
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-20-2016

Optimizing Main Memory Usage in Modern
Computing Systems to Improve Overall System
Performance
Daniel Jose Campello
Florida International University, dcamp020@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Data Storage Systems Commons, OS and Networks Commons, Systems Architecture
Commons, and the Theory and Algorithms Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Campello, Daniel Jose, "Optimizing Main Memory Usage in Modern Computing Systems to Improve Overall System Performance"
(2016). FIU Electronic Theses and Dissertations. Paper 2568.
http://digitalcommons.fiu.edu/etd/2568

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/2568?utm_source=digitalcommons.fiu.edu%2Fetd%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

OPTIMIZING MAIN MEMORY USAGE IN MODERN COMPUTING SYSTEMS TO

IMPROVE OVERALL SYSTEM PERFORMANCE

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Daniel Campello

2016

To: Interim Dean Ranu Jung

College of Engineering and Computing

This dissertation, written by Daniel Campello, and entitled Optimizing Main Memory Us-

age in Modern Computing Systems to Improve Overall System Performance, having been

approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Giri Narasimhan

Jason Liu

Gang Quan

Ming Zhao

Raju Rangaswami, Major Professor

Date of Defense: June 20, 2016

The dissertation of Daniel Campello is approved.

Interim Dean Ranu Jung

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2016

ii

DEDICATION

To Isaac, Tabata, Marina and Juan José.

iii

ACKNOWLEDGMENTS

I wish to acknowledge my research sponsors including NSF via CNS-1320426,

CNS-1018262, CNS-0747038, gifts from Intel and NetApp, and USENIX’s travel

scholarships.

iv

ABSTRACT OF THE DISSERTATION

OPTIMIZING MAIN MEMORY USAGE IN MODERN COMPUTING SYSTEMS TO

IMPROVE OVERALL SYSTEM PERFORMANCE

by

Daniel Campello

Florida International University, 2016

Miami, Florida

Professor Raju Rangaswami, Major Professor

Operating Systems use fast, CPU-addressable main memory to maintain an applica-

tion’s temporary data as anonymous data and to cache copies of persistent data stored in

slower block-based storage devices. However, the use of this faster memory comes at a

high cost. Therefore, several techniques have been implemented to use main memory more

efficiently in the literature. In this thesis we introduce three distinct approaches to improve

overall system performance by optimizing main memory usage.

First, DRAM and host-side caching of file system data are used for speeding up virtual

machine performance in today’s virtualized data centers. The clustering of VM images that

share identical pages, coupled with data deduplication, has the potential to optimize main

memory usage, since it provides more opportunity for sharing resources across processes

and across different VMs. In our first approach, we study the use of content and semantic

similarity metrics and a new algorithm to cluster VM images and place them in hosts where

through deduplication we improve main memory usage.

Second, while careful VM placement can improve memory usage by eliminating du-

plicate data, caches in current systems employ complex machinery to manage the cached

data. Writing data to a page not present in the file system page cache causes the operating

system to synchronously fetch the page into memory, blocking the writing process. In this

thesis, we address this limitation with a new approach to managing page writes involving

v

buffering the written data elsewhere in memory and unblocking the writing process imme-

diately. This buffering allows the system to service file writes faster and with less memory

resources.

In our last approach, we investigate the use of emerging byte-addressable persistent

memory technology to extend main memory as a less costly alternative to exclusively us-

ing expensive DRAM. We motivate and build a tiered memory system wherein persistent

memory and DRAM co-exist and provide improved application performance at lower cost

and power consumption with the goal of placing the right data in the right memory tier at

the right time. The proposed approach seamlessly performs page migration across memory

tiers as access patterns change and/or to handle tier memory pressure.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1

2. PROBLEM STATEMENT . 6

2.1 Thesis Statement . 6

2.2 Thesis Statement Description . 6

2.3 Thesis Impact . 7

3. BACKGROUND . 9

3.1 Cache Deduplication . 9

3.2 Operating System Caching . 10

3.3 Emerging Memory Technologies . 11

4. CORIOLIS: SCALABLE VM CLUSTERING FOR CACHE DEDUPLICATION 13

4.1 VM Clustering: An Overview . 13

4.2 VM Similarity: Types and Applications . 14

4.2.1 Content Similarity . 14

4.2.2 Semantic Similarity . 16

4.2.3 Harnessing Image Similarity . 17

4.3 Similarity-based VM Clustering . 18

4.3.1 A Representative Clustering Algorithm . 18

4.3.2 A Similarity Function for Images . 19

4.3.3 Scaling Challenge . 20

4.4 CORIOLIS . 22

4.4.1 Solution Idea: Asymmetric Clustering . 22

4.4.2 CORIOLIS Architecture . 23

4.4.3 CORIOLIS’ Tree-based Clustering . 24

4.4.4 Scalability Evaluation . 26

4.5 Summary . 27

4.6 Credits . 28

5. NON-BLOCKING WRITES TO FILES . 29

5.1 Motivating Non-blocking Writes to Files . 30

5.1.1 Addressing the fetch-before-write problem 30

5.1.2 Addressing Correctness . 34

5.2 Approach Overview . 34

5.2.1 Write Handling . 35

5.2.2 Patch Management . 35

5.2.3 Non-blocking Reads . 36

5.3 Alternative Page Fetch Modes . 36

5.3.1 Asynchronous Page Fetch (NBW-Async) 37

5.3.2 Lazy Page Fetch (NBW-Lazy) . 38

vii

5.4 Implementation . 39

5.4.1 Overview . 39

5.4.2 Implementation Insights . 39

5.5 Evaluation . 41

5.5.1 Filebench Micro-benchmark . 42

5.5.2 SPECsfs2008 Macro-benchmark . 48

5.5.3 MobiBench Trace Replay . 51

5.6 Summary . 52

5.7 Credits . 53

6. MANAGING TIERED MEMORY SYSTEMS WITH MULTI-CLOCK 54

6.1 Motivation . 56

6.1.1 Swapping vs. Tiering . 57

6.1.2 Static Tiering . 59

6.1.3 Dynamic Tiering . 59

6.2 MULTI-CLOCK . 60

6.2.1 Life Cycle of a Page . 61

6.2.2 Promotion Mechanism . 64

6.2.3 Demotion Mechanism . 64

6.3 Implementation . 65

6.4 Evaluation . 68

6.4.1 Emulation Platform . 69

6.4.2 Micro-benchmark . 69

6.4.3 GraphLab . 71

6.4.4 Memcached YCSB benchmark . 74

6.4.5 VoltDB TPC-C benchmark . 78

6.5 Discussion . 79

6.6 Summary . 81

6.7 Credits . 82

7. RELATED WORK . 83

7.1 CORIOLIS: Scalable VM Clustering in Clouds 83

7.2 Non-blocking Writes to Files . 84

7.3 Managing Tiered Memory Systems with MULTI-CLOCK 86

8. CONCLUSIONS . 89

BIBLIOGRAPHY . 91

VITA . 102

viii

LIST OF TABLES

TABLE PAGE

3.1 Comparison of Memory Technologies [DRZ+16]. 11

4.1 Similarity types relevant for each use case. 18

4.2 Time for Similarity and Merge operations. 20

5.1 Workloads traced and their descriptions. 32

5.2 SPECsfs2008 write sizes. 49

6.1 Comparison of Memory Technologies [DRZ+16]. 55

6.2 Linux source code modifications in number of lines. 68

ix

LIST OF FIGURES

FIGURE PAGE

3.1 Anatomy of a write. 10

4.1 Distribution of content and semantic similarity for 25 VM image pairs. 15

4.2 CORIOLIS System Context. 17

4.3 CORIOLIS architecture. 23

4.4 Tree-based clustering. 24

4.5 Clustering a new image F. 26

4.6 Scalability of k-medoids and CORIOLIS’ tree-based clustering algorithms. . . 27

5.1 A non-blocking write employing asynchronous fetch. 31

5.2 Breakdown of write operations by amount of page data overwritten. 32

5.3 Non-blocking writes as a percentage of total write operations. 33

5.4 A non-blocking write employing lazy fetch. 38

5.5 Performance for Filebench personalities when using hard disk-drive. 43

5.6 Performance for Filebench personalities when using solid-state drive. 45

5.7 Memory sensitivity of Filebench. 47

5.8 Page fetches issued for the Filebench sequential-write workload. 48

5.9 Normalized average operation latencies for SPECsfs2008. 50

5.10 Normalized average latencies when replaying MobiBench traces [ESO13]. . . 51

6.1 TPC-C performance using persistent memory as swap vs as a new tier. 58

6.2 Relative TPC-C performance of two instances executed in succession. 60

6.3 MULTI-CLOCK design. 62

6.4 Page state diagram depicting the Linux implementation of MULTI-CLOCK . . . 65

6.5 Micro-benchmark performance with and without continuous migrations. . . . 71

6.6 GraphLab’s execution time of PageRank on the Twitter dataset. 72

6.7 Time*Cost comparison for GraphLab’s PageRank on the Twitter dataset. . . . 74

6.8 YCSB throughput of different workloads running against Memcached. 76

x

6.9 MULTI-CLOCK statistics during YCSB benchmark execution. 77

6.10 TPC-C benchmark performance of two instances executed in succession. . . . 79

xi

CHAPTER 1

INTRODUCTION

Computer systems use memory to store both instructions and data required by applica-

tions and the operating system (OS). There are several types of memory (registers, SRAM,

DRAM, Disks, Flash, etc.) that service operations at different speeds; the faster a mem-

ory is, the more expensive it is. To make better use of the capabilities of faster memory

but incur the cost of the slower memory, systems employ different techniques to mix the

different types of memory. One of such technique is caching. A cache is a smaller, faster

memory which stores copies of the data from recently (or frequently) used slower memory

locations. Another technique is tiering, whereas the different types of memory with similar

capabilities (i.e., byte-addressability) are organized as different tiers in a multi-tier mem-

ory system. For all of these techniques one of the most important metrics to evaluate the

performance of a system is how many accesses are serviced from the faster memory. A

higher access rate to faster memory leads to lower latency for a greater percentage of all

data accesses, and as a consequence, better application performance.

In today’s virtualized data centers, DRAM and host-side caching of file system data

are used for speeding up VM performance [BLM+12, KMR+13, KMR15]. Big cloud data

centers make use of virtualization techniques to deploy thousands of virtual machines in

hundreds of hosts. However, their growing popularity has led to the problem of virtual ma-

chine sprawl, which translates into extremely large working set sizes for the host machines.

When trying to optimize main memory usage, one of the biggest problems to deal

with is the workload’s working set size. The bigger the working set, the harder it is to

fit the required data into main memory and the more likely it is for cache misses (the re-

quested data is not present in the cache, requiring to access slower memory) to happen.

Thus, the use of deduplication has become popular nowadays. This technique removes

duplicates of pages across guests virtual machines from the host machine main mem-

1

ory [AEW09, MFG+12, SK12]. The elimination of duplicates effectively increases the

amount of available space in main memory to be used by VMs to service application allo-

cations or to cache even more file system data. Additionally, all duplicates are transformed

into a single version of the data that becomes then shared across different VMs improving

the actual usage of that portion of main memory.

The clustering of VM images that share identical pages, coupled with data deduplica-

tion, has the potential to optimize memory usage even more, given the increased opportu-

nity for removal of duplicate pages. In this thesis, we study the use of content and semantic

similarity metrics and a new clustering algorithm to cluster virtual machines images and

place them in hosts so as to improve data deduplication and overall memory usage:

We develop CORIOLIS, a scalable system that analyzes virtual machine images and

automatically clusters them based on content and/or semantic similarity. We show

that similarity analysis can help with virtual machine placement in hosts to improve

memory deduplication ratio and, as a consequence, cache efficiency. Images with high

semantic similarity are likely to exhibit higher number of duplicate pages in main mem-

ory and/or host-side caches, given that they are likely to execute same software (i.e.,

load same libraries and executables). Similarly, images with higher content similarity

can benefit more from deduplication performed at a shared management server (e.g.,

vSphere). Additionally, we show that similarity analysis can also help in the planning

of many management activities (e.g., migration, system administration). However, clus-

tering images based on their similarity – content or semantic – requires large scale data

processing and does not scale well. CORIOLIS uses (i) asymmetric similarity semantics

and (ii) a hierarchical clustering approach with a data access requirement that is linear

in the number of images.

While careful VM placement can help optimize main memory usage by eliminating

duplicate data, caches in current systems employ complex machinery to manage the cached

2

data. Significantly, the type of accesses issued by a workload and how each access type is

handled within the caching layer influences the memory usage and performance achieved

by systems.

File systems are used to store and retrieve data in the form of files, typically from

slow, block-based, persistent storage (i.e., hard disk drives, solid-state drives). Caching

and buffering file data within the operating system main memory is a key performance

optimization that has been prevalent for over four decades [DN65, RT74]. For real-world

workloads, most file reads can be made to exhibit main memory accesses latency by pre-

fetching (i.e., pre-populating the file system cache). File writes, however, must be written

to persistent storage at some point in time for durability, which incurs into block-based

storage high latency.

The OS caches file data in units of pages, seamlessly fetching pages into main memory

from the backing store, when necessary, as they are read or written to by a process. For file

writes, the OS allows two different mechanisms that take advantage of caching: (i) asyn-

chronous, wherein the OS uses write-back caching of the written data, or (ii) synchronous,

wherein the OS uses write-through caching. Asynchronous file writes exhibit main mem-

ory’s low latency if the access involves a hit in the OS’ page cache. However, synchronous

writes always exhibit high latency to write to slow persistent storage; they are useful for

applications that need to ensure the durability of their data.

In this thesis, we improve system performance with the next approach which make a

more efficient use of memory to make asynchronous file writes fast, regardless of whether

their accesses incur in a cache hit or cache miss:

Writing data to a page not present in the file-system page cache causes the operat-

ing system to synchronously fetch the page into memory, always blocking the writing

process. Non-blocking writes eliminate such blocking by buffering the written data

elsewhere in memory and unblocking the writing process immediately. Subsequent

3

reads to the updated page locations are also made non-blocking. This new handling of

writes to non-cached pages allow processes to overlap more computation with I/O and

improves page fetch I/O throughput by increasing fetch parallelism.

Main memory is not exclusively used to cache file system data residing in slow block-

based storage but it is also used to maintain anonymous memory page containing applica-

tions temporary data. While improving caching effectiveness can improve overall system

performance for a limited amount of main memory it cannot help to host applications with

greater requirements for anonymous memory than the available system DRAM. Paging is

a technique that has been used to extend the amount of fast main memory with the use

of slow block-based storage for cold data. While paging can help augment the amount of

available memory for applications to use, in many cases, the performance hit involved with

paging is limiting in its adoption by certain memory intensive workloads. Emerging byte-

addressable persistent memory opens up a new design alternative where slower memory

can be used as an additional tier of main memory and in this way augment the total amount

of memory available for applications to store their temporary data. While using different

types of byte-addressable memory as separate tiers in a multi-tier system is a compelling

solution to host increasingly big data sets, it presents its own challenges. In this thesis,

we present solutions that improve an application’s capabilities of allocating big data sets

in main memory by using persistent memory as a new tier in a multi-tier memory system.

Our solutions implement dynamic migration mechanisms to place the data in the right tier

according to the frequency of accesses.

Applications rely on main memory to store their data while it is being processed by the

CPU. Today, DRAM is used as main memory due to its access latency, bandwidth, and

cost relative to other CPU-addressable memory technologies. However, systems today

are limited in their use of DRAM due to limitations posed by capacity, cost, and power

consumption. Byte-addressable persistent memory devices offer a unique set of prop-

4

erties that make them well-suited as main memory extension devices to address these

limitations. We propose MULTI-CLOCK, a tiered memory system wherein persistent

memory and DRAM co-exist and provide improved application performance at lower

cost and power consumption with the goal of placing the right data in the right mem-

ory tier and at the right time. MULTI-CLOCK builds upon the well-understood CLOCK

page replacement algorithm to seamlessly handle migration across memory tiers as ac-

cess patterns change and/or to handle tier memory pressure. It is entirely transparent

to, and backward compatible with, existing applications. We discuss the motivation

for MULTI-CLOCK, outline a system design, and implement and evaluate a MULTI-

CLOCK prototype in Linux. Our micro-benchmark based evaluation demonstrates that

our implementation of MULTI-CLOCK exhibits fairly low migration overhead. Also,

while static tiering is unable to do so, MULTI-CLOCK implements dynamic fairness of

resource allocation between processes.

We have organized the rest of this thesis in the following way. In chapter 2, we present

our problem statement and we elaborate in its description and significance. In chapter 3, we

discuss some of the background knowledge related to the different areas in which this thesis

is focused. In chapters 4, 5 and 6, we present our design, implementation and evaluation

of CORIOLIS, Non-blocking Writes, and MULTI-CLOCK, respectively. We conclude by

discussing the body of related work in chapter 7.

5

CHAPTER 2

PROBLEM STATEMENT

This chapter introduces the core research problem addressed in this proposal. First,

we present a statement of the thesis, and then we elaborate on its significance, introduce

specific challenges that we address, and our contributions.

2.1 Thesis Statement

In this thesis, we improve overall system performance by:

(i) creating new clustering algorithms that aid in virtual machine placement to take ad-

vantage of deduplication mechanisms at the hypervisor level and, as a consequence,

optimize memory usage in virtualized environments,

(ii) eliminating process blocking and reducing memory resources required to service file

writes to pages that are not present in the OS cache in a way that is transparent to

applications, and

(iii) designing and implementing new memory tiering solutions that integrate emerging

byte-addressable persistent memory into main-memory and dynamically migrate pages

into appropriate tiers depending on page importance.

2.2 Thesis Statement Description

The first contribution of this thesis is creating new clustering algorithms to aid in virtual

machine placement to take advantage of deduplication mechanisms at the hypervisor level

and, as a consequence, optimize memory usage in virtualized environments. By carefully

collocating similar virtual machines in hosts of a data center, hypervisor cache efficiency

and memory usage can be improved. Higher cache efficiency, involves handling less misses

6

(and as a consequence, less evictions) and higher hit rates which in turn lead to reduced

latency experienced by VM-hosted applications. Higher memory usage, on the other hand,

involves higher degree on memory pages sharing between processes across different VMs,

reducing the total memory footprint of workloads.

The second contribution of this thesis is the elimination of process blocking and re-

duction of memory resource required to service file writes to pages that are not present in

the cache in a transparent way to applications. General purpose operating systems today

implement blocking asynchronous writes on page cache misses. This thesis proposes new

solutions that eliminate blocking on asynchronous writes within file systems. Certain con-

figurations of these solutions are able to process writes requiring less memory resources

by avoiding complete-page allocations for sub-page size writes, and in this way to use the

cache more efficiently. The impact of these solutions spawns a vast number of existing

computer systems, ranging from mobile computing to the big data centers.

The final contribution of this thesis is designing and implementing new memory tiering

solutions that integrate emerging byte-addressable persistent memory into main-memory

and dynamically migrate pages into appropriate tiers depending on page access frequency.

This thesis proposes the use of persistent memory as an additional tier of main memory

augmenting the total amount of memory available for applications without incurring the

high cost of DRAM. We solve the challenges related to a multi-tier memory system by

enabling the operating system to dynamically and transparently migrate pages between

tiers according to their use by applications.

2.3 Thesis Impact

Our first contribution of this thesis has the impact of improve main memory usage in virtu-

alized data centers. This, leads to reduced latency experienced by VM-hosted applications

7

which ultimately means an increase in the quality of service experienced by virtualization

clients.

Our second and third contribution of this thesis, aim to reduce the latency experienced

by accessing slow memory or secondary storage. Mobile systems are one area of big in-

terest. Given the interactive nature of these systems, any increased responsiveness from

applications due to reduced blocking on file operations is well noticed by users. Our sec-

ond contribution has the potential of increasing the parallelism of I/O operations. This, in

turn, improves throughput since storage devices offer greater performance at higher levels

of I/O parallelism, making the whole system better performing.

