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Abstract

Purpose: To identify non-invasive clinical parameters to predict urodynamic bladder outlet obstruction (BOO) in patients
with benign prostatic hyperplasia (BPH) using causal Bayesian networks (CBN).

Subjects and Methods: From October 2004 to August 2013, 1,381 eligible BPH patients with complete data were selected
for analysis. The following clinical variables were considered: age, total prostate volume (TPV), transition zone volume (TZV),
prostate specific antigen (PSA), maximum flow rate (Qmax), and post-void residual volume (PVR) on uroflowmetry, and
International Prostate Symptom Score (IPSS). Among these variables, the independent predictors of BOO were selected
using the CBN model. The predictive performance of the CBN model using the selected variables was verified through a
logistic regression (LR) model with the same dataset.

Results: Mean age, TPV, and IPSS were 6.2 (67.3, SD) years, 48.5 (625.9) ml, and 17.9 (67.9), respectively. The mean BOO
index was 35.1 (625.2) and 477 patients (34.5%) had urodynamic BOO (BOO index $40). By using the CBN model, we
identified TPV, Qmax, and PVR as independent predictors of BOO. With these three variables, the BOO prediction accuracy
was 73.5%. The LR model showed a similar accuracy (77.0%). However, the area under the receiver operating characteristic
curve of the CBN model was statistically smaller than that of the LR model (0.772 vs. 0.798, p = 0.020).

Conclusions: Our study demonstrated that TPV, Qmax, and PVR are independent predictors of urodynamic BOO.
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Introduction

Urodynamic study (UDS) is considered the gold standard for

clinical assessment of bladder outlet obstruction (BOO) in patients

with benign prostatic hyperplasia (BPH) [1]. Patients with

urodynamic BOO show higher efficacy after transurethral surgery

[2]. In this respect, BOO is helpful in stratifying BPH patients

eligible for surgical treatment. However, UDS has significant

limitations in terms of invasiveness, cost, and morbidity [3].

Numerous attempts have been made to substitute non-invasive

clinical parameters for UDS to predict BOO; however, individual

variables, including symptom score [4], prostate specific antigen

(PSA) level [5], free uroflowmetry (UFM) [6], post-void residual

(PVR) urine volume [7], and prostate size [8], have shown a poor

to weak correlation with BOO.

To improve prediction ability, combinations of non-invasive

clinical parameters have been investigated to predict BOO [9–17].

The statistical methods used for combinations were diverse from

the cumulative scoring system [9], to the construction of a formula

by logistic regression analysis [10–13], to the artificial neural

network (ANN) models [14–17]. However, these attempts had

limited predictive performance. Moreover, the need to use

numerous clinical parameters makes clinical application difficult.

Furthermore, some predictive models [14–17] could not explain

which variables are comparatively important for BOO owing to

their ‘black box’ nature [18].

Causal Bayesian networks (CBN) have emerged as an advanced

alternative to conventional statistical models in the medical field

[19]. The benefit of this model is that it can visualize the

interaction of causes and rule out indirect causes of events [20].

Hence, we aimed to identify non-invasive clinical parameters to

predict BOO using a CBN model. To the best of our knowledge,

this study is the first to test CBN model for BOO prediction.
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Materials and Methods

I. Data collection
The Institutional Review Board of Seoul National University

Hospital (SNUH) approved the protocol of this study. A database

of 2,492 patients that were older than 45 and that had lower

urinary tract symptoms (LUTS) was created from records dated

between October 2004 and August 2013. The data were retrieved

from the urodynamic database registry and Electronic Medical

Records System of SNUH. All information was anonymised and

de-identified prior to analysis. Patients with a history of previous

genitourinary surgery, pelvic radiation therapy, urinary tract

infection, urethral stricture, interstitial cystitis, and neuropathy

suggesting neurogenic bladder or incomplete evaluations were

excluded. Thus, after excluding 1,111 such patients (44.6%), the

data from 1,381 patients were analyzed.

Clinical parameters of the subjects, including history, physical

examination, International Prostatic Symptom Score (IPSS) [21],

UFM, PVR, PSA, prostate volume (PV) measured by transrectal

ultrasonography, and UDS results were retrieved. UFM (Flow-

master, Medical Measurement System, Enschede, Netherlands)

results were obtained as free flow, whenever voided volume was

less than 120 ml, and fails were repeated. PVR was measured after

UFM using an ultrasound bladder scanner (BladderScan BVI

3000, Verathon Inc., WA, USA). All UDS were performed using a

multichannel video system (UD-2000, Medical Measurement

System) according to International Continence Society (ICS)

recommendations [22]. The BOO index, which is equal to

detrusor pressure at maximal flow rate (PdetQmax)226maximal

flow rate (Qmax), was used to determine BOO [23]. Patients with

BOO Index $40 were considered as obstructed.

