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ABSTRACT OF THE DISSERTATION 

EVALUATING PLANT COMMUNITY RESPONSE TO SEA LEVEL RISE AND 

ANTHROPOGENIC DRYING: CAN LIFE STAGE AND COMPETITIVE ABILITY 

BE USED AS INDICATORS IN GUIDING CONSERVATION ACTIONS? 

by 

Kristie Susan Wendelberger 

Florida International University, 2016 

Miami, Florida 

Professor Jennifer H. Richards, Major Professor 

Increasing sea levels and anthropogenic disturbances have caused the world’s coastal 

vegetation to decline 25-50% in the past 50 years. Future sea level rise (SLR) rates are 

expected to increase, further threatening coastal habitats. In combination with SLR, the 

Everglades ecosystem has undergone large-scale drainage and restoration changing 

Florida’s coastal vegetation. Everglades National Park (ENP) has 21 coastal plant species 

threatened by SLR. My dissertation focuses on three aspects of coastal plant community 

change related to SLR and dehydration. 1) I assessed the extent and direction coastal 

communities—three harboring rare plant species—shifted from 1978 to 2011. I created a 

classified vegetation map and compared it to a 1978 map. I hypothesized coastal 

communities transitioned from less salt- and inundation-tolerant to more salt- and 

inundation-tolerant communities. I found communities shifted as hypothesized, 

suggesting the site became saltier and wetter. Additionally, all three communities 

harboring rare plants shrunk in size. 2) I evaluated invading halophyte (salt-tolerant) 

plant influence on soil salinity via a replacement series greenhouse experiment. I used 
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two halophytes and two glycophytes (non-salt-tolerant) to look at soil salinity over time 

under 26 and 38‰ groundwater. I hypothesized that halophytes increase soil salinity as 

compared to glycophytes through continued transpiration during dry, highly saline 

periods. My results supported halophytic influence on soil salinity; however, not from 

higher transpiration rates. Osmotic or ionic stress likely decreased glycophytic biomass 

resulting in less overall plant transpiration. 3) I assessed the best plant life-stage to use for 

on-the-ground plot-based community change monitoring. I tested the effects of increasing 

salinity (0, 5, 15, 30, and 45‰) on seed germination and seedling establishment of five 

coastal species, and compared my results to salinity effects on one-year olds and adults of 

the same species. I hypothesized that seedling establishment was the most vulnerable life-

stage to salt stress. The results supported my hypothesis; seedling establishment is the 

life-stage best monitored for community change. Additionally, I determined the federally 

endangered plant Chromolaena frustrata’s salinity tolerance. The species was sensitive to 

salinity >5‰ at all developmental stages suggesting C. frustrata is highly threatened by 

SLR.  
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ENP  Everglades National Park 

ENVI  Exelis Visual Information Solutions 

FLAASH Line-of-sight Atmospheric Analysis of Hypercubes 

GPS  Global Positioning System 

IPCC  Intergovernmental Panel on Climate Change 

LiDAR Light Detection And Ranging 

NAVD  North American Vertical Datum of 1988 

NCGRP National Center for Genetic Resources Preservation 

NDVI  Normalized Difference Vegetation Index 

oob  Out-of-bag error estimate  

SLR  Sea level rise 
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INTRODUCTION 

 

Increasing sea levels and anthropogenic alterations together are resulting in a 

change or complete loss of coastal plant communities around the world (Nicholls and 

Cazenave, 2010; Terry and Chui, 2012; Kirwan and Megonigal, 2013). Shifts in plant 

communities from less salt- and lower inundation-tolerant to more salt- and higher 

inundation-tolerant community types or to open water have been documented (Ross et al., 

1994; Kearney et al., 2002; Kirwan et al., 2008; Saha et al., 2011; Sharpe and Baldwin, 

2012; Terry and Chui, 2012). Future SLR rate is expected to exceed both the mean global 

SLR rate during the 20
th

 century (1.7mm yr
–1

) and SLR rate since 1993 (3.6mm yr
–1

) 

(IPCC, 2014). Florida has the shallowest water table in the continental US, its coastal 

communities are distributed across a gradient that is 0-2m above mean sea level 

(Hoffmeister, 1974), and it has undergone significant ecosystem drying as a result of 

anthropogenic changes (Davis et al., 2005). Ecosystem drying and/or hydrologic 

restoration and SLR effects are interacting most prominently in Florida’s coastal areas, 

impacting its coastal plant communities.  

It is expected that major changes will occur along Florida’s coast over the coming 

decades. Previous work has found changes in Florida’s coastal plant communities 

resulting from both SLR alone (Gaiser et al., 2006) and a combination of SLR and 

ecosystem drying (Alexander, 1974; Ross et al., 1994, 2000; Holmes and Marot, 1999; 

Holmes et al., 1999; Williams et al., 1999; Gaiser et al., 2006; Desantis et al., 2007; 

Krauss et al., 2011). Gaiser et al. (2006) found that while changes to plant communities 

along the coast of Florida have been occurring long before ecosystem drainage, the rate 
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of change (2-4m yr
-1

 interior-ward coastal ecotone encroachment) is one or two 

magnitudes faster since Everglade’s drainage began. Should the trends of ecosystem 

change along Florida’s coast continue, we expect to see a decrease in area of freshwater 

communities and an increase in halophytic community cover. The species composition of 

coastal hardwood hammocks and buttonwood forests is expected to shift from glycophyte 

to halophyte species as the vadose zone thins and salinizes (Saha et al., 2011). This 

salinity change may lead to the disappearance of critically imperiled and endemic coastal 

species, including the federally endangered Chromolaena frustrata and the Florida 

endangered Kosteletzkya depressa (Saha et al., 2011).  

Rare species richness tends to be negatively correlated with salinity in coastal 

habitats (Saha et al., 2011). Everglades National Park (ENP), which has a significant 

coastal extent, harbors 43 critically imperiled species as defined by Gann et al. (2002); 21 

of these are threatened by SLR, including one federally endangered species, 

Chromolaena frustrata (Saha et al., 2011). To form a realistic conservation action 

strategy in the face of large-scale environmental change, land managers need to prioritize 

species under greatest extinction threat. With this information, they can decide how to 

allocate resources and funding for the preservation of the greatest amount of biodiversity.  

In Chapter I, I used remote-sensing techniques to determine if the extent and 

spatial arrangement of coastal forests encompassing the mainland range of C. frustrata 

has changed over the past three decades. I assess changes and direction of change of 

seven major coastal plant community types (red, black, and white mangrove forests, marl 

prairie, tropical hardwood hammock, buttonwood forest with halophytes, and buttonwood 
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forest with glycophytes). Chapter I was formatted to be submitted to the journal Nature 

Climate Change. 

Many coastal vegetation processes depend on an unsaturated layer between the 

groundwater table and soil surface called the vadose zone. The vadose zone is a thin layer 

between the top of the highly brackish groundwater table and the soil surface; water is 

stored in the vadose zone and moved between the soil surface, root zone, and 

groundwater (Harter et al., 2004). During the dry season, the vadose zone can dry up, 

drawing more saline groundwater from below and increasing soil salinity. Conversely, 

during the wet season, when precipitation is high, rainwater seeps into the vadose zone, 

flushing salt from the soil column, recharging the freshwater lens, and freshening the 

groundwater table (Terry and Chui, 2012; Badaruddin et al., 2015). The seasonal 

desalinization process, along with slightly higher elevation, allows glycophytic 

(freshwater) plant communities to exist in salty coastal areas (Sternberg et al., 2007; Teh 

et al., 2008; Saha et al., 2015). Below ground feedback loops with both SLR (Price et al., 

2006; Blanco et al., 2013) and wetland drying (Kirwan and Megonigal, 2013) occur in 

the soil vadose zone. Sea level rise raises the groundwater table, while wetland drying 

reduces the freshwater head, thinning the freshwater lens and leaving it vulnerable to 

permanent salinization (Sternberg and Swart, 1987; Terry and Chui, 2012).  

In some cases, a plant community can out-compete an adjacent community by 

altering salinity regimes to favor the tolerances of the first community, thereby inhibiting 

the other community. The competitive effect adds a biological component to the potential 

causes of community change (Nosetto et al., 2007). The effect of salt on plants, 

communities, and halophyte:glycophyte habitat competition is well established (Jassby et 
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al., 1995; Ungar, 1998; Spalding and Hester, 2007; Armas et al., 2010); however, there 

are conflicting results on the influence plants have on soil salinity. Recent, studies 

assessed the ability of halophytes and other plant types to desalinize soil via 

phytoremediation (Qadir et al., 2003, 2007; Van Oosten and Maggio, 2015). Conversely, 

other studies have shown that conversion of land into different habitat types can lead to 

higher, more saline water tables and saltier soils than what was there prior to land 

conversion (Nosetto et al., 2007; Jayawickreme et al., 2011). As SLR impacts coastal 

communities salinizing the groundwater and soil, it becomes important to understand 

how halophytes affect soil salinity under saline groundwater conditions (Van Oosten and 

Maggio, 2015).  

In Chapter II, I experimentally test the ability of halophytes to alter the 

saline/freshwater transition zone. Because SLR modelers have assumed halophytes’ 

ability to increase soil salinity to be a driver of change (Teh et al., 2008), validating 

halophytic effects on soil will help improve model accuracy and, in turn, conservation 

actions. Chapter II is formatted to be submitted to Proceedings of the National Academy 

of Sciences. 

In addition to depending on the surrounding community’s composition, the 

vulnerability of a species to environmental stressors are contingent on life stage (Parker 

et al., 1955; Williams et al., 1998; Chartzoulakis and Klapaki, 2000; Schiffers and 

Tielbörger, 2006); high salinity levels tend to impact juvenile or regenerative life stages 

more than adult stages (Perry and Williams, 1996). Plant community composition 

ultimately depends on which species are able to regenerate in an area (Keeley and Van 

Mantgem, 2008). In ENP coastal forests, halophyte seedling and sapling densities 
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increased in buttonwood forests from 1998-2009, while glycophyte seedling and sapling 

densities decreased; buttonwood adults typically had unchanged densities. In contrast, 

there was no change in halophyte and glycophyte seedling densities in higher elevation 

hardwood hammocks (Saha et al., 2011). Because there is only a mean 6cm difference in 

elevation between buttonwood forests and coastal hardwood hammocks (Saha et al., 

2015) and SLR is expected to increase at a rate faster than 3.6mm yr
-1

 (IPCC, 2014), 

coastal hardwood hammocks may exhibit changes in their community composition 

similar to those of buttonwood forests within the next decade.  

To best monitor on-the-ground changes in coastal communities threatened by 

SLR and anthropogenic disturbance, one needs to know what plant life stage is most 

vulnerable salt stress. In Chapter III, I examined the salinity sensitivity of early life 

history stages of buttonwood forest and hardwood hammock understory species to better 

predict the species’ future responses to SLR. Chapter III is formatted to be submitted to 

the American Journal of Botany. 
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ABSTRACT 

 

Increasing sea levels and anthropogenic alterations are resulting in changes in or 

complete loss of coastal plant communities around the world. In combination with SLR, 

the Everglades ecosystem has undergone large-scale drainage and restoration changing 

coastal vegetation throughout south Florida. Saltwater-loving communities have moved 

into freshwater wetlands and uplands which harbor 21 rare species threatened by SLR.  

To determine the extent to which plant community shifts have occurred along the 

coast of Everglades National Park (ENP) between 1978 and 2011, we used remote-

sensing techniques to create a map of coastal plant communities and compared it to one 

made with 1978 imagery. We used bi-seasonal WorldView-2 2x2m satellite imagery 

flown at the end of the wet (December 2011) and dry (April 2013) seasons and a 

supervised random forest algorithm to classify seven plant community types. 

Specifically, we asked whether the spatial extent and distribution of coastal plant 

communities has transitioned from less salt- and inundation-tolerant to more salt- and 

inundation-tolerant communities over the 33-year period.  

We found that lowland plant communities moved up the elevation gradient, 

transitioning from less salt- and inundation-tolerant to more salt- and inundation-tolerant 

communities. White mangrove forest percent cover decreased 16% and black and red 

mangrove forests increased 27 and 11%, respectively, suggesting the site became saltier 

and wetter over the time interval. Additionally, the two highest elevation communities, 

tropical hardwood hammock and buttonwood forest, decreased by 4 and 6% cover, 

respectively. Everglades National Park is a protected national park containing unique 
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communities and rare and some endemic species. To preserve biodiversity and ecosystem 

integrity, the effects of SLR and Everglades drainage on south Florida are coastal 

vegetation matters need to be addressed today, not in the future. 

 

Key words: Sea level rise, climate change, anthropogenic disturbance, coastal plant 

community change, conservation 

INTRODUCTION 

 

Increasing sea levels and anthropogenic alterations together are resulting in 

changes in or complete loss of coastal plant communities around the world
1–3

. Shifts in 

plant communities from less salt- and lower inundation-tolerant to more salt- and higher 

inundation-tolerant communities or to open water have been documented
2,4–8

.  

In combination with SLR, the south and central Florida Everglades ecosystem has 

been subjected to major anthropogenic alterations. The Everglades has undergone several 

phases of large-scale drainage and restoration over the last 150 years
9
. Saltwater intrusion 

at depth in the aquifer from a reduced freshwater head and increased sea levels was 

documented in south Florida in the early 1950’s
10

. By the early 1980’s, it was evident 

that Everglades drainage was negatively affecting the environment
9
. By the late 1990’s, 

saltwater intrusion had extended 10-15km inland
11

 and, by 2006, existed in 6 to 25 km 

wide zones along the coast
12

. With environmental concerns growing, in 2000, the 

Comprehensive Everglades Restoration Plan (CERP) was put into place
9
. The CERP is 

estimated to take approximately 50 years to accomplish and will cost more than $10 

billion
13

. As of late 2014, overall progress of the Plan had fallen short of initial goals, but 
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headway had been made on land acquisition, improved water deliveries to ENP, and 

construction of four CERP projects had begun
13

. For over 150 years, the Everglades 

ecosystem has undergone both hydrologic stress and the increasing press of SLR. 

The combined effects of hydrologic stress and SLR have caused changes in 

vegetation throughout south Florida. Shifts in coastal plant composition have been 

documented along the Florida coast since before the early 1950’s
4,7,14–21

. Saltwater-loving 

communities have been found moving into freshwater wetlands and uplands
17,20,21

. Since 

the early 1980’s, restoration efforts have attempted to counteract the effects of drainage. 

Large-scale efforts have subsequently been directed toward restoring a more natural 

hydrologic regime.  

In 1980, ENP biologists initiated a monitoring project to study the effects of SLR 

on ENP coastal plant communities
22

. As part of that project, they created a map from 

1978 aerial photos of the coastal communities stretching across the Flamingo portion of 

ENP and sampled vegetation on a 700m transect along an elevational gradient ranging 

from less than 0.5m to 1.5m above mean sea level
23

. The transect included 5 of 6 coastal 

south Florida plant communities (black mangrove forest, coastal tropical hardwood 

hammock (tropical hardwood hammock), buttonwood forest, halophyte prairie, and white 

mangrove forest) and one transition zone (buttonwood/manchineel hammock). The 

transect was resampled in 1998 and 2009
7
. Saha et al.

7
 found an increase in halophyte 

density in previously glycophytic communities, a lack of recruitment of buttonwood 

seedlings, and an increase in white mangrove trees and saplings in buttonwood forests 

along the transect. Halophytic species moved into glycophytic communities
7
.  
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Whether these transect-level changes are representative of changes in the study 

area at the landscape level is unknown because of a lack of explicit spatial data for 

vegetation changes. To determine the extent to which plant community shifts have 

occurred in the study area between 1978 and 2011 and their spatial patterns, we used 

remote-sensing techniques to create a map of coastal plant communities in the study area 

and compared it to the ENP map of the same area derived from 1978 imagery. 

Specifically, we asked whether the spatial extent and distribution of coastal plant 

communities has transitioned from less salt- and inundation-tolerant to more salt- and 

inundation-tolerant communities over the 33-year period. 

MATERIALS AND METHODS 

 

Study area: Southern Florida is humid and subtropical with a distinct warm (mean 

25
o
C) wet season from June to October and cool (mean 16

o
C) dry season from November 

to May
24

. Average annual rainfall is between 1000 to 1630mm with more than half 

falling between June and September and often coming from hurricanes and tropical 

storms; April and May usually are the driest months
24,25

. The 2011 study area is a 71km
2
 

strip along the coast of ENP (25°19′0″N, 80°56′0″W), Florida, U.S.A. (Fig. 1.1). To 

assess changes in the coastal plant community matrix over a 33-year period, we 

compared the 2011 map to one made in 1978. The western portion of the 1978 map 

overlapped with the eastern portion of the 2011 study area. The area of overlap between 

the 1978 map and the 2011 study area was 41km
2
.  

The community types mapped reside on or around the Buttonwood Embankment, 

which is an approximately 60x1km
2
 stretch of elevated land averaging 45cm above sea 
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level along the southern tip of Florida
15,26

. Historically, freshwater flowed from the north 

toward saline Florida Bay, forming fresh waterbodies to the north of the embankment
16,27

. 

Today, the waterbodies to the north of the embankment are brackish to marine, which has 

led to changes in the marsh environment
15

. Long-term transitions from freshwater to 

marine sediment layers in cores taken at two locations along the Embankment
15,16

, 

coupled with the pollen cores and aerial photographs, suggest that the study area has 

experienced a transition in plant communities in the last half century, resulting from a 

combination of SLR and lack of freshwater head from the drying of the Everglades 

ecosystem
26

.  

Community types found in the 2011 research area: Seven plant communities, 

open water, and mud flats were the land cover types classified in the study area. We 

named communities using the Vegetation Classification System for South Florida Natural 

Areas (VCS)
28

 as a guide; however, we created broader vegetative classifications than the 

VCS. For example, Rutchey et al.
28

 classifies black mangrove into scrub and forest, 

divided by height class; we combined these and used black mangrove forest as a single 

class that encompasses both the Rutchey et al.
28

 categories. Because two invasive species, 

Schinus terebinthifolius Raddi and Colubrina asiatica (L.) Brongn, were prominent in the 

area and found across several forest types, causing confusion during the classification 

process, we created a classification category for each of them to improve accuracy in the 

other community types. Mud flats were open areas of bare soil; some areas may have 

periphyton mats, but no vegetation. 

 The seven plant community types are: 1) Black mangrove forest: This forest is 

dominated by Avicennia germinans (L.) L. with few associated woody species
28

, except 
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for occasional Laguncularia racemosa (L.) C.F.Gaertn. or Rhizophora mangle L. found 

in either the canopy or understory. The forest floor is dominated by many 

pneumatophores. At times, areas of young black mangrove forest will have halophyte 

species such as Batis maritima L., Sarcocornia perennis (Mill.) A.J. Scott, and Suaeda 

linearis (Elliott) Moq. in the understory. Black mangrove forests are considered the most 

salt tolerant of the three mangroves found in south Florida
29

. 

 2) Buttonwood/glycophyte forest: Conocarpus erectus L. is the dominant canopy 

species of buttonwood forests. Other woody species in the community include 

Sideroxylon celastinum (Kunth) T.D. Pennington, Randia aculeata L., Cocoloba 

diversifolia Jacq., Erythrina herbacea L., Eugenia foetida Pers., Ficus aurea Nutt., and 

Piscidia piscipula (L.) Sarg.
30

. The buttonwood understory has species such as 

Alternanthera flavescens Kunth, Chromolaena frustrata (B.L.Rob.) R.M.King & H.Rob., 

Dicliptera sexangularis (L.) Juss., and Heliotropium angiospermum Murray
30

. 

Temperature, salinity, tidal fluctuation, substrate, and wave energy influence the size and 

extent of buttonwood forests
31

, which often grade into salt marsh, coastal berm, rockland 

hammock, coastal hardwood hammock, and coastal rock barren
31,32

. They sustain 

freshwater flooding during the wet season and are dry during the dry season
31

. 

Buttonwood forests (mean elevation 29+3cm) maintain an average groundwater table of -

33+1cm and 26-29.5+0.4‰ groundwater salinity
7,30

.  

 3) Buttonwood/halophyte forest: Conocarpus erectus is the only canopy tree 

species in buttonwood/halophyte forests. The understory is comprised of Batis maritima, 

Borrichia frutescens (L.) DC., Distichlis spicata (L.) Greene, Sarcorcornia perennis, 

Suaeda linearis, and other less common species
30

. Buttonwood/halophyte forest (called 
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Buttonwood prairies
30

) (mean elevation 18+3cm) show a mean groundwater table at -

32+2cm and average groundwater table salinity of 38.8+0.6‰
30

.  

 4) Halophyte prairie: These prairies are comprised of Batis maritima, Borrechia 

frutescens, Distichlis spicata, Sarcorcornia perennis, and Suaeda linearis and other less 

common species with no canopy species
30

. Halophyte prairies have marl soils and 

slightly higher elevation than adjacent black and white mangrove forests
33

. In halophyte 

prairies, standing water that is brackish to freshwater is present for months during the wet 

season. These communities can become hypersaline during the dry season because of 

evaporation and a lack of drainage 
22

. 

    5) Coastal tropical hardwood hammocks: Coastal hardwood hammocks are 

biodiverse. Typical tree and shrub species include Capparis flexuosa (L.) L., Coccoloba 

diversifolia, Piscidia piscipula, Sideroxylon foetidissimum Jacq., Eugenia 

foetida, Swietenia mahagoni (L.) Jacq., Ficus aurea Nutt., Sabal palmetto (Walt.) Lodd. 

ex J.A. & J.H. Schultes, Eugenia axillaris (Sw.) Willd., Zanthoxylum fagara (L.) 

Sarg., Sideroxylon celastrinum (Kunth) T.D.Penn., and Colubrina arborescens (Mill.) 

Sarg.
28,32

. Herbaceous species that occur in coastal hardwood forest 

include Acanthocereus tetragonus (L.) Hummelinck, Alternanthera flavescens, Batis 

maritima L., Borrichia arborescens (L.) DC., Borrichia frutescens (L.) DC., Caesalpinia 

bonduc (L.) Roxb., Capsicum annuum L. var. glabriusculum (Dunal) Heiser & 

Pickersgill, Galactia striata (Jacq.) Urb., Heliotropium angiospermum Murr., Passiflora 

suberosa L., Rivina humilis L., Sarcocornia perennis (Mill.) A.J. Scott, Sesuvium 

portulacastrum (L.) L., and Suaeda linearis (Elliott) Moq. Ground cover is often limited 

in closed canopy areas and abundant in areas where canopy disturbance has occurred or 

http://www.itis.gov/servlet/SingleRpt/RefRpt?search_type=author&search_id=author_id&search_id_value=145404
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where this community intergrades with buttonwood forest
32

. Coastal tropical hardwood 

hammocks are the least salt tolerant of all the coastal community types and reside at the 

highest elevation (mean elevation 29+3cm). 

6) Red mangrove forest: This forest is dominated by Rhizophora mangle in the 

canopy and has little to no understory vegetation
28

. Occasional A. germinans are found in 

the canopy scattered throughout; L. racemosa is found even less commonly. Red 

mangrove forests are considered the most inundation-tolerant of the three mangrove types 

and less salt tolerant than black mangroves
29

. 

7) White mangrove forest: This forest is dominated by Laguncularia racemosa in 

the canopy and often halophytes such as Batis maritima, Sarcocornia perennis, and 

Suaeda linearis in the understory. This community is most often found in irregularly 

flooded areas
28

 and is the least salt and inundation tolerant of the three mangrove species 

found in south Florida
29

. 

Mapping the 2011 study area: 

Satellite data and image processing: Because bi-seasonal satellite imagery has 

been shown to be most effective in discriminating plant communities in the Everglades 

ecosystem
34

, we used WorldView-2 (WV2) (DigitalGlobe, Westminster, Colorado) 

satellite imagery flown over the study area at the end of the wet (December 2011) and dry 

(April 2013) seasons (Fig. 1.2). The WV2 imagery has 2x2m resolution and 8-

multispectral bands (coastal: 400-450nm; blue: 450-510nm; green: 510-580nm; yellow: 

585-625nm; red: 630-690nm; red edge: 705-745nm; near-IR1: 770-895nm; and near-IR2: 

860-1040nm). We atmospherically corrected the images using the Fast Line-of-sight 

Atmospheric Analysis of Hypercubes (FLAASH) module in ENVI version 5.2 (Exelis 
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Visual Information Solutions, Boulder, Colorado). We used the Tropical Atmosphere and 

Maritime Aerosol Models for both images with 80 Initial Visibility value for the April 

2013 image and 40 Initial Visibility value for the December 2011 image. Images were 

georectified with ERDAS Imagine 2014 (Leica Geosystems, Atlanta, Georgia). 