Our third contribution addresses the issue of the existing demand for high capacity,

low cost, and low power consumption memory while retaining the existing performance

levels. New generation of big data analytics applications in the enterprise and cloud, be-

ing inherently memory intensive workloads, are example applications with these demands.

Our contribution on mobile systems, solves the problem with the existing cost and power

constraints that limit DRAM size and, in consequence, performance in today’s system.

Finally, all of our contributions have the benefit of reducing network traffic when cen-

tralized storage is used as secondary storage. This characteristic becomes very relevant for

big data centers where the network bandwidth can become a scarce and costly resource.

Any additionally network bandwidth that becomes available can, in turn, allow for higher

degrees of virtual machine consolidation in virtualized environments.

8

CHAPTER 3

BACKGROUND

This chapter introduces concepts and background knowledge used in the remaining

chapters of this proposal. We start by introducing how deduplication techniques are used

in current system to eliminate duplicated data and how this can improve cache hit rates and

memory usage. We then continue by introducing how applications use existing operating

system mechanisms to take advantage of the in-memory cache of file system data. We con-

clude by presenting an overview of the characteristics of emerging memory technologies

and motivate their use as main memory extension.

3.1 Cache Deduplication

Deduplication is a compression technique used to reduce the size of the input data by

eliminating duplicate copies of the same contents. Data is processed in chunks of fixed or

variable size and all unique chunks are identified and stored, while chunks with repeated

data are discarded and a reference to the existing chunk with the same data is stored in

place.

Deduplication techniques differ from other compression techniques such as dictionary

based compression algorithms (i.e., LZ algorithms). Whereas these algorithms aim to com-

press a limited amount of data, typically within a single file, deduplication is applied to big

sources of data such as block devices containing a file system instances or a set of partitions.

Deduplication has been previously used to remove duplicates of pages across guests vir-

tual machines from the host machine main memory [AEW09, MFG+12, SK12]. The elim-

ination of duplicates effectively increases the amount of cache space available for caching

additional important data.

9

Process OS

Backing Store

110

101

001

110

101

001

110

101

001

110

101

001

Page Cache

1. Write(✗)

2. Miss

3. Issue

page fetch

5. Return

4. Complete

Figure 3.1: Anatomy of a write. The first step, a write reference, fails because the page

is not in memory. The process resumes execution (Step 5) only after the blocking I/O

operation is completed (Step 4). The dash-dotted arrow represents a slow transition.

3.2 Operating System Caching

Applications can access file data in two ways: unsupervised, by memory mapping a portion

of the file to the address-space, and supervised, using the operating system (OS) file system

call interface. For file writes, the OS allows three different mechanisms for supervised

accesses: (i) asynchronous, wherein the OS uses write-back caching of the written data

within its page cache, (ii) synchronous, wherein the OS uses write-through caching, or

(iii) O DIRECT, wherein the write is not cached in the page cache at all. The former two

are dominant write modes for file system oriented accesses today. Asynchronous file writes

exhibit memory’s low latencies if the access involves a hit in the OS’ page cache. However,

synchronous writes always exhibit high latencies to write to slow, block-based, persistent

storage. Applications rely on synchronous writes to ensure the durability of their data.

Besides handling application durability requests, modern operating systems control

data staleness by forcing the durability of dirty data in the OS page cache via mechanisms

such as Linux’s flusher threads [Lov10].

While servicing writes, page fetch behavior in file systems is caused because of the

mismatch in data access granularities: bytes accessed by the application, and pages ac-

10

Parameter DDR-DRAM PM

Capacity per CPU 100s of GBs Terabytes

Read Latency 1x 2x to 4x

Write Bandwidth 1x 1/8x to 1/4x

Estimated Cost 5x 1x

Endurance 1016 106 to 108

Table 3.1: Comparison of Memory Technologies [DRZ+16]. Persistent memory charac-

teristics were derived from PCM and ReRAM technologies [QSR09, Cro13].

cessed from storage by the operating system. To handle write references, the target page is

synchronously fetched before the write is applied, leading to a fetch-before-write require-

ment [MBKQ96, Tan07]. This is illustrated in Figure 3.1. This blocking behavior affects

performance since it requires fetching data from devices much slower than main mem-

ory. Today, main memory accesses can be performed in a couple of nanoseconds whereas

accesses to flash drives and hard drives can take hundreds of microseconds to a few mil-

liseconds respectively. We confirmed the page fetch-before-write behavior for the latest

open-source kernel versions of BSD (all variants), Linux, Minix, OpenSolaris, and Xen.

3.3 Emerging Memory Technologies

Emerging byte-addressable persistent memory technology such as ReRAM, STT-RAM and

PCM offer an attractive set of properties that are well-suited for extending main memory

in response to the higher demand for memory capacity (Table 6). These new memories

promise to offer byte-addressable memory access at a fraction of DRAM cost. When used

to extend main memory their capability for persistence is irrelevant and can be used as

volatile memory. Moreover, they can achieve latency and bandwidth properties that are

within an order of magnitude of DRAM. Finally, they do not require power to retain data,

greatly reducing the power consumption costs within a system which a system with large

quantities of DRAM would incur.

11

DRAM based memory systems have two significant drawbacks pertaining to cost and

power consumption. These drawbacks impact their usage in both enterprise servers and

mobile systems. Today’s multi- and many-core platforms support higher levels of work-

load parallelism (in mobile and server workloads) and multi-tenancy (in server workloads),

placing greater demands on the memory system. Furthermore, the new generation of

big data analytics applications in the enterprise and cloud are, inherently, memory in-

tensive [spa, sap, Fit04, Sal]. Their workloads demand access to high-performance, yet

low-cost, memory devices in preference to the much slower storage system. The use of

persistent memory is rather appealing given the high cost and power demands imposed by

DRAM technology.

12

CHAPTER 4

CORIOLIS: SCALABLE VM CLUSTERING FOR CACHE DEDUPLICATION

In this chapter we examine the virtualized environment of big data centers and we

present a new clustering technique for virtual machine images, which when used to assign

virtual machines to hosts, increases the opportunities of deduplication of identical pages,

and as a consequence, optimizes memory usage through sharing.

4.1 VM Clustering: An Overview

Cloud computing lends a fundamental shift to how businesses view IT, from being capital-

intensive to being a commodity that can be acquired on-demand and paid for as per usage.

However, the growing popularity of cloud data centers has led to the problem of virtual

machine sprawl. Standardization is a key principle that allows cloud providers to provide

services on-demand and at a lower cost than what individual IT departments can do. System

management costs reduce with standardization of software at all levels: operating systems,

middleware, applications, and management tools [GP11, VVK+12].

We conjecture that classifying diverse virtualized servers in a cloud into clusters of

similar virtual machines (VMs) can improve host-side cache efficiency and improve overall

performance. We classify VM similarity into two types – content similarity and semantic

similarity. Content similarity refers to data similarity in the raw files that constitute virtual

machines. Semantic similarity refers to the similarity in the operating system, middleware,

and application software present in two virtual machines.

Deduplication across VMs is a popular technique to improve resource efficiency. Ex-

amples include memory sharing between VMs on a host [Wal02] or deduplication during

backup of virtual machines [VMW12]. Clustering based on semantic similarity can help

place VMs with a similar application stack on a host and lead to greater memory sharing

13

across VMs. Clustering based on content similarity can help allocate similar VMs to one

backup cluster and achieve better storage resource utilization within each cluster.

We develop and evaluate CORIOLIS, a framework for clustering images based on any

given notion of similarity. Conventional clustering techniques require at least quadratic

data access or worse, which is prohibitive for cloud environments with a large number of

VMs. Further, clustering images based on the conventional symmetric notion of similarity

leads to a uniform data access pattern; consequently, caching techniques that leverage pop-

ularity or locality for optimizing index lookup in deduplication systems [ZLP08, DSL10]

are not applicable. CORIOLIS employs a novel tree-based VM clustering algorithm that

consumes time that is only linear in the number of images. The algorithm uses an asym-

metric notion of similarity to avoid computing all-pairs similarity values and a hierarchical

order to introduce popularity in data access.

4.2 VM Similarity: Types and Applications

The similarity across VMs in enterprise data centers and clouds has been studied exten-

sively in the context of data deduplication [CAVL09, DSL10, JM09, KR10, ZLP08]. In

this section, we discuss both content and semantic similarity and then discuss how such

similarity can be utilized for streamlining system management tasks.

4.2.1 Content Similarity

The classical notion of similarity is that of content, whereby a subset of the bytes contained

within the images are identical. Identical content can occur either in the form of whole

or partial files [MB11] and techniques to detect similar content have ranged from whole

file and fixed size chunking to more sophisticated variable size chunking [JM09, ZLP08].

Content similarity across VM images occurs because of the use of similar operating system

14

(a) Content similarity (b) Semantic similarity

Figure 4.1: Distribution of content and semantic similarity for 25 VM image pairs.

Image pairs obtained from two production data centers. Small block (i, j) denotes similar-

ity between images i and j. White regions denoting less than 10% similarity while black

regions denoting more than 90% similarity. The heatmap itself is symmetric across the

diagonal; pairwise similarity is a symmetric function.

instances as well as the widespread use of master images within publicly available virtual

appliance libraries to create VMs.

In both cases, the resulting VM images are subsequently modified from the original to

varying extents owing to configuration changes, software updates, and user-specific appli-

cation data. Content similarity is useful in minimizing the amount of data that needs to be

managed for a task involving a collection of VMs (e.g., VM backup [VMW12] or Virtual

Image Library [ABM+11]). A recent large-scale study of VM images in a production IaaS

cloud investigates such content similarity [JPZ+11]. This study found that the distribution

of content similarity across images is skewed and that individual VM images tend to be

similar to a small subset of images than to the entire image population leading to clusters

of similar images. They also noted that computing pair-wise similarity is very expensive

and reported results for only 30% of their image collection due to scalability issues.

We performed a similarity study across VM images from 2 production data centers.

The first set of 9 images is from a large-scale enterprise data center at IBM. The latter set

of 12 images is from the Computer Science department’s small-scale data center at Florida

International University. The former set of images is relatively more diverse reflecting the

15

needs typical of a large-scale enterprise data center. The latter set of images are more

homogeneous reflecting limited software needs. Figure 4.1(a) depicts pairwise content

similarity distribution across the image sets. Content similarity is computed as ratio of the

number of shared bytes in the two images to the sum of all unique bytes across the images.

Rows and columns are ordered using all images belonging to the former image set first

followed by those in the latter image set. Darker shades denote higher levels of similarity.

We can see the distinct formation of two high similarity clusters, wherein images within the

cluster are more similar to each other than images outside of the cluster. Such high amount

of content similarity within clusters of images motivates content-based optimizations.

4.2.2 Semantic Similarity

Semantic similarity characterizes the similarity of software Causes for semantic similarity

include standardization of the software stack in modern enterprises and the popularity of

specific types of programming models. As identified in previous work, when enterprises

are migrated to the cloud, they are adjusted and standardized so that the same set of agents

and processes can be used for management services such as backup recovery, security

compliance, and patching [VVK+12]. Images that follow similar operating environment

(e.g., Linux distribution or LAMP stack) can be categorized as semantically similar which

then enables more efficient and streamlined system administration, troubleshooting, and

management.

Figure 4.1(b) depicts the pairwise semantic similarity distribution for the set of images

discussed earlier. Here, semantic similarity is the fraction of software in the two images

that are semantically similar to each other. Once again we notice the formation of at least

two similarity clusters. We also observe that semantic similarity between images from two

clusters is higher and there are some images in cluster1 that have high semantic similarity

with some images in cluster2 (e.g., images 1 and 16).

16

Figure 4.2: CORIOLIS System Context.

4.2.3 Harnessing Image Similarity

We identify four common system management scenarios that can leverage image similarity

to reduce data center costs. The most important use case for the effects of this thesis is

the placement of VMs to hosts or to management systems. Images with high semantic

similarity are likely to exhibit higher number of duplicate pages in main memory, which

can be deduplicated. Similarly, images with higher content similarity can benefit more

from deduplication performed at a shared management server (e.g., vSphere [VMW12]).

CORIOLIS analyzes images, which is used by a planner to place similar VMs together,

improving the effectiveness of underlying deduplication schemes (Figure 4.2).

A second use case is allocation of servers to system administrators for routine mainte-

nance. It has been shown that system administrators can be more efficient and manage up to

80% more servers if the servers have a similar software stack [GP11]. Third, troubleshoot-

ing system errors during regular updates in data centers. Troubleshooting in data centers

is often akin to manual outlier detection where the engineer attempts to identify servers

that responded similarly to the update. Once similar servers are identified, the engineer

identifies the difference between the failed server and the successful server to fix the issue.

Automated clustering of servers based on semantic similarity can aid such identification.

17

Use Case Content Semantic

VM Placement ✔ ✔

Administrator Allocation ✗ ✔

Troubleshooting ✗ ✔

Migration ✔ ✔

Table 4.1: Similarity types relevant for each use case.

The final use case is migration of enterprise applications from one data center to an-

other. Migration is performed in batches or waves, where a certain number of images

(e.g., 25) are migrated in one weekend [VVK+12]. Migrating images with similar con-

tent together can reduce migration time using deduplication. Further, images with similar

applications can be reconfigured with fewer application experts, reducing migration cost.

Identifying image clusters with both high content and semantic similarity and using them

to create waves can help reduce both migration time and cost. Table 4.1 summarizes the

type of similarity relevant for all the use cases.

4.3 Similarity-based VM Clustering

Clustering is a well-studied problem in computer science. While the problem is NP-hard,

various heuristics exist with acceptable clustering performance. In this section, we examine

the popular clustering techniques and study their applicability for VM clustering.

4.3.1 A Representative Clustering Algorithm

k-means is one of the most popular clustering techniques employed in the real world. The

algorithm starts with an initial set of k-clusters and refines them iteratively. Even though

multiple variants of the algorithm exist, they all apply two canonical operations in each

iteration:

18

• Assignment Step: Assign each element to the cluster with the closest mean. Distance

computation is the core internal operation, performed k times for each element. If

there are N elements to cluster, this requires kN Distance operations.

• Update step: Calculate the new mean for each cluster. The core step is a Merge op-

eration which computes the average for 2 elements along each of the D dimensions.

In each iteration, across the k clusters, N − 1 merge operations are performed.

The worst case time for k-means is exponential in N . For arbitrary set of points in [0, 1]D,

if each point is independently perturbed by a normal distribution with variance σ2, then

the expected running time of k-means algorithm is bounded by O(N34k34D8 log4(N)/σ6)

[AMR09]. Even for simple cases, the best known bounds on average running time are at

least O(N4).

4.3.2 A Similarity Function for Images

In spite of its high computational complexity in number of elements, k-means is popular

in practice because the time taken for each Distance and Merge operation is usually very

small. Even for problems with 100 dimensions, Distance and Merge operations require

only about 100 addition and division operations. However, these operations are not very

well-defined for VM images. We first define a natural definition of these operations and

then present the time taken for each operation.

For VM images, it is more natural to define a similarity measure than a distance mea-

sure. Two images are similar if they contain a large number of identical elements (files or

software). Given a pair of images Ii, Ij , similarity between the images can be defined as

SIM(Ii, Ij) =
wt(Ii ∩ Ij)

wt(Ii ∪ Ij)
(4.1)

where Ii ∪ Ij is a meta-image that consists of the union of Ii and Ij , Ii ∩ Ij is a meta-

image that consists of the intersection of Ii and Ij . The weight (wt) function is defined

19

Image Size Similarity Merge

8.8 GB 45.5 sec 14.7 sec

12.3 GB 75.2 sec 24.1 sec

13.6 GB 98.5 sec 31.2 sec

16.3 GB 142.3 sec 44.2 sec

19.7 GB 172.2 sec 53.5 sec

22.1 GB 232.7 sec 64.9 sec

Table 4.2: Time for Similarity and Merge operations. Images and file are stored in a

database making use of appropriate indices for these operations.

based on the type of similarity that needs to be computed. To estimate content similar-

ity, the wt function is the sum of all files in the image, weighted by the sizes of the files.

To estimate semantic similarity, the wt function is the sum of all software deployed in

the image weighted by the complexity of the software. Adopting other notions of simi-

larity is straightforward (e.g., a weighted composition of content and semantic similarity).

Distance can now be calculated simply as 1− SIM(Ii, Ij). The Merge operation would

create a new image that constitutes the set of all unique elements across the images.

4.3.3 Scaling Challenge

We measured the running time for a single Similarity and a single Merge operation on

a dual-core 2 GHz Intel Xeon with 4GB memory and images stored on a 5-disk RAID5

SATA array. Table 4.2 lists run times for real images of different sizes. While the actual

times seem small, in aggregate, the costs of these operations present a significant challenge.

For example, a data center with 1000 images would have to perform 10003 similarity com-

putations (even for the best special cases on average complexity), and would need about

2000 years. Computing similarity for images is very expensive because we need to deal

with a very large number of dimensions. For content similarity, every unique file in a col-

lection of images is a dimension, with a value of 1 indicating its presence and 0 indicating

20

its absence in a particular image. The number of dimensions is of the order of millions or

more for large images or large collections.

In-memory data structures can reduce the cost of these operations. We conducted ex-

periments by enabling the in-memory feature in MySQL. We observed that the maximum

time taken for one similarity computation is 5 seconds (a reduction of 50X), which though

significant only brings down the similarity computation in our previous example to 40

years. Further, this requires the entire index to be memory resident which is not practical.

One could envision computing similarity based on only files that are larger than a certain

threshold size in each image, but that again would bring down the running time only by a

constant factor, while compromising accuracy.

An alternate approach to speed up clustering is to perform approximate clustering based

on pair-wise similarity information. The k-medoids clustering algorithm [RK87] does ex-

actly that by restricting the cluster center in an iteration to one of the existing points (im-

ages). Hence, both assignment and update steps in each iteration can leverage pair-wise

similarity values that are computed in advance. This simplifying approximation, however,

still requires pair-wise similarity computation for all images. Since individual similarity

operations are expensive for VM images, this approach becomes un-affordable in prac-

tice for moderate to large numbers of VMs as is typical in a cloud, as we shall demon-

strate later (§6.4). Anecdotally, in a recent study on VM image similarity, the authors

reported pair-wise similarity only for a fraction of their image corpus citing scalability

challenges [JPZ+11]. With 1000 images, this would take 2 years with the file systems on

disk and 15 days with an in-memory system. Clearly, there is a need to reduce the number

of operations even further. Unfortunately, k-medoids suffers from an additional challenge,

that of determining k a priori. The value of k should ideally be the minimum number of

clusters required subject to cluster size constraints dictated by the application. However,

21

this information is not always known a priori. In the next section, we discuss an approach

that successfully overcomes the core limitations of existing clustering approaches.

4.4 CORIOLIS

CORIOLIS uses a novel approach to VM clustering. We discuss this approach and evaluate

its scalability relative to the state-of-the-art k-medoids clustering in this section.

4.4.1 Solution Idea: Asymmetric Clustering

To solve the computational and memory challenge in VM clustering, we draw on a key

insight in CORIOLIS. First, we observe that to significantly speed-up the Distance and

Merge operations, caching only a small subset of the image manifest and hash index of

image content must be able to satisfy a large fraction of operations. Enabling cache effec-

tiveness requires introducing asymmetry into the clustering algorithm, that is, the algorithm

cannot afford to consider all content from all images as equally important. The CORIOLIS

clustering approach involves constructing a tree, where each node in the tree is either a

cluster of images or a single image, such that each level in the tree from the root node

represents a minimum extent of similarity within images in a cluster. The salient aspects of

this approach are:

• Hierarchical multi-level similarity: Use multiple levels of similarity to quickly

find most relevant clusters. By design, restrict comparisons only with clusters that

are similar, reducing the total number of Similarity operations.

• Ordered Index Lookup: Clusters at low similarity levels are more popular than leaf

nodes. Images with popular content will require more accesses and can be cached.

• Online Clustering: Add a new node to existing clusters. Allows addition/deletion

of images with only incremental computation.

