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ABSTRACT OF THE THESIS 

DNA APTAMER CONFIRMATION AND UTILIZATION FOR THE CYANOTOXIN, 

CYLINDROSPERMOPSIN 

by 

Diane M. Catlin 

Florida International University, 2016 

Miami, Florida 

Professor John Berry, Major Professor 

  Cyanotoxins are posing an increasing threat to the health of humans and 

wildlife.  Cylindrospermopsin is a cyanotoxin that occurs in warm climates and is 

harmful when ingested.  The toxic effects of CYN can affect multiple organ systems.  

The effects, coupled with the evidence of a mass contamination of a water supply in 

Australia, prove that CYN needs to be investigated further.   

Aptamers have become a desirable method for detection of CYN as a result of an 

aptamer’s high specificity and the ability to scale up experiments.  Aptamers have been 

designed to bind with a variety of targets, including cyanotoxins.   An aptamer for CYN 

was identified by Elshafey et al. 

This study aims to confirm the binding of the aptamer to CYN and the selectivity 

of the aptamer using fluorescent biosensing and circular dichroism.  Aptamer affinity 

capture was used to investigate the possibility of a real world application of the aptamer. 
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1. Introduction 

1.1 Cyanobacteria 

Cyanobacteria are prokaryotic organisms that synthesize chlorophyll a through 

photosynthesis.  Most of these organisms are aquatic, using water as the electron donor 

for oxygen production.  Though aquatic in nature, cyanobacteria exist in a wide range of 

environments.  Cyanobacteria thrive particularly in warmer environments and can 

withstand high salt concentrations.  Ultra-violet (UV) conditions vary greatly in 

environments inhabited by cyanobacteria.  These organisms can utilize UV light even in 

low light density conditions which makes cyanobacteria resilient organisms [1].   

Cyanobacteria are often called “blue-green algae” because of their production of 

blue pigments [1].  Blue-green algae can form in blooms in aquatic environments, 

forming a covering over bodies of water.  The algal blooms can affect the environments 

below the blooms and main water supplies by decreasing the amount of sunlight that can 

reach photosynthetic species below the surface.  The amount of dissolved oxygen in the 

water decreases because the bloom does not allow for a flow of oxygen from the surface.  

The blooms can hinder the filtering and purification of water that is used to supply homes 

and businesses.  Another issue these bloom-forming species of cyanobacteria pose is that 

many of them are considered to be toxin producing.  These species produce 

cyanobacterial toxins that can be harmful to the environment and other species including 

humans through the food chains and biomagnification [2]. 
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1.1.1 Cyanobacterial Toxins 

Cyanobacterial toxins or cyanotoxins are an increasing problem in aquatic 

environments.  Cyanotoxins are produced by cyanobacteria and can be released in to the 

water systems where there is presence of blue-green algae.  There are 40 different species 

of cyanobacteria that are believed to produce some form of cyanotoxin.  These toxins are 

categorized in to four groups.  The four groups are: hepatotoxins, neurotoxins, endotoxins 

and general cytotoxins.  The general cytotoxins do not have a targeted system as the other 

groups do.  The general cytotoxins can affect one or multiple organs making it more 

difficult to treat an exposure [2] .  

Cyanotoxins not only affect freshwater and marine organisms, they also pose a 

risk to humans. These toxins reach humans through contamination of drinking water or 

where humans come into contact with water such as lakes and oceans [3-5].  Water 

sources are an optimal source for algal bloom growth as a result of pollution from 

pharmaceuticals and fertilizers.  The pollution proves an abundance of nutrients that 

support algal blooms.  Cyanotoxins can persist in water even after the bloom has died off.  

The persistence results in bioaccumulation which can lead to biomagnification [6].  

Biomagnification is the process of toxins being transferred in increasing concentrations 

from organisms lower on the food chain to an organism higher on the food chain.  

Animals can have high concentrations of toxins in their system from ingesting their food 

source.  Animals can also become exposed to these toxins by their water intake.  Animals 

drink from water sources that are untreated and unfiltered.  Humans are less likely to 

become exposed to cyanotoxins through their water supply if they have access to filtered 
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and treated drinking water but contaminated water sources that are used for recreational 

purposes such as lakes and oceans can lead to exposure. [2]   

Contamination of water supplies had caused a growing need for the improvement 

of detection methods for toxins [6].  Since the toxins can have toxicity levels detrimental 

to human health, it is important to determine the quality of the water being used by both 

humans and wildlife.  Detection of cyanotoxins has been performed using a multitude of 

methods.  High performance liquid chromatography (HPLC), liquid chromatography-

mass spectrometry (LCMS), mouse bioassay, protein phosphatase bioassay, and enzyme-

linked immunosorbent assay (ELISA) have all been used to detect cyanotoxins.  These 

methods have often been used as a tool in determining safe drinking levels of toxins in 

water [7].  

1.2 Cylindrospermopsin 

The toxin investigated in this work was cylindrospermopsin (CYN).  

Cylindrospermopsin is a cyanotoxin produced by multiple species of cyanobacteria.    

The toxin is an alkaloid with a cyclic guanidine group.  CYN is a water soluble molecule 

making it easy to contaminate water systems.   

 

 

                                       

Figure 1.  Cylindrospermopsin structure [8] 
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It was first reported as having toxic effects in a study done in Australia in the 

1980s.  Hundreds of children were brought to hospitals in Australia with gastrointestinal 

symptoms.  These symptoms were linked to blooms of Cylindrospermopsis raciborskii in 

the water supply. The incident was the first to show that CYN can affect human health 

[9].  Cylindrospermopsin is known to affect the liver, heart, gastrointestinal tract and has 

also been studied as having genotoxic effects [10].  It acts as a protein synthesis inhibitor 

but the mechanism is unknown.  The protein synthesis inhibition causes many of the 

symptoms of this toxin [11-13].  Cylindrospermopsin has been reported in areas all over 

the world with evidence of algal blooms in those areas [14-15].  The abundance of the 

algal blooms and the toxic effects are what make CYN an important topic of research. 