Supervised classification: To perform a supervised classification of the coastal 

communities in our study area, we created a training signature set by collecting GPS 

points using a Garmin 60Cx (Garmin International, Inc., Olathe, Kansas) with a 1-7m 

accuracy, in the nine known community types; we related those points to spectral 

signatures in the satellite images. We then used knowledge of the spectral signatures 

gained from the field training set to choose additional training points that we digitized 

using ArcMap 10.2.2
35

. A total of 17,166 training points were used in the classification. 

We documented community types at the GPS points with pictures in each cardinal 

direction, up toward the canopy, and down, creating a 2012-2015 photographic 

vegetation database (4,356 pictures at 730 points, Fig. 1.3), providing temporal and 

spatial photographic documentation of the study site.  

Using the open-source program R (R Core Team 2013) and a script created by D. 

Gann (GIS/RS Center, FIU), we classified plant communities using a supervised random 

forest algorithm with built-in bootstrapping and cross validation procedures (R package 

randomForest
36

); this approach has been shown to effectively classify plant communities 

in ENP
34

. RandomForest builds unpruned trees via bootstrapped with replacement 

training samples generated from two-thirds of the training points
37

. We built 1,000 trees 

(ntree=1,000) using a different bootstrap sample from the original data for each tree
37,38

. 

At each tree node, a random set of mtry predictors (mtry ~ √p; where p = total number of 
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possible variables) is selected from the full set of variables choosing the best split among 

the random predictors. Only one of the mtry predictors is allowed to be used at each 

node
37

. The pixel level community classification is predicted by running each pixel down 

each of the 1,000 trees; the classification in the majority wins
36

.    

There were 67 possible variables to randomly select from for the mtry predictor 

(mtry = 8). We created 48 texture variables for (mean, range, and standard deviation) 

with a 3x3 pixel moving focal window deployed across each multispectral band layer of 

each image. We created a Normalized Difference Vegetation Index (NDVI) from the red 

and near infrared bands of each pixel for each satellite image. A digital elevation model 

(DEM) was developed with LiDAR data flown by the Florida Division of Emergency 

Management in 2007-2008 at 5ft resolution
39

; these data are offered to the public by the 

South Florida Water Management District
40

 (Fig. 1.4). We stacked the texture variables, 

DEM, NDVI of each image, and the eight multispectral bands into a data cube with a 

total of 67 variable layers. For those areas in the satellite data that had clouds, we masked 

the clouds and used only the satellite image that did not contain clouds in that area. The 

areas where the clouds were masked out and only one satellite image was used were 

classified with 34 possible variables instead of 67; in these cases, mtry = 6 (mtry ~ √34).  

Model based accuracy assessment: To verify model based accuracy, cross 

validation was performed with out-of-bag (oob) error estimates. Each of the remaining 

one-third training points left out of each bootstrap iteration was run down the tree 

generated by that iteration of samples obtaining a test set classification for one-third of 

the trees. The proportion of times the oob sample was classified incorrectly is the oob 

error estimate
36

. 
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Map accuracy assessment: We checked map accuracy using a 2x2m pixel 

stratified-random probability sampling design, stratifying by community types (53 pixels 

per community). The reference pixels were selected using a multinomial distribution as 

described by Tortora
41

 and Congalton and Green
42

. Because the two invasive species, S. 

terebinthifolius and C. asiatica, had the smallest area and were difficult to distinguish 

remotely, we combined those two categories for the accuracy assessment. We used a 

digital stereoplotter (DAT/EM Systems International, Anchorage, Alaska) and 2009 

aerial photography of the study site, ArcMap 10.3.1 (ESRI 2014) basemap (Esri, 

DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, 

swisstopo, and the GIS User Community), and satellite images from Google Maps 

(Imagery ©2015 Google, Map data ©2015 Google) to label each of the randomly 

sampled reference pixels without prior knowledge of the model classification. Those 

pixels that we could not classify remotely were verified in the field
43

. 

1978 Map: 

The 1978 map was a hand-drawn vegetation map of the coastal area between 

Flamingo and Joe Bay of ENP. It was made by Olmsted et al.
22

 using color aerial 

photography (1:7800) flown in December 1978. Olmsted et al.
22

 ground-verified the map 

by foot, helicopter, and boat. The map was digitized and distributed to us by the National 

Park Service South Florida/Caribbean Inventory & Monitoring Network. The map area 

totaled 134km
2
, of which 41km

2
 coincided with the 2011 mapped area (Fig. 1.5). 

Other vegetation maps of the area: 

Other vegetation maps of the ENP Flamingo area were available for comparison. 

The University of Georgia’s Center for Remote Sensing and Mapping Science created a 
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vegetation community map (UGA map) of South Florida’s National Park Service Lands 

in 1999. Though this map covers the entire 71km
2
 area of our 2011 research site, our 

field-based knowledge of the site indicated that the UGA map’s vegetation communities 

were too general for change comparisons. For example, much of the area was mapped as 

buttonwood forest in the UGA map; we saw numerous instances where there were dead 

white mangrove poles in what are now solid red mangrove forests in locations 

represented as purely white mangrove in the 1978 map, but as pure buttonwood forest in 

the UGA map (K. Wendelberger personal observations). We chose to use the 1978 map 

because we felt it showed the most accurate representation of the vegetation communities 

present at the time it was made. 

Assessing plant community change between the 1978 and 2011 maps: 

Data preparation: We compared spatial extents of the community types from the 

overlapping portions of the 2011 and 1978 maps (Fig. 1.5). Fourteen km
2
 of the 

overlapping 1978 map was classified as mixed mangrove, a varying mixture and density 

of the three mangrove species and buttonwood forest. Olmsted et al.
33

 suggested that the 

mixed mangrove stands had established since the previous hurricane; these stands were 

difficult to walk through in 1980 and were not thoroughly examined by Olmsted et al.
33

. 

A mixed mangrove community was not classified in the 2011 map because the spectral 

signature varies with the composition of three species. Instead, each of the 2011 

communities were identified in the area of the 1978 mixed mangroves. Since the class of 

mixed mangrove was not available from the 2011 classification, the area covered by 

mixed mangroves in 1978 was excluded from the analysis of vegetation changes. The 

total area compared excluding the area containing the 1978 mixed mangroves was 
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26.8km
2
. Olmsted et al.

33
 further divided each community type by height class and, at 

times, understory type; we did not do this in the 2011 map. Therefore, we compiled and 

reclassified all the 1978 sub-community types into their respective larger community 

types for comparison with the 2011 map; all of the final community types compared were 

the same between the two maps: black mangrove forest, buttonwood forest, coastal 

tropical hardwood hammock, halophyte prairie, mud flat, open water, red mangrove 

forest, and white mangrove forest (Fig. 1.5). 

To make the 1978 and 2011 maps comparable, we aggregated the 2011 map’s 

minimum mapping unit from 2x2m
 
pixel to 2m x 250 pixels by majority rule, which was 

approximately the smallest unit mapped in the 1978 map (Fig. 1.5). Because the S. 

terebinthifolius and C. asiatica categories were classified in areas smaller than the 

minimum mapping unit, these two categories were eliminated when we decreased the 

2011 map resolution. The 1978 map did not distinguish between buttonwood forest with 

a glycophytic understory and buttonwood forest with a halophytic understory, so we 

combined those two categories in the 2011 map into buttonwood forest (Fig. 1.5).  

Statistical analysis:  

2011 map model-based accuracy assessment: Model-based accuracy is given in a 

confusion matrix that shows the percentage of training points for each labeled community 

type that was classified by the random forest algorithm as that community type versus all 

the other possible communities (Table 11.). Columns represent the observed training 

point labels; rows represent the category assigned to the training point by the random  
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forest algorithm. The diagonal provides the percentage of training points that were 

classified correctly by the model. The off-diagonal cells represent percentage of omission 

and commission errors. 

2011 map accuracy assessment: To quantify accuracy of the map and estimate 

area of each community type across the 71km
2 

area, we created an error matrix of the 

map label versus reference pixel labels
43

 (Table 1.2). The error matrix represents the 

proportion of area for each community type that would be found if a complete census of 

the community type was performed. The main diagonal shows the proportion of correctly 

classified pixels while the off-diagonal cells represent the proportion of producer’s 

accuracy and user’s accuracies (Table 1.2). Using the probabilities generated from the 

error matrix, we calculated the adjusted area and overall map, user’s, and producer’s 

accuracies with standard errors and 95% confidence intervals
43,44

 (Table 1.3).  

1978 map: The area and percent cover were calculated for all the reclassified 

community types in the 41km
2
 area of the reclassified 1978 map. We included the mixed 

mangrove forest category in this analysis so comparisons could be made between the 

1978 mixed mangrove forest and what that area was classified as in 2011 (Table 1.4).  

Comparing the 1978 and 2011 maps: We compared overall area (ha) and percent 

cover, as well as area (ha) and percent area change of each of the community types 

between the maps within the 26.8km
2
 area that excluded the 1978 mixed mangrove forest 

(Table 1.5). We then cross-tabulated how much area of each community changed into 

another community from 1978 to 2011 (Tables 1.6 and 1.7). Using the diffeR package in 

R
45

 we created a site change map delineating paired community changes (original 

community - changed community) throughout the area.  
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RESULTS 

 

2011 vegetation map:  

2011 map model-based accuracy assessment: Overall model-based map accuracy 

was 87.9%, and each community type showed its own model-based accuracy, depending 

on model confusion between the communities (Table 1.1). Black and red mangrove 

forests and tropical hardwood hammock training points had accuracies > 87% and were 

confused the most with each other (Table 1.1). Buttonwood/glycophyte forest and 

buttonwood halophyte forest had lower accuracies (app. 69%). Buttonwood/glycophyte 

forest was confused the most with black mangrove forest and tropical hardwood 

hammock (Table 1.1). Buttonwood/halophyte forest showed the most model confusion 

with halophyte prairie (Table 1.1), as did mud flats (Table 1.1). White mangrove forest, 

with 75.81% accuracy, was confused with black mangrove forest and halophyte prairie 

(Table 1.1). Water and halophyte prairie training points were accurately classified 99.2 

and 95.3% of the time, respectively, with little confusion with the other community types 

(Table 1.1). The two invasive species, S. terebinthifolius and C. asiatica, had the lowest 

accuracies (67%) and were confused primarily with tropical hardwood hammock (Table 

1.1).  

2011 map accuracy assessment: The accuracy assessment showed an 85.66% 

overall map accuracy prior to adjusting for the proportional errors. Water was the most 

proportionally accurate community type (1.00; Table 1.2). Of the natural plant 

communities mapped, buttonwood/halophyte and white mangrove forests were the most 

proportionally accurate communities (0.91; Table 1.2), and tropical hardwood hammocks 
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were the least accurate (0.74; Table 1.2). The combined invasive species category 

showed the least accuracy of all the classified types (0.62; Table 1.2).  

2011 adjusted map areas and cover: The adjusted map accuracy after taking into 

account proportional errors across the communities was 86.02%. The plant communities 

covered from 183 (CI 154.2; 211.6) to 2,015 (CI 1890.4; 2138.6) ha in the 71km
2
 study 

area (Table 1.3). Black mangrove forest maintained the most area and percent cover of all 

the community types (28.5% cover; Table 1.3; Fig. 1.6). Red mangrove was second most 

dominant (20.8% cover; Table 1.3; Fig. 1.6), followed by halophyte prairie (10.0% cover; 

Table 1.3; Fig. 1.6). All the other community types showed less than 10% cover each 

(Table 1.3; Fig. 1.6). Of all the natural plant communities mapped, tropical hardwood 

hammock was the least common (2.6% cover; Table 1.3; Fig. 1.6) followed by mud flats 

(3.4% cover; Table 1.3; Fig. 1.6). When combining the two invasive species, S. 

terebinthifolius and C. asiatica, they showed 3.2% cover together (Table 1.3; Fig. 1.6). 

Schinus terebinthifolius tended to be found in tropical hardwood hammock and red 

mangrove forest (K. Wendelberger personal observations). 

The communities were distributed across the elevation patterns at the site. The 

DEM shows patterns of higher elevation interwoven with lower elevation throughout the 

2011, 71km
2
 study site (Fig. 1.4). Tropical hardwood hammock, buttonwood/glycophyte 

and buttonwood/halophyte forests tended to follow a sequential pattern (Fig. 1.6). 

Tropical hardwood hammocks were found at the highest elevation, 

buttonwood/glycophyte forest found on slightly lower elevation at either side of tropical 

hardwood hammocks, and buttonwood/halophyte forest on the lower sides of 

buttonwood/glycophyte forests (Figs. 1.4 and 1.6). Halophyte prairie was frequently 
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located in low spots adjacent to buttonwood/halophyte forests. Black and red mangroves 

were located in the lowest elevations in the area (Figs. 1.4 and 1.6).  

Reclassified 1978 map: 

The plant communities in the 1978 map differed in area and percent cover across 

the 41km
2
 research site. Mixed mangrove forest had the greatest area (1,386ha) and 

percent cover (34.1%) of all the community types (Table 1.4; Fig. 1.5). Of the remaining 

communities, buttonwood forest was most abundant (20.7% cover; Table 1.4). White 

mangrove forest was second most abundant (16.9% cover; Table 1.4; Fig. 1.5), followed 

by halophyte prairie (14.8% cover; Table 1.4; Fig. 1.5). Pure red mangrove forest—not 

including that found in the mixed mangrove stands—was the least abundant community 

type (0.6% cover; Table 1.4; Fig. 1.5). Tropical hardwood hammock showed more 

coverage than either red or black mangrove forests outside of the mixed mangrove areas 

(tropical hardwood hammock: 5.4% cover, black mangrove forest: 2.5% cover; Table 

1.4; Fig. 1.5). 

Vegetation changes 1978 to 2011: 

Large changes in plant communities from less salt- and inundation-tolerant to 

more salt- and inundation-tolerant community types have occurred over the 33-year 

period from 1978 to 2011 (Table 1.4 and 1.5; Fig. 1.7). After excluding the areas 

containing the 1978 mixed mangrove category from the analysis and using the unadjusted 

2011 areas, we found red and black mangrove forests have increased the most in the 

study area (289ha and 730ha increase and 1,145% and 720% change, respectively; Table 

1.4 and 1.5; Fig. 1.7). White mangrove forest, halophyte prairie, and tropical hardwood 
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hammock showed the greatest decrease in area (-436, -310, and -95ha and -64, -51, and -

43% area change, respectively; Table 1.4 and 1.5; Fig. 1.7).  

Community relative abundances in 2011 in the 41km
2
 area that overlapped with 

the 1978 map differed from the entire 71km
2
 map. Black mangrove forest was still the 

most abundant (31% cover; Table 1.4; Fig. 1.5); however, buttonwood forest, which 

included both buttonwood/glycophyte and buttonwood/halophyte forest, was the second 

most abundant community (25% cover; Table 1.4; Fig. 1.5). Red mangrove forest showed 

the third highest cover (12% cover; Table 1.4; Fig. 1.5), closely followed by halophyte 

prairie (11% cover; Table 1.4; Fig. 1.5) and white mangrove forest (9.3% cover; Table 

1.4; Fig. 1.5). Mud flat showed the least cover (1.5 % cover; Table 1.4; Fig. 1.5) and 

tropical hardwood hammock the second least (4.7% cover; Table 1.4; Fig. 1.5).  

There was not a direct landward transition in coastal plant communities. Instead, 

the areas of change tended to move from lower to higher elevation within the elevation 

matrix of the study area. Communities found at the top of a ridge (e.g., tropical hardwood 

hammock) were replaced by lower elevation communities (e.g., buttonwood forest) from 

the lower and outer edge of the upland community; communities found in a trough of 

elevation changed from the center of the trough and moved up the edge toward higher 

elevation (Fig. 1.5); for example, the large area of white mangrove (which was 

buttonwood forest in 1978; Fig. 1.5) to the center and bottom of Fig. 1.6 shows an edge 

of buttonwood/halophyte prairie, suggesting the changes in this area came from within 

the previous community as opposed to the edge. The highest elevation tropical hardwood 

hammock was the exception, with the community shrinking from the edge (Figs. 1.6 and 

1.7). The majority of halophyte prairie changed into black mangrove and buttonwood 
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forest (184 and 110ha, respectively; Table 1.5; Fig. 1.7). White mangrove transitioned 

into black and red mangrove forests (416 and 210ha, respectively; Table 1.5; Fig. 1.7). 

Tropical hardwood hammocks changed into buttonwood forest (109ha; Table 1.5), and 

buttonwood forests converted mostly to white mangrove forest (164ha; Table 1.5; Fig. 

1.7). Halophyte prairies showed the largest transition into black mangrove forest (183ha; 

Table 1.5; Fig. 1.7) and second largest into buttonwood forest (110ha; Table 1.5; Fig. 

1.7). 

The 1978 mixed mangrove forest (14km
2
) was mapped as distinct vegetation 

communities in 2011. Red and black mangrove forests covered the majority of the area in 

2011 (Table 1.6), followed by white mangroves and buttonwood forest (Table 1.6); 

tropical hardwood hammock and halophyte prairie covered the least of the 1978 mixed 

mangrove area in 2011 (Table 1.6).  

Those areas that did not change between 1978 and 2011 tended to be the lowest 

elevation communities. Of the area covered by black and red mangrove forests in 1978, 

82% and 44%, respectively, were still those community types (Fig. 1.7 and Table 1.5). 

White mangrove forest changed the most; only 5.8% of the area covered by white 

mangrove in 1978 was still white mangrove in 2011. The area covered by the highest 

elevation buttonwood forests and tropical hardwood hammock in 1978 were 52% and 

37% unchanged, respectively, in 2011 (Fig. 1.7 and Table 1.5). The above results were 

generated by direct comparison between the 1978 and 2011 maps; a plant community 

change accuracy assessment including confidence intervals of the change categories is 

needed. We will be performing the accuracy assessment prior to peer-reviewed 

publication.  
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DISCUSSION 

 

Lowland plant communities along the coast of south Florida have moved up the 

elevation gradient, transitioning from less salt- and inundation-tolerant to more salt- and 

inundation- tolerant communities. Of the three mangrove species found in our study area, 

white mangroves reside highest in elevation and are the least salt tolerant
29,46

. Black 

mangroves are known to be the most salt tolerant of the three species
29

 and red 

mangroves the most flood tolerant
46

, outcompeting white mangroves in increasingly salty 

and flooded environments
46

. White mangrove forest cover decreased 16% since 1978; 

61% of the area covered by white mangrove forest in 1978 was black mangrove forest by 

2011 and 31% was red mangrove forest. Further, halophyte prairie showed a 12% 

decrease in cover over the 33 year period with the majority (184ha) transitioning into 

more inundation-tolerant black mangrove forest. Overall, black and red mangrove forests 

increased 27 and 11% in cover, respectively, over the 33 year period in the area we 

analyzed, suggesting the site became saltier and wetter since 1978. Additionally, the two 

highest elevation communities—tropical hardwood hammock and buttonwood forest
30

 

(mean elevation 0.29 ± 0.007m and 29 +3cm, respectively)—decreased by 6% (172ha) 

and 4% (95ha) cover, respectively, during the study period. White mangrove forest 

replaced 20% of buttonwood forest and buttonwood forest replaced 49% of tropical 

hardwood hammocks since 1978.  

Plant communities change from environmental stress when there is a shift in their 

regeneration niches that prevent the current community from reproducing. Seedlings are 

more susceptible to changing microsite ecology, usually losing their ability to establish 
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sooner than adults die
47,48

 (Chapter 3 this dissertation). When a community cannot 

reproduce, it results in a population of relic adults from the former community with an 

understory of either establishing seedlings from a new community more suited to the 

changed environment or no regenerating individuals
7,47

. Pulse disturbances, e.g., 

hurricanes and storm surges, tend to be the final event eliminating relic adults
49,50

, 

leaving saplings from the new community to grow into the canopy or, in cases where no 

regeneration is present, open water
3,47

. Changes finalized by pulse events appear from 

above to be rapid transitions of large land areas, but, in fact, they occurred slowly over 

time
47

. Large-scale plant community transitions along the coast of ENP detectable via 

remote sensing technologies indicate that changes in belowground conditions and 

regeneration niches have been happening in the area for quite some time. Though 

attempts to further dry the Everglades ceased decades ago, the system continues to move 

in the direction of salty and inundation-tolerant coastal communities.  

Florida’s coastal communities have been changing from SLR since the end of the 

last glacial maximum; however, reduction of freshwater flow and increasing rates in SLR 

have substantially increased the modern rate of change found in the past century
4,7,15–21,51

. 

Williams et al.
47

 showed increases in salinity along the Gulf Coast of Florida decreased 

upland Sabal palmetto (Walter) Lodd. ex Schult. & Schult.f. (cabbage palm) seedling 

establishment and increased adult S. palmetto die off, resulting in a replacement of S. 

palmetto forest by salt marsh. Ross and O’Brien
4
 determined that mortality of Pinus 

elliotti Engelm. var densa Little & Dorman (South Florida slash pine) and replacement by 

lower elevation halophytic communities on Sugarloaf Key in the Florida Keys coincided 

with increasing sea levels. Ross et al.
17

 found that freshwater graminoid marshes in the 
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eastern portion of the southern Everglades transitioned into mangrove scrub between 

1952 and 2000. In addition to drying, there has been more than a 23cm increase in sea 

level along the south Florida coast in the last century
52

. A large increase in red mangrove 

forest—the most flood tolerant of the three mangroves—and a decrease in tropical 

hardwood hammock—the highest elevation community along the coast and the least 

salinity-tolerant community—suggests that an increase in groundwater elevation and 

flooding from rising sea levels contributed to the changes we found in our study.  

A diverse coastal plant community matrix is critical to the health of the greater 

community, both human and natural alike
29,53–57

 and a hotspot for sequestering CO2 at 

high rates
56,57

. Our map, which provides a fine-scale baseline for monitoring future 

change, shows that in 2011, the ENP coastal communities were still quite diverse, 

maintaining a matrix of complex community composition of black and red mangrove 

forests, halophyte prairie, two buttonwood communities (glycophyte and halophyte), 

white mangrove forest, and tropical hardwood hammock. Of the natural communities, 

tropical hardwood hammock showed the least amount of cover at 3%. However, if the 

decreases in upland communities seen in the subset data between 1978 and 2011 

continue, there will be a homogenization of communities along the coast of ENP. Our 

study site encompasses a portion of the buttonwood embankment, a ridge along the 

southern coast of Florida formed from historic coasts and storm surges
16

. There is over 

8km of dwarf red mangrove forest between the most northern hardwood hammocks and 

buttonwood forests in our study site and lands with high enough elevation to support the 

two communities. Therefore, an inland migration of hardwood hammock and buttonwood 

forests is not likely. Upland coastal plant communities in ENP maintain 21 rare plant 
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species that are threatened by SLR, including the federally endangered plant 

Chromolaena frustrata
7
. Further shrinking in cover of the habitats that support the rare 

species increases threats to them; some may become extirpated or extinct
7
. Although red 

and black mangrove forests have increased in our study area, a continuation in rising seas 

may lead to a collapse of these forests
3,53

, losing natural area, CO2 sequestering forest, 

and coastal buffer to south Florida’s human populations
55

.  