22

Figure 4.3: CORIOLIS architecture. CORIOLIS intercepts image check-in requests and

triggers the check-in as well as cluster creation. The clusters are stored in a manifest and

can be used by any cloud management components.

4.4.2 CORIOLIS Architecture

In VM image libraries (e.g., [ABM+11]), an image check-in request is intercepted by a

Check-in Manager, which populates the image list with the new image. Further, an image

manifest is created with a list of all the content in the image. For each indexed content, a

hash entry is generated and added to a hash index. Duplicate contents are linked to the hash

index without generating duplicates. The actual content is stored in a content store, which

is linked by the hash index.

CORIOLIS intercepts the check-in request and invokes a Clustering Algorithm in ad-

dition to the Check-in Manager. Clustering Algorithm uses an Image Library Driver to

obtain any relevant information about the images. It then executes a clustering algorithm

and generates a Cluster Manifest that contains information about the various clusters. The

Cluster Manifest can be queried by any cloud management component.

The CORIOLIS architecture allows plugging-in any clustering algorithm without changes

to the system. The overall image manipulation framework is online in nature but existing

clustering algorithms are not online. Further, the clustering technique also needs to solve

23

A,B,C
D,E

A,B C,D,E

C,EA B D

C E

S > 0.5

S = 1.0

S > 0.9

S >= 0

Figure 4.4: Tree-based clustering. Computed Similarity Values {(A,B):0.75, (C,E):0.95,

(CE, D):0.8}.

the additional problems of scale and expensive cluster center computation. Finally, an ideal

image clustering system needs to ensure that the time taken to compute the clusters should

be a small fraction of the time taken to check-in an image. The clustering technique that

we describe next is designed to address these practical challenges.

4.4.3 CORIOLIS’ Tree-based Clustering

CORIOLIS’s tree-based clustering approach is outlined below and it is based on two key

ideas. The most common operation in clustering is to identify the cluster most similar to a

given element and the first idea focuses on speeding up this operation. Since clusters can

grow to become very large whereas individual images are typically small, we define and

use an asymmetric similarity function S within CORIOLIS that runs in time proportional to

the smaller of the two. In particular, we define similarity as the coverage offered by a larger

node B (typically a cluster) to a new node A that is being added to the cluster by replacing

the union operator in the denominator by the min operator.

S =
wt(A ∩ B)

min(wt(A), wt(B))
(4.2)

24

Our second key idea is to ensure skew in the usage of images and image clusters al-

lowing effective caching. Further, we reuse the similarity computations done for an image

when computing similarity for other images. CORIOLIS uses a tree-based partitioning of

the images to achieve both these goals. Each level of the tree represents a predefined min-

imum level (extent) of similarity. The root of the tree captures a similarity level S ≥ 0.

Thus, all images can be clustered in this meta-node. The last level of the tree captures

a similarity level S = 1; it consists of either single images or a collection of duplicate

images. Intermediate levels represent predefined similarity levels, 0 < S < 1, which in-

creases with the depth of the tree. We elaborate our representation using the example in

Figure 4.4. Consider 5 images A,B,C,D,E. The tree has 4 levels representing similarity

of 0, 0.5, 0.9 and 1 respectively. A and B have a similarity measure of 0.75. Hence, they

are clustered at level S > 0.5 but are independent nodes at level S > 0.9. Similarly, C

and E have a similarity of 0.95 and are grouped together up to all levels S > 0.9 but are

independent nodes at level S = 1.

Given a new image vi, our goal is to find similar nodes (or meta-nodes) with as few

Similarity operations as possible. CORIOLIS’s grouping of VM image clusters within a

hierarchical tree structure allows early pruning of images that are not similar to the new

image vi. Adding a new image to the CORIOLIS VM image tree, the new image is first

added to the root meta-node. Once an image is added to a node, we compute the similarity

of the new node with each of its children to determine if it can be added to any child. If the

similarity S level is found adequate with more than one child, the new image is only added

to the child node with which the similarity is the greatest. If no such child node exists, we

create a new child node and add vi to the node. This process terminates when we reach a

leaf node.

Figure 4.5 illustrates a new image F as it traverses the tree. It is important to note here

that the number of Similarity and Merge operations executed for an image is proportional

25

A,B,C
D,E,F

A,B,F C,D,E

C,EA B,F D

C E

S > 0.5

S = 1.0 B F

S > 0.9

S >= 0

Figure 4.5: Clustering a new image F. Computed Similarity Values are {(AB,F):0.95,

(CDE,F):0.3, (A,F):0.75, (B:F):0.95}.

to the depth of the tree. The depth of the tree is a pre-defined constant, bound by the log of

the number of images inserted. Hence, the approach allows us to create a tree in time no

more than O(N logN), where N is the number of images. And given the similarity levels

at various tree depths, the tree can then be queried in linear time for clusters with specific

properties.

4.4.4 Scalability Evaluation

To evaluate CORIOLIS, we used VM images from 2 production data centers. The first set of

9 images is from a large-scale enterprise data center at IBM. The latter set of 12 images is

from the CS department’s small-scale data center at Florida International University. The

former set of images are diverse compared to the latter set reflecting the needs typical of

a large-scale enterprise data center. Next, we created increasingly larger sets of images

from these initial set of 21 production images. We did this by separating out 3 of the 21

images and randomly sampling files contained within these to generate synthetic images.

The net effect is that the synthetic images contain a random combination of files from these

3 source images. We performed clustering experiments in a Linux VM configured with

26

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 5 10 15 20 25 30 35

9978484236302418

C
lu

st
er

in
g

T
im

e
(m

in
ut

es
)

Total Files (in Millions)

Number of Images

k-medoids
Tree-based

Figure 4.6: Scalability of k-medoids and CORIOLIS’ tree-based clustering algorithms.

16 GB RAM on an 6-core AMD Opteron processor virtualized using the VMware ESX

hypervisor.

We choose k-medoids for this comparison as it is significantly faster than k-means.

Fig 4.6 presents the time taken by the k-medoids algorithm and the tree-based clustering

algorithm as the problem size is increased. The time includes the time taken to read file

metadata and store it in a database, where similarity and merge operations are performed.

The k-medoids algorithm takes significantly longer and displays a quadratic increase in

clustering time as the number of images is increased. We observed that more than 95%

of the time is spent in computing similarity as the cluster size is increased. For clustering

99 images, it takes nearly 3 days, which is clearly unacceptable. In contrast, our tree-

based clustering algorithm reduces the number of similarity computations by a factor of 8

and is able to cluster the images within 10 hours; an acceptable window of time even for

heavyweight management VM tasks carried out over weekends.

4.5 Summary

We described the CORIOLIS framework and system that was specifically designed for scal-

able clustering of VM images to intelligently place VM into hosts, and with the aid of dedu-

27

plication techniques, optimize memory usage through sharing and overall system perfor-

mance. We argued that the state-of-the-art k-medoids clustering algorithm incurs quadratic

complexity which we demonstrated as infeasible for cloud scale data centers. CORIOLIS’s

distinguishing strength lies in its scalable tree-based image clustering technique that sup-

ports an arbitrary similarity metric. This novel technique allows clustering to be performed

in O(N logN) time for a data center with N images, allowing it to scale to large data

centers.

In the next chapters we propose systems which improve on how cache accesses, in

particular file writes, are handled when using the operating system cache.

4.6 Credits

This work was first published in the proceedings of the International Conference on Au-

tonomic Computing in June 2015 [CCV+13] and was presented by Daniel Campello. All

authors contributed to the design of CORIOLIS. Daniel Campello and Carlos Crespo imple-

mented CORIOLIS in Linux. Daniel Campello refined the implementation to its final state.

Daniel Campello executed all the experiments to evaluate the system.

28

CHAPTER 5

NON-BLOCKING WRITES TO FILES

In Chapter 4 we proposed a solution that aims to improve cache hit rates and memory

usage in virtualized systems to improve overall system performance. In this chapter we

center our efforts inside the operating system (OS) and we propose solutions that make a

more efficient use of caching by altering the existing way of handling write accesses.

While blocking the process for a page fetch cannot be avoided in case of a read to

a non-cached page, it can be entirely eliminated in case of writes. The OS could buffer

the data written temporarily elsewhere in memory and unblock the process immediately;

fetching and updating the page can be performed asynchronously. This decoupling of page

write request by the application process from the OS-level page update allows two crucial

performance enhancements. First, the process is free to make progress without having to

wait for a slow page fetch I/O operation to complete. Second, the parallelism of page

fetch operations increases; this improves page fetch throughput since storage devices offer

greater performance at higher levels of I/O parallelism.

In this chapter, we explore new design alternatives and optimizations for non-blocking

writes, address consistency and correctness implications, and present an implementation

and evaluation of these ideas. By separating page fetch policy from fetch mechanism, we

implement and evaluate two page fetch policies: asynchronous and lazy, and two page fetch

mechanisms: foreground and background. We also develop non-blocking reads to recently

written data in non-cached pages.

We implemented non-blocking writes to files in the Linux kernel. Our implementation

works seamlessly inside the OS requiring no changes to applications. We integrate the

handling of writes to non-cached file data for both local file systems and network file system

clients within a common design and implementation framework. And because it builds on

29

a generic design, our implementation provides a starting point for similar implementations

in other operating systems.

5.1 Motivating Non-blocking Writes to Files

Previous studies that have analyzed production file system workloads report a significant

fraction of write accesses being small or unaligned writes [ELMS03, LPGM08, ODCH+85,

RA00]. Technology trends also indicate an increase in page fetch rates in the future. On the

server end, multi-core systems and virtualization now enable more co-located workloads

leading to larger memory working sets. As the effective memory working sets [Den68,

KVR10] of workloads continue to grow, page fetch rates also continue to increase. A

host of flash-based hybrid memory systems and storage caching and tiering systems have

been inspired, and find relevance in practice, because of these trends [BLM+12, CKZ11,

EMC12, Fus12, GMC+12, GPG+11, KM06, KMR+13, Net13, PVO+15, SS10a, VMw13,

WR10]. On the personal computing end, newer data intensive desktop/laptop applications

place greater I/O demands [HDV+11]. In mobile systems, page fetches have been found to

affect the performance of the data-intensive applications significantly [KAU12].

5.1.1 Addressing the fetch-before-write problem

Non-blocking writes eliminate the fetch-before-write requirement by creating an in-memory

patch for the updated page and unblocking the process immediately. This modification is

illustrated in Figure 5.1.

Reducing Process blocking

Processes block when they partially overwrite one or more non-cached file pages. Such

overwrites may be of any size as long as they are not perfectly aligned to page bound-

aries. Non-blocking writes reduces process blocking by eliminating the synchronous page

30

Process OS

Backing Store

PatchPatchPatchPatch

110

101

001

110

101

001

110

101

001

110

101

001

Page Cache

1. Write(✗)

2. Miss

4. Buffer

3. Issue

page fetch

5. Return

6. Complete

7. Merge

Figure 5.1: A non-blocking write employing asynchronous fetch. The process resumes

execution (Step 5) after the patch is created in memory while the originally blocking I/O

completion is delayed until later (Step 6). The dash-dotted line represents a slow transition.

fetch latency for all writes and many reads to pages missing in the page cache. Previous

studies have reported about the significant fraction of small or unaligned writes in pro-

duction file system workloads [ELMS03, LPGM08, ODCH+85, RA00]. However, little is

known about partial page overwrite behavior. To better understand the prevalence of such

file writes in production workloads, we developed a Linux kernel module that intercepts

file system operations and reports sizes and block alignment for writes. We then analyzed

one day’s worth of file system operations collected from several production machines at

Florida International University’s Computer Science department. Besides these we also

analyzed file system traces of much shorter duration (two minutes each) available in Mo-

biBench [ESO13, JLH+13]. Table 5.1 provides a description of all the traces we analyzed.

Figure 5.2 provides an analysis of the write traffic on each of these machines. On an

average, 63.12% of the writes involved partial page overwrites. Depending on the size of

the page cache, these overwrites could result in varying degrees of page fetches prior to the

page update. The degree of page fetches also depends on the locality of data accesses in the

workload wherein a write may follow a read in short temporal order. To account for access

31

Workload Description

ug-filesrv Undergrad NFS/CIFS fileserver

gsf-filesrv Grad/Staff/Faculty NFS/CIFS fileserver

moodle Web & DB server for department CMS

backup Nightly backups of department servers

usr1 Researcher 1 desktop

usr2 Researcher 2 desktop

Facebook MobiBench Facebook trace [ESO13]

twitter MobiBench twitter trace [ESO13]

Table 5.1: Workloads traced and their descriptions.

 0
 20
 40
 60
 80

 100

ug-filesrv
gsf-filesrv

moodle
backup

usr1 usr2 facebook
twitter

37.5 40.2 82.6 7.3 76.3 86.3 89.6 85.2

%
 o

f W
rit

e
O

pe
ra

tio
ns

Partial page overwrites (%)

Overwrite; < 4 KB
Overwrite; >= 4 KB unaligned

Overwrite; multiple of 4 KB aligned
No overwrite; write is to a new page

Figure 5.2: Breakdown of write operations by amount of page data overwritten. Each

bar represents a different trace and the number above each bar is the percentage of write

operations than involve at least one partial page overwrite.

32

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 0.01
 0.1 1 10 100

 1000
 10000

 100000

N
on

-b
lo

ck
in

g
W

rit
es

 (
%

)

Page cache size (MB)

ug-filesrv
gsf-filesrv

moodle
backup

usr1
usr2

Facebook
Twitter

Figure 5.3: Non-blocking writes as a percentage of total write operations. Varying the

page cache size in the x-axis.

locality, we refined our estimates using a cache simulator to count the number of writes

that actually lead to page fetches at various memory sizes. Such writes can be made non-

blocking. The cache simulator used a modified Mattson’s LRU stack algorithm [MGST70]

and uses the observation that a non-blocking write at a given LRU cache size would also

be a non-blocking write at all smaller cache sizes. Modifications to the original algorithm

involved counting all partial page overwrites to pages not in the cache as non-blocking

writes. Figure 5.3 presents the percentage of total writes that would benefit from non-

blocking writes for the workloads in Table 5.1. For a majority of the workloads, this value

is at least 15% even for a large page cache of size 100GB. A system that can make such

writes non-blocking would make the overall write performance less dependent on the page

cache capacity.

33

5.1.2 Addressing Correctness

With non-blocking writes, the ordering of read and write operations within and across

processes in the system are liable to change. As we shall elaborate later (§5.2.2), the patch

creation and patch application mechanisms in non-blocking writes ensure that the ordering

of causally dependent operations is preserved. The key insights that we use are: (i) reads

to recent updates can be served correctly using the most recently created patches, (ii) reads

that block on page-fetch are allowed to proceed only after applying all the outstanding

patches, and (iii) reads and writes that are independent and issued by the same or different

threads can be reordered without loss of correctness.

Another potential concern with non-blocking writes is data durability. For file data, we

observe that the asynchronous write operation only modifies volatile memory and the OS

makes no guarantees that the modifications are durable. With non-blocking writes, syn-

chronous writes (on account of sync/fsync or the periodic page-flusher daemon) block

to wait for the required fetch, apply any outstanding patches, and write the page to stor-

age before unblocking the process. Thus, the durability properties of the system remain

unchanged with non-blocking writes.

5.2 Approach Overview

The page fetch process blocks process execution, which is undesirable. Non-blocking

writes work by buffering updates to non-cached pages by creating patches in OS memory

to be applied later. A non-blocking write returns immediately once a patch of the update is

created and queued to the list of pending page updates. The page only becomes Up-to-date

once all the pending patches are applied after its fetch is completed.

34

Non-blocking writes alter write control flow, thus affecting reads to recently written

data. Further, they require managing additional cached data in the form of patches. The

rest of this section discusses these details.

5.2.1 Write Handling

Operating systems allow writes to file data via two common mechanisms: supervised sys-

tem calls and unsupervised memory mapped access.

To handle supervised writes, the OS uses the system call arguments — the address of

the data buffer to be written, the size of the data, and the file (and implicitly, the offset)

to write to — and resolves this access to a data page write internally. With non-blocking

writes, the OS extracts the data update from the system call arguments, creates a patch, and

queues it for later use.

Unsupervised file access can be provided by memory mapping a portion of a file to the

process address space. In our current design, memory mapped access are handled as in

current systems by blocking the process to service the page fault.

5.2.2 Patch Management

Since commodity operating systems handle data at the granularity of pages, we chose a

design where each patch will apply to a single page. We abstract an update with a patch

data structure that contains the data to be written along with its target location and size. To

handle multiple overwrites to the same page, we implement per-page patch queues wherein

page patches are queued and later applied to the page in FIFO order. When new data is

adjacent or overwrites existing patches, it is merged into existing patches accordingly. This

makes patch memory overhead and patch application overhead proportional to the number

35

of page bytes changed in the page instead of the number of bytes written to the page since

the page was last evicted from memory.

When a page is read in either via a system call induced page fetch or a memory-mapped

access causing a page fault, the first step is to apply outstanding patches, if any, to the page

to bring it up-to-date before the page is made accessible. Patches are applied by simply

copying patch data to the target page location. Patch application occurs in the bottom-half

interrupt handling of the page read completion event (further discussed in §5.4). If any

patches are applied, the page flag indicating that the page is dirty is set so that the page is

correctly written to the backing store when durability is requested.

5.2.3 Non-blocking Reads

Similar to writes, reads can be classified as supervised and unsupervised as well. Reads to

non-cached pages block the process in current systems. With non-blocking writes, a new

opportunity to perform non-blocking reads becomes available. Specifically, if the read is

serviceable from the patches queued on the page, then the reading process can be unblocked

immediately without incurring a page fetch I/O by copying the data from patches into the

target buffer. The read is not serviceable if any portion of the data being requested is not

contained within the patch queue. In such a case, the reading process blocks for the page

to be fetched. For unsupervised reads, our current design blocks the process for the page

fetch in all cases.

5.3 Alternative Page Fetch Modes

We now explore the page fetch modes that become possible with non-blocking writes.

These variants highlight the opportunities for further optimizing resource consumption and

improving performance enabled by non-blocking writes.

36

5.3.1 Asynchronous Page Fetch (NBW-Async)

In this mode, page fetch I/O is queued to be issued at the time of the page write. The appeal

of this approach is its simplicity.

Asynchronous page fetch defines policy. However, its mechanism may involve ad-

ditional blocking prior to issuing the page fetch. We discuss two alternative page fetch

mechanisms that highlight this issue.

1. Foreground Asynchronous Page Fetch (NBW-Async-FG). The page fetch I/O is

issued in the context of the process performing the write to the file page. Our discus-

sion in previous sections was based on this mechanism. Although the process does

not wait for the completion of the data fetch, issuing the fetch I/O for the data page

may itself involve retrieving additional metadata pages to locate the data page if these

metadata pages are not cached in OS memory. If so, the writing process would have

to block for the necessary metadata fetches to complete, thereby voiding most of the

benefits of the non-blocking write.

2. Background Asynchronous Page Fetch (NBW-Async-BG). The writing process

moves all work necessary to issue the page fetch to a different context by using

kernel worker threads. This approach eliminates any blocking of the writing process

owing to metadata misses; a worker thread blocks for all fetches while the issuing

process continues its execution.

Asynchronous fetch is a valuable improvement. However, it consumes system resources,

allocating system memory for the page to be fetched and using storage I/O bandwidth to

fetch the page.

37

Process OS

Backing Store

PatchPatchPatchPatch

110

101

001

110

101

001

110

101

001

110

101

001

Page Cache

1. Write(✗)

2. Miss

3. Buffer

4. Return

5. Read(✗)

6. Miss

7. Issue

page fetch

8. Complete

9. Merge

10. Return

Figure 5.4: A non-blocking write employing lazy fetch. The process resumes execution

(Step 4) after the patch is created in memory. The Read operation in Step 5 optionally

occurs later in the execution while the originally blocking I/O is optionally issued and

completes much later (Step 8). The dash-dotted arrow represents a slow transition.

