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Reduced Androgen Receptor Expression Accelerates the
Onset of ERBB2 Induced Breast Tumors in Female Mice
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Abstract

Androgen receptor (AR) is commonly expressed in both the epithelium of normal mammary glands and in breast cancers.
AR expression in breast cancers is independent of estrogen receptor alpha (ERa) status and is frequently associated with
overexpression of the ERBB2 oncogene. AR signaling effects on breast cancer progression may depend on ERa and ERBB2
status. Up to 30% of human breast cancers are driven by overactive ERBB2 signaling and it is not clear whether AR
expression affects any steps of tumor progression in this cohort of patients. To test this, we generated mammary specific Ar
depleted mice (MARKO) by combining the floxed allele of Ar with the MMTV-cre transgene on an MMTV-NeuNT background
and compared them to littermate MMTV-NeuNT, Arfl/+ control females. Heterozygous MARKO females displayed reduced
levels of AR in mammary glands with mosaic AR expression in ductal epithelium. The loss of AR dramatically accelerated the
onset of MMTV-NeuNT tumors in female MARKO mice. In this report we show that accelerated MMTV-NeuNT-dependent
tumorigenesis is due specifically to the loss of AR, as hormonal levels, estrogen and progesterone receptors expression, and
MMTV-NeuNT expression were similar between MARKO and control groups. MMTV-NeuNT induced tumors in both cohorts
displayed distinct loss of AR in addition to ERa, PR, and the pioneer factor FOXA1. Erbb3 mRNA levels were significantly
elevated in tumors in comparison to normal mammary glands. Thus the loss of AR in mouse mammary epithelium
accelerates malignant transformation rather than the rate of tumorigenesis.
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Introduction

The majority of breast cancers originate in epithelial cells that

line the ducts of the mammary glands. A number of alterations

lead to the development of distinct tumor types from these cells.

Two of the best described and therapeutically exploited drivers of

transformation are estrogen receptor alpha (ERa) and v-erb-b2

erythroblastic leukemia viral oncogene homolog 2, neuro/

glioblastoma derived oncogene homolog (avian), ERBB2, also

known as human epidermal growth factor receptor 2 (HER2/

Neu). However, additional markers are sought that denote

molecular signatures that are better able to predict tumor

progression, therapeutic response, and probability of recurrence.

According to different reports, 15 to 30% of breast cancers are

driven by overexpression of ERBB2 [1,2]. ERBB2 is part of a

complex network comprised of four receptor tyrosine kinases

(RTK), ERBB1-4. They can be bound by a variety of peptide

hormones which cause receptors to homo- and/or heterodimerize

and become active. ERBB2 does not have a ligand and is activated

by partnering with itself or other family members [3]. Recent

evidence suggests that the most critical partner for ERBB2 driven

epithelial transformation and tumorigenesis is ERBB3. In human

breast cancer cell lines with amplified ERBB2 expression,

depletion of ERBB3 reduces cell proliferation to the same extent

as depletion of ERBB2, while loss of ERBB1 (epidermal growth

factor receptor (EGFR)) does not affect proliferation [4]. The

activated form of ERBB3 was detected in human breast cancers

with amplified ERBB2 expression [4]. Multiple mouse models

overexpressing ERBB2 in mammary glands have been established,

all of which lead to development of mammary tumors [5,6,7].

Similar to human breast cancer, ERBB3 plays a central role in

murine breast cancer models. Ablation of endogenous Erbb3 in

mammary epithelial cells caused a decrease in ERBB2 induced

tumor incidence from 93.3% to 6.7% [8]. In contrast, Erbb4

ablation did not affect latency or histological grade of MMTV-

Neu mouse mammary tumors [9]. As noted in human cancers,

elevated expression of activated ERBB3 has been detected in

transgenic mice overexpressing activated ERBB2 [10].

Estrogen, progesterone, and androgen receptors (ERa, PR and

AR) are highly expressed in mammary epithelium and are
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essential for mammary gland development, function, and carci-

nogenesis. ERa inhibitors, such as tamoxifen, have been a

mainstay of cancer prevention trials [11]. Aromatase inhibitors

that block conversion of androgens to estrogens have been shown

to protect against breast cancer progression in patients positive for

ERa and PR [12,13,14]. Both ERa and PR are positive prognostic

markers in breast cancer and their loss is associated with poor

prognosis. Mouse models with either Esr1 or Pr genes knocked out

fail to develop functional mammary glands [15,16] and both

receptors are required for mouse mammary tumorigenesis [17,18].

AR is expressed in the epithelium of the normal mammary

gland and in approximately 70–90% of invasive breast cancers, a

frequency comparable to that of ERa (70–80%) or PR (50–70%)

[19]. In both normal and malignant human breast tissue there are

cells that are positive for AR and ERa and cells that only express

AR [20]. The role of AR in breast cancer is currently unclear and

seems to depend on the cellular milieu. The expression of AR in

ERa positive tumors is associated with less aggressive tumors and a

more favorable prognosis [21]. However, AR expression in ERa
negative and triple negative tumors is associated with poor

prognosis and increased mortality [21]. In ERa negative breast

cancer, ERBB2 overexpression significantly correlates with high

AR and ERBB3 expression [22,23,24]. In MDA-MB-453 breast

cancer cells that do not express ERa, AR activates ERBB2

signaling by direct androgen-dependent induction of WNT7B and

ERBB3 expression [22]. In mouse models, stimulation of AR

signaling mid-puberty suppressed epithelial proliferation and

development of ductal extensions [25]. Global AR knockout

significantly increased the susceptibility of the mammary gland to

the chemical carcinogen, DMBA, presumably by elevating

estrogenic activity [26].