II. Database characteristics
The patient demographics characteristics are shown in Table 1.

The mean age of patients was 66.2 (67.3, SD) years. The TPV

and PSA were 48.5 (625.9) ml and 2.71 (63.53) ng/ml,

respectively. The IPSS-total, IPSS-storage, IPSS-emptying, and

IPSS-QoL were 17.9 (67.9), 7.1 (63.5), 10.8 (65.5), and 3.9

(61.2), respectively. The Mean BOO index was 35.1 (625.2), and

477 patients (34.5%) were classified as having BOO.

III. Statistical methods for BOO prediction
To predict BOO, the following two statistical methods were

applied.

1) Logistic regression (LR) analysis. A backward stepwise

regression analysis [24] was utilized. Age, total prostate

volume (TPV), transition zone volume (TZV), PSA, Qmax,

PVR and IPSS were entered into LR model as variables for

BOO prediction. Relative risk (Exp(b)) of BOO was

calculated, with each non-invasive parameter increasing by

one unit.

2) Causal Bayesian networks (CBN). If event A causes

events B and C, and these events directly influence event D,

the probability of event D depends on each of the possible

values of events B and C. The probability of event D can be

expressed in the equation, P (event D| event B, event C). In

Table 1. Characteristics of 1,381 patients.

Total subjects (N = 1381)

Age (years) 66.267.3

Prostate volume (ml)

Total prostate volume 48.5625.9

Transitional zone volume 24.1622.4

Prostate specific antigen (ng/ml) 2.7163.53

International Prostatic Symptom Score (IPSS)

IPSS-total 17.967.9

IPSS-storage 7.163.5

IPSS-emptying 10.865.5

IPSS-quality of life 3.961.2

Uroflowmetry parameters

Maximum flow rate (ml/sec) 11.664.9

Post-void residual volume (ml) 58.1677.8

Urodynamic study parameters

Maximal urethral closure pressure (cmH2O) 74.3626.8

Functional urethral length (mm) 72.0620.6

First desire (ml) 203.0690.1

Normal desire (ml) 284.96108.2

Strong desire (ml) 371.76108.3

Compliance (ml/cmH2O) 67.3650.8

PdetQmax (cmH2O) 52.6621.7

Opening pressure (cmH2O) 54.3625.8

Bladder outlet obstruction index 35.1625.2

PdetQmax, detrusor pressure at maximum flow rate.
doi:10.1371/journal.pone.0113131.t001
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that case, events A and D are in the causal Markov condition

[25]. This means that event A is not a direct cause of event D.

If the probabilities of direct causes (events B and C) are

conditioned, event A does not influence the probability of

event D. The causal Markov condition can be visually

identified in a CBN, which has a relationship of two or more

degrees between nodes. Considering that events A and D have

a two degree relationship, we can easily infer that these two

events are conditionally independent.

The causal Markov condition permits the joint distribution of

the n variables in a CBN to be factored as in the following

equation:

P(x1,x2,:::,xnDK)~P
n

i~1
P(xi Dpi,K)

where xi denotes a state of variable Xi, pi denotes a joint state of

the parents of Xi, and K denotes background knowledge [20].

IV. Identification and verification of the independent
parameters

CBN was applied to identify the independent predictors of

BOO. The causal relationships and their interactions were

visualized by established CBN. The variables only directly linked

to BOO were selected as the independent predictors. The weights

of each selected variable were estimated using the Spearman’s

correlation test. The accuracy of BOO prediction model using the

selected variables was compared with that of the LR model. To

compare the predictive performance, the comparison of receiver

operating characteristic (ROC) curves by DeLong et al. [26] was

applied.

A p-value ,0.05 was considered significant. A CBN model to

predict BOO was established using the Banjo version 2.2.0

software (Duke University, Durham, NC, USA; non-commercially

available at: http://www.cs.duke.edu/,amink/software/banjo/).

