)

s(x) 1 | 1 -e

ixt |2
t-—-h- ot X l

Thus

P (k—>kiptq) = —0 Ea(q] )] 2o B2 6 (wy) (102)

This can be generalized to include the other processes as
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—
where we have denoted the final electron state as k’'.

Substituting Eq. (103) into Eq. {51) yields

g /> 47 e nCl o
P (k) =Z-— B(q) (.
r T2 el B

: [l-g(Ek-):l 6 By 1By g 7w )

71

(103)

(104)

The summation over the final states can be replaced by the corresponding

; e
integral over k-gpace. PFurthermore, because _f{' ~ kiq , the summation

—
over k' is equivalent to a summation over _E . Thus the wave vector

sum can be converted to an integral by (38)
53~ w ]
(2m)3
k! q

The wave vector element can be written (31)

dsa = qedqdﬁ = qedq 8in Ydyd$. Because we have assumed a spherical

Fermi surface, the energy relations are spherically symmetric.

If we
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also take the average field direction with respect to the phonon wave

vector, we can write

> *0 _1 0.0
(Eo.q) = 3 OES

We can then express Eq. (104) as (see Appendix IV)

o +1

- E2 qmax
PE(k) = ———-9---jd§ J‘ gtdg J‘ [B(q):|2 a (105)
¥ ercne® S, J 1 ng*l

. a(cos ¥) [l-g(Ekr):I b (Byer-EycFtug Fhu)

- —
where ¥ 1is the angle between k and g

The maximum phonon wave vector is determined by the phonon dis-

persion. We shall adopt the familisr Debye distribution for which the

maximum weve vector is related to the longitudinal acoustic phase velo-

city vy by (36)

K6
Upax = ry (106)

where 8 1s the characteristic Debye temperature,

We can express the argument of the &-function in Eq. (105) as



73

e ol CR-=
Ey B Mg w ~ L ¥ fwg ¥ fo
om* om*

mﬁefﬂe.}.‘ﬂcosv 'T"ﬁuq-'*ﬁu
2m* m*

It follows from Eq. (101) that finite transition probabilities occur
only when the argument of the &-function vanishes., Wilson (38) has
established the existence of a real cos ¥ such that the argument vanishes
for all phonon wave vectors between zerc and qpa, when no external field
is present. A more general a.rgumént, applicable to the case of a per-
turbing field, is presented in Appendix IV, If we utilize this feature
of the electron-phonon interaction to perform the integration over cos ¥
{see Appendix IV), Eq. (105) becomes
s -  CE3ES
B () = —=— j (p e qﬂ [1 - eegtmoto) | ag  (207)

The average value of this transition probability is obtained as

in BEq. (52),

<. ; &(Ey ) BE (%) (108)

’ Z &(Ex*)

kl
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We shall assume that the visible and infrared transitions occur near the
Fermi level because it is only at this energy level that close-by wn-
occupied states are available. Hence, the numerator of Eq. (108) is
different from zero only when Ep ~ Ep , the Fermi energy. The summa-
tions over the initial electron states can be replaced with energy inte-
grals and the density of states can be approximated by the value at the
Fermi.. level. The averege transition probability then becomes (see Appen-

dix IV)

= . 3253335 fqlgax_l__ ny 1 * «Zdg (109)
T zenklrt*kdEs A ("p‘”q) ngtl| % B_L (eZ*841)(eZ+1)
where
B = 1/KT
z = B(Ekn-Eki'lhuq_tﬁn)
a = §(Fwg7e)

The energy integral can be evaluated in closed form,
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s _1 f e?dz -2 (110)
K.‘r:‘ B ,m(eZ+a+l)(eZ+l) g(ea-l) .

Then, from Eq. (53), the power expenditure of the external field is

2poL0 . Omax
e“EZE 1, 111
W(w,T) = —a 2 Zf q” ( 1 ) f dq [K:-KS] (111)
n‘:l 1 =
o

3enhm’ k3B, <3 Pp¥q

Substituting from Eq. (110) we have, after considerable algebraic manip-

ulation (see Appendix IV),

ES (9 (r.
W(w,T) = Cg BﬁN(w ) (e) J(w,T) (112)
where
I(w,T) = if;%:ll Fs(6) - & (112, (,0) - (M-1)%6,(1,0) (113)
g n
- x ax 114
Fn(nag) L (ex——en)(en-e"’x') ( )

9
| Dy -
Go(M,6) = | (115)
| : .’; (eX-eM){eN-eX)(e*-1)
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_m _
=g c (115)

=
Hi®

and C, 1is a constant which is independent of both freguency and tem-

perature,

on3r2N_gS
o = p’d (127)

o]
2 Jon'ES MKS

The Electron-Phopnon Damping Coefficient

The optical conductivity is defined as the energy absorbed per'
unit volume pey unit time divided by the mean square of the eleciric

field vector (37)

2

a(w) = (118)

|2

where E§/2 is the field energy density and N is the effective num-

ber of electrons. Substituting for W from Eq. (112), we have

e
o.1) = o 0 (GB) ¢ a1 (119)

4 ©
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The term COQ'SJ(w,T) has the units of sec.”l and can be conveniently
interpreted as a damping coefficient. Furthermore, we note from Eq. (113)

that

(120)

. C 5
.y [ £ - F2 (¢)

oo T L e

which is the integral which appears in the Block-Grilneisen relation for
de conductivity (39). Thus, if we define a quantum correction factor

for the electron-phonen interaction as

Q(n,¢) = I(M.0) (121)
F2(¢)

such that

lim
W—m0

Q(T]sg) = 1

then we can formulate the electron-phonon damping coefficient as

T(M,6) = CoL~OFa(2)aln,g) = re(g)a(n,c) (122)

If this relation is used in Eq. (34) and taken to the dc limit of zero

frequency, we have
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which is the familiar relation for de conductivity where TO9(¢)} is the
de damping coefficient.

We shall be interested in the application of this theory for tem-
peratures between rcom temperature and the melting temperature of the
particular metal and for frequencies in the range of interest in thermal
radiation analysis, that is, for wavelengths between about 0.5 and 100
microns which corresponds tc an angular frequency range of sbout
4.7 x 1015 40 1.9 x 1013 sec. L. The frequencies greater than about
2 x 10™ sec.”d are of particular interest because it ig at such fre-
quencies that significant deviaticns from the Hagen-Rubens formula are
observed. The corresponding ranges of the independent variables T
and £ are shown in Figure 8.

Several digital computer subprograms were developed %o evaluate
the various mathematical functions which appear in the theory. These
subprograms were later.used as external routines in the program for the
calculation of emissivity and are discussed in Appendix V. The function
F2(¢) , as defined by Eq. (120), is femiliar from dc conductivity theory.
The curve shown in Figure é wag obtained using a numerical integration
with Simpspn‘s rule; The values can be compared with tabulations from

the literature (40),
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The electron-phonon quantum correction factor Q(7,{) represents
the degree to which the quantum effects included in the model cause =a
change in the electron damping coefficient. It can be seen from Eq. (122)
that when Q{N,() is unity the damping coefficient corresponds to the
dc case and the relation for conductivity reduces to the Block-Grineisen
relation. Although the latter is a consequence of an elementary quantum
analyéis, it represents only a limiting case, that is, the zero-frequency
limit. The functions Fu(M,§) and GL(N,{) were evaluated with sub-
programs which utilize Simpson's rule for integration. These routines
and the subprogram for Fg(g) were used in a program to evaluate the
electron-phonon quantum correction factor. The results are shown in
Figure 10 where the guantity 1-Q(N,{) is plotted as a function of (
for different values of 1 . It can be seen that 1-Q(7,L) is much more
sensitive to temperature than to frequency. It increases by th:ee crders
of magnitude as { goes from 0.1 to 3. On the other hand, it increases
only 40 to 50 per cent as 1 increases from 10 to 1000. Because the de
damping coefficient T°(() is, of course, independent of frequency, the
electron-phonon damping coefficient, given by Eq. (122) is only slightly
dependent on frequency, that dependence arising 501ely from the guantum
correction factor,

The constant Cg, defined by Eq. (117), is a function of the mi-

croscopic parameters of the metal, It involves the Debye temperature 8,
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the ionic mass M, the electron effective mass m*, the Fermi energy Ee
and the deformation potential energy term Eg. The evaluation of this
constant from first principles is complicated by the lack of accurate
data on the microscopic parameters. Although the ionic mass, Fermi
energy and Debye temperature are known with reasonable accuracy for a
variety of metals, effective mass data are available for only a few met-
als and almost no values of Ej are given in the literature. There is,
however, a convenient indirect method by which C, can be evaluated. From

Eq. (122) we can write

_ .5 I°(0)
Co = € =
Fs(C)

We can then use Eq. (36) to express the dc damping coefficient in terms
of the dec conductivity; hence

5

Co, =

5 N (fwp)” (l—) : (123)

mw FR(C)  ami®  \%o/ FR(E)

The term ‘hmp is the plasmon energy of the metal; Values of ﬁwp ex-
tracted from the literature are tabulated in Appendix I. Experimental
values of the de¢ conductivify and the plasmon energy can be used in Eq.
(123) to evaluate C, where ( and Fg(;) are evaluat;d for the tem-

perature at which ¢, and ﬁwp were measured. The results are listed

for several metals in Appendix I.
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The damping coefficient which appears due to the electron-phoncn
interaction is plotted as a function of temperature in Figure 11 for
copper and silver. The curves apply for the wavelength range from 0.1

to 10 microns for which the dependence on wavelength is very slight.

The Electron-Electron Interaction

One of the assumptions employed in the preceeding theoretical
formulation was that the contribution of the mutual electron interactions
to the total electron damping coefficient was smaell compared with that of
the electron-phonon interactions. This is not always the case. The
total damping coefficient FT can be expressed as the sum of the =2lec-
tron-phonon damping coefficient T , the electron-electron damping co-

efficient T,  and the electron-impurity damping coefficient T; ,

rp(N,8) = T(M,¢) + To(MC) + T3 o (1=4)

It was previously assumed that, because the mean free path for electron-
electron collisions in a free electron gas was much larger than the mean
free path for electron-phonon collisions, then T, << ' . This enabled
us to obtain a perturbation solution of the Schroedinger equation and
arrive at the relation for the electron-phonon damping coefficient. In-
deed, if only normal electron transitions (N-proeesses) are considered,

the electron-electron interaction cé,nnot contribute to the electrical
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resistivity because no momentum can be transferred to the crystal lattice
as & result of such collisions (40). However, if Umklapp processes
(U-processes) are considered, the lattice can exchange momentum with the
electrons dusz to mutual electron interaction,

The electron-electron interaction was ignored in most early quan-
tum studies of the optical properties of metals. More recently, however,
the effect of interelectronic collisions on the electrical conductivity
has been studied by Ginzburg and Silin (48), 8ilin (49), Gurzhi (50) and
Appel (51). The work of Silin and of Gurzhi was based on the theory of
Fermi liquids. There remains considerable controversy over the importance
of the electron-electron interaction. However, we shall find that, as
it is formmlated in the present theory, it can make a significant contri-
bution tg the overall damping coefficient.

We shall not treat mutual electron interactions in detail. In-
stead we shall empioy fhe relation presented by Gurzhi (50) for the elec-

tron-electron damping coefficient.

Fe(m:0) = TS(g) [1 + (;:})2] (125)

where Tg(C) is the classical electron-electron collision freguency which
. . T2 2

is known to be proportional to (35). Hence, the term 1 + (M/2m)

can be regarded as an electron-glectron quanfum correction factor. The

damping coefficient Te(ﬂ,C) increases with increasing temperature and
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with increasing frequency. The frequency dependence enters only in the
guantum correction term,

The classical damping term can be written

r,(c) = c (02 (126)

where. C. 1s a constant characteristic of a given metal but independent
of both frequency and temperature. Very little experimental data is
available concerning the term rg(g). Padaika and Shklyarevskii (52)
report values for silver and gold. These were used to cobtain the values
of (g for silver and gold listed in Appendix I. The following rela-

tion (48) was used to estimate T,({) for other metals,

2
200 = 35 = 5 (52 ) ve (127)
or
ko ¥
C, ~ SN (___) Ve (128)
Ep

where 2, is the mean free path between electron-electron collisions and

Se is the effective collision cross-section which was assumed to be

10'15 cm? (9). The most complete data on the mumber of cenduction
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electrons per unit volume N and the electron velocity at the Fermi level

v, appears to be that of Dingle (53) (see Appendix I).