Creating a healthy Everglades ecosystem through increased freshwater flow 

would eliminate one of two major stressors driving the vegetative changes that have been 

seen throughout the Florida coast. Sea level rise alone plays a small role in predicted 

global wetland loss when human alterations are not included in the forecast
3,57

.  The 

coupled stress of anthropogenic landscape modifications and SLR tend to be the driving 

factors in coastal wetland loss
3
. Therefore, restoring the hydrologic regime of the 

Everglades ecosystem is critical if we want a coastal community matrix that is as resilient 

to SLR as possible. The objective of the Comprehensive Everglades Restoration Project 

is to increase freshwater flow into ENP. A stronger freshwater head would push back 

coastal saltwater intrusion, allowing a freshwater lens to form in areas where it no longer 

exists or is thinning
53

. Potentially, the highest elevation communities that harbor the most 

rare plant species would be able to either expand or at least maintain their current area, 

giving species and people time to adapt to the press of SLR. The landscape-scale changes 

found in our and others’ research show that if we want to preserve biodiversity and 

ecosystem integrity, the effects of SLR and Everglades drying on coastal south Florida 

are matters to be addressed today, not in the future. 
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Black Mangrove Forest 91.73 6.02 12.25 1.97 3.41 0.00 0.45 1.62 1.62 7.63 10.44 

Schinus terebinthifolius 0.03 66.61 0.18 0.00 1.14 0.00 0.02 0.34 0.00 0.00 0.00 

Buttonwood/glycophyte Forest 0.11 1.64 68.65 5.82 0.00 0.00 0.00 1.29 0.00 0.04 0.14 

Buttonwood/halophyte Forest 0.08 0.36 3.96 69.06 0.00 0.00 1.02 0.00 0.22 0.00 2.45 

Colubrina asiatica 0.00 0.00 0.36 0.00 67.05 0.00 0.00 0.17 0.00 0.00 0.00 

Water 0.00 0.00 0.00 0.00 0.00 99.24 0.00 0.00 0.00 0.00 0.00 

Halophyte Prairie 1.00 0.00 0.00 20.04 1.14 0.00 95.28 0.00 8.10 0.50 9.72 

Tropical Hardwood Hammock 1.85 20.07 9.01 0.21 27.27 0.00 0.02 93.91 0.00 4.34 0.07 

Mud Flat 0.08 0.00 0.18 0.00 0.00 0.76 1.52 0.00 89.31 0.00 0.22 

Red Mangrove Forest 4.63 4.20 3.42 0.00 0.00 0.00 0.00 2.68 0.00 87.33 1.15 

White Mangrove Forest 0.50 1.09 1.98 2.91 0.00 0.00 1.68 0.00 0.76 0.17 75.81 

Total number of training points 3783 548 555 963 88 131 4408 1789 926 2399 1389 

% error 8.27 33.39 31.35 30.94 32.95 0.76 4.72 6.09 10.69 12.67 24.19 

Random forest classifier 
numTree oob accuracy   

       1000 12.1 87.9%   

        

Table 1.1. Model based accuracy confusion matrix for the 2011, 71km
2 

map, Flamingo, Everglades National Park, Florida. 

Columns are the training point labels; rows represent the label the algorithm assigned to the training points. The cell data are the % 

of training points in each column that were classified as each row community by the model. The diagonal (in bold) provides the % 

of training points that were classified correctly by the model. The off-diagonal cells are % omission and commission errors. The % 

error gives class-specific model error for each community type. The overall map model accuracy is 87.9%. 
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Black Mangrove Forest 0.85 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.02 

Buttonwood/glycophyte Forest 0.06 0.89 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Buttonwood/halophyte Forest 0.00 0.06 0.91 0.00 0.04 0.00 0.00 0.00 0.00 0.00 

Water 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

Halophyte Prairie 0.02 0.04 0.02 0.00 0.89 0.00 0.00 0.04 0.00 0.00 

Tropical Hardwood Hammock 0.06 0.00 0.11 0.00 0.02 0.74 0.04 0.00 0.04 0.00 

Invasive Species (S. 

terebinthifolius/ C. asiatica) 
0.02 0.00 0.15 0.00 0.02 0.06 0.62 0.00 0.13 0.00 

Mud Flat 0.02 0.00 0.00 0.06 0.04 0.00 0.00 0.89 0.00 0.00 

Red Mangrove Forest 0.08 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.89 0.02 

White Mangrove Forest 0.00 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.91 

               Accuracy : 85.66%            95% CI : (0.8238, 0.8853) 

       

Table 1.2. Stratified-random probability accuracy assessment error matrix, stratifying by community types (53 pixels per 

community) for the 2011, 71km
2 

study area, Flamingo, Everglades National Park, Florida. Rows are classification derived map 

labels; columns are the reference labels. The main diagonal (in bold) shows the proportion of correctly classified pixels; the off-

diagonal cells represent the proportion of producer’s and user’s accuracies. Because it was difficult to distinguish pixels of the two 

invasive species, Schinus terebinthifolius and Colubrina asiatica, and their area was small, we combined those two categories for 

the accuracy assessment. The map accuracy prior to adjusting for proportion correct is 85.66%; (95% CI: 0.8238, 0.8853). 
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%
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Black Mangrove  2158.5 0.31 2014.5 28.5 124.1 1890.4 2138.6 0.85 0.85 0.10 0.75 0.95 0.91 0.06 0.85 0.97 

Invasive Species  16.4 0.00 227.4 3.2 81.6 145.8 309.0 0.89 0.91 0.08 0.84 0.99 0.07 0.08 -0.02 0.15 

Buttonwood/ 

glycophyte  
429.8 0.06 615.2 8.7 63.9 551.4 679.1 0.91 0.91 0.08 0.83 0.99 0.63 0.13 0.51 0.76 

Buttonwood/ 

halophyte  
653.2 0.09 667.5 9.5 8.1 659.4 675.6 1.00 1.00 0.00 1.00 1.00 0.98 0.02 0.96 1.00 

Water 408.6 0.06 409.7 5.8 28.4 381.3 438.1 0.89 0.89 0.09 0.80 0.97 0.89 0.09 0.79 0.98 

Halophyte Prairie 899.5 0.13 703.5 9.9 62.3 641.2 765.8 0.74 0.74 0.12 0.62 0.86 0.94 0.078 0.86 1.02 

Hardwood 

Hammock 
239.2 0.03 182.9 2.6 28.7 154.2 211.6 0.62 0.62 0.13 0.49 0.76 0.82 0.21 0.61 1.02 

Mud Flat 253.7 0.04 240.9 3.4 15.5 225.4 256.4 0.89 0.89 0.09 0.80 0.97 0.94 0.08 0.85 1.02 

Red Mangrove  1493.0 0.21 1470.6 20.8 90.8 1379.8 1561.4 0.89 0.89 0.09 0.80 0.97 0.90 0.08 0.82 0.98 

White Mangrove  511.6 0.07 532.6 7.5 53.7 478.9 586.3 0.91 0.91 0.08 0.83 0.99 0.87 0.16 0.71 1.03 

Total 7063.5 1.00 7064.8 100 Adjusted accuracy 86.02% 
       

 

Table 1.3. Original and adjusted post accuracy assessment of classified community types  in the 2011, 71km
2 

study area, Flamingo, 

Everglades National Park, Florida. Columns are mapped area (ha), proportion of area covered (ha), adjusted area (ha) account for 

proportional errors, adjusted area %cover, unadjusted community area bias proportion, proportion adjusted user’s and producer’s 

accuracies, standard errors, and upper and lower 95% confidence intervals. Because it was difficult to distinguish pixels of the two 

invasive species, Schinus terebinthifolius and Colubrina asiatica, and their area was small, we combined those two categories 

(called Invasive Species in the table) for the accuracy assessment. Map accuracy after adjusting for map error was 86%. 
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1978     

Area (ha) 

2011  

Area (ha) 

Area (ha) 

Change 

% Area 

Change 

1978        

% Cover 

2011        

% Cover  

% Cover 

Change 

Black Mangrove Forest 101.39 831.08 729.69 719.69 3.78 30.98 27.20 

Buttonwood Forest 841.46 669.94 -171.52 -20.38 31.37 24.97 -6.39 

Water 177.68 160.03 -17.65 -9.94 6.62 5.97 -0.66 

Halophyte Prairie 601.87 292.05 -309.82 -51.48 22.44 10.89 -11.55 

Tropical Hardwood Hammock 220.21 124.93 -95.28 -43.27 8.21 4.66 -3.55 

Mud Flat 29.10 40.38 11.28 38.75 1.08 1.51 0.42 

Red Mangrove Forest 25.27 314.70 289.43 1145.33 0.94 11.73 10.79 

White Mangrove Forest 685.57 249.46 -436.11 -63.61 25.56 9.30 -16.26 

Total  2682.55 2682.55 0.00 1715.10 100.00 100.00 0.00 

 

Table 1.4. Total area (ha), percent cover, area (ha) change, and percent cover change of each plant community type compared 

between the 1978 map and the 2011 map, Flamingo, Everglades National Park, Florida. Because we excluded the amount of area 

covered by the 1978 mixed mangrove category, the study area for this analysis was 26.8km
2
. The 1978 map did not distinguish 

between buttonwood forest understory types; therefore, we combined the two 2011 buttonwood forest types for this analysis. The 

2011 areas used were from the mapped values not the proportionally adjusted area values. 
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Black Mangrove Forest 82.83 4.28 0.85 7.39 0.15 1.14 4.75 0.00 101.39 

Buttonwood Forest 116.53 436.57 0.12 48.80 36.29 0.23 39.00 163.91 841.46 

Water 3.38 0.07 155.18 0.12 0.04 2.02 16.71 0.16 177.68 

Halophyte Prairie 183.87 110.47 0.41 216.79 4.90 16.00 25.62 43.81 601.87 

Tropical Hardwood Hammock 11.31 108.51 0.21 9.27 81.64 0.53 7.06 1.68 220.21 

Mud Flat 4.16 0.00 2.32 2.39 0.00 20.12 0.11 0.00 29.10 

Red Mangrove Forest 13.51 0.00 0.45 0.00 0.00 0.00 11.03 0.28 25.27 

White Mangrove Forest 415.49 10.04 0.49 7.28 1.91 0.33 210.41 39.62 685.57 

  
Total area (ha) 2011 831.08 669.94 160.03 292.05 124.93 40.38 314.70 249.46 2682.55 

 

Table 1.5. Cross-tabulation table showing how the total area (ha) of each community type mapped in the 41km
2 

study area, 

Flamingo, Everglades National Park changed from 1978 (rows) to 2011 (columns). The diagonal (in bold) represents the 

unchanged area (ha). Off-diagonal cells represent the area each community type was in 1978 (lower cells) versus 2011 (upper 

cells). A mixed mangrove community class was not defined in the 2011 map; therefore, the area contained by the 1978 mixed 

mangrove forest community class was not analyzed in this analysis. The 1978 map did not distinguish between buttonwood forest 

understory type; therefore, we combined the two 2011 buttonwood forest types for this analyses. 
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1978 Mixed Mangrove Forest 485.23 63.73 2.22 9.52 10.26 1.01 715.71 98.38 1386.06 

 

Table 1.6. A cross-tabulation table showing the amount of area (ha) of the 1978 mixed mangrove forest that had changed into each 

of the 2011 community types in the 41km
2 

study area, Flamingo, Everglades National Park. We did not specifically analyze the 

differences between years for this community. The 1978 map did not distinguish between buttonwood forest understory type; 

therefore, we combined the two 2011 buttonwood forest types for this analyses. 
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FIGURES 

Figure 1.1. Digitalglobe WorldView-2 satellite image (red, green, blue bands displayed) of 71km
 2 

study site along the coast with 

Florida Bay to the south, Flamingo, Everglades National Park (ENP). The inset shows Florida with ENP outlined and the location 

of the study area indicated. The ENP road to Flamingo is seen in the image. The orange outline is the 41km
2
 area where the 1978 

ENP map overlapped and where we performed plant community change analysis. 
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Figure 1.2. WorldView-2 satellite 2x2m imagery used to create the 2011, 71km
2
 plant community map, Flamingo, Everglades 

National Park (red, green, blue bands displayed with a 0.5 min/max percent clip Gamma Stretch 0.75, 0.75, 0.75). The images 

were taken at the end of the wet season, December 2011 (A) and the end of the dry season, April 2013 (B).  
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Figure 1.3. Mapped GPS points that are associated with the 2012-2015 photographic database of the 71km
2
 study area, Flamingo, 

Everglades National Park. 
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Figure 1.4. Digital Elevation Model (DEM) of the 2011 71km
2
 study site, Flamingo, Everglades National Park. Areas with highest 

elevations are the brightest; areas with lowest elevation are the darkest. The higher elevation buttonwood embankment is seen as 

the highest elevation natural areas throughout the study site. The circles of high elevation along the Buttonwood Canal (center of 

image) are likely spoil piles from when the canal was built. The roads and campgrounds also show as high elevation. The DEM 

was created with LiDAR data flown by the Florida Division of Emergency Management in 2007-2008 at 5ft resolution (FDEM 

2015), tiled and offered to the public by the South Florida Water Management District (SFWMD 2015). 
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Figure 1.5. The 41km
2
 study area, Flamingo, Everglades National Park, comparing 

changes in the plant community matrix between 1978 and 2011. (A) 2011 vegetation map 

where the minimum mapping unit was aggregated from 2x2m to 250x250m, 

approximately matching the smallest unit mapped in 1978. (B) 1978 vegetation map. 

Both maps were reclassified to match plant community names, except the 1978 mixed 

mangrove forest (gray) which did not have a matching class in the 2011 map. 
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Figure 1.6. The 2011 2x2m resolution vegetation map of the 71km
2
 study area, Flamingo, 

Everglades National Park. The overview is the entire 71km
2
 area. (A) The eastern portion 

of the map; (B) the western portion. 
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Figure 1.7. Community change map between 1978 and 2011of the 41km
2
 study area, Flamingo, Everglades National Park. The 

numbers in parentheses are hectares each community change represents on the map. In the Legend labels, the first community 

named was present in the 1978 map, while the second community named was present at that location in the 2011 map. 
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ABSTRACT 

 

Anthropogenic disturbances and sea level rise (SLR) have caused the world’s 

coastal plant communities to decline 25-50% over the last 50 years. Along the coast of 

Florida, SLR and large-scale ecosystem drying have worked together to increase 

groundwater salinity driving shifts in plant community composition. Halophytic (salt-

tolerant) understory species have been documented moving into glycophytic (salt-

intolerant) communities. There is debate as to whether halophytes entering a system 

result in higher or lower soil salinity. Halophytes are thought to transpire under higher 

salinity levels than glycophytes. Continued transpiration under dry, saline conditions may 

draw up saline groundwater leading to increased soil salinity levels; however, halophytes 

may also transport soil salts into their leaves freshening soils. We hypothesized that 

halophytes increase soil salinity as compared to glycophytes through continued 

transpiration during dry, highly saline periods, drawing saline groundwater up through 

the soil column via capillary rise.  

Our results show that, indeed, halophytes increased soil salinity with increasing 

halophyte density; however, not directly from higher transpiration rates. Instead, either 

osmotic or ionic stress caused a decrease in biomass resulting in overall less plant 

transpiration even though per unit area stomatal conductance was the same for both 

halophytes and glycophytes after salinity treatments began. Once halophytic individuals 

establish they increase soil salinity throughout the soil column making conditions more 

conducive to further halophyte establishment adding a biological component to observed 
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plant community turnover. Our study suggests that coastal plant community turnover may 

occur faster than would be predicted from SLR and anthropogenic disturbance alone.  

 

Keywords: Halophyte, Glycophyte, Competition, Soil salinity, Sea level rise, Climate 

Change, Coastal vegetation shifts 

SIGNIFICANCE STATEMENT 

 

We demonstrate that changes in coastal plant community composition attributed 

to anthropogenic disturbances and sea level rise (SLR) are also, in part, as a result of 

halophytic (salt-tolerant) individuals increasing soil salinity as they invade upland 

glycophytic (non-salt-tolerant) communities. Once halophytes establish they increase soil 

salinity throughout the soil column making conditions more conducive to further 

halophyte establishment. We did not find a difference in per unit area stomatal 

conductance under increased groundwater salinity between our study halophytic and 

glycophytic species. Therefore, halophyte influence on soil salinity is likely from higher 

salt tolerance rather than shutting stomata to prevent water loss. Our results suggest that 

coastal plant community turnover may occur faster than would be predicted from SLR 

and anthropogenic disturbance alone. 

INTRODUCTION 

 

Increasing sea levels and anthropogenic disturbances are causing changes in 

coastal plant communities around the world (1–3). Shifts from less salt- and lower 

inundation- tolerant to more salt- and higher inundation-tolerant community types or to 
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open water have been documented (1, 3–7). Over the past 50 years, the world’s coastal 

vegetation declined in area 25-50% (8) because of a combination of sea level rise (SLR) 

and anthropogenic alterations (9). Future SLR rate is expected to exceed both the mean 

global SLR rate during the 20
th

 century (1.7mm yr
–1

) and SLR rate since 1993 (3.6mm 

yr
–1

) (10), further threatening coastal habitats. A diverse coastal plant community matrix 

is critical for healthy coastal ecosystems, both human and natural alike (8, 11–15), and is 

a hotspot for CO2 sequestration (8, 14, 15). Increases in groundwater salinity and 

inundation periods and depth drive shifts in plant community composition (4, 9); 

however, organisms themselves can act as ecosystem engineers, modifying habitats to 

increase their survival (16). The effect of salt on plants, communities, and plant 

competition is well established (17–20), but there are conflicting results on whether and 

how plants influence soil salinity (21–25). As SLR salinizes coastal groundwater and soil, 

it becomes important to understand how halophytes (salt-tolerant plants) invading 

glycophytic (non-salt-tolerant) communities affect soil salinity (24), to determine whether 

a biological component should be added to the causes of community change predicted 

with SLR. 

Plants can influence soil salinity via below-ground feedback loops in the soil 

vadose zone. The vadose zone is a thin layer between the top of the brackish groundwater 

table and the soil surface where water is stored and moved between the land surface, root 

zone, and groundwater (26). Low precipitation or over-extraction of water for human use, 

coupled with evapotranspiration, dries the vadose zone, drawing up saline groundwater 

via capillary rise and salinizing the freshwater lens and rhizosphere (1, 23). Seasonal 

precipitation infiltrates the vadose zone, freshening the soil and forming a freshwater lens 
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above the seawater/groundwater table (1, 23). The seasonal desalinization process, along 

with slightly higher elevation, allows glycophytic plant communities to exist in coastal 

areas that might not support them otherwise (27–29). Sea level rise and anthropogenic 

disturbances such as wetland drying can result in the groundwater table becoming saltier 

and higher, thinning the freshwater lens and leaving it vulnerable to permanent 

salinization (1, 3, 30). Increasing groundwater and vadose zone salinity impacts the 

overlying plants. 

Changes in plant communities aboveground can alter vadose zone and 

groundwater salinity levels (21, 31, 32). Halophytes and glycophytes have differing 

physiological responses to salt stress. In freshwater-limited systems glycophytes shut 

stomata above threshold salinity levels (33, 34), enabling the vadose zone to recharge 

with freshwater. Halophytes, however, continue to transpire and, in some cases, transpire 

more under higher salinity levels (33, 34). A reasonable hypothesis is that as groundwater 

salinity increases from SLR, halophytes will increase vadose zone and rhizosphere 

salinity via higher transpiration rates, creating a positive feed-back loop that allows them 

to out-compete glycophytes, resulting in plant community turnover. This study addresses 

the issue of halophytes’ effects on vadose zone salinity in southern Florida coastal 

communities. 

Beginning in 1909, Florida Everglades’ drainage resulted in a broad front of 

saltwater intrusion along the shore and up drainage canals (35). By the late 1990’s, 

saltwater intrusion had extended 10-15km inland (36) and in 2006 existed in 6 to 25km 

wide coastal zones (37). Saltwater intrusion has been attributed to SLR and large-scale 

anthropogenic drying of the Everglades watershed (35, 37, 38). The Comprehensive 
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Everglades Restoration Plan is working to restore freshwater flows into the Everglades 

watershed, decrease saltwater intrusion, and mitigate nutrient input (39). Sea level rise, 

however, counteracts this restoration effort. The Intergovernmental Panel on Climate 

Change predicts a sea level increase from 0.45 to 0.82m in the next 50-100 years (10). 

Restoration and SLR effects will interact most directly in the coastal areas of Everglades 

National Park (ENP). 

Increases in sea level and saltwater intrusion are threatening rare plant species in 

the coastal buttonwood hammocks of ENP (6). We examined possible causes of change 

in ENP coastal understory species composition by experimentally testing the ability of 

halophytes to alter soil salinity levels during the dry season under varying 

glycophyte/halophyte ratios. We hypothesized that in freshwater-limited systems 

halophytes alter soils as compared to glycophytes by increasing salinity levels through 

continued transpiration during dry periods, drawing saline water up through the soil 

column. 

MATERIALS AND METHODS 

 

 Area of interest: The ENP coastal buttonwood hammock and buttonwood 

prairies reside on the Buttonwood Embankment, which is a coastal ridge separating the 

tip of the Florida peninsula from Florida Bay, U.S.A (40–42). Southern Florida is humid 

and subtropical with a distinct warm (mean 25
o
C) wet season from June to October and 

cool (mean 22
o
C) dry season from November to May. Average annual rainfall is between 

100 and 163cm with more than half falling between June and September, assisted by 

hurricanes and tropical storms; April and May usually are the driest months (43, 44).  



 
 

60 

Two coastal communities, buttonwood hammock and buttonwood prairies, were the 

focus of this research.   

Buttonwood hammocks (mean elevation 29+3cm) sustain freshwater flooding 

during the wet season and are dry during the dry season (45). Buttonwood hammocks 

have an average groundwater table of -33+1cm and 26-29.5 groundwater salinity (6, 29). 

Conocarpus erectus, buttonwood, is the dominant canopy species, but a number of other 

woody species are also present (29). The buttonwood understory has species such as 

Alternanthera flavescens Kunth, Chromolaena frustrata, Dicliptera sexangularis (L.) 

Juss., and Heliotropium angiospermum Murray (29).   

Buttonwood prairies are halophytic prairies that have marl soils and slightly lower 

elevation than adjacent buttonwood hammocks (46). During the wet season, buttonwood 

prairies have months of standing water that is brackish to freshwater and can become 

hypersaline during the dry season because of evaporation and a lack of drainage (47). 

Buttonwood prairies (mean elevation 18+3cm) show a mean groundwater table at -

32+2cm and average groundwater table salinity of 38.8+0.6‰ (29). Scattered 

Conocarpus erectus is the only canopy tree species in buttonwood prairies. The 

understory is comprised of Batis maritima L., Borrichia frutescens (L.) DC., Distichlis 

spicata (L.) Greene, Sarcocornia perennis (Mill.) A.J. Scott, and Suaeda linearis (29). 

Study species: Because halophyte encroachment has been found to be an early 

indicator of change in buttonwood hammock understories (6), in our experiments we 

used two halophyte species commonly found invading coastal buttonwood hammocks in 

ENP (Batis maritima and Sarcocornia perennis) and two glycophyte species commonly 

http://www.itis.gov/servlet/SingleRpt/RefRpt?search_type=author&search_id=author_id&search_id_value=145404
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found in buttonwood hammock understory (Heliotropium angiospermum and 

Alternanthera flavescens) (29). 

Propagation protocol: Cuttings of each species were made from in-situ plants 

found along the Coastal Prairie Trail, ENP, between February and April 2011 (ENP 

Scientific Research and Collecting Permit# EVER-2011-SCI-0019). Freshly cut ends 

were dipped in rooting hormone (Shultz Take Root Rooting Hormone, Shultz Company, 

Bridgeton, MO), wrapped in damp paper towels, and placed in plastic bags for transport. 

The cuttings were immediately processed at the Florida International University (FIU) 

greenhouse, where they were planted in trays of perlite and placed on a misting bench 

with a 15s mist every five minutes for 16 hours/day. Once roots formed, the cuttings were 

planted into 10cm
3
 pots with standard seedling potting soil mix (Fafard® 4 Mix, Sun Gro 

Horticulture Canada LTD, Agawam, MA, USA) and fertilized with a slow release 

granular fertilizer (Nutricote® Total 18-6-8, Chisso-Asahi Fertilizer Co., LTD, Tokyo, 

Japan). They were maintained as such until planting for the experiment. 

Because coastal ENP buttonwood prairies reside on marl soils (48), we planted 

the final experiment in locally collected marl. We dug up the marl from a private wetland 

and transported it to the FIU greenhouse, where we manually removed large rocks and 

root debris, mixed the soil, and used immediately. 