  High performance liquid chromatography (HPLC) and liquid-chromatography 

mass-spectrometry ((HP)LC-MS) have been the primary methods utilized for CYN 

detection.  HPLC and (HP)LC-MS have allowed for accurate detection but there is 

difficulty distinguishing between chiral molecules and molecules with similar masses. 

[16]   The instruments required for these analyses are expensive and require a high level 

of sample purity.  [16-17] Enzyme-linked immunosorbent assay, ELISA, has been used 

in the analysis of CYN but is also an expensive analytical tool [18].  The ELISA method 

uses antibodies to detect and quantify the presence of CYN.  Antibodies have both 

advantages and disadvantages to their use as seen in Table 1.  Aptamers are a new and 

emerging technique that address the disadvantages of antibodies and provide an 

inexpensive alternative. 
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Table 1. Advantages and Disadvantages of Antibodies in Detecting Target Molecules 

[19] 

Advantages Disadvantages 

- Pharmacokinetic and other systemic 

properties of antibodies are often 

sufficient to support product 

development 

- Large size prevents renal filtration 

and together with binding to neonatal 

Fc receptors can give extended 

circulating half-lives 

- Not susceptible to nuclease 

degradation 

- Antibody technologies are widely 

distributed because the early 

intellectual property either never 

existed or has expired 

- Antibodies are produced biologically in a 

process that is difficult to scale up without 

affecting product characteristics -Viral or 

bacterial contamination of manufacturing 

process can affect product quality 

- Often immunogenic  

- Large size limits bioavailability or 

prevents access to many biological 

compartments  

- Limited ability to utilize negative selection 

pressure or to select against cell-surface 

targets not available in functional 

recombinant form 

- Susceptible to irreversible denaturation; 

limited shelf life 

- Chemistries required for the attachment of 

conjugation partners are stochastic and lead 

to product mixtures and reduced activity 

 

1.3 DNA Aptamers 

 An aptamer is a strand of nucleic acids that when folded into its three-dimensional 

structure binds to a target molecule.  The use of an aptamer in an analytical method to test 

biological samples not only allows for detection of the toxin, but also for accurate 

quantification [20-21].  The use of aptamers has advantages over other analytical 

methods such as ELISA.  Aptamers, as nucleic acids, are more chemically stable than 

antibodies with comparable specificity.  They can be selected for different types of 

molecules such as toxins and proteins and can also be produced in large quantities with 
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high purity [22-24].  These advantages make aptamers an attractive addition to analytical 

methods of analysis.  Aptamer-based methods, like any analytical method, do have 

disadvantages (Table 2), but the disadvantages can be addressed to maximize the 

effectiveness of the aptamers.   

Table 2.  Advantages and Disadvantages of Aptamers in Detecting Target Molecules [19] 

Advantages Disadvantages 

- Aptamers are produced chemically in 

a readily scalable process 

- Chemical production process is not 

prone to viral or bacterial 

contamination 

- Non-immunogenic 

- Smaller size allows more efficient 

entry into biological compartments 

- Able to select for and against 

specific targets and to select against 

cell-surface targets 

- Can usually be reversibly denatured, 

and phosphodiester bond is extremely 

chemically stable 

- Conjugation chemistries for the 

attachment of dyes or functional 

groups are orthogonal and can be 

readily introduced during synthesis 

- Pharmacokinetic and other systemic 

properties are variable and often hard to 

predict 

- Small size makes them susceptible to renal 

filtration and they therefore have a shorter 

half-life 

- Unmodified aptamers are highly susceptible 

to serum degradation 

- Aptamer technologies are currently largely 

covered by a single intellectual property 

portfolio 

 

Aptamers can be identified for specific targets using a method called systematic 

evolution of ligands by exponential enrichment (SELEX).  The method was developed in 

1990.  The SELEX method uses multiple steps to identify aptamer candidates for the 

selected target.  An oligonucleotide library is used to find multiple candidates that bind to 

the target. [25] Typically, the library consists of nucleic acid molecules ranging from 60-

mers to 96-mers with random sequences and constant primer sequences [26].  The library 
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is mixed with an immobilized target, and unbound oligonucleotides are removed.  The 

bound oligonucleotides are the aptamer candidates.  The candidates are removed from the 

target and amplified using PCR.  These steps are repeated multiple times to identify a 

candidate.  The aptamer is sequenced so that it can be synthesized for use.  Once an 

aptamer is sequenced, it can be reproduced in large quantities [25, 27]. 

The SELEX method has been adapted to work with a wide variety of molecules 

making it very useful in areas where other methods, such as using antibodies, are not an 

option.  Improved variations of the SELEX method allows for discrimination between the 

most strongly bound aptamers, and more weakly bound candidates, that would not be 

effective for the target.  SELEX variations include signaling aptamers which change 

structure and produce a signal when bound to the target, and negative SELEX which 

removes aptamers that bind to similar molecules first, leaving a smaller, more specific 

oligonucleotide pool to select from [25,28,29]. 

With small molecules like CYN, there are challenges to identifying an aptamer.  

SELEX requires the immobilization of the target.  Small molecules have inherently less 

functional groups than large molecules.  These functional groups are used to bind the 

target to a stationary phase.  Any modification of the target to allow for immobilization 

could alter the effectiveness of the aptamer to bind to the original unmodified target.  