The Electron-Impurity Interaction

Blectron-impurity interactions include all forms of electron
scattering by staticnary crystal imperfections. The impurity damping
coefficient 1s a result of electron interactions with not only impurity
atoms but alsc planar imperfections such as grain voundaries and stacking
faults, linear imperfections such as edge and screw dislocations and
other point imperfections such as vacancies and interstitial atoms. The
boundaries of a metallic specimen can also be regarded as planar imper-
fections; howevef, we shall qualitatively account for the effect of sur-
face potentials when we diséuss skin effects in a later section. A sum-
mary of staticnary crystal imperfections and related scattering mechan-
isms in metals is presented by Blatt (40),

The difficulties encountered in any attempt to analytically de-
scribe electron damping by stationary crystal imperfections are obviocus.
The mechanisms are many and complex; furthermore, such damping will de-
pend on the purity of the metal and the manner in which a speciﬁen is
prepared. Matthiessen's rule, Eq. (47), indicates that the residual
resistivity and, therefore, the impurity demping coefficient are inde-

pendent of temperature. Hence, an estimate of the impurity damping
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coefficient can be cbtained from meassured values of the residual resist-

ance because, according to Mott and Jones (37),

2

1)
2 1
Ne 4T
Thus
4
ry = —g P (130)
“p

The values of T3 for silver and gold have been measured experimentally
(52) and are listed in Appendix I. The other values listed were computed
from Eq. (130) using the residual resistivity data compiled by Meaden (54).
The values of C, and Tj computed for.silver and gold using
Egs. (128) and (150) are appreciably smaller than the experimental values
obtained by Padalka and Shklyarevskii (52)f This would indicate that the
free-electron theory underpredicts both C, and T4 ; that is, the
effects of mutual electron collisions and impurity interactions are scme-
what greater than predicted by classical theory. More accqr&te estimates
of C, and Ty could be obtained by fitting the present theory to room-
temperature values of the optical properties. The constants could then
be used to predict the thermal radiation properties at other temperatures.

This means of determining Ce and Fi 1s discussed in the next chapter.
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The Bulk Abgorptivity

The theory, subject to its many assumptions and qualifications,
can now be applied to the theoretical calculation of the bulk absorp-
tivity, or bulk emissivity, of metals. The electron-phonon damping co-
efficient can be obtained from Eq. (122) and the electron-electron damp-
ing coefficient from Eq. (125). These are added to the constant electron-
impurity damping coefficient to cbtain the overall damping coefficient,
Eq. (124), which is a function of both temperature and frequency. This
is then used in Egs. (34) and (35) to determine the optical conductivity
and the dielectric constant. The optical constants n and k are given
by Egs. {17) and (18) and are used in Eq. (24) to find the normal mono-
chromatic bulk absorptivity (or emissivity). Theoretical calculations

are pregented and discussed in Chapter IV.

Skin Effects

The bulk absorptivity o, accounts for the internal processes
such as the electron-phonon, electron-electron and electron-impurity
interactions. It does not, however, include skin effects which account
for the interaction of the conductibn electrons with the surface poten- -
tial, It is common practice to express the absorptivity of an opaque

s0lid as the sum of the bulk absorptivity and a skin absorptivity oy ,

a(@,7) = ap(w,T) + ag (151)
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The formal theory of the skin effect was developed by Reuter and
Sondheimer (55) and Dingle (56). We shall not present a detailed account
of the theory; rather, we shall utilize the familiagr first-order rela-

tion for the skin absorptivity (41),

Q’S—

]

v
— 3
~ (132)

where vy 1s the electron velocity at the Fermi level which is given by

(8)

Vs = % (3n2y)1/3 (133)

The values of Vf/c given in Appendix I are mostly those reported by
Dingle (53). The relation for the skin absorptivity, Eq. (132), is the
final requirement in the theory. We are now in a position to compute
the optical properties and emissivity of a metal as functionsg of tem-
perature and wavelength. The computational results for several metals
and their comparison with available.experimental data are presented and

discussed in the next chapter.
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CHAPTER IV
EVALUATTON AND APPLICATION OF THE THEORY

The theory developed in the preceeding chapter might be cate-
gorized as a modified free-carrier theory of absorption and emission.

It refains several of the features of free-electron theory, notably the
assumption of a spherical Fermi surface. However, it includes modifica-
ticns such as the concept of effective mass and the gualitative electron-
electron and electron-impurity interaction terms. In this chapter we
shall assess the theory by computing valueg of the damping coefficient,
index of refraction, extinction coefficient and normal monochromatic
emissivity and by comparing the results with experimental data. We shall
also discuss in more dgtail the limitations of the theory which deter-
mine the metals to-which it can be applied and the temperature and fre~
quency ranges over which it remsins reasongbly-valid.

In the development of the theory we have assumed that the Fermi
surface is spherical and that no interband transitions occur. These are
the most far-reaching assumptions of the theory.. We know that the Fermi
surface is truly spherical .only for a free-electron Fermi gas. However,
we glso Xnow that the assumpticn of a spherical Fermi surface has been

used with considerable success in the theory of the electrical properties
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of many metals, particularly the alkali and noble metals. At a tempera-
ture above absolute zero the width of the rapidly varying part of the
Ferml distribution is approximatel& KT as shown in Figure 12, TUnoc-
cupied electron states are thus available within a range KT about the
Fermi level. An electron can absorb a photon only if the photon energy
hw is sufficient to raise the electron to a higher unoccupied state.
Thus.if hw > KT , quantum absorption can occur in the free-electron gas.
If My << KT , as would be the case in the far infrared, the electrons
abscrb electromagnetic energy only as a result of their acceleration in
the field. This explains the limitations of a classical analysis of
absorption to the long-wavelength and/or high-temperature regions.
Noland (24) has demonstrated that the region over which the Hagen-Rubens
formula is valid extends to shorter wavelengths as temperature is in-
creased.

A convenient meésure of the validity of the assuﬁption of a spher-
lcal Fermi surface is the degree %o which the valence electrons of a
gpecific metal can be approximated by a frée-electron gas. A quelitative
estimate of this can be obtained frqm the electronie st;ucture of the
metal. The monovalent alkali metals have a single electron in an s-state
outside & complete -closed shell. It would be exﬁected, therefore, that
they might exhibit certain features characteristic of the free-electron
model, The monovalent noble metals, Cu, &g and Au , also have & single

s-state electron outside a complete shells however, in this case,-
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the d-electrons of the complete shell form a band which overlaps the s-
band. Although available evidence (39) indicates that the Fermi surfaces
of the noble metals deviate from a.spherical shape, their electronic
structure is such that the outer g-state electrons would be expected to
conform with reasonable accuracy to a free~electron model. The alkali
metals are rarely used as surfaces in thermal radiation systems and,
hence, we shall treat them only from the viewpoint of verification of the
theory. The noble metals, however, are important in many engineering
systems and will be studied in detail. |
Aluminum is another important metal which is frequently used in
thermal radiation systems, particularly for aeronautic and space appli-
cations., It is the only cone of the trivalent metals which has been
studied in detail. It is a good electrical conductor and the general
topology of the Fermi surface closely approximates a sphere (39).
Another very important class of engineering metals are the transi-
tion metals. The first group, V, Cr, Mo, Fe, Co and Ni , have an
argon core configuration plus electrons in the 34 and 4s shells., The
second group, Nb, Mo, Te, Ru, Rh and P4 , have a krypton core configu-
ration plus electrons in the 54 and &8s shells. Because the d-shells are
incomplete, the d-state electrohs can influence many of the properties
of the transition metals. The complexity of the d-states makes it very

difficult to obtain reliable information concerning the Fermi surface,
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Certainly the shape of the surface would be expected to deviate consid-
erably from spherical and the freefelectron model would be a poor repre-
sentation of the transition elements.

However, our theory is not strictly a "free-electron theory" in
the exclusive sense of that terminclogy. We have attempted to improve
on the free~electron model by inecluding terms to account, at least quali-
tatively, for such factors as electron-electron interactions and skin
effects. We might, therefore, expect better agreement with experimental
data than if we had developed a truly free-electron theory. Correlation
of data for the transition metals, however, is limited by ocur restricticn
of the thecry to intraband transitions. In the case of the alkali and
noble metals, if Mw > KT , states are available for transitions within
the s-band and at energies near the Fermi level. Relatively large photon
energies would be reguired to cause a transition from the d-band to the
s-band in the noblé metals. In the transition metals, however, inter-
band absorption can occur at frequencies of interest in thermal radia-
tion because of the relatively small photon energy required to cause s
d—»s transiticn.

We shall evaluate the theory by comparing the computed results
with experimental data for several metals. We shall treat sodium as
typical of the alkalil metals and present the results only as an indica-
tion of the accuracy of the theory since the alkali metals are of limited

engineering value in thermal radiation systems. Copper, silver and gold
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will be treated in detail., Aluminum will be analyzed to further assess
the limitations of the theory. Nickel will be treated as characteristic
of the transition metals mainly as.a means of illustrating the possible
medifications required to account for interband transitiocns. In each

case the specific limitations of the theory will be discussed.

The Alkali Metals

The alkali metals, Li, Na, K, Eb and Cs, have the least compli-
cated electronic structure of all the metallic elements and should most
¢losely conform to the free-electron model. Because of their chemical
reactivity and softness, they are rarely used as thermal radiation sur-
faces and, therefore, are only of academic interest to this study. It
is worthwhile, however, to assess the ability of the theory to predict
the optical properties of the alkali metals because we would expeet the
atomic model to be most applicable to these metals. We select sedium as
typical of the alkali metals and use the atomic parameters given in
Appendix I to compute the optical and thermal radiation properties,

The optical conductivity cf godium at room temperature is pre-
sented in Pigure 13. The theoretical values are in good agreement with
the experimental data of Hodgson (57) and slightly higher than the data
of Mayer and Heitel (B8) for wavelengths greater than about one micron.
At wavelengths less than one micren the data seem to indicate resonance

phenomenas that is, the energy of the field is sufficient to excite bound
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electrons in the 2p shell and interband transitions probably occur. A
theory which accounts only fér intraband free-electron transitions would
¥ield a straight line in Figure 13. 1In the present theory the shape of
the curves at short wavelengths is strongly influenced by the electron-
electron interaction term which we have chosen in Eq. (125). This im~
portant observation holds for each of the metals which we shall study
and will be discussed in more detail later in this chapter.

Hodgson (57} finds that the onset of interband transitions in
sodium occurs at a photon energy of 1.2 ev. This corresponds to a wave-
length of 1.03 microns and serves as an indication of the lower wave-
length limit of application of a theory restricted to intraband transi-
tions. The present theory, however, does exhibit structure at shorter
wavelengths, although not exasectly of the nature required for the inter-
band transitions,

The optical properties of sodium are shown in Figure 14. Unfor-
tunately, very little experimental data exist for wavelengths in the near
infrared. Theoretical values of the emissivity at room tempe?ature are
plotted in Figure 15. Because the alkali metals are not used as thermal
radiation surfaces, no experimental emissivity data are available. The
theoretical curve indicates the marked increase in emissivity at wave-

lengths less than one micron caused by quantum absorption.
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The Noble Metals

The noble metals have been the subject of more experimental and
theoretical optical studies than any other group of metals. They form
face-centered cubic (fee) lattice structures and, at ordinary and high
temperatures, are the best electrical conductors of all metals. The
FPermi surfaces of the noble metals are known to contact the first
Brillouin zone at the center of each hexagonal face., A review of the
optical properties and band structure of the noble metals has heen pre-
sented by Suffezynski (59).

The total electron damping coefficient, as well as its individual
components, are shown in Figure 16 for silver at room temperature. At
short wavelengths the electron-electron interaction term dominates whereas
for wavelengths sbove about 3 microns the electron-phonon and impurity
interaction terms become most important. As would be expected, the tofal
damping coefficient approaches a constant valuve in the far infrared. The
rapid increase of PT as wavelength decreases below about one micron
would indicate a region of strong absorption. This, of course, is ob~
served experimentally and is ususlly attributed to interband transitions.
In the present model it is a result of our formulation of the electron-
electron interaction. This might indicate a close relationship between
Gurzhi's expression for the electron-electron damping coefficient, Eq.
{125), and interband transition phenomena. The theoretical curves of

Figure 16 are compared with the experimental results of Beattie and
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Conn (60), who deduced a value of 7T = l/PT from cptical data over the
wavelength range of 2 to 12 microns, and Shklyarevskii and Padalka (61),
who used data from 1 to 12 microns. Hodgson (62) obtained a value very
near that of Shklyarevskii and Padalka.