Since AR is frequently expressed in ERBB2 amplified tumors,

we asked how the loss of AR signaling would affect tumor

incidence and progression in this cohort. We described here

analysis of breast tumorigenesis in mice with overexpression of an

activated form of ERBB2 and conditional deletion of the Ar allele

specifically in the mammary gland epithelium (MARKO).

Remarkably, the first tumors in female MARKO mice were

detected almost 100 days earlier than in control mice. Similar to

human ERBB2 driven breast cancer, tumors in ERBB2 transgenic

animals show simultaneous increase in endogenous ERBB3 but

not ERBB4 expression [8,22,27,28]. We observed that tumors in

both control and MARKO mice showed reduced gene expression

of the steroid receptors Era, Pr, Ar and their pioneer factor Foxa1.

Our data suggest that ERBB2/ERBB3 driven tumorigenesis is

opposed by AR and its loss results in earlier tumor development.

Methods

Animal Breeding and Genotyping
Animal studies were conducted in accordance with the humane

standards of animal care, as outlined in the US National Institutes

of Health Guide for the Care and Use of Laboratory Animals and

all procedures were approved by the Florida International

University Institutional Animal Care and Use Committee. All

mice were maintained in a temperature controlled room, with 12-

h light, 12-h dark photocycle and fed Teklad global 18% protein

rodent diet chow (Harlan, Indianapolis, IN) and fresh water ad

libitum. Transgenic mice (FVB-Tg(MMTV-ErbB2)NK1Mul/J)

containing the activated rat ERBB2 oncogene targeted to the

mammary epithelium by the MMTV-LTR promoter (hereafter

referred to as MMTV-NeuNT) [7] and mice with the Cre

recombinase transgene under the control of the MMTV-LTR

promoter (Tg(MMTV-cre)1Mam/J, MMTV-cre) [29] were pur-

chased from Jackson Laboratories (Bar Harbor, ME, USA). Mice

with floxed exon 2 of the X chromosomal androgen receptor gene

(Arfl) were described previously [30]. Deletion of Exon 2 causes a

frame shift and production of an unstable amino-terminal

fragment, completely lacking the DNA binding domain. Trans-

genic mice were genotyped by PCR from genomic DNA isolated

by ear punches with primers specific to the ERBB2 and cre

transgenes and wild-type, floxed and deleted (ArD) Ar alleles as

described in the original publications. MMTV-cre, MMTV-

NeuNT, Arfl/+ females and MMTV-cre, MMTV-NeuNT, Arfl/Y

males (MARKO, mammary gland specific AR knockout) and

control MMTV-NeuNT, Arfl/+ females and MMTV-NeuNT,

Arfl/Y males were produced according to the breeding scheme

shown in Figure 1.

Incidence and Survival Study
MARKO females (n = 19) and males (n = 33) and littermate

controls (females, n = 29; males, n = 31) were used in the survival

study. All females were kept as virgins for the entire period of

study. Mice were palpated at least twice a week to detect tumors.

Tumor bearing mice were kept until they met euthanasia criteria

which included tumor burden of 10% of the body weight or more,

significant loss of weight, visible signs of distress, huddled posture,

immobility, moribund appearance. The age of mice when a tumor

was first detected (incidence) and the age of mice when euthanized

due to tumor burden (survival) were recorded. At the time of

euthanasia serum was collected, tumors and mammary glands

were removed for histological analysis, RNA and DNA isolated,

and other organs were examined for metastases. All female mice

were sacrificed at 400 days of age and at 450 days for males.

Kaplan-Meier survival plots were generated and compared by

Log-rank test statistical analyses using GraphPad Prism software

(GraphPad Software, San Diego, CA). P,0.05 was considered

statistically significant.

Histology and Immunohistochemistry
Mammary glands and tumors were fixed in 4% paraformalde-

