
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-19-2014

A Generic Model of Execution for Synthesizing
Domain-Specific Models
Mark Allison
Florida International University, malli002@cis.fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Allison, Mark, "A Generic Model of Execution for Synthesizing Domain-Specific Models" (2014). FIU Electronic Theses and
Dissertations. Paper 1563.
http://digitalcommons.fiu.edu/etd/1563

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1563?utm_source=digitalcommons.fiu.edu%2Fetd%2F1563&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A GENERIC MODEL OF EXECUTION FOR SYNTHESIZING

DOMAIN-SPECIFIC MODELS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Mark Allison

2014

To: Dean Amir Mirmiran.
College of Engineering and Computing

This dissertation, written by Mark Allison, and entitled A Generic Model of Execution
for Synthesizing Domain-Specific Models, having been approved in respect to style
and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Xudong He

Deng Pan

Jinpeng Wei

Armando Barreto

Peter J. Clarke, Major Professor

Date of Defense: March 21, 2014

The dissertation of Mark Allison is approved.

Dean Amir Mirmiran.
College of Engineering and Computing

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2014

ii

c©Copyright 2014 by Mark Allison

All rights reserved.

iii

DEDICATION

To my family and loved ones who have sacrificed through this journey.

iv

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to all those who contributed to the

success of my PhD study and the completion of this thesis. Special thanks to the

members of my committee, Drs. Xudong He, Deng Pan, Jinpeng Wei and Armando

Barretto for their insights and rigorous questioning that has resulted in the focus that

resulted in this work. I especially would like to express my foremost gratitude to Dr.

Peter J. Clarke who guided me through this process, going above and beyond in due

diligence and patience.

v

ABSTRACT OF THE DISSERTATION

A GENERIC MODEL OF EXECUTION FOR SYNTHESIZING

DOMAIN-SPECIFIC MODELS

by

Mark Allison

Florida International University, 2014

Miami, Florida

Professor Peter J. Clarke, Major Professor

Software engineering researchers are challenged to provide increasingly more pow-

erful levels of abstractions to address the rising complexity inherent in software solu-

tions. One new development paradigm that places models as abstraction at the fore-

front of the development process is Model-Driven Software Development (MDSD).

MDSD considers models as first class artifacts, extending the capability for engineers

to use concepts from the problem domain of discourse to specify apropos solutions.

A key component in MDSD is domain-specific modeling languages (DSMLs) which

are languages with focused expressiveness, targeting a specific taxonomy of problems.

The de facto approach used is to first transform DSML models to an intermediate

artifact in a HLL e.g., Java or C++, then execute that resulting code.

Our research group has developed a class of DSMLs, referred to as interpreted

DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution

engine with semantics based on model changes at runtime. This execution engine uses

a layered architecture and is referred to as a domain-specific virtual machine (DSVM).

As the domain-specific model being executed descends the layers of the DSVM the

semantic gap between the user-defined model and the services being provided by the

underlying infrastructure is closed. The focus of this research is the synthesis engine,

the layer in the DSVM which transforms i-DSML models into executable scripts for

the next lower layer to process.

vi

The appeal of an i-DSML is constrained as it possesses unique semantics contained

within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the

implicit model of execution and the semantics of the domain, making it difficult to

develop DSVMs for new i-DSMLs without a significant investment in resources.

At the onset of this research only one i-DSML had been created for the user-

centric communication domain using the aforementioned approach. This i-DSML is

the Communication Modeling Language (CML) and its DSVM is the Communica-

tion Virtual machine (CVM). A major problem with the CVM’s synthesis engine

is that the domain-specific knowledge (DSK) and the model of execution (MoE) are

tightly interwoven consequently subsequent DSVMs would need to be developed from

inception with no reuse of expertise.

This dissertation investigates how to decouple the DSK from the MoE and sub-

sequently producing a generic model of execution (GMoE) from the remaining appli-

cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs

in other domains. The generalized approach to developing the model synthesis com-

ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK

as swappable framework extensions.

This approach involves first creating an i-DSML and its DSVM for a second do-

main, demand-side smartgrid, or microgrid energy management, and designing the

synthesis engine so that the DSK and MoE are easily decoupled. To validate the

utility of the approach, the SEs are instantiated using the GMoE and DSKs of the

two aforementioned domains and an empirical study to support our claim of reduced

developmental effort is performed.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Motivation . 3
1.2 Problem Definition and Contributions 5
1.3 Dissertation Roadmap . 8

2 LITERATURE REVIEW . 10
2.1 BACKGROUND . 10
2.1.1 Model-Driven Engineering . 10
2.1.2 Domain-Specific Modeling Languages 13
2.1.3 Aspect-Oriented Software Development 15
2.1.4 Microgrid Energy Management . 16
2.2 RELATED WORK . 20
2.2.1 Model Operations . 20
2.2.2 Model Synthesis . 22
2.2.3 Model Execution . 26
2.2.4 The Communication Modeling Language 26
2.2.5 Microgrid Energy Management Approaches 31

3 DEFINITION OF SEMANTICS FOR SYNTHESIZING MGridML
MODELS . 33

3.1 Microgrid Modeling Language . 33
3.1.1 Domain Analysis . 34
3.1.2 Illustrative Scenario . 35
3.1.3 Metamodel . 36
3.2 Synthesizing MGridML Models . 41
3.2.1 Overview of Synthesis Process . 42
3.2.2 Model of Execution . 43
3.2.3 Model Comparison . 48
3.2.4 Change Interpretation . 49
3.2.5 Synthesis of the Illustrative Scenario 51
3.3 MGridVM Prototype . 55
3.3.1 High-Level Design . 55
3.3.2 Synthesis Engine Design . 59
3.4 Synthesis Prototype Evaluation . 61
3.4.1 Experiment Method . 62
3.4.2 Results . 64
3.4.3 Discussion . 68
3.5 Chapter Summary . 70

viii

4 SEPARATION AND REPRESENTATION OF THE DSK FOR A
SYNTHESIS ENGINE . 72

4.1 Revisiting the MGridVM Model of Execution 73
4.2 Persisting Domain Specific Knowledge 75
4.3 Chapter Summary . 79

5 DEVELOPMENT AND EVALUATION OF THE GENERIC MODEL
OF EXECUTION . 80

5.1 Generalizing Model Synthesis . 81
5.2 The Synthesis Engine MetaModel . 82
5.3 The Instantiation Process . 84
5.3.1 Kermeta . 85
5.3.2 Switching SE Instances . 86
5.4 The Communication Domain Evaluation Scenarios 87
5.4.1 Communications SE Setup . 89
5.4.2 SCENARIO 1 - CVM Application . 89
5.4.3 SCENARIO 2 - CVM Application . 92
5.5 The Energy Management Domain Evaluation Scenarios 93
5.5.1 Microgrid SE Setup . 93
5.5.2 SCENARIO 3 - MGridVM Application 93
5.5.3 SCENARIO 4 - MGridVM Application 97
5.5.4 Result . 98
5.6 Evaluation of Instantiation . 98
5.6.1 Experiment Setup . 99
5.6.2 Results . 100
5.6.3 Discussion . 102
5.6.4 Threats to validity . 105
5.7 Chapter Summary . 106

6 CONCLUSION . 107
6.1 Introduction . 107
6.2 Empirical Analysis . 108
6.3 Implications . 110
6.4 Future Work . 111
6.5 Summary . 111

BIBLIOGRAPHY . 113

Appendices . 120

ix

LIST OF FIGURES

FIGURE PAGE

1.1 High Level View of Generic Architecture Highlighting the Synthe-
sis Engines . 6

2.1 DSL Concept Adapted from [78] . 12

2.2 The CERTS Microgrid Concept. 18

2.3 CML Abstract Syntax . 28

2.4 The CVM Layered Architecture . 30

2.5 Overview of the CVM Synthesis Engine. CS - Control Schema;
DS - Data Schema . 31

3.1 The Microgrid Feature Diagram. 35

3.2 MGridML Abstract Syntax Diagram. 37

3.3 MGridML models for the control and data instances for the Winter season. 39

3.4 MGridML models for the control and data instances for the Spring season. 40

3.5 High level view of the synthesis process 41

3.6 High-level state machine of the synthesis process. 44

3.7 State machine to update controllers. 46

3.8 Execution trace of the change season scenario for the control instances. . 52

3.9 Execution trace of the change season scenario data instance. 54

3.10 MGridVM high-level architecture. 56

3.11 Hardware testbed for the MGridVM protoype. 58

3.12 GUI for the synthesis engine testbed. 59

3.13 Design of the microgrid synthesis engine (MSE) showing the main packages. 60

3.14 Design of the domain entities package showing the main packages. 61

x

3.15 Evaluation of the synthesis for the main classes in MSE. 66

3.16 Execution metrics of MGridVM and CVM synthesis engines 68

4.1 High level view of the synthesis process revised to reduce coupling 74

4.2 Representation of the Separation of DSK from the MoE. 77

5.1 Activity Diagram of the GMoE . 81

5.2 Metamodel for Synthesis Engine Definition 84

5.3 Overview of GMoE Approach . 85

5.4 State Machine of SE Launcher implementation resulting in the
targeted Synthesis Engine. 87

5.5 Generic SE Architecture . 88

5.6 Two-Way Communication Scenario . 88

5.7 Three-Way Communication Scenario . 91

5.8 MGridML Scenario 1 . 95

5.9 MGridML Scenario 2 . 99

5.10 Comparison of CVM v1 and CVM v2 . 102

5.11 Comparison of MGridVM v1 and MGridVM v2 103

5.12 Comparison of v1 and v2 performances 104

xi

LIST OF ACRONYMS

AC Alternating Current

DC Direct Current

CERTS Consortium for Electric Reliability Technology Solutions

CHP Combined Heat and Power

CM CERTS Microgrid

CVM Communication Virtual Machine

DER Distributed Energy Resources

DG Distributed Generation

DS Distributed Storage

DSML Domain-Specific Modeling Language

DOE U.S. Department of Energy

MGridML Microgrid Modelling Language

MGridVM Microgrid Virtual Machine

MUI Microgrid User Interface

MCM Microgrid Control Middleware

MHB Microgrid Hardware Brokerage

MDE Model-Driven Engineering

MSE Microgrid Synthesis Engine

xii

CHAPTER 1

INTRODUCTION

Increased complexity and pervasiveness of software has resulted in the need for

new approaches to develop software applications specific to a given domain. Although

there will always be the need to develop software using the conventional software

development life-cycle [9, 60], using a development approach that focuses on specific

domains and places models at the center of the development process can improve

productivity [30, 29]. Model-driven software development and the use of domain-

specific modeling languages (DSMLs) are gaining more attention as the tools and

techniques to support the development of such applications are becoming more reliable

[44, 69].

There are several advantages of using DSMLs when creating domain-specific ap-

plications, including: (1) the developer is presented with an abstraction using the

concepts from the problem domain; (2) the concrete syntax of the DSML can use

graphical symbols and text from the problem domain; and (3) modeling tools con-

tinue to improve their code generation capabilities.

Using DSMLs to develop applications involve creating a platform-independent

model (PIM) of the application which is resultantly transformed to a platform-specific

model (PSM). The PSM is usually in the form of a high-level language artifact which

is compiled, linked then executed. This approach is very similar to that used for

text-based domain specific languages (DSLs) [30, 55]. Converting DSL models to

code in a high-level language may involve a series of model-to-model, model-to-text

and text-to-text transformations that is difficult to adapt to changes at runtime.

One alternative approach to transforming models into high-level language prior to

execution is interpreting the models directly using a specialized execution engine for

the specific domain. We refer to DSMLs that support the direct execution of models

1

as interpreted DSMLs or i-DSMLs [56, chp. 9]. The dynamic semantics of i-DSML

models are based on changes to models at runtime (the currently executing model

and the new model) and the current state of the running system.

The interpretation of i-DSML models is the obligation of an execution engine,

referred to as a domain-specific virtual machine (DSVM), which is coupled to the

semantics of the domain. The DSVM is designed using a layered architecture which

supports the dynamic semantics by separating concerns as regards model refinement.

As the domain-specific model being executed descends the layers of the DSVM the

semantic gap between the PIM and PSM closes. In this research we focus on the

layer of the DSVM that transforms models into executable scripts for the next layer

to execute, this layer is known as the synthesis engine.

The current methodology entails first defining the i-DSML in terms of its meta-

model (abstract syntax and static semantics) and subsequently constructing the

DSVM. The serialized approach necessitates detailing the language’s execution se-

mantics only after creating the metamodel. The execution semantics of the language,

the presence of model elements within the model, their interrelationship, context

within successive models and the environment need to be unambiguously defined to

limit or remove undesired or non-deterministic behaviors. At the onset only one

i-DSML had been created for use within the user-centric communication domain ap-

plying the aforementioned approach. This i-DSML is the Communication Modeling

Language (CML) [83] and its DSVM is the Communication Virtual Machine (CVM)

[17]. The execution semantics for CML remains tightly woven into CVM locking the

methodology in a one language, one interpreter mapping. While the semantic domain

is an extension of the abstract syntax, current approaches do not allow for the exe-

cution semantics to be defined in parallel to the meta-model or in a reusable manner

[15].

2

In the development of this dissertation a second i-DSML, MGridML, and it’s

DSVM, MGridVM, was created in its entirety. This i-DSML pertains to the energy

management domain, specifically addressing an atomic element within the smart grid

concept called the microgrid. During the development of this new i-DSML, several

commonalities became apparent between the initial language/interpreter pair, CM-

L/CVM, and the new MGridML/MGridVM.

To further investigate the commonalities within the DSVM we scrutinized the

way each i-DSML is executed to establish a model of execution (MoE) for each the

i-DSML. A MoE implicitly describes how models (or model differences) translate

to behavior. This MoE, while unique to each language, possesses mutual execution

constituent elements. We sought to understand these elements with an eye to reuse

them in building future i-DSMLs.

The focus of this dissertation is to investigate the feasibility and utility of an

extensible framework based on a generic model of execution (GMoE) for i-DSMLs.

The shortcomings of the existing DSVM development methodologies which lacks sup-

port for reuse is the primary motivation for embarking on this research path and is

elaborated next.

1.1 Motivation

As software solutions increase in complexity, greater demands are placed on the re-

search community to develop effective tooling support and high level abstract concepts

to represent the desired solution. The use of domain-specific approaches has proven

its benefits in taming this complexity by allowing the problem to be addressed at

a higher level of abstraction. There are however some drawbacks associated with

this approach which is manifested in the software engineering community being re-

luctant to fully embrace the paradigm. Of particular interest to the dissertation is

3

the quality of the language solution and the expertise required within the realm of

domain-specific modeling.

One central tenet of Model-Driven Engineering (MDE) is computational complete-

ness of PIMs; the capability of such models to be executed [68]. A major challenge in

realizing computational completeness lies in the representation and interpretation of

the i-DSML execution semantics. Currently i-DSML execution engines are developed

from scratch in a serialized manner after the language’s syntax has been specified.

The execution semantics is usually embedded in the interpreter with no exploitation

of the commonalities which exists in the DSVM framework. DSVMs are also designed

separately from their respective i-DSML, with a lack of regard for the critical mapping

between syntactic and semantic domains.

The development of a i-DSML requires expertise in not only the problem domain

but in metamodeling and interpreter building. The development becomes dispropor-

tionately resource intensive, as much of the knowledge gained in actual language de-

velopment is lost and the solutions remain custom-built. As the execution semantics

in the language is tightly interwoven within the interpreter there are high mainte-

nance costs involved when minor changes are made to the language [87]. The lack of

methodologies that employ the reuse of interpreter logic and model transformation

operations is a primary source for development errors [42].

Currently systematic approaches to assist language designers with interpreter tool-

ing and to define DSML execution semantics are a major challenge of MDE [15]. We

posit that the development of a GMoE will reduce redundant developmental effort

by reusing interpreter logic. In accord with Fayad et.al. [26], a GMoE reified to an

object oriented framework addresses the challenge of homogeneity in architecture and

may yield the following benefits:

• Containment of verification and validation efforts.

• Improvement in quality through the reuse of proven designs.

4

• Preservation of domain knowledge (domain in this context refers to that of

i-DSML interpretation).

• Encapsulation of volatile implementation details.

The adaptable runtime model which is an abstract representation of the sys-

tem under control is a staple of the DSVM methodology as such, encapsulating the

transformation process is critical to curtailing a lengthy and arduous developmental

process. By first extracting a MoE, we realized the essential skeleton to actualize a

framework capable of rapidly realizing interpreters across multiple domains. Defining

the language in terms of its metamodel and execution semantics in rough parallel

allows language authors to approach the task in a totalistic manner. This also allows

for interdependency and traceability concerns to be more apparent and manageable.

The preliminary work on CVM and creating an i-DSML for microgrid energy

management, MGridML and MGridVM, indicated that the generic architecture for

DSVMs presented by Clarke et al. [56, chp. 9], shown in Figure 1.1, was feasible

and interesting. We directed our investigation into the commonality found within

the semantics for the synthesis process of the two domains. Our primary observation

revealed that the redundant parts of these MoEs were, (1) a comparison of models

at runtime and, (2) a subsequent interpretation of the resultant changes to produce

directives to lower layers of the DSVM; however deeper analysis was warranted.

1.2 Problem Definition and Contributions

The research question under investigation is how to decouple the domain-specific

knowledge (DSK) from the model of execution (MoE) in the synthesis engine, and

subsequently producing a generic model of execution (GMoE) that can be used to in-

stantiate synthesis engines in other DSVMs. The scope of this research is confined

within the synthesis engine which carries core processes to interpret changes in the

5

Users

Microgrid User Interface
(MUI)

Microgrid Synthesis
Engine (MSE)

Microgrid Control
Middleware (MCM)

Microgrid Hardware
Broker (MHB)

Plant Controllers

MGridVM

Smart
Contoller A

Controller
B

Smart
Device C

User / Application (local)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker
(NCB)

Comm. Frameworks

CVM

User / Application (remote)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker
(NCB)

Comm. Frameworks

CVM

(a) Generic Virtual Machine

(b) Communication Virtual Machines

(c) Microgrid Virtual Machine

User / Application

User Interface (UI)

Synthesis Engine (SE)

Middleware (M)

 Broker (B)

Frameworks/Contollers

VM

Input

Instance Models

Control Script SE Events

API Calls CM Events

API Calls B Events

Instance Models

Figure 1.1: High Level View of Generic Architecture Highlighting the Synthesis En-
gines

controlled system and user requirements to produce control scripts which in turn dic-

tates behavior of the aforementioned controlled system. To answer this question, the

research effort required a division into the following three sub-problems:

1. How do we formulate a MoE for MGridML model synthesis in MGridVM, based

on changes to user-defined models at runtime? This sub-problem requires an

investigation into the various approaches used to represent dynamic semantics

and how model changes can be realized in an efficient and correct manner for a

new domain.

6

2. How can DSK semantics be extracted from the MoE and represented in a per-

sistent manner? To answer this sub-problem we need to decouple the DSK

semantics from the MoE for a given DSVM. In addition, we need to identify

techniques that can be used to represent the DSK semantics in a persistent

state.

3. How to formulate a GMoE from the reusable interpreter logic and instantiate the

synthesis engine, given a representation of the DSK? For this sub-problem we

need to transform the MoE to a GMoE so that can be used for different domains

e.g., user-centric communication, and define a methodology for recombining the

DSK semantics and GMoE. This approach needs to be evaluated using at least

two domains for different types of systems.

In addressing these questions, this research presents its primary contribution as an

integrated methodology and tool support for reusing interpreter logic in the form of a

generic model of execution for i-DSML synthesis engines. In particular, this high-level

contribution has spawned the following as novel elements:

Contribution 1: The formulation of a detailed description of a new i-DSML for

the microgrid domain complete with an unambiguous definition of the semantics for

synthesizing instances of its models based on changes at runtime. The design intent

of the MoE for this i-DSML is formulated around the lose coupling between the

commonalities of DSVMs interpreter logic and DSK concerns.

To evaluate this contribution we described an abstraction of the synthesis process

for MGridVM that is unambiguous and traceable with respect to the requirements es-

tablished by the microgrid domain analysis process. The specification was sufficiently

complete to be reified to a prototype capable of generating the correct microgrid con-

trol scripts (MCSs) given a test suite from a cross section of models from the microgrid

domain.

7

Contribution 2: A methodology to separate and persistently represent Domain-

Specific Knowledge (DSK) using the synthesis engine for the MGridVM. This entails

revisiting the initial MoE for the MGridVM synthesis engine and decouple the con-

cerns utilizing aspect-oriented refactoring in such a manner that the DSK can be made

persistent. More specifically, we persistently represent DSK as: (1) the i-DSML meta-

model; (2) a set of finite state automatas; and (3) a change mapping table whereby

changes between the user intent model and the adaptive runtime model is mapped to

specific domain actions.

Contribution 3: A representation of a GMoE for i-DSMLs. The GMoE is evaluated

via synthesis engine instantiations given DSK artifacts and the derived GMoE as

proof of concept. We present a prototype and use appropriate metrics to measure

the change in the code base, effort, coupling and performance, compared to earlier

instantiated synthesis engines to determine utility and the overhead required during

the development process.

1.3 Dissertation Roadmap

Chapter 2 situates the dissertation by providing background in model-driven engineer-

ing, domain-specific modeling languages, aspect-oriented software engineering, and

energy management as it relates to the microgrid. In addition, we provide a review

of the related literature in the areas of model operations, model synthesis, model exe-

cution, an existing i-DSML, the Communications Modeling Language (CML) and its

interpreter, the Communications Virtual Machine(CVM), and alternate approaches

to energy management.

Chapter 3 describes the development of a new i-DSML, MGridML and its inter-

preter MGridVM. From this new i-DSML we will derive a MoE for model synthesis.

A MGridVM prototype is presented to prove the concept of the MoE targeting an

architectural design with loose coupling of concerns.

8

Chapter 4 states how the domain specific knowledge is separated and persistently

represented while preserving the intended behavior. In this chapter we apply aspect

aware techniques to inspect the MoE derived in chapter 3 for crosscutting concerns,

refactor the MoE to separate and persist the DSK as a primary concern.

Chapter 5 presents the distillation of the MoE to a GMoE. We present a meta-

modeling approach as a gluing mechanism for instantiation. The reification of the

GMoE and the domain specific knowledge is presented as a prototype and a demon-

stration of principle. The prototype is evaluated and comparatively studied as a tool

to leverage common functionality in the reduction of i-DSML development effort.

Chapter 6 summarizes the dissertation’s contributions and considers promising

future directions for this research.

9

CHAPTER 2

LITERATURE REVIEW

This chapter provides the background essential to understanding the problem

under investigation and reviews prior works related to model operations, model syn-

thesis, model execution and microgrid energy management. An overview of key terms

and concepts used in this dissertation is also provided to supplement this review.

2.1 BACKGROUND

This section provides background related to understanding the investigated problem.

We first overview the model-driven engineering paradigm then define domain-specific

modeling languages (DSMLs) and introduce the concept of an interpreted DSML

(i-DSML). We will next look at aspect-oriented software development which is the

driving methodology to extricate the DSK from the MoE. Finally key concepts in the

energy management domain is addressed to transition to chapter 3.

2.1.1 Model-Driven Engineering

Software research has consistently sought to address increasing complexity in the

solution domain using ever higher levels of abstractions. The methodologies and

toolsets employed mostly addresses abstractions of the solution space. Model-Driven

Engineering (MDE) seeks to bridge the conceptual gap between the problem and

solution domains by utilizing models as problem-level abstractions [31]. As first-class

artifacts, models are elevated from the level of documentation to being integrated

within the development process or the implementation itself as in adaptable runtime

models. Software engineers who embrace this paradigm are able to specify solutions

using concept representations from the problem domain. Models created as such are

capable of being systematically transformed to implement behavior, either directly or

10

via some intermediate artifact. Another goal of MDE is to protect software developers

from the underlying complexities of the implementation platforms.

To realize these goals there are a myriad of underlying challenges which France

et. al. [31] considers as wicked problems. Among the attributes of wicked problems

are the lack of stopping rules, the idea that solutions can be considered good or bad

not true or false, and they possess no ultimate test of the solution[63]. France et. al.

goes on to identify the following as major software engineering research areas that

influence MDE success:

1. Reuse of development experience;

2. Systematic software testing

3. Technology for compilation

This dissertation pertains strongly to the first and third items. By developing a

reusable framework, experience gained may be easily leveraged by language develop-

ers, allowing them to focus on domain specific concerns. One of the contributions of

this dissertation is a novel adaptable interpreter technology to reduce developmental

effort.

Rivera et. al. [64] speculates that there are a lack of real MDE practices and

mature tools which support the automation of design, development and analysis of

software systems. Furthermore industry’s high interest in MDE could wane should

engineering research not be able to deliver measurable engineering methodologies and

processes to support predictable development of software systems. Rivera et. al sees

three predominant challenges to the MDE vision:

1. The specification of behavioral semantics of metamodels to allow for more rig-

orous analysis;

2. Support for a temporal dimension for behavioral descriptions;

11

Figure 2.1: DSL Concept Adapted from [78]

3. Tackling essential complexity through the effective use of complementary view-

points.

This work most directly targets the first challenge as the framework allows for de-

velopment efforts to be focused on behavioral semantics in the production of DSK

extensions and ignore the peripheral commonalities of model interpretation.

This dissertation adopts the view of MDE as a systems creation paradigm related

to the design and specification of modeling languages based on a four layer archi-

tecture as in [4]. Within the MDE architecture, the lowest or M0 layer, represents

’real world’ objects. At the M1 layer are abstractions of M0 as models. M2 mod-

els are metamodels that defines a set of valid M1 models. At the highest level are

M3 metametamodels whose concepts describe the M2 metamodels. This architec-

ture allows for the creation of the key construct of the MDE paradigm, namely the

domain-specific languages (DSLs). Within this dissertation the distinction between

DSLs and Domain-Specific Modeling Languages (DSMLs) are not made and are used

12

interchangeably; the practice of MDE requires viewing textual and graphical language

representations as models.

2.1.2 Domain-Specific Modeling Languages

Domain-specific languages also known as little languages are so called as they are

comparatively smaller than their general purpose counterparts and possess focused

expressive power [76]. Compared to general purpose languages, DSLs may provide a

more optimal solution for well defined application domains [77]. Operating within an

application domain, the DSL inherits the constraints and assumptions of that domain.