Study design: The ability of halophytes to alter soil salinity was tested via a 

replacement series experiment. Five replicates of paired halophyte/glycophyte 

combinations (B. maritima versus H. angiospermum; B. maritima versus A. flavescens; S. 

perennis versus H. angiospermum; and S. perennis versus A. flavescens) were planted 

with the following halophyte/glycophyte ratios: 0:4, 1:3, 2:2, 3:1, 4:0. We planted into 
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9.5L pots (44cm deep) filled with marl soil. We used pots 44cm deep to simulate the 

vadose zone—the lowest average depth to water table in the buttonwood communities 

was -33cm in buttonwood hammocks (29). We planted 4cm below the top of the pot and 

set each replicate combination in trays of treatment water that was 3cm deep, leaving a 

37cm soil column/root zone/vadose zone. To mimic dry season effects where plants only 

have groundwater as their water supply, plants were watered from the bottom only; no 

watering was administered to the top of the pots once the experiment began. Upon 

experiment initiation, the replicates were given 26‰ saline water (average buttonwood 

hammock soil salinity) (6) for the first month and 38‰ water—average dry season soil 

salinity in buttonwood prairies (29)—for the following three months. The south Florida 

dry season lasts for six months; therefore the high salinity three month treatment was half 

the time of the dry season under buttonwood prairie groundwater conditions. Saline 

solutions were created by dissolving measured amounts of Instant Ocean Aquarium Sea 

Salt Mix (Spectrum Brands, Blacksburg, VA) with tap water and pouring the solution 

into the trays containing the experimental pots. Salinity levels were monitored three days 

a week using a portable hand-held salinity refractometer (RHS-10ATC, Agriculture 

Solutions, Strong, ME) and adjusted as needed to maintain appropriate salinity levels. To 

provide access to soil for sampling, 2cm diameter holes were cut in each pot at 9, 18, and 

30cm from the water surface. The openings were sealed between sampling using the hole 

cut outs and duct tape. The highest soil column measurement, 30cm, was 7cm below the 

soil surface. 

We planted the replicates 5
th

 – 8
th

 November 2012, and watered with fresh water 

from above for one month to allow acclimation prior to salinity treatments. To assess the 
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effects of treatment on relative soil salinity, pre-treatment soil samples were taken shortly 

after planting, 10
th

 – 18
th

 November, 2012. On 17
th

 December, 2012, the plants were 

exposed to the first 26‰ salinity treatment. Soil samples were then collected one month 

after treatment (21
st
 – 25

th
 January, 2013). On the 28

th
 January, 2013, the saline solution 

was increased to 38‰. Final soil samples were collected on 12
th

 – 13
th

 June 2013. For 

each soil collection date, one 2g soil sample was collected from the 30, 18, and 9cm 

extraction ports of each pot, totaling 360 samples collected. Soil samples were dried at 

70
o
C in a drying oven (OV35545, Thermolyne, United States) for three weeks. The dry 

soil was crushed through a 2mm sieve to ensure even particle size. One gram of sieved 

soil was weighed and placed in a 20ml glass scintillation vial, 5ml of DI water was added 

to each vial, and the vials were gently shaken on a mechanical shaker for one hour. After 

one hour, the solution was filtered using a 90mm diameter qualitative filter paper (Cat No 

1001 090, Whatman, United States), and electrical conductivity (EC) (uS/cm) 

measurements were taken using a dual channel pH/Ion/Conductivity meter (AR 50, 

Fisher Scientific Accumet Research, United States). EC measurements were converted to 

parts per thousand for analysis: ppt = (uS/cm*0.64)/1000. Because salinity was 

determined via a 1:5 soil/water extraction, the extracts give a relative soil salinity level 

(49). 

Stomatal conductance was measured on all four species using a steady-state 

porometer (LI-1600m, LI-COR, Inc, Lincoln, NE). Stomatal conductance (mmol m
-2

 s
-1

) 

was measured one month after planting but before treatments began (freshwater; 11 

December, 2012), after one month of exposure to 26‰ groundwater (25
th

 January, 2013), 

one month after 38‰ (27
th

 February, 2013), and after 3 months at 38‰ (14
th

 June, 2013). 
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One to three of the most recently matured leaves of each species from pots with all four 

individuals of the same species were measured. When the leaves were too small to 

completely fill the porometer chamber, leaf area inside the chamber was measured 

(mm
2
). Because the LI-1600m does not adjust for boundary layer resistance, the 

boundary layer resistance and an adjustment for leaf area were made to find the true 

conductance value (50). 

Shoot and root biomass were measured for each plant after the final soil samples 

were taken. Roots were cleaned by washing and cut from the shoot. Roots and shoots 

were placed in separate brown paper bags for drying. The samples were dried at 70
o
C in a 

drying oven (OV35545, Thermolyne, United States) for 7-10 days; dry samples were 

weighed to 0.01g on a balance (PG2002-S, Metler Toledo, Columbus, OH). 

Statistical Analysis: To test the effects of halophyte/glycophyte ratio on soil 

column salinity under freshwater, 26‰, and 38‰ groundwater salinity, we used linear 

mixed effects models fit by maximum likelihood with soil salinity as the dependent 

variable, halophyte/glycophyte ratio and soil column depth as interacting fixed effects, 

and treatment tray as the random effect. We then assessed pairwise comparisons of 

halophyte/glycophyte ratio and soil column depth with Tukey post hoc tests. We utilized 

Analyses of Variance and Tukey post hoc tests to evaluate the effects of freshwater, 

26‰, and 38‰ groundwater salinity on stomatal conductance of each of the four test 

species, where stomatal conductance was the response variable and species was the fixed 

effect. To address the effects of halophyte/glycophyte ratio on average individual 

biomass per species, we employed a linear mixed effects model fit by maximum 

likelihood with shoot or root biomass as the dependent variable, halophyte/glycophyte 
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ratio as the fixed effect, and treatment tray as the random effect. We used Tukey post hoc 

tests to determine statistical differences in root or shoot biomass across the various ratios 

of the respective species. 

All analyses were executed in the R statistical environment (v3.0.2; R Core Team 

2013). The linear mixed effects models were performed using the nlme package (51), and 

Tukey post hoc tests for the linear mixed effects models were completed with the lsmeans 

package (52). Readers can access the data in this paper through the Florida Coastal 

Everglades LTER data repository (53). 

RESULTS 

 

 Halophyte ratio affected relative soil salinity, and the effects increased when 

groundwater salinity increased. There were no significant differences in relative salinity 

after one month of fresh groundwater across halophyte/glycophyte densities or species 

combinations, except for Sarcocornia perennis/Heliotropium angiospermum (S1 and S2). 

For this species combination at 18cm above treatment water, pots with all halophytes (S. 

perennis) showed significantly higher soil salinity than pots with one halophyte and three 

glycophytes (H. angiospermum) (p < 0.001; S1 and S2) and two halophytes and two 

glycophytes (p = 0.001; S2), and at 9cm, pots with four and three S. perennis showed 

significantly higher salinity than those with three and four H. angiospermum (all: p < 

0.001; S1 and S2). Though soils were mixed prior to planting, it is possible that a pocket 

of higher salinity soil was detected in the above analysis. 

Small changes in soil salinity were seen when groundwater was increased to 26‰ 

salinity for one month. Soil salinity at 30cm above the water level did not significantly 
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differ between any of the species combinations or halophyte/glycophyte densities (Fig. 

2.1; S1 and S2). At 18cm above the groundwater level, pots with four Alternanthera 

flavescens showed significantly higher salinity than those with four Batis maritima and 

those with four S. perennis (Fig. 2.1; S1 and S2); otherwise, no differences were seen at 

this level and groundwater salinity. At 9cm above the groundwater, differences were seen 

among halophyte/glycophyte densities between both glycophytes and S. perennis but 

with B. maritima. Comparing S. perennis versus A. flavescens, pots with only S. perennis 

showed significantly lower soil salinity than any of the other A. flavescens/S. perennis 

ratios and were not different from the control soils (Fig. 2.1; S1 and S2). Pots with all H. 

angiospermum and pots with three S. perennis were both significantly different from the 

control, but none of the other species ratio combinations differed significantly (Fig. 2.1; 

S1 and S2). All combinations of B. maritima and either glycophyte showed significantly 

higher soil salinity than control pots but not between the glycophyte/halophyte 

combinations (Fig. 2.1; S1 and S2). 

Strong patterns in halophyte ratio effects emerged after three months at 38‰ 

groundwater salinity. Pots with all halophytes show significantly more relative soil 

salinity than those with just glycophytes in all four species combinations and at all three 

soil strata except S. perennis versus A. flavescens at 18cm, where there was no significant 

difference (Fig. 2.1; S1 and S2). All pots showed a steady increase in soil salinity at all 

three soil strata as halophyte ratio increased, regardless of which glycophyte species was 

paired with the halophyte (Fig. 2.1; S1 and S2). The highest soil salinity (22‰) occurred 

in pots with only B. maritima at 38‰ and at 9cm above groundwater. 
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 Stomatal conductance changed with increasing salinity in all four species. When 

taking measurements from plants in pots with only that species (4:0 and 0:4), in 

freshwater, B. maritima showed significantly less stomatal conductance than H. 

angiospermum (Fig. 2.2; S3). Sarcocornia perennis showed similar stomatal conductance 

to B. maritima and A. flavescens, while A. flavescens and H. angiospermum maintained 

similar stomatal conductance (Fig. 2.2; S3). All species significantly decreased stomatal 

conductance when treatment water was increased to 26‰ salinity for one month, except 

B. maritima, which significantly increased (Fig. 2.2; S4). After one month at 26‰ 

salinity and for both 38‰ samplings, all four species exhibited similar stomatal 

conductance among each other and within the species, except A. flavescens, which 

displayed significantly less stomatal conductance than S. perennis at one month of 38‰ 

(Fig. 2.2; S3 and S4). 

 As the ratio of one plant type (halophyte or glycophyte) increased, so did average 

biomass per plant of that type. Halophyte biomass tended to be more sensitive to 

halophyte/glycophyte ratio, showing larger increases in biomass with increasing 

halophyte ratio (Fig. 2.3; S5). Batis maritima had the most consistent increase in biomass 

with increasing ratio regardless of which glycophyte it was paired with (Fig. 2.3; S5); B. 

maritima individuals in pots with only B. maritima displayed significantly greater shoot 

and root biomass as compared to individuals growing in all other ratio and species 

combinations (Fig. 2.3). Sarcocornia perennis also exhibited significant increases in root 

and shoot biomass with increasing S. perennis ratio; however, when paired with A. 

flavescens, only those with all S. perennis showed significantly more root and shoot 

biomass (Fig. 2.3; S5). When paired with H. angiospermum, those individuals with three 
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or four S. perennis were similar and either trending towards being larger plants or were 

significantly larger than those in other ratio combinations, respectively (Fig. 2.3; S5). 

Both glycophyte species showed largest biomass when only glycophytes were in the pot 

and gradual decreases in biomass with decreases in glycophyte ratio (Fig. 2.3; S5). 

DISCUSSION 

 

 The results of this study show that halophytes can eco-engineer their environment 

to increase vadose zone salinity, resulting in increased competitive ability for halophytes 

as compared to glycophytes as soils become more saline. When all four species in our 

study were subjected to regular freshwater watering, glycophytes transpired more than 

halophytes, supporting findings of greater glycophyte competitiveness against halophytes 

under abundant freshwater (54, 55). A reduction in stomatal conductance was seen in 

three of the four species between the freshwater and one month of 26‰ measurements, 

rendering similar stomatal conductance between all four species for the remainder of the 

study. As the halophyte/glycophyte ratio increased, so did relative soil salinity rejecting 

our hypothesis that decreased glycophytic transpiration rates drove differences in soil 

salinity between the plant types. 

Soil salinity after one month at 26‰ showed no significant differences across the 

species or ratio combinations, as would be expected with similar transpiration rates. Soil 

salinity was higher at 9cm above treatment water levels than soils at 18 and 30cm. All 

four species were transpiring at the same rate and leaves of glycophytes and halophytes 

had not changed dramatically in size by this monitoring date (K. Wendelberger personal 

observations). Perhaps increased salinity at the lower stratum was the early sign of 
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transpiration drying soils, resulting in capillary action bringing salty groundwater into the 

pots and raising soil salinity at 9cm. 

A distinct pattern of halophytic influence on soil salinity as the 

halophytic/glycophytic ratio increased was seen after three months at 38‰ groundwater. 

Soil salinity across all three soil strata was significantly higher in pots with all halophytes 

as compared to pots with only glycophytes regardless of the species combination. 

Additionally, there was a general trend of increasing soil salinity as halophyte ratio 

increased across the replicates. Per unit area stomatal conductance was similar across the 

four species at both one and three months of 38‰ groundwater; however, when looking 

at root and shoot biomass, plant size differed. 

As halophytes increased in ratio in our experiment, mean individual halophyte 

shoot and root biomass increased significantly. Conversely, glycophyte root and shoot 

biomass showed a trend of decreasing size as glycophyte/halophyte ratio and decreased 

significantly at different ratios, depending on the species combination. Further, 

glycophyte leaves of both species decreased in size, while leaves of both halophyte 

species increased over the course of the experiment (K. Wendelberger personal 

observations). Though shoot and leaf growth was not measured, the steady-state 

porometer chamber area was consistent for all measurements. Both glycophyte species’ 

leaves were larger than the chamber area during the freshwater and one month after 26‰ 

treatment measurements. Both halophytes’ leaves were small, and it was difficult to fill 

the chamber with leaf material for the freshwater and 26‰ treatments. After three months 

at 38‰, both halophyte species’ leaves had grown to sizes that easily filled the chamber, 

while 26% of A. flavescens and 95% of H. angiospermum leaves were smaller than the 
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chamber area. Changes in chamber area covered by both halophytic and glycophytic 

species suggests that halophyte leaf area increased under 38‰ salinity, while glycophyte 

leaf area diminished. Additionally, mature leaves had dried and fallen from both 

glycophytes by the end of the study while both halophytes showed no sign of leaf 

senescence (K. Wendelberger personal observation). Osmotic stress causes a reduction in 

rate of young leaf expansion and reduced mature leaf stomatal conductance, while ionic 

stress shows as an increase in older leaf senescence rate (34). Reduction in leaf area 

decreases total plant transpiration and photosynthesis (34). Perhaps the combination of 

higher soil salinities and salinity exposure time acted together to stress the glycophytes to 

a point where biomass production was no longer feasible and halophytes were more 

competitive. Larger halophyte plants under higher halophyte densities results in more 

plant material transpiring per pot, increasing soil saltwater intrusion via capillary action. 

Further studies need to be conducted to pinpoint whether it is halophytic resistance to 

osmotic or ionic toxicity that drives their ability to eco-engineer soils as they invade into 

glycophytic communities. 

Coastal plant communities around the world are threatened by halophytic 

movement into upland glycophytic communities (1–3, 56). Sea level rise coupled with 

anthropogenic disturbance has been found to be the major contributors to the loss of 

coastal communities (3). Simulation models are predicting large scale changes in coastal 

plant community composition from SLR (28, 57–59), and rates of SLR are expected to 

increase in the coming years (10), further threatening already changing systems. 

The current study suggests that changes may occur faster than would be predicted 

from SLR and anthropogenic disturbance. Once halophytic individuals establish and 
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increase soil salinity throughout the soil column, conditions become more conducive to 

further halophyte establishment. Eventually, soil salinity levels may be too high to 

support glycophyte survival and establishment, resulting in a turnover in plant 

communities from less salt tolerant to more salt tolerant community types (e.g. (4, 6, 56). 

The process of increasing soil salinity via increasing halophyte density in glycophytic 

communities brings a biological component to SLR- related coastal plant community 

shifts. 

In south Florida, the Buttonwood Ridge is a ridge line following the coast that has 

a slightly higher elevation than lands to the north or south (40, 60). Upland plant 

communities in coastal ENP harbor 21 rare plant species that are threatened by SLR (6). 

Understanding the feedback loops enhancing the rate of change expected from SLR is 

important when evaluating conservation actions such as when to collect seeds or 

germplasm, perform assisted migration, and/or form ex-situ conservation collections. 

Because lower elevation species have already been documented invading higher elevation 

communities in the area (6, 56), one can expect underground salinity and inundation 

changes are occurring that will only further promote losses of upland habitats. The time 

for conservation action on our most threatened coastal species is now, before further 

habitat loss occurs. 

FIGURE LEGENDS 

 

Fig. 2.1.  Linear mixed effects models and Tukey post hoc tests looking at the effects of 

26‰ and 38‰ groundwater relative soil salinity and varying halophyte/glycophyte ratios 

across soil column depths of four species combinations (Batis maritima (H) vs 

Alternanthera flavescens (G), B. maritima (H) vs Heliotropium angiospermum (G), 

Sarcocornia perennis (H) vs A. flavescens (G), S. perennis (H) vs H. angiospermum (G)). 

The red, blue, and green hued whisker plots are data from soil samples taken at 30, 18, 
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and 9 cm above the treatment water, respectively. Lettering indicates statistical 

significances in soil salinity levels at that soil depth for the halophyte:glycophyte 

combinations; different letters signify significantly different results. The legend gives the 

number of halophytes to glycophytes (H:G). The black bar in the middle of the boxes 

represents the median, vertical lines represent the upper and lower extremes of the data 

set. 

 

Fig. 2.2. Analysis of Variance and Tukey post hoc tests looking at the difference in mean 

stomatal conductance (mmol m
-2

s
-1

) between two halophytes (Batis maritima and 

Sarcocornia perennis) and two glycophytes (Alternanthera flavescens and Heliotropium 

angiospermum) across varying salinity treatments and time. Plunge bars represent the 

standard deviation. Small lettering indicates statistical significances across species for 

each salinity treatment; capital lettering indicates statistical significances within each 

species across treatments and time. Different letters signify significantly different results. 

 

Fig. 2.3. Average shoot and root biomass (g) per plant of four species planted in varying 

densities and species combinations (Batis maritima (H) vs Alternanthera flavescens (G), 

B. maritima (H) vs Heliotropium angiospermum (G), Sarcocornia perennis (H) vs A. 

flavescens (G), S. perennis (H) vs H. angiospermum (G)). Measurements were taken at 

the end of the experiment. Black and grey plots represent glycophyte shoot and root 

biomass, respectively. Dark and light blue boxes represent halophyte shoot and root 

biomass, respectively. Plunge bars are standard deviations. Lettering indicates statistical 

differences between shoots or roots of the respective species across different 

halophyte/glycophyte ratios; different letters signify significantly different results. 
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FIGURES 

Figure 2.1. 
Linear mixed effects models and Tukey post hoc tests looking at the effects of 26‰ and 38‰ groundwater relative soil salinity and varying 

halophyte/glycophyte ratios across soil column depths of four species combinations. 
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Figure 2.2. Analysis of Variance and Tukey post hoc tests looking at the difference in mean 

stomatal conductance (mmol m
-2

s
-1

) between two halophytes (Batis maritima and Sarcocornia 

perennis) and two glycophytes (Alternanthera flavescens and Heliotropium angiospermum) 

across varying salinity treatments and time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

80 

Figure 2.3. Average shoot and root biomass (g) per plant of four species planted in  

varying densities and species combinations (Batis maritima (H) vs Alternanthera 

flavescens (G), B. maritima (H) vs Heliotropium angiospermum (G), Sarcocornia 

perennis (H) vs A. flavescens (G), S. perennis (H) vs H. angiospermum (G)). 
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SUPPLEMENTAL INFORMATION 

S1. Mean salinity levels (‰) of each of the species combinations (Batis maritima (H) vs 

Alternanthera flavescens (G), B. maritima (H) vs Heliotropium angiospermum (G), 

Sarcocornia perennis (H) vs A. flavescens (G), S. perennis (H) vs H. angiospermum (G)), 

soil column levels, and halophyte/glycophyte ratio combination. 
Batis maritima vs Alternanthera flavescens   Batis maritima vs Heliotropium angiospermum 

Freshwater 9cm 18cm 30cm   Freshwater 9cm 18cm 30cm 

0:0 0.42 0.40 0.43   0:0 0.42 0.40 0.43 

0:4 0.44 0.48 0.47   0:4 0.47 0.56 0.48 

1:3 0.52 0.49 0.44   1:3 0.60 0.53 0.58 

2:2 0.54 0.52 0.53   2:2 0.51 0.50 0.51 

3:1 0.53 0.50 0.50   3:1 0.57 0.57 0.44 

4:0 0.54 0.53 0.49   4:0 0.54 0.53 0.49 

26‰         26‰       

0:0 1.78 0.44 0.42   0:0 1.78 0.44 0.42 

0:4 5.07 2.20 0.64   0:4 4.38 1.45 1.27 

1:3 5.00 1.40 0.44   1:3 3.39 0.72 0.46 

2:2 5.05 1.60 0.54   2:2 5.03 1.62 0.96 

3:1 5.36 1.42 0.54   3:1 4.51 1.03 0.41 

4:0 4.38 0.90 0.46   4:0 4.38 0.64 0.46 

38‰         38‰       

0:0 8.90 6.69 5.01   0:0 8.90 6.69 5.01 

0:4 10.02 10.49 9.30   0:4 9.39 8.43 8.89 

1:3 11.27 10.44 10.44   1:3 12.39 10.69 9.88 

2:2 12.26 11.94 11.05   2:2 13.47 12.85 11.79 

3:1 14.23 14.17 12.76   3:1 13.87 12.08 11.94 

4:0 15.62 14.79 15.93   4:0 15.62 14.79 15.93 

Sarcocornia perennis vs Alternanthera 

flavescens   

Sarcocornia perennis vs Heliotropium 

angiospermum 

Freshwater 9cm 18cm 30cm   Freshwater 9cm 18cm 30cm 

0:0 0.42 0.40 0.43   0:0 0.42 0.40 0.43 

0:4 0.44 0.48 0.47   0:4 0.47 0.56 0.48 

1:3 0.48 0.48 0.49   1:3 0.37 0.41 0.38 

2:2 0.51 0.50 0.47   2:2 0.41 0.41 0.45 

3:1 0.50 0.49 0.48   3:1 0.54 0.46 0.47 

4:0 0.51 0.52 0.45   4:0 0.51 0.52 0.45 

26‰         26‰       

0:0 1.78 0.44 0.42   0:0 1.78 0.44 0.42 

0:4 5.07 2.20 0.64   0:4 4.38 1.45 1.27 

1:3 5.24 1.71 0.67   1:3 3.72 0.86 0.49 

2:2 4.32 1.06 0.50   2:2 3.88 1.14 0.64 

3:1 4.61 1.41 0.52   3:1 4.47 0.96 0.50 

4:0 2.67 0.64 0.53   4:0 2.67 0.64 0.53 

38‰         38‰       

0:0 8.90 6.69 5.01   0:0 8.90 6.69 5.01 

0:4 10.02 10.49 9.30   0:4 9.39 8.43 8.89 

1:3 11.38 11.35 10.53   1:3 12.21 11.07 10.37 

2:2 10.50 9.80 9.47   2:2 8.88 9.36 9.90 

3:1 11.94 10.80 10.45   3:1 13.42 12.58 11.90 

4:0 13.61 13.35 12.76   4:0 13.61 13.35 12.76 
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S2. Results of linear mixed effects models and Tukey post hoc tests looking at the effects 

of Freshwater, 26‰ and 38‰ groundwater salinity and varying halophyte/glycophyte 

ratios across soil column depths of four species combinations (Batis maritima (H) vs 

Alternanthera flavescens (G), B. maritima (H) vs Heliotropium angiospermum (G), 

Sarcocornia perennis (H) vs A. flavescens (G), S. perennis (H) vs H. angiospermum (G)). 

Significant p-values are in bold. 