hyde at 4uC overnight. Deparaffinized 5 mm sections of both

tumors and normal mammary glands were immunostained for

ERa, AR, ERBB2, and Ki67. All washes were done in TBS with

0.05% Tween-20. Antigen retrieval for ERBB2 was achieved by

boiling for one minute, followed by fifteen minutes at 90uC in

1 mM EDTA pH 8.0. ERa and AR antigen retrieval was done by

heating to 99uC in pH 6.0 10 mM sodium citrate buffer for fifteen

minutes, with the addition of 1 mM EDTA for AR. Endogenous

peroxidase activity was blocked using 1% H2O2 in methanol for

ten minutes. Endogenous biotin was blocked using the Avidin/

Biotin Blocking Kit (Vector Laboratories, Burlingame, CA),

followed by blocking with 10% normal goat serum in TBS for

45 minutes. Immunostaining for AR (RB-1358, 1:50, Neomarkers,

Fremont, CA), ERa (SC-542, 1:250, Santa Cruz Biotechnology,

Inc., Santa Cruz, CA), and ERBB2 (mAB#4290, 1:100, Cell

Signaling Technology, Danvers, MA) were performed overnight at

4uC diluted in 3% BSA in TBS. Ki67 sections were incubated in

primary antibody (RB-1510-P1, 1:100, Neomarkers) in TBS for

one hour at room temperature. AR, ERa, and ERBB2 stained

sections were incubated with biotinylated goat anti-rabbit second-

ary antibody for 30 min at room temperature and then with

streptavidin conjugated peroxidase for 30 min at room tempera-

ture. Ki67 was labeled using the Vectastain ABC kit (Vector

Laboratories, Burlingame, CA). Staining was developed for all

proteins using the ImmPACT DAB Peroxidase Substrate Kit

(Vector Laboratories) and all slides were counterstained with

haematoxylin.

Androgen Receptor in ERBB2 Induced Breast Tumors

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e60455



Ki67 staining was quantified by counting the number of Ki67

stained cells in random fields of a total of .300 cells. Final counts

were expressed as a percentage of cells positive for Ki67. AR

staining was quantified by counting the number of positively

stained luminal epithelial cells from randomly selected ducts. AR

staining was determined as a percentage of the total number of

luminal epithelial cells.

Tissue Preparation and Gene Expression Analysis
Largest cellular compartment of the mouse mammary gland is

fat. To remove fat cells, excised mammary glands were incubated

in 1% w/v collagenase (Roche, Mannheim, Germany) dissolved in

Earle’s Balanced Salt Solution at 37uC with constant agitation for

1 hour. Dissociated tissue was centrifuged at 1000 rpm for 5 min

and upper layer of fat cells and overlaying buffer removed. An

aliquot of pelleted cells was taken for DNA extraction using

DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA) and the

remaining cells were resuspended in TRIzol reagent (Life

Technologies, Grand Island, NY). RNA was extracted according

to the manufacturer’s instructions. Five micrograms of total RNA

was reverse transcribed to cDNA using the GoScript cDNA

synthesis kit (Promega, Madison, WI). Quantitative PCR analysis

of gene expression was performed using Roche Universal

ProbeLibrary assays on a Roche 480 LightCycler. For a complete

list of primers see Table S1.

Hormone Analysis
Mice were anesthetized by isoflurane inhalation (Webster

Veterinary, Devens, MA), and blood collected by ocular orbital

bleeding. Serum was isolated by centrifugation and stored at –

20uC until analysis. Testosterone and estradiol measurements were

performed by radioimmunoassay (RIA) and ELISA (Calbiotech,

Figure 1. Characterization of mice with conditional knockout of AR in mammary glands (MARKO). A. Breeding strategy used to create
experimental cohorts. Two generation breeding was used to produce tumor-prone MMTV-NeuNT (activated rat ERBB2) transgenic MARKO (male and
females underlined on the left side) and Control (underlined on the right) mice. MARKO mice are positive for MMTV-cre transgene, specifically
expressed in mammary glands. B. Recombination events in the genomic DNA from mammary ductal tissue dissociated from fat cells. Top band
(952 bp) is derived from the non-recombined floxed Arfl allele, middle band (855 bp) is from the wild-type Ar+ allele, and the lower band (404 bp) is
an amplicon derived from the ArD allele, resulting from Cre/LoxP induced deletion of exon 2. Arfl/+ is a positive control for the floxed allele and WT is
wild-type (Ar+/Ar+). Left panel is recombination in male mice and the right panel is recombination in female mice. No recombination is observed in
mice lacking MMTV-cre (lanes 1 and 4), the deleted allele is present in mice with MMTV-cre (lanes 2 and 3) C. Reduced number of AR positive luminal
epithelial cells in MARKO mammary glands. AR positive luminal epithelial cells in the mammary glands of Control (n = 5) and MARKO (n = 5) mice were
counted and determined as a percentage of the total number of cells per gland (p = 0.0019). An average of 260 cells were counted per individual
mouse. Immunohistochemical staining for AR expression in Control (D) and MARKO (E and F) mammary glands. Scale bar = 20 mm.
doi:10.1371/journal.pone.0060455.g001
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San Diego, CA) respectively in the University of Virginia Center

for Research in Reproduction Ligand Assay and Analysis Core

(University of Virginia, Charlottesville). Sensitivity of the testos-

terone RIA assay was 10 ng/dL. Sensitivity of the estradiol ELISA

assay was 7 pg/ml.

Statistical Analysis
Student t-test for two groups and one-way ANOVA for multiple

group comparisons were used to assess significance of differences.

Differences were expressed as mean 6SEM; P,0.05 was

considered significant. Tumor incidence data was analyzed using

Gehan-Breslow-Wilcoxon test. All analyses were performed using

the GraphPad Software package.