Empirical data from [46] suggests that the use of DSLs increases reliability, usability

and flexibility. Informally the term domain-specific modeling languages DSMLs is

used to refer to graphical DSLs [29].

Figure 2.1 shows the interrelationships of the MDE layers and how they currently

relate to DSL development and utility. A DSL comprises at least one Concrete Syntax,

a Metamodel and its Semantics. The Metamodel is further comprised of an Abstract

Syntax, and its Static Semantics. The dynamic or execution semantics of the DSL is

embedded within the Model Interpreter which is used to generate a Modeling Solution.

Of particular relevance to the motivation for the dissertation is the connectedness

of the Language Developer (Upper-right) and the Application Developer (Lower-Left).

Although these roles are seemingly separated, in a majority of cases their roles become

one in the same. Application developers are often required to assume the role of the

language developer, which requires a substantial degree of expertise in interpreter

development. The objectives within this dissertation addresses the essence of this

problem by capturing some of this expertise within a GMoE framework.

DSLs allow for significant gains with respect to ease of use and productivity when

compared to their general purpose counterparts [55]. The ease of use and focus within

13

the scope of the domain lessens the expertise required and translates to the languages

widening their usage base to a larger group of developers.

The investment in developing a new DSL is significant. DSLs are usually developed

in four discrete stages [78]:

• Analysis - In this stage the domain is inspected and the predominant features,

concepts and elements are gathered and represented as artifacts. This is the

stage where the language developer gains vital knowledge regarding the domain.

• Design - At this stage the abstracted artifacts are used to produce a specification

for the language.

• Implementation - This stage concerns the development of the interpreter re-

sponsible for transforming models which comply to the language specification

to lower level artifacts or behaviors within a controlled systems as is the focus

of this dissertation.

• Usage - This is the stage where that domain users or application developers

may construct models and apply them using the tooling to solve some problem.

The challenge in developing DSLs is that along with language development exper-

tise there is a significant amount of domain knowledge required. To compound this

issue these requirements may fall on the shoulders of the same person or small team

[55]. DSL development decisions are often left postponed resulting in the majority

never reaching the implementation phase.

To delve deeper within domain-specific languages a more formal definition is

needed. Chen et al. [11] defines a DSL as a five-tuple, < C,A,Mc, S,Ms >.

• The concrete syntax (C) - expresses elements in the abstract syntax. It defines

the notations used to create the model.

14

• The abstract syntax, (A) - defines the language concepts, their relationships

and related integrity constraints for the language.

• The semantic domain (S) - is a set of expressions with well defined behaviors or

meaning in some domain and is usually represented in some formal framework.

• The syntactic mapping (Mc : C → A) - assigns syntactic constructs to elements

in the abstract syntax.

• The semantics mapping (Ms : A → S) - relates the abstract syntactic con-

cepts to the semantic domain. The abstract syntax and the static semantics

together represent the meta-model of a DSML. The meta-model is specified as

< A,C,Mc >.

The spectrum of DSMLs that are used in the generation of valid software artifacts and

applications include those that are translated into an intermediate general-purpose

high-level programming language, and those whose models are directly executed by

a model execution engine [10]. This dissertation relates to the latter class of DSMLs,

which we will refer to as interpreted DSMLs (i-DSMLs). i-DSML’s are directly in-

terpreted and models may be reconstructed (synthesized) during runtime according

to interpreter constraints, system state and the state of the domain elements under

control. The advantage of i-DSML’s is the capacity for model changes and debugging

at runtime without regeneration, retesting and redeployment, [16] . Model execution

has become a core interest in model driven engineering (MDE).

2.1.3 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) pertains to a methodology which

provides the means by which to separate or modularize cross cutting concerns [66, 28,

14]. A concern in this sense pertains to an interest important or otherwise critical to a

stakeholder and relates to the development, operation and maintenance of a software

15

system [75, 25]. The weaving of concerns within and across a software’s architecture

diminishes its maintainability and the reusability of components significantly [66].

First coined by Dijkstra in [18], the term separation of concerns refers to a principle

which states each concern is best treated in isolation from others [25]. This principle

alludes that within most large software systems concerns crosscut each other and are

woven within the architecture. The implementation of these concerns are scattered

throughout the software itself and requires aspect aware refactoring to modularize

concerns.

AOSD seeks to modularize the concern to develop software with enhanced main-

tainability and reuasability, which leads to better software. To develop a system with

separated yet cooperating modules, the paradigm relies on aspects and join points as

its core concepts. An aspect is a module capable of encapsulating and implementing

a concern and refers to join points [36]. Join points are well defined points within

a programs control flow where the an aspect is incorporated. Join points may be

in the form of function calls variable reference or even an assignment statement. A

set of join points which signify where an aspects advice is invoked is referred to as a

pointcut.

In our research we augment our model driven approach with aspect-oriented refac-

toring whereby we treat the DSK as concern to be made distinct and isolated.

2.1.4 Microgrid Energy Management

The changes in energy consumption patterns are being dictated by rising energy costs

and higher demand. These changes manifest themselves as additional requirements

of the legacy electrical grid. The United States Department of Energy and similar

entities across the globe have been tasked to upgrade the single largest interconnected

machine on the planet, the electrical grid. The existing grid, heavily reliant on fossil

fuels, has effectively remained unchanged since the early twentieth century and is

16

reaching its functional limits. The smart grid is seen as the successor to the legacy

grid. A core component central to realizing the smart grid concept is the microgrid.

Microgrids are atomic self contained energy grids which conceptually should mon-

itor their consumption and co-generate their own power [37]. As such, microgrids

may operate in grid connected or in off grid mode. The ability to operate in isolation

of the macrogrid requires Distributed Energy Resources (DERs) which constitutes

Distributed Storage(DS) and Distributed Generation (DG). DERs provide the ability

to leverage renewable energy efficient technologies to flatten peaks in consumption

by infusing DERs at intervals of high consumption. With the advent of this concep-

tual model, consumers may set energy use policies leading to an increased awareness,

consumer participation, and eventually a limitation on peak usage.

The impact of microgrids is a key aspect to realizing the goals of the smartgrid

[37].There has been significant effort in the research community to address energy

management within the microgrid domain[20, 86, 43]. A prominent definition and

the one our work is based on is the CERTS microgrid concept (CM)[50]. Distributed

energy management is a paramount concern increasing robustness, normalizing qual-

ity of service and reduce communication traffic with the smartgrid.

Lasseter et al. [50] state that the structure of the CM is based on an aggregation

of loads and microsources operating as a single system providing both power and

heat. Figure 2.2 is a diagram of the CM structure adapted from Marnay and Bailey

[53]. On the left of the figure there is a point of common coupling that interfaces

with the macrogrid e.g., utility company.

The larger grid will see the microgrid as a collection of loads and sources aggre-

gated as a single controllable unit. When connected to the larger grid, the microgrid

may expand the usual role of consumer, to that of a producer through its DER com-

ponents. In off grid or islanded mode the microgrid needs to balance demand and

supply which it accomplishes through reducing controllable loads (load shedding) or

17

sensitive loads

EXIT

adjustable loads

shedable loads

PCC

HL
HL

HL

Grid
Request

Point of
Common Coupling

Static
Switch

Energy Manager Power Flow Controller Differential Current Circuit Breaker

Communications HLProtection Data Electric Wires Heat Load

Micro Turbine PV Panel Fuel Cell Reciprocating Engine Fuel Cell Car

computer adjustable
light fan Smart

refrigerator
Smart

washer/dryer

Figure 2.2: The CERTS Microgrid Concept.

by bringing more power sources (DERs) online. The dynamism of this system relies

on capable energy management systems.

The pertinent components of the CM which are abstracted in the development of

MGridML are:

PCC - or Point of Common Coupling, represents that point where the microgrid

may connect or disconnect from the distribution grid.

Loads - are devices that consume electrical energy. Dependent on their perceived

role these devices may be classified as controllable or non controllable. Aside from

controllability there is also a need for further grouping into (1) sensitive loads - loads

that must be met if at all possible with distinct quality of service requirements, (2)

adjustable loads - can set the amount of load shed, and (3) sheddable loads - loads

that are abandoned first if there is a power shortage.

18

Sources - Distributed Generation (DG) elements include generation resources which

may rely on renewable or non renewable sources. We categorize DG elements as

dispatchable or nondispatchable based on controllability. Consider wind power as

nondispatchable as it is not an on-demand technology as are fuel cells.

Storage - Distributed Storage (DS) serves to stabilize sources in the MG in the event

of load fluctuations and bridges the gap caused by the intermittent nature of sunlight

and wind when used as an energy resource. DS elements may facilitate operational

transitions from a black start. A microgrid black start is the process of recovering

from a partial or total loss of power. DS elements include super capacitors, battery

banks and flywheels [48].

Smartmeter - The smartmeter constitutes the portal to the advanced metering

infrastructure where data is exchanged with the smartgrid via radio frequency or

over powerline communication methods.

Physical Controllers - Plant elements may contain integrated or non integrated

controllers which are capable of changing the operational state of said device. Physical

controllers may be composed into logical controllers at a higher level of abstraction to

simplify management of incongruous and dispersed devices. The user therefore may

define groupings of devices to be managed in concert without any knowledge of the

physical controllers or which devices they control. As a case in point all outdoor lights

may be grouped within a logical controller which may have the directive to switch all

its devices on at 6pm. The interpreters middleware would make the required mapping

and execute the task.

MGCC - Microgrid Central Controller is responsible for coordinating the operation

of the microgrid. This controller orchestrates the delicate demand supply balance.

19

2.2 RELATED WORK

This dissertation bears upon a myriad of MDE concerns. It is apparent that this

dissertation cannot capture all the extensive subfields and the rich research within. In

that light, this section we address five specific areas of related work that most directly

influences and relates to the GMoE: (1) operations essential to manipulating models

at runtime; (2) the synthesis as it relates to programs and models; (3) approaches that

support runtime model execution; (4) the first i-DSML, the Communication Modeling

Language (CML) and the Communication Virtual Machine (CVM), the execution

engine for CML is described next. CVM plays a crucial role in the development and

evaluation of the GMoE approach at the heart of this dissertation; and (5) approaches

to managing energy within the microgrid.

2.2.1 Model Operations

Being grounded in MDE, our approach treats models as first class artifacts. We

extensively utilize model operations as a basis of our operational semantics; the main

operation being model comparison. The model comparison algorithm we employ

yields changes which fall within three distinct categories add, remove or modify. These

changes are based on the difference of an existing model with a new proposed model;

recall i-DSML semantics are based on changes to models at runtime. These changes

which occur may in turn drive changes to the existing model dependent on the state

of the system.

There have been several approaches proposed for the comparing, composing and

transformation of models. Alanen et. al. [2] describes a method of model composition

through the use of generic difference and union operations. It identifies a set of prim-

itive operations which allow model differences from various models to be identified

from a base model, and then to have these changes composed into a new model. The

20

primitive operations include those used in this work and we respect the approach that

model differences are not models.

Yuan et al.[79] describe a method for change detection of XML documents. This

method would allow for the detection of unordered elements in a model. While our

models are easily represented as XML documents (for example, the use of XMI for

persistence) as they are indeed graphs, models resident in memory may utilize more

appropriate representation mechanisms. Additionally, our approach incorporates an

event driven mechanism to initiate change notifications. The composition of our

various models requires a fundamentally different approach to finding unions and

differences. As pointed out in Kelter et.al.[45], although XMI and other XML based

models have primarily tree-like structures, they are not exactly trees as they may

contain cross references to other elements in the model, or in external models. Wolfe

et al. [82] utilizes an approach of graph rewriting rules to maintain consistency

between models, when inconsistency occurs though the failure of a component which

results in its removal from the model. Our approach differs in that changes may occur

from various events, which may result in the addition or removal of elements from

our model, and model consistency must still be maintained.

To the best of our knowledge there is no work pertaining to changes to models at

runtime to define the semantics of a DSML. Stanek et al. [70] provides groundwork for

the theory of labeled attributed graphs and the graph differencing problem. Kelter et

al. [45] presented work regarding the development of a generic difference algorithm for

UML models. Their approach compute the differences between UML models encoded

as XMI files and reported satisfactory performance.

Xing et al. [84] describes an algorithm, UMLDiff, that automatically detects

structural changes between designs in different versions OO of the software. UMDiff

traverses two class models identifying corresponding entities based their name and

structure similarity. Unlike the approach by Xing et al. that compare UML mod-

21

els based on the UML metamodel, Lin et al. [51] present metamodel-independent

algorithms and tools for detecting mappings and differences between DSMs. Lin et

al. define their models as a typed attributed hierarchical graph. The approach we

used to identify model changes is based on a labeled attributed graph, as a result if a

change is made to an attribute we consider the node in the graph as being replaced.

The work by Xing et al. [84] and Lin et al. [51] tend to focus more on model evolution

than on using changes to support the dynamic semantics of a DSML.

2.2.2 Model Synthesis

The term model synthesis has been used in several contexts in the domain-specific

modeling community. The most common use of the term model synthesis is the

translation of a higher-level more abstract model, into a low-level more concrete model

[54]. An example of synthesis is the (semi)automatic generation of source code from

DSML models. Since models are based on graphs, many of the operations used to

perform model-to-model transformations are based on graph transformations [1]. Our

work uses some of the basic concepts used in graph transformations such as comparing

graphs to identify model differences [2, 51, 70, 84], which are the changes used in our

model comparison. In addition, unlike the traditional approaches we transform an

MGridML model, a more abstract model, into control scripts, a lower-level model,

while the application is running, i.e., we perform runtime model synthesis.

Bencomo et al. [6] describes how models at runtime may be used to synthesize

software artifacts, particularly mediators, during the execution of a system to solve

the interoperability problem in the networking domain. Their approach uses discovery

and learning methods to capture and refine knowledge of the context and environment

of the running system to create a runtime model. The behavioral semantics for the

runtime model are captured using labeled transition systems (LTSs), which model

the interaction protocol. Using the knowledge of the runtime models, including the

22

current structure and behavior, software artifacts (mediators) are synthesized on the

fly. In the broad sense the approach by Bencomo et al. is similar to ours in that

it manipulates models at runtime, it keeps track of the current state of the system,

and the models are causally connected to the running system. However, unlike our

approach their runtime models are created without user involvement and do not

represent the user requirements of the running application.

Mannadiar et al. [52] describes an approach for synthesizing artifacts from domain-

specific models (DSM) using layered model transformations. The authors use the

PhoneApps DSML to develop a DSM to build a phone application, then apply a

set of rule-based transformations to compile the PhoneApps model into increasingly

low-level code until the complete Google Android application is created. The DSM

consists of three models, a statechart for the behavior, android screens for the UI,

and phone features that will be used. Unlike our approach, Mannadiar et al. captures

the behavior of the phone application by transforming PhoneApp containers into a

statechart using several predefined rules. In our approach we assume the LTSs for the

controllers have already been created by an expert in the microgrid domain and used

during the runtime synthesis process. Their approach also exploits existing features

in the phone to create the application, similarly we use the services provided by the

plant controllers to realize the microgrid solution (see Figure 3.10).

Edwards et al. [21] describes an approach that automatically synthesizes config-

urations from models for flexible model analysis and code generation; these models

are mainly in the software architecture space. Their approach enhances the domain-

specific language (DSL) metamodel with additional semantics that enable the gen-

eration of configuration files and plug-ins. The premise of their work is that model

editors and model interpreters are isomorphic therefore rendering models in an editor

is just another form of model interpretation. The semantics are applied to the objects

in the metamodel thereby supporting the creation of a metainterpreter and model in-

23

terpreter framework that together perform the synthesis of various tools. Unlike the

approach by Edwards et al., we do not generate any code for tools to support analysis

of the software for the application. Our model synthesis directly executes application

models at runtime and generates controls scripts to be interpreted by the next layer

in the DSVM.

Automated program synthesis, or proof theoretic synthesis, introduced by Sumit

and Gulwani[33, 34, 35] is a methodology to generate executable programs from user

intent expressed in terms of constraints. This research direction, as with ours, is

considered enabling technology for non-expert programmers; effectively broadening

the spectrum of users by providing the tooling support through abstraction to gener-

ate complex applications via synthesis. Users of program synthesis may declaratively

stipulate their intent (functional specification) in terms of examples; logical relation

between inputs and outputs. This is analogous to our user specifying a model of intent

Muser, output, and viewing the current runtime model Mruntime as input.

These approaches diverge in how the researchers synthesize programs from the

analysis of (input→ output), and how we synthesize new models and control scripts

from model changes,(Mruntime → Muser). Our approach utilizes labeled transition

systems specified by the i-DSML author(s) to interpret the model changes. Program

synthesis utilizes searching techniques based on exhaustive search, version space alge-

bras, machine learning or logical reasoning techniques applied to a search space over

imperative/functional programs, or restricted models of computation.

Wu et.al. [83] presented an earlier approach to model synthesis for an i-DSML,

CML, developed within our research group. This approach presented the initial ap-

proach to define the behavioral specification for an i-DSML which relies on the dy-

namic synthesis of models to produce control scripts. This approach was targeted

solely to the user centric domain, however we were able to draw upon its core inter-

preter logic to define the next generation i-DSML (MGridML). Our current approach

24

refines this earlier approach and extends the synthesis process to be generalized across

both i-DSMLs. More precisely, the approach to defining model synthesis relies on four

main processes:

• A SE Controller - responsible for coordinating the transformation of incoming

model instances and updating the environment.

• A Schema Analyser - responsible for identifying the changes to the models then

submitting such changes to the Connection process.

• A Connection - responsible for maintaining the subprocesses for (re) negotiating

a connection or transferring media during a session. This process is specific to

the communications domain.

• A SE Dispatcher - responsible for updating the upper and lower layers of the

DSVM and sending action requests to the SE Controller for environment up-

dates.

The more significant distinction between the two approaches concern revisiting these

processes to ensure greater modularity and aptness to be extended and generalized.

The functionality of the SE Controller and Schema Analyser were revised to spawn

separate modules for model comparison, change interpretation and runtime update.

This revision required an explicit runtime model which causally represents the con-

trolled system. We further encapsulated model changes (add, delete, modify) within

a change list as the means of communication between the model comparator and

change interpreter. The domain specific Connection was separated into the DSK se-

mantics and made persistent by using labeled transition systems based on the state

machines presented by Wu. This dissertation will present the systematic refinement

of this early architecture, making it more supportive of generalization and allowing

for the separation of DSK and GMoE within the execution semantics of an i-DSML.

25

2.2.3 Model Execution

Model execution is a central concern of MDE. DSMLs are a key feature to realize MDE

objectives. There are two distinct approaches to realizing behavior from DSMLs, code

generation and direct interpretation. DSMLs which are analyzed by transformation

engines to synthesize intermediate artifacts such as high level languages [44]. Utilizing

intermediate artifact do however have its drawbacks as changes to models at runtime

require regeneration, retesting and redeployment. Edwards et.al. [22, 23] presents a

model interpreter framework to automate DSML development at the language and

interpreter level by employing an abstract component technology. Our work differs

in two critical aspects. The approach used by Edwards et al. concerns the transfor-

mation of models to an intermediate high level language. Secondly, the semantics of

our approach are derived from changes to models at runtime.

Several approaches utilize action languages to thread executability within meta-

models such as Kermeta [58], xOCL [12] and using abstract state machines [62]. These

approaches allow for intuitive development of models, however they do not specify

how the models are to be interpreted or a generalized methodology as outlined in

our work. Combemale and Pantel have however proposed a design pattern called the

executable DSML pattern [15] targeted at the development of a reusable model of

computation similar to our model of execution. Sadilek and Wachsmuth presented

a similar approach, EPROVIDE [65], providing executablity to DSMLs along with

interpreter specification support, prototyped using petri-nets. The fundamental dif-

ference in approaches is that our semantics is based on model changes at runtime.

2.2.4 The Communication Modeling Language

The increased user demand for communication solutions to leverage technological

advancements, has led to the search for highly customizable solutions integrating

voice video and data. In addition, many users of communication solutions require a

26

level of abstraction that allows them to specify their requirements using terminology

from the user-centric communication domain. The scope of the term communication

is limited in this dissertation to designate electronic media over a data network.

As a result of this need the first i-DSML, Communication Modeling Language

(CML) was created by Clarke et al. [13] and its DSVM the Communication Virtual

Machine (CVM) by Deng et al. [17]. There are two versions of CML: a graphic based

(G-CML) and a textual X-CML which is a XML derivative. The base operations of

CML are:

• Data transfer

• Add/Remove participants

• Establish connection

• Data transfer specification

• Dynamic structuring of data for transfer

Figure 2.3 shows the abstract syntax for CML. The language has CommunicationSchema

as its root construct which may be either a ControlSchema or a DataSchema.

A ControlSchema defines the configuration of the communication instance. it

comprises one or mode Connections, one or more attachedParty, and one or more

DataTypes. In turn each Connection has one or more Devices and one or more

DataTypeRefs. Each AttachedParty has one or more IsAttached and one or more

Persons. Datatypes are abstract representations of a FormType or MediumType; with

a FormType capable of being composed of FormTypes or MediumTypes. This rich

metaclass relationship gives CML the capacity to describe the users communication

requirements intuitively.

The DataSchema carries the actual data used in the communication session. A

DataSchema may be a Request or DataContent. A Request can be either a MediaRequest

27

ControlSchema

-connectionID : EString

Connection

AttachedParty DataType

-deviceID : EString

-isVirtual : EBoolean

-isLocal : EBoolean

Device

-personID : EString

-personName : EString

-personRole : EString

Person

-capability : BuiltInType

DeviceCapability

+TextFile

+LiveAudio

+LiveVideo

+LiveAV

+Text

+AudioFile

+VideoFile

+AVFile

+NonStreamFile

«enumeration»

BuiltInType

-deviceID : EString

-personID : EString

IsAttached

-mediumTypeName : EString

-mediumURL : EString

-mediumSize : EString

-lastModifiedTime : EString

-validityPeriod : EString

-fileTransferTime : EString

-voiceCommand : EString

-derivedFromBuiltInType : BuiltInType

-source : EString

MediumType

-formTypeName : EString

-actionTF : ActionTypeForm

-suggestedApp : EString

-voiceCommand : EString

-layoutSpec : EString

-source : EString

FormType

controlSchema

1

conn1..*
controlSchema1

attachedParty1..*

1

person1..1

1

isAttached1..1

1

dataType1..*

1

deviceCaps1..*

-connectionID : EString

DataSchema

-requestID : EString

-requestAction : ActionTypeRequest

Request

-formDataType : EString

-formID : EString

-suggestedApp : EString

-voiceCommand : EString

-action : ActionTypeForm

-layoutSpec : EString

Form-mediumDataType : EString

-mediumName : EString

-mediumURL : EString

-mediumSize : EString

-lastModTime : EString

-validityPeriod : EString

-firstTransferTime : EString

-voiceCommand : EString

Medium

1
request0..1

1

subForm0..*

1
subMedium 1..*

-communicationID : EString

CommunicationSchema

+open

+save

«enumeration»

ActionTypeRequest

+send

+sendOnDemand

+secureSend

«enumeration»

ActionTypeForm

1
device1..*

DataTypeRef

-mediumTypeName : EString

MediumTypeRef

-formTypeName : EString

FormTypeRef

1

dataTypeRef1..*

DataContent

1

dataContent

0..1

1

subFormType

0..*

1

-subMediumType 0..*

-mediumName : EString

MediaRequest

-formID : EString

-mediumURL : EString

FormRequest

Figure 2.3: CML Abstract Syntax

or a FormRequest. A DataContent can either be a Medium or a Form. Forms may

have subForms.

Figure 2.4 presents the four layered architecture of CVM which realizes the user-

defined communication preferences captured by CML model instances. The four

layers of the architecture are:

• A User Communication Interface (UCI) provides the environment for the users

to specify their requirements.

28

• A Synthesis Engine (SE) transforms an adaptive runtime model according to

user preference models, platform capabilities and environmental events to co-

ordinate a communication session by the generation of communications control

scripts (CCS).

• A User-centric Communication Middleware (UCM) executes the control scripts

to coordinate the communications service.

• A Network Communication Broker (NCB) furnishes a network independent in-

terface with the underlying communications frameworks to actualize the re-

quests.

CVM is a distributed system whereby each communication hub requires a running

instance. Later in this disserattion we will show how we have enriched and refined

the earlier ad-hoc approach used in CVM. Using CVM as a basis the exploration of

inherent commonalities within the interpreters was launched and has provided the

basis for the specification of the execution semantics presented within this work.

We now overview the model synthesis approach used in CVM. The approach

represents that of the first i-DSML and as such the prototype, which while functional

is rudimentary with little or no separation of somain specific concerns. Revisiting

this early system is however essential as we will later show how it is refined and its

operational semantics captured using persistently represented DSK artifacts.

Figure 2.5 shows a high level representation of the synthesis engine of the CVM.

The process begins when the user submits a validated model consisting of a control

schema (CS) and data schema (DS) pair via the user interface (UCI). The SE con-

troller directs the analysis of (CS,DS) via Schema Analysis which does a comparison

of the model to the current runtime model and generates the schema changes. De-

pendent on the CS event type a renegotiation is initiated or the current negotiation

scheme is updated. The type of DS event may trigger a new media transfer or update

29

User / Application (local)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker (NCB)

Comm. Frameworks

CVM control / data Instances
(cml models)

manages delivery of
comm. services

manages delivery of media

negotiation of
control instances

Legend
Control and Data Flow Virtual Communication

Input

Comm. Instances Comm. Instances

Comm. Control Script SE Events

API Calls UCM Events

API Calls NCB Events

User / Application (remote)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker (NCB)

Comm. Frameworks

CVM

Figure 2.4: The CVM Layered Architecture

an earlier one. A byproduct of the media transfer and (re)negotiation processes are

control scripts to the middleware and a model to update the UCI. The SE Dispatcher

is responsible for the submission of these artifacts to the upper and lower layer of

CVM.

The CVM SE views a connection as a link between two or more participants (per-

sons) within the same communication space. The initial runtime model is (CS0, DS0)

which is the null model; indicating there is no connection present. The initial model

represented by (CS1, DS1) carries the initial communication requirement. DS1 will

be null as media transfer requires first a connection to be established.