5.3.2 Lazy Page Fetch (NBW-Lazy)

When a process writes to a non-cached data page, its execution is not contingent on the

page being available in memory. With lazy page fetch, the OS delays the page fetch until

it becomes unavoidable. Lazy page fetch has the potential to further reduce the system’s

resource consumption. Figure 5.4 illustrates this alternative.

Lazy page fetch creates new system scenarios which must be considered carefully. If a

future page read cannot be served using the currently available patches for the non-cached

page, the page fetch becomes unavoidable. In this case, the page is fetched synchronously

and patches are applied first before extracting the data to service the read operation. If the

page gets overwritten in its entirety or if page persistence becomes unnecessary for another

reason (e.g., the containing file is deleted), the original page fetch is eliminated entirely.

Page data durability can become necessary in the following instances: (i) synchronous

file write by an application, (ii) periodic flushing of dirty pages by the OS [Bac86], or (iii)

ordered page writes to storage as in a journaling file system [Hag87, PADAD05]. In all

38

these cases, the page is fetched synchronously before being flushed to the backing store.

Lastly, non-blocking writes are not engaged for metadata pages which use the conventional

durability mechanisms. Durability related questions are discussed further in §5.4.2.

5.4 Implementation

We present an overview of the implementation of non-blocking writes and discuss details

related to how it preserves system correctness.

5.4.1 Overview

We implemented non-blocking writes for file data in the Linux kernel (version 2.6.34.17)

by modifying the generic virtual file system (VFS) layer. Unlike the conventional Linux

approach, all handling of fetch completion (such as applying patches, marking the page

dirty, processing a journaling transaction, and unlocking the page) occurs in the bottom-

half I/O completion handler.

5.4.2 Implementation Insights

Journaling File Systems. Our implementation of non-blocking writes preserves the cor-

rectness of journaling file systems by allowing the expected behavior for various journaling

modes. For instance, non-blocking writes preserve ext4’s ordered mode journaling invari-

ant that data updates are flushed to disk before transactions containing related metadata

updates. Metadata transactions in ext4 do not get processed until after the related data page

is fetched into memory, outstanding patches are applied, the page is marked dirty, and dirty

buffers added to the transaction handler. Thus, all dirty data pages related to a metadata

39

transaction are resident in memory and flushed to disk by ext4’s ordered mode journaling

mechanism prior to committing the transaction.

Ordering of Operations to the Same Page. While a non-blocking write is being handled

within the operating system, multiple operations such as read, prefetch, synchronous write,

and flush, can be issued to the page involved. Operating systems carefully synchronize

these operations to maintain consistency and return only up-to-date data to applications.

Our implementation respects the Linux page locking protocol. A page is locked after it is

allocated and before issuing a fetch for it. As a result, kernel mechanisms such as fsync

and mmap are also supported correctly. These mechanisms block on the page lock which

becomes available only after the page is fetched and patches applied before proceeding

to operate on the page. When delayed page fetch mechanisms (as in NBW-Async-BG

and NBW-Lazy) are used, an NBW entry for the page involved is added in the page cache

mapping for the file before the page is allocated. This NBW entry allows for locking the page

to maintain the ordering of page operations. When necessary (e.g., a sync), pages indexed

as NBW get fetched which in turn involves acquiring the page lock, thus synchronizing

future operations on the page. The only exception to such page locking is writing to a page

already in the non-blocking write state; the write does not lock the page but instead queues

a new patch.

Ordering of Operations to Different Pages. Non-blocking writes may alter the sequence

in which patches to different pages get applied since the page fetches may complete out-

of-order. Non-blocking writes only replace writes that are to memory which are not guar-

anteed to be reflected to persistent storage in any particular sequence. Thus, ordering vio-

lations in updates of in-memory pages are crash-safe.

Flushing to Storage. If an application would like explicit disk ordering for memory page

updates, it would execute a blocking flush operation (e.g., fsync) subsequent to each op-

eration. The flush operation causes the OS to force the fetch of any page indexed as NBW

40

even if it has not been allocated yet. The OS then obtains the page lock, waits for the page

fetch, and applies any outstanding patches, before flushing the page and returning control

to the application. Ordering of disk writes are thus preserved with non-blocking writes.

Multi-core and Kernel Preemption. Our implementation fully supports SMP and kernel

preemption. For a given non-cached page, the patch creation mechanism (when processing

the write system call) can contend with the patch application mechanism (when handling

page fetch completion). Our implementation uses a single additional lock to protect a patch

queue from simultaneous access.

5.5 Evaluation

We address the following questions:

(1) What are the benefits of non-blocking writes for different workloads?

(2) How do the fetch modes of non-blocking writes perform relative to each other?

(3) How sensitive are non-blocking writes to the underlying storage type?

(4) How does memory size affect non-blocking writes?

We evaluate four different solutions. Blocking writes (BW) is the conventional approach

to handling writes and uses the Linux kernel implementation. Non-blocking writes variants

include asynchronous mode using foreground (NBW-Async-FG) and background (NBW-

Async-BG) fetch, and lazy mode (NBW-Lazy).

Workloads and Experimental Setup.

We use the Filebench micro-benchmark [SUN11] to address (1), (2), (3), and (4) us-

ing controlled workloads. We use the SPECsfs2008 benchmark [Sta08] and replay the

MobiBench traces [ESO13] to further analyze questions (1) and (2); the MobiBench trace

replay also helps answer question (3). The Filebench and MobiBench evaluations were

41

performed on a machine with Quad-Core 2.50 GHz AMD Opteron(tm) 1381 processors,

8GB of RAM, a 500 GB WDC WD5002ABYS hard disk-drive, a 32 GB Intel X25-E SSD,

and Gigabit Ethernet, running Gentoo Linux (kernel 2.6.34.14) . The above setup was also

used to run the client-side component of the SPECsfs2008 benchmark. Additionally, for the

SPECsfs2008 benchmark, the NFS server used a 2.3 GHz Quad-Core AMD Opteron(tm)

Processor 1356, 7GB of RAM, 500 GB WDC and 160 GB Seagate disks, and Gigabit Eth-

ernet, running Gentoo Linux (kernel 2.6.34.14). The 500GB hard disk housed the root file

system while the 160GB hard disk stored the NFS exported data. The network link between

client and server was Gigabit Ethernet.

5.5.1 Filebench Micro-benchmark

For all the following experiments we ran five Filebench personalities for 60 seconds using

a 5GB pre-allocated file after clearing the contents of the OS page cache. Each personality

represents a different type of workload. The system was configured to use 4GB of main

memory and memory used for patches was limited to 64MB, a small fraction of DRAM,

to avoid significantly affecting the DRAM available to the workload and the OS. We report

the Filebench performance metric, the number of operations per second. Each data-point

is calculated using the average of 3 executions.

Performance Evaluation

We first examine the performance of Filebench when using a hard disk as the storage back-

end. Figure 5.5 depicts the performance for four Filebench personalities when varying

the size of the Filebench operation. Each data point reports the average of 3 executions.

Standard error of measurement was less than 3% of the average for 96.88% of the cases

and were less than 10% for the rest.

42

0

5000

10000

15000

20000

25000

sequential-write

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

random-write

0 128
256

512
1024

2048
4096

0 128
256

512
1024

2048
4096

0

1000

2000

3000

4000

5000

6000

7000

random-readwrite

0

20

40

60

80

100

120

140

random-read

BW
NBW-Async-FG
NBW-Async-BG

NBW-Lazy
0 128

256
512

1024
2048

4096

Size of operation (bytes)

0 128
256

512
1024

2048
4096

Size of operation (bytes)

Figure 5.5: Performance for Filebench personalities when using hard disk-drive. Vary-

ing I/O size on the x-axis.

The first three plots involve personalities that perform write operations. At 4KB I/O

size, there is no fetch-before-write behavior because every write results in an overwrite of

an entire page; thus, non-blocking writes are not engaged and do not impose any overhead

either.

For the sequential-write personality, performance with blocking writes (BW) depends

on the operation size, and is limited by the number of page misses per operation. In the

worst case, when the I/O size is equal to 2KB, every two writes involve a blocking fetch.

On average, the different non-blocking write modes provide a performance improvement

of 13-160% depending on the I/O size.

The second and third personalities represent random access workloads. Random-write

is a write-only workload, while random-readwrite is a mixed workload; the latter uses two

threads, one for issuing reads and the other for writes. For I/O sizes smaller than 4KB, BW

43

provides a constant throughput of around 97 and 146 operations/sec for random-write and

random-readwrite personalities respectively. Performance is consistent regardless of the

I/O size because each operation is equally likely to result in a page miss and fetch. Random-

readwrite performs better than random-write due to the additional available I/O parallelism

when two threads are used. Further, for random-write, NBW-Async-FG provides 50-60%

performance improvement due to reduced blocking for page fetches of the process. How-

ever, this improvement does not manifest for random-readwrite wherein read operations

incur higher latencies due to additional blocking for pages with fetches in progress. In

both cases, the benefits of NBW-Async-FG are significantly lower when compared to other

non-blocking write modes since NBW-Async-FG blocks on many of the initial file-system

metadata misses during this short-running experiment.

In contrast, NBW-Async-BG unblocks the process immediately while a different ker-

nel thread blocks for the metadata fetches as necessary. This mode shows a 6.7x-29.5x

performance improvement for random-write, depending on the I/O size. These perfor-

mance gains reduce as the I/O size increases since non-blocking writes can create fewer

outstanding patches to comply with the imposed patch memory limit of 64MB. A simi-

lar trend is observed for random-readwrite with performance improvements varying from

3.4x-19.5x depending on the I/O size used. NBW-Lazy provides up to 45.4X performance

improvement over BW by also eliminating both data and metadata page fetches when pos-

sible. When the available patch memory limit is reached, writes are treated as in BW until

more patch memory is freed up.

The final two personalities, random-read and sequential-read (not shown), are read-

only workloads. These workloads do not create write operations and the overhead of using

a non-blocking writes kernel is zero. Non-blocking writes deliver the same performance as

blocking writes.

44

sequential-write random-write0 0

0

5000

10000

15000

20000

25000

128
256

512
1024

2048
4096

0

5000

10000

15000

20000

25000

128
256

512
1024

2048
4096

random-readwrite random-read0 0

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

128
256

512
1024

2048
4096

Size of operation (bytes)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

128
256

512
1024

2048
4096

Size of operation (bytes)

Figure 5.6: Performance for Filebench personalities when using solid-state drive. Vary-

ing I/O size on the x-axis.

Sensitivity to system parameters

Our sensitivity analysis of non-blocking writes addresses the following specific questions:

(1) What are the benefits of non-blocking writes when using different storage back-ends?

(2) How do non-blocking writes perform when system memory size is varied?

Sensitivity to storage back-ends

To answer the first question, we evaluated non-blocking writes using a solid state drive

(SSD) based storage back-end. Figure 5.6 presents results when running Filebench per-

sonalities using a solid state drive. Each data point reports the average of 3 executions.

Standard error of measurement was less than 2.25% of the average in all cases except one

for which it was 5%.

45

Performance trends with the sequential-write workload are almost identical to the hard

disk counterparts (Figure 5.5) for all modes of non-blocking writes. This is because non-

blocking writes completely eliminate the latency of accessing storage for every operation

in both systems. On the other hand, because the SSD offers better throughput than the

hard disk drive, BW offers an increase in throughput for every size below 4KB. In sum-

mary, the different non-blocking write modes provide between 4% and 61% performance

improvement depending on the I/O size.

For the random-write and random-readwrite workloads, the non-blocking write vari-

ants all improve performance but to varying degrees. The SSD had significantly lower

latencies servicing random accesses relative to the hard disk drive which allowed for meta-

data misses to be serviced much quicker. The efficiency of NBW-Async-FG relative to BW

is further improved relative to the hard disk system and it delivers 188% and 117% perfor-

mance improvement for random-write and random-readwrite respectively. NBW-Async-

BG improves over NBW-Async-FG for reasons similar to those with hard disks. NBW-

Async-BG delivers 272% (up to 4.2X in the best case) and 125% performance improvement

over BW on average for random-write and random-readwrite respectively. Lastly, although

NBW-Lazy performs significantly better than BW, contrary to our expectations, its perfor-

mance improvements were lower when compared to the NBW-Async modes. Upon further

investigation, we found that when the patch memory limit is reached, NBW-Lazy takes

longer than the other modes to free its memory given that the fetches are issued only when

blocking cannot be avoided anymore. While the duration of the experiment is the same as

disk drives, a faster SSD results in the patch memory limit being met more quickly. In our

current implementation, after the patch memory limit is reached and no more patches can be

created, NBW-Lazy defaults to a BW behavior issuing fetches synchronously for handling

writes to non-cached pages. Despite this drawback, NBW-Lazy mode shows 163%-211%

and 70% improvement over BW for random-write and random-readwrite respectively.

46

 0

 5000

 10000

 15000

 20000

 25000

 128
 256

 512
 1024

 2048
 4096

sequential-write

 0

 100

 200

 300

 400

 500

 600

 700

 800

 128
 256

 512
 1024

 2048
 4096

random-write

 100

 200

 300

 400

 500

 600

 700

 800

 4096

 0

 100

 200

 300

 400

 500

 600

 700

 800

 128
 256

 512
 1024

 2048
 4096

System Memory (MB)

random-readwrite

 0

 20

 40

 60

 80

 100

 120

 140

 128
 256

 512
 1024

 2048
 4096

System Memory (MB)

random-read

BW
NBW-Async-FG
NBW-Async-BG

NBW-Lazy

Figure 5.7: Memory sensitivity of Filebench. The I/O size was fixed at 2KB and patch

memory limit was set to 64MB.

Sensitivity to system memory size

We answer the second question using the Filebench workloads and varying the amount of

system memory available to the operating system. For these experiments, we used a hard

disk drive as the storage back-end and fixed the I/O size at 2KB. Figure 5.7 presents the

results of this experiment. Each data point reports the average of 3 executions. Standard

error of measurement was less than 4% of the average for 90% of the cases and were less

than 10% for the rest.

For the sequential-write workload, the non-blocking writes variants perform 45-180%

better than BW. Further NBW-Lazy performs better and can be considered optimal because

(i) it uses very little patch memory, sufficient to hold enough patches until a single whole

47

0

100000

200000

300000

400000

500000

600000

700000

BW NBW
Async-FG

NBW
Async-BG

NBW
Lazy

F
et

ch
 C

ou
nt

Figure 5.8: Page fetches issued for the Filebench sequential-write workload.

page is overwritten, and (ii) since pages get overwritten entirely in the sequential write, it

eliminates all page fetches.

Figure 5.8 depicts the number of page fetches for the sequential-write workload. For

BW, NBW-Async-FG, and NBW-Async-BG the number of fetches is proportional to the

number of operations per second reported for these runs. On the other hand, NBW-Lazy

performs zero fetches.

For random-write and random-readwrite workloads, NBW-Async-FG delivers perfor-

mance that is relatively consistent with BW; the I/O performance achieved by these solu-

tions is not high enough to make differences in memory relevant. NBW-Async-BG and

NBW-Lazy offer significant performance gains relative to BW of as much as 560% and

710% respectively. With NBW-Lazy, performance improves with more available memory

but only up to the point at which the imposed patch memory limit is reached prior to the

completion of the execution; increasing the patch memory limit would allow NBW-Lazy

to continue scaling its performance.

5.5.2 SPECsfs2008 Macro-benchmark

The SPECsfs2008 benchmark tests the performance of NFS servers. For this experiment,

we installed a non-blocking writes kernel in the NFS server which exported the network file

system in async mode. SPECsfs2008 uses a client side workload generator that bypasses

48

Operation Size Read % Cum. Read % Write % Cum. Write %

1 - 511 bytes 3 3 13 13

512 - 1023 bytes 1 4 3 16

1024 - 2047 bytes 2 6 7 23

2048 - 4095 bytes 1 7 5 28

4KB 16 23 11 39

4097 - 8191 bytes 6 29 3 42

8KB 36 65 30 72

8193 - 16383 bytes 7 72 7 79

16KB 7 79 5 84

16385 - 32767 bytes 2 81 1 85

32, 64, 96, 128, 256 KB 19 100 15 100

Table 5.2: SPECsfs2008 write sizes.

the page cache entirely. The client was configured for a target load of 500 operations per

second. The target load was sustained in all evaluations; thus the SPECsfs2008 perfor-

mance metric is the operation latency reported by the NFS client. While the evaluation

results are encouraging, the relative performance results we report for NFS workloads are

likely to be an underestimate. This is because our prototype was used only at the NFS

server; the client counterpart of non-blocking writes was not engaged by this benchmark.

SPECsfs2008 operations are classified as write, read, and others which includes meta-

data operations such as create, remove, and getattr. For each variant solution, we report

results for the above three classes of operations separately as well as the overall perfor-

mance that represents the weighted average across all operations. Further, we evaluated

performance when varying the relative proportion of NFS operations issued by the bench-

mark. The default configuration as specified in SPECsfs2008 is: reads (18%), writes (10%)

and others (72%). We also evaluated three modified configurations: no-writes, no-reads,

and one that uses: reads (10%), writes (18%), and others (72%) to examine a wider spec-

trum of behaviors.

We first perform a brief analysis of the workload to determine expected performance.

Even for configurations that contained more writes than reads (e.g., 18% writes and 10%

reads) the actual fraction of cache misses upon writes is far lower than the fraction of misses

49

N
or

m
al

iz
ed

 la
te

nc
y

 0%

20%

40%

60%

80%

100%

120%

Read(28%)

Others(72%)

Overall
(100%)

Read-only

Write(10%)

Read(18%)

Others(72%)

Overall
(100%)

Default

N
or

m
al

iz
ed

 la
te

nc
y

 0%

20%

40%

60%

80%

100%

120%

Write(18%)

Read(10%)

Others(72%)

Overall
(100%)

Write-heavy

Write(28%)

Others(72%)

Overall
(100%)

Write-only

N
or

m
al

iz
ed

 la
te

nc
y

BW
NBW-Async-FG
NBW-Async-BG

NBW-Lazy

Figure 5.9: Normalized average operation latencies for SPECsfs2008.

due to reads (i.e., 16.9% write misses vs. 83.1% read misses). This mismatch is explained

by noting that each read access to a non-cached page results in a read miss but the same is

not true for write accesses when they are page-aligned. Further, Table 5.2 reports that only

39% of all writes issued by the SPECsfs2008 are partial page overwrites which may result

in non-blocking writes. Thus, only 7% (i.e., 39% of 18%) of the operations the benchmark

are writes that may result in write misses. As per Table 5.2, on average, reads are of 5 pages

in size. If we compare 7% writes that could incur in a miss to only one page and 10% reads

that could incur in misses to 5 pages, this translates approximately to 12.3% write misses

vs 87.7% read misses.

Figure 5.9 presents the average operation latencies normalized using the latency with

the BW solution. Excluding the read-only workload, the dominant trend is that the non-

50

N
or

m
al

iz
ed

 la
te

nc
y

BW
NBW-Async-FG
NBW-Async-BG

NBW-Lazy

 0%

20%

40%

60%

80%

100%

facebook
twitter

HDD

facebook
twitter

SSD

Figure 5.10: Normalized average latencies when replaying MobiBench traces [ESO13].

blocking write modes offer significant reductions in write operation latency with little or no

degradation in read latencies. Further, the average overall operation latency is proportional

to the fraction of write misses and to the latency improvements for NFS write operations.

For the three configurations containing write operations, the latency of the write operations

is reduced between 65 and 79 percent when using the different modes of non-blocking

writes. Read latencies are slightly affected negatively due to additional blocking on certain

pages. With BW, certain pages could have been fetched into memory by the time the

read operation was issued. With non-blocking writes, the corresponding fetches could be

delayed or not issued at all until the blocking read occurs. For the configuration with no

write operations the average overall latency remained relatively unaffected.

5.5.3 MobiBench Trace Replay

The MobiBench suite of tools contains traces obtained from an Android device when using

the Facebook and Twitter apps [ESO13]. We used MobiBench’s timing-accurate replay

tool to replay the traces. We fixed a bug in the replay tool prior to using it; the original

replayer used a fixed set of flags when opening files regardless of the trace information.