The theoretical nature of the damping coefficient at high tempera-
tures is illustrated for silver at 1000°K in Piguwre 17. The electron-
phonon interaction term has assumed even greater importance as would be
expected because of the increased thermal activity of the lattice. How-
ever, the electron-electron term still dominates at short wavelengths,

As temperature increases the damping ccoefficient increases and the region
of strong absorption shifts to include longer wevelengths, One would
expect, therefore, that asbsorptivity {(or emissivity) would increase with
temperature as is indeed the case. The values of €, and T3 used to
obtain the thecretical damping coefficient were those deduced from the
experimental results of Padalka and Shklyarevskii (52) and given in
Appendix I,

The values of the optical constants n and k predicted by the
theory for silver at room temperature are compared with experimental data
in Figures 18 and 19, Agreement is generally very good. The theory pre-
dicts slightly low in the case of the index of refraction and even less
slightly high for the extinction coefficient at wavelengths sbove one

micron.
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The normsl monochromstic emissivity of silver at room temperature
is shown in Figure 20. Agreement between theoretical and experimental
values is good although difficult to evaluate quantitatively because of
the scatter of the measured data. FEhrenreich and Philipp (66} list the
threghold for interband transitions in silver as 3.9 ev which corresponds
to a wavelength of 0.32 microns. From Figure 20 it can be seen that this
is very near the wavelength below which the theory predicts emissivity
values smaller than the available experimental data. The variation of
the emissivity of silver with temperature, as predicted by the theory, is
shown in Figure 21.

The normal monochromatic emissivity of gold at room temperature is
shown in Figure 22. The experimental values of C, and T3 obtained
from the data of Padalka and Shklyarevskii (52) were used to compute the
theoretical emissivity values. The theoretical curve lies below most of
the experimental dﬁta. This was & general trend for the metals studied
and will be discussed later in this chapter. The infterband transition
threshold for gold is at about 2.4 ev or 0.52 microns. The theory, how-
ever, predicts reasonable values of the emissivity for even shorter wave-
lengths. Figure 23 shows the temperature dependence of the normal mono-
chromatic emissivity of gold. The only high-temperature data available
are those of Maki and Plyler {70} for wavelengths between 4 and 13 miecrons.

Copper is of particular interest among the noble metals., It is

lighter than silver or gold and, for this reason, has been the subject
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of more band structure studies. Considerable experimental data are
available concerning the electronic structure, optical properties and
thermal radiation properties of copper at room temperature. Nonetheless,
no data are available from which we can directly obtain the frequency-
and temperature-independent constants C, and TI';y as was the case for
silver and gold. Because their electronie structures are similar, we
would.. expect that values of Co and Iy for copper would be comparable
with those of silver and gold. As shown in Appendix I, however, the
values obtained from Ege. (128) and (130) are appreciably smaller in
both cases than the experimental results would indicate. We £ind that
if we use the computed values in the caleulation of the emissivity, the
theoretical values are smaller than the available data in all portions
of the spectrum.

The results of an investigation to determine the influence of the
‘constants Cg and I'{ on the theoretical values of the emissivity of
copper are shown in Figure 24, The lower curve, nurmbered 1, was obtained
using the values of Ce and Iy computed from Egs. {128) and (130) and
listed in Appendix I. The family of curves immediately above this, num-
bered 2 through 5, represent the same value of T; but different values
of C,. The curves labeled A and B represent adjustments of both Cg
and T; . The effect of an independent increase in Ce can be seen to
be a shift of the high absorption range to longer wavelengths; however,

the long wavelength values remain unaffected, This is reasonable when



Ic_ ) L | 3 i 1 f 1 ij g I r 1 1 ]
— AN COPPER, 295°K. C
s\ -Curve  Cg, sec” T, sec™ 13 [
\ 1 0.21x1012 0.6710,3 |-
4 \‘J 2 o.4oxlo}§ 0.67%1013 ||
3 0.60x10,2 0.6710]
— 4 1.00x10.2 0.67xml§ -
2 \ 5 1.50x10 0.67x10
A 2.0&10}% 2.00x?0]|g
Ol B 10.0x10 | 5.00x10" |-
LW Y -
LYY
;§~ \
>
i3 \
E N
Ll
9 [}
> N
Nh"‘E \ A
0.0l
0.001
0. 1.0 0 00

114

Wavelength, microns

Figure 24. The Predicted Effect of Co and 1"1 on the Monochromatic

Emissivity of Copper at Room Temperature



115

one considers the influence of the electron-electron interaction model

on the damping coefficient as shown for silver in Figure 16. When Ce

is increased the electron-electron damping ccefficient increases. At
short wavelengths this results in an increase in absorption. However,

at longer wavelengths where [g << [' a change in C, does not appre-
ciably influence the total damping coefficient. Conversely, becauge of
the reiative magnitudes of the electron-phonon and impurity damping terms,
an increase in [{ causes an increase in absorption except in that part
of the spectrum where T >>T; .

It is reasonable to expect that, if the values of C, and Tj
obtained for silver and gold from the data of Padalka and Shklyarevskii
(52) are reasonably accurate, then the corresponding values for copper
(and other metals) should be greater than those computed from Fqs. (128)
and (130). It is also interesting to compare the influence of 'y on
the emisgivity with the effect of surface roughness. An inerease in
surface roughness generally causes an increase in the infrared emissivity.
This is related to the irregularities in the metal at the surface which
might also be regarded as a scurce of stationary imperfections which con-
tribute to T; . The value of the impurity damping coefficient obtained
from Eq, (130) represents a bulk metal parameter because it is based on
the residual resistivity. It does not, therefore, inelude the subsurface
imperfections created by surface irregularities or methods of specimen

preparation. Such effects would tend to increase the value of [y .
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The normsl monochromatic emissivity of copper at room temperature
is plotted in Figure 25. The theoretical curve is for C_ = 2013 gee,-1
and T; = 5 x 1015 gec.-1. The threshold for interband transitions in
copper is 2.1 ev or 0,59 microns. This is very near the point where the
theoretical curve in Figure 25 falls below the experimental data although
the theory also predicts reasonably accurate values of emissivity at

shorter wavelengths. The variation of the emisgivity of copper with

temperature is shown in Figure 26.

Alumirum

The.thermal radiation properties of aluminum are of interest be-
cause aluminum is important as an engineering structural material and
finds considerable use in thermal radiation systems. Its electronic
structure has been studied by Ehrenreich, Phillip and Segal (74) who
found that the most significant structure in the dielectric constant
occurs at about l.SIev (0.83 microns) and that no appreciable structure
is observed at higher energies. The data presently available indicate
that the general topology of the Fermi surface of aluminum closely ap-
proximates that of the free-electron sphere, perhaps even more so than
some of the noble metals (39).

Figure 27 shows the normal monochromatic emissivity of aluminum

1

at room temperature.  Values of C, = 7.5 x 1012 sec.”l and Ty =

2 x 1013 sec.':L were used to obtain the theoretical curve. The structure



117

1.0 =
%% COPPER, 295°K
7. Y4 0 Edwards and deVolo(22)
DA A Bloom(71)
] ® Betz, et al.(72)
_ O Eq.(24), n and k data from Ref.{61)
A\ —-— Seban(73): A-not preheated
¢
5\ B-preheated 3 hrs, at $20°K
Present theory: C_ = 1013 sec-1
\e -
\ i = 510 "sec
Ol O —
AN,
S A\
R
= Q M\X
"E ] o ._:o “\
g T R0 9P
Zo lﬂl{h A
ool a
\""\.B
0.00!
o1 10 10 100

Wavelength, microns

Figure 25. Monochromatic Emissivity of Copper at Room Temperature



118

10 rvi
N
N\
0
0.l

2

:E " . o=

2 T |200°K
E _____“;t: y ‘::'lCII’E(
F etk
S

Z

0.0l

COPPER
O Price(78) 1174°K
O Betz, et al.(72) 1100°K
- == Seban(73) 1240°K
—— Present theory
0,001
ol 10 0 100

Wavelength, microns

Figure 26. Monochromatic Emissivity of Copper as a Function of
Temperature



1.0

119

i

> 723
2
a N
—— - A
"E V O
— Ty
: el
5 01
Z ook
00! _
— ALUMINUM, 295°K
0 Edwards and deVolo(22)
——| O Boettcher(75)
—| & Twidle{74)
| @ Hass, et al (77) 12
—— Present theory: Co = 7,5x10
T¥ = 2.0¢1013
0001 |
O 1.0 0

Wavelength, microns

Figure 27. Monochromatic Emissivity of Aluminum at Room Temperature



120

observed in the dielectric constant at 1.5 ev due to interband transi-
tions 1s also observed in the experimental emissivity data. The theory,
of course, cennot duplicate the resulting region of high absorptivity
which occurs over a relatively narrow wavelength band. The normal mono-
chromatic emigsivity of aluminum at different temperatures is shown in

Figure 28.

Nickel

The transition metals are characterized by the fact that both
d-band and s-band electrons can occupy states at the Fermi level. The
resulting electronic structure is complex and band structure calculations
are complicated. We would not expect, therefore, that the simple model
employed in the present theory would provide very reliable correlation
of thermal radiation property data for the transition metals. However,
experiments show that the monochromatic émissivity of the transition
metals d&iffers from fhat of the noble metals, for example, by the fact
that the region of high absorption begins at longer wavelengths. This
same shift occurs in the computed values if the constant C, 1is in-
creased. Thus one might anticipate improved theoretical correlation in
the case of the transition metals if sufficlently large values of Cg

are used.
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The normal monochromatic emissivity of nickel at room temperature
is plotted in Figure 29. Reasonably good correlation between experi-
mental and theoretical values for wavelengths above about one micron is
obtained for an electron-electron interaction constant of Cg = 8 x 1015
sec;"l. This is somewhat higher than the values used for the monovalent
and multivalent metals, as would be expected. The free-electron plasmon
energy, 8.3 ev, was used in the theory and the electron veloclty of the
Fermi level was assumed to be that of the s-state electrons (vp/e = 0.0033,
see Appendix I). Ehrenreich, Phillip and Olechna {80) have observed
structure in the dispersion of the dielectric constant at photon energies
of 0.3 and 1.4 ev which corresponds to 4.1 and 0,9 microns, respectively.
The low energy transition appears to coincide with the beginning of the
region of high absorption. The second structﬁre at 0.9 microns is also
observed in fhe experimental emissivity data but, of course, is not pre-
dicted by the theory. This high energy structure appears in the cage of
the cother transition metals also as is evident from the data of Edwards
snd DeVolo (Qé) for chromium, molybdenum, platinum, tungsten and vanadium.

The variation of the normal monochromatic emissivity of nickel

with temperature is shown in Figure 30. The theoretical curve for 1400°K

lies between the two sets of data obtained by Seban (23) (73).
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Digeussion of the Theory

| The analysis of the thermsl radiation properties of metals pre-
sented in this thegis represents an aﬁtempt to utilize several concephs
and analytical methods of so0lid state physics to formulate a theory
which is useful in the engineering sciences. A limited number of in-
vestigations have been reported in the literature ﬁhich were directed
toward the study of quantum absgorption phenomens in metals. HNotable
among these iz the work of Gurzhi (81) (82) who derived a quantum-mechan-
ical form of the Boltzmann transport equation for electrons in A metal
subjected to an electromagnetic field. Gurzhi's analysis was concerned
mainly with absorption:at low temperatures bu£ presents an example of an
approach somewhat different from that used herein. Unfortunately, these
studies, including the work of Gurzhi, do not yield relations which can
be re#dily interpreted in an engineering sense. The presgent theory pro-
vides a nunber of interesting insights into the fundamental physical proc-
esses which give rise to the thermal radiation properties. |

The principal analytical objective of the theory is to provide a

means to compute the electron damping coefficient which serves as & quan-
titafive meagure of the ability of_a metal to abso;% thermal radiation.
The radiation field expends energy by exciting the conduction electrons.