We may view the process more formally as:

((CSi+1, DSi+1), Envi)→ ((CSout, DSout), Sci+1, Envi+1) (2.1)

30

Schema

Change

SE Controller

Schema Analysis

(re)negotiation

Media Transfer

SE Dispatcher

Connectioni

Schema from

UCI (CS,DS)

UCM Event

with (CS,DS)

Schema (CS,DS)

Figure 2.5: Overview of the CVM Synthesis Engine. CS - Control Schema; DS - Data
Schema

where: (CSi=1, DSi+1) is the next model to be processed;

Envi is the current executing environment which consists of:

(CSi, DSi) is the current runtime model. CSi ∈ {CSexe, CSneg}

The elements of the set {CSexe, CSneg} are a Control Schema either

being executed or being negotiated.

(CSout, DSout) is the new model generated by the synthesis process;

Sci+1 is the control script for the UCM layer; and Envi+1 is the new environment

subsequent to synthesis.

2.2.5 Microgrid Energy Management Approaches

With respect to our approach to energy management, much of the work in the area

of microgrids tend to focus on the electrical aspects such as efficient designs and hi-

erarchical integration [39, 43, 86] of generation and load into existing electric power

distribution infrastructure. At a high level, this work compliments much of the afore-

31

mentioned research by providing orthogonally, a simplified software engineering ap-

proach to support the management of the microgrid through models.

Several approaches to energy management utilize software multi-agent systems

(MAS) performing in concert to automate equilibrium between sources to loads. Pi-

pattanasomporn et.al. [61] presents a MAS for managing the microgrid whereby

agents communicate to work in concert to detect and island the dynamic system.

Dimeas et.al. [19, 20] describes an approach which utilizes MASs to control devices

in a marketing environment. Approaches using MAS are typically distributed by na-

ture, however our approach is hierarchical centralized control which lends itself to a

more resilient architecture.

The DSL approach is utilized in Habitation [40], a domain specific language for

home automation system design. Similar to our work, a model-driven paradigm is em-

ployed, providing a higher level of abstraction to the user of the tool. The Habitation

language however, targets the representation and manipulation of loads alone as the

aim is home automation. MGridML is designed to address the complete energy system

with algorithms concerned with the balancing of energy between loads and sources.

Additionally, Habitation uses a code generation methodology while MGridVM uses

a runtime model interpretation technique to support dynamic reconfiguration of the

microgrid.

32

CHAPTER 3

DEFINITION OF SEMANTICS FOR SYNTHESIZING MGRIDML MODELS

In this chapter we outline the development of the language designed to manage

demand side smart grid elements, MGridML, and its associated DSVM, MGridVM.

An illustrative scenario will thread this chapter. The focus of the discourse is the MoE

developed within the synthesis engine. A model of execution (MoE) for the synthesis

process that takes place during the realization of user-defined MGridML models is

defined. This definition is based on changes to control and data instances at runtime.

An overview of the synthesis process is provided, then a description of how the control

and data instances are analyzed and the resulting model changes interpreted. The

chapter concludes by illustrating how the synthesis process is applied and incorporate

the evaluation of the implemented prototype. This prototype has high significance

within this dissertation as it is used as a baseline for our comparative studies for the

GMoE inspired prototype in Chapter 5.

3.1 Microgrid Modeling Language

In this section the metamodel for MGridML, which consists of the abstract syntax

and the static semantics, is defined. The metamodel is represented using a UML class

diagram (Abstract Syntax) and OCL statements (Static Semantics). Prior to creating

the metamodel, a domain analysis was performed on the microgrid domain to identify

the mandatory and variable features of a microgrid. To illustrate an application of

MGridML, we create models for the Winter and Spring configurations using a generic

concrete syntax for the scenario in Section 3.1.2.

33

3.1.1 Domain Analysis

Undertaking the task of developing a language for the application in a particular

domain is nontrivial as significant effort is required [55]. According to Simos [67],

candidate domains should be reasonably stable where it is worth studying, mature,

and economically viable to do so. We contend that energy management within the

microgrid is an ideal candidate for implementing a DSL solution.

Domain analysis is performed using the Feature Oriented Domain Analysis (FODA)

approach [41] which identifies pertinent entities within the domain, yielding a taxon-

omy model for microgrids. Analysis of the application domain requires a thorough

grasp of the specifics to capture mandatory and variable features [55]. The analysis

centered around the CERTS microgrid concept(CM) [50] (See Figure 2.2) whereby

we determined the scope, terminology, concept descriptions and feature model for the

domain. Figure 3.1 shows the feature decomposition of the domain in the form of

a feature diagram. In the lower right you will see the key which explains how the

various features of the domain are constituted. As an example, the diagram indicates

that a mandatory feature of the smart microgrid is power supply which may include

a combination of external and internal resources; the latter of which may in turn be

composed combinations of power sources and storage elements. Here we see the smart

microgrid requiring the main features of:

• A Power Infrastructure;

• Energy Management;

• Privacy;

• Tolerance;

• Scalability

34

Smart Microgrid

Power Supply

Privacy

Load

Energy Mangement

Power Infrastructure

ProtectionConnection

External Internal

Generation Storage

Forecasting Data Servers and
Repositories

Voltage
Control

External Data
Interface

Smart
Meter Sensors Diagnostics

Tolerance Scalability

Power Data

OptionalRequired
Combination of

features may exists
Only one of the

features must exists

Key

Figure 3.1: The Microgrid Feature Diagram.

The language’s metamodel attempts to capture the required features of the Power

infrastructure in terms of its possible configurations while respecting the concerns of

Tolerance and Scalability.

Not all features of the domain can be represented solely by the language. Manda-

tory features such as tolerance which is excluded from the language is incorporated

within the virtual machine as an embedded cross-cutting concern.

3.1.2 Illustrative Scenario

We present a scenario from the domain of microgrid energy management that will

thread this chapter. The scenario will be used to illustrate how MGridML models are

used to infer the semantics during the synthesis process. The primary actor in our

scenario is Dana, a homeowner in northeast United States where there are distinct

changes in seasonal temperature and accordingly dissimilar energy profiles. Her home

contains a cooling system (AC), a heating system (heater), several sensitive electronic

devices and a pool filtration system (pool). The home is connected to the utility via

a smartmeter, and uses a battery bank as a secondary source of energy.

Change Season Scenario. Dana needs to reconfigure her devices to adjust for seasonal

changes. As the seasons change from winter to spring, anticipated climate changes

35

necessitates plant reconfiguration. She will need to activate the AC and pool, while

turning off the heating system. If the power from the utility is interrupted, the energy

for the home is provided by the battery (islanding) until it is depleted or utility power

is restored. �

One option Dana has is to reconfigure the elements in her plant manually. How-

ever, in manually configuring the plant elements, Dana is faced with the issues of: (1)

managing devices on a live system without knowledge of the active or current state

of these devices; (2) estimating the rate of energy usage during islanding; and (3) re-

configuring the microgrid to replenish the battery when the microgrid is reconnected

to the utility. Alternatively, she can access a mobile device and select an i-DSML

model aptly named Spring Configuration and press the submit button. An appro-

priate DSVM can interpret this i-DSML model and her microgrid is seamlessly and

safely reconfigured in seconds and she does not have to handle the aforementioned

issues.

3.1.3 Metamodel

MGridML is defined in terms of its metamodel comprising its abstract syntax and

static semantics. Figure 3.2 shows the abstract syntax and Appendix A contains the

static semantics for MGridML. A characteristic of i-DSMLs is the production of two

types of models; a control model signifying configurations and control structures, and

a data model, which as its name suggests, carries the data properties of entities within

the domain. This separation, presented in Section 2.1.2, is appropriate since the data

portion is expected to change more frequently than the control portion. This leads to

faster interpretation as the entire model of the system does not need to be processed.

The abstract syntax describes a MGridML model (or schema, terminology adopted

from CML) as either a control schema (MGridControlSchema), shown on the right

side of Figure 3.2, or a data schema (MGridDataSchema), left side of the figure. A

36

MGridControlSchemaMGridSchema

#mgridModelID : EString

MGController

#ctypeID : EString

AtomicController

-controllerID : EString

-name : EString

-cardinality : EInteger

-description : EString

MGridController

-mgridControllerId : EString

-totalLoads : EFloat

-totalSources : EFloat

LoadController

-critical : CriticalEnum

-lowerWattage : EFloat

-upperWattage : EFloat

-groupAction : EBoolean

StorageController

-chargeS : ChargeEnum

StorageDeviceType

-sdTypeID : EString

-typeName : EString

-lowerThres : EFloat

-upperThres : EFloat

1
*

MGridDataSchema

1

*

MDGrid

-mdgridID : EString

-mcgridID : EString

1

*

MeterType

-mTypeID : EString

-typeName : EString

1

1

SmartMType LegacyMType

PCC

-connected : EBoolean

LoadDevice

-control : ControlEnum

-critical : CriticalEnum

StorageDevice

-capacity : EFloat

-upperThreshold : EInteger

-lowerThreshold : EInteger

-chargeT : ChargeEnum

-currentCharge : EFloat

Device

-deviceTypeID : EString

-deviceName : EString

-wattage : EFloat

-description : EString

-operational : EBoolean

SourceController

«enumeration»

ChargeEnum

+CHARGE = 1

+NEUTRAL = 0

+DISCHARGE = -1

«enumeration»

ControlEnum

+CONTROLLABLE

+NON-CONTROLLABLE

MCGrid

-mcgridID : EString

1

1

1

1..*

SmartMeter

-tariff : EFloat

-usage : EFloat

-operational : EBoolean

LegacyMeter

-operational : EBoolean

SourceDevice

-onDemand : ControlEnum

«enumeration»

CriticalEnum

+SENSITIVE

+ADJUSTABLE

+SHEDABLE

+ANY

«enumeration»

UsageEnum

+HVAC

+LIGHTING

+SMALL-APPLS

+LARGE-APPLS

LoadDeviceType

-ldTypeID : EString

-typeName : EString

-critical : CriticalEnum

-usage : UsageEnum

1

*

SourceType

-soTypeID : EString

-typeName : EString

-sourceC : SourceEnum

-priority : EInteger

«enumeration»

SourceEnum

+AC

+DC

Meter

-mTypeID : EString

DeviceProperty

-attribute : EString

-value : EString
1 *

MGrid_Policies

1
*

LC_Property

-attibute : EString

-value : EString

1

*

PlantElem

-plantE_ID : EString

1

*

Figure 3.2: MGridML Abstract Syntax Diagram.

control schema (CS) specifies the logical configuration of a microgrid energy man-

agement plant. A CS contains a central and singular control entity (MCGrid) that is

composed of zero or more controllers (MGController). These controller can either

be atomic or composite entities. A composite controller is used to create a hierar-

chy of logical controllers. The atomic controller represent the different controllers

that are connected to the various device types. Our domain devices include sources,

loads, storage units and one point of common coupling (PCC). The PCC controller

is connected to one meter type which may be a smart or legacy meter type.

The data schema (DS) contains the actual plant elements, associated with the

types defined in the control schema. A DS contains one microgrid data entity (MDGrid)

associated with a microgrid control entity (MCGrid) defined in the CS. The microgrid

37

data entity contains one or more plant elements which may be a meter or a device.

The meter may be a smartmeter or a legacy meter. Each device has a set of device

properties and may be a storage device, source device or a load device. Device

properties provide the flexibility for the user to assign values to various properties,

e.g., temperature of the cooling unit is 75 degrees.

There are three concrete notations used to represent models in MGridML: the

XML-based (X-MGridML), the graphical (G-MGridML) and the UI-based (UI-MGridML).

The X-MGridML form is used internally by the DSVM, the G-MGridML form is used

by the expert e.g., the electrician, and the UI-MGridML form is used by the novice

or casual user, e.g., Dana in the motivating scenario. Bi-directional model transfor-

mations between G-MGridML and X-MGridML, and UI-MGridML and X-MGridML

are employed in the DSVM. Before a CS or DS can be interpreted by a DSVM they

must be fully instantiated, that is, all attributes must have specific values. We refer

to these instances as a control instance for a CS and a data instance for a DS. Note

that in this dissertation we may use schema when we are referring to an instance,

particularly during the synthesis process. The languages metamodel comprises not

only of the abstract syntax but it’s static semantics. A partial list of of the language’s

static semantics, written in the Object Constraint Language (OCL), is provided in

Appendix A.

MGridML Models for the Illustrative Scenario. Figures 3.3 and 3.4 show the MGridML

models used to realize the Change Season scenario. The model in Figure 3.3(a) shows

the control instance for the Winter season. The central rectangular shape (MCGrid)

represents the MGrid controller that coordinates the activities of lower level con-

trollers - LoadController, PCC, and StorageController, shown as rounded rectangles.

The controllers are connected to the device types - LoadDeviceType with type id

LDT001, SmartMeterType with type id SMT001, and StorageDeviceType with type

id SDT001, shown as ovals. Note that each controller has a unique identifier and a

38

MDGrid
mdgridID:MDG001
mcgrdiID:MCG001

(a) Control instance for the winter season

(b) Data instance for the winter season

LoadDevice
deviceID = LD001
ldTypeID = LDT001
devicename = Heater
wattage: 120
control = CONTROLLABLE
critical = SENSITIVE
property = (temp, 75)

MCGrid
mcgridID: MCG001

StorageController
controllerID: SC001
name: SCT
cardinality:1-1
description: Storage
chargeStatus: NEUTRAL
storageDeviceType: SDT001

Event: PCCT001.change_status
Condition: SDT001.capacity > 20% and

!PCCT001.connected
Action: SDT001.chargeStatus = DISCHARGE

StorageDeviceType
sdTypeID: SDT001
typeName: Battery
lowerThreshold: 10.5
UpperThreshold: 12.6

LoadController
controllerID: LC001
name: ControllerSeasonal
cardinality:1-n
description: “Seasonal Devices”
critical: ANY
lowerWattage: 110
upperWattage: 120
groupAction: FALSE
loadDeviceTypes: LDT001

PCC
controllerID: PCC001
name: PCC
cardinality:1-1
description: Utility
connected: TRUE
smartMeterType: SMT001

LoadDeviceType
ldtypeID: LDT001
typeName: SeasonalDevice
critical: SENSITIVE
usage: HVAC

SmartMeter
meterID: SM001
mtypeID: SMT001
tariff = 0.0
usage = 0.0

StorageDevice
deviceID = SD004
sdtypeID = SDT001
devicename = “Deep Cycle”
capacity = 12
charging = FALSE
chargeT= NEUTRAL

SmartMeterType
mTypeID: SMT001
typeName: SM

Figure 3.3: MGridML models for the control and data instances for the Winter season.

list of the identifiers for the types attached to it, among other properties. For com-

pleteness of the scenario we show an event-condition-action policy connected to the

MCGrid controller representing when islanding mode is activated.

The model in Figure 3.3(b) shows the data instance for the Winter season. It

contains the microgrid data entity connecting: (1) a load device with device id LD001,

which connects to type id LDT001 in the control instance, and property temperature

set to 75 degrees Fahrenheit; (2) a smart meter SM001, mapping to meter type

SMT001, tariff = 0.0 and usage = 0.0 - initial values of the meter; and (3) a storage

device with id SD004, mapped to type id SDT001.

Figure 3.4 shows the control and data instances for the spring season. The model

elements shown with the dotted lines are the additions made to the winter control and

39

MDGrid
mdgridID: MDG001
mcgrdiID: MCG001

(b) Data instance for the spring season

SmartMeter
meterID:SM001
mtypeID:SMT001
tariff = 0.15
usage = 44.5

StorageDevice
deviceID = SD004
sdtypeID = SDT001
devicename = “Deep Cycle”
capacity = 12
charging = FALSE
chargeT = NEUTRAL

LoadDevice
deviceID = LD002
ldTypeID = LDT001
devicename = A/C
wattage: 120
control = CONTROLLABLE
critical = SENSITIVE
property = (temp, 75)

MCGrid
mcgridID: MCG001

StorageController
controllerID: SC001
name: SCT
cardinality: 1-1
description: Storage
chargeStatus: NEUTRAL
storageDeviceType: SDT001

Event: PCCT001.change_status
Condition: SDT001.capacity > 20% and

!PCCT001.connected
Action: SDT001.chargeStatus = DISCHARGE

(a) Control instance for the spring season.

StorageDeviceType
sdTypeID: SDT001
typeName: Battery
lowerThreshold: 10.5
UpperThreshold: 12.6

LoadController
controllerID: LC001
name: ControllerSeasonal
cardinality:1-n
description: “Seasonal Devices”
critical: ANY
lowerWattage: 110
upperWattage: 120
groupAction: FALSE
loadDeviceTypes: LDT001 LDT002

PCC
controllerID: PCC001
name: PCC
cardinality: 1-1
description: Utility
connected: TRUE
smartMeterType: SMT001

SmartMeterType
mTypeID: SMT001
typeName: SM

LoadDeviceType
ldtypeID: LDT001
typeName: SeasonalDevice
critical: SENSITIVE
usage: HVAC

LoadDeviceType
ldtypeID: LDT002
typeName: SeasonalDevice
critical: SHEDABLE
usage: LARGE-APPL

LoadDevice
deviceID = LD003
ldTypeID = LDT002
devicename = Pool
Wattage= 120
control = CONTROLLABLE
critical = SHEDABLE
property = {(start, 10:00),

(duration, 2)}

Figure 3.4: MGridML models for the control and data instances for the Spring season.

data instances. For example, the LoadDeviceType was added to the control instance

shown in Figure 3.4(a). Two devices were added to the data instance, shown in Figure

3.4(b), these included a LoadDevice with id LD002 for the air-conditioning unit, and a

LoadDevice with id LD003 for the pool. The storage and smartmeter devices remains

unchanged, except for their properties. Note that the plant behavior may be defined

through device property changes or addition or deletion of model nodes. In the next

section we provide details on how we use the changes in the MGridML models to

realize the changing behavior in the plant.

40

SE Controller

Mi+1 from

UI apply actions SE

Dispatcher

Model

Comparator

analyze (Mi, Mi+1, Evt)

Evt from

middleware

interpret changes

LTSs for domain-

specific processes

Change

Interpreter

control scripts
for middleware

Mk fo
r the

 UIMk and

control scripts

update runtime model (Mi← Mk)

Query LTSs

Figure 3.5: High level view of the synthesis process

3.2 Synthesizing MGridML Models

To define our model of execution we describe: (1) a formulation of the execution

semantics to support the interpretation of MGridML models based on changes to

user-defined models at runtime; and (2) a design of the synthesis process that sepa-

rates domain-specific knowledge (DSK) from the model of execution (MoE). Unlike

previous presentations of the i-DSML synthesis process [17, 83], we provide details

of the model interpretation, and decouple the DSK from the MoE for the microgrid

energy management domain. The expectation is that the MoE can be reused in

other domains with minimal changes. The application of the MoE to be modularized

and applied to other domains will be done in the next chapter. Now we provide an

overview of the synthesis process, then describe how the control and data instances

are analyzed, and how the model changes are interpreted. Finally we illustrate how

the synthesis process is applied to the models of the Change Season scenario (see

Figures 3.3 and 3.4).

41

3.2.1 Overview of Synthesis Process

Figure 3.5 introduces the synthesis process that occurs in the synthesis engine at a

very high level. The SE Controller will receive either events from the middleware

layer (MCM) or a new model Mi+1 from the microgrid user interface (MUI). Upon

receipt the SE Controller will evoke the Model Comparator to analyze the new model

or event with respect to the current runtime model Mi to produce a list of changes.

The list of changes are subsequently interpreted by the Change Interpreter using

current state of the Labeled Transition systems(LTSs) to produce a new runtime

model Mk and a set of control scripts. The SE Dispatcher informs the the MUI of

the new state of the runtime instance using Mk and submits the control scripts to

the middleware for processing. Mk subsequently becomes the new runtime model Mi

and the SE Controller awaits its new signal. We next look at the process in a more

formal manner.

The synthesis process essentially involves comparing two models at runtime and

inferring the behavior of the applications based on the changes between the two

models. We use Label Transitions Systems (LTSs) [27] to define the domain-specific

behavior for the synthesis process. An LTS is defined as a triple < L,Q,→>, where

L is the set of labels, Q the set of states or acceptable configurations, and → the

transition relation where →⊆ Q× L×Q .

The synthesis process is formally defined as the function:

ik : I × Sk → O × Sk+1 (3.1)

where:

I is the input event alphabet that are events (Evt) which may be an event (EvtUM)

that signifies the receipt of a new user preference model (Uj) to be synthesized, or an

event (EvtP) representing a change in the microgrid plant.

42

Uj = (CIj, DIj) for j = 1 . . .m, represents the jth instance pair of MGridML models

generated by the user. CIj is the control instance and DIj is the data instance. This

instance pair may be new or one that could not be satisfied in a previous iteration.

If a user model cannot be satisfied the instance pair remains immutable and may be

reevaluated whenever a change occurs in the plant.

Sk represents the current synthesis environment. This environment includes the cur-

rent state of the LTSs representing the behavior of the logical controllers and plant

elements, and the current runtime model (Rk).

Rk = (CIk, DIk) for k = 0 . . . n, represents the kth runtime MGridML instance pair,

the control instance (CIk) and data instance (DIk) currently being executed by the

synthesis process. These models are causally connected to the microgrid plant con-

figuration.

Sk+1 represents the updated environment after applying the updates to LTSs based

on the changes in the models or events from the plant.

O represents the output alphabet including the microgrid energy management control

scripts to be executed by the middleware, and an updated runtime model Rk+1 for

the user interface.

3.2.2 Model of Execution

In this section we provide details on the separation of the domain-specific knowledge

(DSK) from the model of execution (MoE). Unlike the previous work by Wu et al.

[83] in the user-centric communication domain where there is tight coupling between

the DSK and MoE in the synthesis process, we separate the DSK from the MoE when

defining the dynamic semantics for the synthesis process. Figure 3.6, a refinement

of the high-level diagram shown in Figure 3.5, shows the top-level view of the MoE

for the synthesis process using a UML state machine. Although there are some

43

3. ModelComparator

4. ChangeInterpreter

1. Ready

[typeof(Evt) == UM] / compareUM(Uj, Rk)

/ interpretC(ChgL, Rk)

5. UpdateControllers

6. Dispatch

dispatchScript(S)

[Uj != R{k+1}] / update_MUI(R{k+1})

2. ModelReceived

/ dispatchScriptTo_MCM(S)U - User-defined model

R - Runtime model

P - Plant

UM - User Model

[typeof(Evt) == P] / compareP(Uj, Rk, Evt)

/ applyE(Contr, Chg)

[ChgL.size() == 0] / interpretE(Evt, Rk)

receivedEvt(Evt)

/ updateRT(R{k+1})

ChgL - list of changes; Chg = (action, node, neighbs, propsL)

action = {add, delete, change}; node = {controller, type, plant element}

neighbs - neighbors of "node", if any; propsL - list of properties

Contr = (id, contrType, atomicEvt) - controller id, controller type, atomic event

/ applyToRT(Chg)

updateRT(R{k+1}) [ChgL.size() == 0]

Figure 3.6: High-level state machine of the synthesis process.

submachines that depend on DSK, the main behavior associated with the DSK is

captured in submachine 5 UpdateControllers, which will be explained in the following

text.

After the system is initialized it stays in the Ready state until an event (Evt) is

received. This event may be the arrival of a new user-defined MGridML model (Uj) or

an event signifying there is a state change in the plant. Based on the type of event that

was received the appropriate method is called in submachine 3 (ModelComparator).

The task of submachine 3 is the generation of a list of model changes (ChgL) to be

interpreted by submachine 4 (ChangeInterpreter). Each change (Chg) in the list is

a 4-tuple of the form (action, node, neighbs, propsL), where action = {add, delete,

44

change}; node is the node in the model that changes; neighbs - neighbors of node in

the model, if any; propsL - list of changed controller or plant element properties.

Based on the change (Chg) being processed, Rk, and the states of the controllers,

the appropriate event is identified and applied to a LTS for a given controller. The

function applyE is called and a transition is made to submachine 5 (UpdateControllers)

where the appropriate controllers are updated. Assuming the appropriate controllers

are successfully updated then function applyToRT is called with the change, and Rk

is updated to reflect the current runtime state. After all the changes are interpreted

and the current runtime model is updated to give the new runtime model (Rk+1) the

function updateRT is invoked. Submachine 6 (Dispatch) sends control scripts to the

middleware and Rk+1 to the user interface, and replaces Rk with Rk+1.

Figure 3.7 shows the state machine for submachine 5 (UpdateControllers) in Figure

3.6 to update the microgrid controllers, the domain-specific behavior for the micro-

grid domain. Submachine 5.2 (update) receives an atomic event contained in Contr

and the model change (Chg) to be applied to a controller. If the type of controller

does not exist then the submachine for the controller is created using a fork e.g.,

PCC and LoadController, otherwise the event contrl.atomicEvt is applied to the con-

troller. After applying the event to the controller submachine, the script generated is

passed back to the top-level state machine shown in Figure 3.6. If the change is suc-

cessfully applied to the controller then the applyToRT function is invoked to update

the current runtime model. To improve readability we do not show the submachines

for GroupController, SourceController and StorageController in the figure since their

events are similar to the controllers shown.

Table 3.1 shows the LTS for a load controller, see submachine 5.4 in Figure 3.7.

The columns in the table represent the transition number, source state, target state,

event, guard and action. The addition of a load controller consist of two transitions

(1 and 2). Transition 1 moves from the Ready state to the AddC state, the event to

45

Contr.atomicEvt(Chg, Cid)

5.3 PCC

5.4 LoadController

loadC_Evt(Chg, Cid) [!exist(Cid)] / createLoadC()

pcc_Evt(Chg, Cid)

pcc_Evt(Chg, Cid) [!exist(Cid)] / createPCC()

dispatchScript(S)

5.1 Ready

/ applyE(Contr, Chg)

dispatchScript(S)

Chg = (action, node, neighbs, propsL); C - Controller
The submachines for Group, Source or Storage contorllers
are not shown. Transitions are similar to the controllers shown.

5.2 Update

loadC_Evt(Chg, Cid)

dispatchScript(S)

applyToRT(Chg)

applyToRT(Chg)

applyToRT(Chg)

Figure 3.7: State machine to update controllers.

trigger this transition is addC with a parameter Chg, the guard checks that the load

controller does not exist, and the action generates the add load controller command

for the control script. The parameter of the event is a change object (Chg) previously

described. Transition 2 moves from the AddC state to the Ready state after the

event addedC is received with parameter LC the id of the load controller being added.

Transitions 6 and 13 set the properties for the load controller and device, respectively.