MobiBench reports the average file system call operation latency as the performance met-

ric. We replayed the traces five times and report the average latency observed. Standard

error of measurement was less than 4% of the average in all cases except one for which

51

it was 7.18%. Figure 5.10 presents the results for this evaluation for both hard disks and

solid-state drives. Non-blocking writes exhibit a reduction in operation latencies between

20% and 40% depending on the mode and back-end storage used for both Facebook and

Twitter traces.

5.6 Summary

For over four decades, operating systems have blocked processes for page fetch I/O when

they write to non-cached file data. We revisited this well-established design and demon-

strated that such blocking is not just unnecessary but also detrimental to performance.

Non-blocking writes decouple the writing of data to a page from its presence in mem-

ory by buffering page updates elsewhere in OS memory. This decoupling is achieved with

a self-contained operating system improvement seamless to the applications. We designed

and implemented asynchronous and lazy page fetch modes that are worthwhile alternatives

to blocking page fetch. Lazy page fetch mode is able to reduce memory consumption by

avoiding complete-page allocations for sub-page size writes. We also designed foreground

and background fetch mechanisms and implemented them within the asynchronous page

fetch mode. Our evaluation of non-blocking writes using Filebench revealed throughput

performance improvements of as much as 45.4X across various workload types relative

to blocking writes. For the SPECsfs2008 benchmark, non-blocking writes reduced write

operation latencies by as much as 65-79%. When replaying the MobiBench file system

traces, non-blocking writes decreased average operation latency by 20-60%. Further, there

is no loss of performance when workloads cannot benefit from non-blocking writes.

Non-blocking writes effectiveness can be limited by the amount of main memory avail-

able to buffer data while pages are still to be fetched from secondary storage. This amount

of memory can vary greatly from time to time depending on the current workload being ex-

ecuted on the system. In the next chapter we present the design and implementation of new

52

memory tiering solutions that integrate emerging byte-addressable persistent memory into

main-memory as an alternative to expensive DRAM. Our solution solves the non-trivial

problem of dynamically migrating pages into appropriate tiers depending on page access

frequency in order to boost system performance.

5.7 Credits

A preliminary design and evaluation of non-blocking writes by means of a simulation was

published in the proceedings of the USENIX Workshop on Hot Topics in Storage and File

Systems in June 2011 [UKRV11] and was presented by Luis Useche. Luis Useche, Ri-

cardo Koller, Raju Rangaswami, and Akshat Verma contributed the preliminary design of

non-blocking writes. Luis Useche, Daniel Campello, Ricardo Koller, Raju Rangaswami,

and Jesus Ramos substantially refined the preliminary design of non-blocking writes for its

implementation in commodity operating systems. Luis Useche, Daniel Campello, Ricardo

Koller, and Jesus Ramos implemented non-blocking writes with foreground asynchronous

fetch mode for file system. Daniel Campello implemented background asynchronous fetch

and lazy fetch modes for file system and refined the implementation to fully support SMP

and kernel preemption. Daniel Campello and Hector Lopez executed all the experiments

to evaluate the implementation of non-blocking writes to files. Daniel Campello created

the tracing module used to capture the file system traces which motivated the use of non-

blocking writes to files. This work was published in the proceedings of the USENIX Con-

ference on File and Storage Technologies in February 2015 [CLU+15] and was presented

by Daniel Campello.

53

CHAPTER 6

MANAGING TIERED MEMORY SYSTEMS WITH MULTI-CLOCK

In Chapter 5 we presented a solution that eliminates process blocking required to ser-

vice file writes to pages that are not present in the OS cache in a way that is transparent

to applications. Our non-blocking writes solution depends on the use of temporary main

memory buffers to hold the data being written by applications. In this chapter we turn

our efforts to make use of emerging byte-addressable persistent memory to augment the

amount of available main memory for applications to use in a completely transparent way.

Over the last several decades DRAM performance and capacity have followed Moore’s

Law and thus kept up with advances in CPU technology. However, DRAM based mem-

ory systems have two significant drawbacks pertaining to cost and power consumption.

These drawbacks impact their usage in both enterprise servers and mobile systems. While

enterprises design and size their memory systems so as to keep workload working sets in

main memory at all times, cost and power constraints also limit DRAM sizes within mobile

systems. Today’s multi- and many-core platforms support higher levels of workload paral-

lelism (in mobile and server workloads) and multi-tenancy (in server workloads), placing

greater demands on the memory system. Furthermore, the new generation of big data an-

alytics applications in the enterprise and cloud are inherently memory intensive whereby

workloads demand access to high-performance, yet low-cost, memory devices in prefer-

ence to the much slower storage system [spa, sap, Fit04, Sal].

A complementary and disruptive technological change is the imminent availability

of lower cost and lower power consuming byte-addressable persistent memory technolo-

gies [MSS12, Mit13]. These new memories offer an attractive set of properties that are

well-suited to meet the growing memory demands of workloads at a fraction of DRAM

cost (Table 6). They offer latency and bandwidth properties for byte-addressable access

that are within an order of magnitude of those with DRAM. Furthermore, they do not

54

Parameter DDR-DRAM PM

Capacity per CPU 100s of GBs Terabytes

Read Latency 1x 2x to 4x

Write Bandwidth 1x 1/8x to 1/4x

Estimated Cost 5x 1x

Endurance 1016 106 to 108

Table 6.1: Comparison of Memory Technologies [DRZ+16]. Persistent memory (PM)

characteristics are based on PCM and ReRAM technologies [Cro13, QSR09].

require power to retain data thereby greatly reducing the power consumption, which an

alternate system with large quantities of DRAM would otherwise incur. Finally, when used

to extend main memory, their persistence capability becomes irrelevant, thereby entirely

avoiding the biggest performance overhead in using persistent memory [ZS15].

As with any emerging technology, we expect a gradual adoption of persistent memory

over time, leading to initial systems where its use is completely transparent to legacy ap-

plications. One straightforward use of persistent memory is as a swap device with demand

paging into DRAM, similar to how block devices are used. Paging is already supported in

modern operating systems (OS), wherein persistent memory can be abstracted as a block

device and then can be used as swap area. The main drawback of this approach, however,

is that the natural byte-addressability of persistent memory is not utilized and any data in

persistent memory must first be moved to DRAM before accessing it.

Another appealing usage of persistent memory is as a new tier in a multi-tier memory

system with different tiers ordered from high performance - low capacity to low perfor-

mance - high capacity. This approach allows applications to access their data directly from

persistent memory without first paging in to DRAM. However, managing persistent mem-

ory simply as additional available memory could compromise the effectiveness of the tiered

memory system. Once an application has exhausted higher memory tier resources, future

allocations for said application or any other application on the system will have to be ser-

55

viced from lower tiers. Additionally, such allocations will remain in lower tier memory

regardless of how important (hot) the data is until they are freed.

We make the following contributions in this chapter:

1. We identify and study alternate approaches to including byte-addressable persistent

memory in today’s memory systems: demand paging, static tiering, dynamic tiering.

2. We propose MULTI-CLOCK, an OS-resident page management mechanism that en-

ables dynamic, timely migration of hot data to the higher memory tier and cold data

to the lower tier with the objective of optimizing application performance. MULTI-

CLOCK uses both DRAM and persistent memory in a complementary manner and

can benefit from persistent memory’s high capacity while still retaining DRAM’s

low latency for frequently accessed pages.

3. We implement a prototype for MULTI-CLOCK using Linux version 4.0 by extending

the kernel’s memory zones to represent different memory tiers and extending its page

reclamation algorithm to include dynamic tier migration logic.

4. We evaluate the performance of our prototype using workloads that include micro-

benchmarks to graph analytics, KV, and database benchmark workloads.

6.1 Motivation

Persistent memory forces a rethink of how workloads consume both memory and storage.

The memory usage is relatively more straightforward given that persistent memory devices

provide byte-addressability. Furthermore, this usage is rather appealing given the high cost

and power demands imposed by DRAM technology. We estimate the cost of DRAM to be

5x of persistent memory for the same capacity [DRZ+16].

Today, enterprises are hosting applications with large working sets. Many of these

workloads are memory intensive, requiring most of their working set to be readily avail-

56

able [spa, sap, Fit04, Sal]. Mobile systems are also running increasingly memory intensive

applications [chr]. Thus, we anticipate both ends of the market, enterprise and mobile,

to drive demand for the new memory technology. However, using these new persistent

memory most effectively is non-trivial.

6.1.1 Swapping vs. Tiering

A straightforward approach to integrating persistent memory is to use it as a swap device

within a demand paged memory architecture. Persistent memory is attractive as a paging

device due to its higher performance when compared to conventional block-based storage

devices. Demand paging works by storing and retrieving data to and from a swap area

(conventionally a block-based storage device) at the page granularity. Today operating sys-

tems already support this use. Linux, for instance, exports a block abstraction of available

persistent memory in the system via the /dev/pmem device which can be used as a swap

via mkswap and swapon commands. This block abstraction has been used in the past to

enable the use of persistent memory to store file system data [DAX, DKK+14].

An alternative approach is to configure both DRAM and persistent memory as separate

tiers in a multi-tier memory system. With tiering, data residing in the byte-addressable

persistent memory is treated as resident in main memory and is readily accessible for the

CPU to use. Tiers are defined by disjoint physical memory regions or, in other words,

disjoint sets of memory frames. On start-up, the operating system identifies which frames

belong to each memory type and assigns them to their proper tier. Tiers then get arranged

in a specific order, following the characteristics of the different types of memory (i.e.,

from high performance - low capacity to low performance - high capacity), to service

memory allocations. There is no explicit limit on the number of different tiers that can be

defined. Assuming temporal locality of reference, allocations are served from the highest

performing tier to boost application performance.

57

 0

 5000

 10000

 15000

 20000

 25000

 30000

Swap
Tiered

S
to

re
d

P
ro

ce
du

re
 c

al
ls

 /
se

co
nd

Application Throughput

 0%

20%

40%

60%

80%

100%

Swap
Tiered

Normalized Latency

0-50 ms
50-100 ms

100-150 ms
150-200 ms

200+ ms

Figure 6.1: TPC-C performance using persistent memory as swap vs as a new tier. The

left graph shows application throughput reported by the benchmark while the right graph

presents the distribution of latency for each benchmark operation executed.

To compare the difference in performance of both approaches we ran the on-line trans-

action processing benchmark, TPC-C [Tra], on top of the VoltDB [Vol] database (see sec-

tion 6.4.5 for more details on the configuration used). We executed the benchmark on (1) a

system configured to use persistent memory as a block swap device and (2) a system with

two tiers of memory: DRAM and persistent memory. Figure 6.1 presents a comparison

between these two approaches.

The left graph on Figure 6.1 shows how persistent memory, when used as a swap, results

in poor application performance, about 9% of the performance achieved when used as an

additional memory tier. The performance gap can be explained by the need of the paging

solution to first move data from persistent memory into DRAM before the CPU can access

it. This memory movement overhead is reflected in the latency of the benchmark operations

reported in the right graph of Figure 6.1. Additionally, with demand paging there is a need

to maintain several data structures to manage the swap area contents.

58

6.1.2 Static Tiering

Tiering as described earlier, falls into the category of static tiering, since allocations once

mapped to a tier may not get reassigned to a different tier. Static tiering, however, is not a

complete solution since it does not guarantee fairness in memory access performance in a

multiprocessing system. If an application wins the race to allocate memory from a higher

tier and such space in exhausted, future allocations will be downgraded to use lower tiers

during their entire lifetime, regardless of how the importance of the contained data changes

over time. We define importance of a data page as how frequently the page is accessed

in the near past, or in other words, how hot the page is with respect to the other pages in

the system. To understand the significance of this problem, we designed a simple experi-

ment involving two processes. Both processes execute the same benchmark (TPC-C over

VoltDB) as in the previous experiment. Process 1 gets to execute first and it uses up most

or all available memory in the higher tier (DRAM). Figure 6.2 shows how performance

for Process 2 degrades when it may only use the lower tier (persistent memory) to service

most or all of its allocations. In this experiment each process consumes about 34GB and we

vary the amount of available DRAM in the system and the latency of accessing persistent

memory following the range presented in table 6. We see how the performance of Process

2 degrades on relation to the performance of Process 1 as there is more available DRAM

for Process 1 to use and not Process 2. The problem becomes more acute as the latency

gap between tiers is increased. Section 6.4 describes more details on this experiment.

6.1.3 Dynamic Tiering

Problems with static tiering can be overcome with a solution that dynamically migrates

important pages to higher tiers and less important pages to lower tiers. MULTI-CLOCK

builds on this idea and addresses several key challenges involved in creating a usable solu-

59

 0%

20%

40%

60%

80%

100%

16GB - 300ns

32GB - 300ns

48GB - 300ns

16GB - 600ns

32GB - 600ns

48GB - 600ns

Normalized Application Throughput

Figure 6.2: Relative TPC-C performance of two instances executed in succession. Per-

formance of the second instance relative to the first. Varying in the x-axis, amount of

available DRAM in the system and accesses latency to emulated persistent memory.

tion. First, a migration mechanism that allows the contents of a page be moved from one

physical frame belonging to a particular tier to a frame in a different tier becomes neces-

sary. Such a mechanism must also fix any virtual→physical address mapping that could

exist on the system at any time (i.e., page table entries, indexes to file-backed pages in the

page cache). Second, with dynamic tiering the system must adapt to workload changes

in a timely fashion, in other words, it must decide when is the right moment to trigger

memory migrations. The next section presents how MULTI-CLOCK selects candidates to

be migrated between memory tiers and decides when to carry such migrations in a manner

that is transparent to applications running in the system.

6.2 MULTI-CLOCK

A fundamental problem with static tiering is the mismatch of page access performance

requirements with tier performance capabilities. MULTI-CLOCK addresses this problem

with a solution that dynamically migrates important pages to higher tiers and less important

60

pages to lower tiers. To achieve this goal, MULTI-CLOCK applies a modified version of the

Page Frame Reclamation Algorithm (PFRA) used in Linux (which is based on the CLOCK

algorithm) to each memory tier separately. The CLOCK algorithm approximates LRU by

checking for references when scanning the list of pages and moving any referenced page to

the head of the list. If at any time a tier cannot be used to service an allocation, it is marked

as being under memory pressure. Once a tier is marked as being under memory pressure,

MULTI-CLOCK frees up space in that tier by picking candidate pages to be migrated to its

lower tier, if one exists, or evicted out of memory altogether. Every page in the system

is arranged in one of its tier’s three lists according to their degree of hotness/coldness in

terms of accesses. We call these lists the inactive, active and promote LRU-like lists. The

top tier in the system does not use a promote list since there is no higher tier to migrate

pages to. For systems with only one memory tier, MULTI-CLOCK trivially reverts to the

original PFRA behavior since it only uses inactive and active lists.

6.2.1 Life Cycle of a Page

Every list is scanned at various points in time to make decisions regarding migrations.

A recently allocated page starts in the inactive list which maintains candidate pages for

demotion, i.e., migration to a lower tier. A page is said to be referenced if any type of access

(i.e., read or write) occurs to such page. Both inactive and active lists make a differentiation

between pages referenced and not referenced since the last scan.

During a scan, if a page has been marked referenced since the previous scan, it is then

marked as not referenced and skipped over, as CLOCK does. On the other hand, if the page

was not referenced, it is moved according to which list belongs to: (a) if it belongs to the

active list it is moved to the inactive list, (b) if it belongs to the inactive list is then migrated

to its lower tier, and if none exists, evicted out of memory. This movement of pages out of

a list is referred as the shrink of the source list. At the same time, when an access occurs

61

Promote Active Inactive

Promote Active Inactive

L
o
w

er
T

ie
r

H
ig

h
er

T
ie

r

P
ro

m
ot

io
n

Demotion

R
e-

ac
tiv

at
e

Shr
in

k

A
ct

iv
at

e

Shr
in

k

A
ct

iv
at

e

Shr
in

k

Allocation

Eviction

Figure 6.3: MULTI-CLOCK design. The system consists of two memory tiers, each with

inactive, active and promote LRU-like lists. Arrows represent the possible movement of

pages between lists and tiers. This design generalizes to more than 2 tiers.

to a page on the inactive list and that page was marked as referenced, this page is activated

by being moved to the active list where it starts out by being marked as not referenced. A

similar mechanism is followed when a page is re-activated and is moved from the active to

the promote list, where it becomes a candidate for promotion (i.e., migration to an upper

tier).

Figure 6.3 depicts this overall arrangement of lists in the two tiers on the system and

the possible movement of pages within and across these tiers. With this arrangement, the

system is able to classify pages into three categories: hot, warm and cold. Hot pages

navigate the lists within a tier and eventually reach the promote list were they become

candidate pages to migrate to the upper tier. On the other extreme, cold pages remain in

the inactive list where they become candidates for migration to a lower tier when the tier

62

experiences memory pressure. The system is then able to make decisions on how to adapt

and place each page in their proper tier according to their frequency of accesses.

A key challenge is keeping track of accesses and updating the reference status of pages

in a timely matter. This is addressed differently depending on the type of page accesses

used by applications. Applications can access memory pages in two ways: unsupervised,

by memory mapping pages into their address-space, and supervised, using the operating

system’s (OS) file system call interface.

Supervised Access

This type of access is typically used for file backed pages and it gives the OS control at

the moment of the access to perform the necessary book-keeping. When applications use

supervised access to memory pages, the operating system has control to mark these pages

referenced (for e.g., in Linux, via mark page accessed()) and, if necessary, to move

between lists (activate or re-activate) before even processing the requested data access.

Unsupervised Access

Accesses to anonymous or file-backed memory that is directly mapped into the applica-

tion’s virtual address space via mmap are more difficult to monitor. This type of access is

entirely unsupervised and the OS is not able to mark such pages. To handle unsupervised

access, MULTI-CLOCK relies on the page referenced bit set by the CPU in the process’ page

table entry. During each scan as described earlier, before making any decision regarding a

particular page, MULTI-CLOCK checks within every process’ page table that maps it for a

referenced bit set. If a referenced bit is found set, MULTI-CLOCK updates the page status

and takes care of the necessary movement between lists (i.e., mark as referenced, activate,

or re-activate the page).

63

6.2.2 Promotion Mechanism

Periodically, a new system daemon, kpromoted, is woken up to scan the lists, updating

them, and to migrate any pages from the promote list to a higher tier due to recent unsuper-

vised accesses. Implicitly, MULTI-CLOCK relies on the periodicity of kpromoted waking

up to ensure that hot pages in lower tiers are migrated to higher tiers in a timely manner.

The frequency of kpromoted execution defines the capacity of the system to react quickly

to workload changes. On the other hand, if scheduled too frequently, excessive context

switches to accommodate its execution could also affect application performance. Careful

tuning of kpromoted’s execution schedule is necessary to ensure that applications benefit

from the promotion mechanism in MULTI-CLOCK. In the prototype system we built, we

chose the kpromoted execution schedule to be every 100ms and this worked fairly well

for the workloads we evaluated the system with. It resulted in sufficient responsiveness in

promoting hot pages without imposing high CPU overheads due to unnecessary scanning

of every page in the LRU-like lists.

6.2.3 Demotion Mechanism

Demotion allows moving cold pages from a higher tier to a lower tier when they are no

longer sufficiently important. MULTI-CLOCK’s design of this mechanism is based on page

eviction design in today’s systems. To avoid running out of memory on a given tier, a tier

is marked under memory pressure proactively when it reaches specific watermark levels.

These levels are calculated by the system according to the amount of memory in the tier vs

the total amount of memory in the system.