But the electronic motion is damped by interaction with the other atomic

constituents of the metal. The damping provides & mechanism by which
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energy is transferred from the electrons to the lattice structure. Hence,
the metal absorbs energy and its temperature rises. The conduction elec-
trons alsc abscrb energy from the 1at£ice and emit energy intoc the radia-
tion field. At thermal equilibrium these mechanisms are balanced and
the metal maintains a constant temperature. For these reascns the demp-
ing coefficient is perhaps the most interesting pﬁrameter of the theory.
Experimental measurements show that as the wavelength of the mono-
chromatic radiation field is decreased from the far infrared, the emis-
givity of a metal increases gradually until a wavelength region in the
near infrared or visible part_of the spectrum_is reached at which the
emisgivity increases markedly to a value nearlunity in the near ultra-
violet., This rapid increase in emissivity is attributed to the onset of
guantum abso;ption. It can occur only when the photon energy is suffi-
cient.to induce quantum transitions between electronic states in the
metal., According to the model used in the present theoretical deﬁelop-
ment, the electron transitions are a result of simultaneous electron-
photon and electron-phonon processes. A second-order perturbation
analysis of such transitions yields a parametric grouping which can be
intérpreted as an electron-phonon_damping coefficient. To this are
added a term to aecounﬁ for the effects of interelectronic collisions and
a2 constant term to acecount for the presence of impurities and stationary

imperfections.
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If the only mechanismg considered in the atomic model are the
electron-photon and electron-pheonon interactions, we find that the damp-
ing coefficient ' is nearly independent of frequency as shown in Figure
11. However, it is influenced by temperature as would be expscted from
the fact that the phonon dispersion is a measure of the thermal energy
of the lattice. The electron-phonon damping ccefficient is the dominant
damping term in the far infrared portion of the spectrum as shown for
gilver in Figure 16. Thus, in the far infrared, even if the electron-
electron term is ineluded in the model, the total electron damping coef-
ficient is nearly frequency independent. This explains the utility of
the simple Drude theary at long wavelengths. The Drude theory treats the
gamping coefficient as a phenomenological constant and relates it neither
to frequency nor temperature. The empirical coefficients determined in
the application of the Drude theory undoubtedly contain some contribution
of impurity damping.

The relations developed in the present theory would be useful
even 1f the model were restricted to the electron-phoncn Process and the
application restricted to the far infrared because the theory gives the
temperature-dependence of the electron—phoﬁon damping coefficient. If
Eq. (122) was used to determine the damping coefficient, the theory would
provide a means cof computing the monochromatic thermal radiation prop-

erties as a function of temperature at wavelengths above about 5 microns
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for the monovalent metals. The inclugion of the electron-electron term
extends the applicatlon of the thegry to shérter wavelengths and to metels
with more complex electronic structures.

The theory based on the electron-phonon interaction only is suffi-
cient to prediet the region of quantum absorption. However, even in the
case of the monovalent metals, it appears necessary to include the elec-
tron-electron term in order to properly locate this region in the spee-
trum. If only the eleetron-phonon theory is used, the calculated emig-
sivity values are less than experimental data although the shape of the
curve is correct. The influence of the electron-electron interaction
term is to shift the quantum absorption region to longer wavelengths.

It thus becomes particularly influential in the correlation of the emis-
sivity of the transition metals which is larger at longer wavelengths
than that of the monovalent metals.

As was mentioned previously, the effect of the impurity damping
term is apprecisble only in the infrared where an increase in [y causes
an increase in emissivity. It is interesting to relate this ohservation
with the fact that an increase in surface roughness or a degradation of

" surface condition also causes an increase in emissivity. It is not
unreasonable to interpre£ this as.representing a relationship between
what we have described as damping caused by stetionary imperfections and
what 1s regarded in experimental stu@ies as a deviation from optically

smooth surfaces. Perhaps if high purity specimens with extremely smocth



129

surfaces could be prepared, we would find that the experimental data
would correlate more nearly with the values of [y obtained from Eq.
(130).

The theory provides a means of obtaining reasonably accurate cal-
culéted emissivity values at much shorter wavelengths than is possible
with the Hagen-Rubens formula. Furthermore, it jields the temperature
dependence which cannot be explained by the Drude theory. Correlation
is possible even at wavelengths below the interband transition threshold.
This can be attributed largely to the inclusion of the electron-electron
term which is propeortional to the square of the angulaf frequency. A
discugsion of the posgible connections between interelectronic damping
and interband transitions, however, is beyond the scope of this research.

Accurate correlation requires the selectién of two temperature-
and frequency-independent constants: the electron-electron collision
constant and the impurity damping coefficient. Although these constants
have some basis in the physical model; the most satisfactory results are
obtained if they are determined by matching the theory to an experimental
point. Ewven so, this represents a considerable improvement over the

Drude-Roberts thecry which requires the empirical determination of many

arbitrary constants at each temperature. Furthermore, the constants in
the present theory can be traced to their role in the electron inter-

actions whereas the Drude-Roberts constants have no relation to an atomie
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model. Once Cp and Ty have been determined at a specific frequency
and temperature the values are applicable at all cther frequencies and
temperatures for which the theory is valid.

The temperature dependency of the emissivity is correctly pre~
dicted by the theory although it is difficult to assess the accuracy of
the calculated values at high temperatures because of the lack of precise
high;temperature enittance measurements. The theory correctly indicates
that the temperature coefficient of emissivity is positive in the far
infrared and decreamses to near zero at some point in the visible or near
infrared depending on the particular metal. However, thé transition to
very small negative temperature coefficients Qt even shorter wavelengths,
which is observed with some metals, {the x-poinf) is not theoretically
predicted. This would indicate that the x-point ié the result of some
phencmena not included in the atomic medel; for example, the effects of
bound electrens which are excited in the ultraviolet.

The quantum absorption region obéerved in the experimental emit-
tance data of the monovalent metals and predicted by the theory coin-
cides with the interband transition threshold which is determined by
measﬁrement of the dielectric constant. In the case of the multivalent
and transition metals, the experimental data exhibit more dispersion
strﬁcture but can also be correlated with the multiple interband thres-
holds. Therefore, if precise emittance measurements are éoupled with

the information provided by the theory, it should be possible to study
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many cf the microcharacteristics of metals. _For example, if the theory
is fitted to normal moncchromatic emittance data, the various components
of the total electron damping coefficient can be determined.

The wavelength region in which the theory appears to be valid
for the metals gtudied includes the near infrared and, in some cases,
part of the visible region as well as the far infrared. In the case of
copper, for example, good agreement between experimental and theoretical
emissivity values is obtained for wavelengths as short as 0.6 microns.
For a copper surface at a temperature near the melting point (1356°K),
the radiant power_emitted in the wavelength region above.O.G microns is
mere than 99.99 per ceft of tﬁe total radiant:power emitted by the sur-
face. On the other hand, the same surface at the same temperature emits
only 14 per cent of its total radiant power at wavélengths above & microns,
the génerally-accepted lower limit of the Hagen-Rubens formmla. Thus,
the theory provides analytical access to a wavelength region which is of
considerable importance to thermal radiation analysis but which is out-

side the region of applicability of the simple classical theory.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATTONS

Engineering studies of the thermsl rsdiation properties of solids
have rarely given more than passing referenée to the basic fact that
absorption and emission are gquantum phenomena, The engineer is usually
satisfied with experimental data and phenomenological investigations,
Hopefully, the research deseribed in this thesis indicates that useful
and interesting results can be cobtained by the application of elementary
quantum concepts to the theoretical study of the thermal radiation prop-
erties of metals.

The following coneclusions result from the study reported herein:

1. The theoretical relations which result from an analysis of
the second-order processes involving electron-photon and electron-phonon
interactions predict the existence of the experimentally-observed region
of gquantum absorption_in metals.

2. The electron~electron interaction, as expressed by Gurzhi's
relation, is important as an sbsorption mechanism in the visible and near
infrared parts of the spectrum for mefals at room temperature and above.

3. The impurity interaciion can be treated asz a constant addi-

tion to the total electron damping coefficient and can be important at
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long wavelengths and mederate temperatures. At high temperatures its
influence is diminished by the increased significance of the electron-
phonon interaction.

4. The location of the region of quantum absorption in the spec-
trum iz influenced by the value of a temperature- and freguency-indepen-—
dent constant, C, , assoclated with the electron-electron interaction.
The value of this constant increases with the complexity of the elec-
tronic structure of the metal.

5. The region of quantum absorption predicted by the theory cccurs
at frequencies which correspond with the threshold for interband transi-
tions, This suggests & possible connection between the model used for
electron-electron processes and interband transition phencmena.

6. With the proper selection of two constants, the theory can be
used to correlate the normal monochromatic emissivity of not only the
noble metals but also the transiticn metals, although not all details
of the latfer are predicted.

7. The theory suggests that the following mechanisms account for
the absorption vhenomena cbserved in metals at various parts of the spec-
trum: At short wavelengths the electron-electron interaction is the
dominant absorption mechanism, This is the indication even at high tem-
peratures, although the importance of the electron-phoncn process in-

creases as the temperature increases. The wavelength below which the
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electron-electron process is dominant depends on the particular metal

but usually lies in the visible or near infrared. At longe; wavelengths
the electron-phonon mechanism is dominant and is nearly independent of
frequency, which explains the fact that application of the Drude free-
electron theory is limited to the far infrared. The impurity interaction
contributes to absorption in the far infrared but is usually appreciably
less important than the electron-phonon process.

8. The relations which result from the theory provide an explicit
formulation for both the frequency and temperature dependence of the
normal emissivity. MNeither the classical Drude theory nor the empirical
Drude-Roberts theory provide the temperature dependence.

9. The thecry significantly extends the wavelength range over
which theoretical emissivity values can be obtained. The Hagen-Rubens
formula is accurate only for wavelengths greater than about six-to-ten
nicrons whereas thé présent theory provides adequate correlation at wave-
lengths in the visible spectrum for some metals. This extended range
encompasses a part of the spectrum which is very important in high-tem-
perature thermal radiation analysis.

10, The theory does not predict the short-wavelength x-point
observed in the case of some transition metals. This suggests that the
x-point is a result of some phenomena not included in the theoretical

model, perhaps the high-freguency excitation of core electrons. The
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theory does, however, indicate that the temperature cocefficient of emis-
sivity becomes vanishingly small as the wavelength is decreased,

11. The theory is sufficiently simple that it could be easily
used in the routine correlation of emissivity data. An analysis of
experimental thermal radiation property data within the framework of the
theory indiecates that the data reveal many features usually studied only
in mofe sophisticated investigations of optical properties,.

The results of this study indicate that several areas of closely-
related research deserve attention in the future. Specific recommenda-
tions inelnde:

1. There continues to be a need for precise experimental messure-
ments of the emittance of engineering sclids, particularly at high tem-
peratures. Very little high temperature data is available even for the
common metallic elements. The development of experimental metheds for
the precise measurement of the monochromatic emittance or reflectance of
carefully prepared specimens at temperatures to 2500° X or sbove would
contribute considerably te our understanding of these important thermo-
physical properties. The present theory might assist in the evaluation
cf the accuracy of such measurements.

2. The theory can be easily extended to provide the capability
of calculating total normal emissivity as a function of temperature.
This merely requires integration of the monochromatic values over wave-

length,



136

5. Additional theoretical effort is required to obtain an under-
standing of the high-frequency contributions of interband transitions to
the absorptivity of Jﬁetals. Such study would be particularly useful in
the theoretical study of the properties of the transition metals, Avail-
able evidence (36) on the electron specific heat of transition metals
indicates that the s-wd transitions are the most important interband
transitions.

4, The role of the Umklapp process in absorption phenomena in
metals is worthy of more study than it has received in the present in-
vestigation, although this might be beyond the sophistication required
in an engineering analysis, U-processes would be expected to influence
both electron-electron and electron-phonon interactions.

5. A study of the degree to which the core electrons sre influ-
enced by & thermal radiation field might contribute to a theoretical
understanding of tﬁe sﬁé.ll negative temperature coefficient of emissivity
observed at very short wavelengths for some metals. |

6. The theory does not treat metallic alloys or conductive re-
fractory compounds which are important in many thermal radiation systems.
Additional effort in this area is warranted.

The study reported in this thesis, while representing only ean
initisl approach toward an improved theoretical understanding of sbsorp-
tion phenomena in metals, demonstrates that quantum concepts and analyt-

ical methods can be used to advantage in & simplified analysis without
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involving complications which reduce the engineering utility of the
analysis. As is the case with most research, this study has generated
a number of questions which deserve further investigations. There appear
to be many potentially fruitful avenues along which to direct further
studies. The situation encountered is somewhat analogous to that facing
Alice when lewis Carroll wrote:

"Which way ought I to go to get from here?"

"That depends a good deal on where you want to get to,”" said the Cat.

"I don't much care where-" said Alice.

"Then it doesn't much matter which way you go," said the Cat.

"--80 long as I get somewhere,” Alice added as an explanaticn.