 

Freshwater 

B. maritima vs   

A. flavescens 

B. maritima vs        

H. angiospermum 

S. perennis vs  

A. flavescens 

S. perennis vs           

H. angiospermum 

All Combined 

F1,65 = 293.94       

p < 0.001 

F1,68 = 708.26             

p < 0.001 

F1,65 = 244.6      

p < 0.001 

F1,68 = 539.40              

p < 0.001 

Pairwise p-value p-value p-value p-value 

3
0

 c
m

 

0:0 vs 0:4 1.00 1.00 0.85 1.00 

0:0 vs 1:3 1.00 0.75 0.08 0.78 

0:0 vs 2:2 0.94 1.00 0.37 1.00 

0:0 vs 3:1 1.00 1.00 0.18 1.00 

0:0 vs 4:0 1.00 1.00 0.92 1.00 

0:4 vs 1:3 1.00 1.00 1.00 0.94 

0:4 vs 2:2 1.00 1.00 1.00 1.00 

0:4 vs 3:1 1.00 1.00 1.00 1.00 

0:4 vs 4:0 1.00 1.00 1.00 1.00 

1:3 vs 2:2 0.91 1.00 1.00 0.95 

1:3 vs 3:1 1.00 0.61 1.00 0.67 

1:3 vs 4:0 1.00 1.00 0.99 0.60 

2:2 vs 3:1 1.00 1.00 1.00 1.00 

2:2 vs 4:0 0.99 1.00 1.00 1.00 

3:1 vs 4:0 1.00 1.00 1.00 1.00 

1
8

 c
m

 

0:0 vs 0:4 0.32 0.08 1.00 0.99 

0:0 vs 1:3 0.97 0.78 0.27 1.00 

0:0 vs 2:2 0.56 0.97 0.07 1.00 

0:0 vs 3:1 0.87 0.25 0.20 1.00 

0:0 vs 4:0 0.13 0.96 0.61 0.19 

0:4 vs 1:3 1.00 1.00 0.97 0.47 

0:4 vs 2:2 1.00 0.99 0.79 0.48 

0:4 vs 3:1 1.00 1.00 0.95 1.00 

0:4 vs 4:0 1.00 0.98 1.00 0.99 

1:3 vs 2:2 1.00 1.00 1.00 1.00 

1:3 vs 3:1 1.00 1.00 1.00 1.00 

1:3 vs 4:0 1.00 1.00 1.00 0.00 

2:2 vs 3:1 1.00 1.00 1.00 1.00 

2:2 vs 4:0 1.00 1.00 1.00 0.01 

3:1 vs 4:0 1.00 1.00 1.00 0.22 

9
 c

m
 

0:0 vs 0:4 1.00 0.43 1.00 0.99 

0:0 vs 1:3 0.97 0.07 0.93 0.98 

0:0 vs 2:2 0.87 0.95 0.64 1.00 

0:0 vs 3:1 0.95 0.35 0.77 0.40 

0:0 vs 4:0 0.12 0.99 1.00 0.19 

0:4 vs 1:3 0.90 1.00 1.00 1.00 

0:4 vs 2:2 0.66 1.00 1.00 1.00 
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0:4 vs 3:1 0.82 1.00 1.00 0.00 

0:4 vs 4:0 0.04 1.00 1.00 0.00 

1:3 vs 2:2 1.00 1.00 1.00 1.00 

1:3 vs 3:1 1.00 1.00 1.00 0.00 

1:3 vs 4:0 0.99 0.93 1.00 0.00 

2:2 vs 3:1 1.00 1.00 1.00 0.11 

2:2 vs 4:0 1.00 1.00 1.00 0.04 

3:1 vs 4:0 0.98 1.00 1.00 1.00 

26‰ 

B. maritima vs   

A. flavescens 

B. maritima vs         

H. angiospermum 

S. perennis vs        

A. flavescens 

S. perennis vs          

H. angiospermum 

All Combined 

F1,68 = 464.92       

p < 0.001 

F1,68 = 384.61            

p < 0.001 

F1,68 = 2339.45      

p < 0.001 

F1,68 = 255.14            

p < 0.001 

Pairwise p-value p-value p-value p-value 

3
0

 c
m

 

0:0 vs 0:4 1.00 1.00 1.00 0.39 

0:0 vs 1:3 1.00 1.00 1.00 1.00 

0:0 vs 2:2 1.00 1.00 1.00 1.00 

0:0 vs 3:1 1.00 1.00 1.00 1.00 

0:0 vs 4:0 1.00 1.00 1.00 1.00 

0:4 vs 1:3 1.00 1.00 1.00 0.55 

0:4 vs 2:2 1.00 1.00 1.00 0.73 

0:4 vs 3:1 1.00 1.00 1.00 0.56 

0:4 vs 4:0 1.00 1.00 1.00 0.55 

1:3 vs 2:2 1.00 1.00 1.00 1.00 

1:3 vs 3:1 1.00 1.00 1.00 1.00 

1:3 vs 4:0 1.00 1.00 1.00 1.00 

2:2 vs 3:1 1.00 1.00 1.00 1.00 

2:2 vs 4:0 1.00 1.00 1.00 1.00 

3:1 vs 4:0 1.00 1.00 1.00 1.00 

1
8

 c
m

 

0:0 vs 0:4 0.01 0.29 < 0.001 1.00 

0:0 vs 1:3 0.57 1.00 0.00 1.00 

0:0 vs 2:2 0.15 0.55 0.69 1.00 

0:0 vs 3:1 0.34 1.00 0.05 1.00 

0:0 vs 4:0 1.00 1.00 1.00 1.00 

0:4 vs 1:3 1.00 0.70 0.33 1.00 

0:4 vs 2:2 1.00 1.00 0.00 1.00 

0:4 vs 3:1 1.00 0.99 0.02 1.00 

0:4 vs 4:0 0.34 0.98 < 0.001 1.00 

1:3 vs 2:2 1.00 0.90 0.70 1.00 

1:3 vs 3:1 1.00 1.00 1.00 1.00 

1:3 vs 4:0 1.00 1.00 0.01 1.00 

2:2 vs 3:1 1.00 1.00 1.00 1.00 

2:2 vs 4:0 0.87 1.00 0.98 1.00 

3:1 vs 4:0 0.98 1.00 0.28 1.00 

9
 c

m
 

0:0 vs 0:4 < 0.001 < 0.001 < 0.001 0.04 

0:0 vs 1:3 < 0.001 0.03 < 0.001 0.36 

0:0 vs 2:2 < 0.001 < 0.001 < 0.001 0.19 

0:0 vs 3:1 < 0.001 < 0.001 < 0.001 0.01 

0:0 vs 4:0 < 0.001 < 0.001 0.53 1.00 

0:4 vs 1:3 1.00 0.39 1.00 1.00 
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0:4 vs 2:2 1.00 1.00 0.49 1.00 

0:4 vs 3:1 1.00 1.00 0.99 1.00 

0:4 vs 4:0 0.99 1.00 < 0.001 0.52 

1:3 vs 2:2 1.00 0.05 0.10 1.00 

1:3 vs 3:1 1.00 0.49 0.74 1.00 

1:3 vs 4:0 1.00 0.89 < 0.001 0.96 

2:2 vs 3:1 1.00 1.00 1.00 1.00 

2:2 vs 4:0 1.00 0.98 < 0.001 0.87 

3:1 vs 4:0 0.72 1.00 < 0.001 0.19 

38‰ 

B. maritima vs     

A. flavescens 

B. maritima vs        

H. angiospermum 

S. perennis vs        

A. flavescens 

S. perennis vs             

H. angiospermum 

All Combined 

F1,68 = 5306.96          

p < 0.001 

F1,68 = 5098.27          

p < 0.001 

F1,68 =2339.45        

p < 0.001 

F1,68 = 512.18                

p < 0.001 

Pairwise p-value p-value p-value p-value 

3
0

 c
m

 

0:0 vs 0:4 < 0.001 < 0.001 0.02 0.96 

0:0 vs 1:3 < 0.001 < 0.001 0.00 0.00 

0:0 vs 2:2 < 0.001 < 0.001 0.05 0.02 

0:0 vs 3:1 < 0.001 < 0.001 0.00 < 0.001 

0:0 vs 4:0 < 0.001 < 0.001 < 0.001 < 0.001 

0:4 vs 1:3 0.94 1.00 1.00 0.55 

0:4 vs 2:2 0.41 0.86 1.00 0.86 

0:4 vs 3:1 0.00 0.67 1.00 0.01 

0:4 vs 4:0 < 0.001 < 0.001 0.02 0.01 

1:3 vs 2:2 1.00 0.75 1.00 1.00 

1:3 vs 3:1 0.35 0.50 1.00 0.99 

1:3 vs 4:0 < 0.001 < 0.001 0.18 0.99 

2:2 vs 3:1 0.78 1.00 1.00 0.90 

2:2 vs 4:0 0.00 < 0.001 0.01 0.89 

3:1 vs 4:0 0.13 < 0.001 0.15 1.00 

1
8

 c
m

 

0:0 vs 0:4 < 0.001 0.91 0.01 1.00 

0:0 vs 1:3 < 0.001 < 0.001 0.01 0.08 

0:0 vs 2:2 < 0.001 < 0.001 0.56 0.97 

0:0 vs 3:1 < 0.001 < 0.001 0.06 0.00 

0:0 vs 4:0 < 0.001 < 0.001 < 0.001 < 0.001 

0:4 vs 1:3 1.00 0.12 1.00 0.73 

0:4 vs 2:2 0.42 < 0.001 1.00 1.00 

0:4 vs 3:1 < 0.001 0.00 1.00 0.02 

0:4 vs 4:0 < 0.001 < 0.001 0.64 0.00 

1:3 vs 2:2 0.97 0.53 0.99 0.97 

1:3 vs 3:1 0.00 0.96 1.00 0.99 

1:3 vs 4:0 0.00 0.00 0.73 0.90 

2:2 vs 3:1 0.31 1.00 1.00 0.15 

2:2 vs 4:0 0.05 0.82 0.02 0.04 

3:1 vs 4:0 1.00 0.14 0.32 1.00 

9
 c

m
 

0:0 vs 0:4 0.74 1.00 1.00 1.00 

0:0 vs 1:3 0.06 0.11 0.40 0.12 

0:0 vs 2:2 0.00 0.01 0.94 1.00 

0:0 vs 3:1 < 0.001 0.00 0.11 0.00 

0:0 vs 4:0 < 0.001 < 0.001 < 0.001 0.00 
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0:4 vs 1:3 1.00 0.18 1.00 0.10 

0:4 vs 2:2 0.45 0.01 1.00 1.00 

0:4 vs 3:1 < 0.001 0.00 0.88 0.00 

0:4 vs 4:0 < 0.001 < 0.001 0.01 0.00 

1:3 vs 2:2 1.00 1.00 1.00 0.11 

1:3 vs 3:1 0.05 0.94 1.00 1.00 

1:3 vs 4:0 < 0.001 0.10 0.57 1.00 

2:2 vs 3:1 0.55 1.00 1.00 0.00 

2:2 vs 4:0 0.00 0.96 0.09 0.00 

3:1 vs 4:0 0.56 1.00 0.91 1.00 
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S3. Analysis of Variance and Tukey post hoc tests looking at the difference in mean 

stomatal conductance (mmol m
-2

s
-1

) between two halophytes (Batis maritima and 

Sarcocornia perennis) and two glycophytes (Alternanthera flavescens and Heliotropium 

angiospermum) within each salinity treatment (Freshwater-one month; 26‰-one month; 

38‰-one month; 38‰-three months). 

 

 

Freshwater –  

1 Month 

26‰ -        

1 Month 

38‰ -        

1 Month 

38‰ -        

3 Months 

All combined 

F3,36 = 9.59         

p < 0.001 

F3,12 = 3.25        

p = 0.06 

F3,36 = 3.04       

p = 0.04 

F3,79 = 1.95   

p = 0.13 

Pairwise p-value p-value p-value p-value 

B. maritima - A. flavescens < 0.001 0.22 0.06 0.11 

B. maritima - H. angiospermum < 0.001 0.16 0.93 0.47 

S. perennis - A. flavescens 0.23 0.68 0.04 0.39 

S. perennis - H. angiospermum 0.03 0.96 0.88 0.86 

B. maritima - S. perennis 0.18 0.04 1.00 0.90 

A. flavescens - H. angiospermum 0.80 0.96 0.20 0.88 
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S4. Analysis of Variance and Tukey post hoc tests looking at the difference in mean stomatal conductance (mmol m
-2

s
-1

) of two 

halophytes (Batis maritima and Sarcocornia perennis) and two glycophytes (Alternanthera flavescens and Heliotropium 

angiospermum) across salinity treatments (Freshwater-one month; 26‰-one month; 38‰-one month; 38‰-three months). 

 

  

Initial              

- 26‰           

(1 Month) 

Initial            

- 38‰          

(1 Month)  

Initial          

- 38‰          

(3 Months)  

26‰      

(1 Month) 

- 38‰  

(1 Month)  

26‰        

(1 Month)  

– 38‰  

(3 Months) 

38‰           

(1 Month)    

-38‰           

(3 Months)  

Species All combined p-value p-value p-value p-value p-value p-value 

Batis maritima F3,39 = 3.63 p = 0.03 0.030 1.000 1.000 0.040 0.020 1.000 

Sarcocornia perennis F3,42 = 7.78 p < 0.001 0.010 0.008 <  0.001 0.953 1.000 0.911 

Alternanthera flavescens F3,44 = 23.46 p < 0.001 0.001 <  0.001 <  0.001 0.518 0.379 0.999 

Heliotropium angiospermum F3,38 = 21.83 p < 0.001 0.001 <  0.001 <  0.001 0.997 0.943 0.946 
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S5. Results of linear mixed effects models and Tukey post hoc tests for shoot and root 

biomass (g) of four species found in varying densities and species combinations (Batis 

maritima (H) vs Alternanthera flavescens (G), B. maritima (H) vs Heliotropium 

angiospermum (G), Sarcocornia perennis (H) vs A. flavescens (G), S. perennis (H) vs H. 

angiospermum (G)). The second and fifth columns indicate halophyte or glycophyte 

ratio; 1-2 means pots with one halophyte (or glycophyte) compared to pots with two 

halophytes (or glycophytes). Significant p-values are in bold. 

 

  

Halophyte 

Root 

Halophyte 

Shoot 
  

Glycophyte 

Root 

Glycophyte 

Shoot 

B
. 

m
a

ri
ti

m
a

 -
 A

. 
fl

a
ve

sc
en

s All 

combined 

F1,12 = 370.15       

p < 0.001 

F1,12 = 167.82        

p < 0.001 

All 

combined 

F1,12 = 133.94               

p < 0.001 

F1,12 = 112.24          

p < 0.001 

Pairwise p-value p-value Pairwise p-value p-value 

1-2 0.01 0.06 4-3 0.26 0.99 

1-3 < 0.001 < 0.001 4-2 0.01 0.72 

1-4 < 0.001 < 0.001 4-1 < 0.001 < 0.001 

2-3 < 0.001 0.003 3-2 0.75 0.59 

2-4 < 0.001 < 0.001 3-1 < 0.001 < 0.001 

3-4 < 0.001 < 0.001 2-1 < 0.001 < 0.001 

B
. 

m
a

ri
ti

m
a

 –
  

H
. 

a
n

g
io

sp
er

m
u

m
 

All 

combined 

F1,12 = 225.12      

 p < 0.001 

F1,12 = 372.87       

p < 0.001 

All 

combined 

F1,12 = 107.65              

p < 0.001 

F1,12 = 112.27          

p < 0.001 

Pairwise p-value p-value Pairwise p-value p-value 

1-2 < 0.001 < 0.001 4-3 0.005 0.006 

1-3 < 0.001 < 0.001 4-2 0.03 0.007 

1-4 < 0.001 < 0.001 4-1 < 0.001 < 0.001 

2-3 0.60 0.60 3-2 1.00 0.99 

2-4 < 0.001 < 0.001 3-1 0.21 0.16 

3-4 < 0.001 < 0.001 2-1 0.20 0.36 

S
. 

p
er

en
n

is
 -

 A
. 
fl

a
ve

sc
en

s All 

combined 

F1,12 = 94.14         

p < 0.001 

F1,12 = 85.78         

p < 0.001 

All 

combined 

F1,12 = 186.95               

p < 0.001 

F1,12 = 193.45         

p < 0.001 

Pairwise p-value p-value Pairwise p-value p-value 

1-2 0.76 0.91 4-3 0.86 0.66 

1-3 0.005 0.76 4-2 < 0.001 < 0.001 

1-4 < 0.001 < 0.001 4-1 < 0.001 0.01 

2-3 < 0.001 0.35 3-2 0.003 0.001 

2-4 < 0.001 < 0.001 3-1 0.001 0.16 

3-4 < 0.001 < 0.001 2-1 1.00 0.29 

S
. 

p
er

en
n

is
 –

 

H
. 

a
n

g
io

sp
er

m
u

m
 

All 

combined 

F1,12 = 63.03        

p < 0.001 

F1,12 = 75.98        

p < 0.001 

All 

combined 

F1,12 = 116.65              

p < 0.001 

F1,12 = 256.20         

p < 0.001 

Pairwise p-value p-value Pairwise p-value p-value 

1-2 1.0 0.79 4-3 0.40 0.76 

1-3 0.004 0.10 4-2 0.78 0.99 

1-4 0.003 0.002 4-1 < 0.001 < 0.001 

2-3 0.001 0.006 3-2 0.06 0.56 

2-4 0.001 < 0.001 3-1 0.001 < 0.001 

3-4 1.0 0.62 2-1 < 0.001 < 0.001 
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CHAPTER III 

EFFECTS OF VARYING SALINITY ON EARLY LIFE HISTORY STAGES OF 

SUBTROPICAL COASTAL SPECIES 
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ABSTRACT 

 

Premise of the study: In south Florida, anthropogenic drying and sea level rise (SLR) 

have resulted in upland coastal plant communities shrinking while lowland mangrove 

communities expand, threatening 21 rare plant species in Everglades National Park 

(ENP). To understand on-the-ground coastal community change and assess where 

conservation actions are best implemented, one needs to know what plant life-stage is 

most vulnerable to environmental stress. We hypothesized that seedling establishment 

was the most vulnerable life-stage to salt stress and, therefore, the largest driver of 

community change. An additional goal was to determine the salinity tolerances of 

Chromolaena frustrata, a federally endangered plant species.  

Methods: We examined the effects of increasing salinity (0, 5, 15, 30, and 45‰) on seed 

germination and seedling establishment of 5 coastal species and compared our results to a 

prior study that examined salinity effects on one-year old and adult individuals of the 

same species. 

Key results: We found seedling establishment showed the most disparate responses 

across salinity treatments and between species and the life-stage best monitored for 

community change.  

Conclusions: Changing microsite conditions regulating seedling establishment is likely 

the driver of upland plant community shifts in our study area. Chromolaena frustrata was 

sensitive to salinity levels greater than 5‰ at all developmental stages suggesting this 

species is highly threatened by SLR. Our results show that when species of concern are 

found in the understory, on-the-ground monitoring of seedling establishment may be the 
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best approach for determining when conservation action is needed before understories 

change and species are lost. 

 

Key Words: See germination; seedling establishment; life stage; community change; 

salinity; sea level rise 

INTRODUCTION 

 

Because Florida has the shallowest water table in the continental U.S. and its coastal 

communities are distributed across a gradient that is 0-2m above mean sea level 

(Hoffmeister, 1974), its coastal communities are imminently threatened by sea level rise 

(SLR) (Zhang, 2011). Everglades National Park (ENP), which has a significant coastal 

extent, harbors 43 critically imperiled species as defined by Gann et al. (2002). Because 

rare species richness tends to be negatively correlated with salinity in coastal habitats 

(Saha et al., 2011), 21 of ENP’s rare species are threatened by SLR (Saha et al., 2011). 

With increased ocean warming and glacial and ice sheet melt, the future SLR rate is 

expected to exceed both the mean global SLR rate during the 20
th

 century (1.7mm yr
–1

) 

and SLR since 1993 (3.6mm yr
–1

) (IPCC, 2014), further threatening coastal species and 

increasing the need to take proactive conservation measures.  

Groundwater and salinity are important drivers of ecological processes in wetland 

communities (Williams et al., 1998; Graham et al., 1999; Ross et al., 2000; Price et al., 

2006; Hancock et al., 2009; Harvey and McCormick, 2009; Saha et al., 2011) and dictate 

plant community composition (Jassby et al., 1995; Ross et al., 2000; Saha et al., 2011). In 

the Everglades coastal uplands areas, groundwater table mean depth and salinity vary 
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with elevation and season from buttonwood prairies (38.8‰ average salinity) at lowest 

elevations to buttonwood forests (29.5‰) to the highest elevation hardwood hammocks 

(22.8‰) (Saha et al., 2015). Between the groundwater table and soil surface lays an 

aerated zone of soil called the vadose zone. In coastal south Florida, this zone’s soil pore 

water is less salty than that of the groundwater table beneath, forming a freshwater layer 

during the wet season that is utilized by upland glycophyte (salt intolerant) species 

(Sternberg et al., 2007). As sea level rises, the vadose zone will shrink above the rising 

water table, and more saline groundwater will infiltrate the rhizosphere.  

The species composition of coastal forest communities has responded to these 

changes in salinity and the vadose zone by shifting up the elevation gradient, causing 

upland communities to shrink as more salt-tolerant communities replace them (Saha et 

al., 2011; Chapter 1 this dissertation). Thus, salinity change may lead to the extirpation of 

critically imperiled and endemic coastal species, including the federally endangered 

Chromolaena frustrata (B.L.Rob.)R.M.King & H.Rob. and the Florida endangered 

Kosteletzkya depressa (L.)O.J.Blanchard et al. (Saha et al., 2011).  

A species’ vulnerabilities to environmental stressors are contingent on life stage 

(Nicholls et al., n.d.; Parker et al., 1955; Williams et al., 1998; Chartzoulakis and 

Klapaki, 2000; Schiffers and Tielbörger, 2006); high salinity levels tend to impact 

juvenile or regenerative life stages more than adult stages (Perry and Williams, 1996). 

Glycophytes typically respond to the presence of saline soils by reducing leaf size, total 

plant leaf area, and/or stomatal conductance, which inhibits gas exchange and thus 

photosynthesis (Pezeshki et al., 1990; Munns, 2002; Saha et al., 2011). If gas exchange 

and photosynthesis is reduced enough, a net negative carbon balance occurs killing the 
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plant (Pezeshki et al., 1990; Munns, 2002). Plant community composition ultimately 

depends on which species are able to regenerate in an area (Keeley and Van Mantgem, 

2008). In ENP coastal forests, halophyte seedling and sapling densities increased in 

buttonwood forests from 1998-2009, while glycophyte seedling and sapling densities 

decreased; buttonwood adults typically had unchanged densities. In contrast, halophyte 

and glycophyte seedling densities were unchanged in higher elevation hardwood 

hammocks (Saha et al., 2011). Additionally, Wendelberger et al. (Chapter 1 this 

dissertation) found hardwood hammocks have shrunk and have been replaced by 

buttonwood forest in the study area between 1978 and 2011. Because there is only a 

mean 6cm difference in elevation between buttonwood forests and coastal hardwood 

hammocks (Saha et al., 2015), and SLR is expected to increase at a rate faster than 

3.6mm yr
-1

 (IPCC, 2014), coastal hardwood hammocks in our study area are under threat 

of disappearing.  

In order to better monitor coastal forest community change, we need to examine 

the effects of increasing salinity on all life stages of key species found in these 

communities. The purpose of this study was to determine seed germination and seedling 

establishment responses to increasing soil salinity levels in five coastal species found in 

varying dominance in southern Florida buttonwood forest and hardwood hammocks. We 

hypothesized that seedling establishment was a larger driver of change than seed 

germination under increasing salinity levels. An additional goal was to determine the 

salinity tolerances of C. frustrata, a federally endangered coastal buttonwood forest 

species. 
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MATERIALS AND METHODS 

 

Study site— Seeds used in this study were collected from species found in 

buttonwood forests and hardwood hammocks along the coast of ENP (25°19′0″N, 

80°56′0″W), Florida, U.S.A. (Figure 3.1). Southern Florida is humid and subtropical with 

a distinct warm (mean 25
°
C) wet season from June to October and cool (mean 15

°
C) dry 

season from November to May (SOFIA, 2015). Average annual rainfall is between 100 to 

163cm with more than half falling between June and September often coming from 

hurricanes and tropical storms; April and May usually are the driest months (FCC, 2015; 

SOFIA, 2015).  

