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A probabilistic approach for pediatric epilepsy
diagnosis using brain functional connectivity
networks
Saman Sargolzaei1*, Mercedes Cabrerizo1, Arman Sargolzaei1, Shirin Noei2, Anas Salah Eddin3, Hoda Rajaei1,
Alberto Pinzon-Ardila4, Sergio M Gonzalez-Arias4, Prasanna Jayakar5, Malek Adjouadi1

From The 11th Annual Biotechnology and Bioinformatics Symposium (BIOT-2014)
Provo, UT USA. 11-12 December 2014

Abstract

Background: The lives of half a million children in the United States are severely affected due to the alterations in
their functional and mental abilities which epilepsy causes. This study aims to introduce a novel decision support
system for the diagnosis of pediatric epilepsy based on scalp EEG data in a clinical environment.

Methods: A new time varying approach for constructing functional connectivity networks (FCNs) of 18 subjects (7
subjects from pediatric control (PC) group and 11 subjects from pediatric epilepsy (PE) group) is implemented by
moving a window with overlap to split the EEG signals into a total of 445 multi-channel EEG segments (91 for PC
and 354 for PE) and finding the hypothetical functional connectivity strengths among EEG channels. FCNs are then
mapped into the form of undirected graphs and subjected to extraction of graph theory based features. An
unsupervised labeling technique based on Gaussian mixtures model (GMM) is then used to delineate the pediatric
epilepsy group from the control group.

Results: The study results show the existence of a statistically significant difference (p < 0.0001) between the mean
FCNs of PC and PE groups. The system was able to diagnose pediatric epilepsy subjects with the accuracy of 88.8%
with 81.8% sensitivity and 100% specificity purely based on exploration of associations among brain cortical
regions and without a priori knowledge of diagnosis.

Conclusions: The current study created the potential of diagnosing epilepsy without need for long EEG recording
session and time-consuming visual inspection as conventionally employed.

Background
Epilepsy is a neurological disorder characterized by
recurrent seizures with unspecified causes. The Center
for Disease Control and Prevention (CDC) estimates
that more than 2.3 million adults and half a million chil-
dren in the United States are affected by Epilepsy [1].
This number is projected to dramatically increase every
year by about 0.15 million newly diagnosed epilepsy
cases [2]. Although the impact of seizures varies from
person to person, physical and mental functions of the

affected person could be severely altered. A systematic
approach for epilepsy diagnosis could improve the plan-
ning for a treatment process and thus relieve the burden
already imposed on the overall healthcare system. Scalp
Electroencephalography (EEG) recording at resting state
condition has been widely perceived as an effective pre-
liminary tool for non-invasive study of the brain in indi-
viduals with epilepsy. Analysis of Scalp EEG during
resting state condition, without performing a cognitive
task and with the absence of external stimuli, has gained
significant prominence for assessing brain function and
related disorders. Applications include tasks that require
assessing responses of the brain under the influence of
different drug therapies [3], and tasks that rely on
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determining the 3D source localization of epileptic sei-
zures which exploits techniques in the time/frequency
domains for analysis of individual EEG electrode record-
ings [4,5]. Assessment of brain functional connectivity
network in patients suffering with various neurological
disorders through modalities such as EEG recording,
Magnetoencephalography (MEG) and functional Mag-
netic Resonance Imaging (fMRI) has elicited new find-
ings in ways of underlying distinctions that delineate
epileptic from control populations [6-14]. The high tem-
poral resolution of EEG renders it as an indispensable
tool in the primary diagnosis of epilepsy and in visuali-
zation of characteristic temporal events like interictal
spikes which are closely associated with epileptic foci
[7,15]. Additionally, EEG has been utilized to distinguish
focal and generalized neurophysiologic correlates of epi-
lepsy [16]. Diagnosis of epilepsy by the means of scalp
EEG visual inspection often involves long term record-
ing and investigation by the EEG expert to search for
abnormal activities.
However, visual inspection and interpretation of con-

tinuous temporal EEG recordings is tedious, time con-
suming and prone to human error. Furthermore, epilepsy
diagnosis based on visual inspection of EEG has been
shown to be very subjective to the expert opinion [17].
This has led to the general cohort of adopting various
computer aided techniques with the help of machine
learning for medical applications [18-20]. Artificial
Neural Network (ANN) based classifiers have received
the most attention towards epilepsy diagnosis using scalp
EEG recordings [21-23] where the accuracy rate of 0.92
[21] and 0.8 [22,24] are reported which involved the exis-
tence of training set and a priori knowledge. The general
routine of ANN based techniques is to process each iso-
lated EEG signal with the aim of extracting a set of discri-
minating features as input to train an ANN in the design
of an optimal classifier and predictor of the diagnosis.
Considering the fact that Epilepsy is a complex disease
with multifactorial causes, makes the diagnostic process
much more complicated than simply relying on solely
model driven knowledge. Furthermore, the human brain
includes a complex web of neuronal interconnectivity
and discrete anatomical regions that function together to
generate brain activity [11,25]. This underlying functional
brain infrastructure suggests that a methodology for
enhanced epilepsy diagnosis needs to consider the whole
brain network as described by its patterns of functional
connectivity networks (FCNs). Thus, FCNs seek to define
the patterns of cross-correlation between discrete func-
tionally characterized brain regions to give statistical
importance to anatomical connectivity (upon the exis-
tence of physical connection) and subsequently deter-
mining inter-regional neurophysiological inferences.
FCNs could be grouped into two broad categories:

Directed and Undirected. Undirected FCNs finds the
dynamic associations among functional brain regions
without considering the hypothetical causalities among
them. Whereas Directed FCNs, sometimes referred to as
effective connectivity [26], assesses the influence of one
cerebral region upon another and therefore gives direction
to the calculated associations. Current trends in adopting
FCNs for understanding the complex brain are placed
toward developing data driven methodologies for con-
structing FCNs which benefits from a robust parcellation
of functional data of the brain and an objective formula-
tion of the hypothesized association among functional par-
cels [6,26]. The crucial role of time delay in the dynamics
of large scale networks [27] such as brain networks is well
motivated, due to the large scale property of brain connec-
tivity networks including discrete sub-networks [28], but
yet not fully understood and incorporated in constructing
the brain networks and decision making processes [29].
Time delay is coupled with the fact that on large scale net-
works such as brain networks, the recorded signal at each
electrode is in fact showing the summation of the variance
of the brain area closer to the electrode and a lagged ver-
sion of variances from other brain areas.
In this study, a new algorithm based on time-varying

associations among channels of scalp EEG using a moving
window is examined for its ability to identify multichannel
EEG segments with epilepsy driven characteristics without
a priori knowledge assumed about the diagnosis. Undir-
ected FCNs estimate the association between the channels
of EEG using a geometrical distance between a pair of
channels. Undirected FCNs can be represented in the
form of undirected graphs. Each electrode is considered as
a node and the functional associations among them are
the edges of the corresponding graph. Different applica-
tions of graph theory and small world networks [30], with
causality analysis combined with network analysis [31] and
time-frequency coupling detection among isolated scalp
EEG recordings [32,33] are a few of the widely used
model-based solutions for studying FCNs using scalp EEG
recordings. This study also assesses the merit of graph the-
ory based features, extracted from the graphs correspond-
ing to the FCNs, in identifying EEG segments recorded
from patients with epilepsy from segments recorded from
the pediatric control group. The main contribution of the
study is in introducing a novel approach based on purely
machine learning techniques to facilitate the screening
process of potential epileptic patients. The emphasis of
developing the new decision support system for pediatric
epilepsy diagnosis was placed on the accurate diagnosis
without a priori knowledge. The probabilistic decision on
the subject diagnosis makes the system more applicable in
clinical environments. An overview of the proposed deci-
sion support system for computer aided diagnosis of
pediatric epilepsy is as shown in Figure 1.
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Methods
Subjects and data
Scalp EEG recordings from 18 pediatric patients (7
pediatric control (PC) group and 11 pediatric epilepsy
(PE) patients) were included in this study. The study
was approved by the Institutional Review Board (Proto-
col number: IRB-052708-03) and consent forms were
provided to the patients or legal representatives. The
scalp EEG data were collected from routine EEG record-
ings without the imposition of long recording sessions.
Recordings were performed using XLTEK Neuroworks
Ver. 3.0.5 equipment following 10-20 electrode place-
ment system (referential montage) and sampled, indis-
tinctly for PC and PE subjects, at varying frequencies of
200 Hz, 500 Hz and 512 Hz. Segments free of artifacts,
4.2 seconds to 90 seconds long, from all EEG recordings
were initially selected. Care was given to the initial
selection of EEG segments such that they contained no
seizure activity to prevent any bias. The inclusion of
interictal spikes, as a representation of cortical irritabil-
ity, is based on the fact that they could be observed in
normal control subjects without being considered as
epilepsy segments [21]. Due to non-stationary character-
istics of long recordings of EEG signal [21,34], and for
an unbiased evaluation of the study results, initial inter-
vals were broken into segments with equal length by
applying a moving window with the length of 9 seconds
and 4.5 seconds overlap. The choice of 9-second win-
dow length was based on the EEG segmentation strategy
using the energy function calculated using the Teager’s
algorithm [34,35]. An overview of demographic charac-
teristics of study subjects is given in Table 1.

Functional connectivity networks construction
The aim of functional connectivity of brain networks
construction is to determine the existing pattern of func-
tional association among hypothetically isolated channels
and the causality relationship between anatomical brain
regions. Emphasis is placed on the connection topology

in the functional layer rather than on discovery of the
existence of structural medium among cortical regions.
Identifying the frequency based pattern of information
propagation between brain regions to study the epileptic
discharges has been recently investigated [21]. This study
focuses on exploring the relationship among brain
regions based on the time-domain electrical activities
recorded using multi-channel scalp EEG. Time-domain
characteristics of seizures and epileptic form discharges
[34] enforce the computer aided diagnosis systems to
look over short segments of EEG. Studying the dynamics
of the neural networks within the cerebral cortex at
higher time resolution increases the accuracy of interictal
spike detection and 3-D source localization of seizures
[21,36]. The proposed solution explores FCNs using
multi-channel EEG segments (9 seconds long [34]),
which through a geometrical approach, the time-varying
patterns of FCNs are assessed. FCNs are calculated in the
form of a two dimensional array called adjacency matrix,
Aw

und, as defined in equation (1), where w defines a seg-
ment of multi-channel EEG data and with subscript und
denoting the undirected from. Elements of adjacency
matrix are the pairwise strength of connectivity among
scalp EEG recording channels for the segment w.