"Oh, you're sure to do that," said the Cat, "if you only walk long
encugh."
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APPENDIX I
ATOMIC CHARACTERISTICS OF METALS

The theoretical prediction of the thermal radiation properties of
metals requires the use of several atomic parameters which characterize
the electronic structure of a particular metal., Except for the alkali
and noble metals, the required data are difficult to obtain. Values of
the Fermi energy and the electron velocity at the Fermi level, for ex-
ample, are usually defined in terms of the free electron structure. If
interband transitions occur, different values of Ep and Vp are nec-
essary to characterize the various transitions. In order to carry out
caleulations of the optical and thermal radiation properties utilizing
the theory developed in this thesis, it is necessary to have available
values for the following atomic properties:

1. The Debye temperature - The characteristic Debye temperature
can be determined from either specific heat or electrical resistivity
measurements. For most metals the value cbtained from specific heat
data, GD , is not exactly the same as that obtained from resistivity
data BR . Because our use of the Debye temperature 1s closely related
to its use in resistivity theory, we are interested in values of BR .

Both GD and QR are tesbulated in Table I-1. The values are those

compiled by Meaden {(54).
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2. The de resistivity - The dec conduetivity (or its reciprocal,
the de resistivity) is required in Eq. (123) to obtain values of the
atomic constant C, . The functions « and Fg {¢) are evaluated at
273.15°K for use in Egq. (123); hence, we require the de resistivity at
that temperature. The data compiled by Meaden (54) are listed in Table
I-1.

3. The volume plasmon energy'- The plasma frequency mp iz re-
guired at several points in the theory. BExperimental data of electron
plasmea oscillations are usually reported in terms of the plasmon energy
'Iinp . The plasmon is the quantum excitation representing the quantized
plasma oscillations (33). It is analogous to the phonon which represents
the quantized lattice vibrations. Values of the plasmon energy, as re-
ported by several authors, are listed in Table I-1. |

4. The number of conduction electrons per unit volume - The
electron-electron atomic constant, given by Eq. (128), is a function of
several atomic parameters including the number of conduction electrons
per unit volume N. The values of N given in Table I-1 are mostly those
used by Dingle (53) in his analysis of reflectivity.

5, The Fermi energy - The electron kinetic energy at the Fermi
level, E, , also enters into the approximate evaluation of Ce in Eq.
(128). The values in Table I-1 for Na, Cu, Ag and Au are those reported
by Kittel (9). That for Al is from Pines (33) and the free-electron

value for Ni is from Ehrenreich (86).
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6. Electron velocity at the Fermi level - The velocity of an
electron at the Fermi level, vy , is required to estimate C. in Eq.
(128) and to estimate the skin absorption from Eq. (132). Values of
ve/e are listed in Table I-L.

7. Residmal resistivity - The influence of impurity intersactions
is estimated from the residual resistivity po . Calculation of the
approximete impurity damping coefficient using Eq. {130) requires values
of both the residual resistivity and the plasma frequency. The values
of p, listed in Table I-1 are those compiled by Meaden (54).

The values of €, given in Table I-1 were computed using Eq.
(123) and the atomic constants given in the table. The values of Ce
and Ty were computed from Egs. (128} and (130), respectively, with the
exception of the values for Ag and Au which were taken from the experi-
mental results of Padalka and Shklyarevskii (52). If Eqs. (128) and (130)
are used to calculate Co and T3 for Ag and Au, the results are appre-
ciably smaller than the available data. For both metals the computed
values are Co = 0.08 x 102 and Ty = 0.02 x 10%° . The influence of
stationary imperfections would be expected to differ considerably de-
pending on the purity of the specimen and the menner in which it was
prepared. Surface imperfections would also have a greater effect on

optical measurements, such as those of Padalka and Shklyarewvskii, than

cn bulk measurements of residual resistivity. 8Since the theory deals



142

with the optical phenomena, the larger measured values of Ty are un-
doubtedly more applicable than the computed values.

The discrepancy between the.measured and computed values of C,
might be attributed to an underestimstion of the electron-electron col-
lision cross-section., As pointed out in the text, improved agreement
with experimental data is obtained if values of C_, are used which are
more in agreement with the values of Padalka and Shklyarevskii. Unfor-
tunately, very little experimental information is available regarding
the electron-electron processes in the other metals. The present theory

affords one means of cobtaining such data.
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APPENDIX IT
PERTINENT CONCEPTS OF QUANTUM MECHANICS

This appendix presents a brief ocutline of the elementary concepts
of quantum mechanics asg they apply to the subject matter of the thesis.
It is intended to serve as a guide to the basic literature for the reader

who ig unfamiliar with the concepts and application of quantum theory.

The Basic Postulates of Quantum Theory

Quantum mechanics can be regarded as the system of dynamics which
attempts to describe fundamental atomic phencomens. Many useful guantum-
mechanical relations can be obtained by analyzing a physical system from
the viewpoint of classical mechanics and then applying the fundamental
postulates of the gquantum theory. The most general physical system con-
sists of a group of particles which can interact with each other and re-
spond to external forces. The dynamics of such & system is described

in classical mechanics by Hamilton'’s equations of motion,

i3y, %P3y )
dt das 3t Apj

where the q; are the coordimates which specify the location of each
particle in space and the p; represent the momenta of the particles.

The function Y is the classical Hamiltonian and is & representation of
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the total energy of the system (87). According to classical mechanics,
the exact state of a system at a future time can be determined by the
golution of the Hamilton equations subject to a known set of initial con-
ditions. That is, if the coordinates and momenta of each particle are
known for some initial time, all dynamic variables of the system can be
calculated exactly for some future time. One of the basic concepts of
quantum mechanics is that such a precise specification of the state of a
system is impossible. The Heisenberg uncertainty principle of quantum
theory asserts that two conjugate variables cannot both be determined
with arbitrary precision. The product of the uncertainties of the x-
coordinate and x-component of momentum, for example, must obey the in-

equality
Ax Bpy = A (2)

where 4 = h/2n = 1,054206 x 10-27 erg-sec, Therefore, the specifica-
tion of the state of a system is, according to quantum theory, treated
in terms of probabilities. We have the following basic postulates:
Postulate 1. The probability P(qi,t) that a system will be
found with coordinates between q; and g + dq; at time t 1is given

in terms of a complex state function ¥{q;,t) ,
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P(q;,t)dagdap- - -day = ¥¥(q3,5)¥(q;,t)dq9d00- - +day

where the asterisk denotes the complex conjugate. The state function

is usually normalized such that

f‘i’*‘fd'r =1

where 4t denotes an element of configuration space.

Postulate 2. For every obgervable dynamic variable of a system
there is associated a corresponding linear hermetian operator '% . The
value of the observable & obtained by a measurement on a system which
is in a state described by state function Y is given by the expectation

value of the corresponding operator

<§> =fY*ngT

The expectation value is a real number because of the hermetian property

of the operator,

f‘i’*g‘l'd-r = f‘l‘(g‘f)*d'r
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Postulate 3. The function ¥(q;,t) represents a solution of the

time-dependent Schroedinger equation

o
Y = ih s (3)

a
where H is the quantum-mechanical Hamiltonian operator. The operator
iz obtained by determining the classical Hemiltonian of the system and

replacing each dynamic varisble by its corresponding guantum-mechanical

operator.

If the Hamiltonian ocperator does not explicitly depend on time,

the state function can be separsated

¥(r,t) = u(F)r(t)
Then

£(t) = CeiEt/ﬁ

and the function u(?) mst satisfy the time-independent Schroedinger

equation

flu = Eu | (4)
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This is an eigenvalue equation and the eigenvalue E 1is the energy of
the system. Because the energy dogs not depend on time (the energy ex-
pectation value is equal to the eigenvalue), the system is said to be in
a stationary state.

Consider two eigenfunctions u, and uy which are solutions of
Suy = Splpy 3 éhk1= Spun

Then

f[u;gum-um(gun)*] dr = (sm-'-sn)fu:tlmd'r =0

where the last equality is a result of the hermetian property of the quan-
tum operatof. Hence, either S;=Sy » in which cage the eigenvalues are
said to be degeneréte,-of u;umdt = 0 , that is, the eigenfunctions are
orthogonal. In the degenerate case it is always possible to select linear
combinations of the éigenfunctions that are mutually orthogonal. We there-
fore have the important result that the total set of eigenfunctions of a
quantum cperator 8 forms a complete orthogonal set. Furthermore, any
wave function Y which represents a solution of the Schroedinger equa-
tion can be expressed as a linear combination of the eigenfunctions of

the orthogaonsal sef,
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-]
! =Z 254

J=o_

The expectation value corresponding to the operator @ for the state

with wave funetion Y is

f y*8¥qt = Z a.i’;aksk
k=0

If the system is in state Y and we measure the variable s , the mea-
surement will yield one of the eigenvalues sj . The probability that
the measured value is a particular eigenvalue sy is proportional to

aia.k = |ak|2 . The matrix element of @ which comnects two states m

and n 1ig defined as

[an <t o )

The basic concepts of quantum mechanics are discussed in many
elementary texts such as Dirac (88), Eyring, Walter and Kinball (89),

Schiff (31) and Slater (34).
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Stationary Perturbation Theory

Most problems of physical interest are sufficiently complex that
exact solutions of the Schroedingef equatioﬁ cannot be obtained. It is
then necessary to utilize approximate methcds. One of the most useful
techniques is perturbation theory in which a small disturbance applied
to the system is treated ag a perturbation of the Hamiltonian. We con-
sider first the thecry as applied to the approximate solution of the tiwe-
independent Schroedinger equation. We assume that the Hamiltonian can
be expressed ag. the sum of two parts: the zero-order, or umperturbed,
Hamiltonian H° and a perturbation term H' . The zero-order term is

selected such that the eigenvalue equation
Hjoun = Enun

is satisfied by known eigenvalues and eigenfunctions. We assume that

H! represents-a small perturbation and write
H=H + \g'

where A is a parameter which is set equal to unity in the final resuit.

The energy level and wave function are written
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= y(0) & 3¥(1) 3 32¢(2) &+ ...

=4
1

b3
1

= E(O) + KE(]‘) + keE(Q) 4 v

and substituted into the time-independent Schroedinger equation. EREquating
coefficients of equal powers of X we find that Y¥{0) = v, and g{o)
=Ep .

The first-order perturbation is obtained by expanding ?(1) in

terms of the u, ,

y(1) - z 5‘1(11)“1:

n

The expansion coefficients are found to be (31)

1) - Pin
a}i ) Em-Ei (&)

where

H'yp = uiﬁ'ude (1)
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Time-Dependent Perturbation Theory

The problem of concern in this thesis involves a sclution of the
time-dependent Schrdedinger equation. In this case perturbation thecry

also involves the assumption that the Hamiltonian ig the sum of two parts
H=H° +H' (8)

and that the eigenfunctions and eigenvalues of

Houp = Epuy

are known. Now, however, we proceed by expanding the wave function in

terms of the eigenfunctions u.ne'iEnt/ﬁ

¥ = :E:an(t)une—iﬂnt/h (9)

n

where the expansicn coefficients are fungtions of time. They are deter-
mined by substituting Eq. {9) into the Schroedinger equation, multiplying
on ﬁhe left by u; N integratihg over configuration space and notiﬁg the
orthonormal prqperties of the eigenfunctions. We find that the time-rate-

of change of the expansion coefficients is given by (31)
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10 - 1 l i
a'IE'. ) =03 alg‘-pd- ‘ = E H'knar(lp)ewknt s> P =0,1,2,-++ (10)
n
where
E, -E
k
®kn T T4 - (11)

If the system is known to be in & particular state w, before the

perturbation H' is applied at t=o , then aﬁo) = &, and

t
aél)(t) = %Eij. H'kn(t)eiwkntdt (12)

Several simplifications are possible if the perturbation Hamiltonian is
independent of time eicept tec be initiated at time t=0 and terminated
at some later time t=t' . However, such is not the case for the prob-
lem investigated iﬁ this thesis.

Perturbation theory is discussed in detail by Schiff (31) and
Eyring, Walter and Kimball (89). Its application to radiation problems

is treated by Heitler (47).
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APPENDIX ITI
THE UMKLAPP PROCESS

i
When an electron undergoes a transition from state k to state
E‘ by the absorpticn or emission of a phonon of wave vector 'H , momen-

tum is c¢onserved if

-
k-k'tg = @ (1)
ol . . . e -
where G 1is a vector in the reciprocal lattice., If a, b and ¢ are
the primitive axes of the crystal lattice (9), then the reciprocal lat-

tice is defined by the fundamental vectors

= ¢
|

w
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Then a vecior in the reciprocal lattice is defined as

- 2

G =4A =B + nC (2)

where £ , m and n are integers.