If any tier is marked as being under memory pressure, each list is scanned with the

objective of freeing up memory. Any page in the promote list is first attempted to be

migrated to a higher tier and if that is not possible (for instance, the page is locked), it is

64

moved to the active list. If the higher tier is also under memory pressure, promotions from

the lower tier result in immediate page demotions from the higher tier. Next, if the ratio of

pages in the active list with respect to the inactive list exceeds a tunable threshold (inherited

from PFRA and typically
√
10 ∗ n : 1, where n is the amount of memory in GB available

in the tier), pages not marked as referenced in the active list are moved to the inactive

list. Finally, the inactive list is scanned in search of pages not marked as referenced to be

migrated to a lower tier. Migration might not be possible, specifically because the candidate

pages belong to the lowest tier in the system. In this case, these pages are written back to

block storage (i.e., file-backed pages to file system and anonymous pages to the swap area

if available) before triggering the out-of-memory (OOM) killer as the last option.

6.3 Implementation

FREE

PROMOTE
ACTIVE

UNREF

ACTIVE

REF

INACTIVE

UNREF

INACTIVE

REF

TO LOWER TIER

TO HIGHER TIER

lru cache add lru

mark page accessed

mark page accessed

mark page accessed

mark page accessed

mark page accessed

shrink active list

shrink active listshrink inactive list

shrink inactive list

shrink promote list

shrink inactive list

shrink promote list

Figure 6.4: Page state diagram depicting the Linux implementation of MULTI-CLOCK

Each vertex represents a page state; white vertices are original PFRA page states while

the shaded vertex is a new page state introduced by MULTI-CLOCK. Solid edges represent

Linux procedures that change page state; dashed edges represent page migration to a differ-

ent tier. Counterparts to shrink list methods are implicit on page allocations which cause

lists to expand.

65

The existing Linux mechanism to describe physical memory relies on the definition of

nodes. In NUMA architectures, each bank of memory is represented by a single NUMA

node. On the other hand, for UMA architectures, Linux uses a single NUMA node to

represent all physical memory in the system. The data structure used to represent nodes

is called pglist data. Each node is then divided into memory ranges called memory

zones and Linux uses the data structure zone to represent them in memory. Zones are

of different types, and each type is suitable for different usages (i.e., ZONE DMA gathers

physical addresses that can be accessed by legacy hardware through DMA).

We implemented a prototype of MULTI-CLOCK in the Linux kernel v4.0. We used the

concept of memory zones to define new memory tiers. Our prototype evaluates a two tiered

memory system: one tier of DRAM and another of persistent memory; the latter is emulated

using the Intel HMEP platform (discussed in Section 6.4.1). The DRAM tier is defined by

the existing Linux memory zones; we defined a new memory zone, ZONE PMEM, that en-

capsulates all physical persistent memory. DRAM memory zones are scanned when under

memory pressure to find demotion candidates to be migrated to ZONE PMEM; ZONE PMEM

scans for demotion candidates may result in evictions from main memory to secondary

storage if ZONE PMEM becomes full at any point in time. We rely on the existing Linux

migration mechanisms already in place for the hot-plug/hot-remove of memory. Linux’s

page migration mechanism (migrate pages()) is in charge of allocating new mem-

ory pages given an allocation routine, copying the memory contents from origin pages to

newly allocated destination pages, and fixing any memory mappings that refer to the mi-

grated pages.

Originally, each Linux memory zone maintains their own set of LRU-like lists: anony-

mous inactive, anonymous active, file inactive, file active, and unevictable. We added

two lists: anonymous promote and file promote. Such promote lists are only in use for

ZONE PMEM. Unevictable pages belong to the unevictable list and are such pages in the

66

system that are locked into memory (typically via mlock()) and cannot be evicted nor

migrated. Every evictable page in the system, depending on being file-backed or anony-

mous, will belong to one set of LRU-like lists (anonymous lists or file lists) and it will

traverse these by transitioning through different states as depicted in Figure 6.4. We also

extended the struct page flags which maintain the status of a page during its existence

to add a new flag: PagePromote. This new flag is used by the OS to mark that the page

in question, which is to be added to the zone’s lists, belongs to the promote list. The mem-

ory overhead of these modifications is negligible since we reused the list pointer on the

struct page to index the pages in the promote lists; we also reused the space allocated

for the page flags to maintain the newly defined flag.

We implemented the system daemon discussed in Section 6.2.2 as a new kernel thread,

kpromoted, which is woken up every 100ns to carry the migration of any pages sitting in

the promote list to a higher tier. This thread’s design follows those of PFRA for the kswapd

eviction daemon: one kernel thread per NUMA node. This design aims to avoid lock

contention on critical per-node data structures. Maybe the most relevant data structure that

each NUMA node has is its own version of the memory zones in the system according to

the amount of memory of such zones that is physically local to the node in question. Each

zone also contains its own version of the LRU-like lists described in the previous paragraph

to maintain the status of the zone’s pages. This in turn means that since each NUMA node

protects the accesses to the zone structures through the zone->lock, more kernel threads

scanning memory pages could degrade under heavy lock contention to access the LRU-like

lists.

Our implementation of the MULTI-CLOCK algorithm is encapsulated mostly in

mm/vmscan.c and mm/swap.c. Table 6.2 presents how much new code was added

for MULTI-CLOCK and which files were modified in the Linux’s source code on top of an

existing static tiering implementation. We extended mark page accessed() to check

67

Source File New Lines Modified Lines

include/linux/gfp.h 0 1

include/linux/mmzone.h 14 4

include/linux/page-flags.h 3 1

mm/debug.c 1 0

mm/memcontrol.c 3 1

mm/page alloc.c 1 2

mm/swap.c 16 3

mm/vmscan.c 154 5

mm/vmstat.c 4 0

Table 6.2: Linux source code modifications in number of lines.

for pages that are already referenced and marked as active and are being referenced again

to mark such pages as promote page with the PagePromote flag and to move them from

their correspondent active list to the promote list (see transition from ACTIVE REF to

PROMOTE in Figure 6.4). We created a new shrink promote list() method that

complement the existing shrink active list() and shrink inactive list()

methods to handle movements of pages out of the promote list. Migrations to the upper tier

are handled via shrink promote list() and migration to the lower tier (or evictions)

are handled via shrink inactive list(). Both methods result in a physical frame

in the tier being freed after successful migration of its contents.

6.4 Evaluation

We address the following questions:

(1) What is the overhead experienced by applications due to page migration between tiers?

(2) How do applications using MULTI-CLOCK perform relative to using static tiering?

(3) How sensitive is MULTI-CLOCK to the performance of the underlying memory tech-

nology?

(4) How well does MULTI-CLOCK handle workload changes?

68

(5) What other overheads do MULTI-CLOCK mechanisms impose on the system?

We use a micro-benchmark to address (1). We use GraphLab’s PageRank implementa-

tion over the Twitter dataset to answer question (2). We use YCSB benchmark’s platform

and workloads over Memcached key-value store back-end to answer (2), (4) and (5). Fi-

nally we use VoltDB and the TPC-C benchmark to further analyze questions (2) and (4) and

address question (3). The MULTI-CLOCK prototyping platform runs Ubuntu Linux 14.04.4

LTS (kernel 4.0)

6.4.1 Emulation Platform

For evaluating MULTI-CLOCK, we used the hybrid memory emulation platform

(HMEP) [MDS+15] developed by Intel. HMEP uses custom CPU microcode to config-

ure latency and bandwidth for a separate range of physical memory to emulate persistent

memory with a portion of the DRAM. HMEP is tied to Intel Xeon E5-4620 platforms, with

16 2.6 GHz cores distributed between two processors. The observed DRAM latency on

the system is 150ns. For our experiments, we configured HMEP to set the latency of ac-

cesses to the emulated persistent memory at 300ns to simulate fast PM devices and 600ns

for relatively slower ones. This experiment setup has been used in previous work on tiered

memory [DRZ+16].

6.4.2 Micro-benchmark

To obtain a sense of the overhead involved in continuously migrating an application’s pages

between available tiers we wrote a small micro-benchmark. We also added to the kernel,

a /proc hook where an application can request its own address space to be migrated to a

target memory tier. Writing to this hook is a blocking operation that does not return until all

69

the memory pages belonging to the application’s address space in question are completely

migrated to the target tier.

This simple micro-benchmark works as follows: (a) it allocates a target page, (b)

spawns a number of threads with the only purpose of continuously calculate a check-sum

on the contents of the shared target page, and (c) the parent thread continuously triggers

migration of all the application’s memory pages back and forth between two distinct mem-

ory tiers. Migration is continuously triggered by simply writing over and over again to the

/proc hook as soon as the previous write completes.

Linux’s page migration works by taking a list of pages and migrating one page at a time.

By having multiple threads accessing the same page and having the application allocate a

small amount of memory, we create a scenario where we can expect the target page to be

under migration most of the time. While a page is being migrated, the application’s page

table is fixed to remove any mapping to the old location of the page; the page is memcpy’ed

to the new location and then the mapping in the page table is updated. Application accesses

during page migration will incur page faults, stalling execution and thus negatively impact-

ing performance. The above scenario aims to present a worst-case performance behavior

of the page migration mechanism which is at the heart of MULTI-CLOCK.

Figure 6.5 presents the results obtained from our micro-benchmark evaluation. We

measured the amount of time invested in page fault handling for the 2 configurations being

evaluated: with and without continuous page migrations. As expected, the time increases

from virtually nothing for the case when no migration occurs to about 2250 milliseconds

for the case of continuous migration. This amount of time spent on page fault handling

represents 1.25% of the 180 seconds of total execution time. This result is then consistent

with the performance results yielded by the micro-benchmark shown in Figure 6.5. Total

transactions achieved by the micro-benchmark suffer a degradation of just 3.3% when con-

tinuous migration triggered between memory tiers is compared to no migration at all. From

70

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

T
ot

al
 T

ra
ns

ac
tio

ns
 (

in
 m

ill
io

ns
)

W/O Migration With Migration

Figure 6.5: Micro-benchmark performance with and without continuous migrations.

The benchmark runs for 180 seconds with 9 worker threads. On Y axis total number of

transactions completed (check-sums on target page)

this experiment we can conclude that the page migration overhead is almost negligible to

application performance and the expected benefits of proper placement of pages to memory

tiers is likely to outweigh any migration overhead.

6.4.3 GraphLab

We address question (2) using GraphLab, a large scale memory intensive application.

GraphLab is a framework for graph analytics capable of running a wide variety of graph

processing algorithms. One such algorithm is the PageRank which we used for this exper-

iment on the 25GB Twitter dataset [KLPM10].

The execution of PageRank is divided in two stages: a load phase and an execution

phase. In the load phase, the input file containing the graph data is read into memory and

the in-memory version of the graph is constructed. During the execution phase, the actual

PageRank algorithm is executed over the already memory resident graph representation

of the data. The execution of GraphLab’s PageRank on the Twitter dataset during the

execution phase consumes about 96GB of physical memory (resident memory) and 126GB

of virtual memory (including shared memory and files mapped).

71

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

All PM
EM

Static tiering (32GB)

Static tiering (64GB)

M
ULTI-CLOCK (32GB)

M
ULTI-CLOCK (64GB)

All DRAM

All PM
EM

Static tiering (32GB)

Static tiering (64GB)

M
ULTI-CLOCK (32GB)

M
ULTI-CLOCK (64GB)

All DRAM

E
xe

cu
tio

n
T

im
e

(in
 s

ec
on

ds
)

GraphLab PageRank

Load Phase Execution Phase

Figure 6.6: GraphLab’s execution time of PageRank on the Twitter dataset. Y axis

present execution time (lower is better). Left cluster of bars present execution time for the

load phase of the benchmark while right cluster present results for the execution phase. For

each cluster, left and right extremes bars represent baseline results: on the left execution

using only persistent memory, on the right using only DRAM. Results in between compare

static tiering vs MULTI-CLOCK while varying the amount of total DRAM in the system

from 32GB to 64GB.

Figure 6.6 presents the results of executing GraphLab’s PageRank under 6 different

system configurations. The graph present bars divided into two clusters: the left cluster

with results for GraphLab’s load phase and the right cluster with results for the execution

phase. On the far left of each cluster we present the results of executing the application only

using persistent memory as the worst case result. On the far right, we have the baseline

results of executing the benchmark on a system with enough DRAM to hold the complete

working set. As expected, for both static tiering solution and MULTI-CLOCK, as more

72

DRAM is available in the system, more of the application’s working set can be hosted in

the higher performing tier, reducing data access latency and thus reducing execution time.

GraphLab’s load phase is rich in new allocations wherein the MULTI-CLOCK algorithm

makes sure that cold data is demoted from the higher tier in a timely fashion to allow new

allocations to be serviced from DRAM. The load phase performance with MULTI-CLOCK

is within 4% of the all DRAM configuration. However, the two variants of static tiering

incur 30% and 60% degradation. On the other hand, GraphLab’s execution phase is not

expected to perform as many allocations as the load phase; instead it is expected to access

all allocated memory representing the in-memory graph in order to execute the PageRank

algorithm. This phase takes advantage of both MULTI-CLOCK’s demotion and promotion

algorithms to ensure that the hottest data is readily accessible in the high-performing tier

while the mostly unused cold data is relegated to the lower, low-performing tier.

In the execution phase of the experiment, the benchmark with MULTI-CLOCK required

only 53% and 68% of the time required for the all-persistent memory configuration when

64GB and 32GB of DRAM were available respectively. In comparison, static tiering con-

figurations require as much as 75% and 95% of the execution time required by the all

persistent memory solution. The benchmark speedup of only 5% with static tiering when

only 32GB DRAM were available rendered this amount of expensive DRAM almost use-

less in improving the all persistent memory baseline performance and not worth the cost.

Static tiering presents 88% and 135% degradation on the execution phase performance

when compared to the DRAM baseline. In comparison, MULTI-CLOCK’s performance is

only 32% worse compared to the DRAM baseline when 64GB of DRAM were available

and 69% when just 32GB of DRAM was available.

Figure 6.7 presents the same results of Figure 6.6, now taking into consideration the

expected cost per GB of the different tiers. Here we can observe the cost reduction benefits

of MULTI-CLOCK when more persistent memory is used in place of DRAM. A similar cost

73

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

All PM
EM

Static tiering (32GB)

Static tiering (64GB)

M
ULTI-CLOCK (32GB)

M
ULTI-CLOCK (64GB)

All DRAM

All PM
EM

Static tiering (32GB)

Static tiering (64GB)

M
ULTI-CLOCK (32GB)

M
ULTI-CLOCK (64GB)

All DRAM

P
er

fo
rm

an
ce

 /
C

os
t

GraphLab PageRank

Load Phase Execution Phase

Figure 6.7: Time*Cost comparison for GraphLab’s PageRank on the Twitter dataset.

Y axis present Time*Cost (lower is better). DRAM’s cost is 5x cost of persistent memory.

study can be used on a case-by-case basis to size the different tiers in the multi-tier system

appropriately depending on the workloads to which the system is going to be exposed.

6.4.4 Memcached YCSB benchmark

We use the Yahoo! Cloud System Benchmark (YCSB) [CST+10] to answer questions (2),

(4) and (5). YCSB is a framework for evaluating different key-value stores and includes a

set of core workloads identified as A through F that can be executed by their workload gen-

erator. This generator is written as a client application which communicates with diverse

back-end servers. For our evaluation we used Memcached [Fit04], an in-memory cache

service which uses a large amount of main memory to maintain its data, as the key-value

74

store back-end of YCSB. Memcached also represents a real-world application that is being

widely used in the industry today.

YCSB workloads are divided in two phases: a load phase and an execution phase.

The load phase is in charge of populating the back-end key-value store with the required

number of records, which in our evaluation is set to 60 million. With 60 million records,

Memcached consumes about 83 GB of main memory. On the other hand, the execution

phase carries diverse types of operations over the back-end depending on the description

of each workload. One thing to note is that YCSB’s workload E makes use of SCAN

operations that may or may not being implemented by the different key-value back-ends.

Memcached does not implement SCAN operations, making workload E non-operational.

Further, the load phase is the same for all workloads and most workloads (all but D and E)

do not change the amount of records in the back-end. In order to gather the results of this

experiment we followed the prescribed execution sequence [ycs] for the YCSB workloads.

Since workload D changes the amount of records in the back-end, the order of execution

is arranged in the following manner: Load Phase, Workload A, Workload B, Workload C,

Workload F and Workload D. For this evaluation we set our emulation platform to have 32

GB of DRAM and 192 GB of persistent memory with 600ns latency for accesses.

Performance comparison

We first answer question (2). Figure 6.8 presents the results of our evaluation with YCSB

against Memcached as the key-value store back-end. We can observe how MULTI-CLOCK’s

placement of frequently accessed pages in DRAM translates to application throughput ben-

efits of up to 10% when compared to static tiering depending on the type of workload. Fig-

ure 6.8 also presents the results obtained from running the benchmark on a system with only

DRAM as the upper bound for performance. The improvement in performance achieved

by MULTI-CLOCK for some workloads can be really close to this upper bound (Workload

75

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

A B C F D

Application Throughput

Static Tiering
MULTI-CLOCK

All DRAM

Figure 6.8: YCSB throughput of different workloads running against Memcached.

D, where new records are inserted, and the most recently inserted records are the most

popular) showcasing the benefits of automatic intelligent migration.

Performance analysis

To better understand how MULTI-CLOCK benefits are reflected in the different workload

executions, we answer questions (4) and (5). Figure 6.9 presents two sets of statistics re-

garding MULTI-CLOCK background activity over time. On the top graph of Figure 6.9 we

have the CPU utilization of the two daemons in charge of page migrations: kswapd and

kpromoted. The first section of the graph depicts the activity of the system during the Load

phase of the benchmarks. This phase is characterized by many new memory allocations

required for the creation of new records in the key-value store, which in consequence gen-

erates heavy memory pressure on the system’s highest memory tier. This memory pressure

translates to an average of 15% CPU utilization for the kswapd daemon which handles page

demotions. In contrast, during the different workload executions, since memory allocations

are not as frequent or none existent altogether, the amount of CPU utilization for kswapd

is reduced by half, to about 7.25% in average. The demotion activity is still present when

76

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

Lo
ad

A B C F D

C
P

U
 U

sa
ge

 P
er

ce
nt

ag
e

Daemon CPU Usage - YCSB

kswapd
kpromoted

 0
 10
 20
 30
 40
 50
 60
 70

 0 20 40 60 80 100 120

Lo
ad A B C F D

M
ig

ra
te

d
pa

ge
s

(in
 m

ill
io

ns
)

Execution Time (in minutes)

Cumulative Amount of Migrated Pages - YCSB

Demoted
Promoted

Figure 6.9: MULTI-CLOCK statistics during YCSB benchmark execution. On the top

graph: CPU utilization for kswapd and kpromoted kernel threads over time. On the bottom:

Cumulative amount of pages demoted from DRAM and promoted from persistent memory

over time.

no new allocations are made by the application in order to make room in the higher tiers

for pages being promoted from lower tiers. kpromoted’s CPU utilization is limited to about

5.5% on average. We note that kswapd’s CPU utilization is typically higher than kpro-

moted’s since it has to keep up demoting pages to free up space in response of promotions

and new memory allocations as well.

On the bottom plot of Figure 6.9, we report the number of pages being migrated across

tiers on the system. Two key observations are derived from this graph. The first observation

is that during the load phase, the rate at which demotions occur is higher than any other

point in time, while in contrast, promotion rate is really low. This behavior is an outcome

of the memory pressure that arises at the high-performing tier of the system when new

memory allocations are requested by applications. We note that some promotions actually

occur during the load phase and these may be related to how the back-end manages its own

memory pages to service internal allocations of sizes smaller than a page. The second ob-

servation is that during the execution phase of the different workloads the rate of demotions

77

is roughly similar to the rate at which promotions occur. This is because demotions become

necessary to make room for pages being promoted from lower tiers and not as much due to

new memory allocations.

6.4.5 VoltDB TPC-C benchmark

We used the industry standard TPC-C benchmark on top of VoltDB [Tra, Vol] to evaluate

MULTI-CLOCK and analyze questions (2), (3) and (4). VoltDB is an ACID-compliant,

distributed, in-memory relational database. The TPC-C benchmark imitates the operations

of a wholesale product supplier. The number of warehouses was set to 512 and the number

of sites in VoltDB was set to 8. The benchmark reports TPC-C throughput measured as

total transactions per second.