Aw
wnd = [θij

w]m×m i, j = 1, ..., m (1)

θij
w = π − cos−1

⎛
⎜⎝

∑N
n=1 xi[n]xj[n]√∑N

n=1 xi
2[n]

√∑N
n=1 xj

2[n]

⎞
⎟⎠ i, j = 1, ..., m (2)

Connectivity strength, which establishes a symmetric
adjacency matrix. Following the symmetric property of
undirected FCN, a geometric distance as shown in equa-
tion (2) is used to calculate the pairwise connectivity
strength. The proposed geometric distance is a modifi-
cation of the cosine similarity metric.
Each θij

w value represents the pairwise connectivity
strength between electrodes i and j for the corresponding

Figure 1 Flowchart of the proposed decision support system. Flowchart of the proposed decision support system for computer aided
diagnosis of pediatric epilepsy based on machine learning techniques applied on constructed FCNs of the brain. Algorithm starts with
segmentation of multichannel EEG recordings by applying a moving window (w) with overlap. Functional connectivity networks are constructed
and mapped into a corresponding graph for each window. Extraction of graph theoretical based features (uw) is then followed by a decision
making process which uses a probabilistic approach to determine whether a patient is epileptic or not.
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window w with their electrical activity recordings
denoted as xi[n] and xj[n], respectively. The value of n
represents the discrete time sample number which ranges
from 1 to N where N is the length of window w, and m is
the number of electrodes considered for constructing the
FCNs. The angular value of θij

w of 0 radian specifies
the highest connectivity strength which is most likely the
case when calculating the distance among an electrode

and itself, and a value of
π

2
radian shows that the respec-

tive pair of electrode recordings is orthogonal and corre-
sponds to the maximum distance (i.e., lowest
connectivity strength).

Graph mapping of brain networks and feature extraction
Graph theory is a well-established and rich source of
benchmarks for studying functional connection as well as
anatomical connections in the brain [37]. Directed FCNs
(Aw

dir) and undirected FCNs (Aw
und) in terms of connec-

tivity strength among pair of scalp EEG channels record-
ings could be mathematically represented and studied in

the forms of directed and undirected network graphs
[25]. Graph Gw, for a given segment w, is comprised of a
set of vertices, Vw, and a set of edges, Ew. In the context
of FCNs, vertices are the scalp EEG electrodes and their
location in the graph can be determined from the coordi-
nate of the electrode position in the 10-20 electrode pla-
cement system space. Similarly, the graph edges are the
hypothetical functional connection among the vertices
and the connection strengths calculated as in equations
(1) and (2) define the weights of these edges. In mapping
these FCNs, it is hypothesized that the small world net-
work model of brain function could be altered by epi-
lepsy [10,38,39]. These hypothesized alterations could be
used to consequently discriminate a network graph cor-
responding to a patient with epilepsy from that of a con-
trol group. Network graph Gw based statistics (Table 2)
[40] are calculated for each segment w to form the fea-
ture vector uw as shown in equation (3):

uw =
[
ldg acc gcc rcc smg acg eng

]T (3)

Table 1. Demographic characteristics of study subjects

Age Female/Male Number of Segments

PC (n = 7) 12.86 ± 3.39* 3/4 13 ± 6.98

PE (n = 11) 9.09 ± 4.81 5/6 32.18 ± 22.41

p** ns ns < 0.05

Subject ID Age Gender Diagnosis Sampling Rate (Hz) Number of Segments

PC01 12 M - 200 11

PC02 15 F - 512 20

PC03 12 M - 200 14

PC04 15 F - 512 18

PC05 10 M - 512 3

PC06 18 F - 512 20

PC07 8 M - 512 5

PE01 10 F Left temporal dysplasia 200 14

PE02 7 F Left frontal region 512 67

PE03 4 F Right fronto-centro-temporal 512 39

PE04 14 M Generalized 512 18

PE05 8 M Right parietal 200 30

PE06 7 M Left frontal pole, posterior frontal lobe 512 77

PE07 15 F Left and right frontal 500 40

PE08 4 M Right fronto-centro-temporal 512 25

PE09 2 F Left temporal (posterior) 512 25

PE10 14 M Generalized 512 6

PE11 15 M Generalized 512 13

*Data Presented as mean ± S.D. where applicable

**Student t test (with statistical significance threshold of 0.05) was used to test for age and number of segments.

Fisher’s exact test was used to test for gender.