 The communities and species of interest in this study reside on the Buttonwood 

Embankment, which is a coastal ridge separating the tip of the Florida peninsula from 

Florida Bay. The Buttonwood Embankment is an approximately 60x1km
2
 stretch of 

elevated land averaging 45cm in height (Holmes and Marot, 1999; Holmes, Willard, 

Brewster-Wingard, et al., 1999). Historically, freshwater flowed from the north toward 

saline Florida Bay forming fresh water bodies to the north of the embankment (Craighead 

Jr., 1964; Holmes, Willard, Brewster-Wingard, et al., 1999). Today, the waterbodies to 

the north of the embankment are brackish to marine, which has led to changes in the 

marsh environment (Holmes, Willard, Brewster-Wingard, et al., 1999). Long-term 

transitions from freshwater to marine sediment layers, coupled with the pollen cores and 

aerial photographs, suggest that the study area has experienced a transition in plant 

communities in the last half century, resulting from a combination of SLR and lack of 

freshwater head from the drying of the Everglades ecosystem (Holmes and Marot, 1999). 
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  Plant communities of interest— Our study focuses on species found in coastal 

buttonwood forests and tropical hardwood hammocks along the buttonwood ridge, 

Flamingo, ENP, Florida. Buttonwood forest is dominated by Conocarpus erectus L. 

(buttonwood) in the canopy. Other woody species in the community include Sideroxylon 

celastinum (Kunth) T.D. Pennington, Randia aculeata L., Cocoloba diversifolia Jacq., 

Erythrina herbacea L., Eugenia foetida Pers., Ficus aurea Nutt., and Piscidia piscipula 

(L.) Sarg. (Saha et al., 2015). The buttonwood understory has species such as 

Alternanthera flavescens Kunth, Chromolaena frustrata (B.L.Rob.) R.M.King & H.Rob., 

Dicliptera sexangularis (L.) Juss., and Heliotropium angiospermum Murray (Saha et al., 

2015). Temperature, salinity, tidal fluctuation, substrate, and wave energy influence the 

size and extent of buttonwood forests (FNAI, 2010), which often grade into salt marsh, 

coastal berm, rockland hammock, coastal hardwood hammock, and coastal rock barren 

(FNAI, 2010; USFWS, 2012). They sustain freshwater flooding during the wet season 

and are dry during the dry season (FNAI, 2010). Buttonwood forests (mean elevation 

29+3cm) maintain an average groundwater table of -33+1cm and 26-29.5+0.4‰ 

groundwater salinity (Saha et al., 2011, 2015).  

Coastal tropical hardwood hammocks are biodiverse. Typical tree and shrub 

species include Capparis flexuosa (L.) L., Coccoloba diversifolia, Piscidia 

piscipula, Sideroxylon foetidissimum Jacq., Eugenia foetida, Swietenia mahagoni 

(L.)Jacq., Ficus aurea Nutt., Sabal palmetto (Walt.) Lodd. ex J.A. & J.H. 

Schultes, Eugenia axillaris (Sw.) Willd., Zanthoxylum fagara (L.) Sarg., Sideroxylon 

celastrinum (Kunth)T.D.Penn., and Colubrina arborescens (Mill.) Sarg. (Rutchey et al., 

2006; USFWS, 2012). Herbaceous species that occur in coastal hardwood hammock 
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include Acanthocereus tetragonus (L.) Hummelinck, Alternanthera flavescens, Batis 

maritima L., Borrichia arborescens (L.) DC., Borrichia frutescens (L.) DC., Caesalpinia 

bonduc (L.) Roxb., Capsicum annuum L. var. glabriusculum (Dunal) Heiser & 

Pickersgill, Galactia striata (Jacq.) Urb., Heliotropium angiospermum Murr., Passiflora 

suberosa L., Rivina humilis L., Sarcocornia perennis (Mill.) A.J. Scott, Sesuvium 

portulacastrum (L.) L., and Suaeda linearis (Elliott) Moq. Ground cover is often limited 

in closed canopy areas and abundant in areas where canopy disturbance has occurred or 

where this community intergrades with buttonwood forest (USFWS, 2012). Coastal 

tropical hardwood hammocks are the least salt tolerant of all the coastal community types 

and reside at the highest elevation (mean elevation 29+3cm). 

Study species— Species studied included the shrubby federally-endangered 

Chromolaena frustrata, and four coastal forest species, as described below. 

Chromolaena frustrata (Cape Sable thoroughwort; Asteraceae) is a federally 

endangered (USFWS, 2012) shrub endemic to coastal buttonwood forest, hardwood 

hammock, coastal berm, coastal rock barren, and rockland hammock in Miami-Dade and 

Monroe Counties, Florida (Gann et al., 2002). This species grows to 1.5m, has lavender 

to blue flowers arranged in heads, and produces wind-dispersed achenes (Nesom, 2006). 

Little is known about C. frustrata’s reproductive biology (Bradley and Gann, 2004), but 

the invasive congener, C. odorata, is known to show some tolerance to salinity on seed 

germination and requires light to germinate (Chauhan and Johnson, 2008).  

Conocarpus erectus L. (Buttonwood; Combretaceae) is a tree distributed across 

coastal tropical America, West Africa (Tomlinson, 1986; Boitani et al., 2008), the 

Caribbean south to Brazil, and Mexico through Central America to Ecuador (Howard, 

http://www.itis.gov/servlet/SingleRpt/RefRpt?search_type=author&search_id=author_id&search_id_value=145404
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1989). The species is the dominant woody species found in buttonwood forests (44%) 

and the only canopy species in buttonwood prairies (Saha et al., 2015). Conocarpus 

erectus flowers and fruits year-round with very high seed production (Tomlinson, 1986); 

however, this species is known to have low seed viability (< 12%), < 5% seed 

germination during the dry season, and 1.6% seedling survival to reproduction 

(Hernandez and Espino, 1999).  

Eugenia foetida Pers. (Spanish stopper; Myrtaceae) is a tree found in Florida, 

throughout the Caribbean, the Yucatan in Mexico, Belize, and Guatemala (Little Jr. et al., 

1974; Howard, 1989). In Florida, the species is typically a small tree in buttonwood 

forests but is larger and has been found up to 43% of the canopy in hardwood hammocks 

in the coastal Everglades (Saha et al., 2015). Eugenia foetida fruits are fleshy blue/black 

berries that are bird and lizard (Godinez-Alvarez, 2004) dispersed and have low 

germination rates— Bohl Stricker and Stiling (2013) obtained 25% germination in 

freshwater conditions. Some Eugenia species are known to have recalcitrant seeds 

(Andrade et al., 2003; Masetto et al., 2008); it is not known if E. foetida is recalcitrant, 

however, the species is known to take months to germinate. 

Piscidia piscipula (L.) Sarg. (Jamaica-dogwood; Fabaceae) is a tree common in 

southern Florida, the Bahamas, Cuba, Haiti, Jamaica, Mexico, Honduras, Belize, and 

Guatemala (Rudd, 1969; NaturServe, 2016). In Florida the species averages 12% of the 

canopy cover in hardwood hammocks and is a less common woody species in 

buttonwood forests of the coastal Everglades (Saha et al., 2015). Picidia piscipula pods 

are 4-winged with 3-8 seeds per pod (Rudd, 1969). Seeds show high germination rates 

(80%) when nicked and planted above soil (K. S. Wendelberger unpublished data).  



 

99 

Swietenia mahagoni (L.) Jacq. (West Indian mahogany; Meliaceae) is a widely 

cultivated tree native to south Florida, the Bahamas, and the Greater Antilles, except 

Puerto Rico (Howard, 1989; IUCN, 1998). The species is Florida State threatened 

(FDACS, 1998) and considered endangered (A1cd) by the IUCN (1998). In Florida, S. 

mahagoni is a common canopy species found in coastal hardwood and rockland 

hammocks (Gann et al., 2002; Saha et al., 2015). Swietenia mahagoni seeds easily 

germinate in freshwater conditions—Howard et al. (1988) found 90% germination after 

20 days and 100% germination after 2 months. 

Seed collection— All seeds were collected from the Flamingo area of ENP and 

from more than 10 individuals of each species (ENP permit # EVER-2011-SCI-0019, 

EVER-2012-SCI-0013, EVER-2013-SCI-0033). Seeds were pooled by species for each 

experiment. Seeds were cleaned by hand and stored at room temperature until 

experiments began. Seeds of C. frustrata were collected in April 2011, C. erectus in 

January 2012, E. foetida in January 2013, P. piscipula in October 2012, and S. mahagoni 

in March 2011. All seeds were collected during the dry season except for P. piscipula, 

whose seeds were collected at the end of the wet season.  

Seed germination experiments— To test the effects of increasing salinity levels on 

the five species, twenty seeds per petri dish were sown into 5 replicate petri dishes (150 x 

15mm for C. erectus and S. mahagoni seeds and 90 x 10mm for all other species) per 

salinity treatment (0, 5, 15, 30, and 45‰), for 100 seeds per treatment and 500 seeds in 

total. All seeds were soaked in 5% bleach for five minutes then rinsed prior to sowing to 

help prevent molding. Because of low C. erectus germination rates, 100 seeds per petri 

dish for a total of 2,500 seeds were used. Each petri dish was filled 1/4 with large-grain 
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silica sand and treated with its respective saline solutions. Saline solutions were created 

by dissolving measured amounts of Instant Ocean Aquarium Sea Salt (Spectrum Brands, 

Blacksburg, Virginia) with distilled water, then diluting to treatment concentrations. 

Parafilm was placed around each dish to prevent drying and consequent changes to the 

salinity solution. The dishes were placed in a growth chamber (GC8-2H, Environmental 

Growth Chambers, Chagrin Falls, Ohio) on a 12 hour light/12 hour dark cycle at 80% 

humidity and a constant 26
°
C. Seeds were monitored for germination, defined by 

emergence of the radicle from the seed coat, one to three times a week for six weeks or 

until germination no longer occurred. Germinated seedlings were removed as counted. 

Study initiation and termination dates are found in Appendix I. 

Seedling establishment experiments— To determine the effect of salinity on 

seedling growth from 0 to 3 months, seedling establishment experiments for each species 

were conducted in a greenhouse on the Florida International University campus. All 

seedlings were planted just after cotyledon emergence into standard seedling potting soil 

mix (Fafard® 4 Mix, Sun Gro Horticulture Canada LTD, Agawam, Massachusetts, USA, 

a soil-less medium made from Canadian Sphagnum peat moss (45%), processed pine 

bark, vermiculite, starter nutrients, wetting agent and dolomitic limestone; pH range was 

5.5-6.5 after wetting). Seedlings were allowed to acclimate in freshwater for one week 

prior to treatment. Seedlings were obtained by mixing seedlings from the germination 

experiments and, in some cases, seedlings germinated separately to compensate for low 

germination rates. Seeds of C. frustrata, C. erectus, and E. foetida were planted one per 

6cm
2
 x 5cm deep subunits in plastic potting 6-packs; because of their larger seedling size, 

P. piscipula and S. mahagoni seedlings were planted into individual 6.5cm
2
 x 9cm deep 
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plastic pots. Seedlings were grown in 0, 5, 15, 30, and 45‰ salinity for 3 months. For 

each species and treatment, we planted 4 replicates of 16 individuals per replicate, 

totaling 64 plants per treatment (320 seedlings total). Because of poor germination, P. 

piscipula had fewer seedlings available for the seedling establishment experiments; seven 

pots per replicate with three replicates per salinity treatment were used for a total of 21 

individuals per treatment (84 seedlings total); no 45‰ treatment was performed. Because 

E. foetida grew slowly in all treatments, this species’ seedling establishment experiments 

continued for 200 days. Each replicate set was placed in one seedling flat that lacked 

drainage holes, and the flats were filled with 2.5 liters of their respective saline solutions 

so that the potted seedlings sat in but were not submerged in the solution. Saline solutions 

were created by dissolving measured amounts of Instant Ocean Aquarium Sea Salt 

(Spectrum Brands, Blacksburg, Virginia) with tap water. Salinity levels were monitored 

three days a week using a portable hand-held salinity refractometer (RHS-10ATC, 

Agriculture Solutions, Strong, Maine) and adjusted with the Instant Ocean solution as 

needed to maintain appropriate salinity levels. Study initiation and termination dates, 

average temperature, and average day length are found in Appendix II. 

To document seedling morphology at the beginning of the experiment, seedling 

height (mm) from the soil surface was measured and the number of fully opened 

photosynthetic leaves excluding cotyledons, if present, was counted. As individuals died 

or at the end of the experiment, additional measurements were taken: height from the soil 

to the shoot tip (cm); number of leaves present on the stem; length and width (mm) of the 

newest matured leaf; and the length of the internode below the newest matured leaf 

(mm). Total leaf number per plant was determined by counting leaf scars and adding that 
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to the number of leaves present. Plants were removed from pots and soil washed away, 

then length of the longest root measured. Root and shoot dry biomass were determined by 

cutting the seedlings at the soil surface and placing the roots and shoots in separate 

envelopes; these were dried in a 70
°
C drying oven (OV35545, Thermolyne, United 

States) for 3-5 days; dry mass was then weighed on a balance (AE240 for small samples 

and PG2002-S for large samples, Metler Toledo, Columbus, Ohio). 

To examine the effect that increasing salinity levels had on seedling stomatal 

conductance, five seedlings per treatment were placed in one tray per treatment and 

watered from the bottom with their respective salinity treatments. Stomatal conductance 

was taken on one leaf per plant using a steady-state porometer (LI-1600M, LI-COR, Inc, 

Lincoln, Nebraska). Some seedling leaves were too small to completely fill the 

porometer’s chamber; in this case, leaf area inside the chamber was measured (mm
2
). 

Because the LI-1600m does not adjust for boundary layer resistance, the boundary layer 

resistance and an adjustment for leaf area were made to find the true conductance value 

(LI-COR, 1989). 

Study initiation and termination dates, when stomatal conductance was taken, and 

seedling age at time of measurements are found in Appendix III. 

Statistical analysis— Seed germination— Generalized linear models and Tukey 

post hoc tests were used to assess the effects of increasing salinity level on mean seed 

germination fractions (number of germinated seeds/total number of seeds) assuming a 

binomial response variable and using a logit link function (McCullagh and Nelder, 1989). 

To test the effects of varying salinity level on time-to-germination, cox proportional  
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hazards survival analyses were performed (Onofri et al., 2010). In cases where there was 

no germination at 30 and/or 45‰, these treatments were removed from analysis—only 

treatments with germinated seeds were compared.  

Seedling establishment— Cox proportional hazards survival models were used to 

assess the effects of increasing salinity level on seedling survival. Because C. erectus 

showed 100% seedling survival in all treatments except 45‰ (1 seedling survived) and P. 

piscipula showed 100% seedling survival in all treatments except 30‰ (19% survival), 

survival analyses were not performed on these two species. 

To test the effects of varying salinity on morphological trait development while 

accounting for within tray correlation we used linear mixed effects models and Tukey 

post hoc tests. Seedling height, root length, shoot biomass, root biomass, shoot:root 

biomass, most recently matured leaf position, internode length just below the newest 

matured leaf, area of most recently matured leaf, number of leaves at the time of harvest, 

and total number of leaves produced were the dependent variables, salinity was the fixed-

effect, and tray was the random effect in the model. To test the effects of increasing 

salinity on seedling stomatal conductance, one-way ANOVAs and Tukey post hoc tests 

were performed where salinity was the fixed main effect.  

All analyses were executed in R (R Core Team, 2013). The linear mixed effects 

models were performed using the nlme package (Pinheiro et al., 2013), and Tukey post 

hoc tests for the linear mixed effects models were completed with the lsmeans package 

(Lenth, 2014). Cox proportional hazard models and Kaplan-Meier survival plots were 

executed with the survival package (Therneau and Grambsch, 2000; Therneau, 2014). 

Tukey post hoc tests for the generalized linear model were completed using the 
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multcomp package (Hothorn et al., 2008)—all other analyses utilized the base package 

provided in R. Readers can access the data in this paper through the Florida Coastal 

Everglades LTER data repository (FCE LTER, n.d.). 

RESULTS 

Seed germination— Seed germination decreases with increasing salinity levels in 

all five species. Mean seed germination was similar in 0 and 5‰ in all species (Table 3.1 

and 3.2; Figure 3.2a-e). Seeds sown in 15‰ sand germinated significantly less than those 

in 0 and 5‰ and significantly more than those in 30‰ treatments in all species (Table 

3.1; Figure 3.2). No seeds germinated in 45‰ sand, while C. erectus and E. foetida were 

the only species to show germination at 30‰ (mean 0.2 and 2.6 seeds germinated, 

respectively; Table 3.1; Figure 3.2). 

Time to germination was significantly different across salinity treatments for all 

five species. Seeds germinated similarly in 0‰ treatments versus 5‰ treatments in all 

species (Table 3.3; Fig. 3.3a-e) except S. mahagoni, where seeds in 0‰ germinated 

sooner than those in 5‰ treatments (Table 3.3, Fig. 3.3a-e). Seeds sown in 15‰ 

germinated significantly more slowly than those in 0 and 5‰ treatments and significantly 

faster than 30‰ treatments in all species (Table 3.3; Fig. 3.3a-e). 

Seedling establishment— Seedling survival, morphological development, and 

stomatal conductance decreased significantly across salinity levels in all five species.  

Species showed differing sensitivity to increasing salinity levels, depending on the 

species (Tables 3.4-3.5; Figs. 3.4-3.10). All species showed a significant decrease in 

stomatal conductance after one week of being subjected to salinity treatments while C.  
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erectus and E. foetida appeared to adjust to the increased salinity with time—with some 

salinity treatments conducting similarly to the control after one month (Table 3.5; Fig. 

3.10).  

Chromolaena frustrata— Chromolaena frustrata seedling survival dropped 

significantly with increasing salinity, as compared to the control (0‰), even at low 

salinity levels (X
2
 = 384.9, P less than 0.001; Table 3.4). While C. frustrata seedlings 

growing in 5‰ soil showed better survival than those in 0‰ early on (Fig. 3.4a), there 

was a significant decline in survival in 5‰ soils (8% survival) up to 45 days compared to 

0‰ (88% survival); seedlings in 15, 30, and 45‰ all showed 0% survival to 45 days 

(Table 3.4; Fig. 3.4a).  

Seedling development differed across salinity treatments with a reduction in shoot 

and root length, leaf area, number of leaves, and root and shoot biomass as salinity 

increased; in most cases the largest reductions occurred between 0 and 5‰ treatments 

(App. IV; Figs. 3.5a-j). Chromolaena frustrata seedlings showed significantly less 

overall plant growth and leaf production between 0‰ and 5‰ and no difference in these 

parameters as salinity increased (App. IV; Figs. 3.5a-d;i-j). Chromolaena frustrata 

allotted significantly more energy to shoot production as opposed to root production in 

5‰ treatments as compared to all other treatments; the difference in shoot and root 

production was insignificant between 15, 30 and 45‰ treatments (App. IV; Fig. 3.5e). 

Though control seedlings (0‰) showed similar shoot:root biomass to those growing in 

45‰ soils, both shoot and root biomass were significantly less in 45‰ as compared to 

0‰ when looked at separately (App. IV; Fig. 3.5c-e). Leaf area was significantly smaller 



 

106 

between 0, 5, 15, and 30‰ treatments; there was no difference in leaf area between 

seedlings growing in 30 and 45‰ soils (App. IV; Fig. 3.5h).  

Increases in salinity had little effect on C. frustrata seedling stomatal 

conductance. After one week, C. frustrata seedlings showed significantly less stomatal 

conductance between 0 and 45‰ and 15 and 45‰ treatments—all other treatment 

combinations were not significantly different (F4,20 = 5.36, P = 0.004). After one month 

there were no significant difference between treatments; however, all the seedlings in 30 

and 45‰ treatments had died by one month and could not be evaluated (Table 3.5; Fig. 

3.10). 

Conocarpus erectus— When looking at survival, C. erectus seedlings showed the 

least sensitivity to increasing salinity of all the species in this study. All C. erectus 

seedlings survived to 105 days at all salinity levels except 45‰, where only one seedling 

survived (Fig. 3.4b); therefore, survival analyses were not performed.  

In most cases, C. erectus seedlings did not show a significant decrease in 

morphological development or plant size until the 15‰ salinity treatments; only root 

biomass and the total number of leaves produced were significantly less in 5‰ compared 

to 0‰ (App. IV; Fig. 3.6a-j). Conocarpus erectus seedlings showed similar shoot and 

root production in 0, 5, and 15‰ treatments; at 30‰ seedlings began to produce 

significantly more shoots than roots, but shoot production declined in 45‰ treatments 

(App. IV; Fig. 3.6e).  

Conocarpus erectus seedling stomatal conductance was negatively impacted at 

higher salinity levels after one week (F4,20 = 13.99, P less than 0.001; Table 3.5, Fig. 

3.10). After one week, C. erectus showed significantly higher stomatal conductance in 
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control treatments as compared to 15 (57% less than control), 30 (82% less), and 45‰ 

(95% less) treatments and significantly higher stomatal conductance in 5‰ treatments 

compared to 30 and 45‰ treatments; after one month, seedlings in 5, 15, and 35‰ 

treatments showed similar stomatal conductance to control seedlings; only 45‰ seedlings 

had significantly less stomatal conductance (88% less) than control; seedlings in 15‰ 

showed higher stomatal conductance than 45‰ seedlings (Table 3.5, Fig. 3.10).  

Eugenia foetida— Eugenia foetida seedlings showed significant differences in 

survival between all treatments (X
2
 = 220.2; P less than 0.001; Table 3.4, Fig. 3.4c). 

Seedlings growing in 0‰ soils had the highest survival up to 200 days (91%), and 

survival decreased with increasing salinity; no seedlings survived past 104 days at 45‰ 

(Table 3.4, Fig. 3.4c).  

Overall, seedlings showed marked decreases in growth and morphology between 

0 and 5‰ treatments and little difference between all remaining treatment combinations 

(App. IV, Fig. 3.7a-j). Eugenia foetida seedlings showed no difference in root length 

between all five salinity treatments (App. IV, Fig. 3.7b). The shoot:root biomass 

indicated a slight decrease in shoot production between 5 and 30‰ that was maintained 

through 45‰ treatments, but no difference between 0, 5, and 15‰ treatments (App. IV; 

Fig. 3.7e). The internode length was similar for all treatments except those seedlings 

growing in 30‰ soils which had shorter internodes than those growing in 0‰ soils (App. 

IV; Fig. 3.7g). The mean number of leaves produced decreased significantly (over 50% 

decrease) between control and 5‰ then showed no significant difference in leaf 

production across all other treatments (App. IV; Fig. 3.7j).  
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Eugenia foetida seedling stomatal conductance decreased significantly with 

increasing salinity (one week: F4,20 = 33.96, P less than 0.001; one month: F4,20 = 20.05, 

P less than 0.001). After one week, seedlings in 0‰ showed significantly more stomatal 

conductance than all other treatments (5‰ showed 42% less conductance, 15‰ 61% less, 

30‰ 71% less, and 45‰ 84% less conductance than control). After one month, 5‰ 

seedling stomatal conductance was no longer significantly different to that of those in 

0‰ soils (18% less conductance) while showing significantly more stomatal conductance 

than 15‰ (52% higher conductance); all other combinations were the similar (Table 3.5; 

Fig. 3.10). 

Piscidia piscipula— P. piscipula survival showed the second lowest sensitivity to 

increasing salinity levels. Seedlings growing in 0, 5, and 15‰ soils showed 100% 

survival to 100 days. Those seedlings growing in 30‰ soils showed an 80% chance of 

survival to 100 days (Table 3.4; Fig. 3.4d); therefore, no analysis was performed for 

survival on this species. 

Overall P. piscipula seedling morphology and growth followed a pattern of 

significant decreases in size and number between 0, 5, and 15‰ treatments (App. IV; 

Fig. 3.8a-j). Seedlings showed significantly shorter roots between 0 and 5‰, then no 

differences thereafter (App. IV; Fig. 3.8b). Seedlings growing in 5, 15, and 30‰ 

treatments allotted the same amount of energy to shoots as roots; those growing in 5‰ 

showed slightly more shoot biomass than root biomass than seedling in 0 or 15‰ 

treatments (App. IV; Fig. 3.8e). Leaf development followed the same pattern as 

shoot:root biomass, decreasing significantly between 5 and 15‰ treatments then again 

between 15 and 30‰ (App. IV; Fig. 3.8f and i-j).  
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Piscidia piscipula seedlings showed a marked decline in stomatal conductance 

with increasing salinity and time (F4,20 = 20.05, P less than 0.001 after one week; F4,16 = 

10.35, P = 0.001 after one month; Table 3.5; Fig. 3.10). After one week of the study, P. 

piscipula seedlings in 0‰ had higher stomatal conductance than all other treatments (5‰ 

showed 48% less conductance than control, 15‰ 54% less, 30‰ 72% less, and 45‰ 

86% less); 5 and 15‰ treatments showed significantly greater stomatal conductance than 

those in 45‰ treatments, while all other combinations were not different (Table 3.5; Fig. 