Results

Female MARKO Mice Display a Mosaic Pattern of AR
Expression in the Mammary Gland

To assess the role of the AR in ERBB2 driven tumorigenesis, we

crossed MMTV-cre, MMTV-NeuNT mice with Arfl/fl mice to

obtain MMTV-cre, MMTV-NeuNT, Arfl/+ (or Arfl/Y males)

MARKO mice and MMTV-NeuNT, Arfl/+ female (or Arfl/Y

males) control littermates (Figure 1A). The generation of

homozygous ArD female mice was not possible under the current

breeding strategy, since MMTV-cre, MMTV-NeuNT, Arfl/Y

males, required for this breeding (Figure 1A), were infertile and

displayed an under-masculinized phenotype due to Ar ablation in

several male reproductive organs. This phenotype is similar to that

observed for other ARKO models [30,31,32]. MMTV-Cre

induced recombination of the Arfl allele resulting in deletion of

exon 2 was confirmed by PCR analysis of MARKO genomic

DNA isolated from partially dissociated mammary glands

(Figure 1B). The deleted allele was detected in all Arfl/+ females

and Arfl/Y males with the MMTV-Cre transgene. Due to X

chromosome inactivation in females, a single allele of Ar, either

control or exon 2– deleted, is expressed in each individual cell.

This means that MARKO mammary epithelium is a mix of cells

expressing normal levels of Ar and cells with no Ar expression. We

counted AR positive luminal epithelial cells (Figure 1C) and found

that the percentage of cells positively stained for AR in MARCO

(,32%) mammary glands was significantly lower than in controls

(,68%) (p = 0.0019). AR nuclear staining was detected in the

mammary glands of both control and MARKO female mice.

Nuclear AR staining was observed in the majority of luminal

epithelial cells in the mammary glands of control females

(Figure 1C and D). Varying frequency of AR expression was

observed in MARKO (Figure 1C, E and F) mice, which showed a

reduced percentage of positive AR nuclear staining in luminal

epithelial cells. AR staining was observed in approximately 32% of

cells. AR staining in adipose tissue was unaffected in all MMTV-

cre mice.

Global knockout of Ar in female mice was previously shown to

increase luminal epithelial cell proliferation [26]. In our condi-

tional knockout model, we observed similar luminal epithelial cell

proliferation in female MARKO and control mice (Figure 2).

Diminished AR Expression Promotes an Early Onset of
ERBB2 Tumors

The first tumors in MARKO mice were observed almost 100

days prior to the appearance of palpable tumors in control mice

(Figure 3A). AR deficiency in the mammary glands of female mice

dramatically accelerated the onset of MMTV-NeuNT driven

tumors. In female mice that developed tumors within 400 days,

MARKO mice had a significantly lower average age of tumor

onset (273618.36 days) compared to their control littermates

(352.568.263 days, P = 0.0005) (Figure 3B). To evaluate whether

loss of AR affected survival, females were sacrificed when tumors

grew to approximately 1.5 cm in diameter, an animal had multiple

tumors, or showed signs of morbidity, and the survival curves were

calculated. The similar average size of tumors in the two groups

(Control = 1.9160.27 g and MARKO = 1.7160.47 g) demon-

strated that the mice were sacrificed without preferential selection.

Concordantly with an earlier onset of tumors, the survival rate in

MARKO females within the first 375 days was significantly

reduced (P = 0.0208, Log-rank Test). However, no significant

difference was observed in the survival rate between control and

MARKO mice during the full course of this study (400 days)

(Figure 3C, P = 0.2376). Similar numbers of females in both

groups (36.84% (7/19) in MARKO versus 27.58% (8/29) in

Control) developed lethal cancer within the period of the study.

The time between tumor detection and euthanasia between two

groups was slightly lower in the Control group, however the

difference was not statistically significant (Figure 3D). At 400 days,

2 female control mice were determined to have small mammary

tumors, while no MARKO mice had detectable tumors. Therefore

at the completion of the study, 58.6% (17/29) of control mice and

63.16% (12/19) of MARKO females were tumor free. Similar

numbers of tumor-bearing mice in the two groups had multiple

tumors (41.6%, 5/12 in Control and 43.8%, 3/7 in MARKO).

Although MARKO females displayed an earlier onset of MMTV-

NeuNT tumors, the cell proliferation index evaluated by Ki67

staining in tumors isolated at sacrifice was similar in both groups

(Fig. S1). Histological analysis of tumors showed that tumors were

poorly differentiated and had a uniform morphology comprised of

compact adenocarcinoma cells, characteristic for this model [7]

with limited portions of intratumoral stroma (Figure 3E and F).

Histological grading of the tumors was similar between both

groups (Table 1). No metastases were detected in our experiments.

Previously it was shown that MMTV-NeuNT caused the

development of mammary tumors in male mice [7]. In our study

only 10.9% of males developed tumors within 450 days, including

2/33 in the MARKO group (,6%) and 5/31 in the control group

(,16%), and of these mice only 3 were sacrificed due to tumor

burden. PCR analysis showed the presence of deleted ArD allele in

all samples of genomic DNA isolated from MARKO male

mammary glands (Figure 1B). The low number of tumor-bearing

mice during the course of this study prevented further evaluation

of the role of AR deletion in MMTV-NeuNT male mice.

