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ABSTRACT OF THE DISSERTATION 

RELEVANCE IS IN THE EYE OF THE BEHOLDER: DESIGN PRINCIPLES 

FOR THE EXTRACTION OF CONTEXT-AWARE INFORMATION 

by 

Arturo Castellanos 

Florida International University, 2016 

Miami, Florida 

Professor Monica Chiarini Tremblay, Major Professor 

Since the1970s many approaches of representing domains have been suggested. 

Each approach maintains the assumption that the information about the objects 

represented in the Information System (IS) is specified and verified by domain experts 

and potential users. Yet, as more IS are developed to support a larger diversity of users 

such as customers, suppliers, and members of the general public (such as many multi-

user online systems), analysts can no longer rely on a stable single group of people for 

complete specification of domains –to the extent that prior research has questioned the 

efficacy of conceptual modeling in these heterogeneous settings. We formulated 

principles for identifying basic classes in a domain. These classes can guide conceptual 

modeling, database design, and user interface development in a wide variety of traditional 

and emergent domains. Moreover, we used a case study of a large foster organization to 

study how unstructured data entry practices result in differences in how information is 

collected across organizational units. We used institutional theory to show how 

institutional elements enacted by individuals can generate new practices that can be 

adopted over time as best practices. We analyzed free-text notes to prioritize potential 
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cases of psychotropic drug use—our tactical need. We showed that too much flexibility 

in how data can be entered into the system, results in different styles, which tend to be 

homogenous across organizational units but not across organizational units. Theories in 

Psychology help explain the implications of the level of specificity and the inferential 

utility of the text encoded in the unstructured note.  
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Chapter 1: Dissertation Overview 

In the course of normal business, organizations generate electronic documentation 

describing daily operations and transactions. The purpose of this documentation is 

generally tactical. For example, an IT help desk staff documents reported technical 

issues, a police officer enters the details of an incident, or a clinician documents a case in 

progress notes. These data are often stored and organized at the point of capture, and 

reflects the daily transactions of the organization’s business activities –as modeled by the 

information system. This dissertation research explores two main topics: deriving design 

principles to guide conceptual modeling of open information environments and the 

institutionalization of data-entry practices of unstructured and semi-structured data in an 

organization and its implications. 

Overview of the Essays 

Since the 1970s many approaches to representing domains have been suggested. 

Each approach maintains the assumption that the information about the objects 

represented in the Information System (IS) is specified and verified by domain experts 

and potential users. Yet, as more IS are developed to support a larger diversity of users, 

analysts can no longer rely on a stable single group of people for complete specification 

of domains. This first chapter provides theoretical guidelines rooted in psychology for the 

existence and the importance of special classes termed in psychology basic level 

categories. We formulate principles for identifying basic classes in a domain. These 

classes can guide conceptual modeling, database design, and user interface development 

in a wide variety of traditional and emergent domains. Previous research has leveraged 
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ontologies to add a common understanding in communicating information (Gruber 1995). 

We illustrate these principles in a healthcare setting, particularly in the context of an Ear, 

Nose, and Throat (ENT) ontology. These guidelines can be generalized to other domains.  

Given the shortcomings of traditional approaches to modeling structured IS and the 

extent to which existing IS relies on unstructured data, the third chapter proposes theory-

based propositions that can provide guidance in designing and modeling information 

systems that rely on unstructured data-entry formats. One of the challenges of 

unstructured data is the inherent flexibility of how these data are entered/captured in an 

information system (e.g., free-form text) as opposed to a less flexible structured format 

(e.g., selecting from drop-down lists).  

In the third chapter, we show that in the day-to-day operations individuals may 

deviate (to different extent) on how they input data into the system. These deviations can 

be based on the individual’s training or based on immediate needs/pressures demanded 

by their units, impacting the effectiveness of their practice. We study this in the context 

of case management in a large foster care organization, where different caseworkers 

(from different agencies) report on the home visits made to the foster children. We found 

that unstructured data entry may result in differences in how information is collected 

across different organizational units in the organization. Institutional theory helps explain 

how institutional factors shape practices by individuals across organizational units, and 

how these practices can become stable over time and adopted by other individuals, 

making the practice persistent.  
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Chapter 2: Basic Classes in Conceptual Modeling: Theoretical Foundations and Practical 

Guidelines  

It is widely held that a key role of an information system (IS) is to represent the world 

(Burton-Jones and Grange, 2012; Kent, 1978; Wand and Weber, 1995). This assumption 

suggests that one of the most important questions in IS development is “How can we 

model the world to better facilitate the development, implementation, use, and 

maintenance of information systems that provide value?” (Wand and Weber 2002; 

emphasis added). This makes conceptual modeling, a process by which representations of 

the world get translated into IS objects, a prominent aspect of IS development and use 

(Kung and Soelvberg, 1986; John Mylopoulos, 1998; Rossi and Siau, 2000; Wand and 

Weber, 2002). 