The core benefit of MULTI-CLOCK, we believe, is its ability to adapt to workload

changes in the system. To evaluate this property, we first run one instance of the VoltDB,

execute the TPC-C benchmark, and note the reported throughput. This instance is con-

figured to consume around 34GB of main memory. Depending on the amount of DRAM

in the system, these allocations may or may not be serviced completely by the high per-

formance DRAM tier. Next, in the second phase of the experiment, we execute a second,

identical VoltDB/ TPC-C benchmark instance (using 34GB of memory as well), without

allowing the first VoltDB instance to free any used memory. In this second phase, memory

allocated by the first VoltDB instance is unused and thus cold.

Figure 6.10 contrasts the results from a static tiering solution against dynamic tiering

using MULTI-CLOCK. Each data point represents the relative throughput of the second

VoltDB instance with respect of the first one. On the X axis we vary the amount of avail-

able DRAM and the emulated latency for persistent memory. In each case, the amount of

persistent memory was set to 192GB.

78

 0%

20%

40%

60%

80%

100%

16GB - 300ns

32GB - 300ns

48GB - 300ns

16GB - 600ns

32GB - 600ns

48GB - 600ns

Normalized Application Throughput

Static tiering MULTI-CLOCK

Figure 6.10: TPC-C benchmark performance of two instances executed in succession.

Performance of the second instance relative to the first while varying amount of DRAM

and accesses latency to emulated persistent memory.

With static tiering, the second VoltDB instance is forced to make allocations from

the low performance persistent memory due to the first instance exhausting all available

DRAM. While the amount of DRAM increases, the gap in performance of both instances

increases too, given that the first instance is able to fit more allocation in fast DRAM and ex-

hibit greater performance. Additionally, when the latency of accesses to persistent memory

increases, the performance degradation of the second instance increases too. In contrast,

when the second instance of VoltDB executes the TPC-C benchmark on MULTI-CLOCK,

the system is able to identify all cold pages belonging to the first VoltDB instance and de-

mote them to the slower tier. New allocations are then serviced from fast DRAM and the

reported throughput for the second instance is almost equivalent to the first instance.

6.5 Discussion

In our prototype implementation of MULTI-CLOCK we used separate Linux memory zones

to represent the physical memory of each memory tier containing different memory tech-

79

nologies. An alternate approach to represent each tier is to use NUMA nodes instead.

Each NUMA node also gathers separate sets of physical memory in the system and there

exist tools (e.g., numactl, migratepages) to statically control how an application’s

memory allocations are serviced and migrated from available nodes in the system. Linux

memory zones have been used to describe different capabilities of subsets of main mem-

ory (i.e., low physical addresses to be used by legacy DMA hardware) and we believe that

they are more suitable to characterize the different memory tiers. To use NUMA nodes to

describe memory tiers would mean that the locality information that gets conveyed with

them, would be lost across the different memory types.

We reused the existing kswapd thread in Linux in charge of memory evictions for the

implementation of the kernel thread that implements the demotion of pages. We also cre-

ated a corresponding kernel thread, kpromoted, that is in charge of the promotion of pages

by implementing similar logic to the one used for kswapd. These threads have an instance

executing in the operating system for each available NUMA node. One question that arises

is the potential benefit of using additional kernel threads to migrate pages between tiers.

Our decision of using one thread per NUMA node comes from the granularity of existing

locks protecting the node’s data structures which maintain memory zones and page lists

within. Careful restructuring of this locking granularity is necessary for future designs to

benefit from using more than one threads per NUMA node.

Our approach relies on the access bit of memory pages for classification according to

their frequency of accesses, as defined by the importance of the page. One possible im-

provement to this approach is to also include the dirtiness information for memory pages

in a weighted formula to compute the importance of a page. By including this extra in-

formation we could weight the different types of accesses for a page (read or write) in

the decision of page placement. This additional information becomes particularly relevant

80

when the underlying memory hardware exhibits non-uniform latency for the different types

of accesses.

6.6 Summary

MULTI-CLOCK is a new approach to building systems for the next generation of data-

intensive workloads by enabling the use of persistent memory as an extension of DRAM

for use as main memory. MULTI-CLOCK seamlessly and dynamically tiers data across

high-performance, high-cost, and high-power consuming DRAM with lower-performing,

but also lower-cost and lower-power consuming persistent memory. Furthermore, because

it does not rely on persistence capabilities, MULTI-CLOCK simplifies many of the reported

overheads involved in using persistent memory. We evaluated a prototype implementation

of MULTI-CLOCK by emulating persistent memory latency for a portion of DRAM using

Intel’s HMEP evaluation platform and running a variety of benchmark workloads. Our

micro-benchmark evaluation reveals fairly low migration overheads of about 3.3% applica-

tion performance degradation in the presence of continuous page migration across memory

tiers. Our evaluation with PageRank, the graph analytics tool from GraphLab, yields re-

sults where MULTI-CLOCK, for a system with 64GB of DRAM and 192GB of persistent

memory, reduces execution time by as much as 47% of a system with only persistent mem-

ory. MULTI-CLOCK’s performance for this workload is also 37% better relative to a static

tiering solution. Furthermore, MULTI-CLOCK achieves performance within 32% of an all-

DRAM system, while static tiering suffers a significantly higher 88% degradation. With

the YCSB workloads using a Memcached back-end, MULTI-CLOCK provides up to 10%

higher throughput than the static tiering solution. Finally, while static tiering is unable to

do so, MULTI-CLOCK implements dynamic fairness of resource allocation with two simi-

larly configured instances of VoltDB. Our results demonstrates that MULTI-CLOCK is able

to dynamically react to workload changes by utilizing the highest performance memory tier

81

for the hottest pages and thereby yielding significant performance improvement relative to

a system that tiers data statically across memory tiers.

In the next chapter we discuss the body of related work to the solutions presented in

this thesis.

6.7 Credits

Daniel Campello, Raju Rangaswami, and Andy Rudoff contributed to the preliminary de-

sign of Managing Tiered Memory Systems with MULTI-CLOCK. Daniel Campello executed

all the experiments to obtain the results used to evaluate the use of byte-addressable per-

sistent memory as an extension of DRAM in a multi-tier memory system with support for

dynamic migration of pages according their access frequency.

82

CHAPTER 7

RELATED WORK

In this chapter we examine the body of related work to the systems that we presented in

the previous chapters. The chapter is structured as follows. First we present work regarding

clustering of virtual machine images. Next, we review previous work that, as non-blocking

writes to files, aim to reduce or eliminate blocking in the context of the fetch-before-write

problem. We conclude by looking into work that take advantage of persistent memory to

improve system performance.

7.1 CORIOLIS: Scalable VM Clustering in Clouds

Clustering techniques and optimizations have been extensively studied in the past [RK87,

LCGM+99, KMN+02, KMN+04]. These techniques rely on the efficiency of specific op-

erations (e.g., distance, merge, etc.) over the elements to cluster to be computationally

inexpensive and really fast. In our work, we address the problem of clustering VM im-

ages which inherently require very complex and computationally expensive operations to

cluster.

Redundancy elimination based on identifying duplicate data is a popular topic of re-

search [LEB+09, ZLP08, LJBR+16]. Finding similar clusters is a related problem but is

more data intensive because it requires processing over the entire index of the data as well

as a manifest linking images to their contents. Further, the data access for this problem does

not have inherent data popularity and locality, which is used extensively by deduplication

techniques for scaling.

The research work closest to ours is VMFlocks which applies standard deduplication

techniques for images that are migrated together across data centers [AKSSR11]. Given

a batch of images, It eliminates raw data duplicates across the given set of VM images.

83

However, it does not tackle identifying images with high redundancy or leveraging seman-

tic similarity.

7.2 Non-blocking Writes to Files

Non-blocking writes have existed for almost three decades for managing CPU caches. Ob-

serving that entire cache lines do not need to be fetched on a word write-miss thereby

stalling the processor, the use of additional registers that temporarily store these word up-

dates was investigated [Kro81] and later adopted [LCBJ11].

Recently, non-blocking writes to main memory pages was motivated using full system

memory access traces generated by an instrumented QEMU machine emulator [UKRV11].

This prior work outlined some of the challenges of implementing non-blocking writes in

commodity operating systems. We improve upon this work by presenting a detailed design

and Linux kernel implementation of non-blocking writes, addressing a host of challenges

as well as uncovering new design points. We also present a comprehensive evaluation with

a wider range of workloads and performance numbers from a running system.

A candidate approach to mitigate the fetch-before-write problem involves provisioning

adequate DRAM to minimize write cache misses. However, the file system footprint of

a workload over time is usually unpredictable and potentially unbounded. Alternatively,

prefetching [SSS99] can reduce blocking by anticipating future memory accesses. How-

ever, prefetching is typically limited to sequential accesses. Moreover, incorrect decisions

can render prefetching ineffective and pollute memory. Non-blocking writes is comple-

mentary to these approaches. It uses memory judiciously and only fetches those pages that

are necessary for process execution.

There are several approaches proposed in the literature that reduce process blocking

specifically for system call induced page fetches. The goal of the asynchronous I/O li-

brary (e.g., POSIX AIO [Ame94]) available on Linux and a few BSD variants is to make

84

file system writes asynchronous; a helper library thread blocks on behalf of the process.

LAIO [ECCZ04] is a generalization of the basic AIO technique to make all system calls

asynchronous; a library checkpoints execution state and relies on scheduler activations to

get notified about the completion of blocking I/O operations initiated inside the kernel. Re-

cently, FlexSC [SS10b] proposed asynchronous exception-less system calls wherein system

calls are queued by the process in a page shared between user and kernel space; these calls

are serviced asynchronously by syscall kernel threads which report completion back to the

user process.

The scope of non-blocking writes in relation to the above proposals is different. Its

goal is to entirely eliminate the blocking of memory writes to pages not available in the

file system page cache. A non-blocking write does not need to checkpoint state thereby

consuming lesser system resources. Further, it can be configured to be lightweight so that

it does not use additional threads (often a limited resource in systems) to block on behalf

of the running process. Finally, unlike these approaches which require application modifi-

cations to use specific libraries, non-blocking writes work seamlessly in the OS transparent

to applications.

There are works that are related to non-blocking writes, but quite different in their

accomplished goal. Speculative execution (or Speculator) as proposed by Nightingale et

al. [NCF06] eliminates blocking when synchronously writing cached in-memory page

modifications to a network file server using a process checkpoint and rollback mecha-

nism. Xsyncfs [NVCF06] eliminates the blocking upon performing synchronous writes

of in-memory pages to disk by creating a commit dependency for the write and allow-

ing the process to make progress. Featherstitch [FMK+07] improves the performance of

synchronous file system page updates by scheduling these page writes to disk more intelli-

gently. Featherstitch employed patches but for a different purpose – to specify dependent

changes across disk blocks at the byte granularity. OptFS [CPADAD13] decouples the or-

85

dering of writes of in-memory pages from their durability, thus improving performance.

While these approaches optimize the writing of in-memory pages to disk they do not elim-

inate the blocking page fetch before in-memory modifications to a file page can be made.

BOSC [SLC12] describes a new disk update interface for applications to explicitly

specify disk update requests and associate call back functions. Opportunistic Log [OS94]

describes the fetch-before-write problem for objects and uses a second log to record up-

dates. Both of these reduce application blocking allowing updates to happen in the back-

ground but they require application modification and do not support general-purpose usage.

Non-blocking writes is complementary to the above body of work because it runs seam-

lessly inside the OS requiring no changes to applications.

7.3 Managing Tiered Memory Systems with MULTI-CLOCK

Emerging persistent memory technologies show promise in three distinct areas:

non-volatility, very large capacity (as compared to DRAM cost), and performance suit-

able for direct load/store access by the CPU. Most studies on persistent memory focus on

the non-volatility, using it to replace or extend block storage, implement persistent caches,

or explore the persistent execution of processes that can survive power failures [CCA+11,

CNF+09, DKK+14, KSDC14, YWC+15]. In contrast, our work focuses on the large ca-

pacity characteristic of persistent memory and the ability to read, write, and execute data

residing in persistent memory. The study of Zhang et al. [ZS15] points out that the biggest

performance overhead in the use of persistent memory is related to ensuring data resides

safely in persistent memory, providing strong guarantees about non-volatility and consis-

tency. Since our usage does not require non-volatility, the overhead required to maintain

persistence and consistency across system interruption is avoided.

There have been many studies that explore the use of different types of memory for the

building of hybrid memory systems. Such systems make use of the different characteristics

86

of the available memory types to combine them into a hybrid solution. Hybrid memory

systems do not establish any specific hierarchy between the different memory types as

tiered memory systems do. Qureshi et al. [QSR09] presents a hybrid memory system that

uses both DRAM and PCM transparently to applications. In their work, DRAM is used

as a buffer cache for data residing in PCM. In contrast we use both DRAM and persistent

memory as separate tiers in a multi-tier memory system, where each tier holds a unique

copy of the data that the CPU can access regardless of its location. Dhiman et al. [DAR09]

and Ramos et al. [RGB11] both present hybrid memory systems where PCM is used as

an extension of DRAM by modifying the memory controller in order to determine the

placement of pages of memory. Our approach instead solves the problem by modifying

the page replacement algorithm in the operating system without requiring any hardware

modification.

Lee et al. [LKS+13] present a modified DRAM hardware architecture to obtain two

types of DRAM with different latencies. Their approach to decide which pages to place

in each type of memory relies on either static information using compiler-based profiling

or dynamic information from hardware-based profiling. In contrast, our approach dynam-

ically determines the best placement for memory pages without the need of code recompi-

lation or hardware modifications.

Mogul et al. [MASF09] also present a hybrid memory system where flash is used as

an extension of DRAM. Their approach, similar to ours, involves only operating system

modifications to support this hybrid memory model in a transparent way to applications

and without additional hardware support. In their work, flash is used as a read-only mem-

ory type, restricting any writes from applications. Writes are serviced by first migrating

the page from flash to DRAM. In contrast, we allow both reads and writes to pages in any

memory tier and present a promotion mechanism that can intelligently select the best can-

87

didates to be migrated to a higher tier depending on their access frequency. Additionally,

our approach can be easily extended to cover more than two types of main memory devices.

Bock et al. [BCMM14], assume an existing hybrid memory system in mobile devices

and tackle the orthogonal problem of page migration efficiency. Their work is compli-

mentary to ours and can be used together with our solution to improve the performance of

applications affected by page migrations.

Many replacement algorithms have been studied in the past in the context of

caching [KA08, MM04, PJK+06, WW02, ZPL01]. Our solution is orthogonal to these

efforts and builds upon existing memory replacement mechanisms and presents a modified

page migration and replacement algorithm for tiered memory.

88

CHAPTER 8

CONCLUSIONS

Modern computing systems use expensive CPU-addressable memory to maintain ap-

plication’s temporary data and to cache copies of persistent data stored in slow secondary

storage. In this thesis we presented three approaches to improve overall system perfor-

mance by optimizing main memory usage.

First, we tackled the issue of VM placement in virtualized systems where different VMs

share physical resources (including main memory) on the host machines. We described the

CORIOLIS framework and system that was specifically designed for scalable clustering of

VM images to intelligently place VM into hosts and, with the aid of deduplication tech-

niques, to optimize memory usage and overall system performance. Next, we focused on

how to improve the complex machinery employed by caches for managing their cached

data. Writing data to a page not present in the file system page cache causes the operating

system to synchronously fetch the page into memory, always blocking the writing process.

Our non-blocking writes approach to handling writes eliminates such blocking by buffer-

ing the written data elsewhere in memory and unblocking the writing process immediately.

This buffering allowed the system to service file writes in a faster way and, in some con-

figurations, with less memory resources when accesses incur in a cache miss. Last, we

investigated the use of emerging byte-addressable persistent memory technology as a less

costly alternative to expensive DRAM for extending system’s main memory. We motivated

and built a tiered memory system that achieves improved application performance at lower

cost and power consumption with the goal of placing the right data in the right memory tier

and at the right time.

As we move into the future more and more workloads will move to main memory dis-

placing secondary storage to a less important role in the system. How well a system makes

use of the available CPU-addressable memory will most likely dictate the performance of

89

the whole system. In conclusion, we believe that the work presented in this thesis has

the impact of improving today’s systems performance by using main memory in a more

effective way. The elimination of process blocking of file writes, the deduplication of intel-

ligently clustered VM’s on a host, and the inclusion of extra main memory capacity through

the use of persistent memory are just the starting point, as we hope to set a path for future

research in this area.

90

BIBLIOGRAPHY

[ABM+11] G. Ammons, V. Bala, T. Mummert, D. Reimer, and X. Zhang. Virtual ma-

chine images as structured data: the Mirage image library. In Proc. Hot-

Cloud, 2011.

[AEW09] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory den-

sity by using KSM. In Proceedings of the Linux Symposium, OLS ’09, July

2009.

[AKSSR11] Samer Al-Kiswany, Dinesh Subhraveti, Prasenjit Sarkar, and Matei Ri-

peanu. VMFlock: Virtual Machine Co-migration for the Cloud. In Proc. of

the IEEE/ACM HPDC, June 2011.

[Ame94] American National Standards Institute. IEEE standard for information tech-

nology: Portable Operating Sytem Interface (POSIX). Part 1, system appli-

cation program interface (API) — amendment 1 — realtime extension [C

language]. IEEE, 1994. IEEE Std 1003.1b-1993 (formerly known as IEEE

P1003.4; includes IEEE Std 1003.1-1990). Approved September 15, 1993,

IEEE Standards Board. Approved April 14, 1994, American National Stan-

dards Institute.

[AMR09] D. Arthur, B. Manthey, and H. Roeglin. k-means has polynomial smoothed

complexity. In IEEE FOCS, 2009.

[Bac86] Maurice J. Bach. The Design of the UNIX Operating System. Prentice Hall

Press, 1st edition, 1986.

[BCMM14] Santiago Bock, Bruce R. Childers, Rami Melhem, and Daniel Mosse. Con-

current page migration for mobile systems with os-managed hybrid mem-

ory. In Proceedings of the ACM International Conference on Computing

Frontiers, CF ’14, May 2014.

[BLM+12] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,

S. Kleiman, C. Small, and M. Storer. Mercury: Host-side flash caching

for the data center. In Proceedings of the 28th IEEE Conference on Massive

Data Storage, MSST ’12, April 2012.

[CAVL09] Austin T. Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li. De-

centralized Deduplication in SAN Cluster File Systems. In Proc. of the

USENIX ATC, June 2009.

91

[CCA+11] Joel Coburn, Adrian Caulfield, Ameen Akel, Laura Grupp, Rajesh Gupta,

Ranjit Jhala, and Steven Swanson. NV-Heaps: Making persistent objects

fast and safe with next-generation, non-volatile memories. In Proceedings

of the International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XVI, 2011.

[CCV+13] Daniel Campello, Carlos Crespo, Akshat Verma, Raju Rangaswami, and

Praveen Jayachandran. Coriolis: Scalable VM clustering in clouds. In Pro-

ceedings of the International Conference on Autonomic Computing, ICAC

’13, June 2013.

[chr] Reduce Chrome memory. https://support.google.com/

chrome/answer/6152583.

[CKZ11] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Hystor: making

the best use of solid state drives in high performance storage systems. In

Proceedings of the International Conference on Supercomputing, ICS ’11,

May-June 2011.

[CLU+15] Daniel Campello, Hector Lopez, Luis Useche, Ricardo Koller, and Raju

Rangaswami. Non-blocking writes to files. In Proceedings of the USENIX

Conference on File and Storage Technologies, FAST ’15, February 2015.

[CNF+09] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,

Benjamin Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-

addressable, persistent memory. In Proceedings of the ACM Symposium on

Operating Systems Principles, SOSP ’09, 2009.

[CPADAD13] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Optimistic crash consis-

tency. In Proceedings of the 24th ACM Symposium on Operating Systems

Principles, SOSP ’13, November 2013.