Appendix B shows the list of possible control scripts for the MGridVM that can

be generated during the synthesis process dispatched to the middleware. The control

scripts are represented here using EBNF-like notation, where “|” symbolizes “or” and

46

Table 3.1: State machine for a LoadController (Submachine 5.4 in Figure 3.7).

T. Source Target Event Guard Action

Controllers:

0 Initial Ready !exist(Chg.node) create()

1 Ready AddC addC(Chg) gen addLC cmd(

Chg.node)

2 AddC Ready addedC(LC) applyToRT(Chg)

3 Ready AddT addT(Chg) !exist(Chg.node) && gen addLDT cmd(

exist(Chg.neighbs) Chg.node)

4 AddT Ready addedT(LDT) applyToRT(Chg)

5 Ready Ready removeT(Chg) exist(Chg.node) && gen removeLDT cmd(

∀LD typeof(LD) != Chg.node)

Chg.node applyToRT(Chg)

6 Ready Ready setLCProp(Chg) exist(Chg.node) gen setLCProp cmd(

Chg.node,Chg.propsL)

applyChange(Chg)

7 Ready RemC removeC(Chg) exist(Chg.node) && gen removeLC cmd(

∀LDT LDT /∈ Chg.node)

Chg.neighbs

8 RemC Ready removedC(LC) !exist(LC) && applyToRT(Chg)

LCs > 0

9 RemC Final removed(LC) !exist(LC)

Plant Elements:

10 Ready AddPE addPE(Chg) !exist(Chg.node) gen addLD cmd(

&& exist(typeof Chg.node)

(Chg.node))

11 AddPE Ready addedPE(LD) applyToRT(Chg)

12 Ready Ready removePE(Chg) exist(Chg.node) gen removeLD cmd(

Chg.node)

applyToRT(Chg)

13 Ready Ready setPEProp(Chg) exist(Chg.node) gen setPEProp cmd(

Chg.node,Chg.propsL)

applyToRT(Chg)

14 Ready Ready notOp(LD) LD.exist() Chg ← (remove, LD,
null, null)

applyToRT(Chg)

LC - Load Controller; LDT - Load Device Type; LD - Load Device; PE - Plant Element;

notOP - not operational; Chg = (action, node, neighbs, propsL) is a model change, where

action = {add, delete, change}; neighbs - neighbors nodes in model; propsL - list of

(attr, value) pairs

“{}” zero or more occurrences. Rule 1 states that a control script consists of one

or more commands and Rule 2 list the commands. Rule 4 shows the addController-

GroupCmd consisting of addControllerGroup keyword, and attributes contGroupID

- id of the controller group and a list of one or more controller ids (controllerID).

47

3.2.3 Model Comparison

The user model (Uj) and the runtime model (RK) are similar to an attributed graph

G = (N,E,L) where N is the set of nodes, E = N×N a relation representing the set

of edges, and L : N → A, a labeling function mapping nodes to attributes [24]. There

are a number of basic graph transformations that can be used to change one graph into

another. The basic graph transformations we are interested in during model analysis

include: node addition, node deletion, and attribute change. Recall that a change

to an MGridML model is captured as the tuple (action, node, neighbs, propsL), the

action captures the basic graph transformation e.g., {add, delete, change} where node

- the unique id of the node; neighbs - neighbors of node in the model, if any; propsL

- list of changed controller or plant element properties represented as (attr, value)

pairs. Two of the changes generated when comparing the data instance models in

Figure 3.3(b) and 3.4(b) are: (1) (delete, LD001, {MDG001}, null) - represents

the removal of the node for the heater device, shown on the left of Figure 3.3(b); and

(2) (change, SM001, {MDG001}, {<tariff, 0.15>, <usage, 44.5>}) represents

a change in the properties for the smartmeter, where the properties tariff and usage

are updated with the new values, see Figure 3.4(b) bottom right.

Algorithm 3.1 shows the two functions (compareUM and compareP) for the subma-

chine ModelComparator on lines 7 and 17, respectively. Function compareUM computes

the differences between the control instances for the user model (Uj.CI) and the run-

time model (Rk.CI), shown on line 10, by invoking the function modelDiff. A similar

approach is used to compute the differences between the data instances Uj.DI and

Rk.DI, shown on line 11. The modelDiff function takes two models and returns the

list of changes as described in the previous paragraph. The changes for the control

and data instances are stored in the variable ChgL. The change list and Rk are passed

as parameters when the function interpretC is invoked in submachine ChangeInter-

preter. Function compareP checks to see if a plant element in the user-defined model

48

Algorithm 3.1 ModelComparator submachine 3 in Figure 3.6
1: modelComparator

/*ChgL - list of model changes for CI’s and DI’s. Each change is a tuple of the from
(action, node, neighbs, propsL) where action = {add, delete, change},
neighbs - neighbors of “node” in model, propsL - list of changed properties*/

2: compareUM (Uj , Rk)
3: /* Input: Uj = (CIj, DIj) user model; Rk = (CIk, DIk) runtime model */
4: ChgL.CI ← modelDiff(Uj .CI, Rk.CI)
5: ChgL.DI ← modelDiff(Uj .DI, Rk.DI) /* If there is at least one CI or DI change */
6: if ChgL.size() > 0 then
7: interpretChange.interpretC(ChgL, Rk)
8: end if
9: EndFunction

10: compareP (Uj , Rk, Evt)
11: /*Input: Uj, Rk same as for analyzeUM; Evt is a plant event */
12: if typeof(Evt) = OPER && Evt.PE ∈ Uj .DI then
13: /* Plant element (PE) becomes operational and is in Uj but not in Rk by default */
14: compareUM(Uj , Rk)
15: else
16: interpretChange.interpretE(Evt, Rk)
17: end if
18: EndFunction

becomes operational. If this event occurs then the function compareUM is called with

the user model and the current runtime model, otherwise the interpretE function is

invoked in submachine ChangeInterpreter.

3.2.4 Change Interpretation

Algorithm 3.2 defines the functions used in ChangeInterpreter submachine in Fig-

ure 3.6, including interpretC, interpretE and applyToRT. The four state variables

used in the algorithm include: (a) ChgEvtMap which is a static table that maps

a node type, model change action and controller state to a controller event e.g.,

(nodeType, action, state, event); (b) CurrContrStates a table maintained at runtime

with current controllers states, e.g., (id, state); (c) Rk+1 updated runtime model; and

(d) CurrChgL the list of model changes that is being updated. An example of an en-

try in the ChgEvtMap table would be (LoadController, add, Ready, addC) that

is for a load controller type if the model change action is add and the current state

of the controller is Ready then the atomic event returned would be addC.

49

Algorithm 3.2 ChangeInterpreter submachine in Figure 3.6
1: changeInterpreter

/* State variables: ChgEvtMap - a static table that maps a node type, model change
action and controller state to a controller event e.g., (nodeType, action, state, event).
CurrContrStates - dynamic table with current controllers states, e.g., (id, state).
Rk+1 - Updated runtime model; CurrChgL - current changes not handled */

2: interpretC (ChgL, Rk)
3: Rk+1 ← Rk

4: CurrChgL ← ChgL
5: /* All CI changes are applied before DI changes */
6: for all Chg ∈ CurrChgL.CI do
7: id ← Chg.node.getContrID()
8: state ← CurrContrStates.getState(id)
9: atomicEvt ← ChgEvtMap.getEvt(typeof(Chg.node), Chg.action, state)

10: Contr ← (id, contrType, atomicEvt)
11: /* Contr - contains the id of the target controller, the type of controller and the
12: event for the controller submachine */
13: UpdateControllers.applyE(Contr, Chg)
14: end for
15: for all Chg ∈ CurrChgL.DI do
16: id ← Chg.node.getPE ID()
17: state ← CurrContrStates.getState(id)
18: atomicEvt ← ChgEvtMap.getEvt(typeof(Chg.node), Chg.action, state)
19: Contr ← (id, contrType, atomicEvt)
20: UpdateControllers.applyE(Contr, Chg)
21: end for
22: EndFunction

23: interpretE (Evt, Rk) /* Evt - is generated from the plant */
24: Contr ← (Evt.id, Evt.contrType, Evt.atomicEvt)
25: UpdateControllers.applyE(Contr, null)
26: EndFunction

27: applyToRTChg
28: /* Chg - is a 4 -tuple (action, node, neighbs, propsL) */
29: Rk+1 ← applyChange(Chg, Rk+1) /*Rk+1 is updated with the change node */
30: CurrChgL.remove(Chg) /*remove change from current change list */
31: if CurrChgL.size() == 0 or timeout() then
32: Dispatch.updateRT(Rk+1)
33: end if
34: EndFunction

The function interpretC, line 2, is non-blocking and takes as input the change

list ChngL and Rk. The first part of the function, lines 6 to 14, iterates through each CI

change (Chg) and generates the controller atomic event by searching ChgEvtMap with

the node type, change action and current state of the controller. The atomic event

is combined with the controller id and type to create the Contr object. The applyE

function in the UpdateControllers submachine is invoked with parameters Contr and

50

Rk. After all the CI changes are processed the DI changes are processed using a similar

approach. By non-blocking we mean that after the function call applyE function on

line 13 interpretC continues.

The interpretE function, line 23, takes as input an event generated by the plant

(Evt) and current runtime model (Rk), creates the Contr object using the fields of the

plant event, and calls the applyE function in the UpdateControllers submachine. The

applyE function takes as parameters the Contr object and the null value since there

is no change resulting from the processing of a plant event.

The applyToRT function, line 27, takes as input a change that has been success-

fully processed by the UpdateControllers submachine, updates Rk+1 with the change,

removes the change from the current list of changes, and calls the updateRT function

in the Dispatch submachine. Note that if all the changes are not removed from the

list of changes and a timeout fires then the updateRT function is also invoked.

3.2.5 Synthesis of the Illustrative Scenario

The table in Figures 3.8 illustrate the execution trace of the synthesis process for

the change season scenario. The columns in the table from left to right are Rk - the

runtime model, Uj - the user model, the changes generated by comparing the Rk and

Uj models, the events for the controllers, and the control scripts generated. Due to

space limitations the changes, events and control scripts in the tables are abbreviated.

The Winter and Spring configurations in the scenario are demarcated using double

lines.

The first row of the table in Figure 3.8 shows the comparison between models

R0.CI (CI0 shown on the left of the first row) and U1.CI (CI1) resulting in a change list

containing seven add nodes. The change list shown in the table is abbreviated due to

space restrictions. This change list results in several events being generated, the first

being initialMCG which results in the control script initializeMGrid(‘‘MCG001’’)

51

Runtime model = Rk User Model = Uj

CI0
null

Changes Control Script Generated

CI1 initializeMGrid(“MCG001”)
added nodes(mgrid
controller (MCG001),
load controller (LC001),
pcc controller (PCC001),
…, source data type

(SDT001))

Events

initialMCG

addLoadController(“LC001”,..)
addPCCController(“PCC001”,..)
addStorageController(“LC001”, ..)

createLC
createPCC
createSC

addLC
addPCC
addSC

LC_added
PCC_added
SC_added

addLDT

addSMT

addSDT

addLoadDeviceType(“LDT001”,
…,”LC001")

addMeterType(“SMT001”,
…, “PCC001”)

addStorageDeviceType(“LC001”,
…,”SC001”)

LDT_added
PCC_added
SC_added

CI1 CI1

CI2CI1

added nodes(load
data type (LDT002))

addLDT addLoadDeviceType(“LDT002”,
…,”LC001")

LDT_added

CI2 CI2

MCG001

SC001

SMT001 SDT001LDT001

LC001 PCC001

MCG001

SC001

SMT001 SDT001LDT001

LC001 PCC001

MCG001

SC001

SMT001 SDT001LDT001

LC001 PCC001

MCG001

SC001

SMT001 SDT001LDT001

LC001 PCC001

MCG001 SC001

SMT001

SDT001LDT001

LC001

PCC001

LDT002

MCG001 SC001

SMT001

SDT001LDT001

LC001

PCC001

LDT002

MCG001 SC001

SMT001

SDT001LDT001

LC001

PCC001

LDT002

Figure 3.8: Execution trace of the change season scenario for the control instances.

being generated. The details of the change generated for the addition of the load

controller node (LC001) is as follows: action = add; node = controller with the at-

tributes (<LoadController, LC001, ControllerSeasonal, 1-n, ANY, 110, 120, FALSE,

LDT001>); neighbors = <MCG001, LDT001>; and properties = null, since there

are no properties to change. After the LTS for load controller LC001 is created,

see Table 3.1, it moves into the Ready state. The action (add) in the change re-

sults in the event addLC being generated (addC(Chg) in Table 3.1) which results in

the control script addLoadController(‘‘LC001’’, ...) being created (a result of

52

gen addLC cmd(Chg.node) in Table 3.1 being invoked) and sent to the middleware

for processing, rightmost column of the first row in Figure 3.8.

The table shows the other events and the corresponding controls scripts that were

generated, including the scripts to add the other controllers. The second row of

the table show the events received from the middleware stating that the respective

logical controllers were added. The event LC added generated from the middleware

is in response to the load controller LC001 being added. The third row shows the

events generated to add the types associated with the controllers that were previously

added. For example, the event addLDT corresponds to adding the load device type

LDT001, third transition of Table 3.1. The fourth row shows the events after adding

the respective types for the various controllers, for example, the event LDT added

signifies that the middleware has added the device type LDT001 to the controller

LC001. The fifth row shows that the runtime model and the user model, with labels

CI1, has reached stasis. The second part of the table, below the double lines, shows

the steps associated with the changes from the Winter control instance to the Spring

control instance, which involves adding the load data type LDT002.

The table in Figure 3.9 shows the data instance models associated with the change

season scenario. The first and fifth rows in the table shows the control instances used

to process the data instances for the Winter (CI1) and Spring (CI2) seasons, respec-

tively. The second row of the table shows the comparison between the initial or null

runtime model, R0.DI (DI0), and the initial user model U1.DI (DI1), resulting in four

nodes being added. These nodes include mgrid data (MDG001), load device (LD001),

smart meter (SM001), and storage device (SD004). The data in the mgrid data entity

is used to map the devices to a specific mgrid controller, in this case MCG001. A

similar approach, previously described for the control instances, is used to process the

changes for the data instance. For example, to add the load device LD001 the event

addPE(Chg) (shown as addLD in the table of Figure 3.9) is generated, see transition

53

Runtime model = Rk User Model = Uj Changes Control Script GeneratedEvents

CI1

DI0

null

DI1 added nodes(mgrid data
(MDG001), load device
(LD001), smart meter
(SM001), storage device
(SD004))

addLoadDevice(“LD001”, ‘LDT001”,
120, “C”, “Sen”, <temp, 75>)

addSmartMeter(“SM001”, “SMT001”,
0.0, 0.0)

addStorageDevice(“SDT001”,
“SDT001”, 12, FALSE, NEUTRAL)

addLD

addSMT

addSD

CI1

DI1 DI2

added nodes(load device
(LD002))

remove nodes(load device
(LD001))

added nodes(load device
(LD003))

removeLD

addLD

addLD

removeDevice(“LD001”)

addLoadDevice(“LD002”, ‘LDT001”,
120, “C”, “Sen”, <temp, 75>)

addLoadDevice(“LD003”, ‘LDT001”,120,
“C”, “Shed”, <start, 10:00>, <duration, 2>)

CI2CI2

MCG001

SC001

SMT001 SDT001LDT001

LC001 PCC001

MCG001

SC001

SMT001 SDT001LDT001

LC001 PCC001

LD_Ready
SMT_Ready
SD_Ready

DI1 DI1

LD_Ready
LD_Ready

DI2 DI2

MDG001
MCG001

SD004
SDT001

LD001
LDT001

SM001
SMT001

MDG001
MCG001

SD004
SDT001

LD001
LDT001

SM001
SMT001

MDG001
MCG001

SD004
SDT001

LD002
LDT001

SM001
SMT001

LD003
LDT002

MDG001
MCG001

SD004
SDT001

LD001
LDT001

SM001
SMT001

MDG001
MCG001

SD004
SDT001

LD001
LDT001

SM001
SMT001

MCG001 SC001

SMT001

SDT001LDT001

LC001

PCC001

LDT002

MDG001
MCG001

SD004
SDT001

LD002
LDT001

SM001
SMT001

LD003
LDT002

MDG001
MCG001

SD004
SDT001

LD002
LDT001

SM001
SMT001

LD003
LDT002

MCG001 SC001

SMT001

SDT001LDT001

LC001

PCC001

LDT002

Figure 3.9: Execution trace of the change season scenario data instance.

10 in Table 3.1, and the control script addLoadDevice(...) is generated. The pa-

rameters for the addLoadDevice control script are: device id = LD001, device type =

LDT001, wattage = 120, control = CONTROLLBALE, criticality = SENSITIVE, and the

property consist of attribute = temperature, value = 75. After the devices are added

the middleware generates the events LD Ready, SMT Ready and SD Ready indicating

that the runtime model can be updated to reflect the new state of the plant.

The second section of the table in Figure 3.9, demarcated by the double lines,

shows the changes required for the Spring season associated with the data instances.

One node is removed (load device LD001) and two nodes were added (load device

54

LD002 - A/C and load device LD003 the pool). The events and control scripts follow

a similar pattern to the description provided in the previous paragraph.

The second row has only one entry which shows a successful reply from the mid-

dleware signifying that the controllers were added. Subsequently in the third row

show the scripts generated to request the addition of the device types. Once the

middleware responds via events that the types were added, updateRT modifies the

RT model to that represented in row 5.

With the submission of the Spring data instance we see the removal of LD001

and the addition of LD002 and LD003. The changes evoke the submission of one

renoveDevice and two addLoadDevice Control scripts accordingly by the change in-

terpreter. After the middleware responds with the acknowledgment of the device

additions then updateRT does the appropriate modification to the runtime model

and stasis is achieved.

3.3 MGridVM Prototype

To demonstrate the efficacy and applicability of this approach, we describe our pro-

totype which creates and realizes MGridML models using the DSVM architecture

consisting of four layers representing different levels of abstraction. The high-level

design is similar to the design described by Deng et al. [17]. This section describes

the implemented prototype consisting of the virtual machine (software) and the hard-

ware testbed. We also provide a more detailed description of the synthesis engine,

which is the focus of this work.

3.3.1 High-Level Design

Figure 3.10 shows the four layered architecture for the MGridVM, based on the archi-

tecture created by Deng et al. [17] for the Communication Virtual Machine (CVM).

The layer of the MGridVM are described as follows:

55

Figure 3.10: MGridVM high-level architecture.

Microgrid User Interface (MUI): Provides the user with the ability to specify MGridML

models to represent the configuration and behavior of the underlying physical plant.

Facilitation is at a level of abstraction as to be intuitive yet expressive enough to

describe most of the configurations and functionality required of the microgrid. The

MUI provides two distinct types of modeling environments, one for the novice user

(possibly a building occupant) and one for a more technical user (domain expert).

Microgrid Synthesis Engine (MSE): Implements the synthesis process described in

Section 3.2. The MSE takes as input a MGridML model and transforms it to one or

more control scripts. We provide more details of the design in the following section.

Microgrid Control Middleware (MCM): Transforms the platform independent control

script into API calls to be handled by the broker layer. It is at this layer that the

56

virtual machine may amalgamate diverse resources with distinct commands. The

scripts are interpreted and an appropriate intent model is generated and executed.

The services managed by the middleware includes mapping physical devices to logi-

cal controllers based on types, performing type checking, executing energy manage-

ment algorithms, and enforcing policies for various device configurations. The current

prototype implementation directly invokes API calls of the underlying broker layer

without performing any of the logical mapping or type checking. The MCM imple-

mentation is being conducted concurrently within our research group. [57].

Microgrid Hardware Broker (MHB): This layer is responsible for issuing atomic com-

mands to the plant and monitoring device states. Commands are issued to the plant

via physical controllers and listens for an appropriate task completion response. The

MHB also observes the plant for activities such as variations in power at different

points in the microgrid. The current prototype implementation uses low voltage

testbed, however we have have had successes at the 120V level using Zigbee control

[47]. To simulate users manually operating devices, as would be expected in a real

world scenario, the MHB has an independent user interface capable of provisional

overriding upper level settings.

Testbed: The MGridVM prototype was tested on a low voltage direct current (DC)

hardware testbed which simulated critical aspects of the microgrid. Figure 3.11 shows

the hardware testbed, which consists of the following plant elements: loads - fan (top

center of the figure) and lights (below the fan); sources - a photo-voltaic cell (top

right of the figure); storage - small battery pack (top left of the figure); and utility

- 1000mA adapted power source (bottom center of the figure). The small battery

pack and photo-voltaic cell are used to simulate distributed storage and distributed

generation functionality respectively. The storage is connected to a charge controller

which allows for controlled charging and discharging via the relay bank.

57

Figure 3.11: Hardware testbed for the MGridVM protoype.

The MHB communicates serially with the testbed via two USB interfaces (bot-

tom left of the figure). The first USB interface, used for monitoring, connects to

an interface which continuously monitors analog voltage and current sensors. These

interfaces, placed at specific points on the testbed, converts the values to digital

metering values. The sensory interface (bottom right of the figure) features config-

urable sampling rates and noise cancellation to reduce false readings. The second

USB interface is connected to a relay bank and actuates component switching.

Figure 3.12 shows the GUI screen used to test the MSE and create models to

execute in the evaluation of the MSE. The buttons on the top left are used to select

the user control instance, select the user data instance, and compare the user and

runtime models. The text window on the left shows the change list stack, i.e., the list

of changes to be processed, the buttons below the text window allow specific changes

to popped form the stack and be processed. The text window in the center echos

actions taken by the MSE, the buttons below this window simulates various changes

to the model independent of the change list. The three text windows on the right

58

Figure 3.12: GUI for the synthesis engine testbed.

show the MCM events, the current runtime model for the control instance and the

current runtime model for the data instance.

3.3.2 Synthesis Engine Design

The goal of the MSE design is to separate the entities with the domain-specific

knowledge (DSK) from the model of execution (MoE). The main packages for the

MSE are shown in Figure 3.13. The packages reflect the structure of the synthesis

process outlined in Figure 3.5. The classes associated with controlling and manag-

ing the synthesis process are in the package mse::controller. The classes for the

model comparator, that implements the algorithm ModelComparator, and the change

interpreter, that implements the algorithm ChangeInterpreter are contained in the

package mse::modelProcessor. The model processor package uses the functionality

provided by the Eclipse Modeling Framework[71], specifically EMF Core and EMF

59

mcm::Facade

handlers

mse::handlers

mse::Facade

mse::controllermse::modelProcessor

mse::domainEntities

handlers::exceptions

mse::dispatcher

mse::runtimeModel

mcm::events

Figure 3.13: Design of the microgrid synthesis engine (MSE) showing the main pack-
ages.

Compare. The package mse::domainEntities contains the packages and classes with

DSK and will be described in more detail later. Classes in the mse::controller and

mse::modelProcessor need to know about the classes in the mse::domainEntities

package, hence the dependency between them.

The class mse::Facade exposes an API to the MUI which accepts the user-defined

model, and the class mcm::Facade exposes an API to the MSE that accepts the control

scripts. The packages on the right side of Figure 3.13 contain the classes to handle

events and exceptions from the MCM, and generate events for the MUI, one such event

is to update the user MGridML model in the MUI. The package mse::runtimeModel

package contains the classes to represent the runtime model in the MSE, including

the attributes and operation required to update the runtime model.

Figure 3.14 shows the packages contained in the mse::domainEntities package,

that is, the packages containing the DSK entities. There are two classes in the figure

DomainManager - coordinates the activities of the packages, and the ControllerManager

that coordinates the creation and updates to the LTSs for each type of controller, and

handles the control scripts created by the controllers. The controllers depend on the

control scripts package from the MCM, mcm::controlScripts. The mgridEvents

60

DomainManager

controllers::load controllers::pcc controllers::source controllers::storage

ControllerManager

1

1

mse::runtimeModel

mse::dispatcher mgridmlMetamodel

mgridEvents

mcm::controlScripts

Figure 3.14: Design of the domain entities package showing the main packages.

package contains the classes that represent the table for the change event map (see

Algorithm 3.2) and the events generated for the LTSs. The mgridmlMetamodel pack-

age contains the classes that define the metamodel for MGrdiML. The metamodel is

used by the EMF compare package [71] when comparing MgridML models.

3.4 Synthesis Prototype Evaluation

The focus of this investigation is to evaluate the efficiency of the microgrid synthesis

engine (MSE) with respect to the model processing required during synthesis. The

aspects of the model processing we will investigate are related to model comparison

and change interpretation. The specific objectives of the study are as follows:

• Objective 1: Determine how performance times change relative to the increase

in the size of the MGrdiML models to be processed during synthesis.

• Objective 2: Compare the performance of the approach used when the domain-

specific knowledge (DSK) is separated from the model of execution (MoE) in

MGridVM versus the tightly coupled approach used in the CVM, the first

DSVM prototype.

61

3.4.1 Experiment Method

Experimental Setup: The MSE was isolated by substituting the MUI layer with a test

driver which generated MGridML models, and the MCM layer was replaced with a

stub which collected the control scripts for inspection and generated the appropriate

events for the MSE. The MSE and harness was placed on a laboratory computer with

the following specification: CPU - Intel Core 2 Duo operating at 2.00GHz; RAM -

3 Gigabytes DDR2 Memory Bus Speed 2 X 233MHz; and the operating system was

Windows 7 Ultimate.

Experimental Design: To evaluate the MSE for Objective 1 we generated several X-

MGridML model instances of varying complexity to be processed by the MSE. We

use this approach to set the MSE to contend with increasing model changes which

would result in changes in the runtime model, list of model changes, and updates to

the LTSs, accordingly. We varied M which is the number of model nodes (where M

= 3 to 57) and N is the number of controllers (where N = 1 to 28). The controllers in

each scenario are load controllers, each connected to one load device type. The initial

number of nodes are 3 which includes the MGrid controller node, a load controller and

a load device type. Our focus for Objective 1 was to evaluate the performance for the

following: parsing the model, model comparison, change interpretation, and updates

to the runtime model. For each of the scenarios we compared the user MGridML

model with the Null model, that is, the initial model in the MSE prior to receiving a

user model.