PC = Pediatric Control; PE = Pediatric Epilepsy;

M: Male; F: Female.

ns: not significant.
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Decision making process
As the multichannel scalp EEG is broken into segments
(w) and analyzed to generate the feature vectors (uw),
when using a training set with annotated EEG segments
(epileptic or non-epileptic), a classifier could be trained
to make a decision on a newly recorded EEG segment
in the testing phase. However in the absence of training
data and/or a priori diagnosis, machine learning techni-
ques could be instead incorporated to make an opti-
mized decision on the nature of segment whether it
belongs to the PE or PC group. One of the merits of the
current study is in the ability to identify epileptic EEG’s
from non-epileptic EEG when no prior knowledge is at
hand. The proposed system as designed consists of two

phases of decision making. Figure 2 shows the steps in
making a decision.
Gaussian Mixture Model (GMM) for EEG Segments Labeling
Input to the decision making block is a feature matrix,
UK×D, whose columns are the feature vectors corre-
sponding to the segments, where K is the number of
features and D is the total number of segments. This
feature matrix is then subjected to the principal compo-
nent analysis (PCA) using singular value decomposition
(SVD) [41]. This step is to map the covariance of the
data into a new coordinate whose bases express the
most variance. The output of PCA using the first princi-
pal component, x1 × D, is considered as the probability
distribution of graph theoretical features (uw) across all

Table 2. Graph theoretical features of functional connectivity networks

Feature Feature description Feature calculation

ldg Link density of the graph (2 × ne)/(nn × (nn - 1))

acc Average of closeness centrality (1/nn) ∑nn(sum of reciprocal distances from a node to all other nodes)

gcc Graph clustering coefficient (3 × number of triangles)/(number of connected triples of nodes)

rcc Rich club coefficient (ne_k)/(nn_k × (nnk - 1))

smg S-metric of graph Sum of the nodal degree products for every edge.

acg Algebraic connectivity of graph Second smallest eigenvalue of the Laplacian of adjacency matrix.

eng Energy of network graph Sum of absolute values of the real components of eigenvalues of adjacency matrix.

ne: Number of graph edges; nn: number of graph nodes;

nn_k: Number of nodes with degree larger thank; ne_k: number of edges among nodes with degree larger than k.

Figure 2 Flowchart of the two phase decision making process. Flowchart of the two-phase decision making process. Phase I assigns labels
to multichannel scalp EEG segments based on the Gaussian Mixture Modelling of graph theoretical based features; Phase II assigns labels
(epileptic or non-epileptic) to the subjects by assigning a probability in the likelihood of belonging in one of the two groups.
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segments. x1 × D is then modeled parametrically using a
Gaussian Mixture Model (GMM) using the two mix-
tures l = {ωi, μi, Σi}; i = 1,2 as shown in equation (4).

p(x|λ) =
∑2

i=1
ωig(x|μi, �i) (4)

Where ωi elements are the mixture weights, and g
(x|μi, Σi) represents the Gaussian densities calculated
from D-variate Gaussian distribution with parameters μi
and Σi (i = 1,2) as their respective means and covariance
matrices [41-43]. Parameters of the model were esti-
mated through maximum likelihood (ML) estimation
method and EEG segments are then labelled based on
their closeness to the either estimated means.
Probabilistic approach in the decision making process
The decision support system developed in the current
study serves as an auxiliary tool in clinical settings.
Therefore providing the neurologists with a probability
of the risk factor for a given subject is more preferable
rather than logical decisions (epileptic vs. non-epileptic).
The number of segments labeled as epileptic for a speci-
fic subject is used in phase II of the decision making
process to assign a probability as shown in equation (5)
on the evidence of these segments’ labeling.

p(subject is epileptic) =
Es

Ds
(5)

Where Es is the number of segments from the given
subject being labeled as epileptic out of total number of
segments Ds for the corresponding subject.

Results and discussion
Figure 3 shows the constructed undirected FCNs aver-
aged for both pediatric epilepsy (PE) and pediatric con-
trol (PC) groups with their corresponding bar plots of
connectivity distances (degrees) and under different
degrees of strengths. The symmetric property of the
adjacency matrices is due to the nature of the con-
structed FCNs which do not take into consideration the
possible causality among brain cortical region. The
change in the pattern of functional associations is
observed by increasing the distances among some brain
regions such as cz-o1 and cz-o2 pairs. A two-sided two
sample student t-test was conducted to assess whether
there is a significant difference between the undirected
mean FCNs of the PC group and the PE group. The test
results indicated that there is a statistically significant
difference (t(340) = -9.89, p < 0.0001) between the mean
FCNs of the PC group (μPC = 44.56°, sPC = 13.75° sPC =
13.75°) and the PE group (μPC = 57.74°, sPE = 10.70°).
Furthermore, we performed a two samples student t test
to inspect the existence of statistical significant differ-
ence among each connection between source electrode

and target electrode (index of electrode pair in Figure 3
(b) and 3(d)) across the pediatric control and pediatric
epilepsy group. Results are visualized in Figure 3(e).
Existence of statistically significant (p < 0.00001 Bonfer-
roni adjusted for multiple comparisons) difference in the
connection strength (degree) of a specific source-target
pair of electrodes is shown as a black box unit, insignifi-
cant difference in the connection strength is shown as a
white box unit. As the large number of black boxes in
Figure 3(e) states, the brain acts as a complex network
and epilepsy affects more than single connection. How-
ever this needs to be more investigated on a subject
basis as the type of epilepsy (focal or generalized) could
vary from subject to subject.
Adjacency matrices shown in Figure 3 are mapped into