In the process deseribed by Eq. (1) there are two distinct c;ses.
First; if .§.= 0  the electron-phonon interaction is referred to as a
normal process, or N-process. In this case the final total wave vector
-}:’IE must equal the initial ;electron wave vector _l: . If a phonoﬁ is
created (EQE’¥€ = 0) the momentum of the electron is reduced by the
amount ﬁa . If a phonon is absorbed (E;E'-E'= 0) the electron momentum
is increased by TET. Because the ghonon energy is usually much smaller
than the electron energy, an electron in an initial state near the Fermi
surface will be scabtered to another state near the Fermi surface as
illustrated in Figure IITI-1.

The other scatbering process, for which E'# 0 , is termed the
Umklapp process, or U-process. Before discussing this type of electron-
phonon interaction it is helpful to recall the concept of a Brillouin
zone (9). From the study of x-ray propagation in crystals it is known
that there are certain wave vectors (that is, certain wavelengths and
propagation directions) for which the x-rays satisfy the Bragg relation
and total reflection occurs. Because of the concept of wave-particle

duality, the same conditions prevail for the propagation of electrons
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through a crystal. For certain values of the electron wave vector ];,
Bragg reflection occurs and there exists g discontinuity in the allowed
eléctron energy. The boundaries iﬁ k-space within which the electrons
- have allowed wave vectors are the Brillouin zones. They are concentrice
about the k-space origin and correspond to allowed energy bands. The
first Brillouin zone is formed by constructing planes normal to the re-
‘eiprocal lattice vectors at their mid-point when the vectors originate
at the origin in k-space.

| In the Umklapp process an electron is scattered by = phonon and
also undergoes a Bragg reflection at the boundary of the Brillouin zone
as shown in Figure IIT-2. An electron initially in state 3: interacts
with a phonon of wave vector E resulting in the electron state "fc-'
indicated by the vector PI which terminates near the Fermi surface. The
wave vector E‘ is displaced by the reciprocal lattice vector E. to
the final state represented by OF. The Unmklapp process can alsc ocowr
in the electron-electron interaction (39).

Very little information, either quantitative or qualitative, is
available concerning the effect of the Unklapp process on absorpiion
phenomena., Tt is generally thought that they may be imﬁortant especinlly
at high éemperatures where the phonon energy can become appreciﬁble.
Gurzhi (50) concludes that no electron-electron interactions occur unless

the Umklapp process is present. It is therefore possible that our quali-

tative inclusion of an electron-electron interaction term includes some
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2

Figure IIT-1l. Normal Scattering of an Electron on a Spheriesl
Fermi Surfasce in a Cublic Lattice

Figure III-2., Umklapp Scattering of an Electron on a Spherical
Fermi Surface in a Cubic Lattice
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allowance for the Umklapp process. The reader is urged to consult Ziman

.. (38) and Kittel (9) for further discussion of this phenomenon.
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APPENDIX IV
MATHEMATICAL CONSIDERATIONS

The absorpiion and emission of thermal radiation by a metal in-
volves the interactions between the conduction electrons and the photons
which represent the external field and between the electronsg and the
phonons which represent the thermal vibrations of the lattice. In order
to obtain an expression for the net amount of energy absorbed by the
metal it is necessary to determine the probability that the electron
undergoes a transition which involves the absorption or emission of a
photon. This requires a solution of the Schroedinger equation for an
electron subjected to the perturbing inflﬁences of the extermal electro-
magnetic field and the lattice potential. This appendix presents the
mathematical considerations invelved in obtaining an approximate solu-
tion of the Schroedinger equation and utilizing the solution to determine
energy expenditure of the thermal radiation field. The analysis leads

to the theoretical equations presented in Chapter ITI.

The Perturbation Hamiltonians

According tc the model of the atomic system outlined in Chapter

T1T, the conduction electrons are subjected to perturbations described
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by four Hamiltonian operators. The first~order perturbation Hamiltonians
are:
— -,
1. Photon absorption (k—=k + p):
i
heR

-
H,l = '_TO el P-I‘-U.)t)_a (1)
2m w

i e =
2. Photon emission (k-=k - p):

=~

hek,
H', =

e omtw

ei(5~¥-wt) ‘A (2)

O S
3. Phonon absorption (k—=X + q):

q .

=
4. Phonon emission (k—k - q):

1/2 L -
'y = -8 Z(enzw ) AT & H o) )
q
q

The elements of the transition matrix are defined as

H'mn =fU;H'und" (5)
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where the integration is over configuration space and the normalized

electron eigenfunctions are

(8)

The Bohr freguency relating the energy of an initial state n to that

of a final state m is

m -
,
b = (7)

First-0rder Transitions

The dynamic equation of the first order perfurbation expansion

coefficients is (31)

aa(l) .
m - _ é(l) = l_ ZHrmaI(]O)elwmnt (B)
at m in
n
The zero-order coefficients are taksn to be a’r(10) = 6mn . There are four

possible first-order transitions.
Case I (})C—;}Z +$):

The transition matrix element for the absorption of a photon is
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e ‘he-ff . (4-+ 0) -
Hropx ~ u;-!-pH'l“de = e-l[(k+P)'r][_*_o e\ Prre -V:I ek Taq
’ 2m w

- — -

il - .
But Telk T = ikelk * $ hence

e 9=
. _ iﬁe(Eo']s.) -t
ktp.k 2m%w

Thus
S e —— =
elE_-k ) . \
4(1) - l—._l}h L_.].] iy, km0)t M iy )t
k+p in 2m#w Em*w
and

" - -
NEV I RETCO IS he(E, k) Ji{wktp,k=w)t_; (%)
ktp P oinfe  Bloerp,k®)

O

i e -
Case II {k—k - p):

The transition matrix element for the emission of a photon is

. o~
. - = Hel . o o
= * = - I k-p) r o_-i(p.r-wt) ik-r
H' = _ B! 'l.lde = e 1 ( b ] [_ —r P .7]e dar
k-p,k fuk 2 f on¥w

-
. he(E,'k) Siwt

*
2m w
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and

(10)

o1 o f a(Dgy o o BBk (Tlkep i)ty
“k-p oin*e  Bl¥k-p k)

e — .
Case IIX (k—Xk + q):

The transition matrix element for the absorption of a phonon is

e T 1/2
' _[.* _ b .-il (x+q).r h
H'etq,k 'f“k+qH'3ude‘ e [Gera) ]l:iEd Z(Eppwq) an/ng
q
(g rgt)] R n 1/2
. el q_-r"(nq )] elk‘rdnr = iEd Z(ep ) qa !nq\ e"'iﬂ)qt
3 e
Thus
1/2
(1) 1[ Z( A -iwgt | i(w t)
ar, . = =—|iR a 7] e™ T ktq,k
k+q ih) ¢ op
g \“Frfq
1/2
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and

‘ | 1/2 i(optq . k~wq)t
(l) = '(l) = 2 ‘h fn e qﬁk q- —l
a.k+q ak+qd't Bq z :(2pﬁnq ) 4 q ‘h(wk+q ,k~%q } (1)

-

—3m —_
Case IV (k —k - q):

The transition matrix element for the emission of a phonon is

[(—J- -!-) -3-] B 1/2
H' =, H' wdr = Je-il(k-q)-r E:.E Z +1
k-q,k f k-qft 4% 4 2 \Bo e a./ng
q
N - . 1/2
. e-l(q-r—wq‘t)] ik Tar o im z( ) a ’"_"nqﬂ o lugt
q 2PpPq

Thus

1/2

@3 [ Sla)

q~/ngtT eiwqt:l e 0geq, kb

1/2 .
Z (—j— ) anng*l el(wk“%kmq)t
q

Eq
B 2Ppg



164

e

=i - . i -5 B
If we let k’ =k+p, k -p, k+4q, k =« g, the firgt-order coefficients

can be written

(13)

-
(1) _ Be(Eork) ellumtp -0ty
a'," = [ k! ,k+q_ (

-84
2inm*e Bl Wgsp, k) ) kTSP

1

(g 10)t_
() (]

/2
q E’k' kg N

q

(ei (Ll)k.j.q’ k_-(.l)q) t -1
1{aq, 50

' 1{wpemg 1c~Wa )t
/ ‘e d qs"-1
) -th,k_q nq+l ( 2 )

h(UJk_q’k""JJ )

This is Eq. {21) in Chapter III.

Second-0rder Transitions

The transitions represented by the first-order coefficients are
transitions to virtual states. Abso;rption and emission of photons by
conduction eleetrons at equilibrium requires second-order transitions,
that is, transitions which involve simultaneous photon and phonon proc-

esses. The dynamic equation of the second-order perturbation expansion

coefficients is (31)
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22 o1 g a(l)oi%mt (14)
m in mn 0

where n represents the intermediate states k + p, k - p, k + g, and
k - q. We consider a specific phonon state and .neglect second-order
transitions which involve the simultaneous gbsorption and emigsion of
two photons or twe phonons. We must treat four transiticns: photon
e - e =
absorption plus phonon absorption (k—=k + p + q), photon absorption plus
= —- — -

phonon emigsion (k—=k + p - q), photon emission plus phonon absorption
- —5 —3 - —- 2 —-
(k—+=k - p + q) and photon emission plus phonon emission (k -k - p = q).

T - —
Case I (k-—»k +p + q):

The time-rate-of-change of the second-order coefficient for the
process which inveolves the absorption of a photon and a phonon is ob-
tained from Eq. {(14). The electron state can be reached either from

2 — - —
the k + p state by the absorption of a phonon or from the k + q state

by the absorption of a photon. Thus

{2) _ 1 [, i w1
Berprg EE{ k+P+Q:k+Pa'1(§'11)3elwk4'P+Q,k+p

a(l)eﬁ”k+P+q,k+qt]

4 t
i ktptq,ktq ktq

The transition matrix elements are
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1/2
J-Ed A / qJ_\ e"iLth
2Ppig "

n

*
H'yiprg,kip = juk*'pﬂf{'5”‘1:+p‘1T

e[, - (D)
_ * _ 1ne o’ q 3
Hprpeq,kerg = f Ugrprgtl (Ut = —— e ot

Em*w
Thusg
1/2 -
.(2) e ( ) > I: k
= qBaq . /1 ' E,° -
Tetprg o w\2P g d~Tq “o 1h(wk+p’k«n)
. e i (wk+p+q , k*pWK.].P s k-{”q-w ) t —e i (wk+p+q 3 k—l—’p"wq) t
—- -
o i(ktq) o1 (Wktptq , ktqtwkeq,k-wq-w)t
Bi(Waq, k)
~e (Utprq ktq ) :I
We note that

BOrprq, kip ki, k) = Brorprq Biorp Bierp B = Aluneaprg x)

Bl0giprq, ierg i, k) = BlorprqFioeg Biekq By = BlUerprq,k)
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We letl
Wt o= a( - -w) = h( ) lh) oy =it} )
1 Prtpra , ktp rep k% Wietptq, ktq Whiq, kg
o ) ++ _
Wo' = Aopg e ™) 3 Wy = Blogepig, kip=q)
Then
1/2 -
.(2) ie ( <) ) > k it
a = m e | — q_E JI?E .[ e.'.LW]_ 't/‘h
k+ o Y Y
P ooy \20plq TR0 gy, ko)
- ++ 4
_WETe/A L (k) oW1 t/8__iWp t/n ]
B(wgtq,k-0g)
and

v 1/2 > >
(@2 _| (2 - _te [ m g (ktq) (15)
*krprq .[ &k*P*th om* (Qpp"’q) QEd'Jn?EO [(h(“’k+q,k“°q)
(o)

2 o+
- W t/4 : iwn /A
> e Jwe b/A

)

(+q) (

+ -
‘l‘i(wk+p,k-fn)) w Awgsrg, kwg)

i

o+
_ X eJ.W5 t/ﬁ_l
h{wgep,k-w) ( w’g* )
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—- = o —-
Case IT (k =k + p - ¢

K

The state k + _5 - -a can be reached either from k - E by the absorp-

tion of a photon or from k + ? by the emission of a phonon; hence

(2) -1 | &,_(1)e3"-*131«;+p--q_,1§.+]_3JG
k+p-q ih| kip-q,k+p ktp

(1)103+ _]
+Hk+P+q,quq CA T

The transition matrix elements are

*
H'ptp-q,ktp = f Wietp-gl 4WepdT =

I
I
(=N
———
5]
]
=
R T
fte
@ﬁ
¥
l—l
.m E
'ﬂﬁ

e a-a--
, B T - 2 )
Hyetp-q,k-q ~ [ “"k+p-q” 1%k~g*" 7 e

em*w
Thus

1

(2) ' n /2 1w+'t/f1
fepq = o (""“‘e ) Fanle T E, [ﬁ(w ryl Ll
P2 oy \SPp¥q /- ktp, k