AR does not Suppress Mammary Gland Mitogenic
Signaling Pathways

To determine if AR loss influenced hormone status in our

model we evaluated the serum concentrations of estradiol and

testosterone. No changes in serum estradiol or testosterone levels

were detected between control and MARKO mice (Figure 4A and

4B). Expression of Esr1, Pr and downstream target genes of both

receptors: amphiregulin (Areg), receptor activator of nuclear factor

kappa-B ligand (Rankl), and wingless-type MMTV integration site

family, member 4 (Wnt4) were also unchanged in non-tumor

bearing mammary glands of MARKO mice compared to controls

(Fig. S2).

In both MARKO and control mice, Errb2 transgene expression

was dramatically increased in tumors compared to normal non-

tumor bearing mammary glands from the same animals

(Figure 4C). Elevated Erbb2 expression was similar in both

MARKO and control tumors (p = 0.2197). Increased ERBB2

protein levels were detected in tumors (Figure 4D and 4E

Androgen Receptor in ERBB2 Induced Breast Tumors
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compared to 4F and 4G), corresponding to the elevated mRNA

levels.

Overexpression of ERBB2 in human patients is associated with

elevated expression or activity of ERBB3 [22]. Elevated levels of

ERBB3 protein have been noted in tumors of ERBB2 transgenic

mice [10]. We compared the expression of Erbb3 in tumors from

control and MARKO mice to non-tumor bearing mammary

glands. Strikingly, increased expression of ERBB2 was associated

with 18 to 20 fold increased expression of endogenous Erbb3

(Figure 4H). Loss of Ar in MARKO mice did not alter increased

Erbb3 expression. To evaluate whether Erbb3 upregulation in

MMTV-NeuNT tumors was selective or whether these tumors

displayed elevated expression of other ERBB family members, we

also examined the expression of Erbb4. Expression of Erbb4 in both

normal cohorts was similar and was significantly reduced in

tumors (Figure 4I) (normal versus tumor in Control p = 0.0310 and

MARKO p = 0.0272). No significant difference was noted

between tumors from the two groups. This suggests that Erbb3 is

selectively upregulated to cooperate with ERBB2 driven tumor-

igenesis.

ERa and PR Signaling is Maintained during AR Loss in
Ductal Epithelium

Hormonal independence of breast cancer can occur with

disease progression and induction of ERBB2 signaling [33,34].

Therefore we evaluated the expression of sex steroid receptors in

tumors obtained from control and MARKO mice and compared

them to each other and to non-tumor bearing mammary glands.

Ar expression was significantly reduced in MARKO tumors

compared to tumors from control mice (Figure 5A). In addition,

Figure 2. Control and MARKO mice show similar proliferation in the normal mammary gland. Representative pictures of normal Control
(A) (n = 4) and MARKO (B) (n = 4) mammary glands stained for Ki67. Arrowheads denote Ki67 positive cells. C. Ki67 staining was quantified and is
shown as the percentage of total epithelial cells positive and negative for Ki67 staining. Scale bar = 20 mm.
doi:10.1371/journal.pone.0060455.g002

Table 1. Histopathological tumor grading in Control and MARKO mice.

Mouse # Genotype Necrosis Mitosis per 40X (field diameter 0.44 mm) Grade

C424 Control Extensive 8 High

C589 Control Extensive 5 High

C745 Control None 2 Low

C951 Control None 1 Low

C756 Control Focal 2 Low

C764 Control None 2 Low

C779 Control None 1 Low

C786 Control Focal 1 Low

C410 Control Tumor was too small and was used up for RNA analysis

C299 MARKO None 1 Low

C472 MARKO Focal 5 High

C582 MARKO None 1 Low

C658 MARKO Focal 4 High

C775 MARKO Focal 3 Low

C777 MARKO Focal 1 Low

C755 MARKO Focal 4 High

C754 MARKO Tumor was too small and was used up for RNA analysis

Mitotic count and presence/absence of necrosis were used as grading criteria in this study. Tumors with a low mitotic count (,4 hpf) and focal (,5%) or no necrosis
correspond to low grade carcinoma while those with a high mitotic rate ($4/5 hpf) and necrosis (.5%) are considered high grade. Low and high grade carcinomas
were detected in both Control and MARKO groups.
doi:10.1371/journal.pone.0060455.t001
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regardless of genotype, we observed significant loss of Ar

expression in MMTV-NeuNT tumors compared to normal

mammary glands (Figure 5A).