3.10). After one month, seedlings in control treatments continued to show significantly 

more conductance than all treatments (5‰ 57%, 15‰ 75%, 30‰ 84%, and 45‰ 91% 

less conductance than control); no other treatment combination was significantly different 

(Table 3.5; Fig. 3.10). 

  Swietenia mahagoni— Swietenia mahagoni seedling survival showed a tolerance 

for increasing salinity up to 15‰, after which a marked decline was noted (X
2
 = 497.8.5, 

P less than 0.001; Table 3.4; Fig. 3.4e). Seedlings growing in 0 and 5‰ soils had 98% 

survival, those in 15‰ had 73% survival to 94 days, all seedlings in 30‰ died by 70 

days, and those in 45‰ died by 35 days (Table 3.4; Fig. 3.4e).  

Most changes in morphology and growth for this species occurred starting at the 

15‰ treatment level, then again at 30‰, where significant decreases in size and number 

where seen (App. IV; Fig. 3.9a-j). There was a small but significant increase in energy 

for shoot biomass production compared to root biomass between 0 and 30‰ treatments 

(App. IV; Fig. 3.9e). Internode length and leaf area all decreased in size and number 

between 0‰ and 5‰ treatments, then again between 15 and 30‰, while the other 

treatments remained the same (App. IV; Fig. 3.9f and h). Mean number of leaves at time 
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of harvest and total leaves produced had little change between 0, 5, and 15‰, then large 

decreases 15 and 30‰ (Table 3.5; Fig. 3.9i and j). Stomatal conductance was not 

measured on this species.  

DISCUSSION 

 

We found seed germination responded similarly to increased salinity in all five 

coastal, upland species—decreasing with increased salinity—while seedling 

establishment showed disparate responses across salinity treatments and between species. 

Changing microsite salinity conditions regulating seedling establishment is a more likely 

driver of upland plant community shifts in our study area. In addition to our work, Saha 

et al. (2012), Wendelberger (Florida International University, unpublished data), and 

Saha et al. (2015) examined the same species, respectively, looking at salinity effects (0, 

5, 15, and 30‰ soil salinity) on one-year-old plants, one-year-old Chromolaena 

frustrata, and isotopic signatures (
18

O and 
2
H) of in situ adults assessing where in the 

soil column and salinity of the water they uptake at the study site (S. mahagoni adults 

were not examined). Three of the five study species (C. frustrata, E. foetida, and S. 

mahagoni) showed lower percent seedling survival at the higher salinity levels than one-

year-old plants of the same species grown in equivalent soil salinities (Table 3.7; Saha et 

al., 2012, Wendelberger unpublished data). Eugenia foetida is more dominant and found 

as larger trees in upland hardwood hammocks than buttonwood forests, where the species 

tends to be a smaller mid-story tree or shrub (Saha et al., 2012); this reduction in plant 

size was seen starting at the seedling life history stage. We found decreases in stomatal 

conductance associated with reduced growth and morphological responses in E. foetida 
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seedlings in 5‰ soils; seedlings showed similar responses in nearly all measured 

parameters with increasing saline treatments. These results may explain the decrease in E. 

foetida dominance and plant size in the lower elevation, more saline buttonwood forest as 

compared to upland hardwood hammocks. Swietenia mahagoni, showed a distinct 

stepwise reduction with dramatic decreases in growth and development between 5 and 

15‰ then again between 15 and 30‰ soils, indicating a higher sensitivity to increased 

salinity levels than E. foetida and a possible reason as to why this species is rarely found 

in buttonwood forests while being common in hardwood hammocks (Saha et al., 2012).  

Piscidia piscipula was the only species to show better seedling survival at high 

salinity levels as compared to saplings (Saha et al., 2012); however, a cold snap during 

the sapling experiments resulted in P. piscipula dropping its leaves. Those saplings 

growing in higher salinity soils did not recover from the cold as well as those growing in 

lower salinity soils (Saha et al., 2012, Wendelberger personal observations); likely, high 

salinity levels and the cold temperatures that resulted in a reduction in leaf tissue and, 

therefore, a net negative carbon balance, acted as covariates resulting in sapling survival 

that may have been lower than what would have been had the cold snap not occurred 

(Saha et al., 2012). Interestingly, though P. piscipula seedlings showed dramatic 

reductions in most developmental parameters between controls and 5‰, then again 

between 5 and 15‰ treatments, and similar reductions in stomatal conductance across 

salinity treatments starting at 5‰, this species showed the second highest survival rates in 

all salinity treatments compared to the other five species. Piscidia piscipula has been seen 

as a first colonizer in collapsed hardwood hammocks following hurricane disturbance 

(Wendelberger personal observations); the mechanism for how this species is capable of 
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waiting out periods of increased salinity levels (e.g. storm surges) better than other 

hardwood hammock species is not known and in need of further examination. 

Conocarpus erectus showed 100% survival in all treatments for both seedlings and 

saplings (Saha et al., 2012). That C. erectus did so well at both life stages in high salinity 

treatments is not surprising—the species is the dominant tree found in buttonwood forest 

canopies (Saha et al., 2012), where the average soil salinity is 35.5‰ (Saha et al., 2015), 

and seedling stomatal conductance adjusted to higher salinity levels over time, further 

suggesting a strong tolerance for varying salinity regimes. Adults of all species except C. 

frustrata accessed salty belowground and deep soil water throughout the year during the 

wet and/or dry season, showing greater tolerance for salinity at this life stage than at the 

seedling establishment stage (Saha et al., 2015). As groundwater rises with sea level, the 

vadose zone supplying freshwater for buttonwood and hardwood hammock species is 

shrinking; upland communities are transitioning into lower elevation, more salt tolerant 

communities. Our results and those of others (Williams, Williams, et al., 1999; Ross et 

al., 2000; Saha et al., 2011) show that the transition will first be seen in the understory as 

a change in the species that establish seedlings in the area. 

Additionally, our results corroborate those of Saha et al. (2011, 2015) regarding 

the conservation of the federally endangered C. frustrata. This species is endemic to the 

Florida Keys and the coastal portion of ENP on the mainland (Gann et al., 2002; Bradley 

and Gann, 2004; USFWS, 2012). Chromolaena frustrata has been extirpated from half 

the Florida Keys islands where it once occurred (Bradley and Gann, 2004; USFWS, 

2012). The majority of this species’ population is found in the understory of the lower 

elevation, highly saline, buttonwood forests of the Buttonwood Embankment (Gann et 
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al., 2002; Service, 2012; Saha et al., 2015). Chromolaena frustrata seedlings showed 

poorer seedling establishment than both C. erectus and E. foetida. Because E. foetida is 

more dominant in hardwood hammocks where freshwater is more abundant (Saha et al., 

2015), it would be expected to be less tolerant to salinity than lower elevation C. 

frustrata. There was a marked decline in C. frustrata stomatal conductance across all 

treatments, including the control, between the pre-treatment and one week measurements. 

Interestingly, control seedlings did not show a reduction in development reflective of 

what would be expected with decreases in conductance, while all other treatments 

including 5‰ showed marked declines in growth and development. Flooding is known to 

result in a decline in photosynthetic rates in flood sensitive species (Pezeshki et al., 

1990); perhaps constant inundation during the seedling establishment experiments acted 

as a covariate with salinity reducing growth and survival while freshwater control 

seedlings were able to survive and grow without the combined stress of salt. As the 

groundwater levels rise with rising sea levels, inundation depth, duration, and salinity 

level will also increase, suggesting that even in times when salinity levels are low enough 

for germination, C. frustrata seedlings may not be able to establish with the added stress 

of increased inundation. 

Intolerance to increases in salinity was seen in C. frustrata adults, as well. Saha et 

al. (2015) found wild C. frustrata abundance is greater in locations with the widest 

freshwater recharge zone and highest freshwater supply. During the dry season, C. 

frustrata adults were the only species tested by Saha et al. (2015) that tended to access 

shallow soil water that resembled the isotopic signatures of rainwater. The species 

accesses ground water and deep soil water during the wet season when salinity levels are 
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lowest in these layers (Saha et al., 2015), suggesting an aversion to high salinity at all life 

stages and further emphasizing the importance of ephemeral freshwater microsites for C. 

frustrata establishment and survival. As the sea rises and salinity levels increase along 

the southern coast of Florida, it will become more difficult for C. frustrata to establish 

new and maintain old populations where it currently exists. Land to the north of the 

Buttonwood Embankment is lower in elevation, leaving no close place for this species to 

migrate as these northern lands become inundated before habitats on the Buttonwood 

Embankment. Conservation actions need to be evaluated and implemented for C. 

frustrata. Fairchild Tropical Botanic Garden has stored 4,505 seeds from 42 maternal 

lines of this species in the National Center for Genetic Resources Preservation (NCGRP) 

in Ft. Collins, CO (Goodman et al., 2007). Studies performed at the NCGRP suggest that 

C. frustrata seeds are intermediate between orthodox and recalcitrant (J. Maschinski, 

Fairchild Tropical Botanic Garden, personal communication, Kennedy et al., 2012). 

Studies need to determine if seeds of this species can survive in long-term cryogenic 

storage and whether seed storage is enough, or are other conservation actions, such as ex-

situ storage or assisted migration, required for the protection of this species. 

Upland forest communities changing from press events such as SLR tend to 

change from the inside out—microsites supporting seedling establishment shift, leaving a 

non-regenerating relic community in the overstory with an understory of seedlings and 

saplings from the new community (Williams, Williams, et al., 1999; Saha et al., 2011). 

Pulse disturbances, e.g. hurricanes and storm surges, tend to be the final event 

eliminating the relic adult community (Baldwin and Mendelssohn, 1998; Ross et al., 

2009), allowing saplings from the new community to grow into the overstory. This 
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creates what appears from above to be a rapid transition of a large land area that, in fact, 

occurred more slowly over time (Williams, Williams, et al., 1999). When monitoring 

changes over large landscapes, biologists tend to look for shifts in the edges of plant 

communities to move in one direction or another along the environmental gradient (Ross 

et al., 2000; Pauli et al., 2012; Smith et al., 2013). Monitoring edge shifts in plant 

communities has its value. Being able to discern changes in the landscape community 

matrix helps us understand how large scale environmental stressors are affecting the 

overall health of the landscape. Ross et al. (2000) found shifts northward in the white 

zone (a zone of vegetation appearing white in aerial photographs due to dead plant 

material, salt accumulation, and soil surface wetness) of southeastern ENP associated 

with areas most effected by local drainage and cut off from its former freshwater supply. 

Documenting this information is important and helps inform us on a landscape level of 

changes often associated with anthropogenic disturbance; however, our results and others 

(Williams, Williams, et al., 1999; Ross et al., 2000; Armentano et al., 2006; Spalding and 

Hester, 2007; Saha et al., 2011) show that when monitoring for conservation purposes 

and specific species of concern, assessing movement of forest edge may not be an 

effective strategy. If one waits to see large scale changes in the forest overstory, it may be 

too late for conservation action in the understory—the community and plants of concern 

may have disappeared or significantly diminished in population size long before what 

appears to be one forest type transitions into another. Instead, when the species of 

concern are found in the understory, on-the-ground monitoring of seedling establishment 

may be the best approach for determining when conservation action is needed before the 

understory community changes and species are lost. 
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TABLES 

 

  

Chromolaena 

frustrata 

Conocarpus 

erectus Eugenia foetida Piscidia piscipula Swietenia mahagoni 

Salinity 

(‰) Mean 

Std. 

Error Mean 

Std. 

Error Mean 

Std. 

Error Mean 

Std. 

Error Mean 

Std. 

Error 

0 15.2 0.81 24.2 0.98 13 0.77 17.8 0.92 17.6 0.62 

5 13.6 1.15 19.8 1.38 13.6 1.08 17 1.31 17.2 0.87 

15 8.4 1.15 3.2 1.38 8.6 1.08 9.8 1.31 2.8 0.87 

30 0 - 0.2 1.38 2.6 1.08 0 - 0 - 

45 0 - - - 0 - 0 - 0 - 

 

Table 3.1. Mean seed germination across salinity treatments (0, 5, 15, 30, and 45‰) of five plant species (Chromolaena frustrata, 

Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and Swietenia mahagoni) found along the coast of Everglades National 

Park, Florida, USA. Note: No seeds germinated in 45‰ treatments. 
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Chromolaena 

frustrata 

Conocarpus 

erectus 

Eugenia 

foetida 

Piscidia 

piscipula 

Swietenia 

mahagoni 

All combined 

Z = 4.923;        

df = 14;            

P < 0.001 

Z = -10.934;    

df = 19;             

P < 0.001 

Z = 2.953;  

df = 19;       

P = 0.003 

Z = 6.542;    

df = 14;         

P < 0.001 

Z = 6.475;           

df = 14;                

P < 0.001 

Salinity (‰) P-value P-value P-value P-value P-value 

0 vs 5  0.42 0.16 0.97 0.68 0.98 

0 vs 15 < 0.001 < 0.001 0.01 < 0.001 < 0.001 

0 vs 30 -- < 0.001 < 0.001 -- -- 

5 vs 15 < 0.001 < 0.001 0.002 < 0.001 < 0.001 

5 vs 30 -- < 0.001 < 0.001 -- -- 

15 vs 30  -- 0.03 < 0.001 -- -- 

 

Table 3.2. Generalized linear models and Tukey post hoc tests assessing seed germination across salinity treatments (0, 5, 15, 30, 

and 45‰) of five plant species (Chromolaena frustrata, Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and Swietenia 

mahagoni) found along the coast of Everglades National Park, Florida, USA. Note: No seeds germination at 30‰ in C. frustrata, 

P. piscipula, or S. mahagoni. 
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Chromolaena 

frustrata 

Conocarpus 

erectus Eugenia foetida Piscidia piscipula 

Swietenia 

mahagoni 

Salinity 

(‰) X
2
 P-value X

2
 P-value X

2
 P-value X

2
 P-value X

2
 P-value 

All 

combined  57.33 < 0.001  210.4 < 0.001 93.45 < 0.001 33.67 < 0.001 169.4 < 0.001 

0 vs 5  3.85 0.05 3.98 0.05 0.01 0.94 1.39 0.24  3.62 < 0.001 

0 vs 15 58.92 < 0.001 96.67 < 0.001 19.62 < 0.001 33.28 < 0.001  47.2 < 0.001 

0 vs 30 -- -- 135.2 < 0.001 69.01 < 0.001 -- -- -- -- 

5 vs 15 34.45 < 0.001 69.31 < 0.001 22.51 < 0.001 18.48 < 0.001 18.48 < 0.001 

5 vs 30 -- -- 107.1 < 0.001 75.61 < 0.001 -- -- -- -- 

15 vs 30  -- -- 13.48 < 0.001 23.05 < 0.001 -- -- -- -- 

 

Table 3.3. Log-rank Test and pairwise comparisons looking at time-to-germination across salinity treatments (0, 5, 15, 30, and 

45‰) of five plant species (Chromolaena frustrata, Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and Swietenia 

mahagoni) found along the coast of Everglades National Park, Florida, USA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

125 

 

Chromolaena frustrata Eugenia foetida Swietenia mahagoni 

Salinity (‰) X
2
 P- value X

2
 P- value X

2
 P- value 

All combined 384.9  < 0.001 220.2 < 0.001 497.8 < 0.001 

0 vs 5  79.57  < 0.001 34.36 < 0.001 0 0.99 

0 vs 15  103.4 < 0.001 62.46 < 0.001 19.3 < 0.001 

0 vs 30  105.8 < 0.001 84.38 < 0.001 162.1 < 0.001 

0 vs 45 111.4 < 0.001 97.85 < 0.001 172.1 < 0.001 

5 vs 15  33.16 < 0.001 11.25 < 0.001 19.35 < 0.001 

5 vs 30  87.44 < 0.001 38.15 < 0.001 163 < 0.001 

5 vs 45 137.5 < 0.001 83.18 < 0.001 172.1 < 0.001 

15 vs 30  30.27 < 0.001 17 < 0.001 116.2 < 0.001 

15 vs 45 92.31 < 0.001 65.65 < 0.001 153.1 < 0.001 

 

Table 3.4. Log-rank Test and pairwise comparisons assessing seedling survival across salinity treatments (0, 5, 15, 30, and 45‰) 

of five plant species (Chromolaena frustrata, Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and Swietenia mahagoni) 

found along the coast of Everglades National Park, Florida, USA. Note: Because there was 100% survival in all but one treatment 

on C. erectus and P. piscipula, no analysis was performed. 
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Salinity 

(ppt) 

Chromolaena 

frustrata 

Conocarpus 

erectus 

Eugenia 

foetida 

Piscidia 

piscipula 

Pre-treatment 

All 

combined 

F4,19 = 2.28; p= 

0.10 

F4,20 = 1.49; 

p= 0.24 

F4,20 = 0.26; p= 

0.90 

F4,20 = 1.86; p= 

0.16 

1 week after 

treatment 

All 

combined 

F4,20 = 5.26; p= 

0.004 

F4,20 = 13.99; 

p< 0.001 

F4,20 = 33.96; 

p< 0.001 

F4,20 = 20.05; 

p< 0.001 

Pairwise p- value p- value p- value p- value 

0 vs 5  0.28 0.06 < 0.001 0.001 

0 vs 15  1.00 0.003 < 0.001 < 0.001 

0 vs 30  0.12 < 0.001 < 0.001 < 0.001 

0 vs 45 0.01 < 0.001 < 0.001 < 0.001 

5 vs 15  0.25 0.66 0.16 0.97 

5 vs 30  0.99 0.05 0.02 0.19 

5 vs 45 0.54 0.01 < 0.001 0.02 

15 vs 30  0.10 0.49 0.79 0.46 

15 vs 45 0.01 0.16 0.08 0.05 

30 vs 45 0.82 0.94 0.49 0.72 

1 month after 

treatment 

All 

combined 

F2,11 = 3.16; 

p= 0.08 

F4,20 = 7.58 ; 

p= 0.001 

F4,20 = 13.53; 

p< 0.001 

F4,16 = 10.35; 

p= 0.001 

Pairwise p- value p- value p- value p- value 

0 vs 5  -- 0.54 0.64 0.01 

0 vs 15  -- 0.43 0.002 < 0.001 

0 vs 30  -- 0.24 < 0.001 < 0.001 

0 vs 45 -- 0.03 < 0.001 0.002 

5 vs 15  -- 0.03 0.03 0.77 

5 vs 30  -- 0.98 0.003 0.52 

5 vs 45 -- 0.46 0.004 0.50 

15 vs 30  -- 0.01  0.77 0.99 

15 vs 45 -- < 0.001 0.85 0.94 

30 vs 45 -- 0.80 1.00 1.00 

 

Table 3.5. One-way analysis of variances and Tukey post hoc tests comparing seedling 

stomatal conductance across salinity treatments (0, 5, 15, 30, and 45‰) of four plant 

species (Chromolaena frustrata, Conocarpus erectus, Eugenia foetida, and Piscidia 

piscipula) found along the coast of Everglades National Park, Florida, USA. Note: 

Because there was no significant difference in stomatal conductance across treatments of 

C. frustrata seedlings after one month, no pairwise comparisons were performed. 
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Life Stage Species 0‰ 5‰ 15‰ 30‰ 45‰ 

Seed germination C. frustrata 76 68 38 0 0 

Seedling establishment C. frustrata 88 8 0 0 0 

1 year old plants C. frustrata 98 100 92 80 62 

Seed germination C. erectus 24 20 3 .2 0 

Seedling establishment C. erectus 100 100 100 100 1.5 

1 year old saplings C. erectus 100 100 100 100 -- 

Seed germination E. foetida 65 68 43 13 0 

Seedling establishment E. foetida 78 32 11 0 0 

1 year old saplings E. foetida 100 100 97 92 -- 

Seed germination P. piscipula 89 85 49 0 0 

Seedling establishment P. piscipula 100 100 100 19 -- 

1 year old saplings P. piscipula 100 93 79 70 -- 

Seed germination S. mahagoni 88 86 17 0 0 

Seedling establishment S. mahagoni 98 98 73 0 0 

1 year old saplings S. mahagoni 100 96 93 80 -- 

 

Table 3.6. Comparing probability of seeds germinating and percent survival of seedlings 

and one-year-old plants across treatments (0, 5, 15, 30, and 45‰) of five plant species 

(Chromolaena frustrata, Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and 

Swietenia mahagoni) found along the coast of Everglades National Park, Florida, USA. 

Notes: Data from one-year-old plant survival comes from Saha et al. 2012 except C. 

frustrata (Wendelberger, Florida International Univerisity, unpublished data). Dashed 

lines indicate no studies were performed at that salinity level. 
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FIGURE LEGENDS 

 

Fig. 3.1. Map of Florida, USA with the Everglades National Park boundary denoted in 

black and the study area, Flamingo, ENP, shown by satellite imagery. 

 

Fig. 3.2. Mean seed germination across salinity treatments (0, 5, 15, 30, and 45‰) of five 

plant species (Chromolaena frustrata, Conocarpus erectus, Eugenia foetida, Piscidia 

piscipula, and Swietenia mahagoni) found along the coast of Everglades National Park, 

Florida, USA. Notes: Lettering represents significant (different letter) and non-significant 

(same letter) differences between salinity levels based on results from generalized linear 

models. Error bars represent the standard error. No seeds germinated in 45‰ treatments; 

only C. erectus and E. foetida showed germination in 30‰ treatments.  

 

Fig. 3.3. Kaplan-meier survival plots assessing the probability of a population of seeds 

germinating over time across salinity treatments (0, 5, 15, 30, and 45‰) of five plant 

species ((A) Chromolaena frustrata, (B) Conocarpus erectus, (C) Eugenia foetida, (D) 

Piscidia piscipula, and (E) Swietenia mahagoni) found along the coast of Everglades 

National Park, Florida, USA. 

 

Fig. 3.4. Kaplan-meier survival plots assessing the probability a population of seedlings 

surviving over time across salinity treatments (0, 5, 15, 30, and 45‰) of five plant 

species ((A) Chromolaena frustrata, (B) Conocarpus erectus, (C) Eugenia foetida, (D) 

Piscidia piscipula, and (E) Swietenia mahagoni) found along the coast of Everglades 

National Park, Florida, USA.  

 

Fig. 3.5. Mean growth and morphological responses across salinity treatments (0, 5, 15, 

30, and 45‰) of Chromolaena frustrata seedlings. Notes: Lettering symbolizes 

significant (different letter) and non-significant (same letter) differences between salinity 

levels based on results from linear mixed-effects models. Error bars represent the 

standard error. 

 

Fig. 3.6. Mean growth and morphological responses across salinity treatments (0, 5, 15, 

30, and 45‰) of Conocarpus erectus seedlings. Notes: Lettering symbolizes significant 

(different letter) and non-significant (same letter) differences between salinity levels 

based on results from linear mixed-effects models. Error bars represent the standard error.  

 

Fig. 3.7. Mean growth and morphological responses across salinity treatments (0, 5, 15, 

30, and 45‰) of Eugenia foetida seedlings. Notes: Lettering symbolizes significant 

(different letter) and non-significant (same letter) differences between salinity levels 

based on results from linear mixed-effects models. Error bars represent the standard error.  

 

Fig. 3.8. Mean growth and morphological responses across salinity treatments (0, 5, 15, 

30, and 45‰) of Piscidia piscipula seedlings. Notes: Lettering symbolizes significant 

(different letter) and non-significant (same letter) differences between salinity levels 

based on results from linear mixed-effects models. Error bars represent the standard error. 
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Fig. 3.9. Mean growth and morphological responses across salinity treatments (0, 5, 15, 

30, and 45‰) of Swietenia mahagoni seedlings. Notes: Lettering symbolizes significant 

(different letter) and non-significant (same letter) differences between salinity levels 

based on results from linear mixed-effects models. Error bars represent the standard error. 