Small molecules will be in a lower ratio to the column matrix.  With an abundance of 

column ratio, the chance of non-specific binding aptamer candidates increases.  The 

binding affinity of the target to the aptamer is a major requirement in determining the 

effectiveness of the aptamer.  Many methods for determining the binding affinity require 
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an obvious change in signal.  Methods such as HPLC or capillary electrophoresis require 

a difference in size and may be less useful if the target is small because the free aptamer 

and the target-aptamer complex may co-elute.  Other methods rely on a change in 

fluorescence of the target and the target-aptamer complex, but this change in signal 

would only occur if the target has fluorescent properties.  A fluorescent probe would be 

required if the target itself does not have fluorescent properties such as CYN.  Though 

faced with many challenges, the identification and use of aptamers for small molecules 

hold many opportunities for understanding key biological and chemical mechanisms.  

Aptamers can detect the presence of small drug molecules, such as cocaine, or biological 

molecules such as ATP or intracellular proteins.  As an example, a dopamine-specific 

aptamer was used to isolate excess dopamine in the brain and determine whether this 

removal of dopamine from a part of the brain causes a correction of abnormal brain 

activity [30]. 

Aptamers can also be helpful and effective in detecting the presence of foreign 

molecules.  Since the development of SELEX and aptamers, there have been hundreds of 

aptamers identified.  There has been research done on multiple types of targets such as 

inorganic components, small organic molecules, antibiotics, and toxins [31] .  In fact, 

aptamers for multiple cyanotoxins have been studied.  The cyanotoxin, microcystin, has 

an identified aptamer that is continuing to be studied for various applications [32].  

Elshafey et al. identified an aptamer for CYN using SELEX.  The authors performed 

binding studies using circular dichroism and fluorescence.  The binding constant of the 

DNA aptamer for CYN was reported as 88.78 nM.  Once the binding was established, the 
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authors designed an impedimetric aptasensor with the aptamer immobilized on a gold 

plate.  The change in signal of the sensor was used to detect the presence of CYN in 

water samples with known concentrations of CYN and tap water samples spiked with 

CYN.  The authors reported accuracies of 95.8% to 103.2% [33].   

1.4 Circular Dichroism 

 Light can be circularly polarized wherby the light wave moves in either a 

clockwise (right-handed) or counterclockwise (left-handed) direction.  These light waves 

can be absorbed by a chiral chromophore, or an asymmetrical light-absorbing group.  

Circular dichroism (CD) is the difference between the absorbances of the clockwise and 

counterclockwise light.  The difference is measured using CD spectroscopy.   The CD 

spectrum of a sample is determined by measuring the differences in absorbance over 

multiple wavelengths.  The structure of a molecule determines the spectrum so CD 

spectroscopy can identify the secondary structures of proteins and DNA.  This is 

especially helpful in determining a conformational change in DNA when in the presence 

of the target molecule [34].   

The CD spectroscopy of multiple DNA duplexes and anticancer drugs pairs was 

reviewed by Yu-Ming Chang et al [35].  They used the CD data to discuss the 

conformational changes of the DNA duplexes observed after exposure to the anticancer 

drugs. The conformational change of the DNA is important for improving the anticancer 

drugs to make them more target-specific with fewer undesirable reactions [35].  Circular 

dichroism spectroscopy was also used to determine the conformational change of the 

aptamer for CYN when in the presence of the toxin.  In this experiment, CD was used to 
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investigate if a conformational change occurs, and what form the DNA takes after the 

conformational change [33]. 

1.5 Fluorescent Biosensing 

 Fluorescent spectroscopy is a commonly used technique in analyzing organic 

compounds.  Fluorescent probes can be used to label compounds that do not have 

fluorescent properties on their own.  Biosensing is the use of DNA, antibodies, or 

enzymes to detect the presence of biological or chemical molecules.  Fluorescence 

biosensing uses changes in fluorescence to determine the presence of a target molecule.  

The fluorescence can be from the target molecule’s own fluorescent properties, a 

fluorescent label, or a fluorescent probe.  Label-free fluorescence biosensing is a 

technique that has been studied as a solution to detecting molecules without fluorescent 

properties, and without having to label the aptamers or target molecules with a probe, that 

would potentially alter their chemical properties [36].  Fluorescent probes are widely 

available and some of the probes have greater fluorescence when they bind to aptamers.  

Cylindrospermopsin does not have fluorescent properties so a label free method would be 

an ideal technique in determining the presence of CYN with the aptamer. 

1.6 Aptamer Affinity Chromatography  

Aptamer affinity chromatography (AAC) was first reported in 1999 by Drolet et 

al. as a means of protein purification [37].  Aptamer affinity chromatography requires the 

immobilization of a DNA aptamer to a stationary phase.  The aptamer is exposed to the 

target molecule in solution and then the target molecule can be separated from the 
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aptamer and its original solution.  There are many applications of AAC that provide 

chromatographic techniques of detection, separation, and purification.  Aptamers can be 

immobilized on different types of beads such as magnetic beads or streptavidin-modified 

beads, and then packed in to a column for analysis.  Solid phase extraction can be made 

possible with an aptamer that allows for purification of target molecules.  Microfluidic 

devices have been used to separate and detect target molecules using aptamers.  These 

techniques can be useful for small molecules, proteins and whole cells.  Examples of the 

uses of AAC and their targets can be seen in Table 3 [38]. 
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Table 3.  Applications of aptamers in the analysis of the target molecules [38]

Target Aptamer Stationary Phase Application 

Adenosine DNA Packed capillary column Detection 

ATP DNA Hydrogel Purification 

Ochratoxin A DNA Resins packed SPE column Extraction and Offline detection 

Cocaine DNA Graphene oxide Extraction and Detection 

Arsenic DNA Agarose resin Removal 

Thrombin DNA Bead-packed column Purification 

Histone proteins DNA Bead-packed spin column Preconcentration 

His-tagged proteins DNA Magnetic beads Purification 

Thyroid transcription factor 1 DNA Magnetic beads Purification 

Prostate cancer cells RNA Microfluidic device Capture, enumeration 

Glioblastoma RNA Microfluidic device Capture 

Salmonella typhimurium DNA Magnetic beads Preconcentration, detection 
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1.7  Specific Aims 

 This study aimed to confirm the binding of the aptamer to CYN.  The binding was 

investigated using fluorescent biosensing and CD.  Since the Elshafey group performed 

CD [33], the CD data from this study was performed to compare to the Elshafey CD data 

to confirm binding.  The fluorescent biosensing was performed to observe a change in 

signal indicative of the aptamer binding to the CYN. 