To evaluate Objective 2 we used the data collected for Objective 1 along with

static metrics to investigate the differences within the MGridVM and CVM synthesis

engines. We inspected both prototypes and ascertained that the results are candidates

for comparison as: (1) the inputs to both SEs are models and events of comparable

magnitude. The model generation automation was specifically designed to create test

models with content and relationship criteria which allows for negligible performance

62

differences by the model comparison component; (2) the outputs of both SEs are

control scripts; and (3) the hardware platform are very similar. By isolating the SE

of both prototypes with drivers and stubs, we posit that the difference in functionality

is nominal.

Data Collection: To collect our data regarding execution time analysis for MSE

we employed the Eclipse Testing and Performance Tooling Platform (TPTP) [85]

by instrumenting the MSE code. We collected runtime data for the main classes

in the MSE: Parser, ModelInterpreter, ChangeInterpreter, which are part of the

mse::modelProcessor package; and RuntimeUpdate part of the mse::runtimeModel

package, see Figure 3.13. The microgrid scenarios, represented as MGridML models,

range in size from 3 to 57 nodes (1 to 28 controllers). We ran each synthesis scenario

12 times and to reduce the impact of anomalies we discarded outliers (the highest

and lowest) and averaged the remaining 10 readings.

Several of the metrics used in the study were obtained from the experiments

reported in Wu et al. [83]. For those experiments Eclipse TPTP was also used as the

tool of choice to obtain the runtime results. For this experiment set, each scenario was

executed 12 times and averaged after the highest and lowest values were discarded to

reduce the influence of anomalies. The data for the SE in the CVM reported by Wu et

al. [83] identified the number of participants in each communication scenario, however

we present the data in terms of the number of nodes in the CML models. Each new

participant requires at least 4 additional nodes, device, mediumtype, isAttahced and

participant, as show in Figure 5 in Wu et al. [83]. Since we did not have an exact

match for the number of model nodes for the MGridML and CVM models, we chose

the scenarios for MGridML with the closest number of nodes for the experiments.

Prototype Development : Prior to addressing the results of the experiments we will

present an overview of the developmental time of the prototypes in order to establish

a basis for our comparative study and as a springboard to extrapolate effort savings

63

Table 3.2: Developmental Times for Prototype Synthesis Engine Components

CVM(coupled) MGRIDVM(coupled) MGRIDVM(decoupled) DSK for CVM

130 hrs 155 hrs 73 hrs 25 hrs

through reuse.

The development of the prototypes was accomplished in discrete stages. Table 3.2

shows the hours expended within each stage. The first prototype , CVM (coupled)

was effected in 130 hours. Duplicating this methodology and applying it to the

microgrid via MGRIDVM (coupled) required 155 programming hours. This shows a

noticeable increase in development time as the gains in expertise was overshadowed

by the time taken to outline and capture the execution semantics of the possible

interactions between model elements within this new domain. From that time it took

73 hours to decouple the DSK from the MOE; we have recorded 35 of these hours

as dedicated to the MGRIDVM DSK. This decoupled version is the prototype being

presented within this dissertation. In the final column we show 25 hours extended to

build the standalone DSK of the CVM capable of reinstantiation.

We reiterate that there was a increase in expertise throughout these stages which

should be considered when analyzing this data.

3.4.2 Results

The results of our performance evaluation for Objective 1 is shown in Table 3.3. The

main classes analyzed, shown across the top of the table, are Parser, ModelInterpreter,

ChangeInterpreter and RuntimeUpdate. The first column of the table shows the

number of controllers defined in each model (N) and the second column the total

number of nodes in each model (M). The Columns 3 to 6 show the execution times

in seconds for the classes previously mentioned, and Column 7 shows the approximate

total execution times for model synthesis for the various scenarios. For example, the

64

Table 3.3: Execution Times for Primary Classes in MSE. N - Number of controllers
and M - number of model nodes.

Classes: Parser Model Change Runtime Total

Compare Interpreter Update

N M Execution Times (in secs)

1 3 0.19 0.33 0.05 0.01 0.58

4 9 0.42 0.37 0.07 0.03 0.89

7 15 0.82 0.44 0.08 0.03 1.38

10 21 1.15 0.63 0.13 0.07 1.98

13 27 1.49 0.77 0.15 0.10 2.51

16 33 1.68 0.95 0.17 0.11 2.91

19 39 2.23 1.44 0.20 0.13 4.00

22 45 2.49 1.83 0.22 0.13 4.67

25 51 3.17 2.20 0.29 0.16 5.82

28 57 3.48 2.38 0.32 0.18 6.35

first row in the table shows the scenario with 1 controller, 3 model nodes, takes

0.19 seconds to parse, 0.33 seconds for model comparison, 0.05 seconds for change

interpretation, 0.01 seconds to update the runtime model, and a total execution time

of 0.58 seconds.

The results reported in Table 3.3 are for those scenarios with the controllers shown

in the first column of the table. It should be noted that although the number of

controllers represent an arithmetic sequence between 1 and 28 with initial value of

1 and common difference of 3, we actually recorded results for 28 scenarios each for

controllers from 1 to 28. Figure 3.15 shows the graphical representation of the data

in Table 3.3. The figure shows that the most expensive part of the synthesis process

is the parsing of the xml file representing the X-MgridML model. The time required

for parsing appears to show linear growth with respect to the number of nodes in the

model. The next most expensive part of the process is model comparison, with also

appears to show linear growth. For the given scenarios the change interpretation and

runtime model update seems to be negligible when compared to parsing and model

comparison.

65

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

3 9 15 21 27 33 39 45 51 57

se
co
nd

s

No. of MGridML model nodes

Parser Model Compare

Change Interpreter Runtime Update

Figure 3.15: Evaluation of the synthesis for the main classes in MSE.

Table 3.4: Comparison of Static Metrics of Prototype Synthesis Engines

Metric MGRIDVM CVM

SLOC 2913 963

Classes 31 22

Methods 434 156

In evaluating Objective 2 of the study we first show several static metrics for

MGridVM and CVM then show the execution times comparing the synthesis of several

scenarios in both the microgrid energy management and user-centric communication.

Table 5.1 shows the source line of code (SLOC), number of classes, and number of

metrics for the synthesis engines in MGridVM and CVM. The synthesis engine in

the MGridVM is larger in size when compared to the synthesis engine in the CVM.

This is the result of more classes to represent the LTSs for the controllers in the

microgrid, and the classes used to separate the DSK from the MoE. For example, the

model comparison extends several classes in the Eclipse Modeling Framework [71],

providing a more generic model comparator.

66

Table 3.5: Comparison of Execution Times for CVM and MGridVM Synthesis En-
gines.

CVM SE MGridVM SE

NParts M Exec Time M Exec Time (secs)

(secs) (Extrapolated)

2 10 1.17 10 0.89+(1.38-0.89)/6*1 = 0.97

3 14 1.80 14 0.89+(1.38-0.89)/6*5 = 1.30

4 18 2.07 18 1.38+(1.98-1.38)/6*3 = 1.68

5 22 2.42 22 1.98+(2.51-1.98)/6*1 = 2.07

6 26 2.76 26 1.98+(2.51-1.98)/6*5 = 2.42

7 30 3.17 30 2.51+(2.91-2.51)/6*3 = 2.71

Table 3.5 shows the comparison of the execution times for the CVM and MGridVM

synthesis engines for several scenarios from the respective domains. The table is

divided into two sections the left section contains the data for CVM (as reported in

Wu et al. [83]) and the right section data for the MGridVM. The 3 columns in the

left section represents the number of participants in a communication (NParts), the

number of nodes in the respective CML model (M), and the execution time in seconds

to perform model synthesis for each scenario. The right section shows the number of

nodes in an assumed MGridML model and the extrapolated execution times for the

assumed model. The values in the rightmost column of Table 3.5 are extrapolated

from the values shown in Table 3.3.

Figure 3.16 shows the graphical representation of the execution times in Table

3.5. The figure shows that execution times for both the CVM and MGridVM have a

similar slope, which appears to be linear. Overall the execution times for models with

a similar number of nodes show that the CVM’s synthesis engine time is on average

17.1% more than that of the MGridVM’s synthesis engine. We explore these result

further in the next section.

67

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

10 14 18 22 26 30

se
co
nd

s

No. of model nodes

CVM MGRIDVM

Figure 3.16: Execution metrics of MGridVM and CVM synthesis engines

3.4.3 Discussion

The results for Objective 1, Table 3.3 and Figure 3.15, shows that as the number of

nodes in the MGridML models increase the execution times for the synthesis process

increases linearly. The most expensive aspect of model synthesis is in the parsing

of the X-MGridML representation of the MGridML model. Parsing of the model

is approximately 27% greater than model comparison, 88% greater than change in-

terpretation and 95% greater than the update of the runtime model. Performing

regression analysis on the total execution times using the data in Columns 2 (M) and

7 (Time) of Table 3.3, produces a linear equation of the form y = 0.107x−0.138 with

an R square value of 0.96 which shows a strong relationship between the number of

nodes and the execution times. It is worth noting that the slope on the regression

line is 0.107 which shows that as the number of nodes increases it is expected that

the execution times will increase at a fairly slow rate.

The comparison of model synthesis in the MGridVM and CVM serves two pur-

poses: (1) to evaluate model synthesis in two domains, one in a distributed envi-

68

ronment and the other in a centralized environment; and (2) to determine if there

are any significant changes in the execution time when the DSK is separated from

the MoE. Based on the static metrics shown in Table 5.1 there is an increase in the

code written for model synthesis for the MGridVM versus the CVM. The CVM has

two main LTSs (negotiation and media transfer) while there are four LTSs for the

controllers in the microgrid (load, storage, source, point-of-common coupling) which

accounts for an increase in the number of classes. In addition, the MGridVM uses

a more generic method of comparing model which extends classes from the Eclipse

Modeling Framework (EMF), EMF Core and EMF Compare [71], [74].

Table 3.5 and Figure 3.16 show that there is a strong correlation between the

execution times from MGridVM and CVM. The regression analysis of the CVM time

(Column 5 and 6 in Table 3.5) produces a linear equation of the form y = 0.094x +

0.532 with an R square value of 0.98 which also shows a strong relationship between

the number of nodes and the execution times. The slope on the regression line for the

CVM is 0.094 which shows an even slower rate of increase of the execution times as

the number of nodes increase. The MGridVM faster growth rate could be the result

of separating the DSK from the MoE, however the growth rate for the MGridVM is

still relatively small. We can conclude that model synthesis is feasible for domains

where the i-DSML models are below 60 nodes, base on our evaluation. In the future

we expect to perform additional experiments on larger models to be more affirmative

regrading the models that can be process in the synthesis engines for DSVMs.

Threats to validity: We consider both internal and external validity threats [81]

for the experiments that were performed for Objectives 1 and 2. An external threat

is related to the setup of the experiments related to Objective 1. We made the as-

sumption that a sampling size of maximum 10 was sufficient to ascertain whether

increasing model complexity would result in unpredictable execution coefficients in

any of the primary algorithms of the MSE. Another external threat involved the model

69

synthesis that was performed. We only used control instances and not data instances

during model synthesis, the assumption was that manipulating control instance re-

quired more processing, i.e., the creation and deletion of the LTSs, which may not

reflect the true times for general scenarios. The final external threat for Objective 1

was not using very large models, i.e., models containing hundreds of nodes, this may

result in a faster growth of execution times for model synthesis, which could impact

the feasibility for model synthesis for some domains.

Some of the external threats for Objective 2 are similar to that of Objective

1, specifically, that of selecting a sample size that may be too small to result in

a generalization of model synthesis for the two domains being considered. Another

external threat was not using the same hardware setup for the CVM experiments. The

results were obtained from past experiments performed by Wu et al. [83]. No specifics

were given on the hardware specification in Wu et al. [83]. An external threat that

affected both experiments was the use of Eclipse TPTP [85] to instrument the code

since the parameters used to tuned the instrumentation were not consistent with the

instrumentation for the MGridVM and CVM synthesis engines. The main internal

threat for both objectives was the automatic generation of models to be analyzed.

The data in Tables 3.3 and 3.5 show that the number of nodes in the MGridML

and CML models are part to a sequence, showing that the models are not randomly

generated. By automatically generating the models the independent variable is not

truly random resulting in some biased in the experiments.

3.5 Chapter Summary

In this chapter, we presented the methodology utilized in the development of the mi-

crogrid modeling language and described an approach to synthesizing its models. The

loose coupling of the DSK and the MoE paves the way for its ultimate separation to

70

enable the efficient instantiation of the model synthesis component (synthesis engine)

for DSVMs in other domains.

The efficacy of our approach was evaluated by developing a prototype of the

DSVM, MGridVM. The evaluation of this primary prototype demonstrated that our

approach to realizing behavior in the synthesis engine does not contribute to deteri-

orated operation times when compared to previously published results for an earlier

DSVM in another domain, CVM.

71

CHAPTER 4

SEPARATION AND REPRESENTATION OF THE DSK FOR A SYNTHESIS

ENGINE

In this chapter we examine the MoE described in Chapter 3 to extract domain-

specific concerns and represent them as persistent data. The residuum is consolidated

to be later refined to support the ability to seamlessly replace domain-specific arti-

facts on demand during instantiation. In other words, the model synthesis process is

reevaluated in terms of concrete artifacts.

In one of the definitive works regarding software reuse, Krueger [49] identifies

application generation as an essential reuse category. This dissertation’s approach

is akin in spirit to approaches in application and compiler generation. The familiar

notion is for common application logic to be reused. Biggerstaff et.al. [7] proposes

four factors which support reuse:

1. Finding the reusable component. This involves identifying that portion which

is similar in each application.

2. Understanding the component. This subtask involves the development of a

mental model.

3. Modifying components. The modifications involve restructuring, adding to, and

refactoring the existing code structure.

4. Composing the components. The gluing mechanism for the components identi-

fied are critical to the development of an effective solution.

To address the first two items we study the models of execution for the domains.

Of primary importance is the development of an abstraction and to identify that

portion of the abstraction that is fixed and that which can be modified by its user

72

[38, 66, 80]. To this end our abstraction is the model of execution, a reusable portion

of the application logic will be the fixed portion, and the DSK is that which is subject

to modification. In the next section we will illustrate a refined MoE for MGridVM

which serves as the aforementioned abstraction.

Biggerstaff’s third factor requires us to refactor the MoE. We accomplish this

using principles of aspect-oriented design. To effectively address the approach used

in separating the concerns we have employed aspect aware refactoring to modularize

DSK as a distinct concerns. The act of refactoring restructures object oriented code in

a methodical manner which needs to preserve behavior [59, 36]. It is usually the case

where refactoring is used to improve understandability and readability, however our

motive is modularity; consolidating our DSK concern as an aspect. The refactoring is

aspect aware [36]. Our task therefore is to identify the join points of the concerns then

transform the application with the intent of isolation to aspects. To effectuate the

identification our technique involved walkthroughs and code inspections as supported

in [32].

We accomplished the refactoring of the MoE described in chapter 3 by restructur-

ing the MoE for MgridVM according to its major components taking care to extract

any hard coded knowledge that was domain specific. We ensured that the new model

of execution preserved prior behavior.

The next section will present the revised MoE which is the object for further study

in the separation process.

4.1 Revisiting the MGridVM Model of Execution

Figure 3.5 shows a high level view of the synthesis process for the MGridVM which

has been refactored from that in chapter 3 as to lessen the coupling between concerns.

The extent of the refactoring however yields a MoE which remains domain specific

73

1. Model Received

Evt with Uj
from UI

5. Dispatcher2. Model
ComparatorUj, Rk, Evt

Evt from
Middleware

LTSs for domain-
specific processes and

change event map

3. Change
Interpreter

Query

Control Scripts for Middleware

Rk+1
for

the UI

Control
Scripts

6. Update RT
Rk ← Rk+1

Rk+1 – updated runtime model

Change List,

Evt

Uj – jth user model UI – user interface Evt – event Rk – kth runtime model LTS – Label transition system

4. Update
Controllers

Controller
Event

Rk+1

Query and
Update LTSs

process artifact Flow of control and data Data request

Rk

Meta-Model
for i-DSML

Query

Figure 4.1: High level view of the synthesis process revised to reduce coupling

to microgrid activities. The weaker coupling however is a precursor for the DSK

separation.

The inputs, shown on the left of the figure, are either an event (EvtUM) repre-

senting the receipt of a user-defined model (Uj) or an event (EvtP) from the plant

generated by the middleware layer of the MGridVM. The outputs from the process

are the control scripts to be executed by the middleware and the updated runtime

model (Rk+1) to be displayed in user interface. Below is a description of the main

processes shown in Figure 4.1:

1. Model Received - accepts either a user-defined model (Uj) or a middleware event

(EvtP), and the current runtime model (Rk). The Uj, Rk and (Evt) are then

passed on to the model comparator.

2. Model Comparator - if the event type is EvtUM then Uj and Rk are compared

to generate a change list. This is where model differencing occurs and requires

access to the metamodel for the i-DSML to ensure we are comparing models of

the same type.

74

3. Change Interpreter - is where the change list and EvtP are processed. Based

on a model change, the current state of the LTSs, and the entry in the change

event map, a controller event is generated. Alternatively, a pending or new

event (EvtP) reflecting an update in the microgrid plant is handled . After all

changes and events are handled the updated runtime model (Rk+1) is sent to

be dispatched. The change event map is a table that maps model changes to

event in LTSs based on the current state of the LTS.

4. Update Controllers - the states of the appropriate LTSs are queried and updated,

and appropriate control scripts are generated and dispatched.

5. Dispatch - handles the dispatching of the new runtime model (Rk+1) to the user

interface and submits the control scripts to the middleware to be executed.

6. UpdateRT - updates the current runtime model (Rk) with the new runtime

model (Rk+1).

The artifacts, shown as rectangles, in Figure 3.5 are where the DSK is stored.

These artifacts include the metamodel for the i-DSML, the domain-specific LTSs and

a domain-specific change event map.

Within this refined MoE, the major activities have been modularized to six distinct

components. A closer inspection of the components will show that the metamodel,

LTSs and change mappings can be separated as they were identified and included

within the DSK concern. The challenge remaining is component 4 Update Controllers.

This part of our application logic remains domain specific which we address in the

next Chapter.

4.2 Persisting Domain Specific Knowledge

Our overarching goal is not to simply develop standalone persistence for the DSK

but to provide constructs and a methodology with sufficient formalism to support

75

semantic specification in concert with i-DSML metamodel development. To achieve

the desired modularity we decoupled the DSK by identifying the join points where

the common interpreter logic accesses the domain specific concern. The decoupling

of the DSK as an aspect structurally translates to Figure 4.2. The DSK is tangled

throughout the legacy architectures, comprises mainly of a syntax portion (the meta-

model) and a semantic portion. The syntax is described using the i-DSML metamodel

and is accessed by all three of the major components. The semantics will describe

the meaning of each of the elements of the language and their interaction. This we

capture persistently using Labeled Transition Systems(LTSs) and change mapping.

The join points are signified by the contact of dashed line contact with the major

processes. Figure 4.2 is a restructuring of the earlier synthesis process presented in

Figure 4.1 to allow for the separation of the DSK. The MoE for MGridML requires an

Update Controllers which is specific to that energy management domain. In order to

facilitate alternate domain concerns such as (re)negotiation and media transfer which

are found in CML, this process had to me refactored to make it more generic. The new

State Manager process now assumes the responsibility to update the domain entity’s

LTS’s. Since the runtime models used by the synthesis process is also domain specific,

in the spirit of concern consolidation, the State Manager has now also assumes the

functionality of UpdateRT. As we can see in Figure 4.2, the Dispatcher is not affected

by the DSK concern (no join points), as as such remains relatively unchanged in

functionality.

To define the DSK associated with the language synthesis process, the author is

required to define the set of state transition systems for the domain and the change

mapping. We have previously used LTSs in our prototype designs, however any similar

automata may suffice. Offered as an representative instances, table 4.1 shows a state

transition system to accomplish media transfer within CVM. For each state machine

76

Model

Comparator

Change

Interpreter

State

 Manager

Change

Mapping

LTS

Descriptions

DSML Metamodel

Changes Actions DispatcherCS

EventUI Model

SYNTAX

SEMANTICS

Runtime

Model

Runtime

LTSs

Model to UIControl Scripts(CS)

Figure 4.2: Representation of the Separation of DSK from the MoE.

the author is required to provide the source states, target states, events, guards and

control scripts.

This concept is made persistent using an XML representation which allows for the

following desired features [8, 5]:

• Unambiguous representation and retrieval of information.

• Robustness of format. The tree structure format is highly adaptable to more

complex data modeling.

• The XML format is widely accepted and tool support is available.

Appendix D illustrates the persistent representation of the media transfer LTS as

XML. Within CVM we need to store the XML state transitions for Media Transfer

and (Re)negotiation.

For MgridVM we need to persistently represent all plant entities. These in-

clude: Load Devices, Storage Devices, Source Devices, Smart meter, Load

Controllers, Storage Controllers, Source Controllers and the PCC.

77

Table 4.1: State transition table for media transfer.

Tr. Source State Target State Event Guard Action

0 Initial Ready initiateNeg ‖ in-
tiateInviteNeg

1 Ready StreamEnabled enableStream genStreamEnable Script
2 Ready StreamEnabled enableStreamRec genStreamEnableRec Script

UCI.notify(DSi+1)
3 StreamEnabled StreamEnabled enableStream !IsStreamEnabled genStreamEnable Script
4 StreamEnabled StreamEnabled disableStream IsStreamEnabled

&& # streams >
1

genStreamDisable Script

5 StreamEnabled StreamEnabled enableStreamRec !IsStreamEnabled genStreamEnableRec Script
UCI.notify(DSout)

6 StreamEnabled StreamEnabled disableStreamRec IsStreamEnabled
&&

genStreamDisableRec Script

streams > 1 UCI.notify(DSout)
7 StreamEnabled StreamEnabled sendNonStream genNonStreamSend Script
8 StreamEnabled StreamEnabled sendForm genSendForm Script
9 StreamEnabled StreamEnabled recNonStream UCI.notify(DSout)
10 StreamEnabled StreamEnabled recForm UCI.notify(DSout)
11 StreamEnabled Ready disableStream # streams == 1 genCloseStream Script
12 StreamEnabled Ready disableStreamRec # streams == 1 genCloseStreamRec Script

UCI.notify(DSout)
13 Ready Ready sendNonStream genNonStreamSend Script
14 Ready Ready sendForm genSendForm Script
15 Ready Ready recNonStream UCI.notify(DSout)
16 Ready Ready recForm UCI.notify(DSout)
17 Ready Final terminate

content...

Another critical component of the DSK is the mapping between changes or change

patterns and actions. This mapping is used to raise internal events to be processed

by the LTSs. Table 4.1 shows a few sample pattern to action mappings from the

microgrid domain. x’s are placed to signify points where the actual content does not

matter; we are looking for patterns. The first three mappings state that if a change

occurs to add or delete a data instance element then raise the corresponding element

type event. The fourth mapping states that for all changes simply raise a update

event. It is essential to declare this domain specific knowledge outside the GMoE

framework to allow for the change interpreter to effectively process the list of changes

arising from the model comparator. The change patterns for CVM is more extensive

due to the distributed nature of the domain and can be seen in Appendix I. Now that

we have illustrated the GMoE and how the DSK may be persistently represented,

78

Table 4.2: Partial List of Change Mapping for a MGridVM SE Instance

Pattern Action

1 (added,NODETYPE = addLoadDevice(nodeID)
LoadDevice,x,x)

2 (added,NODETYPE = addSourceDevice(nodeID)
SourceDevice,x,x)

3 (removed, NODETYPE = removeSourceDevice(nodeID)
SourceDevice,x,x)

4 (changed, NODETYPE = change(nodeID, property)
x,x,x)

n

we next present a our metamodel approach to instantiating the synthesis engine by

recombining the concerns.

4.3 Chapter Summary

This chapter presented the separation of the DSK and subsequent representation

as artifacts. Given the MoE from a earlier proof of concept prototype we applied

aspect-oriented software design principles to modularize the architecture to result

in a extensible framework and domain specific knowledge in the form of LTSs and

tabular representations. The implementation of this framework including the gluing

mechanisms for the DSK is presented and evaluated in the following chapter.

79

CHAPTER 5

DEVELOPMENT AND EVALUATION OF THE GENERIC MODEL OF

EXECUTION

In this chapter we generalize that portion of the application logic which remains

after separating the DSK and develop the gluing mechanisms. To demonstrate the

feasibility of this generalized MoE (GMoE) we propose a metamodeling approach

and instantiate synthesis engines for MGridVM and the CVM. The utility of GMoE

hinges on (1) its viability to be implemented as a synthesis engine and produce the

appropriable control scripts given a metamodel of the i-DSML, and a model of the

i-DSML’s DSVM, and control and data instances from the domains, and (2) its appli-

cability to reduce developmental effort for developers instantiating i-DSML execution

engines.

To instantiate a SE instance we make use of the rich toolset of the Eclipse Modeling

Framework (EMF) and the Kermeta meta-language to respectively describe our meta-

model and to weave in the execution semantics presented in Chapter 4. To accomplish

this analysis we (1) detail the successful prototype implementation and discuss de-

sign considerations, (2) present a trace of scenarios in CML and in MGridML, and

(3) perform a comparative study against earlier prototypes with respect to develop-

mental effort utilizing historical data, and (3) using experimental data evaluate the

prototype’s architecture in a controlled setting to determine coupling between the

framework and the DSK extension. This coupling is contrasted with that of earlier

prototypes within the two domains.

80

5.1 Generalizing Model Synthesis

To delve deeper, Figure 5.1 shows the activities involved in the generalized model

synthesis process. The core technology of the GMoE is an adaptable runtime model

which is a causal representation of the system under control. The GMoE comprises

three primary processes: Model Comparison, Change Interpretation and State Man-

agement. The model comparator compares the user preference model with an adapt-

able runtime model to produce a list of changes. The changes are sent to the change

interpreter which raises the appropriate internal events or actions according to the

change received. As the name suggests, the state manager updates the runtime state.

The output of this component are control scripts and a new runtime model which are

dispatched to other layers. We will next detail the GMoE using the activity diagram

in figure 5.1 .