Highlights of the settings are limiting the number of parents to five

and running the analysis for up to 6 hours (the Banjo setup file is

presented in Appendix S1). The commercial statistical program

package SPSS version 18.0 (Chicago, IL, USA) was used for LR,

Spearman correlation, and other descriptive statistical analyses.

MedCalc version 12.4.0 (Ostend, Belgium) was applied for the

comparison of ROC curves.

Results

Identification of non-invasive BOO predictors using CBN
Based on the BPH patient data, the best network structure was

selected/learned using the CBN model (Fig. 1). TPV, Qmax, and

PVR exhibited direct relationships with BOO. Therefore, those

three variables were selected as non-invasive independent predic-

Figure 1. Causal Bayesian network model for bladder outlet obstruction. TPV, total prostate volume; TZV, transitional zone volume; PSA,
prostatic specific antigen; BOO, bladder outlet obstruction; Qmax, maximum flow rate; PVR, post-void residual volume; IPSS, International Prostate
Symptom Score.
doi:10.1371/journal.pone.0113131.g001
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tors of BOO. The correlation coefficient was the highest for TPV

(R = 0.391 p,0.001), followed by Qmax (R = 20.253, p,0.001)

and PVR (R = 0.214, p,0.001).

Verification of BOO prediction
Sensitivity, specificity, and accuracy of BOO predictions with

the aforementioned three variables by CBN were 51.4%, 85.2%,

and 73.5%, respectively (Table 2). In the LR model, age

(Exp(b) = 0.981, p = 0.046), Qmax (Exp(b) = 0.890, p,0.001),

PVR (Exp(b) = 1.003, p,0.001), TPV (Exp(b) = 1.014, p =

0.049), TZV (Exp(b) = 1.039, p,0.001), PSA (Exp(b) = 1.051,

p = 0.039) IPSS item 2 (frequency) (Exp(b) = 0.866, p = 0.007), and

IPSS item 4 (Urgency) (Exp(b) = 1.227, p,0.001) were selected as

significant predictive variables. In the LR model, the sensitivity,

specificity, and accuracy were 51.6%, 90.4%, and 77.0%,

respectively.

To compare the predictive power of the three selected non-

invasive clinical parameters, a comparison of ROC curves was

performed. The area under ROC curve (AUROC) of CBN and

the LR models were 0.772 and 0.798, respectively (p = 0.020;

figures not presented).

Discussion

Because individual variables have a very low correlation with

BOO, many researchers have built statistical prediction methods

that combine multiple variables [9–13]. For this purpose, they

have used diverse variables, including Qmax, PVR, IPSS, PSA,

and PV. However, no one has established a specific independent

predictor of BOO [9–13]. Some differences in detailed variables

have been suggested for prediction models. Moreover, the number

of variables used in these predictions is too many to be feasible for

real-life practice with BPH patients.

Previous studies seeking to identify non-invasive predictors of

BOO have encountered two major difficulties. The first is the non-

linear relationship between the variables. Among the single non-

processed variables, prostate size seems to be one of the most

highly correlating variables with BOO (R range: 0.28–0.32, p,

0.001) [8,27]. However, Eckhardt et al. [27] have found that mean

TPV decreased at the Schäfer grade of 5 and 6, contrary to

general expectations. These non-linear conditions occur common-

ly in clinical medicine. The second difficulty stems from the fact

that some clinical parameters have a co-variability, fiu., some

clinical parameters interact with each other [19], so that the

established model is capable of overestimating or underestimating

the predictive power. Bell et al. [28] reported that increased PVR

occurs in BOO patients. However, Eckhard et al. [27] pointed out

that larger PVR may reflect detrusor underactivity rather than

BOO. Yet, Kranse et al. [7] supported the findings that BOO and

detrusor underactivity commonly cause a higher PVR.

ANN models are expected to be able to detect non-linear

relationships and interactions between predictor variables. Sonke

et al. [14] proposed the first ANN model for BOO prediction

using 1903 patients. IPSS, Qmax, PVR, TPV, and PSA were used

as the input variables. They reported that overall sensitivity and

specificity were 71% and 69%. Wadie et al. [15] reported the

higher predictive power of ANN compared to conventional

statistical models among 460 subjects using only IPSS. However,

the same group presented another ANN model considering

average flow rate and Qmax on UFM, PVR, and TPV in variable

conditions and showing only moderate performance with 76%

accuracy [17]. Another study reported 82% and 77% sensitivity

and specificity, respectively, using IPSS, TPV, PSA, and UFM

results [16]. Comprehensive results show, however, that the
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predictive performance of ANN is not superior to that of the

conventional linear models. Moreover, due to the ‘black box’

nature of ANN, the model cannot be easily interpreted [18].