the graph representations shown in Figure 4. Analysis of
the single connections of the graphs is beyond the scope
of this study; however the reduction in the pattern of
inter-connections among isolated brain regions is visually
observable by comparing the two graphs; Table 3 pro-
vides the statistics of the features extracted for both
graphs and tests for the differences among PC and PE
groups. We also performed a connection density assess-
ment on left and right hemispheres and the interconnec-
tion among the hemispheres across subjects. Density of
connections on each hemisphere were calculated by
counting the number of edges with the weight less than
or equal to 45° (mid-point in connectivity strength). The
results summarized in Table 4 show alterations in the
wiring pattern of the brain functional network caused by
epilepsy. This alteration is in the form of reduced density
of connectivity in both left and right hemisphere as well
as inter-hemispheric connectivity. Note also how the
connectivity maps for both the PE and PC groups as the
threshold of the connectivity strength is changed.
For the evaluation purposes, no information was pro-

vided for multichannel EEG segments in terms of diagno-
sis (epileptic vs. non-epileptic) of the subject to whom
the segments belong to. Results of labelling procedure
using Gaussian mixture model (GMM) and the probabil-
ity of the corresponding subject being epileptic are given
in Table 5. The suggested decision making system based
on GMM has shown the ability of detecting epileptic seg-
ments with an accuracy of 81.3% with 77.4% sensitivity
and 96.7% specificity solely based on discovery of the
hypothetical associations among cortical regions. The
probability approach shows the power of the proposed
algorithm in decision making based on the segment
labeling and time-varying FCNs as examplified in sub-
jects PE04 and PC04. Both subjects have segments
labeled as the contrary group which the subject indeed
belongs to; however the probability approach based
on the time-varying FCNs identifies them correctly when
the decision is made. The mis-identification of labels in

Sargolzaei et al. BMC Bioinformatics 2015, 16(Suppl 7):S9
http://www.biomedcentral.com/1471-2105/16/S7/S9

Page 6 of 11



Figure 3 Visualization of constructed functional connectivity networks. Visualization of constructed undirected functional connectivity
networks (FCNs) and the corresponding plot of the connectivity distances for the average map across (a), (b) pediatric control group (c), (d)
pediatric epilepsy. Index of electrodes pair represent the pair of electrodes, e.g. index 0 corresponds to the connectivity distance (angle) among
pair c3-c4 and the index 1 corresponds to the connectivity distance (angle) among pair c3-o1 and etc. (e) shows the results of student t test for
the null hypothesis that assumes no statistically significant differences for the index pair of electrodes across the pediatric epilepsy and pediatric
control groups. Rejection of the null hypothesis is highlighted with the black boxes when p < 0.00001, bonferroni adjusted for multiple
comparison.
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subjects PE03 and PE11 could not be corrected by the
suggested probability approach.
This mis-identification could be due to different fac-

tors such as the window size, number of segments

required to accurately diagnose or the type of epilepsy
which needs more investigation.
The assumption of the existence of no priori knowl-

edge on the diagnosis in the clinical environment could

Figure 4 Graph representations. Graph representations of average of constructed FCNs over the (a) pediatric control (PC) group and (b)
pediatric epilepsy (PE) group. Thickness of links (graph edges) shows the strength of connectivity among electrode pairs.

Sargolzaei et al. BMC Bioinformatics 2015, 16(Suppl 7):S9
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Table 3. Statistical analysis of features across PC and PE

Feature PC PE p

ldg 44.56 ± 7.77** 57.74 ± 8.44 < 0.000

acc 0.0014 ± 0.0003 0.0010 ± 0.0003 < 0.000

gcc 1.18 ± 0..006 1.18 ± 0.005 ns

rcc 44.56 ± 7.77 57.74 ± 8.44 < 0.000

0smg 2.38 ± 0.81 3.98 ± 1.04 < 0.000

acg 659.76 ± 135.45 913.24 ± 169.46 < 0.000

eng 1.68 ± 0.26 2.11 ± 0.28 < 0.000

*Two-way Student t test is used for test the difference between PC and PE groups. Statistical significant level of 0.01 is considered for p-value.

**mean ± standard deviation.

Table 4. Connectivity strength for left hemisphere, right hemisphere and inter-hemispheres

Hemisphere Connection Hemisphere Connection

Right Left Inter-hemisphere Right Left Inter-hemisphere

PC01 10.82 ± 2.6 9.09 ± 4.23 18 ± 11.4 PE01 10.64 ± 4.41 3.42 ± 2.79 10 ± 7.1

PC02 19.3 ± 4.12 19.55 ± 4.16 34.1 ± 12.45 PE02 9 ± 3.39 7.75 ± 2.3 9.75 ± 5.98

PC03 20 ± 1.62 15.71 ± 1.14 33.42 ± 5.62 PE03 11.87 ± 4.93 16.28 ± 6.1 26.13 ± 15.4

PC04 16 ± 5.72 15.5 ± 4.74 27 ± 18.82 PE04 15.28 ± 4.84 13.11 ± 7.5 22.16 ± 17.5

PC05 24.67 ± 1.5 15 ± 1.73 33.33 ± 16 PE05 9.6 ± 6.5 11.5 ± 5.3 14 ± 16.2

PC06 18.7 ± 2.56 15.2 ± 3.67 35.75 ± 7.57 PE06 9.7 ± 1.38 8.5 ± 1.7 19.25 ± 4.78

PC07 13.8 ± 3.96 12.8 ± 3.96 27 ± 11.62 PE07 9.85 ± 1.72 11.97 ± 4.4 17.15 ± 9.1

Pooled statistics 17.4 ± 3.45 15.42 ± 3.64 30.59 ± 11.5 PE08 6.28 ± 2.82 7.7 ± 5.73 9.16 ± 11.43