Conceptual modeling refers to the “activity of formally describing some aspects of the 

physical and social world around us for the purposes of understanding and 

communication” (J Mylopoulos, 1992). Conceptual modeling involves documenting 

knowledge about a domain, defining its scope, and outlining constraints. Once developed, 

conceptual models typically guide database and application design and often become 

legally binding documents that contain information specifications of the IS.  

Conceptual models depict information about the kinds of objects that an IS needs to 

represent. Since the 1970s many approaches to representing domains have been 

suggested, including the Unified Modeling Language (UML) (Grossman et al., 2005; 

Jacobson et al., 1999), Entity-Relationship (ER) Diagrams (P. P.-S. Chen, 1976), Object-

role modeling (ORM) (Halpin, 2007), and i* (Yu, 2001). Each approach maintains the 
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assumption that the information about the objects is specified and verified by domain 

experts and future users of the IS (Appan and Browne, 2010; Browne and Ramesh, 

2002). 

Among other things, the information elicited from users imply knowledge of structures in 

a domain (Cooke, 1994). Major conceptual modeling grammars, such as UML and ER 

Diagrams, organize domain objects into classes (e.g., similar to concepts, categories, 

kinds, or entity types). For example, in communicating with potential users of a 

university registrar system, analysts could derive and include classes such as students, 

courses, and instructors into the conceptual model. Notably, some users might prefer 

different structures (e.g., distinguishing between faculty and instructors), but ultimately 

classes reflect a consensus among all involved parties (Parsons, 2002). Once specified, 

classes constrain the kind of information to be managed by the IS (e.g., information about 

specific students, courses, and instructors), directly impacting such IS objects (e.g., 

database tables, data collection fields, user interface options, and reports)(Hirschheim et 

al., 1995; Teorey et al., 1986).  

To elicit classes accurately and reach consensus on which classes to use, it is important to 

be in frequent communication with users. Maintaining close contact with users is a 

commonly prescribed guideline in systems development (Moody, 2005; Gould and 

Lewis, 1985; John Mylopoulos, 1998), whereas “lack of user input” is considered among 

the “leading reasons for project failures” (Gemino and Wand, 2004, p. 248). This issue is 

less problematic when an IS is developed and used within organizational boundaries (Fry 

and Sibley, 1976; Mason, 1978; Zuboff, 1988). Yet, as more IS are developed to support 
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more diverse uses by customers, suppliers, and members of general public (such as many 

multi-user online systems), analysts could no longer rely on a stable single group of 

people for complete specification of domains (P. P. Chen, 2006; Gumm, 2006). Indeed, 

many online projects (e.g., social media, crowdsourcing) foster open participation to any 

interested online user, resulting in extremely wide and diverse audiences. In such cases it 

is becoming nearly infeasible to elicit all possible structures that would be congruent with 

the domain views of every user (Lukyanenko and Parsons, 2013a).  

In response to the growing challenge of modeling when user views are extremely diverse, 

recent research suggested to abandon conceptual modeling entirely - “no conceptual 

modeling” - and provide flexible database structures that will accept any user input 

(Lukyanenko and Parsons, 2013a, 2013b). This input can then be structured after data is 

collected based on ad hoc needs. This strategy, allows the collection of diverse user 

information, creates novel challenges such as having the resulting sparse and 

heterogeneous data useful for analysis. Moreover, it obviates important traditional 

benefits of conceptual models such as supporting communication, facilitating domain 

understanding among development teams, and supporting information retrieval and use 

of data. Although prior research has assessed the efficacy and limitations of conceptual 

modeling in novel settings, the proposed solutions themselves have their own limitations.  