[Cro13] Crossbar Resistive Memory. The Future Technology for NAND

Flash. http://www.crossbar-inc.com/assets/img/media/Crossbar-RRAM-

Technology-Whitepaper-080413.pdf, 2013.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceed-

ings of the ACM symposium on Cloud computing, SoCC ’10, June 2010.

92

[DAR09] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. Pdram: a hybrid pram

and dram main memory system. In Proceedings of the Annual Design Au-

tomation Conference, 2009.

[DAX] Direct Access for Files. http://www.kernel.org/doc/Documentation /filesys-

tems/dax.txt.

[Den68] Peter J. Denning. The working set model for program behavior. Communi-

cations of the ACM, 11(5):323–333, 1968.

[DKK+14] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,

Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System software for

persistent memory. In Proceedings of the European Conference on Com-

puter Systems, EuroSys ’14, 2014.

[DN65] R. C. Daley and P. G. Neumann. A general-purpose file system for sec-

ondary storage. In Proceedings of the Fall Joint Computer Conference,

Part I, AFIPS ’65 (Fall, part I), pages 213–229, 1965.

[DRZ+16] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sun-

daram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten

Schwan. Data tiering in heterogeneous memory systems. In Proceedings of

the European Conference on Computer Systems, EuroSys ’16, April 2016.

[DSL10] B. Debnath, S. Sengupta, and J. Li. ChunkStash: speeding up inline storage

deduplication using flash memory. In Usenix ATC, 2010.

[ECCZ04] Khaled Elmeleegy, Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel.

Lazy asynchronous I/O for event-driven servers. In Proceedings of the 2004

USENIX Annual Technical Conference, ATC ’04, 2004.

[ELMS03] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo Seltzer. Pas-

sive NFS tracing of email and research workloads. In Proceedings of the

USENIX Conference on File and Storage Technologies, FAST ’03, 2003.

[EMC12] EMC. VFCache. http://www.emc.com/storage/vfcache/vfcache.htm, 2012.

[ESO13] ESOS Laboratory. Mobibench traces. https://github.com/ESOS-

Lab/Mobibench/tree/master/MobiGen, 2013.

[Fit04] Brad Fitzpatrick. Distributed caching with memcached. In Linux Journal,

2004.

93

[FMK+07] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los Reyes,

Shant Hovsepian, Andrew Matsuoka, and Lei Zhang. Generalized file sys-

tem dependencies. In Proceedings of the ACM Symposium on Operating

Systems Principles, SOSP ’07, pages 307–320, October 2007.

[Fus12] Fusion-IO. ioTurbine. http://www.fusionio.com/systems/ioturbine/, 2012.

[GMC+12] Jorge Guerra, Leonardo Marmol, Daniel Campello, Carlos Crespo, Raju

Rangaswami, and Jinpeng Wei. Software persistent memory. In Proceed-

ings of the USENIX Annual Technical Conference, ATC ’12, June 2012.

[GP11] Al Guillen and Randy Perry. Understanding Linux Deployment Strate-

gies: The Business Case for Standardizing on Red Hat Enterprise Linux.

http://www.redhat.com/f/pdf/StandardizeOnRHEL3.pdf, April 2011.

[GPG+11] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini, and

Raju Rangaswami. Cost effective storage using extent-based dynamic tier-

ing. In Proceedings of the USENIX Conference on File and Storage Tech-

nologies, FAST ’11, February 2011.

[Hag87] Robert Hagmann. Reimplementing the Cedar file system using logging

and group commit. In Proceedings of the ACM Symposium on Operating

Systems Principles, SOSP ’87, November 1987.

[HDV+11] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. A file is not a file: Understanding the I/O

behavior of Apple desktop applications. In Proceedings of the ACM Sym-

posium on Operating Systems Principles, SOSP ’11, October 2011.

[JLH+13] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin Lee, and Youjip

Won. Framework for analyzing android I/O stack behavior: From gener-

ating the workload to analyzing the trace. Future Internet, 5(4):591–610,

2013.

[JM09] K. Jin and E. Miller. The effectiveness of deduplication on virtual machine

disk images. In Proc. of SysStor, 2009.

[JPZ+11] K. R. Jayaram, Chunyi Peng, Zhe Zhang, Minkyong Kim, Han Chen, and

Hui Lei. An empirical analysis of similarity in virtual machine images. In

ACM Middleware, 2011.

94

[KA08] Hyojun Kim and Seongjun Ahn. BPLRU: A Buffer Management Scheme

for Improving Random Writes in Flash Storage. In USENIX File and Stor-

age Systems (FAST), 2008.

[KAU12] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting storage

for smartphones. In Proceedings of the USENIX Conference on File and

Storage Technologies, FAST ’12, February 2012.

[KLPM10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is

twitter, a social network or a news media? In Proceedings of the Interna-

tional World Wide Web Conference, WWW ’10, April 2010.

[KM06] Taeho Kgil and Trevor Mudge. FlashCache: a NAND flash memory file

cache for low power web servers. In Proceedings of the 2006 International

Conference on Compilers, Architecture and Synthesis for Embedded Sys-

tems, CASES ’06, October 2006.

[KMN+02] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and

A. Y. Wu. An efficient k-means clustering algorithm: Analysis and im-

plementation. In IEEE Trans. Pattern Analysis and Machine Intelligence,

pages 881–892, 2002.

[KMN+04] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and

A. Y. Wu. Local search approximation algorithm for k-means clustering. In

Computational Geometry: Theory and Applications, pages 89–112, 2004.

[KMR+13] Ricardo Koller, Leonardo Marmol, Raju Rangaswami, Swaminathan Sun-

dararaman, Nisha Talagala, and Ming Zhao. Write policies for host-side

flash caches. In Proceedings of the USENIX Conference on File and Stor-

age Technologies, FAST ’13, February 2013.

[KMR15] Ricardo Koller, Ali Jose Mashtizadeh, and Raju Rangaswami. Centaur:

Hostside SSD caching for storage performance control. In Proceedings

of the International Conference on Autonomic Computing, ICAC ’15, July

2015.

[KR10] Ricardo Koller and Raju Rangaswami. I/O Deduplication: Utilizing Con-

tent Similarity to Improve I/ O Performance. In Proc. of USENIX FAST,

2010.

95

[Kro81] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In

Proceedings of the 8th annual symposium on Computer Architecture, ISCA

’81, pages 81–87. IEEE Computer Society Press, 1981.

[KSDC14] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu.

Evaluating phase change memory for enterprise storage systems: A study

of caching and tiering approaches. In Proceedings of the 12th USENIX

Conference on File and Storage Technologies, FAST ’14, February 2014.

[KVR10] Ricardo Koller, Akshat Verma, and Raju Rangaswami. Generalized

ERSS tree model: Revisiting working sets. Performance Evaluation,

67(11):1139–1154, 2010.

[LCBJ11] Sheng Li, Ke Chen, Jay B. Brockman, and Norman P. Jouppi. Performance

impacts of non-blocking caches in out-of-order processors. Technical re-

port, Hewlett-Packard Labs and University of Notre Dame, July 2011.

[LCGM+99] Chen Li, Edward Chang, Hector Garcia-Molina, James Wang, and Gio

Wilderhold. Clindex: Clustering for similarity queries in high-dimensional

spaces. Stanford Technical Report SIDL-WP-1998-0100, Feb. 1999.

[LEB+09] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg

Trezise, and Peter Camble. Sparse indexing: large scale, inline deduplica-

tion using sampling and locality. In USENIX FAST, 2009.

[LJBR+16] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri Narasimhan, Tony

Zhang, and Ming Zhao. Cachededup: In-line deduplication for flash

caching. In 14th USENIX Conference on File and Storage Technologies

(FAST 16), pages 301–314, Santa Clara, CA, February 2016. USENIX As-

sociation.

[LKS+13] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subra-

manian, and Onur Mutlu. Tiered-latency dram: A low latency and low

cost dram architecture. In Proceedings of the 2013 IEEE 19th International

Symposium on High Performance Computer Architecture, HPCA ’13, 2013.

[Lov10] Robert Love. Linux Kernel Development. Pearson Education, Inc., 2010.

[LPGM08] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and Ethan L.

Miller. Measurement and analysis of large-scale network file systemwork-

loads. In Proceedings of the USENIX Annual Technical Conference, 2008.

96

[MASF09] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi.

Operating system support for NVM+DRAM hybrid main memory. In Pro-

ceedings of the 12th conference on Hot topics in operating systems, HotOS

’09, 2009.

[MB11] Dutch T. Meyer and William J. Bolosky. A Study of Practical Deduplica-

tion. In Proc. of USENIX FAST, February 2011.

[MBKQ96] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S.

Quarterman. The Design and Implementation of the 4.4 BSD Operating

System, pages 163, 196. Addison Wesley, 1996.

[MDS+15] J. Malicevic, S. R. Dulloor, N. Sundaram, N. Satish, J.Jackson, and

W. Zwaenepoel. Exploiting NVM in large-scale graph analytics. In Pro-

ceedings of the 3rd Workshop on Interactions of NVM/FLASH with Operat-

ing Systems and Workloads, INFLOW ’15, October 2015.

[MFG+12] Konrad Miller, Fabian Franz, Thorsten Groeninger, Marc Rittinghaus, Mar-

ius Hillenbrand, and Frank Bellosa. KSM++: Using I/O based hints to

make memory-deduplication scanners more efficient. In Proceedings of the

ASPLOS Workshop on Runtime Environments, Systems, Layering and Vir-

tualized Environments, RESoLVE ’12, March 2012.

[MGST70] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation tech-

niques for storage hierarchies. IBM Systems Journal, 1970.

[Mit13] Sparsh Mittal. Energy saving techniques for phase change memory (PCM).

In arXiv:1309.3785, 2013.

[MM04] Nimrod Megiddo and Dharmendra S. Modha. Outperforming lru with an

adaptive replacement cache algorithm. Computer, 37(4):58–65, 2004.

[MSS12] Alexander Makarov, Viktor Sverdlov, and Siegfried Selberherr. Modeling

emerging non-volatile memories: Current trends and challenges. In Pro-

ceedings of the International Conference on Solid State Devices and Mate-

rials Science, SSDM ’12, April 2012.

[NCF06] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn. Speculative exe-

cution in a distributed file system. ACM Transactions on Computer Systems,

pages 361–392, 2006.

97

[Net13] NetApp. Flash Accel. http://www.netapp.com/us/products/storage-

systems/flash-accel/, 2013.

[NVCF06] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason

Flinn. Rethink the sync. In Proceedings of the 7th USENIX Conference

on Operating Systems Design and Implementation, OSDI ’06, November

2006.

[ODCH+85] John K. Ousterhout, Hervé Da Costa, David Harrison, John A. Kunze, Mike

Kupfer, and James G. Thompson. A trace-driven analysis of the UNIX 4.2

BSD/ file system. In Proceedings of the ACM Symposium on Operating

Systems Principles, SOSP ’85, 1985.

[OS94] J. O’Toole and L. Shrira. Opportunistic log: Efficient installation reads in

a reliable storage server. In Proceedings of the First USENIX Symposium

on Operating Systems Design and Implementation, OSDI ’94, pages 39–48,

1994.

[PADAD05] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Analysis and evolution of journaling file systems. In Proceedings

of the USENIX Annual Technical Conference, ATC ’05, June 2005.

[PJK+06] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joon-

won Lee. Cflru: a replacement algorithm for flash memory. In CASES ’06:

Proceedings of the 2006 international conference on Compilers, architec-

ture and synthesis for embedded systems, October 2006.

[PVO+15] Mahesh Patil, Murali Vilayannur, Michal Ostrowski, Sameer Narkhede,

Venkatesh Kothakota, Woon Jung, Heiko Kohler, Govindarajan

Soundararajan, Kaustubh Patil, Chethan Kumar, and Deepavali Bhagwat.

A practical implementation of clustered fault tolerant write acceleration

in a virtualized environment. In 13th USENIX Conference on File and

Storage Technologies, FAST ’15, 2015.

[QSR09] Moinuddin K. Qureshi, Viji Srinivasan, and Jude A. Rivers. Scalable high-

performance main memory system using phase-change memory technol-

ogy. In Proceedings of the International Symposium on Computer Archi-

tecture, ISCA ’09, 2009.

[RA00] Drew Roselli and Thomas E. Anderson. A comparison of file system work-

loads. In Proceedings of the USENIX Annual Technical Conference, ATC

’00, 2000.

98

[RGB11] Luiz Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page placement in

hybrid memory systems. In Proceedings of the 25th International Confer-

ence on Supercomputing, ICS ’11, 2011.

[RK87] LKPJ Rousseeuw and L Kaufman. Clustering by means of medoids. Statis-

tical data analysis based on the L1-norm and related methods, 405, 1987.

[RT74] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing system.

Commun. ACM, 17:365–375, July 1974.

[Sal] Salvatore Sanfilippo and Pieter Noordhuis. Redis. http://redis.io.

[sap] SAP HANA. http://hana.sap.com.

[SK12] Prateek Sharma and Purushottam Kulkarni. Singleton: System-wide page

deduplication in virtual environments. In Proceedings of the Interna-

tional Symposium on High-Performance Parallel and Distributed Comput-

ing, HPDC ’12, pages 15–26, June 2012.

[SLC12] Dilip Nijagal Simha, Maohua Lu, and Tzi-cker Chiueh. An update-aware

storage system for low-locality update-intensive workloads. In Proceedings

of the Seventeenth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS XVII, 2012.

[spa] Apache Spark. http://spark.apache.org.

[SS10a] Mohit Saxena and Michael M. Swift. FlashVM: Revisiting the virtual mem-

ory hierarchy. In Proceedings of the USENIX Annual Technical Conference,

ATC ’10, June 2010.

[SS10b] Livio Soares and Michael Stumm. FlexSC: Flexible system call scheduling

with exception-less system calls. In Proceedings of the 9th USENIX con-

ference on Operating Systems Design and Implementation, OSDI’10, pages

1–8. USENIX Association, 2010.

[SSS99] Elizabeth Shriver, Christopher Small, and Keith A. Smith. Why does file

system prefetching work? In Proceedings of the USENIX Annual Technical

Conference, ATC ’99, 1999.

[Sta08] Standard Performance Evaluation Corporation. SPECsfs2008.

http://www.spec.org/sfs2008/, 2008.

99

[SUN11] SUN Microsystems. Filebench 1.4.9.1.

http://sourceforge.net/projects/filebench/, 2011.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press,

Upper Saddle River, NJ, USA, 3rd edition, 2007.

[Tra] Transaction Processing Performance Council (TPC). TPC-C Benchmark.

http://www.tpc.org/tpcc.

[UKRV11] Luis Useche, Ricardo Koller, Raju Rangaswami, and Akshat Verma. Truly

non-blocking writes. In Proceedings of the USENIX Workshop on Hot Top-

ics in Storage and File Systems, HotStorage ’11, June 2011.

[VMW12] VMWare. VMWare vSphere Data Protection. Technical White Paper, June

2012.

[VMw13] VMware, Inc. VMware Virtual SAN.

http://www.vmware.com/products/virtual-san/, 2013.

[Vol] VoltDB. VoltDB 5.0.1 Community Edition. http://voltdb.com.

[VVK+12] B. Viswanathan, A. Verma, B. Krishnamurthy, P. Jayachandran, K. Bhat-

tacharya, and R. Ananthanarayanan. Rapid adjustment and adoption to MI-

aaS clouds. In ACM Middleware, Industry track, 2012.

[Wal02] C. A. Waldspurger. Memory resource management in vmware esx server.

In Proc. Usenix OSDI, 2002.

[WR10] Xiaojian Wu and A. L. Narasimha Reddy. Exploiting concurrency to im-

prove latency and throughput in a hybrid storage system. In Proceedings of

the IEEE International Symposium in Modeling, Analysis and Simulation

of Computer and Telecommunication Systems, MASCOTS ’10, September

2010.

[WW02] Theodore M. Wong and John Wilkes. My cache or yours? making storage

more exclusive. In Proceedings of the USENIX Annual Technical Confer-

ence, USENIX ATC ’02, June 2002.

[ycs] YCSB Core Workloads. https://github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads.

100

[YWC+15] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, and Khai Leong

Yong. NV-Tree: Reducing consistency cost for NVM-based single level

systems. In Proceedings of the USENIX Conference on File and Storage

Technologies, FAST ’15, February 2015.

[ZLP08] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the Disk Bottleneck

in the Data Domain Deduplication File System. USENIX FAST, 2008.

[ZPL01] Yuanyuan Zhou, James F. Philbin, and Kai Li. The multi-queue replace-

ment algorithm for second level buffer caches. In Proceedings of the 2001

USENIX Annual Technical Conference, USENIX ATC ’01, June 2001.

[ZS15] Yiying Zhang and Steven Swanson. A study of application performance

with non-volatile main memory. In Proceedings of the 2015 31st Sympo-

sium on Mass Storage Systems and Technologies, MSST ’15, June 2015.

101

VITA

DANIEL CAMPELLO

Born, Los Teques, Venezuela

2009 B.Eng., Computer Engineering

Universidad Simon Bolivar

Sartenejas, Venezuela

2012 M.S., Computer Science

Florida International University

Miami, Florida

2010–2015 Graduate Research Assistant

Florida International University

Miami, Florida

PUBLICATIONS

Guerra, J., Marmol, L., Campello, D., Crespo, C., Rangaswami, R., (2012). Software Per-

sistent Memory. USENIX Annual Technical Conference, 319–331.

Campello, D., Crespo, C., Verma, A., Rangaswami, R., Jayachandran, P., (2013). Coriolis:

Scalable VM Clustering in Clouds. ICAC, 101–105.

Campello, D., Lopez, H., Useche, L., Koller, R., Rangaswami, R., (2015). Non-blocking

Writes to Files. USENIX Conference on File and Storage Technologies, 151–165.

102

	Florida International University
	FIU Digital Commons
	6-20-2016

	Optimizing Main Memory Usage in Modern Computing Systems to Improve Overall System Performance
	Daniel Jose Campello
	Recommended Citation

	Introduction
	Problem Statement
	Thesis Statement
	Thesis Statement Description
	Thesis Impact

	Background
	Cache Deduplication
	Operating System Caching
	Emerging Memory Technologies

	Coriolis: Scalable VM Clustering for Cache Deduplication
	VM Clustering: An Overview
	VM Similarity: Types and Applications
	Content Similarity
	Semantic Similarity
	Harnessing Image Similarity

	Similarity-based VM Clustering
	A Representative Clustering Algorithm
	A Similarity Function for Images
	Scaling Challenge

	Coriolis
	Solution Idea: Asymmetric Clustering
	Coriolis Architecture
	Coriolis' Tree-based Clustering
	Scalability Evaluation

	Summary
	Credits

	Non-blocking Writes to Files
	Motivating Non-blocking Writes to Files
	Addressing the fetch-before-write problem
	Addressing Correctness

	Approach Overview
	Write Handling
	Patch Management
	Non-blocking Reads

	Alternative Page Fetch Modes
	Asynchronous Page Fetch (NBW-Async)
	Lazy Page Fetch (NBW-Lazy)

	Implementation
	Overview
	Implementation Insights

	Evaluation
	Filebench Micro-benchmark
	SPECsfs2008 Macro-benchmark
	MobiBench Trace Replay

	Summary
	Credits

	Managing Tiered Memory Systems with multi-clock
	Motivation
	Swapping vs. Tiering
	Static Tiering
	Dynamic Tiering

	multi-clock
	Life Cycle of a Page
	Promotion Mechanism
	Demotion Mechanism

	Implementation
	Evaluation
	Emulation Platform
	Micro-benchmark
	GraphLab
	Memcached YCSB benchmark
	VoltDB TPC-C benchmark

	Discussion
	Summary
	Credits

	Related Work
	Coriolis: Scalable VM Clustering in Clouds
	Non-blocking Writes to Files
	Managing Tiered Memory Systems with multi-clock

	Conclusions
	BIBLIOGRAPHY
	VITA