PE09 14.36 ± 3.36 5.1 ± 1.1 4.64 ± 1.87

PE10 5.6 ± 3 7 ± 4.7 11.17 ± 7.3

PE11 14.15 ± 1.72 15.38 ± 5 34 ± 7.85

Pooled statistics 10.32 ± 3.19 9.82 ± 3.64 15.97 ± 8.77

Table 5. Clustering results with no prior knowledge provided on diagnosis

Condition

Healthy Epileptic

Clustered as Epilepsy 0 9 Positive predictive value (%)
100

Clustered as Healthy 7 2 Negative predictive value (%)
77.8

Sensitivity (%)
81.8

Specificity (%)
100

Accuracy (%)
88.9

Subject ID Es Ds Probability (%)

PC01 0 11 0

PC02 0 20 0

PC03 0 14 0

PC04 2 18 11

PC05 0 3 0

PC06 0 20 0

PC07 1 5 20

PE01 12 14 86

PE02 67 67 100

PE03 10 39 25
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be relieved by assuming the existence of symptoms and
the minimal knowledge of a training set of multi-
channel EEG segments which could be considered as a
tuning approach in the decision making process. A
training set was composed including twenty randomly
chosen multi-channel EEG segments from the total set of
EEG segments and Support Vector Machine (SVM) with
a linear kernel were trained to classify the segments. The
testing set was then given to the system after self tuning
and the results showed 100% accuracy in classification
accuracy of the multi-channel EEG segments.

Conclusions
A novel decision support system for computer aided
diagnosis of pediatric epilepsy using machine learning
techniques was presented. The approach taken in the
system was based on constructing functional connectiv-
ity networks (FCNs) of the brain and analyzing graph
theoretical based features to identify the wiring pattern
differences among pediatric control (PC) and pediatric
epilepsy (PE) groups. The system is designed to provide
clinicians with initial screening results about the likeli-
hood of a given subject to be epileptic or not. The time-
varying FCNs implementation increases the resolution
by segmenting the multichannel EEG. This created the
potential of diagnosing epilepsy without need for long
EEG recording session and time-consuming visual
inspection as conventionally employed. The main contri-
bution of the study is the reliance of the algorithm on
machine learning techniques to facilitate the screening
process of potential epileptic patients without need of a
priori knowledge and without need for a training phase.
The suggested window length in constructing FCNs, the
number of principal components (dimension of GMM)
to be used, and the inspection of possible causal rela-
tionships among cortical brain regions are areas that
need further investigation on the basis of a larger
dataset.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Developed and implemented the study algorithm: SS, AS, MC, SN, AS, MA.
Performed the experiments and designed the study protocols: SS, AS, SN,
HR, AP, SM, PJ, MA. Processed the data, prepared the tests, analyzed and
interpreted the study results: SS, AS, SN, MA. Performed statistical analyses:
SS, AS, MC, HR, PJ, MA. Drafting of the manuscript: SS, AS, MC, MA. All
authors read and approved the final manuscript.

Acknowledgements
This work is supported by the National Science Foundation under grants
CNS-0959985, CNS-1042341, HRD-0833093, and IIP-1230661. The support of
the Ware Foundation is greatly appreciated.

Declarations
The publication costs for this article were partially funded by the FIU Open
Access Publishing Initiative.
This article has been published as part of BMC Bioinformatics Volume 16
Supplement 7, 2015: Selected articles from The 11th Annual Biotechnology
and Bioinformatics Symposium (BIOT-2014): Bioinformatics. The full contents
of the supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/16/S7.

Authors’ details
1Department of Electrical and Computer Engineering, Florida International
University, Miami, FL 33174, USA. 2Department of Civil and Environmental
Engineering, Florida International University, Miami, USA. 3College of
Innovation and Technology, Florida Polytechnic University, Lakeland, USA.
4Baptist Health Neuroscience Center, Baptist Hospital, Miami, USA. 5Brain
Institute, Miami Children’s Hospital, Miami, USA.

Published: 23 April 2015

References
1. Control CfD, Prevention: Epilepsy in adults and access to care–United

States, 2010. MMWR Morbidity and mortality weekly report 2012, 61(45):909.
2. England MJ, Liverman CT, Schultz AM, Strawbridge LM: Epilepsy across the

spectrum: Promoting health and understanding.: A summary of the
Institute of Medicine report. Epilepsy & Behavior 2012, 25(2):266-276.

3. Alonso JF, Mañanas MA, Romero S, Riba J, Barbanoj MJ, Hoyer D:
Connectivity analysis of EEG under drug therapy. Conference proceedings:
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society IEEE Engineering in Medicine and Biology Society Conference
2006, 6188-6191.