1.Signal received

2. compareP(Uj,Rk,Evt) 3. InterpretE(Evt,Rk)

[UI Call]

9. query/update LTS

8. Get Action

Figure 5.1: Activity Diagram of the GMoE

81

Our walkthrough of the GMoE process begins when the system awaits a new

signal. If the signal is a middleware (MW) event the system progresses to the model

comparator activity 2 where it calls a compareP method. The compareP method

analyses the event to ascertain how the event applies to the runtime model. Within the

change interpreter, interpretE, inspects the event and recommends the appropriate

sequence of atomic changes to the runtime model to the state manager. In the state

manager activity 4 updates the runtime model and activity 5 informs the UI of any

changes made to the environment. Dependent on the type of change, the UI may

then trigger a new model comparison.

The second pathway addresses calls from the UI. A UI call is directed to activity

6, compareUM compares the generates a list of changes, chgL based on the difference

between user and runtime models. Each change (Chg) is a 4-tuple of the form (action,

node, neighbs, propsL), where action = {add, delete, change}; node is the node in the

model that changes; neighbs - neighbors of node in the model. The chgL is inspected

by activity 7, interpretC. Based on the change (Chg) being processed, and Rk, the

appropriate event is identified through the change mapping at activity 8. The event

is applied to the LTSs in activity 9 to generate control scripts. Activity 9 is located

within the state manager which creates, destroys and updates the LTSs as required.

After the changes are interpreted and the current runtime model is transformed to

the new runtime model (Rk+1) the control scripts generated by the elements’ LTSs

are sent to the middleware by activity 10. Activity 5 then updates the user interface

and the system is ready for the next signal.

We next present the persistent representation of the DSK.

5.2 The Synthesis Engine MetaModel

A software’s architecture captures design decisions which ultimately governs its be-

havior, quality and structure [72]. We formulated our design decisions based on a

82

propensity towards adaptation; seeking a representation capable of capturing the

complexity of the model synthesis approach in two loosely coupled components. The

components are a reusable framework to house the GMoE, and an easily specified

and interchangeable component to accommodate DSK. Our approach utilizes a model

based representation with a fixed structure to instantiate our SE; a model for process-

ing models. The metamodel for the DSVM language forms the basis for constructing

a i-DSML synthesis engine from modules and define their interaction utilizing a se-

mantic overlay.

The DSVM SE metamodel is separate and apart from the i-DSML metamodel.

Since the GMoE (which includes the Model Comparator, Change Interpreter and

State Manager components) is intended for reuse, it is incorporated into the inter-

preter framework. In this way the GMoE constitutes the framework and the DSK is

the framework’s extension. Each concern is separated and compartmentalized. Figure

5.2 shows the abstract syntax for the generic SE metamodel. The SE metamodel’s

central coordinator is aptly named SE Manager. The State Manager is responsible

for the runtime representation of the underlying system and serves as a conduit for

the GMoE to manage activities of the DSK. It is solely within the State Manager

where the aspects are joined; this achieves the loose coupling architecture that is at

the heart of the refactoring efforts. The gluing of the persistent DSK semantic arti-

facts (the change mappings and LTSs) is accomplished using the DomainManager. The

DomainManager, in addition, is the point of access to the i-DSML metamodel which is

applied within SE Manager to relate the non-generic classes to the ModelComparator,

ChangeInterpreter and for runtime updates using the State Manager.

The metaclasses within the GMoE abstract syntax contains methods. These meth-

ods represent semantic actions required by the framework. These semantic actions

are an extension of the core activities which we saw in figure 5.1. A high level al-

gorithm 5.1 shows instantiation process whereby the semantic actions of the GMoE

83

Signal

-signalName

-TID:signalType

<<Interface>>

SE_Interface

SE_Manager

-dslName

-changeList

-eventQueue

-processSignal()

Handler

Model_Comparator

-comparatorName

-enqueueChg(chg,ChgList)

ChangeInterpreter

-activeChange

-raiseEvent()

-queryMap()

StateManager

-workingState

-ltsList

-updateRt(chg)

-updateLTS(EvT)

-createLTS(elemID)

-destroyLTS(elemID)

-updateState()

-Dispatch(cScript)

DomainManager

-loadLTS()

-loadMetaModel()

-loadMap()

Change_Mapping

-pattern

-action

Transition

-guardList

-prevState

-nextState

-event

-controlScript

State

-stateName

LTS

-LTSID

-elementID

DSL

MetaModel

<<Enumeration>>

signalType

-UICall

-MWEvent

-memberName

-memberName

Figure 5.2: Metamodel for Synthesis Engine Definition

and the DSK’s persistent artifacts are incorporated. The function SE Build initially

ensures that the SE instance submitted complies to the metamodel. Upon validation

the instance is serialized to classes and the runtime model are created an set to null.

The DSK artifacts(LTS and ChangeMap) are next loaded and finally the semantic

actions.

Algorithm 5.1 is a representation of how the SE is built using the metamodel

presented. Initially the SE metamodel validates the required SE Instance. Next

the instance is serialized to objects. At this point the runtime model initialized to

null. The DSK concern in terms of its syntax and semantics is subsequently inputted

and the build becomes ready for a signal.

5.3 The Instantiation Process

In this section we explain the design and implementation of the Generic Model of

Execution (GMoE) prototype. To instantiate a SE model instance(MoE) representing

84

Algorithm 5.1 Building the Synthesis Engine
1: SE Build

Require: SE Instance - (Synthesis Engine Model), SE MetaModel
// Verify SE Model Instance */

2: if validModel(SE Instance, SE MetaModel) then
3: Serialize Classes(SE Instance)
4: Runtime ← StateManager.runtimeModel
5: STATEManager.updateRT(null.)
6: //Load DSK concern as persistent artifacts
7: ChgMap ← DomainManager.loadMap()
8: while element ∈ elementList do
9: LTS ← DomainManager.loadLTS(element)

10: end while
11: i dsmlMetaModel ← DomainManager.loadMetaModel()
12: //Finally dynamically bind the implementors of semantic actions
13: BindToClasses(implementors[])
14: SE Manager.awaitSignal()
15: end if

Figure 5.3: Overview of GMoE Approach

the GMoE and the DSK for the i-DSML (DSL metamodel, LTS’s etc.) we make use

of the rich tooling of the Eclipse Modeling Framework (EMF) and the kermeta meta-

language to describe our metamodel and to weave in the execution semantics.

5.3.1 Kermeta

Kermeta can be thought of as an aspect oriented programming language and an

integrating MDE platform capable of weaving static and dynamic semantics into

models. Kermeta uses an action language which employs object-oriented mechanisms

and sequential control structures. In fact a MOF metamodel can be looked at as a

85

valid kermeta program complete with classes and attributes but without behavioral

aspects. Using Kermeta we extend the SE metamodel to include static semantics,

dynamic semantics, and model transformation concerns. Since our metamodel is a

static model we weave the execution semantics by declaring classes of similar names

equip with operations as kermeta aspects . In kermeta, classes with the same qualified

name are merged within the interpreters memory therefore attaching dynamism to

the structure. The metamodel is now overlaid with kermeta aspects corresponding to

each metaclass to describe their execution semantics.

To facilitate the instantiation of the GMoE we developed a driver SE launcher,

written in the Kermeta meta-language, to manage the build. Figure 5.4 shows a

high level state machine of the SE Launcher which presents the necessary steps to

arrive at the instantiated synthesis engine which is the target of our approach. To

instantiate the Synthesis Engine the SE Launcher has to first load and register the

SE and LTS metamodels in states 1 and 2. These metamodels are generic to any

SE instance. State 3 is where our machine takes on its context. The SE model

instance allows us to subsequently load the i-DSML metamodel and semantics of the

language as Kermeta aspects. Once the GMOE aspects, (Change Interpreter, Model

Comparator, etc.) are loaded then we have a recognizable synthesis engine.

Figure 5.5 shows the architectural makeup of the essential components of the

generic approach. Note that there is a distinct separation (gluing represented by

dashed line) of the GMoE and DSK components demonstrating very loose coupling

of the concerns.

5.3.2 Switching SE Instances

To switch between languages the SE Launcher has to load a new SE model instance

which carries the syntactic and semantic elements of the DSVM language. Once the

new SE model is loaded then the i-DSML .ecore is registered and the system is ready

86

3. SE Model Instance Loaded

1. SE MetaModel Loaded

/ Load SE.ecore

[LTS MetaModel Verified] / Input SE Model Instance

/ Load aspects

2. LTS MetaModel Loaded

GMoE begins to take on
domain specific characteristics

[Model Validated] / Load i-DSML MetaModel

[SE MetaModel Verifed] / Load LTS .ecore,registerSE.ecore

5. SE Instance Built

4. DSK Aspects Loaded

Semantics Added

MoE Complete

/ Validate SE Instance

Figure 5.4: State Machine of SE Launcher implementation resulting in the targeted
Synthesis Engine.

to process the i-DSML models. Note that the LTSs are defined in the prototype

using its own metamodel. Individual LTSs are created, traversed and destroyed by

the domain manager as warranted during runtime.

5.4 The Communication Domain Evaluation Scenarios

To ascertain the utility of our implementation we present indicative scenarios from

the communications domain. The scenario choices are from those used to test the

earlier CVM prototype so we are able to check known outputs against those of the

GMoE prototype. By running the scenarios on earlier prototypes we are capable of

determining the validity of the GMoE synthesis.

87

Figure 5.5: Generic SE Architecture

ConnectionID: C1

person
Name: Burke
UserID: burke32
Role: DP

DeviceID 001
isAttached isAttached

person
Name: Monteiro
UserID: monte06
Role: SC

DeviceID: 002

medium
LiveAudio

form
Discharge_Pack

medium
TextFile

medium
NonStreamFile

LiveAudio

TextFileVideoFile TextFileVideoFile

medium
VideoFile

NonStream LiveAudio NonStream

(a)

(b)

medium
LiveAudio
AV-C1

form
DisPkg_1
send

medium
xRay-Jane.jpg
D:Jane/xRay-Jane.jpg

medium
HeartEcho-Jane.mpg
D:Jane/HeartEcho-Jane.mpg

(c)

medium
LiveAudio
AV-C1

ConnectionID: C1 ConnectionID: C1

medium
RecSum-Jane.txt
D:Jane/RecSum-Jane.txt

Figure 5.6: Two-Way Communication Scenario

88

5.4.1 Communications SE Setup

In order to instantiate the CVM Synthesis Engine to process the scenario the GMoE

framework SE Launcher needs to be extended with the DSK from the user-centric

communications domain. To accomplish this, there are some preliminary steps that

needs to done before the framework can process CML models to produce the tar-

geted control scripts. First the metamodels for the LTSs, the language and synthesis

engine,(LTS.ecore,CML.ecore, SEVM.ecore) are registered using EPackages registra-

tion. The LTS and the SEVM metamodels are domain independent. A CVM synthesis

engine schema (see Appendix G) CVM SE.xmi is inputted to the framework. This

model describes the artifacts necessary for the framework to function.

5.4.2 SCENARIO 1 - CVM Application

The scenario starts on the day of discharge of Baby Jane (patient). Dr. Burke needs

to discuss outpatient care for the patient and initiates an audio video call to Dr.

Montiero. During the discussion Dr. Burke needs to clarify some basic points and

thinks that sharing some patient records will be required. During the conversation

she dynamically creates a record DisPkg 1 containing the patients record’s summary

as a text file JaneRecSum-Jane.txt, a picture of the latest x-ray, xRay-Jane.jpg and

video of her electrocardiogram, HeartEcho-Jane.mpg. After discussing the details,

and being sufficiently satisfied Dr. Burke terminates the call.

Figure 5.6 presents our first scenario. In (a) we see the predefined GCML control

schema representing a two-way call in a medical setting. The attributes within the

entities that are not required for this walkthrough are not represented in the diagram.

In (b) we see the initial data schema used to set up the call and in (c) is the data

schema which represents the transfer of the patient files.

At the onset the initial runtime model is null. This may be represented as (CS0, DS0) =

89

(null, null)

With the submission of the control/data schema pair (CS1, DS1) corresponding to

Dr.Burke’s initial communication request we get a model comparison between null

and CS1. The change List generated is:

added (connection(C1),

form("Discharge Pack"),

device(001),

isAttached(001),

person("burke32")

device(0021),

isAttached(002),

person("monte06")

The event raised by the Change interpreter after the query to the change mapping

(Appendix I) is:

initiateNeg ,localSameCI

The events raised leads to the following control scripts upon querrying the negotiation

LTS :

createConnection("CI")

sendSchema("C1","burke32","monte06",CI 1,DI 0)

and subsequently,

sendSchema("C1","burke32","monte06",CI 1,DI 0)

At this point the runtime model is reconciled to (CS1, null) and Dr. Burke’s control

schema becomes the runtime control instance.

To enable audio-visual communication between the parties there needs to be a

data instance. When Dr. Burke’s data instance (b) , DI1, is submitted the model

comparator generates as change :

added (medium(AV C1))

90

ConnectionID:
device
DeviceID:
isLocal: true
isVirtual:

isAttached

isAttached
person
Name:
UserID:
Role: Physician

form
Action: send
Name: Patient Record

medium
TextFile

medium
NonStreamFile

medium
VideoFile

isAttached
person
Name:
UserID:
Role: Physician

person
Name:
UserID:
Role: Physician

device
DeviceID:
isLocal: false
isVirtual:

medium
LiveAudio

device
DeviceID:
isLocal: false
isVirtual:

ConnectionID: C1DeviceID: 001
isLocal: true
isVirtual: false

isAttached

isAttached
person
Name: Dr. Monteiro
UserID: monteiro41
Role: Attending
Physician

DeviceID: 002
isLocal: false
isVirtual: true

form
Action: send
Name: Patient Record

medium
TextFile

medium
NonStreamFile

TextFileVideoFile

TextFileVideoFile

medium
VideoFile

NonStream

isAttached

person
Name: Dr. Sanchez
UserID: sanchez12
Role: Referring
Physcian

DeviceID: 003
isLocal: false
isVirtual: true

TextFileVideoFile

Person
Name:Dr. Burke
UserID: burke23
Role: Surgeon

LiveAudio

NonStream LiveAudio

NonStream LiveAudio

3-Way Communication Use Case

3-Way Communication Scenario

Figure 5.7: Three-Way Communication Scenario

From the change mapping, the Change Interpreter now generates:

enableStream

Querrying the state machine yeilds as control scripts:

enableinitiator("CI","LiveAudio")

and

sendSchema"C1","burke32","monte06",CI 1,DI 1)

The runtime model now becomes (CI1, DI1)

When Dr Burke submits the second data instance (c), DI2, this triggers the Model

Comparator to compare the runtime model (CI1, DI1) and (CI1, DI2) which yields

the following change:

added(form("DisPkg 1"))

91

The Change Interpreter raises the following event:

sendform

Querying the LTS results in leads to control scripts:

sendForm("C1","DisPkg 1", "RecSum-Jane.txt"),

sendForm("C1","DisPkg 1", "xRay-Jane.jpg") ,

sendForm("C1","DisPkg 1", "HeartEcho-Jane.mpg") and

sendSchema"C1","burke32","monte06",CI 1,DI 2)

The runtime model now becomes (CI1, DI2)

5.4.3 SCENARIO 2 - CVM Application

If in Scenario 1 Dr. Burke did not shut down the communication connection, yet

instead had decided that he needed to include Dr. Sanchez, the referring physician

then this would involve adding an additional person corresponding to the control

instance shown in Figure 5.7.

The submitance of the new control instance CI2 triggers a comparison between CI1

current runtime control instance and the new user control instance CI2 yielding as

change:

added(device,isAttached ,person)

raising:

initiateReNeg

A query to the LTS generates:

("C1","burke32","monte06", "sanchez12", CI 1,DI 2)

The comnnection achieves stasis when the runtime model is updated to (Ci2, DI2)

92

5.5 The Energy Management Domain Evaluation Scenarios

In this section we present indicative scenarios from the energy management domain

to test the ability of the GMoE based synthesis engine instantiation to generate con-

trol scripts as in the earlier prototype described in Chapter 3 of this dissertation. A

walk-though of the model processing components will be presented to demonstrate

how the prototype builds the control scripts for the microgrid DSVM.

5.5.1 Microgrid SE Setup

The GMoE prototype had been configured to generate scripts from the communica-

tions domain in the previous scenarios therefore will not currently accept the micro-

grid models. To restructure the prototype to for microgrid models we will have to

remove the domain specific aspects which form the CVM and replace it with that of

MGridVM. Since the structure of the DSVM SE model should remain the same there

is no need to change the SE metamodel. Additionally the LTSs follow the same struc-

ture so the same LTS metamodel is also valid. The change in DSK occurs by swapping

the SE launcher’s link to the SE model from CVM SE.xmi to MGRIDVM SE.xmi. in ad-

dition the framework’s language metamodel has to be changed from CML.ecore to

MGRIDML.ecore. Once this is accomplished and the MGRIDML.ecore is registered to

in kermeta then we are ready to accept microgrid based models.

5.5.2 SCENARIO 3 - MGridVM Application

This simple scenario begins with our actor Lisa, a resident of southern United States

needing to configure her home’s microgrid to incorporate the operation of a newly

installed controllable pool pump and her air conditioning unit. Currently the sys-

tem has no configuration, therefore Lisa has to submit a MGridML control schema

93

to indicate the configuration of the plant and a data instance to signify the desired

properties of the devices to be controlled. Lisa wants to first deploy a configuration

which identifies her grid structure. This control Schema should include her smart-

meter which enables her to exchange data with her local utility, and logical load

controllers through which she regulates these devices. The devices mentioned are

consumers of electricity and are therefore loads. The control instance submitted is

shown in Figure 5.8 (a). The instance shows the core element, the microgrid central

controller, MCG001. Connected to MC001 are two controllers. One is a point of

common coupling, PCC001, and the other is a load controller which she intends to

use in managing her devices. Attached are to each controller are their respective

types which are for describing and associating the devices in the data instance.

The submission of the first control instance to GMoE prototype triggers a compar-

ison between the current runtime model (null, null) to the new user define instance

(CI0, null). The resulting changelist is:

added (MCGrid ("MCG001") ,

LoadController("LC001"),

LoadDeviceType("LTD001"),

LoadDeviceType("LTD002"),

PCC("PCC001") ,

SmartMeterType("SMT001"))

The Change Interpreter now accesses the change mapping and raises the following

events:

initialMCG,

createLC

create PCC

addLC

addPCC

94

(a) Control instance

LoadDeviceType

ldtypeID:LDT001
typeName: LARGE-APPLS

critical: SHEDABLE
usage: AC

LoadController

controllerID:LC001
name:ControllerSeasonal

cardinality:1-n
description: “Seasonal Devices”

critical: ANY
groupAction:FALSE

loadDeviceTypes: LDT001

PCC
controllerID:PCC001

name: PCC
cardinality:1-1

description: Utility
connected: TRUE

smartMeterType: SMT001

MDGrid
mdgridID:MDG001

mcgrdiID:MCG001

(b) Data instance 1

MDGrid

mdgridID:MDG001
mcgrdiID:MCG001

(c) Data instance 2

SmartMeterType
mTypeID:SMT001

typeName: SM

LoadDevice

plantE_ID = LD001
ldTypeID = LDT001

devicename = A/C
wattage: 120

control = CONTROLLABLE
critical = SHEDABLE

property = (temp, 75)

SmartMeter
plantE_ID:SM001

mtypeID:SMT001
tariff = 0.0

usage = 0.0

LoadDevice
plantE_ID = LD001

ldTypeID = LDT001
devicename = A/C

wattage: 120
control = CONTROLLABLE

critical = SHEDABLE
property = (temp, 75)

LoadDevice

plantE_ID = LD002
ldTypeID = LDT002
devicename = Pool

wattage: 720
control = CONTROLLABLE

critical = SHEDABLE
property = {(start, 10:00),

 (duration, 2)}

SmartMeter
plantE_ID:SM001

mtypeID:SMT001
tariff = 0.15

usage = 44.5

LoadDeviceType

ldtypeID:LDT002
typeName: LARGE-APPLS

citical: SHEDABLE
usage: Outdoor

MCGrid

mcgridID:MCG001

Figure 5.8: MGridML Scenario 1

addLDT

addSMT addLDT

The LTSs are now queried and yeilds the following control scripts:

initializeMGrid("MCG001")

95

addLoadController("LC001", " LDT001,LDT002")

addPCCController("PCC001", "SMT001")

....................

addLoadDeviceType("LDT001", "AC")

addMeterType("SMT001","SM")

addLoadDeviceType("LDT002", "AC")

At this point, the stub, which is the stand in for the lower layers of the DSVM

(the Microgrid Control Middleware (MCM) and MicroGrid hardware Broker (MHB))

returns a confirmation that the scripts were executed and the runtime model is up-

dated to (CS1, null). At this point Lisa’s microgrid is not fully configured and needs

a data instance to tell the DSVM the particulars regarding the desired operational

states of the devices she wants to manage.

Lisa next submits a data instance, Figure 5.8 (b) which only contains the connec-

tion to the utility via the smartmeter and only one load as a test to be cautious; the

air conditioner which she intends to work at 75 Degrees.

By submitting the new data instance the model comparator diffs the current run-

time model (CI1, null) against the new user preference model, (CS1, DI1). Recall

that Di1 is Figure 5.8 (b). The changelist generated is :

added(MDGrid("MDG001","MCG001"),

LoadDevice("LD001", "LDT001", "temp,75"),

SmartMeter("SM001","SMT001"))

The resulting events raised by accessing the change mapping are:

addLD

addSMT

addSD

The LTSs are queried and the following microgrid control scripts are generated:

96

addLoadDevice("LD001", "LDT001", "temp,75")

addSmartMeter("SM001","SMT001")

Being sufficiently satisfied, Lisa’s now adds the second load which is the pool. To

accomplish this she appends Figure 5.8 (b) with a new node denoting the pool and

its setting to create Figure 5.8 (c). She wants this device to be attached to the out-

door LoadDevice type. Note that she did not simply submit the MDgrid node with

the pool as a loadDevice attached. This would result in the system releasing the AC

from control; effectively pruning it from its runtime model. This is important as the

MGridVM semantics dictates that the model elements need to be explicitly defined

and represented in models. Submitting the preference model(Ci1, DI2) results in the

changelist:

added(LoadDevice("LD002", "LDT002", "start,10:00,duration,2"))

the subsequent LTSs query results in:

addLoadDevice("LD002", "LDT002", "start,10:00,duration,2"))

The scenario ends when the SE receives confirmation that the scripts are executed

and statsis is achieved when the runtime model is reconciled to (CI1, DI2) .

5.5.3 SCENARIO 4 - MGridVM Application

In this scenario, Lisa wants to make repairs to the AC and worries about it suddenly

becoming active. She also wants to automate her outdoor lights to turn on at 6pm

and turn off at daybreak which is about 5pm. She joins this device to the outdoor

device types. The system may choose to treat these devices distinctly due to some

concern defined by the user, however in this prototype we have not implemented

policy concerns. To address the new configuration she submits the model shown in

Figure 5.9. We assume that the existing configuration from the previous scenario is

still active and the runtime model is (CI1, DI2). The submission causes the model

97

comparator to yield the following as changes:

removed(LoadDevice(LD001))

added(LoadDevice("LD003", "LDT002", "start,18:00,duration,11"))

The corresponding events raised are:

removeLD

addLD

This in turn queries the LTSs and yields:

removeDevice(”LD001”)

addLoadDevice(”LD003”, ”LDT002”, ”start,18:00,duration,11”))

5.5.4 Result

By putting the prototype through its paces using these scenarios we found out the

its capabilities were the same as the previous prototypes. The models we used, while

structurally complete , used elements with minimal attributes needed to be processed

to control scripts.

5.6 Evaluation of Instantiation

The second dimension of our study applies to the overarching goal of the GMoE to

facilitate reuse of model interpretation knowledge by furnishing a generic framework.

To evaluate the utility of the prototype our objectives were:

Objective 1: To ascertain an estimate to which the approach saved developmental

effort through reuse.

Objective 2: To determine the extent of architecture’s aptness to be restructured using

an analysis and comparison of coupling metrics of the GMoE with earlier prototypes.

Objective 3: To inspect the performance of the GMoE prototype compared to V1

prototypes by recording the running times under increasingly more complex models.

98

MDGrid

mdgridID:MDG001
mcgrdiID:MCG001

(a) Data instance 1

LoadDevice

plantE_ID = LD003

ldTypeID = LDT002
devicename = Outdoor Lights

wattage: 120
control = CONTROLLABLE
critical = SHEDABLE
property = {(start, 18:00),
 (duration, 11)}

LoadDevice

plantE_ID = LD002

ldTypeID = LDT002

devicename = Pool

wattage: 720
control = CONTROLLABLE
critical = SHEDABLE

property = {(start, 10:00),
 (duration, 2)}

SmartMeter

plantE_ID:SM001

mtypeID:SMT001
tariff = 0.15
usage = 1245.3

Figure 5.9: MGridML Scenario 2

5.6.1 Experiment Setup

To evaluate the first objective we (1) used compiled historical development data

related to programmer hours to build new SEs utilizing the GMoE methodology and

the earlier CVM and MGridVM prototypes, and (2) assuming a correlation between

complexity and work effort as in [3] we use SLOC, number of classes, and number of

methods as code metrics to show a relationship to the development time.

The analysis to satisfy our second objective concerns coupling. We compared the

earlier coupled prototypes with the GMoE prototype along the following dimensions:

99

• Inbound Intra-Package Method Dependencies (IIPM) - methods in other classes

of the same package that depend on this method.

• Outbound Intra-Package Feature Dependencies (OIPF) - methods and fields

within the classes of the same package that this method depends on.

• Inbound Extra-Package Method Dependencies (IEPM) - methods in other pack-

ages that depend on this method.

• Outbound Extra-Package Feature Dependencies (OEPF) - methods and fields in

other packages that this method depends on.

The aforementioned metrics were captured using Dependency Finder [73], which

is a suite of tools for analyzing compiled Java code, particularly, computing object-

oriented software metrics that give you an empirical quality assessment of the code.

The third objective requires a comparison of the running times of the earlier proto-

types against the GMoE based SEs. To accomplish this we reused the data collected

from the chapter 3 evaluation of the V1 prototypes along with the same models (CML

and MGRIDML) as input. In seeking a true reflection of the performance we con-

trolled threats by reusing the same machine, models and collection mechanisms used

in the prior experiments. All prototypes were pretested to ensure that they generated

the same control scripts given the same input models.

5.6.2 Results

Table 5.1 shows the evaluation metrics for the synthesis engines in both domains.