 The second aim of this study was to determine if the CYN aptamer could have a 

real world application in the form of an aptamer affinity capture method.  Magnetic beads 

were used to immobilize the aptamer for incubation with CYN.  High performance liquid 

chromatography was used to determine if the CYN bound to the beads and if CYN could 

be eluted off he beads. 

2. Materials 

2.1 Purification of CYN 

The algal cultures used in the purification of CYN were grown by Dr. Gantar’s 

lab at FIU.  The algal cultures were grown in BG-11 medium, modified from Rippka et al 

[39].  The pH of the medium was adjusted to 7.0 with NaOH.  The medium was 

autoclaved at 121ºC for 15 min before use.  The pH was further adjusted to 7.4 using 

NaOH after autoclaving.  The BG-11 medium used for the growing cycles was run 

through a 0.22 µm Millipore syringe filter.  The cultures were grown under a 40W neon 

lamp for 24 h.  An incubation temperature of 27-30ºC was used for the growing cycles 

[39]. 
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HPLC-grade water and acetonitrile were purchased from Fisher Scientific 

(Thermo Fisher Scientific, Fair Lawn, NJ).  HPLC-grade methanol was purchased from 

EMD Millipore Corporation (Billerica, MA).  Formic acid was purchased from Fluka 

Analytical Sigma-Aldrich (Chemie Gmbh, Steinhein, Germany).  Trifluoroacetic acid 

was purchased from J.T. Baker, Mallinckrodt Baker Inc. (Phillipsburg, NJ).  Chitosan 

was purchased from Sigma Aldrich (St. Louis, MO).  A WaterPro PS Milli-Q® water 

system (Labconco, Kansas City, MO) was used to obtain the Milli-Q® water used in the 

purification.  The filters used were Millipore Nitrocellular MF
TM

 0.45um HA, 47mm, 

non-sterile filter and Millipore Nylon Membrane 0.20um, 47mm, non-sterile filter 

purchased from Merck Millipore Ltd. (Tullagreen, Cork, Ireland).  The SPE cartridge 

used was ExtractClean™ Carbo 300mg/8mL purchased from Grace Davidson Discovery 

Science (Deerfield, IL).  Falcon™ 50mL conical centrifuge tubes, HPLC vials (2.0 mL, 

amber), and scintillation vials (20 mL, borosilicate glass) were purchased from Fisher 

Scientific (Thermo Fisher Scientific, Fair Lawn, NJ). 

2.2 Fluorescent Biosensing 

The CYN purified in 3.1 and a CYN standard (1 mg) purchased from Enzo Life 

Sciences (Farmingdale, NY) was used for this experiment.  L-BMAA hydrochloride and 

microcystin-LR standards were purchased from Sigma Aldrich (St. Louis, MO).  The 

binding buffer was made with 50 mM Tris, pH 7.5, 20 mM MgCl2 and 150 mM NaCl.  

The TRIZMA
®
 hydrochloride reagent grade (Tris) and NaCl was purchased from Sigma 

Lifescience (Sigma-Aldrich, St Louis, MO).  The MgCl2 6 hydrate crystal was purchased 

from J.T. Baker (Mallinckrodt Baker Inc., Phillipsburg, NJ) [33]  The DNA aptamer (5’ 
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amino modification, 6 carbon linker, HPLC purified) was purchased from Integrated 

DNA Technologies (IDT)(Coralville, IA) using the DNA sequence from Elshafey et al. 

[33].  The fluorescent probes Quantifluor double strand and single strand were purchased 

from Promega (Madison, WI).  The probes SYBR Gold, SYBR Green, and Oligreen were 

purchased from Invitrogen (Thermo Fisher Scientific, Carlsbad, CA).  A 10 mm quartz 

cuvette was used for measurements as discussed in 3.2.   

2.3 Circular Dichroism 

The CYN purified in 3.1 was used for this experiment.  The BB used in 2.2 was 

also used in this experiment [33].  The DNA aptamer (5’ amino modification, 6 carbon 

linker, desalted) was purchased from Integrated DNA Technologies (IDT)(Coralville, IA) 

using the DNA sequence from Elshafey et al. [33].  A 10 mm quartz cuvette was used for 

measurements as discussed in 3.3. 

2.4 Aptamer Affinity Capture 

The Dynabeads M-270 Carboxylic Acid magnetic beads were purchased from 

Invitrogen (Thermo Fisher Scientific, Carlsbad, CA).  The BB used in 2.2 was also used 

in this experiment.  The EDC and MES buffer for activation were purchased from Sigma 

Lifescience (Sigma-Aldrich, St Louis, MO).  The DNA aptamer (5’ amino modification, 6 

carbon linker, HPLC purified) was purchased from Integrated DNA Technologies 

(IDT)(Coralville, IA) using the DNA sequence from Elshafey et al. [33].  The CYN 

standard (1 mg) was purchased from Enzo Life Sciences (Farmingdale, NY).  A 

WaterPro PS Milli-Q® water system (Labconco, Kansas City, MO) was used to obtain 
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the Milli-Q® water used in this experiement.  The magnet used was a Neodymium 

rectangular block magnet.  Eppendorf
TM

 Microcentrifuge tubes were purchased from 

Fisher Scientific (Fair Lawn, NJ).    