4. Adjouadi M, Sanchez D, Cabrerizo M, Ayala M, Jayakar P, Yaylali I, Barreto A:
Interictal spike detection using the Walsh transform. Biomedical
Engineering, IEEE Transactions on 2004, 51(5):868-872.

5. Adjouadi M, Cabrerizo M, Ayala M, Sanchez D, Yaylali I, Jayakar P, Barreto A:
Detection of interictal spikes and artifactual data through orthogonal
transformations. Journal of clinical neurophysiology 2005, 22(1):53-64.

6. Sargolzaei S, Eddin AS, Cabrerizo M, Adjouadi M: Resting state functional
connectivity based on principal component transformation of cortical
fMRI measurements. Neural Engineering (NER), 2013 6th International IEEE/
EMBS Conference on: 2013 IEEE 1501-1504.

7. Cabrerizo M, Ayala M, Goryawala M, Jayakar P, Adjouadi M: A new
parametric feature descriptor for the classification of epileptic and

Table 5. Clustering results with no prior knowledge provided on diagnosis (Continued)

PE04 12 18 66

PE05 21 30 70

PE06 66 77 86

PE07 30 40 75

PE08 23 25 92

PE09 25 25 100

PE10 5 6 83

PE11 3 13 23

Sargolzaei et al. BMC Bioinformatics 2015, 16(Suppl 7):S9
http://www.biomedcentral.com/1471-2105/16/S7/S9

Page 10 of 11

http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S7
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S7


control EEG records in pediatric population. International journal of neural
systems 2012, 22(02).

8. Ahammad N, Fathima T, Joseph P: Detection of Epileptic Seizure Event
and Onset Using EEG. BioMed research international 2014, 2014.

9. Xie S, Krishnan S: Dynamic Principal Component Analysis with
Nonoverlapping Moving Window and Its Applications to Epileptic EEG
Classification. The Scientific World Journal 2014, 2014.

10. Sargolzaei S, Cabrerizo M, Goryawala M, Eddin AS, Adjouadi M: Center for
Advanced Technology and Education (CATE), Department of Electrical
and Computer Engineering, Florida International University, Miami, USA.
Signal Processing in Medicine and Biology Symposium (SPMB), 2013 IEEE 2013,
1-4.

11. Lowe M, Mock B, Sorenson J: Functional connectivity in single and
multislice echoplanar imaging using resting-state fluctuations.
Neuroimage 1998, 7(2):119-132.

12. Sargolzaei S, Cabrerizo M, Goryawala M, Eddin AS, Adjouadi M: Scalp EEG
brain functional connectivity networks in pediatric epilepsy. Computers in
biology and medicine .

13. Sargolzaei S, Goryawala M, Cabrerizo M, Chen G, Jayakar P, Duara R,
Barker W, Adjouadi M: Comparative reliability analysis of publicly
available software packages for automatic intracranial volume
estimation. Engineering in Medicine and Biology Society (EMBC), 2014 36th
Annual International Conference of the IEEE: 2014 IEEE 2342-2345.

14. Eddin AS, Wang J, Sargolzaei S, Gaillard WD, Adjouadi M: ICA-based
connectivity on brain networks using fMRI. Neural Engineering (NER), 2013
6th International IEEE/EMBS Conference on: 2013 IEEE 391-394.

15. Kim S-H, Faloutsos C, Yang H-J: Coercively Adjusted Auto Regression
Model for Forecasting in Epilepsy EEG. Computational and mathematical
methods in medicine 2013, 2013.

16. Barkley GL, Baumgartner C: MEG and EEG in epilepsy. Journal of clinical
neurophysiology 2003, 20(3):163-178.

17. Kirmani BF: Importance of Video-EEG Monitoring in the Diagnosis of
Epilepsy in a Psychiatric Patient. Case reports in neurological medicine 2013,
2013.

18. Sargolzaei S, Faez K, Sargolzaei A: Signal processing based for fetal
electrocardiogram extraction. BioMedical Engineering and Informatics, 2008
BMEI 2008 International Conference on: 2008 IEEE 492-496.

19. Sargolzaei A, Faez K, Sargolzaei S: A new robust wavelet based algorithm
for baseline wandering cancellation in ECG signals. Signal and Image
Processing Applications (ICSIPA), 2009 IEEE International Conference on: 2009
IEEE 33-38.

20. Sargolzaei A, Faez K, Sargolzaei S: A new method for Foetal
Electrocardiogram extraction using Adaptive Nero-Fuzzy Interference
System trained with PSO algorithm. Electro/Information Technology (EIT),
2011 IEEE International Conference on: 2011 IEEE 1-5.

21. Cabrerizo M, Ayala M, Jayakar P, Adjouadi M: Classification and medical
diagnosis of scalp EEG using artificial neural networks. Int J Innovative
Computing Information Control 2011, 7:6905-6918.

22. Subasi A, Erçelebi E: Classification of EEG signals using neural network
and logistic regression. Computer Methods and Programs in Biomedicine
2005, 78(2):87-99.