In this paper we propose an alternative approach: rather than eschewing conceptual 

modeling (and its benefits), we suggest to select few “basic” classes for which user 

consensus is likely to be high regardless of the diversity of the user-base.  This approach 

is motivated by recent experimental findings in conceptual modeling that show that some 
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classes (coined “basic-level categories”) result in high accuracy and may therefore be 

used by most people no matter their level of domain expertise or motivation to contribute 

content (Lukyanenko et al., 2014). This finding raises the possibility of using such classes 

in conceptual modeling. Yet, to use such classes, we need to have a better understanding 

of their nature and have specific guidelines that can support their practical application.  

This paper aims to bridge this gap by providing theoretical foundations rooted in 

psychology for the existence and the importance of these special classes termed in 

psychology basic level categories (Harper and Schoeman, 2003; Klibanoff and Waxman, 

2000; Lassaline et al., 1992; Rosch et al., 1976). Investigating basic level categories led 

psychologists to propose (and evaluate) a number of criteria that helps in the 

identification and selection of basic level categories in a domain. In this paper, we 

formulate principles for identifying basic classes in a domain. Once identified, these 

classes can guide conceptual modeling, database design, and user interface development 

in a wide variety of traditional and emergent domains. 

Emergent Challenges of Selecting Classes in Conceptual Modeling 

Much of traditional conceptual modeling has been conducted in corporate settings and 

has hence shaped the grammars and practices employed in conceptual modeling (e.g., 

how to determine relevant classes for the IS in advance). In this context, information 

systems users were typically employees or those with close ties to the organization. 

However, today this is not the only paradigm in which IS exist and for which there is a 

need for conceptual modeling.  We highlight some other paradigms below. 
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Open information environments online 

With the growth of the Internet and mobile computing, organizations increasingly allow 

users to contribute content. The result is the growth of open information environments 

(OIEs) in which organizations “have access to sources over which they may have no 

control; new sources of data may emerge; applications of data might change radically 

over time; and new uses of data might emerge” (Parsons and Wand, 2014). A prime 

example of OIE is user-generated content (UGC) created by ordinary people online that 

an organization can access and use in its own decision making in operations (e.g., forum 

posts, tweets, tags, product reviews, digital artwork, blogs)(Cha et al., 2007; Levina and 

Arriaga, 2014; Susarla et al., 2012). To harness the power of UGC, organizations are 

rapidly developing online platforms such as BeingGirl.com by Procter & Gamble, 

eBird.org by Cornell University, or FixMyStreet.com by the UK organization mySociety. 

These platforms are completely open, inviting anybody to join and participate. In such 

projects, the possibility of determining in advance all classes that would reflect the views 

of every single potential user for that project is impractical. Thus, establishing relevant 

classes in this context is infeasible and researchers have concluded that conceptual 

modeling may not be appropriate in such settings (Lukyanenko and Parsons, 2013a). We 

believe the idea of basic-level categories could be quite effective in these settings. 

To better understand conceptual modeling challenges in OIEs and potential applications 

of basic level categories consider the case of citizen science – a type of UGC and OIE 

that harnesses contributions of ordinary people for scientific research (Bonney et al., 

2014; Rossiter et al., 2015). Citizen science is built on the premise of open participation 



 

 8 

(Hand, 2010). As a result, placing any limits on the information users can input is in 

many ways contrary to the spirit of citizen science. A high-profile example of a citizen 

science project is iSpot (www.ispotnature.org), run by The Open University in the UK 

(Clow and Makriyannis, 2011; Scanlon et al., 2014; Silvertown, 2010). The objective of 

iSpot is to expand scientific knowledge by asking people to observe plants, animals, and 

other taxa across the globe and report these sightings to their custom online platform. The 

data collection on iSpot is at the species level of classification (e.g., Spotted sandpiper, 

American robin, Atlantic salmon, Black bear). Thus, while participants can report 

observations at different classification levels, the focal classes for iSpot are classes of 

species (Crall et al., 2011; Mayden, 2002). This is consistent with the prevailing scientific 

interest of the project and is similar to other natural history citizen science projects, 

including the Cornell University’s eBird (www.ebird.org), Atlas of Living Australia 

(http://www.ala.org.au), and Canada’s GEIODE network (e.g., 

www.geog.ubc.ca/biodiversity/eflora) (Bonney et al., 2009; Mayden, 2002). Figure 1 

shows a sample online quiz on iSpot that trains online volunteers to identify species of 

interest to the project.  
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Figure 1. Online quiz on iSpot that trains online volunteers to identify species 
of interest 

(source: http://www.ispotnature.org/quiz/try; Date accessed: November 1, 2015) 

  

Once the system is developed, the extent to which users are able to navigate its structures, 

search, and contribute information depends on their ability to interpret and understand the 

underlying conceptual model (Burton-Jones and Grange, 2012; Lukyanenko et al., 2014). 