Similarly to Ar, Esr1 and Pr expression was significantly reduced

in MMTV-NeuNT tumors compared to non-tumor bearing

mammary glands (Figure 5B and C). We observed similar Esr1

Figure 3. MARKO mice show an earlier onset of breast tumors in MMTV-NeuNT mice. A. Mice were examined two to three times per week
starting at 6 months for the presence of palpable tumors. Age of incidence was recorded as the first day at which a palpable tumor was detected.
Percentage of tumor free mice was plotted versus the age of the mice in days. Hazard ratio = 0.2340 and 95% CI ratio of = 0.06054 to 0.9047. B. Mean
age of tumor incidence was calculated for tumor bearing MARKO (273+/218.36 days, n = 7) and control (352.5+/28.263 days, n = 10) mice, p = 0.0005.
C. Survival of MARKO and Control MMTV-NeuNT females. Percentage of surviving mice was plotted versus age (p = 0.3499 at 400 days). Hazard
ratio = 0.6023 and 95% CI of ratio = 0.2080 to 1.744. D. Average time in days between tumor detection and sacrifice, due to tumor burden prior to 400
days of age, p = 0.5000. Representative hematoxylin and eosin staining of Control (E) and MARKO (F) tumors. Scale bar = 50 mm.
doi:10.1371/journal.pone.0060455.g003
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Figure 4. Elevated ERBB2 and ERBB3 expression in Female MMTV-NeuNT tumors. A. Serum obtained at sacrifice from control (n = 11) and
MARKO (n = 10) mice was analyzed for estradiol levels (E2). B. Serum from A was analyzed for testosterone (T) levels. C. MMTV-NeuNT expression. At
the time of sacrifice, tumors were harvested and non-tumor bearing mammary glands were dissociated from the fat pad and RNA was prepared as
described in the methods section. NeuNT expression was analyzed by quantitative RT-PCR and normalized to 18S expression. Expression of NeuNT in
tumors (Control n = 9 and MARKO n = 7) for MARKO and Control mice and normal mammary glands (Control n = 26, MARKO = 15) was normalized to
expression in non-tumor bearing mammary glands of the Control group. D-G. Immunohistochemical detection of ERBB2 in tumors, Control (D) and
MARKO (E) at 40X magnification, and in normal mammary ducts, Control (F) and MARKO (G) at 100X magnification. Gene expression analysis of Erbb3
(H) and Erbb4 (I) in the same samples as in C. *denotes P,0.05, **P,0.01 and ***P,0.005.
doi:10.1371/journal.pone.0060455.g004
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and Pr expression in MARKO tumors and tumors obtained from

control mice (Esr1 p = 0.1020 and Pr p = 0.4385) (Figure 5B and

C). Correlating with reduced mRNA levels of steroid receptors in

tumors, we also observed reduced protein staining for ERa
(Figure 5D–F) and AR (Figure 5G–I) in MMTV-NeuNT tumors.

To confirm reduced steroid receptor signaling in MMTV-

NeuNT tumors, the expression of known ERa and PR target

genes (Areg, RankL and Wnt4) were examined. As was observed for

the receptors, expression of these target genes was significantly

reduced in MMTV-NeuNT tumors compared to normal mam-

mary glands (Figure 6). Expression of RankL was elevated in

normal mammary glands of MARKO mice compared to

Controls, although it failed to reach statistical significance

(p = 0.3036). Pr is an ERa target gene and therefore the reduced

Figure 5. Steroid receptor expression is reduced in MMTV-NeuNT tumors. At the time of sacrifice, tumors were harvested and non-tumor
bearing mammary glands were dissociated from the fat pad. RNA was prepared as described in the methods section. Levels of Ar (A), Esr1 (B), Pr (C)
and 18S were analyzed by quantitative RT-PCR (Control normal = 26, Control tumor = 9, and MARKO normal = 15 and MARKO tumor = 7). Expression of
each receptor was normalized to 18S. Receptors in tumors for MARKO and Control mice and normal MARKO glands were normalized to expression in
non-tumor bearing mammary glands from the Control group. *denotes P,0.05, **P,0.01 and ***P,0.005. Immunohistochemical detection of ERa in
the normal mammary gland (D) of Control mice and tumors from Control (E) and MARKO (F) mice. Immunohistochemical detection of AR in the
normal mammary gland of Control mice (G) and tumors from Control (H) and MARKO (I) mice. Scale bar = 50 mm.
doi:10.1371/journal.pone.0060455.g005
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expression of Pr and downstream genes may be the consequence of

reduced ERa expression. This data further confirms that steroid

receptor signaling is reduced in MMTV-NeuNT tumors. No

significant difference in expression of Areg, RankL, or Wnt4 was

detected between the tumors of control and MARKO mice

(Figure 6). This was consistent with similar levels of Esr1 and Pr

expression in tumors.

Since the steroid receptors themselves were diminished in

MMTV-NeuNT tumors, we examined the status of FOXA1, a

pioneer factor closely associated with ERa and AR function

[35,36] and with ERBB2 expression [37,38]. Interestingly, we

observed a significant loss of Foxa1 expression in tumors

(Figure 6D).