Columns 2 and 3 show the data for the earlier version (v1) of the SEs, Columns 4

and 5 the current version (v2) of the SEs built from the GMoE and DSK. The GMoE

versions values are shown as sums of the GMoE and DSK. The SE in the the second

versions are smaller in size than the v1 SEs since the DSK is represented as a model

in Kermeta and we currently do not generate the Java code for the DSK. We plan

100

Table 5.1: Comparison of static code metrics and development times for both versions
of the SE.

Metric MGVM CVM MGVM (v2) CVM (v2)
(v1) (v1) (GMoE + DSK) (GMoE + DSK)

SLOC (314 + 718) (314 + 452)
2913 963 = 1035 = 766

Classes (26 + 49) (26 + 38)
31 21 = 75 = 64

Methods (187 + 216) (187 + 78)
434 156 = 403 = 265

Development (38 + 25)
Time (hrs) 155 130 (38 + 35) = 73 = 63

Table 5.2: Comparison of coupling metrics for the classes in both versions of the SE
that form the GMoE.

Coupling MGVM (v1) CVM (v1) GMoE (v2)

IIPM 80 7 2
OIPF 135 13 2
IEPM 0 25 0
OEPF 336 107 112
Total: 551 152 116

to perform full code generation in future work. The final row of Table 5.1 shows the

development time to create the versions of the SEs.

The coupling measures at the method level for Objective 2 are shown in Table

5.2. Top part of the table shows the static code metrics for the classes in SE that

represent the GMoE. Note the lowest number of methods for the two versions of the

SE is for the SE v2. The lower part of the table shows the coupling metrics including

the method level metrics previously described. In general the coupling measures for

the SE v2 is the lowest, except for OEPF which is higher for SE v2 than for CVM

v1. This is expected since there are a large number of features dependent on the

classes and methods containing the DSK. This would suggest that in general GMoE

used in the SE v2 has a higher level of reusability in the development of SEs for other

domains. Note however, this measurement was taken in the context of an application

developed using Kermeta.

101

Table 5.3: Comparison of performance metrics and regression slopes for the SE pro-
totypes.

M MGVM CVM MGVM (v2) CVM (v2)
(v1) (v1) (GMoE + DSK) (GMoE + DSK)

10 0.97 1.17 3.82 4.52
14 1.3 1.8 5.42 6.74
18 1.68 2.07 7.06 9.29
22 2.07 2.42 9.83 12.07
26 2.42 2.76 11.85 14.81
30 2.71 3.17 13.74 18.22

Regression
Slopes 0.088 0.094 0.512 0.681

963	

21	
156	 130	

766	

64	

265	

63	

SLOC	 Classes	 Methods	 DevHrs	

CVM	 SE	

MoE	 GMoE	

Figure 5.10: Comparison of CVM v1 and CVM v2

The performance metrics for objective 3 are shown in Table 5.3. In the top

section of the chart is the performance times for each prototypes in seconds elapsed

to process models of with number of nodes M. The lower section shows the slopes of

the regressions applied to the respective datasets.

5.6.3 Discussion

Figures 5.10 and 5.11 show a graphical representation of our comparison of the version

of the SE. The v2 approach required an increase in the number of classes and methods;

102

2913	

31	
434	

155	

1032	

75	
403	

73	

SLOC	 Classes	 Methods	 DevHrs	

MGridVM	 SE	
MoE	 GMoE	

Figure 5.11: Comparison of MGridVM v1 and MGridVM v2

this can be attributed to the additional gluing mechanisms required. We were gratified

to see the time to develop the v2 SEs using Kermeta is approximately half of the time

to develop the v1 SEs. This can be explained as Kermeta was used in the second

generation prototypes. Kermeta has allowed for less debugging and coding as we

were operating at a higher level of abstraction. The coupling between our aspects

was significantly reduced which was expected as our paramount focus was on the

loose coupling between the two concerns.

Figure 5.12 shows the graphical representation of the performance metrics for the

prototype versions corresponding to Table 5.3. We have used regressions and assume

a linear trend to determine the slopes of the datasets and are sufficiently satisfied to

proceed with the analysis as our correlations coefficents are over .98 for the sampling.

We focus on three critical aspects which emerge from our inspection.

Firstly, the elevation or y intercept differences between prototypes of the same

domain (v1 vs. v2) are larger which reflects a significant decrease in performance

by the v2 prototypes. We expected that the use of kermeta in the v2 prototypes

103

Figure 5.12: Comparison of v1 and v2 performances

would result in less optimal lower level code than the java counterparts, therefore our

supposition was validated.

Secondly the v2 prototypes show a steeper slopes as model complexity increases.

We tested the difference of rates and found a p-value of 1.63× 10−9, which concludes

a significant difference. This demonstrates than not only are there increased perfor-

mance times between versions but the performance degradation widens. Again this

can be attributable to the kermeta implementation. Our third observation which be-

came more apparent with the v2 prototypes is the higher slopes for CVM regressions

over the MGVM regressions. This is also evident in the v1 prototypes but less visible.

To delve deeper into this phenonena we apply the analysis of covariance (ANCOVA)

model to analyze the relationship between v2 prototype performances. ANCOVA uses

a null hypothesis stating that the regressions are statistically equal. The tests for ho-

mogeneity between regressions rejects the null hypothesis with p = 0.000530 < .05.

104

We assume the critical p-value of .05 for statistical significance. We can therefore

assert that the regressions for the v2 prototype performances are statistically sig-

nificantly dissimilar over the dataset. This we attribute to the structural difference

between the models in each domain, exaggerated by the performance lag experienced

by kermeta.

5.6.4 Threats to validity

In accord with Wohlin et.al. [81], we considered both internal and extrenal threats

to validity for all three evaluation objectives. The GMoE prototype was developed

using some kermeta modules which are at a higher level of abstraction than Java

code. This is an external threat to the approximation of effort done in objective

1. The Compile Kmt to EMF plugin (Java) is still experimental at present, but we

intend to address this threat when the transformation becomes available. An internal

threat to objective 1 is our assumption of a causal relationship between complexity

and work effort. In addition, while source lines of code (SLOC) and the quantity

of classes and methods are a good indicator of complexity, these metrics are by no

means exhaustive.

An internal threat which affects all objectives is It has to be taken into consider-

ation that the developers gained expertise in model-driven development. The same

developers were used in the MGridVM project and could have gained some devel-

opmental domain insight to build the GMoE more efficiently. The development of

the CVM (v1) prototype and GMoE prototype (v2) were developed by different de-

velopers which may skew the comparison. An external threat to objective 2 is the

dimensions along which the coupling comparison was evaluated. While these met-

ric are not exhaustive we are sufficiently confident that they highlight the modular

differences in the approaches.

105

We used the same models and results from the version 1 prototypes in objective 3.

This means that the internal threat of not using very large models in our performance

evlauation is carried over. This threat could result in greater than linear synthesis

times for models of complexity greater than those evaluated.

5.7 Chapter Summary

In this chapter, we presented our methodology to refine the commonalities of the

interpreter logic for i-DSML synthesis engines into a GMoE. We subsequently pre-

sented details of our GMoE prototype implementation to demonstrate the proof of

concept. The prototype was sufficiently validated by ensuring that the scenarios from

the version 1 prototypes produced the same control scripts as output.

Three comparative studies against the earlier prototypes were performed: (1) the

effort required in synthesis engine development; (2) measuring the coupling of the

DSK; and (3) a performance analysis of the GMoE prototype. The first two studies

provides an argument for productivity gains and increased quality by employing the

GMoE. The third study recorded large performance losses in model synthesis by the

GMoE. This should however be tempered by considering that this prototype was

implemented using kermeta. In our next section we conclude by consolidating the

research put forward in this dissertation.

106

CHAPTER 6

CONCLUSION

6.1 Introduction

In this dissertation we investigated the problem of how to decouple the domain-specific

knowledge from the model of execution in the synthesis engine, thereby producing a

generic model of execution. We have contended that in developing a generic model

of execution for synthesizing i-DSML models we may assist authors of i-DSMLs to

develop their language syntax and the required execution semantics in a totalistic

manner. By the development of this methodology I sought to reduce the effort re-

quired to develop subsequent DSVMs. There existed a gap in the research surrounding

the specification of execution semantics and no previous work addressing reusing in-

terpreter logic as it applies to i-DSMLs. In addressing the primary research problem

the study explored three distinct subproblems:

1. How to formulate the semantics of model synthesis for in MGridVM, based on

changes to user-defined models at runtime?

2. How can DSK semantics be represented in a persistent manner and the MoE

be defined to support synthesis engine instantiation for a specified domain?

3. How to instantiate the synthesis engine, given a representation of the DSK and

a GMoE framework?

At the onset of the investigation into a solution to the first subproblem there was an

existing i-DSML, Communications Virtual Machine (CVM). In developing the DSVM

for a new i-DSML, MgridML, we noted that not only did the language’s abstract

syntax necessitate the separation of Data and Control constructs, but the execution

107

semantics required similar components to the existing CVM. This set in motion our

research path into a deep investigation towards exploiting the commonalities. A

second observed phenomena was the tremendous effort required for a DSVM build and

the level of redundancy in the development of DSVMs. Both virtual machines required

well in excess of a hundred hours of development time, much of which was dedicated

to implementing very similar model processing components. This furthered our zeal

to provide a methodology that can be used by other language authors, promoting the

focus of developmental efforts on that portion of the synthesis engine that is wholly

specific to the domain.

Within this chapter we first present the empirical analysis of each subproblem in

Section 6.2 then discuss the implications of the study in Section 6.3. We will address

recommendations for future research in Section 6.4 and conclude the chapter and this

dissertation in Section 6.6.

6.2 Empirical Analysis

While we employ scenario traces to validate the builds of each major prototype.

We have relied heavily on empirical analysis to guide our path towards addressing

the research question. Of major concern was greater than linear time responses to

increased complexity. This would indicate a limitation on the complexity of the

models and thefore the utility of the approach.

The MGridML/VM prototype was developed in two stages. An early rudimentary

prototype we developed to determine feasibility of the applying an i-DSML approach

to the energy management domain. The success in the alpha prototype prompted

a refinement to a MoE with a loosely coupled intrinsic DSK. This prototype was

evaluated on its ability to satisfy its core requirements and also compared with the

early CVM prototype in which the DSK was more tightly coupled. The results of the

empirical analysis demonstrated that the prototype could process models of increasing

108

complexity in linear time. The loosely coupled architecture showed some performance

tradeoffs as expected.

To separate and develop a persistent representation of the DSK as artifacts we

examined the model of execution of the previous prototype and refactored the ar-

chitecture according to the principles of aspect oriented design. With a focus on

separated the concerns, the DSK being the primary concern, we observed that the

artifacts for the DSK were of two primary types, syntax and semantic elements. The

syntax for the architecture had from the i-DSML metamodel, while the semantics

could be contained within automata representations of the pertinent model concepts

or elements and a change mapping. To make these entities persistent we employed a

labeled transition system representation and a simple tabular representation respec-

tively. Both may be store in file format. The second subproblem called for the DSK to

be easily representable in the two domain platforms. The remainder of the MoE was

reified to a framework with the DSK as the frameworks extension. To bind the DSK

to the framework we took a model-based approach. The architecture is such that the

framework should be able to read the DSK and supporting artifacts as a model with

a fixed configuration but with multivariate internal properties and attributes.

The GMoE approach was reified to a third prototype as proof of concept and for

evaluation in terms of effort expended in artifact development, coupling of concerns

and performance. The first set of experiments quantified the benefits of the GMoE

approach with respect to implementation effort. What was found is roughly a 50%

reduction in development time. The significance of this reduction has to be tempered

by the fact that the developers had gained some expertise after working in the domain

and were working at a higher level of abstraction using the kermeta language.

The second set of experiments validated our hypothesis and general intent for a

loosely coupled architecture. The metrics applied to coupling were Inbound Intra-

Package Method Dependency, Outbound Intra-Package Feature Dependency, Inbound

109

Extra-Package Method Dependency , and Outbound Extra-Package Feature Depen-

dency. The emphasis on coupling stems for a quality consideration, but foremost

we postulated that by reducing coupling, the gluing mechanism required to recom-

bine the GMoE and a DSK would be small and unobtrusive within the development

process.

The third set of experiments focused on the performance of the GMoE based

prototype. Since the earlier prototype had reflected linear times for models of in-

creasing complexity we wanted to ensure that this response was carried through to

the new prototype. The new prototype also reflected linear times which alleviated

our concerns. The performance however was severely degraded with the overhead

costs of kermeta. We were pleased with the outcome of this aspect of the study as

performance times greater than linear would impact the utility of the approach.

In total the empirical analysis results demonstrated no significant deviation from

our expectations. We are satisfied with he breath of the tests performed at each stage

of the investigation.

6.3 Implications

The implication of this approach has far reaching scope. One of the major obstacles

to the widespread acceptance and application of i-DSMLs is the magnitude of effort

and expertise required in the development of their execution engines. While this

dissertation addresses only the synthesis engine layer of the DSVM, we have seen that

the approach fosters a reuse of expertise and redundant components. This approach

will allow for less effort being expended in the development of new i-DSMLs. Secondly,

since the language developer will know a priori as to the artifact requirements for

her DSK, then the metamodel and DSK can be built at the same time ensuring

traceability. The developer would now be able to describe a model element’s syntax

and go on to describe its execution; building the language downwards.

110

6.4 Future Work

We did not implement all the features that were identified in our feature analysis of

the microgrid domain. The inclusion of policies within MgridML will allow for greater

control of the plant. For example the user could attach a policy to the the PCC to

state that if the voltage of the macro-grid falls below a defined threshold then the

microgrid should island itself. The user could also state via policy that if the tariffs

from the macro-grid exceeds .012 USD per Kilo Watt then switch to storage reserves,

and then again only if the storage capacity is greater than 50 percent.

The inclusion of policies has exiting possibilities as now behavior would be derived

within the model and from model changes. Now we would have to revisit the synthe-

sis engine to allow for interpreting policies. A further consideration which makes this

path even more interesting is to investigate how conflicting policies would be resolved.

A second feature that we believe is very interesting to pursue is predictive augmenta-

tion of the DSVM by expanding its environmental sensory facilities such as accessing

weather forecasting web services, and utilizing the user energy usage history. A third

consideration meriting exploration within MGRIDVM is in the assurance of privacy,

security and safety. While some portion of these concerns may be addressed through

policy, there is definitely much work that is required to harden the DSVM. With

respect to the GMoE we foresee exploration into the arena of autonomic computing

for the synthesis engine. The synthesis engine is the pivotal technology for i-DSML

interpretation and as such will see much attention in the future.

6.5 Summary

At the onset of the dissertation there existed no reusable construct to reuse interpreter

logic for i-DSMLs. We have presented a GMoE and a specification for persistent DSK

artifacts which can be used to develop i-DSML synthesis engines. We encourage the

111

research community to contribute its collective wisdom in developing this paradigm

which is in its infancy.

112

BIBLIOGRAPHY

[1] Aditya Agrawal, Gabor Karsai, Sandeep Neema, Feng Shi, and Attila Vizhanyo.
The design of a language for model transformations. Software & Systems Mod-
eling, 5(3):261–288, 2006.

[2] M. Alanen and I. Porres. Difference and union of models. In UML 2003-the uni-
fied modeling language: modeling languages and applications: 6th international
conference, San Francisco, CA, USA, October 20-24, 2003: proceedings, page 2.
Springer, 2002.

[3] Allan J. Albrecht and John E Gaffney Jr. Software function, source lines of
code, and development effort prediction: a software science validation. Software
Engineering, IEEE Transactions on, (6):639–648, 1983.

[4] Colin Atkinson and Thomas Kuhne. Model-driven development: a metamodeling
foundation. Software, IEEE, 20(5):36–41, 2003.

[5] Jim Barnett, Rahul Akolkar, RJ Auburn, Michael Bodell, Daniel C Burnett,
Jerry Carter, Scott McGlashan, Torbjörn Lager, Mark Helbing, Rafah Hosn,
et al. State chart xml (scxml): State machine notation for control abstraction.
W3C Working Draft, 2007.

[6] Nelly Bencomo, Amel Bennaceur, Paul Grace, Gordon Blair, and Valérie Is-
sarny. The role of models@ run. time in supporting on-the-fly interoperability.
Computing, 95(3):167–190, 2013.

[7] Ted J Biggerstaff and Alan J Perlis. Software reusability: vol. 1, concepts and
models. 1989.

[8] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (xml). World Wide Web Consortium
Recommendation REC-xml-19980210. http://www. w3. org/TR/1998/REC-xml-
19980210, 1998.

[9] Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engineering Using
UML, Patterns, and Java. Prentice Hall Press, Upper Saddle River, NJ, USA,
3rd edition, 2009.

[10] B.R. Bryant, J. Gray, M. Mernik, P.J. Clarke, R.B. France, and G. Karsai.
Challenges and directions in formalizing the semantics of modeling languages.
Computer Science and Information Systems/ComSIS, 8(2):225–253, 2011.

[11] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic anchoring
with model transformations. In Model Driven Architecture–Foundations and
Applications, pages 115–129. Springer, 2005.

[12] Tony Clark, Paul Sammut, and James Willans. Superlanguages: developing
languages and applications with XMF. Ceteva, 2008.

113

[13] P.J. Clarke, V. Hristidis, Y. Wang, N. Prabakar, and Y. Deng. A declarative
approach for specifying user-centric communication. In Collaborative Technolo-
gies and Systems, 2006. CTS 2006. International Symposium on, pages 89–98.
IEEE, 2006.

[14] Siobhàn Clarke and Elisa Baniassad. Aspect-oriented analysis and design.
Addison-Wesley Professional, 2005.

[15] Benôıt Combemale, Xavier Crégut, Marc Pantel, et al. A design pattern to build
executable dsmls and associated v & v tools. In The 19th Asia-Pacific Software
Engineering Conference (APSEC 2012), 2012.

[16] J den Haan. Model driven development: Code generation or model interpreta-
tion?

[17] Y. Deng, S. Masoud Sadjadi, P.J. Clarke, V. Hristidis, R. Rangaswami, and
Y. Wang. Cvm-a communication virtual machine. Journal of Systems and Soft-
ware, 81(10):1640–1662, 2008.

[18] Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, and Eds-
ger Wybe Dijkstra. A discipline of programming, volume 1. prentice-hall Engle-
wood Cliffs, 1976.

[19] A. Dimeas and N. Hatziargyriou. A multi-agent system for microgrids. Methods
and Applications of Artificial Intelligence, pages 447–455, 2004.

[20] A.L. Dimeas and N.D. Hatziargyriou. Operation of a multiagent system for mi-
crogrid control. Power Systems, IEEE Transactions on, 20(3):1447–1455, 2005.

[21] George Edwards, Yuriy Brun, and Nenad Medvidovic. Automated analysis and
code generation for domain-specific models. In Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012 Joint Working
IEEE/IFIP Conference on, pages 161–170. IEEE, 2012.

[22] George Edwards and Nenad Medvidovic. A methodology and framework for
creating domain-specific development infrastructures. In Automated Software
Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Conference on,
pages 168–177. IEEE, 2008.

[23] George Edwards, Chiyoung Seo, and Nenad Medvidovic. Model interpreter
frameworks: A foundation for the analysis of domain-specific software archi-
tectures. Journal of Universal Computer Science, 14(8):1182–1206, 2008.

[24] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-
braic Graph Transformation (Monographs in Theoretical Computer Science. An
EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[25] Tzilla Elrad, Robert E Filman, and Atef Bader. Aspect-oriented programming:
Introduction. Communications of the ACM, 44(10):29–32, 2001.

114

[26] Mohamed Fayad and Douglas C Schmidt. Object-oriented application frame-
works. Communications of the ACM, 40(10):32–38, 1997.

[27] T. Fernando. Comparative transition system semantics. In Computer Science
Logic, pages 149–166. Springer, 1993.

[28] Robert Filman, Tzilla Elrad, Siobhán Clarke, et al. Aspect-oriented software
development. Addison-Wesley Professional, 2004.

[29] DSM Forum. Domain specific modeling, 2011. http://www.dsmforum.org/
(March).

[30] M. Fowler. Domain-Specific Languages. Addison-Wesley Signature Series. Pear-
son Education, 2010.

[31] R. France and B. Rumpe. Model-driven development of complex software: A
research roadmap. In Future of Software Engineering, pages 37–54. IEEE Com-
puter Society, 2007.

[32] Daniel P Freedman and Gerald M Weinberg. Handbook of walkthroughs, inspec-
tions, and technical reviews: evaluating programs, projects, and products. Dorset
House Publishing Co., Inc., 2000.

[33] Sumit Gulwani. Dimensions in program synthesis. In Proceedings of the 12th in-
ternational ACM SIGPLAN symposium on Principles and practice of declarative
programming, pages 13–24. ACM, 2010.

[34] Sumit Gulwani. Synthesis from examples. WAMBSE (Workshop on Advances in
Model-Based Software Engineering) Special Issue, Infosys Labs Briefings, 10(2),
2012. Invited talk paper.

[35] Sumit Gulwani. Synthesis from examples: Interaction models and algorithms.
14th International Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing, 2012. Invited talk paper.

[36] Stefan Hanenberg, Christian Oberschulte, and Rainer Unland. Refactoring of
aspect-oriented software. In 4th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts, and Applications for a Net-
worked World (Net. ObjectDays), pages 19–35, 2003.

[37] N. Hatziargyriou, H.Asano, R. Iravani, and C. Marnay. Microgrids. IEEE Power
& Energy Magazine, july:78–94, 2007.

[38] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model driven language
engineering with kermeta. In Proceedings of the 3rd international summer school
conference on Generative and transformational techniques in software engineer-
ing III, GTTSE’09, pages 201–221, Berlin, Heidelberg, 2011. Springer-Verlag.

115

[39] Z. Jiang and R.A. Dougal. Hierarchical microgrid paradigm for integration of
distributed energy resources. In Power and Energy Society General Meeting-
Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE,
pages 1–8. IEEE, 2008.

[40] M. Jiménez, F. Rosique, P. Sánchez, B. Álvarez, and A. Iborra. Habitation: A
domain-specific language for home automation. Software, IEEE, 26(4):30–38,
2009.

[41] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-oriented domain analysis. Technical Report
CMU/SEI-90-TR-21, CMU, Nov 1990.

[42] Gabor Karsai. Structured specification of model interpreters. In Engineering of
Computer-Based Systems, 1999. Proceedings. ECBS’99. IEEE Conference and
Workshop on, pages 84–90. IEEE, 1999.

[43] F. Katiraei, M.R. Iravani, and PW Lehn. Micro-grid autonomous operation
during and subsequent to islanding process. Power Delivery, IEEE Transactions
on, 20(1):248–257, 2005.

[44] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. Wiley-IEEE Computer Society Pr, March 2008.

[45] U. Kelter, J. Wehren, and J. Niere. A generic difference algorithm for uml models.
Software Engineering, 64:105–116, 2005.

[46] R.B. Kieburtz, L. McKinney, J.M. Bell, J. Hook, A. Kotov, J. Lewis, D.P. Oliva,
T. Sheard, I. Smith, and L. Walton. A software engineering experiment in soft-
ware component generation. In Proceedings of the 18th international conference
on Software engineering, page 552. IEEE Computer Society, 1996.

[47] P. Kinney et al. Zigbee technology: Wireless control that simply works. In
Communications design conference, volume 2, 2003.

[48] B. Kroposki, R. Lasseter, T. Ise, S. Morozumi, S. Papatlianassiou, and
N. Hatziargyriou. Making microgrids work. Power and Energy Magazine, IEEE,
6(3):40–53, 2008.

[49] Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR),
24(2):131–183, 1992.

[50] Robert Lasseter, Abbas Akhil, Chris Marnay, John Stephens, Jeff Dagle, Ross
Guttromson, A. Sakis Meliopoulous, Robert Yinger, and Joe Eto. White paper
on integration of distributed energy resources. the certs microgrid concept. Tech-
nical report, Consortium for Electric Reliability Technology Solutions, prepared
for the U.S. Department of Energy, April 2002.

116

[51] Yuehua Lin, Jeff Gray, and Frdric Jouault. Dsmdiff: A differentiation tool for
domain-specific models. European Journal of Information Systems, Special Issue
on Model-Driven Systems Development (Mark Lycett, Esperanza Marcos, and
Veda Storey, eds.), 16(4):349–361, 2007.

[52] Raphael Mannadiar and Hans Vangheluwe. Modular artifact synthesis from
domain-specific models. Innovations in Systems and Software Engineering,
8(1):65–77, 2012.

[53] C. Marnay and O. Bailey. The certs microgrid and the future of the macrogrid.
Berkeley Lab Report# LBNL-55281, 2004.

[54] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Elec-
tronic Notes in Theoretical Computer Science, 152:125–142, 2006.

[55] M. Mernik, J. Heering, and A.M. Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys (CSUR), 37(4):316–344, 2005.

[56] Marjan Mernik and IGI Global. Formal and practical aspects of domain-specific
languages: Recent developments. Information Science Reference, 2013.

[57] K.A. Morris, J. Wei, P.J. Clarke, and F.M. Costa. Towards adaptable mid-
dleware to support service delivery validation in i-dsml execution engines. In
High-Assurance Systems Engineering (HASE), 2012 IEEE 14th International
Symposium on, pages 82–89. IEEE, 2012.

[58] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving exe-
cutability into object-oriented meta-languages. In Model Driven Engineering
Languages and Systems, pages 264–278. Springer, 2005.

[59] William F Opdyke. Refactoring object-oriented frameworks. PhD thesis, Univer-
sity of Illinois, 1992.

[60] Shari Lawrence Pfleeger and Joanne M. Atlee. Software engineering - theory and
practice (4. ed.). Pearson Education, New Jersey, USA, fourth edition, 2009.

[61] M Pipattanasomporn, H Feroze, and S Rahman. Multi-agent systems in a dis-
tributed smart grid: Design and implementation. In Power Systems Conference
and Exposition, 2009. PSCE’09. IEEE/PES, pages 1–8. IEEE, 2009.

[62] Elvinia Riccobene and Patrizia Scandurra. Weaving executability into uml class
models at pim level. In Proceedings of the 1st Workshop on Behaviour Modelling
in Model-Driven Architecture, page 1. ACM, 2009.

[63] Horst WJ Rittel and Melvin M Webber. Planning problems are wicked. Polity,
4:155–69, 1973.

[64] José Eduardo Rivera, José Raul Romero, and Antonio Vallecillo. Behavior, time
and viewpoint consistency: Three challenges for mde. In Models in Software
Engineering, pages 60–65. Springer, 2009.