. _ — O e F-
@D [aen | sie)]
| Biwg-q,kwg) -
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where

4o
Wy = B(@poq, o e K Wq ) = Blokpoq,k-q0K-q,Kk"0q )

+- +-
W2 = 'ﬁ(wmp_q’k+p'u}) ; Ws = 'fl(wk.!.p_q’k_q-!-wq)
Then
1/2 > > - 6
(2) _ me { & pral o (k-q) k (16)
T 1 By N0gtt B\ tng) )
P-4 op*y \2Pp¥q Wk-q,k™q Wiep k™9
- - +-
! t/h 1 (k-a) (e1w2 /M4 1)

Case TII1I (-1:—!-1; -_.13 +_a):
- e — —_ =
The state k - p + q can be reached either from k - p by the

gbsorption of a phonon or from * +-€ by the emission of a photon; thus
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A2) 1 [, (1) _iwy v 1enb
ote | TE|D kepta,k-pTkop KPra, ke

+ H

(1) 3wy corag tsqt
kepra,krqeng® b Y

The transition matrix elements are

J = * ] . H
= H = »
T k-prq,k-p f Uie-prq’ 3-pd” JEd(Eprq) AT ©

Ht - 2 H1 d_"l' = - iﬁe[EO.(k-l-q)] eiwt
k-ptq,k+q uk'P"'Q.s Quk"'q omt w
Hence
. 1/2 - e . -1 . -t
é(2)+ _ 1:( f ) g I:‘ﬁ(' K - LAWT t/h_ W5 t/h
LA B T 4 “k-p,k
- —F -
. (iesq) i t /B W t/h
h(wk"'q’k—wq)

where
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-+
Wl = ﬁ(%_mq’k_:p+wk_p,k-wq"m) = ‘fl(u.}k_p+q’k+q+wk+q,k-wq+w)

Wy = BlUprg,eeqt)

Wy = Blog prq,k-p0q)

Then
1/e T -
i H iss k
k-ptq  em w\“Pg¥q 4 Wt g, k®g)  BlOg_p wxte
— e coo=
. elWl t/h"l ) (k_q) (elwa t/ﬁ“l)
Wit Aloerg, kvg) \  wz*

-

L=t
- sy ()]
‘h(wk_p’kﬂn) wg‘]'

Case IV (-1?—1-1?- p-d):

+

s - .
The state k - p - q can be reached either from k - p by the

emisgion of a phonon or from4E'-‘E by the emission of a photon} hence

{2} 1

(1) Iy k-pt
= T —_1) - —
*k-p-q hE-I Kop-q,k-pPk-p® & T

+ k-p-q.,k-
H k-p—q,k-qak-qe b-4,k-q

The transition matrix elements are
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1/2
H' = u* Hl 1, dr = - i . .
k-p-q,k-p f k-p-q~ 4k-p By 2p g qh/nq+1 el0gt

k-p-q,k-q k-p-q* 2%-a~ ~ © % e
2m w
Thus
() de (A 2 z k WTTEM_iwWsT
ak‘P'q Em?m QPqu qu anl Eo' h(wk-p k#w e 'L -e1W3 t/ﬁ
2

. (k-g) AWTH/R W /h}]

ﬁ(wk'Q.ak-l-mq)

where

W = ﬁ(“’k-p-q,k-p""”k-p,k"'mq"'w) = ﬁ(mk-P_q,k-qi'wk_q,kqurw)
Wy = Blwgp-ge-g*) 3 W = BW-p-q,k-p"g)

Therefore
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1/2 > >
(2) - . _‘E?__( ! ) E. T E - ( (k-a) 18
s SRR T S L R L ey (18)
PR S i W
-ﬁ(wk_p’kﬁu)) Wy h(wk_q’k+wq)
) (eiwé-t/ﬁ"l) ) > (eiwg-t/n_l)]
W5" Tlwg_p, 1) Wa
If we let
te [ m 1/2
B{q) =D ( ) qE
om*w \ePp¥q a

and

Wy = Blugpprq,Kfwghe)

S
1

= Blugrphq, i)

Ws = Bleygneg jomog)

then the second-order coefficients can be generalized as
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@), -] 7 ‘ﬁ'[( (fq) k )e‘“lt/’fll (29)
ktptq h/;;:f ° L\Blwerg wiug)  Blwgpn () W

This appears as EqQ. (93) in Chapter III. The following table defines

the structure of the equation:

Transition b Bracket Term Sign of g Sign of w S5ign of w,
e - - )
k—=k+p+qg -1 /nq‘ .;.E - g
K=k +p-q +1 Jog + T 3 " tuy

- - - -
XK=k-pt+tq + Jog +q fw 0y
N . -
k—=k-p-qg =1 ) nq-+l -q +w +mq

The Transition Probabilities

The net absorption of photons is a result of terms involving Wy
because the terms in Wpo and Wz contribute equally to both absorption and
emission of photons; hence we need evaluate the transition probability

only for those terms containing Wy. ‘We can therefore write

(2) . 3(q) ! z. kg % STt/ (20)
“ktpiq fagrT| 70 | Blunag r0g)  Dlogep o) | W
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Consider first the transition k —»k +—f; +T1; the term containing the wave

vectors can be written

g -
k(wk+Psk+wk+Q:k-wq—w) * q(wk-"'P :k-w)

The coefficient of ¥ is
B(Wisp & + Wkrq,k 0 - ®) = Bgep + Brrq - 2Bk - hwg - T
~ Bpyq - B - fog - B
Thus
Ex+q y By - Ywg - 10 = Wy -~ (Byyprq = Brag) = 0

where we have agssumed that |?|>>|_E| and we take Wi as O except in the

resonance terms. It follows that
Brtq - B - twg =~ - (Ek_+P - By - fw) ~ fw

We can now write Eg. (20) as
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(2) B(q)J—‘ (’ q_) iW]_t/'fl]_

The transition probability is

(2)

2.1
t, — a]{-l.p+q

t

n

P(k ~k+p+q)

- |B(q)|2n @ lim 1

2
eiwlt/n~ll
haE t o §

W

1

We make use of the functions &(x) and £Z(x) defined as (47)

8(x) = 1 l-costx _ I tl
t—>eo ¢ = t-l-oorret
. ixt
g(x) = MM l-¢
t o X
Thus
b(x) = 1 1 :L-ei‘fbl= lin 1 ei"t-ll2

t—=w>o2ntl  x t > 2nt X

We let z = Wy/B and write



e -1
z

: >
lim 1 elwlt/h-l _ 21 lim 1
t = § Wy ,ﬁ2 t o 21113

But (31) &(ax) = a 16(x) ; hence &{W /A) = Hb(wWy) =
- S 2 =

This can be generalized to include the cther transitions,

P(E—%k547) = 21
5
The average value of (‘Eo -3)2 is
- >0 22
(Eo‘q) = jl?J‘ gqecoseedn = Egq

Hence

2plp2
p(E—%ipip) - ——te L ™
¥2 4 0w n,+L
Pm w rd q

06 (B ypy g -Fy P, FE00)

2 n
weﬁ(qﬂ {nqil} 8 (Fictptq-EirFhwg Po)

177

(21)

The probability of a transition from initial state k to any final state

k' is



178

B =2 [1-alr)] BE-T)
-

Thus

k' 6n:*2w4

Pplnl
Pi(lz) _ z e EdE {nq-l-]} I:l-g(Ekl):I S(Ekt-Ek-I-hUJ +"fm)

: . . —- . —
The summation over k' can be regarded as a summation over { because

ol

Kkt E_' and the initial states are fixed. Hence, we can replace the

sum with a unit volume integral over g,

222 [[]e=

where d3c41-= qedqdﬂ = 2dq sin yayd® . The energy relations are spheri-

cally symmetric and sin vdy = d{cos y). Thus we can write

o ot Ry | (22)
- S [ [T e BRI

. []--g(Ekl )] & (Ek t -Ek;ﬁbq-?-ﬁn)
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Transitions can occur only if the argument of the S-function
vanishes for all ¢ such that 0 = g £ Qs because the transition
probability is non-zero only under such conditions. That is, energy is

conserved for the second-order transitions. We can write

o 2lysql2  #2 .
By 1By o0, o ~ B sl 22 g ¥ fw
2m* 2n*

2.2 2 - -
~ B9 i'ﬁ__k‘lcosy+ﬁuq+-ﬁw
D n

T

where cos ¥y = ‘_kgq and ¥ 1is the angle between ?1' and k. The argument
q

of the §-function is therefore zerc if

L3

cos Y +

m*[_‘_ﬁf—ﬁ

+ fiw
ﬁekq om® tmq B :I

We wish to investigate the relative magnitudes of these terms (86). We
can write ®g = Vad where v, 1is the acoustic velocity; also, because
the electrons are in states near the Fermi level, we have k a vem /Ai.

Thus, with ® = 2me/A ,
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cos ¥~ F D+ 8 4 2nC
2k vy Aqve

The free-electron velbcity at the Fermi surface for metals is

Vo R 108 cm/sec.; the acoustic veloclty in metals is vy, = 5 x 10° em/sec.
at room temperature and decreases slightly with increasing temperature.
Thus v,/ve < ~ 0.005. At room temperature and higher, electrons are
scattered by phonons in the Debye maximm state

9 = (K6/fv,) ~ 108 em."1 em/sec., we can specify the scattering angle

such that the argument of the 6-funetion vanishes,

If gy > wk the upper limit of integration must be 2k. We have thus
restricted the zeros of the 8-function to lie within the allowable phonon
wave vector range., Because the §-function exhibits a strong maximum at
the zero of its argument and is everywhere else nearly zero, we can re-

place the Limits by » and —«» . We can write

f I:l-g(Ek ' )] 6 (Ek. ! -Ek:Fﬁqu) d{cos v)

. _ -.- ﬂ. .
=fE.-g(Ek|):| 5(Ekt“Ek+ﬁDq+ﬁﬂJ) ;12_};_(1 dEj ¢
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2 ‘ - S
because Epr = g2 + 2kq cos y + k° 3 d{cos ¥) = - Ay v
om® H2kq

We have the following relation for the §-function:

f £(x)8(x~a)dx = f(a)

Thus

;/. [?-g(Ek.i] 6(Ekr-Ek$ﬁmq$ﬁw)d(cos v)

-y

b
R
£2kq !

We can now write Eq. (22) as

2 Bnax

eE2E n

(k) = —o 2 oS (1—) 3 [Letemagmn)] (@)
D4k w? o Ppg/ | Ngtl

The average value is

D @R ()
PE(K) =

z g(Ext)

kt

(24)
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The transitions occur near the Fermi level; thus we can convert to

energy integrals and use the density of states at the Fermi level {40),

3/2
o (E) = —iﬁ%— Ef

Now

fmg(E)p(E)dE =N = v(an*)3/2 3/2

Brohs

Hence, if we let

1/KT

w
il

z = B(Ekt-E oy +hu)
= g (Fhw )

we have

2 q .
5 RGeS ! q 1 1 K
T et L ey B ST ey n — |z (25)
enton ey o Prfal e 8 (e®%+1) \e®sl
-1
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The energy integral can be evaluated in closed form; we let x = % and

b = ef , then

I e”dz _1 T & __ 1 lnbx+lm (26)
B (eZ48i1)(eP+1) B ] (bx+1)(x+1) p(b-1) bx+bo

_ % (lnb) B(e:_l)

We can now write the transition probability as

= e 1 n (27)
P§=Cf ® ()  agia 50
5 r’a/ | g
where
®B3E2
¢ =
sertn kwEp

The Power Expenditure of the Field

The average power expenditure of the external electromagnetic

field can now be written

_ qmax q S_ w8 (28)
W{w,T) = ch I pﬂnq nq dq [Ka- Ke:l
8 0



We note that *ﬁwq_ =hv,q = Eq . We let
_ hw
1= %r
_ 8
¢ =1
KT

Then

sh(Fv gfw) = ¥x¥)

1 1
n, = =

4 ePEg.1  eX.1

X
2

e®-1

ngtl =

The power expenditure can then be written

184
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where C' - Cﬁm/pp . After considerable algebraic manipulation, we have

o eEEES (xS ifem
Kt = 3aTﬁVam*PphD3Ef(ﬁv&) E[(e 1) Fs(1.0) (29)

- (eN-1)2n 7y (M,0) - 2(eN-1)2n 64(M,0) ]

where

¢ Ny
_ X
Fy(M,¢) J: (eN-e=X)(e%-eT)

4

Gn(MsC) = I x7dx
o (ex-l)(en-e-x)(ex-en)

We have (9)


fS.fr
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K8 =(6‘|'|2Np)1/5

fivy

k ~ %,fEm*Ef

P = NM
Thus
<*23ES _ anwe? [ ORrPwER | E5 -5 .1
SEnﬂvam*pphnsEf ) m* (16 meg) w?N 21
But
ER
Thus we can express Eq. (29) as
W(w,T) = C, %_E(%)QC_BJ(%T) (30)
where
Co = @iﬁ (31)

L C
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Hym) = L2 po(n,0) - 2002 7e,0) - (T2 6 n0)  (32)

The relation for the power expenditure of the field, given by Eq. (30},

appears as Eq. {112) in Chapter III.
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APPENDIX V
THE COMPUTER PROGRAMS

The calculations necessary to obtain theoretical values of the
optical and thermal radiation properties of metals were carried out with
the assistance of a digital computer program. The program was written
in FORTRAN V for the UNIVAC 1108 digital computer. It consists of a
main program, HETR, and a series of subprograms which are repeatedly
called by the main program. The main program and subprograms are as
followss

1. HETR. The main program performs algebraic manipulations on
functions supplied by the subprograms to obtain the optical properties
and emissivity. I{ reguires the following input:

a, the number of elements in the array required by the sub-
program DEFINT for integration,

b, the electrical resistivity at 273°K in microohm-centimeter,

¢. the plasmon energy in electron volts,

d. the Debye temperature in.degrees Kelvin,

e. the constant C, 1in reciprocal seconds,

f. ‘the constant TI'; in reciprocal seconds,

g. the constant skin absorptivity.