23. Guo L, Rivero D, Pazos A: Epileptic seizure detection using multiwavelet
transform based approximate entropy and artificial neural networks.
Journal of neuroscience methods 2010, 193(1):156-163.

24. Subasi A, Alkan A, Koklukaya E, Kiymik MK: Wavelet neural network
classification of EEG signals by using AR model with MLE preprocessing.
Neural Networks 2005, 18(7):985-997.

25. Eddin AS, Wang J, Wu W, Sargolzaei S, Bjornson B, Jones RA, Gaillard WD,
Adjouadi M: The effects of pediatric epilepsy on a language
connectome. Human brain mapping 2014.

26. Lang EW, Tomé A, Keck IR, Górriz-Sáez J, Puntonet C: Brain connectivity
analysis: a short survey. Computational intelligence and neuroscience 2012,
2012:8.

27. Sargolzaei A, Yen KK, Zeng K, Motahari S, Noei S, Noei S, Ramezanpour H:
Time-Delay Switch Attack on Load Frequency Control in Smart Grid).
Advances in Communication Technology 2013, 5:55-64.

28. Jirsa VK: Connectivity and dynamics of neural information processing.
Neuroinformatics 2004, 2(2):183-204.

29. Ghosh A, Rho Y, McIntosh A, Kötter R, Jirsa V: Cortical network dynamics
with time delays reveals functional connectivity in the resting brain.
Cognitive neurodynamics 2008, 2(2):115-120.

30. Smit DJ, Stam CJ, Posthuma D, Boomsma DI, De Geus EJ: Heritability of
“small-world” networks in the brain: A graph theoretical analysis of
resting-state EEG functional connectivity. Human brain mapping 2008,
29(12):1368-1378.

31. Friston KJ: Functional and effective connectivity in neuroimaging: a
synthesis. Human brain mapping 1994, 2(1-2):56-78.

32. Adjouadi M, Cabrerizo M, Ayala M, Nunez K: An Approach to Functional
Brain Mapping using an Inverse Solution Based on the Principal
Component Transform. Inverse Problems, Design and Optimization-vol 2
2005, 2:124.

33. Cabrerizo M, Adjouadi M, Ayala M, Yaylali I, Jayakar P, Rey G: Integrated
study of topographical functional maps based on an auditory
comprehension paradigm using an eigensystem study and spectrum
analysis. Brain Topography 2005, 17(3):151-163.

34. Wu L, Gotman J: Segmentation and classification of EEG during epileptic
seizures. Electroencephalography and clinical neurophysiology 1998,
106(4):344-356.

35. Kaiser JF: On a simple algorithm to calculate theenergy’of a signal.
Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International
Conference 1990.

36. Wilke C, Worrell G, He B: Graph analysis of epileptogenic networks in
human partial epilepsy. Epilepsia 2011, 52(1):84-93.

37. Van Wijk BC, Stam CJ, Daffertshofer A: Comparing brain networks of
different size and connectivity density using graph theory. PloS one 2010,
5(10):e13701.

38. Ponten S, Bartolomei F, Stam C: Small-world networks and epilepsy:
graph theoretical analysis of intracerebrally recorded mesial temporal
lobe seizures. Clinical neurophysiology 2007, 118(4):918-927.

39. Ponten S, Douw L, Bartolomei F, Reijneveld J, Stam C: Indications for
network regularization during absence seizures: weighted and
unweighted graph theoretical analyses. Experimental neurology 2009,
217(1):197-204.

40. Bounova G, de Weck O: Overview of metrics and their correlation
patterns for multiple-metric topology analysis on heterogeneous graph
ensembles. Physical Review E 2012, 85(1):016117.

41. Lagerlund TD, Sharbrough FW, Busacker NE: Spatial filtering of
multichannel electroencephalographic recordings through principal
component analysis by singular value decomposition. Journal of clinical
neurophysiology 1997, 14(1):73-82.

42. Ziaei A, Sangwan A, Hansen JH: Prof-Life-Log: Audio Environment
Detection for Naturalistic Audio Streams. INTERSPEECH 2012.

43. Xia M, Wang J, He Y: BrainNet Viewer: a network visualization tool for
human brain connectomics. PloS one 2013, 8(7):e68910.

doi:10.1186/1471-2105-16-S7-S9
Cite this article as: Sargolzaei et al.: A probabilistic approach for
pediatric epilepsy diagnosis using brain functional connectivity
networks. BMC Bioinformatics 2015 16(Suppl 7):S9.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Sargolzaei et al. BMC Bioinformatics 2015, 16(Suppl 7):S9
http://www.biomedcentral.com/1471-2105/16/S7/S9

Page 11 of 11


	Florida International University
	FIU Digital Commons
	12-2014

	A probabilistic approach for pediatric epilepsy diagnosis using brain functional connectivity networks
	Saman Sargolzaei
	Mercedes Cabrerizo
	Arman Sargolzaei
	Shirin Noei
	Anas Salah Eddin
	See next page for additional authors
	Recommended Citation
	Authors


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Subjects and data
	Functional connectivity networks construction
	Graph mapping of brain networks and feature extraction
	Decision making process
	Gaussian Mixture Model (GMM) for EEG Segments Labeling
	Probabilistic approach in the decision making process


	Results and discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