Therefore, these models do not explain the relative contribution of

non-invasive clinical parameters to urodynamic BOO.

In general, the advantage of CBNs is that they can identify

conditional independence relationships and thus make it possible

to confirm the only direct independent causes of the events. We

expected that this advantage of the CBN model could confirm

independent variables for the prediction of BOO. In this study,

through the established CBN model, we found that TPV, Qmax,

and PVR were important predictors of BOO (Fig. 1). Our BOO

prediction model with only three independent variables (TPV,

Qmax, and PVR) showed moderate predictive value (Table 2)

To compare the performance of the BOO prediction model

using the three selected independent predictors, the LR model was

established from the same dataset and the predictive powers of the

two models were compared (Table 2). The LR model showed a

predictive performance comparable with that reported in previous

studies [10–13]. The predictive performance of the CBN model

was statistically inferior to that of the LR model (AUROC: 0.772

vs. 0.798; p = 0.020). However, when only the three variables

(TPV, Qmax, and PVR) were taken into account to predict BOO,

the accuracy was not overly compromised compared with when

using the complex equations (considering age, Qmax, PVR, TPV,

TZV, PSA, IPSS item 2, and item 4 as predictive variables), which

were derived from the LR model. These three non-invasive

clinical parameters are also routinely evaluated in actual clinical

practice for BPH patients.

Indeed, our CBN model comprised categorized values of

clinical parameters due to in nature characteristics of CBN model

for clarifying interactions between the variables. It is not clear

whether the lower performance of CBN originates from the

elliptical non-invasive clinical parameters or from transforming the

clinical parameters into categorical variables to estimate the CBN

models. However, it is interesting that the BOO can be predicted

moderately with only three non-invasive clinical parameters. This

study was unable to conclude whether the other variables that

show conditional independence can be excluded for BOO

prediction.

Our data showed that TPV was the most important predictive

factor for BOO (R = 0.391), followed by, Qmax (R = 20.253), and

PVR (0.214) in that order. Our results are consistent with those of

previous studies which reported that TPV had a higher correlation

with BOO compared to the other non-invasive clinical parameters

[10–13]. These results suggest that TPV is the most important

clinical parameter for BOO prediction in real clinical practice and

that TZV and PSA do not need to be considered as predictors.

Qmax and PVR also had a moderate correlation with

BOO(|R| range: 0.214–0.253). CBN showed that these variables

are independent predictors of BOO. Therefore, these clinical

parameters should be considered in BOO prediction. Previous

studies considered various combinations of UFM results, such as

Qmax, average flow rate (Qavg), and PVR in prediction models

[9–13], but it has not yet been concluded which variables are the

more important predictors of BOO. Our CBN model showed that

Qmax and PVR are important for BOO prediction.

It is interesting that all IPSS items showed conditional

independence (not independent predictors) for BOO prediction

(Fig. 1). Previous studies excluded the IPSS from the BOO

prediction model [10–13], and van Venrooij et al. [4] reported

that IPSS has no statistical correlation with urodynamic obstruc-

tion grade; these are in agreement with our CBN results. However,

in our LR model IPSS item 2 (frequency) and IPSS item 4

(urgency) were predictors of BOO (p range: ,0.001 to 0.007).

The strength of this study is that we made our non-missing

dataset of 1,381 patients large enough to support the construction

of the CBN model. Moreover, in our study, all of the UDS were

performed uniformly using the same protocol following ICS

recommendations [22]. However, our current study has some

limitations. Our model was unable to account for the weight of

each independent predictor. Therefore, the relative importance of

predictors should be identified by means of indirect correlation

analysis. Second, our CBN model is built from a cross-sectional

database; hence, in a strict sense, our model did not show cause-

effect relationships between parameters, but showed simple

correlations or interactions. It is thus impossible to confirm

variables that precede the cause. Finally, the predictive power of

CBN model was too low for the model to be considered to be

useful in clinical practice. We believe that additional well-designed

and in-depth researches into the CBN model are needed.

Conclusions

Our results show that TPV, Qmax, and PVR are independent

non-invasive predictors of BOO. Among them, TPV is the most

important clinical parameter for predict of BOO.

Supporting Information

Appendix S1 Banjo setting file used for causal Bayesian
network model of this study.
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