MMTV-NeuNT Expression does not Affect Steroid
Receptor Status Prior to Tumor Formation

Loss of steroid receptor and Foxa1 expression in MMTV-

NeuNT tumors indicated that Erbb2 expression drove the loss of

these markers and that their loss may be associated with tumor

etiology. To evaluate whether Erbb2 altered the expression of these

genes prior to tumor formation, we compared their expression in

normal mammary glands from MMTV-NeuNT expressing mice

and nontransgenic mice with the same mixed genetic background

(minus MMTV-NeuNT). Expression of the rat Erbb2 transgene

was detected only in MMTV-NeuNT mice (Figure 7A). No

significant change in Ar, Esr1, or Pr expression was observed

(Figure 7B, 7C, and 7D). Foxa1 showed no change in expression

between MMTV-NeuNT expressing and non-expressing mam-

mary glands (Figure 7E).

Discussion

To investigate the role of AR in ERBB2 driven tumorigenesis

we created a mouse model that expressed an activated mutant of

rat ERBB2 [7] and were heterozygous for Ar deletion. Due to X

chromosomal inactivation in females the floxed or wild type Ar

allele may be inactivated. In luminal epithelial cells of MARKO

mice where the floxed allele is inactivated, Cre recombinase will

fail to ablate AR and therefore these mice will retain a portion of

cells with normal AR expression. This was reflected in AR

expression analysis of MARKO mammary glands, which

displayed an approximately 30% decrease in Ar at the mRNA

level. We utilized only partial dissociation of the mammary gland

to evaluate gene expression. Therefore, the presence of stromal

cells, vasculature, and some fat cells likely reduced the true extent

of Ar deletion. Possible proliferative advantage of one genotype

over the other and penetrance of MMTV-cre expression may also

contribute to varied recombination frequency. AR histological

staining confirmed that MARKO mice display a significant

reduction in the number of luminal epithelial cells positive for AR.

The current model does not generate complete ablation of Ar

across the entire mammary gland; rather it creates a mixed

population of epithelial cells expressing normal levels of AR and

cells with complete lack of expression. Genetic alterations that give

rise to breast cancer or promote tumor progression are thought to

Figure 6. Downstream targets of steroid receptors are reduced in MMTV-NeuNT tumors. Tumors and non-tumor bearing mammary
glands were evaluated for the expression of ERa and PR downstream target genes. Expression of each gene was normalized to 18S. Gene expression
in tumors for MARKO and Control mice and normal MARKO glands were normalized to expression in non-tumor bearing control mammary glands
(Control normal = 26, Control Tumor = 9, MARKO normal = 15 and MARKO tumor = 7). Reduced expression was seen in tumors compared to normal
tissue for Areg (A), Rankl (B), Wnt4 (C) and Foxa1 (D). ***P,0.005, for normal versus tumor expression.
doi:10.1371/journal.pone.0060455.g006
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occur within a limited number of cells. Thus, MMTV-cre,

MMTV-NeuNT, Arfl/+ mice may be a valuable in vivo model

for ARs role in breast carcinogenesis.

In the current study, we noticed a considerable delay in the

onset of tumors in control mice (MMTV-NeuNT, Arfl/+)

compared with the incidence reported for the original parent

colony ((FVB-Tg(MMTV-ErbB2)NK1Mul/J), which reported

50% incidence in female mice by 25 weeks of age [7]. This

disparity is possibly due to differences in the genetic background of

mouse strains; the original line is on an FVB background, whereas

Arfl/fl mice are on a C57BL/6 background. C57BL/6 mice are

reported to be more resistant to multiple types of tumors

[39,40,41]. Furthermore, we observed almost no tumor develop-

ment in our male cohort of mice over a period of 65 weeks. We

were interested to determine if AR deletion also affected the

susceptibility of male breast cancers, since men with partial or

complete androgen insensitivity (AIS) have an elevated risk of

breast cancer. AIS associated breast cancer risk is typically

associated with elevated estrogen exposure [42]. The lack of tumor

development in male mice was also probably due to the mixed

background utilized in the current study.

It has previously been reported that global AR knockout

increases the susceptibility of female mice to DMBA-induced

mammary tumors [26]. Increased tumor susceptibility in ARKO

females was associated with elevated proliferation of luminal

epithelial cells in virgin mice. Increased proliferation in ARKO

females was likely due to the loss of AR antagonism of ERa
signaling. In the ARKO study, mammary glands were selectively

collected at 8 weeks of age during the estrus phase of the estrous

cycle, at which time estrogens exert their largest influence. In the

present study, normal mammary glands were collected either at

sacrifice due to tumor burden or once females reached 400 days of

age independently of the estrous cycle. While we did not observe

significant change in proliferation rates, the possibility that

MARKO mice have elevated proliferation in the AR depleted

luminal epithelium during estrus cannot be excluded.

Inhibition of AR signaling by the antagonist flutamide in

postpubertal mice significantly increased proliferation of mamma-

ry epithelial cells [25], indicating that the blockade of AR signaling

disrupts the homeostatic balance between estrogen and androgen

signaling thus leading to unconstrained estrogen driven prolifer-

ation. As seen in the current study, suppression of AR function did

not influence estradiol levels or ERa expression. Thus, it is the loss

of AR signaling in the normal mammary gland under the

influence of normal hormone levels and female steroid receptor

status that increases the susceptibility of the mammary gland to

further tumor-initiating insults.