 

Fig. 3.10. Mean stomatal conductance responses across salinity treatments (0, 5, 15, 30, 

and 45‰) of five plant species (Chromolaena frustrata, Conocarpus erectus, Eugenia 

foetida, Piscidia piscipula, and Swietenia mahagoni) found along the coast of Everglades 

National Park, Florida, USA. Notes: Lettering symbolizes significant (different letter) 

and non-significant (same letter) differences between salinity levels at each monitoring 

event (initial, 1 week, 1 month) based on results from linear mixed-effects models. Error 

bars represent the standard error. No C. frustrata seedlings planted in 30 or 45‰ soils 

survived to one month. 
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FIGURES 

Figure 3.1. Map of Florida, USA with the Everglades National Park boundary denoted in black and the study area, Flamingo, ENP, 

shown by satellite imagery. 
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Figure 3.2. Mean seed germination across salinity treatments (0, 5, 15, 30, and 45‰) of five plant species (Chromolaena frustrata, 

Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and Swietenia mahagoni) found along the coast of Everglades National 

Park, Florida, USA. 
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Figure 3.3. Kaplan-meier survival plots assessing the probability of a population of seeds germinating over time across salinity 

treatments (0, 5, 15, 30, and 45‰) of five plant species ((A) Chromolaena frustrata, (B) Conocarpus erectus, (C) Eugenia foetida, 

(D) Piscidia piscipula, and (E) Swietenia mahagoni) found along the coast of Everglades National Park, Florida, USA. 
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Figure 3.4. Kaplan-meier survival plots assessing the probability a population of seedlings surviving over time across salinity 

treatments (0, 5, 15, 30, and 45‰) of five plant species ((A) Chromolaena frustrata, (B) Conocarpus erectus, (C) Eugenia foetida, 

(D) Piscidia piscipula, and (E) Swietenia mahagoni) found along the coast of Everglades National Park, Florida, USA. 
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Figure 3.5. Mean growth and morphological responses across salinity treatments (0, 5, 15, 30, and 45‰) of Chromolaena frustrata 

seedlings. Notes: Lettering symbolizes significant (different letter) and non-significant (same letter) differences between salinity 

levels based on results from linear mixed-effects models. Error bars represent the standard error. 
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Figure 3.6. Mean growth and morphological responses across salinity treatments (0, 5, 15, 30, and 45‰) of Conocarpus erectus 

seedlings. Notes: Lettering symbolizes significant (different letter) and non-significant (same letter) differences between salinity 

levels based on results from linear mixed-effects models. Error bars represent the standard error. 
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Figure 3.7. Mean growth and morphological responses across salinity treatments (0, 5, 15, 30, and 45‰) of Eugenia foetida 

seedlings. Notes: Lettering symbolizes significant (different letter) and non-significant (same letter) differences between salinity 

levels based on results from linear mixed-effects models. Error bars represent the standard error. 
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Figure 3.8. Mean growth and morphological responses across salinity treatments (0, 5, 15, 30, and 45‰) of Piscidia piscipula 

seedlings. Notes: Lettering symbolizes significant (different letter) and non-significant (same letter) differences between salinity 

levels based on results from linear mixed-effects models. Error bars represent the standard error. 
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Figure 3.9. Mean growth and morphological responses across salinity treatments (0, 5, 15, 30, and 45‰) of Swietenia mahagoni 

seedlings. Notes: Lettering symbolizes significant (different letter) and non-significant (same letter) differences between salinity 

levels based on results from linear mixed-effects models. Error bars represent the standard error. 
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Figure 3.10. Mean stomatal conductance responses across salinity treatments (0, 5, 15, 30, and 45‰) of five plant species 

(Chromolaena frustrata, Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and Swietenia mahagoni) found along the coast 

of Everglades National Park, Florida, USA. Notes: Lettering symbolizes significant (different letter) and non-significant (same 

letter) differences between salinity levels at each monitoring event (initial, 1 week, 1 month) based on results from linear mixed-

effects models. Error bars represent the standard error. No C. frustrata seedlings planted in 30 or 45‰ soils survived to one month. 
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APPENDICES 

 

Appendix I. Seed collection and germination study data for seed germination experiments of five plant species (Chromolaena 

frustrata, Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and Swietenia mahagoni) found along the coast of Everglades 

National Park, Florida, USA. 

 

Species 

Date 

Collected Season Study Initiation Date Study Termination Date 

Chromolaena frustrata April-11 Dry December 2, 2011 January 23, 2012 

Conocarpus erectus January-12 Dry April 16, 2012 January 11, 2013 

Eugenia foetida January-13 Dry February 15, 2013 April 12, 2013 

Piscidia piscipula October-12 Wet January 17, 2013 February 22, 2013 

Swietenia mahagoni March-11 Dry December 2, 2011 February 8, 2012 
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Appendix II. Seedling establishment study dates, average greenhouse temperatures, and daylight hours for five plant species 

(Chromolaena frustrata, Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and Swietenia mahagoni) found along the coast 

of Everglades National Park, Florida, USA. 

 

Species 

Study Initiation 

Date 

Study Termination 

Date Temperature 
°
C 

Average Day 

Length 

Chromolaena frustrata April 13, 2012 July 7, 2012 

Average: high 42 

Average : low 23 

Max high: 46 

Max low: 16 13 hours 11 min 

Conocarpus erectus August 22, 2011 December 5, 2011 

Average: high 42 

Average : low 23 

Max high: 46 

Max low: 13 11 hours 44 min 

Eugenia foetida October 2, 2012 April 19, 2013 

Average: high 39 

Average : low 19 

Max high: 45 

Max low: 7 12 hours 22 min 

Piscidia piscipula March 22, 2013 June 28, 2013 

Average: high 42 

Average : low 22 

Max high: 46 

Max low: 8 12 hours 57 min  

Swietenia mahagoni July 29, 2011 December 31, 2011 

Average: high 42.2 

Average : low 23 

Max high: 47 

Max low: 13 11 hours 58 min 



 

142 

Appendix III. Stomatal conductance experiment data of five plant species (Chromolaena frustrata, Conocarpus erectus, Eugenia 

foetida, Piscidia piscipula, and Swietenia mahagoni) found along the coast of Everglades National Park, Florida, USA. 

 

Species 

Study 

Initiation Date 1 week 1 month Time Seedling Age 

Chromolaena frustrata May 8, 2013 May 17, 2013 June 17, 2013 10:30-1:00 pm 3 month 

Conocarpus erectus June 15, 2012 June 21, 2012 July 21, 2012   2 month 

Eugenia foetida May 10, 2013 May 23, 2013 17-Jun-13 11:00-1:00 pm 7 month 

Piscidia piscipula March 3, 2013 March 27, 2013 May 6, 2013 11:00 - 1:00 pm 2 month 

 

 



143 

Appendix IV. Linear mixed effects models and Tukey pairwise comparisons looking at growth under five salinity treatments (0, 5, 

15, 30, and 45‰) of five plant species (Chromolaena frustrata, Conocarpus erectus, Eugenia foetida, Piscidia piscipula, and 

Swietenia mahagoni) found along the coast of Everglades National Park, Florida, USA. Notes: C. erectus only developed one leaf 

above the cotyledons at 45‰, therefore, no measurement was taken for internode length for this species. Eugenia foetida showed 

no difference in root length across treatments, therefore, no pairwise comparisons were performed. No P. piscipula seedlings were 

grown in 45‰ soils. 

 

 

Salinity 

(‰) 

Height 

(cm) 

Root 

length 

(cm) 

Shoot 

biomass 

(g) 

Root 

biomass 

(g) 

Shoot: 

Root 

Most 

recently 

mature 

leaf 

position 

Internode 

length 

below most 

mature leaf 

(mm) 

Area of 

most 

mature 

leaf 

(cm
2
) 

Number 

of leaves 

at time of 

harvest 

Total 

number of 

leave 

produced 

C
h

ro
m

o
la

en
a

 f
ru

st
ra

ta
 

All 

combined 

F4,15 = 

68.86                                     

p < 0.001 

F4,15 = 

22.77   

p < 0.001 

F4,15 = 

41.56   

p < 0.001 

F4,15 = 

111.68   

p < 0.001 

F4,15 = 

14.08   

p < 0.001 

F4,15 = 

28.01          

p < 0.001 

F4,15 = 56.15            

p < 0.001 

F4,15 = 

193.82        

p < 0.001 

F4,15 = 

25.51  

p < 0.001 

F4,15 = 

22.77   

p < 0.001 

Pairwise p- value p- value p- value p- value p- value p- value p- value p- value p- value p- value 

0 vs 5  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

0 vs 15  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

0 vs 30  < 0.001 < 0.001 < 0.001 < 0.001  0.003 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

0 vs 45 < 0.001 < 0.001 < 0.001 < 0.001 0.21 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

5 vs 15  0.01 0.71 0.18 0.87  0.04 0.12 0.002 < 0.001 0.07 0.15 

5 vs 30  0.001 0.92 0.14 0.86  0.003 0.06 < 0.001 < 0.001 0.02 0.06 

5 vs 45 < 0.001 0.93 0.13 0.86 < 0.001 0.05 < 0.001 < 0.001 0.02 0.05 

15 vs 30  0.95 0.99 1.0 1.0 0.94 1.0 0.95 0.03 0.99 1.0 

15 vs 45 0.93 0.99 1.0 1.0 0.16 1.0 0.91 0.004 0.99 1.0 

30 vs 45 1.0 1.0 1.0 1.0 0.58 1.0 1.0 1.0 1.0 1.0 

C
o

n
o

ca
rp

u
s 

er
ec

tu
s 

All 

combined 

F4,15 = 

33.69    

p < 0.001 

F4,15 = 

22.77   

p < 0.001 

F4,15 = 

15.91   

p < 0.001 

F4,15 = 

15.78   

p < 0.001 

F4,15 = 

26.50   

p < 0.001 

F4,15 = 

28.01   

p < 0.001 

F3,12  = 

11.43  

 p < 0.001 

F4,15 = 

7.38   

p = 0.002 

F4,15 = 

59.77   

p < 0.001 

F4,15 = 

59.77   

p < 0.001 

Pairwise p- value p- value p- value p- value p- value p- value p- value p- value p- value p- value 

0 vs 5  0.59 0.44 0.96 < 0.001 0.9 0.04 0.97 0.49 0.05  0.05 

0 vs 15  < 0.001 < 0.001 < 0.001 < 0.001 0.55 < 0.001 0.76 003 < 0.001 < 0.001 

0 vs 30  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001 < 0.001 
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0 vs 45 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 -- < 0.001 < 0.001 < 0.001 

5 vs 15  < 0.001 < 0.001  0.002 0.31 0.97 < 0.001 0.49 0.25 < 0.001 < 0.001 

5 vs 30  < 0.001 < 0.001 < 0.001 0.04 < 0.001 < 0.001 < 0.001 0.17 < 0.001 < 0.001 

5 vs 45 < 0.001 < 0.001 < 0.001 0.02 < 0.001 < 0.001 --  0.01 < 0.001 < 0.001 

15 vs 30  0.06 < 0.001 0.97 0.91 < 0.001 0.69 < 0.001 1.0 0.95 0.95 

15 vs 45 < 0.001 < 0.001 0.18 0.8 0.001  0.04 -- 0.68 < 0.001 < 0.001 

30 vs 45 0.48 0.43 0.5 1.0  0.006 0.53 -- 0.79 < 0.001 < 0.001 

E
u

g
en

ia
 f

o
et

id
a

 

All 

combined 

F4,15 = 

8.39   

p < 0.001 

F4,15 = 

1.30   

p = 0.32 

F4,15 = 

15.84   

p < 0.001 

F4,15 = 

7.87   

p = 0.001 

F4,15 = 

8.12   

p = 0.001 

F4,15 = 

15.79   

p < 0.001 

F4,15 = 3.07   

p = 0.05 

F4,15 = 

16.01   

p < 0.001 

F4,15 = 

17.79   

p < 0.001 

F4,15 = 

17.51   

p < 0.001 

Pairwise p- value p- value p- value p- value p- value p- value p- value p- value p- value p- value 

0 vs 5  < 0.001 -- < 0.001 < 0.001 0.83 < 0.001 0.09 < 0.001 < 0.001 < 0.001 

0 vs 15  < 0.001 -- < 0.001 < 0.001 0.06 < 0.001 0.46 < 0.001 < 0.001 < 0.001 

0 vs 30  0.005 -- < 0.001 < 0.001 < 0.001 < 0.001 0.007 < 0.001 < 0.001 < 0.001 

0 vs 45 < 0.001 -- < 0.001 < 0.001 < 0.001 < 0.001 0.15 < 0.001 < 0.001 < 0.001 

5 vs 15  1.0 -- 0.99 0.95 0.5 0.54 0.92 0.68 1.0 0.52 

5 vs 30  0.87 -- 0.92 1.0 0.009 0.16 0.91 0.94 0.96 0.03  

5 vs 45 0.91 -- 0.91 0.98 0.002 0.17 1.0 0.45 0.98 0.03  

15 vs 30  0.9 -- 1.0 0.97 0.44 0.95 0.43 0.98 0.86 0.67 

15 vs 45 0.88 -- 1.0 1.0 0.23 0.96 0.97 1.0 0.92 0.67 

30 vs 45 0.35 -- 1.0 0.99 1.0 1.0 0.81 0.89 1.0 1.0 

P
is

ci
d

ia
 p

is
ci

p
u

la
 

All 

combined 

F3,8= 

83.73   

p < 0.001 

F3,8=  9.76   

p = 0.005 

F3,8= 78.55   

p < 0.001 

F3,8= 

95.68   

p < 0.001 

F3,8=  

5.50   

p = 0.024 

F3,8= 

87.03   

p < 0.001 

F3,8= 108.74   

p < 0.001 

F3,8= 

115.31   

p < 0.001 

F3,8 = 

10.38   

p = 0.004  

F3,8= 

85.73   

p < 0.001 

Pairwise p- value p- value p- value p- value p- value p- value p- value p- value p- value p- value 

0 vs 5  < 0.001 0.002 < 0.001 < 0.001 0.02 0.99 < 0.001 < 0.001 0.86 0.97 

0 vs 15  < 0.001 < 0.001 < 0.001 < 0.001 0.90 < 0.001 < 0.001 < 0.001 0.18 < 0.001 

0 vs 30  < 0.001 < 0.001 < 0.001 < 0.001 0.16 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

5 vs 15  < 0.001 0.98 < 0.001 < 0.001 0.002 < 0.001 0.002 < 0.001 0.03 < 0.001 

5 vs 30  < 0.001 0.39 < 0.001 < 0.001 0.90 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

15 vs 30  0.82 0.65 0.86 0.65 0.03 < 0.001 0.97 0.90 0.07 < 0.001 
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S
w

ie
te
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ia

 m
a

h
a

g
o

n
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All 

combined 

F4,15 = 

85.29   

p < 0.001 

F4,15 = 

31.99  

p < 0.001 

F4,15 = 

147.11   

p < 0.001 

F4,15 = 

162.66   

p < 0.001 

F4,15 = 

3.89    

p = 0.02 

F4,15 = 

55.83   

p < 0.001 

F4,15 = 11.93   

p < 0.001 

F4,15 = 

14.93   

p < 0.001 

F4,15 = 

70.59   

p < 0.001 

F4,15 = 

81.26   

p < 0.001 

Pairwise p- value p- value p- value p- value p- value p- value p- value p- value p- value p- value 

0 vs 5  1.0 0.8 0.8 0.95 0.29 0.94 0.76 0.89 0.69 0.97 

0 vs 15  < 0.001  0.002 < 0.001 < 0.001 0.34 < 0.001 < 0.001 < 0.001 0.97 0.009 

0 vs 30  < 0.001 < 0.001 < 0.001 < 0.001 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

0 vs 45 < 0.001 < 0.001 < 0.001 < 0.001 0.009 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

5 vs 15  < 0.001 < 0.001 < 0.001 < 0.001 1.0 < 0.001 < 0.001 0.01 0.29 0.06 

5 vs 30  < 0.001 < 0.001 < 0.001 < 0.001 0.54 < 0.001 0.003 < 0.001 < 0.001 < 0.001 

5 vs 45 < 0.001 < 0.001 < 0.001 < 0.001 0.65 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

15 vs 30  < 0.001  0.002 < 0.001 < 0.001 0.47 < 0.001 1.0 0.32 < 0.001 < 0.001 

15 vs 45 < 0.001  0.001 < 0.001 < 0.001 0.59 < 0.001 1.0 0.61 < 0.001 < 0.001 

30 vs 45 0.99 1.0 1.0 1.0 1.0 0.98 0.99 0.99 0.52 0.83 
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

Increasing sea levels and anthropogenic alterations together are resulting in a 

change or complete loss of coastal plant communities around the world (Nicholls and 

Cazenave, 2010; Terry and Chui, 2012; Kirwan and Megonigal, 2013). Shifts in plant 

communities from less salt- and lower inundation-tolerant to more salt- and higher 

inundation-tolerant community types or to open water have been documented (Ross et al., 

1994; Kearney et al., 2002; Kirwan et al., 2008; Saha et al., 2011; Sharpe and Baldwin, 

2012; Terry and Chui, 2012). Florida has the shallowest water table in the continental 

US, its coastal communities are distributed across a gradient that is 0-2m above mean sea 

level (Hoffmeister, 1974), and it has undergone significant ecosystem drying as a result 

of anthropogenic changes (Davis et al., 2005). Ecosystem drying and/or hydrologic 

restoration and SLR effects are interacting most prominently in Florida’s coastal areas, 

impacting its coastal plant communities.  

Rare species richness tends to be negatively correlated with salinity in coastal 

habitats (Saha et al., 2011). Everglades National Park, which has a significant coastal 

extent, harbors 43 critically imperiled species as defined by Gann et al. (2002); 21 of 

these are threatened by SLR, including one federally endangered species, Chromolaena 

frustrata (Saha et al., 2011). To form a realistic conservation action strategy in the face of 

large-scale environmental change, land managers need to prioritize species under greatest 

extinction threat. Understanding how and in what direction the system is changing will 
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help land managers decide how to allocate resources and funding for the preservation of 

the greatest amount of biodiversity. I addressed this need in Chapters I-III. 

Chapter I provided evidence that lowland plant communities along the coast of 

south Florida have moved up the elevation gradient, transitioning from less salt- and 

inundation-tolerant to more salt- and inundation- tolerant communities between 1978 and 

2011. More than half of the area covered by white mangrove forest in 1978 transitioned 

into black and red mangrove forest by 2011. Halophyte prairie decreased transitioning 

into more inundation-loving black mangrove forest. Black and red mangrove forests 

increased. Additionally, the two highest elevation communities—tropical hardwood 

hammock and buttonwood forest—and those harboring the most rare species decreased; 

white mangrove forest replaced buttonwood forest and buttonwood forest replaced 

tropical hardwood hammocks. The direction of change we found suggests the site became 

saltier and wetter during the 33 year study period. 

In Chapter II, I looked at how competitive ability of halophytes may be playing a 

role in the transitions found in Chapter I between halophytic and glycophytic 

communities. I showed that halophytes create a positive feedback, increasing soil salinity 

throughout the soil column, thus making it more conducive to halophyte establishment in 

increasingly saline soils. Pots with all halophytes showed significantly higher soil salinity 

than pots with only glycophytes regardless of species or location within the soil strata. 

Interestingly, increases in soil salinity were not directly from higher transpiration rates of 

halophytes. Instead, either osmotic or ionic stress caused a decrease in glycophyte 

biomass and leaf area resulting in overall less plant transpiration. As halophytes invade a 

glycophytic community, soil salinity levels may become too high to support glycophyte 
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survival and establishment, resulting in a turnover in plant communities from less salt 

tolerant to more salt tolerant community types (e.g. Ross et al., 1994; Saha et al., 2011; 

Chapter I this dissertation). The process of increasing soil salinity via increasing 

halophyte density in glycophytic communities brings a biological component to SLR- 

related coastal plant community shifts. This study suggests that changes may occur faster 

than would be predicted from SLR alone negatively impacting rare plants in the area 

sooner than later. 

A species’ vulnerabilities to environmental stressors are contingent on life stage 

(Parker et al., 1955; Williams et al., 1998; Chartzoulakis and Klapaki, 2000; Schiffers 

and Tielbörger, 2006). High salinity levels tend to impact juvenile or regenerative life 

stages more than adult stages (Perry and Williams, 1996). To preserve the most 

biodiversity possible before large-scale plant community turnover occurs, on-the-ground 

plot-based monitoring for change is essential. Understanding which life stage is most 

vulnerable to salinity stress can help land managers monitor for on-the-ground changes in 

a way that is detectable before large-scale community turnover occurs. Chapter III 

addresses these monitoring needs with species found in the rare plant-harboring 

buttonwood and tropical hardwood hammock communities. 

In Chapter III, I showed that seedling establishment is the life stage most sensitive 

to increasing salinity levels in the five species we studied and can be used as an indicator 

to change in on-the-ground surveys. Seed germination responded similarly to increased 

salinity in all five coastal, upland species—decreasing with increased salinity—while 

seedling establishment showed disparate responses across salinity treatments and 

between species. In addition to our work, Saha et al. (2011, 2015); Wendelberger 
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unpublished data examined the same species, respectively, looking at salinity effects (0, 

5, 15, and 30‰ soil salinity) on one-year-old plants, one-year-old Chromolaena 

frustrata, and isotopic signatures (
18

O and 
2
H) of in-situ adults assessing where in the 

soil column and salinity of the water they uptake at the study site (S. mahagoni adults 

were not examined). Three of the five study species (C. frustrata, E. foetida, and S. 

mahagoni) showed lower percent seedling survival at the higher salinity levels than one-

year-old plants of the same species grown in equivalent soil salinities (Saha et al., 2015; 

Wendelberger unpublished data). Our results and that of others (Williams, Williams, et 

al., 1999; Ross et al., 2000; Saha et al., 2011) show that plant community change will 

first be seen in the understory as a change in species composition of seedlings in the area. 

Additionally, our results corroborate those of Saha et al. (2011, 2015) regarding 

the conservation of the federally endangered C. frustrata. The majority of this species’ 

population is found in the buttonwood forest understory (Gann et al., 2002; USFWS, 

2012; Saha et al., 2015). Buttonwood forests have decreased in cover in our study area 

since 1978. There was a marked decline in C. frustrata stomatal conductance across all 

treatments, including the control, between the pre-treatment and one week measurements. 

Flooding is known to result in a decline in photosynthetic rates in flood sensitive species 

(Pezeshki et al., 1990); perhaps constant inundation during the seedling establishment 

experiments acted as a covariate with salinity reducing growth and survival while 

freshwater control seedlings were able to survive and grow without the combined stress 

of salt. As the groundwater levels rise with rising sea levels, inundation depth, duration, 

and salinity level will also increase, suggesting that even in times when salinity levels are 
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low enough for germination, C. frustrata seedlings may not be able to establish with the 

added stress of increased inundation. 

Conservation actions need to be evaluated and implemented for C. frustrata. 

Studies performed at the National Center for Genetic Resources Preservation suggest that 

C. frustrata seeds are intermediate between orthodox and recalcitrant (J. Maschinski, 

Fairchild Tropical Botanic Garden, personal communication, Kennedy et al., 2012). 

Studies need to determine if seeds of this species can survive in long-term cryogenic 

storage and whether seed storage is enough, or are other conservation actions, such as ex 

situ storage or assisted migration, required for the protection of this species. 

A diverse coastal plant community matrix is critical to the health of the greater 

community, both human and natural alike (Odum, 1988; Davis et al., 2005; Alongi, 2008; 

Langley et al., 2009; McLeod et al., 2011) and a hotspot for sequestering CO2 at high 

rates, helping to decrease climate change (Barr et al., 2010; McLeod et al., 2011). If the 

decreases in upland communities seen between 1978 and 2011 continue, there will be a 

homogenization of communities along the coast of ENP. Tropical hardwood hammocks 

and buttonwood forests will disappear along with the rare species they harbor.  

Creating a healthy Everglades ecosystem through increased freshwater flow would 

eliminate one of two major stressors driving the vegetative changes that have been seen 

throughout the Florida coast. Therefore, restoring the hydrologic regime of the 

Everglades ecosystem is critical, if we want to preserve biodiversity and ecosystem 

integrity.
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