2.5 Urea PAGE Gel 

The urea, APS, TEMED, and acrylamide (40% w/v) were purchased from Fisher 

Scientific (Thermo Fisher Scientific, Fair Lawn, NJ).  The 5X TBE buffer consisted of 

445 mM Tris base, 445 mM boric acid and 10 mM EDTA, all purchased from Fisher 

Scientific (Thermo Fisher Scientific, Fair Lawn, NJ). The DNA aptamer (5’ amino 

modification, 6 carbon linker, HPLC purified) was purchased from Integrated DNA 

Technologies (IDT)(Coralville, IA) using the DNA sequence from Elshafey et al. [33].  

The DNA ladder consisted of DNA fragments (11, 14,17, 20, 23, 26, 29, 32, 35, 38 nt) 

purchased from Integrated DNA Technologies (IDT)(Coralville, IA).  The fluorescent 

probes Quantifluor double strand was purchased from Promega (Madison, WI).  The 

CYN standard (1 mg) was purchased from Enzo Life Sciences (Farmingdale, NY).  L-

BMAA hydrochloride and microcystin-LR standards were purchased from Sigma Aldrich 

(St. Louis, MO).  Xylene cyanol FF (Sigma Lifescience Sigma-Aldrich, St Louis, MO). 

3. Experimental 

3.1 Purification of CYN 

The culture was prepared and purified used a method that was previously 

modified [40-42].  The method is briefly described below. 
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3.1.1 Pretreatment of Culture Medium and Biomass 

The culture was transferred to four 500 mL centrifuge bottles; each bottle 

contained 300 mLs of the culture.  Chitosan was added at a volume of 10 mL to each 

bottle.  The bottles were centrifuged for 20 min at 4000 rpm using a Beckman Coulter 

Allegra X-15R centrifuge.  The clarified culture medium (supernatant) was poured off, 

leaving around 20 mL of supernatant at the bottom of the bottle, in to multiple 1 liter 

bottles, and refrigerated for later use.  The remaining volume of supernatant left in the 

bottle was used to resuspend the biomass layer on the bottom of the bottle.  The contents 

of the bottle were then transferred to several 50 mL falcon tubes.  Chitosan was added at 

a volume of 2 mL to each tube.  The tubes were centrifuged with the same parameters 

described above.  The medium was transferred into the 1L bottles (with previously 

collected culture medium) and the biomass in the tubes was immediately frozen at -20ºC.  

Once frozen, the biomass was lyophilized in the falcon tubes using a Labconco Freezone 

Cascade Benchtop Freeze Dry System, and kept in -20ºC for later use. 

3.1.2 Extraction of CYN from Culture Biomass 

The lyophilized biomass was weighed out to 2.0 g, and re-suspended in 200 mL 

of Milli-Q® water in a 500 mL Erlenmeyer flask.  The solution was left to sit for 24 h to 

allow for full resuspension of the cells.  The solution was then transferred to two 200 mL 

Erlenmeyer flasks with 100 mL of Milli-Q® water in each flask.  The two flasks were 

then sonicated in an ultrasonic bath for two 5 min periods.  The flasks were swirled in 

between each 5 min period.  The biomass was then filtered in a vacuum filtration 

apparatus using a 0.45 micrometer membrane filter.  When the biomass was filtered, 5 
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mL of Milli-Q® water was put through the filter to rinse the filter apparatus.  The filtrate 

was then filtered using a 0.20 micrometer membrane filter.  The apparatus was rinsed 

with another 5 mL of Milli-Q® water.  The filtrate was transferred to a carbograph SPE 

cartridge and filtered using a vacuum manifold.  The cartridge was pretreated with 3.0 

mL of 5% FA in MeOH followed by 3.0 mL of Milli-Q® water.  After the filtrate had 

passed through the cartridge, it was washed with 0.5 mL of methanol.  Following the 

washing step, 20 mL of 5% FA in MeOH was run through the cartridge, as the eluent, 

and collected in a scintillation vial.   The eluent was dried down using a rotating 

evaporator and the sample was re-suspended in 250 µL of Milli-Q® water.  The sample 

was then stored in 4ºC in a 2.0 mL glass vial until analysis. 

3.1.3 Extraction of CYN from Culture Medium 

The previously prepared (i.e., centrifuged) culture medium was transferred in to 

500 mL centrifuge bottles and centrifuged at 4000 rpm for 20 min.  The supernatant was 

subsequently filtered by vacuum through a 0.2 µm membrane filter.  The filtrate was 

passed through a carbograph SPE cartridge and filtered using a vacuum manifold.  The 

cartridge was pretreated with 3.0 mL of 5% FA in MeOH followed by 3.0 mL of Milli-

Q® water.  After the filtrate had passed through the cartridge, it was washed with 0.5 mL 

of methanol.  Following the washing step, 20 mL of 5% FA in MeOH was run through 

the cartridge, as the eluent, and collected in a scintillation vial.   The eluent was dried 

down using a Buchi R-3 rotating evaporator and the sample was re-suspended in 250 µL 

of Milli-Q® water.  The sample was then stored in 4ºC in a 2.0 mL glass vial until 

analysis. 
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3.1.4  HPLC Purification 

Final purification and analysis of CYN was performed on a Shimadzu 

Prominence modular UFLC.  A Luna 5u C18 100A, 250 x 4.60 mm, 5 micron column 

was used.  The injection volume of the sample was 10 µL and the sample was monitored 

at 262 nm.  The mobile phase consisted of 0.1% TFA in HPLC water (A) and 0.1% TFA 

in ACN (B).  The flow rate was 1 mL/minute.  The gradient method is listed in Table 4.  

The chromatograph and UV spectrum was monitored to observe the peak with the UV 

spectrum that corresponds with CYN.  The mobile phase exiting the HPLC (fraction) is 

collected in a scintillation vial immediately after the CYN peak is observed.  The sample 

run is repeated until the medium or biomass sample is completely utilized.  The fractions 

are collected in the same scintillation vial.  The fractions were dried using the rotating 

evaporator to obtain solid CYN material. 