189

This input iz different for each metal and is all entered by means of a

gingle card.

The output
a. the
b. the
c. the
d. the

of the main program consists of:
plasﬁa frequency in reciprocal seconds,
value of the funection FE(C) at 273°K,
constant C, in reciprocal seconds,

de damping coefficient in reciprocal seconds,

and, for each frequency and temperature:

e. the
f. the
g. the
h. the
i, the
j. the
k. the
2. FONS.

value of the paremter T ,

total damping coefficient in reciprocal seconds,
optical conductivity in reciprocal geconds,
dielectric constant,

index of refraction,

extinction coefficient, and

normal monochromatic emissivity.

This subprogram ig an exbernal function which computes

values of the function FS"(C) which is defined by Eq. (120) in Chapter

JII. FONS uses subprogram DEFINT.

3., QFACT.

This subprogram is an external function which com-

putes the quantum correction factor defined by Eq. (121) in Chapter III.

QFACT uses subprogramsg FUNL and GUNR.
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4., TFUNL, This subprogram is an externsl funection which computes
the function F,(N,{) which is defined by Eq. (114) in Chapter III.
FUNL uses subprogram IDEFINT.

5. GUNR. This subprogram is an external function which computes
the function @, (N,{) which is defined by Eg. (115} in Chapter III.
GURR uses subprogram DEFINT.

| 6 DEFINT. This .externa.l function consists of a generalized
Simpson'’s rule routine for integration. It i1s used to evaluabte all
integrals.

The relationships of the various subprograms are illustrated in
Figure V-1. The extensive use of external funections mekes the overall
program compa.c_t and efficient. Compilation and execution time for a
typical run of 14 temperatures and 22 wavelengths at each temperature

(2793 output values) is less than 30 seconds on the UNIVAC 1108 computer.
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HETR

FO

N5

DEFINT

QFACT
FUNL | [GUNR ]
DEFINT] [DEFINT

Figure V-1. Computer Program Hierarchy
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€ THIS PROGRAM -OMPUTES THE OPTICAL AND THERMAL RADIATION PROPERTIES
¢ OF WMETALS FRoM GQUANTUM ELECTRON PHONON INTERACTION THEORY

READLS SO0 NeRESPLAS ) THETA»CEE e SAMD »SKIN
500 FORMAT(I10,F10.3/2F10.2/E10,2+810.2+F10.%)
WRITE (6,381}
581 FORMAT(IH1 ,41HOPTICAL AND THER RAD PROPERTIES OF GOLD/)
PLF = }1,51qu98+PLAS
BFAC = PLFu#2
AFAC = BFA¢/12,566371
AlL0 = THETA/273.15
FAL = FONS{N»ALO) .
XMIC = (R.56900B8»RESH(PLASx#2)n{ALOWSS) ) /{12,560637100FAL)
XM2 = XMICx({1D.%%12})
PLF2 = PLF«(1Q.#*15)
S180 = (89, 87HB/RES)*(10.»x18)
GAMO = CINMICFALIZ{ALO®RS))n{}0,8x12)

WRITE (6+582)1PLF2

582 FORMAT(1HU,20HPLASMA FREQUENCY = +1PE12,60 3% THPER SEC/)
WRITE46,582)51G0

583 FORMAT(L1HO, S2HDC CONDUCTIVITY AT 273 DEG K = rIPEL2,653%¢ IHESU/}
WRITE{6+58,4 )} THETA

584 FORMAT[1HD,25HRESISTANCE DEBYE TEMP = +F10.2, 3% 10HOEG KELVIN/)
WwRITE (6+585)PLAS

S8% FORMAT (1HD, 18HPLASMON ENERGY = »F10.2+3X:2HEV/)
WRITE(6+5Bp)FAL )

586 FORMAT(1HO,26HDC INTEGRAL AT 273 DEG K = 1 IPEL2.6/)
WRITE (6+587)%AM2

S87 FORMAT(LHD,19MATOMIC CONSTANT = o+ IPEL2,64+3X, THPER SEC/)
WRITE {6» 58516AMO

588 FORMAT{1HG,32HOC DAMPING COEF AY 273 DEG K = +1PE12.6+3X,
1 THPER SEc//}
804 READIS5,505:7
S0% FORMATIFLD,2)
WRITE {6502} T
502 Fﬁ?:a?;l::.f&nDATl FOR TEMPERATURE = +F8,.2)3%X¢10HCEG KELVIN/ /)
L {6e003
503 FORMATILHO . 2X» SHWAYE s 6X ¢ SHFREQ» FX s SHXMU 1 Sy $HDAMP ¢ 12X+ IHS LG 10X0
1 SHDIELEC 50X SHINDEXy 11XsSHABCO 11X s WHEMIS, /)
ALFA = THETA/T
XA = XMIC/(ALFA®%S)
o0 511 171,22
Xl =1
IFI11.LE, 10160 TO 561
IF(11.67,10,AND,1,LE.15)60 TO B62
IF{1.6T,15 AND.J.LE.17)60 TD 563
IFUL.GT.17 ANDT.LE.20)GQ TO S64
IF{1.6T.20)60 TO 565
561 WAVE = (O.laXI
60 TG S70
662 WAVE = (D.p%X1)=1,
G0 TO 570
563 wWAVE = t°.5-111-505
i 60 TO STO
564 WAVE = XI-)18,0
60 TO0 570
565 WAVE = (2,aX}1=38,
570 FREG = 1.883678/WAVE
XMU = 7637 752«FREG/T
XOF = GFACT{NsALFA» XM}

GAME = CEEG(ALFAR®(~2))n (1,044 XMU/6,283145)«%2))
GAMP = XAeyQGFu(10,%%(=3))
GAM1 = GAMP + GAME + GAMD

DEN = (FREg**2) + (GAMLa®»2}
SIG1 = AFAC*(GAM1/DEN)
EFE = 1. = {BFAC/DEN)

IF{EPE)}S06,509+507
506 ZC = =),
6o T0 508
507 2C = 1.
SDB ZA = SART{ABS(EPE)/2+}
28 = {12.563715161)/ (FREGsEPE)
20 = SGATiy. + (ZBas2})}
ZN = IC + 20
XK = 20 = 20

XREF = ZAxSORT(ZN)
XAB = ZA*SqRT{Z2K}
EMIS = (4 ,aXREF)/{({XREF+1,}#a2)+{NADss2}) + SKIN
60 TO S10
509 XREF = 0.0
XAB = 0.0
EMIS = (.0
510 SIG = SI61ls(10.wu15)
XOME6 = FRpawT10.8x15)
GAM = GAMlailQ.=ai%)
S11 WREITE 16¢552) WAVE » XOMEG , XML OAM) ST+ EPE » XREF 1 XAB+EMIS
512 FORMAT(LHO Fog2s3%s IPES. 30 3XeF 9. 306(3%s1PEL2,6))
G0 TO 50%
END
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C THE FUNCTION FONS EVALUATES AN INTEGRAL

o3

FUNCTION FoNS(NyALFAI
DIMENSION y{100)

I =1
¥Yil) = 0.
XN = N=}

OX = ALFA/xN

DO 103 I=2,N

X1 =1

X = AX1-1,)*uX

YEI) = (NauSin(EXPIXI ) ATCEXPIXI=1,1922)
FONS = DEFINT (Y DXeN)

RETURH

END

€ THE FUNCTION oFAlT EVALUATES AN ELECTRON PHONON QUANTUM FaACTOR

40%

404

405

FUNCTLON SEACT (NrALFA¢XMU)
DIMENSION y(100G)
IF(XMULGE. 154160 TO 403

XMUL = tEXp(2.aXMUI=1,)/(2,=XMU)
YMUL = (EXp{XMU)=1,])*x2

NMH = Y9

XA = FUHLIMeNNrALFAr AMU}

MM = &

XB = FUNL (rjeuNe ALF A AMU)

XC = GUNR{nrALFA S XMUS

TRM2 = {YMpL2XB) /{2, %XMUL)
THM3. = {YMyL=XC )/ XMUL
GFACT = XM L#*#{XA=TRMZ=TRM3)
G0 TO %05

1 =1

¥Y¢I) = O

XN = N=}

DX = ALFA/SxN

0o 404 [=2,H

xI =1

X & (XI=lsy=un

YIID = (Xaxt)} /{EXP(X)=1.)

XA = LEFINTIY»OXseN)

%Xb = (ALFAs*9} /10,

XC = (ALFAx*0}/{12,xXM)
QFACT = XA + Xg - XC
RETURN

END

¢ THE FUMCTION gUNR EVALUATES AN LNTEGRAL

300

FUNCTION GUNRIN:ALFA ¢ XMU)
DIMENSION {100}

1 =1
Yilr = 0.
XM = =]

DX = ALFA/wN

Do 300 I=2,N

xI =1

X = (XI=l.psuX

YOI = (Xkul) 7L IEXPIX)=EXPIXMUI I* (EXPIXMU)=EXP (=X) ) {EXP(X)=1,1)
GUNR = DEFINI(Y:DXeN)

RETURN

FND
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C THE FUNCTION FUNL EVALUATES AN INTEGRAL

203

FUNCTION FyNL {INeNNpALFA ¢ XHLU)
NIMENSION y{l00)

1 =1
¥Y{ly = 0.
XN = N=}

DX = ALFA/%M

pe 203 I=2,N

xI =1

X = IXI=1laj*iX

YUI) 3 (XmaMin) ZLEEXPIX) =EXP{XMU) Y+ {EXP (XML = XP (=X}))

CFUNL = DEFNI(YeOXoN}

C THE

PETURN
EHD

FUNCTION UEFINT INTEVRATES USING SIMPSOMS RULE
FUNCTION UpFINT(Y»DXsN}

DIMENSION y(N)

IF{N=3)1Ur1e2

DEFIMNT = (pX/3.)2(Y{1l)+l4,%Y{2)4+Y{3)}

PETUKN

IFIN=4)10, 3+ 4

DEFINRT = (3.20X/Ba )% IY (1) 43.%(Y{2Y4Y133}+Y{U})}
FETURN

SEVE = 0.

SODD = 0.

Nl h/e

e 2*N1

M N

MHC M=N2

IFINC.EQ.0) M=h=1)

HODD = M=]

HEVE = M=2

RO 7 K=2eloDLe 2

SODD = SODN+Y(K)

D0 8 K=3enipVLy2

SEVE = SEVFE+Y (K}

CEFIMT=AUX /3.0t Y(LI+Y (M) 44 ,%xS0DD+2 . xSEVE)
IF(NC)10,9,10

DEFINT = DEFINTHIOXZ724,)8{9, %Y (N} +19 ., 8Y(N=]l)ab kY (Na2)+Y{j~S))
PETURN

END

nawn
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