The unique challenge in OIEs, however, is that while the conceptual model may 

faithfully capture classes that could be suggested by subject-matter experts following 

biological nomenclature, the model may be unable to fully support the citizen science 

project it was designed for. The above representation may be incongruent with views of 

some non-experts, which may be the actual contributors of the information – the citizen 

scientists. For example, it is possible that some non-expert users may prefer (or be only 

familiar with) certain classes other than those modeled by the system designer. For 
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instance, the fact that polar bears are bears and spend considerable amount of time on 

land may lead non-experts to conceptualize them as land mammals. Similarly, since 

“many shorebirds are long-distance migrants and can show up far from their normal 

ranges” (Kaufman, 1999), some users may fail to classify Spotted sandpipers as 

shorebirds. Non-expert users may be uncomfortable with species at the focal level of 

classification—even if they are familiar with actual instances belonging to that class. 

Recent empirical research in citizen science demonstrates that non-experts are generally 

unfamiliar with more specific scientific classes such as genus or species, leading to 

inaccurate classifications when data collection and storage is based on such classes 

(Lukyanenko et al., 2014). Each misalignment between the chosen conceptual model and 

the views of the people who are going to use the system, has an impact on data quality 

and may also preclude users from effectively navigating, searching, and contributing 

information. 

Other emerging domains 

While OIEs are an increasingly important setting, to further motivate the research on 

basic level classes, we suggest three additional scenarios where such classes could 

support more effective IS development. While the primary motivation of this work is to 

support conceptual modeling in the context of extreme user view diversity – as 

demonstrated from the additional scenarios below – the concept of basic level categories 

can be potentially effective in a wide range of applications. 
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With the explosive growth of mobile and wearable devices, an increased conceptual 

modeling challenge is modeling domains in a way that is congruent with affordances and 

limitations of mobile and miniaturized settings. While traditionally conceptual modeling 

research aimed at modeling application domains without being concerned with 

implementation issues, mobile and wearable settings may preclude realization of 

complete specifications because of the inherent functional and spatial limitations of the 

devices (e.g., screen size, hardware constraints). Successful mobile devices typically 

contain few menu options and provide limited (compared with desktop equivalents) data 

collection support. This suggests that some basic, high level, or intentionally constrained 

specification may be more appropriate for mobile settings. Similarly, mobile applications 

tend to take place online with no constraints on who can participate and engage a broader 

audience. Thus modeling for mobile devices may entail similar challenges to those in 

open information environments (OIEs).  

The term ‘Big Data’ has been defined in a few different ways.  One definition suggests 

that the volume, variety, and velocity of data created and accessible to individuals and 

organizations are growing at unprecedented levels – and will only increase.  There are 

many sources such as social media outlets where ordinary people are writing the way 

they see the world.  These descriptions of the world are often generalized as a basic 

notion of a “post” (e.g., Facebook status update, Twitter tweet, blog posts, etc.).  The 

more generic notion of a post also provisions for the inclusion of content that is 

unpredictable to structure further.  Individuals are given space to create and share their 

conceptualizations with other users.  For example, the content of a post can include text, 
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symbols, numbers, URLs to other webpages, etc.  While these data can be parsed through 

text mining algorithms, posts can also include location data or content such as 

documents, videos, pictures, or audio that are less structured compared to traditional 

fields of a database table.  While it is important to have a bird’s eye view of these 

domains and select few classes that would summarize the data sources effectively, it 

becomes challenging to predict how users will engage in these creative outlets in 

advance.  Thus, the basic level class “post” provisions for such variety of data while still 

providing some mechanism for organization.  