Elevated estrogen exposure is a risk factor for breast cancer

development and continuous exposure to estrogen in rodents is

sufficient to drive the formation of mammary tumors [43]. ERa
knockout (ERKO) inhibits the development of mammary tumors

in mice [18,44]. In the MMTV-NeuNT mouse model both ERa
and NeuNT are required for tumorigenesis as ERKO mice display

significant delay in the development of MMTV-NeuNT tumors.

The AR antagonizes the mitogenic activity of the estrogen

receptor [45] suggesting that AR may oppose ERa activity during

the early stages of MMTV-NeuNT driven tumorigenesis and AR

loss leads to the accelerated onset of mammary tumors.

Distinct from human breast cancers, which frequently retain

steroid receptors, mouse models of breast cancer frequently lack

steroid receptors and develop hormone independence [46,47,48].

In the present study we demonstrate that in the MMTV-NeuNT

mouse model of breast cancer the expression of AR in these

tumors is reduced. This suggests that although the AR suppresses

the formation of ERBB2 driven tumors, once these tumors are

established they may become less reliant or responsive to

androgens or ovarian hormones.

The function of ERa and AR are dependent on the pioneer

factor FOXA1 and mammary glands fail to develop in FOXA1

knockout animals [49,50]. Although the precise significance of

FOXA1 expression in breast cancer is unclear, FOXA1 expression

has been shown as a positive prognostic factor in ERa positive

tumors. A strong correlation between FOXA1 overexpression and

ERBB2 in ERa negative tumors has also been identified [51,52].

There are reports of crosstalk between FOXA1, AR and ERBB2

[52,53] and of mutual regulation of expression by FOXA1 and

ERa [49]. In the present study we demonstrate that MMTV-

NeuNT tumors have reduced expression of Foxa1 relative to non-

tumor bearing mammary glands. It would be interesting to

determine if loss of FOXA1 drives the development of hormone

independent tumors through perturbed steroid receptor signaling

or if Foxa1 expression is diminished due to the reduced expression

of ERa and/or AR.

ERBB3 overexpression and activation has been detected in

tumors from several lines of ERBB2 transgenic mice [10].

However, unlike the previous report that detected minimal

elevation in Erbb3 transcription, we note a significant up regulation

of Erbb3 mRNA in MMTV-NeuNT tumors. This indicates that in

different mouse models of ERBB2 oncogenic activation endoge-

nous ERBB3 is selectively upregulated, although by different

mechanisms. Although mutated ERBB2 is capable of homodimer-

izing, ERBB2/ERBB3 heterodimers can utilize mouse growth

hormone signaling and may be required for tumorigenesis. We

also observed no increase in Erbb4 expression. This suggests that

NeuNT transformation selectively amplifies Erbb3 expression to

drive tumorigenesis.

Figure 7. MMTV-NeuNT does not affect steroid receptor
expression in normal mammary glands. MMTV-NeuNT expressing
(NeuNT) and non-expressing (WT) mammary glands were dissociated
from the fat pad. RNA was prepared as described in the materials and
methods section. Expression of NeuNT (A), Ar (B), Esr1 (C), Pr (D), and
Foxa1 (E) were analyzed by qRT-PCR (WT n = 8 and MMTV-NeuNT
n = 10). Expression of each gene was normalized to 18S. (*denotes
P,0.05).
doi:10.1371/journal.pone.0060455.g007
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Diminished expression of AR in the mammary glands of female

mice leads to dramatically earlier onset of MMTV-NeuNT

induced mammary tumors. Interestingly, AR loss did not result

in an increase in the percentage of tumor-bearing mice in the

MARKO group compared to controls. Female ARKO mice do

not develop mammary tumors [26] and, in our study, neither do

female MARKO mice that do not have the MMTV-NeuNT

transgene. Thus, AR inactivation alone does not predispose the

mammary gland to mammary tumors. This indicates that the AR

opposes mammary gland transformation and its loss predisposes

mammary epithelial cells to malignant growth instigated by other

oncogenes.

MARKO tumors display the same profile as control tumors;

proliferation rate, tumor growth rate, steroid receptor and

downstream signaling profiles. In addition, Foxa1 and Erbb3/

Erbb4 expression levels are similar. Therefore it is the loss of AR

function that makes it easier for epithelial cells expressing ERBB2

to undergo malignant transformation.

Supporting Information

Figure S1 Tumor cell proliferation is not influenced by AR

status. Representative pictures of Control (A) (n = 12) and

MARKO (B) (n = 8) tumors stained for Ki67. (C) Staining in A

and B were quantified and are shown as the percentage of Ki67

positive cells. Scale bar = 50 mm.

(TIF)

Figure S2 Steroid receptor signaling is intact in normal MMTV-

NeuNT expressing mammary glands. MMTV-NeuNT expressing

non-tumor bearing mammary glands from Control (n = 24) and

MARKO (n = 15) mice were dissociated from the fat pad. RNA

was analyzed for the expression of Era (A), Pr (B), Areg (C), RankL

(D), Wnt4 (E). Expression of each gene was normalized to 18S.

(TIF)

Table S1 Sequences of the forward and reverse primers used for

the corresponding gene expression analysis by qPCR.

(XLSX)
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