Table 4. Time program for HPLC purification of CYN 

Time (min) % of Solvent A % of Solvent B 

0 – 30 100-92 0-8 

30 – 32 92-100 8-0 

32 – 35 100 0 

 

 

 

 



20 

 

3.2 Fluorescent Biosensing 

3.2.1 Fluorimeter 

Control samples of binding buffer, 1X SYBR Green, 10 uM aptamer and 100 µM 

CYN were run to determine if the samples contributed a fluorescent signal.  The probe 

was added to the aptamer, with final concentrations of 1X and 10 uM, respectively.  The 

sample was analyzed to obtain a baseline of the fluorescent signal.  The CYN was added 

to samples of the SYBR Green and the aptamer at varying final concentrations (10 µM, 

25 µM, 50 µM, 75 µM, 100 uM, 350 uM, and 500 uM).  All samples had a final volume 

of 1.2 mL. 

The Horiba Fluoromax-3 fluorimeter was used to measure the fluorescent signal 

of the samples.  The emission was set to scan from 500 to 650 nm and the excitation was 

set to 497 nm.  The signal was averaged from a total of three scans set at the fast scan 

mode.  A quartz cuvette with a 10 mm path length was used to measure the fluorescence. 

3.2.2 Tecan Plate Reader 

A super mix was made consisting of a 1.1X mixture of the DNA aptamer and BB.  

A 1.05X ultra mix of fluorescent probe (SYBR Gold, SYBR Green, Oligreen, 

QuantiFluor double strand or QuantiFluor single strand) and the super mix was created.  

An aliquot of the ultra mix was added to 100 µM of the target (CYN, MC-LR, or BMAA) 

at a final volume of 100 µL for the Tecan sample.  The final concentration in the sample 

was 1X fluorescent probe, 1 µM DNA aptamer and 100 µM target.  The sample was 
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transferred in to the plate with 95 µL of sample in each well.  A control sample of 

aptamer, fluorescent probe, and BB was run with the samples. 

The Tecan Infinite M1000 Pro was used to expand on the fluorimeter data using 

different probes with smaller volumes.  The samples were analyzed first to obtain the 

gain and Z position calculated from the control sample.  The excitation and emission 

values were set according the fluorescent probe in the sample.  The samples were then 

analyzed with a manually entered gain and Z position of each fluorescent probe from the 

first analysis.  The percent gain was calculated from the results of the samples compared 

to the results of the control. 

3.3 Circular Dichroism 

All samples were prepared in binding buffer with final volumes of 1.2 mL.  

Samples of binding buffer and 2 uM CYN were used to obtain background signals.  

Spectrum of a 1 uM sample of the aptamer was measured and compared to the spectrum 

of a 1 uM of the aptamer after addition of 2 uM CYN.  Samples were analyzed in a quartz 

cuvette with a 10 mm path length.   

A Jasco J-815 Circular Dichroism Spectrometer was used to measure the 

structural conformation of the samples.  The measurements were made from 230 to 340 

nm at a 0.1 nm interval.  Three scans were performed at 20 nm/min with a 1 nm 

bandwidth and a 1 sec time constant.  Nitrogen was used to deoxygenate the optical 

chamber and was maintained throughout the duration of the experiment. 
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3.4 Aptamer Affinity Capture  

3.4.1 Magnetic Bead Activation 

Magnetic beads (Dynabeads) were used as the solid phase for AAC.  The beads 

were activated following a modified Thermo Scientific protocol.  A volume of 100 uL of 

the beads was transferred to an Eppendorf tube.  A magnet was applied for two minutes 

and the supernatant was removed.  The beads were washed with 100 uL of 25 mM MES 

buffer, pH 5, for 10 min on a Stuart SB3 rotator. The magnet was applied to the tube for 

two minutes and the supernatant was removed.  The wash was repeated once more.  In a 

separate Eppendorf tube a 60 uL solution was made with MES buffer and the DNA 

aptamer with final concentrations of 25 mM and 2 mg/mL, respectively.  The solution 

was added to the beads and incubated on the rotator for 30 minutes.  A 30 uL solution of 

100 mg/mL EDC was made immediately before use in cold 100 mM MES buffer.  The 

solution was mixed with the beads and then 10 uL of 25 mM MES buffer was added for a 

final volume of 100 uL.  The beads were incubated at 4ºC overnight on the rotator.  After 

the incubation, the beads were washed with 50 mM Tris buffer for 15 minutes at room 

temperature.  The magnet was applied for two minutes and the supernatant was removed.  

The wash was repeated three more times.  The beads were resuspended in binding buffer 

and stored at 4ºC until use.  Control beads were made following the same procedure 

without the addition of the DNA aptamer.  The 60 uL solution was made with MES 

buffer and Milli-Q® water. 
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3.4.2 CYN Capture 

 The beads were washed with binding buffer for 15 minutes three times.  A 100 uL 

sample of 75 µM CYN was added to the beads and was incubated for 2 h on the rotator at 

room temperature.  The magnet was applied for two minutes.  The supernatant was 

removed and placed in a 2 mL HPLC vial for analysis.  Milli-Q® water was then added 

to the beads at a volume of 200 µL.  The beads were mixed for 12 h on the rotator at 

room temperature.  The magnet was applied for two minutes and the supernatant was 

placed in a 2 mL HPLC vial for analysis.  The beads were washed three times as 

previously mentioned and the procedure was repeated with the 100 µM and 150 µM 

CYN samples. 