In addition to the emergent online contexts, organizations are increasingly opening their 

internal systems to customers–many of whom may not be sufficiently familiar with the 

conceptual structures behind such systems. For instance, consider the case of patient-

facing applications in healthcare or the proliferation of online health systems (e.g., 

WebMD or PatientsLikeMe)(Angst et al., 2010). WebMD allows individuals to research 

conditions, check their symptoms, and access drug and treatment information. Another 

example is PatientsLikeMe (www.patientslikeme.com), which allows patients to share 

their own health experiences with other patients with similar conditions. In these 

customer-facing applications, it may be more effective to have information at a level of 

abstraction that is congruent to the individual’s knowledge. For instance, a physician 

might be comfortable with the patient’s record being organized based on symptoms or 

conditions (e.g., whether they have acute bacterial rhinosinusitis, acute rhinosinusitis, or 

chronic rhinosinusitis). For the patient, however, this level of detail may be unfamiliar to 

them or, even when known, too specific to make the information actionable (e.g., be able 



 

 13 

to plan a course of treatment). Such applications may leverage on the notion of basic 

level categories by identifying information that may become understood by the individual 

looking at the information. 

Consider the case of selecting classes for PatientsLikeMe. Analysts may elicit a list of 

conditions from physicians (subject matter experts) together with higher-level classes to 

group these conditions. Alternatively, the list can be sourced from many available 

medicine ontologies or scientific publications, among others. 

 

Figure 2. Fragment of an ENT conceptual model for PatientsLikeMe 
 

Based on models similar to that of Figure 2, developers can then create database tables 

and user interfaces. Once the classes are established, online users can be trained in their 

ability to identify instances of these classes and report observations accurately. 
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While the three additional scenarios described above will have challenges with traditional 

conceptual modeling practices, research in conceptual modeling began to address the 

challenges of modeling in OIEs and other similar settings. There is growing evidence 

supporting the premise that in open and highly heterogeneous environments (e.g., citizen 

science, health forums, and other UGC), reaching an agreement on all valid domain 

conceptualizations by all potential system users is infeasible (Lukyanenko and Parsons, 

2013a). One solution that has been proposed is to skip conceptual modeling entirely and 

not develop traditional domain representations such as those shown in Figure 2. The 

information systems development under this “lightweight” or “no conceptual modeling” 

approach then simply selects a flexible data model (e.g., a schema less no-SQL database), 

and presents users with an interface where users, in a free-form manner, could suggest 

any attributes or classes they wish to report (Lukyanenko and Parsons, 2013a, 2013b). 

While the no conceptual modeling approach has advantages (e.g., ability to generate 

more quantity of information, ability to record novel classes and attributes), the 

proponents of this approach themselves concede that the resulting data is highly 

heterogeneous and inconsistent (Lukyanenko and Parsons, 2013b; Lukyanenko et al., 

2014). For example, one user could describe instances of hay fever as rhinitis and another 

user may describe it as a nasal allergy or simply an allergy. In the absence of other 

information, linking these three records becomes problematic, negatively affecting 

retrieval, aggregation, and analysis of the data resulting from the “no conceptual 

modeling approach”. Motivated by these limitations, we develop an alternative approach 

that seeks classes for which the inter-user agreement is maximal. It is based on the 
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premise that while heterogeneous online audiences may have many disagreements, there 

could also be a significant number of classes that are universally accepted by almost all 

potential users. Having identified these classes, developers could then follow traditional 

phases of the information systems development that rely on conceptual models for the 

underlying structure of the domain. These classes can inform traditional database 

development and user interface design and drive the data collection choices. Studies in 

conceptual modeling that follow theories in psychology suggested the existence of such 

classes termed in psychology basic-level categories (Lukyanenko et al., 2014; McGinnes, 

2011). In the next section we turn to psychology in search for theoretical guidance for the 

method for identification and application of basic-level categories. 

Conceptual Motivation for Guidelines 

The notion of different hierarchies of classes is not new to conceptual modeling research 

and practice. Conceptual grammars used in Information Systems such as the Entity-

Relationship (ER) model, the Unified Modeling Language (UML) Class Diagrams, and 

Object-oriented programming, have a conceptual and philosophical root in theories of 

classification (e.g., modeling the real world). For example, upper-level classes in Object-

oriented programming are defined in terms of shared properties (e.g., inheritance) that are 

consensus-driven. Yet, there are no widely accepted rules for creating or evaluating 

collections of classes (Parsons and Wand, 1997). There is no perfect design since it is 

subject to someone’s perceived reality (Wand et al., 1999; Taivalsaari, 1996). The level 

of categorization depends on who is doing the categorizing and on what basis – the 

categories of objects are defined by properties shared by the objects themselves and the 
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abstractions of similarity to one or more individuals (Lakoff, 1987; Taivalsaari, 1996). 