117

[65] Daniel A Sadilek and Guido Wachsmuth. Prototyping visual interpreters and de-
buggers for domain-specific modelling languages. In Model Driven Architecture–
Foundations and Applications, pages 63–78. Springer, 2008.

[66] Devon Simmonds, Raghu Reddy, Robert France, Sudipto Ghosh, and Arnor
Solberg. An aspect oriented model driven framework. In Proceedings of the
Ninth IEEE International EDOC Enterprise Computing Conference, EDOC ’05,
pages 119–130, Washington, DC, USA, 2005. IEEE Computer Society.

[67] M.A. Simos. Organization domain modeling (odm): Formalizing the core domain
modeling life cycle. ACM SIGSOFT Software Engineering Notes, 20(SI):196–205,
1995.

[68] O Sims. Presentation: Mda: The real value. Object Management Group website:
www. omg. org/mda/presentations. htm, 2002.

[69] Thomas Stahl, Markus Voelter, Jorn Bettin, Arno Haase, Simon Helsen, and
Krzysztof Czarnecki. Model-Driven Software Development: Technology, Engi-
neering, Management. John Wiley & Sons, first edition, 2006.

[70] J. Stanek, S. Kothari, and Kang Gui. Method of comparing graph differencing
algorithms for software differencing. In Proceedings of the IEEE International
Conference on Electro/Information Technology, 2008. EIT 2008., pages 482 –
487, May 2008.

[71] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:
eclipse modeling framework. Pearson Education, 2008.

[72] Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software architecture:
foundations, theory, and practice. Wiley Publishing, 2009.

[73] Jean Tessier. Dependency finder, version 1.2.1-beta4, November 2010. http:
//depfind.sourceforge.net/(December,2013).

[74] Antoine Toulmé and I Inc. Presentation of emf compare utility. In Eclipse
Modeling Symposium, pages 1–8, 2006.

[75] KG Van den Berg, Jose Maria Conejero, and Ruzanna Chitchyan. Aosd ontology
1.0-public ontology of aspect-orientation. 2005.

[76] A. Van Deursen and P. Klint. Little languages: Little maintenance? Journal of
Software Maintenance: Research and Practice, 10(2):75–92, 1998.

[77] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An anno-
tated bibliography. ACM Sigplan Notices, 35(6):36, 2000.

[78] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen.
Model-driven software development: technology, engineering, management. John
Wiley & Sons, 2013.

118

[79] Y. Wang, D.J. DeWitt, and J.Y. Cai. X-diff: An effective change detection
algorithm for xml documents. In Data Engineering, 2003. Proceedings. 19th
International Conference on, pages 519–530. IEEE, 2003.

[80] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner Retschitzegger,
Wieland Schwinger, and Elizabeth Kapsammer. A survey on uml-based aspect-
oriented design modeling. ACM Comput. Surv., 43(4):28:1–28:33, October 2011.

[81] Claes Wohlin, Per Runeson, Martin Hst, Magnus C Ohlsson, Bjrn Regnell, and
Anders Wessln. Experimentation in software engineering. Springer Publishing
Company, Incorporated, 2012.

[82] C. Wolfe, T. Graham, and W. Phillips. An incremental algorithm for high-
performance runtime model consistency. Model Driven Engineering Languages
and Systems, pages 357–371, 2009.

[83] Y. Wu, A.A. Allen, F. Hernandez, R. France, and P.J. Clarke. A domain-specific
modeling approach to realizing user-centric communication. Software: Practice
and Experience, 42(3):357–390, 2011.

[84] Z. Xing and E. Stroulia. Umldiff: an algorithm for object-oriented design dif-
ferencing. In Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 54–65. ACM, 2005.

[85] Z. Yang and M. Jiang. Using eclipse as a tool-integration platform for software
development. Software, IEEE, 24(2):87–89, 2007.

[86] A.A. Zaidi and F. Kupzog. Microgrid automation-a self-configuring approach. In
Multitopic Conference, 2008. INMIC 2008. IEEE International, pages 565–570.
IEEE, 2008.

[87] Jing Zhang. Metamodel-driven model interpreter evolution. In Companion to
the 20th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 214–215. ACM, 2005.

119

APPENDIX A

PARTIAL STATIC SEMANTICS FOR MGRIDML

context ControlSchema inv:
self.mgridModelID <> null
and self.allinstances -> forAll(cs1,cs2| cs1. mgridModelID <> cs2. mgridModelID)
and self.PCC -> size() ==1

context DataSchema inv:
self.mgridModelID <> null
and self.allinstances -> forAll(ds1,ds2| ds1. mgridModelID <> ds2. mgridModelID)

context StorageDevice inv:
self.capacity * self.upperThreshold >= self.currentCharge
and self.capacity * self.lowerThreshold <= self.currentCharge
and self.allinstances -> forAll (s1,s2|s1<>s2 implies s1.plantE_ID <> s2.plantE_ID)
and self.deviceTypeID -> forAll(b1,b2|b1<>b2 implies b1. deviceTypeID <>b2. deviceTypeID
and self.deviceTypeID -> exists(StorageDeviceType.sdTypeID)

context LoadDevice inv:
self.allinstances -> forAll (s1,s2|s1<>s2 implies s1.plantE_ID <> s2.plantE_ID)
and self.controlledby -> forAll(b1,b2|b1<>b2 implies b1.controllerID <>b2.controllerID
and self.ControlEnum <> null
and self.deviceTypeID <> null

context SourceDevice inv:
self.allinstances -> forAll (s1,s2|s1<>s2 implies s1.plantE_ID <> s2.plantE_ID)
and self.controlledby -> forAll(b1,b2|b1<>b2 implies b1.controllerID <>b2.controllerID
and self.ControlEnum <> null
and self.deviceTypeID <> null

context SmartMeter inv:
self.monitors -> size = 1

context StorageController inv:
self.allinstances -> forAll (s1,s2|s1<>s2 implies s1.controllerID <> s2.controllerID)
and self.contains -> forAll(b1,b2|b1<>b2 implies b1.sdTypeID <>b2.sdTypeID)

context LoadController inv:
self.allinstances -> forAll (s1,s2|s1<>s2 implies s1.controlID <> s2.controlID)
and self.contains -> forAll(b1,b2|b1<>b2 implies b1.ldTypeID <>b2.ldTypeID)

context SourceController inv:
self.allinstances -> forAll (s1,s2|s1<>s2 implies s1.controlID <> s2.controlID)
and self.contains -> forAll(b1,b2|b1<>b2 implies b1.soTypeID <>b2.soTypeID)

context PCC inv:
self.connects<> null

	
	

120

APPENDIX B

CONTROL SCRIPTS FOR MGRIDVM

1. controlScript := command {command}

2. command := initializeMGridCmd | addGroupControllerCmd |

removeControllerGroupCmd | addLoadControllerCmd |

addStorageControllerCmd | addSourceControllerCmd |

addPCCCmd | removeControllerCmd | addLoadDeviceTypeCmd |

addStorageDeviceTypeCmd | addSourceTypeCmd |

addMeterTypeCmd | removeTypeCmd | addLoadDeviceCmd |

addStorageDeviceCmd | addSourceCmd |

addSmartMeterCmd | addLegacyMeterCmd | removeEntityCmd |

setPropertyCmd | requestPropertyCmd

3. initializeMGridCmd := initializeMGrid mgridIDA

4. addGroupControllerCmd := addGroupController contGroupIDA
controllerIDA {controllerIDA}

5. removeGroupControllerCmd := removeGroupController

contGroupIDA

6. addLoadControllerCmd := addLoadController controllerIDA
nameA cardinalityA criticalA groupActionA lowerWattageA
upperWattageA {typeIDA }

7. addStorageControllerCmd := addStorageController

controllerIDA nameA cardinalityA chargeStatusA {typeIDA }

8. addSourceControllerCmd := addSourceController controllerIDA
nameA cardinalityA criticalA groupActionA {typeIDA }

9. addPCCControllerCmd := addPCCController controllerIDA
nameA cardinalityA criticalA connectedA typeIDA

10. removeControllerCmd := removeController controllerIDA

11. addLoadDeviceTypeCmd := addLoadDeviceType deviceTypeIDA
typenameA criticalA usageA controllerIDA

12. addStorageDeviceTypeCmd := addStorageDeviceType

deviceTypeIDA typenameA lowerThresA upperThresA
controllerIDA

13. addSourceTypeCmd := addSourceType sourceTypeIDA

typenameA sourceCA priorityA controllerIDA

14. addMeterTypeCmd := addMeterType meterTypeIDA

typenameA controllerIDA

15. removeTypeCmd := removeType typeIDA

16. addLoadDeviceCmd := addLoadDevice deviceIDA deviceTypeIDA

wattageA controlA criticalA { (attributeA, valueA)}

17. addStorageDeviceCmd := addStorageDevice deviceIDA

deviceTypeIDA wattageA capacityA chargingA chargeTA

{(attributeA, valueA)}

18. addSourceCmd := addSource sourceIDA sourceTypeIDA

wattageA onDemandA chargingA chargeTA {(attributeA, valueA)}

19. addSmartMeterCmd := addSmartMeter meterIDA meterTypeIDA

tarriffA usageA

20. addLegacyMeterCmd := addLegacyMeter meterIDA

meterTypeIDA

21. removeEntityCmd := removeDevice entityIDA

22. setLCPropertyCmd := setLCProperty deviceIDA attributeA valueA

23. setDevicePropertyCmd := setDeviceProperty deviceIDA

attributeA valueA

24. requestPropertyCmd := requestProperty deviceIDA attributeA

121

APPENDIX C

CONTROL SCRIPTS FOR CVM

1. controlScript := command {command}

2. command := createConnectionCmd | closeConnectionCmd |
addParticipantCmd | removeParticipantCmd | sendSchemaCmd |
enableMediaInitiatorCmd | enableMediaReceiverCmd |
disableMediaInitiatorCmd | disableMediaReceiverCmd |
sendMediaCmd | sendFormCmd | declineConnectionCmd |
requestFormCmd | requestMediaCmd | sendNegTokenCmd |
requestNegTokenCmd

3. createConnectionCmd := createConnection connectionIDA

4. closeConnectionCmd := closeConnection connectionIDA

5. addParticipantCmd := addParticipant connectionIDA personIDA
{personIDA}

6. removeParticipantCmd := removeParticipant connectionIDA
personIDA {personIDA }

7. sendSchemaCmd := sendSchema connectionIDA sender-personIDA
receiver-personIDA {receiver-personIDA} schemaA

8. enableMediaInitiatorCmd := enableInitiatorMedia connectionIDA
mediaNameA

9. enableMediaReceiverCmd := enableReceiverMedia connectionIDA
mediaNameA

10. disableMediaInitiatorCmd := disableInitiatorMedia connectionIDA
mediaNameA

11. disableMediaReceiverCmd := disableReceiverMedia
connectionIDA mediaNameA

12. sendMediaCmd := sendMedia connectionIDA mediaNameA
mediumURLA

13. sendFormCmd := sendForm connectionIDA formIDA mediumURLA
{mediumURLA } actionA

14. declineConnectionCmd := declineConnection sender-personIDA
receiver-personIDA {receiver-personIDA}

15. requestFormCmd := requestForm connectionIDA formIDA
mediumURLA {mediumURLA }

16. requestMediaCmd := requestMedia connectionIDA mediaNameA

17. sendNegTokenCmd := sendNegToken personIDA

18. requestNegTokenCmd := requestNegToken connectionIDA

122

APPENDIX D

MEDIA TRANSFER STATE MACHINE PERSISTENTLY REPRESENTED AS
XML

<sm:StateMachine

xmlns:sm="http://www.stateforge.com/StateMachineJava-v1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.stateforge.com/StateMachineJava-v1

http://www.stateforge.com/xsd/StateMachineJava-v1.xsd">

 <!-- General settings -->

 <settings asynchronous="false"

namespace="com.stateforge.statemachine.examples.BusinessObject">

 <object instance="myBusinessObject"

class="BusinessObject"/>

 </settings>

 <!-- Events -->

 <events>

 <eventSource name="Events">

 <event id="initiateNeg" name="initiateNeg"/>

 <event id="initiateInviteNeg"

name="initiateInviteNeg"/>

 <event id="enableStream" name="enableStream"/>

 <event id="enableStreamRec" name="enableStreamRec"/>

 <event id="disableStream" name="disableStream"/>

 <event id="disableStreamRec"

name="disableStreamRec"/>

 <event id="sendNonStream" name="sendNonStream"/>

 <event id="sendForm" name="sendForm"/>

 <event id="recNonStream" name="recNonStream"/>

 <event id="recForm" name="recForm"/>

 <event id="terminate" name="terminate"/>

 </eventSource>

 </events>

 <!-- States -->

 <state name="Media_Transfer">

 <state name="Initial">

 <transition event="initiateNeg" nextState="Ready"/>

 <transition event="initiateInviteNeg"

nextState="Ready"/>

 </state>

 <state name="Ready">

 <transition event="enableStream"

nextState="StreamEnabled">

 <action>genStreamEnable_Script</action>

 </transition>

 <transition event="enableStreamRec"

nextState="StreamEnabled">

 <action>genStreamEnableRec_Script; UCI.notify()

</action>

 </transition>

 <transition event="sendNonStream" nextState="Ready">

 <action>genNonStreamSend_Script</action>

 </transition>

 <transition event="sendForm" nextState="Ready">

 <action>genSendForm_Script</action>

 </transition>

1

123

 <transition event="recNonStream" nextState="Ready">

 <action>UCI.notify()</action>

 </transition>

 <transition event="recForm" nextState="Ready">

 <action>UCI.notify()</action>

 </transition>

 <transition event="terminate" nextState="Final"/>

 </state>

 <state name="StreamEnabled">

 <transition event="enableStream" condition="!

isStreamEnabled" nextState="StreamEnabled">

 <action>genStreamEnable_Script</action>

 </transition>

 <transition event="disableStream"

condition="IsStreamEnabled && stream_cnt > 1"

nextState="StreamEnabled">

 <action>genStreamDisable_Script</action>

 </transition>

 <transition event="enableStreamRec"

condition="IsStreamEnabled" nextState="StreamEnabled">

 <action>genStreamEnableRec_Script; UCI.notify()

</action>

 </transition>

 <transition event="disableStreamRec"

condition="IsStreamEnabled && stream_cnt > 1"

nextState="StreamEnabled">

 <action>genStreamDisableRec_Script; UCI.notify

</action>

 </transition>

 <transition event="sendNonStream"

nextState="StreamEnabled">

 <action>genNonStreamSend_Script</action>

 </transition>

 <transition event="sendForm"

nextState="StreamEnabled">

 <action>genSendForm_Script</action>

 </transition>

 <transition event="recNonStream"

nextState="StreamEnabled">

 <action>UCI.notify()</action>

 </transition>

 <transition event="recForm"

nextState="StreamEnabled">

 <action>UCI.notify()</action>

 </transition>

 <transition event="disableStream"

condition="stream_cnt == 1" nextState="Ready">

 <action>genCloseStream_Script</action>

 </transition>

 <transition event="disableStreamRec"

condition="stream_cnt == 1" nextState="Ready">

 <action>UCI.notify()</action>

2

124

 </transition>

 </state>

 <state name="Final"/>

 </state>

</sm:StateMachine>

3

125

APPENDIX E

SYNTHESIS ENGINE ECORE

<?xml version="1.0" encoding="UTF-8"?>

<ecore:EPackage xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="SES"

 nsURI="http://www.eclipse.org/2012/SEML" nsPrefix="SES">

 <eClassifiers xsi:type="ecore:EClass" name="SEManager">

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="SEID"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

 <eStructuralFeatures xsi:type="ecore:EReference" name="lts"

lowerBound="1" eType="#//LTSArray"

 containment="true"/>

 <eStructuralFeatures xsi:type="ecore:EReference" name="dm" lowerBound="1"

eType="#//DomainManager"

 containment="true"/>

 <eStructuralFeatures xsi:type="ecore:EReference" name="cm" lowerBound="1"

eType="#//ChangeMapping"

 containment="true"/>

 <eStructuralFeatures xsi:type="ecore:EReference" name="cmm"

lowerBound="1" eType="#//ControlMetaModel"

 containment="true"/>

 <eStructuralFeatures xsi:type="ecore:EReference" name="dmm"

lowerBound="1" eType="#//DataMetaModel"

 containment="true"/>

 <eStructuralFeatures xsi:type="ecore:EReference" name="interface"

lowerBound="1"

 eType="#//Interface" containment="true"/>

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="LTSArray">

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="LTSID"

unique="false" eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString"

 defaultValueLiteral="LTS"/>

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="location"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="format"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="ControlMetaModel">

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="elementID"

unique="false"

 eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString"

defaultValueLiteral="control"/>

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="location"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="DataMetaModel">

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="elementID"

unique="false"

 eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString" defaultValueLiteral="data"/>

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="location"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="DomainManager">

126

APPENDIX F

LTS ECORE

<?xml version="1.0" encoding="UTF-8"?>

<ecore:EPackage xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="lts"

 nsURI="http://www.kermeta.org/lts" nsPrefix="fsm">

 <eClassifiers xsi:type="ecore:EClass" name="LTS">

 <eStructuralFeatures xsi:type="ecore:EReference" name="ownedState"

upperBound="-1"

 eType="#//State" containment="true" eOpposite="#//State/owningLTS"/>

 <eStructuralFeatures xsi:type="ecore:EReference" name="initialState"

lowerBound="1"

 eType="#//State"/>

 <eStructuralFeatures xsi:type="ecore:EReference" name="finalState"

upperBound="-1"

 eType="#//State"/>

 <eStructuralFeatures xsi:type="ecore:EReference" name="activeState"

eType="#//State"/>

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="State">

 <eOperations name="step" eType="#//String">

 <eParameters name="c" eType="#//String"/>

 </eOperations>

 <eStructuralFeatures xsi:type="ecore:EReference" name="owningLTS"

eType="#//LTS"

 eOpposite="#//LTS/ownedState">

 <eAnnotations source="http://www.topcased.org/uuid">

 <details key="uuid" value="114915013380911"/>

 </eAnnotations>

 </eStructuralFeatures>

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

eType="#//String">

 <eAnnotations source="http://www.topcased.org/uuid">

 <details key="uuid" value="114915013382412"/>

 </eAnnotations>

 </eStructuralFeatures>

 <eStructuralFeatures xsi:type="ecore:EReference"

name="outgoingTransition" upperBound="-1"

 eType="#//Transition" containment="true"

eOpposite="#//Transition/source">

 <eAnnotations source="http://www.topcased.org/uuid">

 <details key="uuid" value="114915013382413"/>

 </eAnnotations>

 </eStructuralFeatures>

 <eStructuralFeatures xsi:type="ecore:EReference"

name="incomingTransition" upperBound="-1"

 eType="#//Transition" eOpposite="#//Transition/target">

 <eAnnotations source="http://www.topcased.org/uuid">

 <details key="uuid" value="114915013382414"/>

 </eAnnotations>

 </eStructuralFeatures>

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="Transition">

 <eStructuralFeatures xsi:type="ecore:EReference" name="source"

lowerBound="1"

 eType="#//State" eOpposite="#//State/outgoingTransition">

 <eAnnotations source="http://www.topcased.org/uuid">

127

APPENDIX G

CVM SYNTHESIS ENGINE SCHEMA

CMLSEManager.xmi
<?xml version="1.0" encoding="ASCII"?>
<SES:SEManager xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SES="http://www.eclipse.org/2012/SEML"
xsi:schemaLocation="http://www.eclipse.org/2012/SEML ../metamodels/semlv3.ecore"
SEID="CVM">
 <lts location="platform:/resource/SE/CMLmodels/LTS/"/>
 <dm>
 <ci/>
 <mc location="JavaPart.JavaComparator"/>
 <rt Data="C:/dsltk/kermeta/SE/CMLmodels/CMLD0.xmi"
Control="C:/dsltk/kermeta/SE/CMLmodels/CMLC0.xmi"/>
 </dm>
 <cm location="platform:/resource/SE/files/CMLchangemapFile.txt"/>
 <cmm File= "C:/dsltk/kermeta/SE/metamodels/CMLcmm.ecore"/>
 <dmm File= "C:/dsltk/kermeta/SE/metamodels/CMLdmm.ecore/>
 <interface UI="C:/dsltk/kermeta/SE/CMLmodels/CMLD1.xmi"
Middleware="C:/dsltk/kermeta/SE/CMLmodels/CMLC1.xmi"/>
</SES:SEManager>

Page 1

128

APPENDIX H

MGRIDVM SYNTHESIS ENGINE SCHEMA

MGRIDMLSEManager.xmi
<?xml version="1.0" encoding="ASCII"?>
<SES:SEManager xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SES="http://www.eclipse.org/2012/SEML"
xsi:schemaLocation="http://www.eclipse.org/2012/SEML ../metamodels/semlv3.ecore"
SEID="CVM">
 <lts location="platform:/resource/SE/MGRIDMLmodels/LTS/"/>
 <dm>
 <ci/>
 <mc location="JavaPart.JavaComparator"/>
 <rt Data="C:/dsltk/kermeta/SE/MGRIDMLmodels/CMLD0.xmi"
Control="C:/dsltk/kermeta/SE/MGRIDMLmodels/CMLC0.xmi"/>
 </dm>
 <cm location="platform:/resource/SE/files/CMLchangemapFile.txt"/>
 <cmm File= "C:/dsltk/kermeta/SE/metamodels/MGRIDcmm.ecore"/>
 <dmm File= "C:/dsltk/kermeta/SE/metamodels/MGRIDdmm.ecore/>
 <interface UI="C:/dsltk/kermeta/SE/MGRIDMLmodels/MGRIDD1.xmi"
Middleware="C:/dsltk/kermeta/SE/MGRIDMLmodels/MGRIDC1.xmi"/>
</SES:SEManager>

Page 1

129

APPENDIX I

CVM CHANGE MAPPING

No. CI Models Changes (nodes) Event Explanation

Source of CI Model: UCI (updated model supplied by user)

1 added: connection, device,
isAttached (local), person, ...

intitiateNeg initiates a new connection => negotiation of CI

2 removed: connection, de-
vice, isAttached (local), ...

removeSelf if last connection => terminates all communication

3 added: connection, device,
isAttached (remote), person

intitiateReNeg initiates a new connection => re-negotiation of
CI

4 removed: device, isAttached
(local), person

intitiateReNeg removes a connection, assuming there are no more
remote parties on this connection, and there is still at
least one other connection => re-negotiation of CI

5 removed: connection, device,
isAttached (remote), person

intitiateReNeg removes a connection, assuming there is still at
least one other connection => re-negotiation of CI

6 added: device, isAttached (re-
mote), person

intitiateReNeg adds a new party to a connection => re-
negotiation of CI

7 removed: device, isAttached
(remote), person

intitiateReNeg removes party from a connection, assuming there are
other remote parties on the connection => re-
negotiation of CI

8 added: medium capability (to
device)

intitiateReNeg if the new medium type is not a subtype of an
existing medium => re-negotiation of CI

9 added: medium type (to
connection)

intitiateReNeg if the new medium type is not a subtype of an
existing medium => re-negotiation of CI

10 added: form type (to connection) intitiateReNeg if the new form type is not a subtype of an existing
medium => re-negotiation of CI

11 removed: medium capability
(from device)

intitiateReNeg if a medium type is removed from a device may
impact capabilities => re-negotiation of CI

12 removed: medium type (from
connection)

intitiateReNeg if medium type is removed this restricts the
types on the connection => re-negotiation of CI

13 removed: form type (from
connection)

intitiateReNeg if form type is removed this restricts the types
on the connection => re-negotiation of CI

Source of CI Model: UCM (initiator of negotiation)

14 No Change localSameCI no change to the CI during negotiation

15 Any Change localChangeCI remote party change CI restarts negotiation

Source of new CI Model: UCM (non-initiator of the negotiation and CI model not seen before from the initiator)

16 Change (see 6, 7 – 13) inviteNeg invitation for negotiation from the non-initiator

Source of CI Model: UCM (non-initiator of negotiation and CI model seen before from the initiator)

17 No Change remoteSameCI No change to the CI during negotiation

18 Changes (see 6, 8 – 13) remoteChangeCI Change to the CI indicates negotiator needs to restart
negotiation.

130

APPENDIX J

VERSION 1 PROTOTYPE USER INTERFACE

131

VITA

MARK ALLISON

Fort Lauderdale, Florida

1986-1990 B.S., Computer Science
The City University of New York - City College
New York, New York

1990-1993 M.S., Information Systems
The City University of New York - Graduate School
New York, New York

2006-2014 Doctoral Candidate
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Allison, M., Allen, A., Yang, Z., and Clarke, P. (2011)A Software Engineering Ap-
proach to User-Driven Management and Control of Dynamic Energy Systems within
the Micro-Smartgrid. International Conference on Software Engineering and Knowl-
edge Engineering (SEKE), pp. 59-64.

Allison, M., Yang, Z., Morris, K., Clarke, P. and Costa, F. (2012) Managing Smart
Microgrid Behavior by Synthesizing Domain-Specific Models. IEEE High Assurance
Software Engineering Conference (HASE), pp. 185-192.

Allison, M. and Joo, S. (2014) Revisiting Polya’s Approach to Foster Problem Solving
Skill Development in Software Engineers IEEE International Conference on Com-
puter Science and Education (ICCSE), In press.

Allison, M., Morris, K., Costa, F. and Clarke, P. (2014) Synthesizing Interpreted
Domain-Specific Models to Manage Smart Microgrids The Journal of Systems and
Software Elsevier. In press.

Allison, M. and Kendrick L. Towards an Expressive Embodied Conversational Agent
Utilizing Multi-Ethnicity to Augment Solution Focused Therapy. AAAI Florida Arti-
ficial Intelligence Research Society conference (FLAIRS), pp. 332-337.

Clarke, P., Wu, Y., Allen, A., Hernandez, F., and Allison, M. (2012) Towards Dy-
namic Semantics for Synthesizing Interpreted DSMLs. Formal and Practical Aspects
of Domain Specific Languages: Recent Developments, IGI-Global Publisher, pp. 242-
269.

132

	Florida International University
	FIU Digital Commons
	3-19-2014

	A Generic Model of Execution for Synthesizing Domain-Specific Models
	Mark Allison
	Recommended Citation

	A Generic Model of Execution for Synthesizing Domain-Specific Models