3.4.3 HPLC of AAC Samples 

 Each concentration of CYN produced three samples for HPLC after incubation 

with the beads.  The sample collected after the addition of CYN, the sample collected 

after the elution with Milli-Q® water and the wash sample were analyzed to determine 

the percent recovery of CYN.  The analysis was performed on a Shimadzu HPLC.  A 

Kinetex 2,6u C18 100A, 100 x 4.6 mm column was used for analysis.  The injection 

volume of the sample was 20 µL and the sample was monitored at 262 nm.  The mobile 

phase consisted of HPLC water (A) and acetonitrile (B).  The flow rate was 0.27 

mL/minute.  The gradient method is listed in Table 5. 
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Table 5. Time program for detection of CYN 

Time (min) % Solvent A % Solvent B 

0-15 98-90 2-10 

15-18 90-98 10-2 

18-20 98 2 

 

3.5 Urea PAGE Gel 

3.5.1 Gel Preparation 

The gel was prepared by mixing 10.5 g of urea, 5 mL of 5X TBE buffer (445mM 

Tris base, 445mM Boric acid, 10mM EDTA) and 9.4 mL 40% (w/v) acrylamide.  The 

solution was stirred using a magnetic stir bar until the urea dissolved.  Once the urea 

dissolved, 139 µL of 10% (w/v) APS and 13.2 µL of TEMED was added to the solution.  

The solution was then quickly poured between the gel plates and the well comb was 

placed.  The gel was left to polymerize for 30 min. 

3.5.2 Gel Samples 

 The samples analyzed with the Tecan plate reader were used for the gel.  The 

samples were made with 5 µL of the fluorescence sample and 10 µL of the gel loading 

dye.  The DNA ladder did not contain a length up to 62 bases, which is the length of the 

DNA aptamer so 1 µL of 1 µM DNA aptamer was added to the ladder sample.   
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3.5.3 Running and Imaging the Gel 

The gel was set up in the gel apparatus and was pre-run for an hour to remove any 

molecules in the gel. The gel was loaded with 3 µL of each sample.  Once the samples 

were loaded, the gel was run for 3.5 hours.  The gel was removed from the gel plates and 

was placed in a container with a stain mixture of TBE buffer and SYBR gold.  The gel 

was agitated in the stain every 5 min for 25 min.  The gel was cleaned with ethanol and 

imaged using a Bio-Rad ChemiDoc system. 

4. Results and Discussion 

4.1 Fluorescent Biosensing 

Figure 2. Fluorescent spectrum of (A) Binding buffer (BB), (B) CYN in BB, (C) Aptamer 

in BB, (D) Aptamer in BB (top) 100 uM CYN and Aptamer in BB (middle) and 500 uM 

CYN and Aptamer in BB (bottom) 
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Figure 3. Fluorescence spectrum of Aptamer in BB and after the addition of 10 uM CYN 

(10 uM), 25 uM CYN (25 uM), 50 uM CYN (50 uM), 75 uM CYN (75 uM), and 100 uM 

CYN (100 uM). 

 

 

Figure 4. Fluorescent spectrum of aptamer after the addition 100 uM Microcystin-LR 

(MC-LR), 100 uM BMAA (BMAA), and 100 uM CYN (CYN) 
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Figure 5. Percent gain of CYN with five different fluorescent probes 

 

 

 

 

 

 

 

 

Figure 6. Percent Gain of CYN using QuantiFluor dsDNA probe  
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Figure 7. Reproducibility of Percent Gain of CYN using QuantiFluor dsDNA probe  

 

Figure 8. Reproducibility of Percent Gain of MC-LR using QuantiFluor dsDNA probe 
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Figure 9. Reproducibility of Percent Gain of BMAA using QuantiFluor dsDNA probe 

 

Figure 10. Comparison of Percent Gain of the three toxins with QuantiFluor dsDNA 

probe 
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signal suggests that the CYN is binding to the aptamer and causing the release of the 

fluorescent dye from the aptamer. The spectrum of the aptamer with different toxins 

(Figure 4) shows a decrease in signal.  The desired result would have been for a decrease 

in signal to only occur in the presence of CYN.  The results suggest that the specificity of 

the aptamer is not as high as previously reported in Elshafey et al. [33].  Elshafey et al. 

tested for change in electrochemical signal with MC-LR and another cyanotoxin, 

anatoxin.  The paper reported no obvious change in signal with MC-LR.  The aptamer 

was exposed to BMAA to test another toxin that has been detected in similar 

environments as CYN.  This toxin exhibited a larger change in signal than MC-LR but a 

smaller change in signal than CYN.  This suggests that BMAA binds to the aptamer 

stronger than MC-LR but has a weaker affinity than CYN.  The five fluorescent probes 

were tested to determine which probe resulted in the largest change in signal (percent 

gain) as shown in Figure 5.  The QuantiFluor dsDNA provided the largest change in 

signal when analyzing the control sample in comparison to the sample with CYN added 

to the aptamer.  The QuantiFluor dsDNA was tested to determine if the probe gave 

consistent results. The QuantiFluor dsDNA data in Figure 6 provided consistent results 

for percent gain.  The data have an average 71.28% and a standard deviation of 0.98.  The 

QuantiFluor dsDNA probe was then used for all other fluorescence samples.  The five 

CYN samples in Figure 7 were analyzed after 30 min of incubation to determine if the 

samples were reproducible.  The percent gain of CYN had an average of 68.55% and a 

standard deviation of 2.5.  The change in signal suggests that CYN is binding with the 

aptamer causing the release of the probe at a high rate.  There was a 68.55% change in 

signal in only 30 min.  The samples of MC-LR in Figure 8 were analyzed after a 30 min 
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incubation.  The average percent gain was 31.2% with a standard deviation of 1.9.  

Although the change is relatively small, any change in signal conflicts the original report 

of Elshafey et al. that reports no obvious change in electrochemical signal with the 

aptamer incubated with MC-LR.  The change in fluorescent signal was observed in both 

the data from the fluorimeter as well as the Tecan data in Figure 8.  The BMAA samples 

in Figure 9 were analyzed after a 30 min incubation.  The average gain was 56.72% with 

a standard deviation 5.3.  Although the standard deviation of the samples was high, the 

large signal change suggests binding.  The paper by Elshafey et al. did not test BMAA for 

an electrochemical signal change.  The large signal change suggests that the aptamer is 

not specific for CYN.  The comparison of the percent gain of the three toxins in Figure 10 

shows that percent gain of the BMAA is similar to that of the CYN.  The MC-LR sample 

percent gain though much lower is still an obvious change.   

4.2 Circular Dichroism 

 

Figure 11. CD spectrum of (A) 1 uM aptamer before and after the addition of 2 uM CYN 

performed by Elshafey et al. [33] and (B) 1 uM aptamer before and after the addition of 2 

uM CYN 
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The CD spectra in Figure 11B is very similar to the one performed by Elshafey et 

al. (Figure 11A).  The two spectra suggest the aptamer forms a B-DNA duplex.  The B-

DNA duplex has a characteristic positive band at 278.5 nm and a negative band at 248 

nm.  A decrease in ellipticity when CYN was added suggests that a conformational 

change occurs.  

4.3 Aptamer Affinity Capture 

 

 

 

 

 

 

 

Figure 12. Chromatogram of (A) supernatent after incubation with beads, (B) 75 uM 

CYN standard, (C) supernatant after elution with Milli-Q® water, (D) supernatant after 

wash with BB 

 

The peak at 8.29 minutes in Figure 12A displays the presence of CYN in the 

supernatant after the addition of CYN.  The peak suggests that all the CYN in the 

addition sample did not bind to the aptamer that was bound to the beads.  There is no 

peak in Figure 12C after the elution step suggesting that the CYN that was bound to the 
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aptamer did not elute and is still bound to the aptamer.  The CYN could be bound tightly 

to the aptamer as the binding constant of 88.78 nM reported by Elshafey et al. suggests a 

high affinity for CYN.  The absence of a peak in Figure 12C can also be explained if the 

amount of CYN that was bound to the aptamer was eluted but the concentration was too 

long for detection on the HPLC.  Cylindrospermopsin has been shown to be genotoxic 

and cause DNA breakage [44].  The CYN concentration could be at a level that causes 

minor DNA breakage.  The breakage could explain the appearance of a peak in the 

supernatant sample after the addition of 75 uM CYN.  If the CYN was degrading the 

DNA then some of the CYN would be in the addition sample because the DNA would 

break at the binding site of CYN.  The intact DNA would bind to a percentage of CYN 

and the rest of the CYN sample would come out in the supernatant.  The possibility of the 

aptamer degrading in the presence of CYN was then investigated.  Another explanation 

for the peak in the supernatant fraction would be that there was an overabundance of 

CYN in relation to the aptamer or free binding sites on the aptamer.  There would be an 

excess of CYN which would be removed in the supernatant fraction. 

 

 

 

 

 

 



34 

 

4.4 Urea PAGE Gel 

 

 

 

 

 

 

Figure 13.  (A) Urea PAGE Gel of DNA ladder (1), Aptamer (2), Aptamer and CYN (3), 

Aptamer and MC-LR (4), Aptamer and BMAA (5), and DNA Ladder (6), (B) inverse of 

gel (A) 

 

The gel in Figure 13 shows that there are no additional bands in any of the 

samples with toxin.  Since the samples do not show degradation of DNA which means 

degradation is not the cause of the AAC not working. 

5. Conclusions 

 The health risk that cylindrospermopsin poses to humans and their food chains 

makes the identification and utilization of an aptamer an important topic to study.  

Aptamers are an emerging tool and have been proven to be of use for small molecules.  

The cost effectiveness of aptamers and the specificity that aptamers offer make them a 

great option for the detection of cyanotoxins.  Contamination of water supplies can be 

determined with minimal cost and greater accuracy.  The studies on an aptamer for CYN 
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need to be investigated further to optimize binding and determine the applications of 

AAC for CYN. 

The fluorescent binding studies and CD performed in this work showed that CYN 

does bind to the aptamer as reported in the Elshafey et al. paper.  The CD from the paper 

was reproducible and confirmed a B-DNA complex of the aptamer.  The fluorescent 

binding studies confirmed the author’s conclusion that CYN binds to the aptamer.  The 

fluorescence data showed that a change in gain occurred for both the MC-LR and 

BMAA.  The author tested MC-LR and reported no obvious change in the 

electrochemical signal.  The fluorescent data for MC-LR showed a small but significant 

signal change.  The results for BMAA showed a large signal change that was similar to 

CYN.  The authors did not test for BMAA, which is a much smaller toxin.  The small 

size may play a role in its ability to bind to the aptamer since CYN is a smaller molecule 

as well.  The binding of BMAA and the aptamer should be further investigated to 

determine if the aptamer has a strong affinity for BMAA as well as CYN.  The aptamer 

should also be tested with other toxins to determine if there is a functional group or type 

of toxins that the aptamer binds to.  This would help differentiate which functional 

groups on the toxins bind to the aptamer. 

 The HPLC data for the aptamer affinity capture showed that the CYN may have 

bound to the aptamer on the beads.  There are multiple explanations for the absence of a 

CYN peak in the elution sample.  The CYN may not have been eluted and are still bound 

to the beads.  The CYN could have eluted off the beads but at a low concentration the 

CYN may not have been detected by the HPLC.   The urea PAGE gel proved the 
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unbound CYN in the addition sample fraction was not an effect of DNA degradation by 

CYN.   

A new aptamer should be investigated as well since the fluorescent data showed 

that the aptamer identified in Elshafey et al. may not be specific for CYN.  The aptamer 

reported in the Elshafey et al paper is an option for aptamer affinity capture but the use of 

the aptamer for detection or purification in an aptamer affinity chromatography method 

needs to be investigated further to determine the proper eluent to remove the CYN from 

the beads.  An aptamer affinity chromatography method for CYN could greatly benefit 

the areas in which CYN blooms form.  The ability to quickly and accurately detect CYN 

contamination in water supplies could protect a large quantity of people and their food 

sources. 
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