Previous research acknowledges the need for design principles to guide conceptual 

modeling (Parsons and Wand, 1997) and the potential value of basic-level classes 

(Lukyanenko et al., 2014). The aim is to derive design principles from psychology to 

facilitate the identification of these basic level classes.  

Information systems researchers have used two main theoretical foundations in 

understanding conceptual modeling: ontology and cognition. Ontology deals with models 

of reality. Bunge (1977) ontology has been popular in IS (and conceptual modeling) as it 

maps well to IS constructs (things – individuals or entities) (Wand and Weber, 1990) and 

predicts information systems phenomena (Gemino and Wand, 2004; Siau and Wang, 

2007). Cognitive processes, on the other hand, moderate human understanding of the real 

world and provide theories of cognition, particularly, theories of classification, to identify 

fundamental concepts (e.g., classes) that describe an application (Rumbaugh et al., 1991; 

Lukyanenko et al., 2014). In the development of our guidelines, we complement ontology 

with cognition since classification is intended to represent human knowledge and thus the 

importance of cognition in deriving principles to choose classes (Parsons and Wand 

1997). 

According to cognitive psychology, classes support vital functions of an organism via 

cognitive economy and inductive inference (Lakoff, 1987; Roach et al., 1978; E.E. Smith 

and Medin, 1981). Both functions compete for the same limited cognitive resources of 

human memory and processing power. Cognitive economy is achieved by maximally 

abstracting from individual differences among objects and then grouping objects in 
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classes of larger scope (Fodor, 1998; G.L. Murphy, 2004; E.E. Smith and Medin, 1981). 

In biology such classes could be animals and plants. By storing only a few classes, 

humans can easily memorize identifying characteristics of the different classes. Having 

only a few classes in the vocabulary maximizes the likelihood that two different people 

would have the same classes. This promotes communication efficiency and social 

interaction – an important function of classification in human society (G.L. Murphy, 

2004). Cognitive economy becomes further vital as the environment continuously 

supplies organisms with massive amounts of unique sensory data, thus having fewer 

classes helps people cope with the changing diversity of the world. Strictly focusing on 

the benefit of cognitive economy therefore suggests that the best candidates for maximal 

agreement classes are those classes with the broadest scope – those at the top of the 

taxonomic tree. 

Overemphasizing cognitive economy, however, comes at the expense of ignoring certain 

individual characteristics of organisms that may be vital for the organism’s function and 

survival. For example, suppose we are interested in a particular property of an object we 

encounter (e.g., we wish to discern if a rhinitis is allergic or non-allergic). Classifying a 

condition as a rhinitis (a high-level class) versus Hay Fever (a lower-level, particular 

kind of allergic rhinitis) gives different probabilities of this object having the property of 

interest. The probability that a Hay Fever is due to an allergic reaction is substantially 

higher than the probability that any rhinitis is produced as an allergic reaction. This 

example also demonstrates why a domain, such as healthcare, is interested in a finer 

(specific) level of classification. Knowing that a phenomenon is Hay Fever affords 
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greater inferences and action than knowing it is a rhinitis or nasal congestion. The ability 

to predict attributes of instances of a class, or the inferential power, increases as the scope 

of the class decreases. While cognitive economy mainly deals with communication, 

memory, and processing, inferences are the primary drivers of human behaviour and 

decisions (Tsui et al., 2010; E. Smith, 1989).  

It follows then that to maximize predictive power, humans should prefer classes with 

narrower scope. Thus while classes with narrower scope are useful in many ways, 

memorizing, organizing, and communicating these categories require more cognitive 

effort. The trade-off between these competing functions is considered one of the defining 

mechanisms of human cognition and behavior (Corter and Gluck, 1992; Roach et al., 

1978). Based on the tradeoff between cognitive economy and inferential utility, 

psychology hypothesized that humans favor (e.g., learn, communicate) those classes that 

maximally exploit both predictive power of classes and their cognitive economy. Rosch 

et al. (1976) argued that in the world of “infinite number of discriminately different 

stimuli” and facing the tradeoff between cognitive economy and inferential power, 

humans favor classes that are most capable of supporting these competing objectives of 

classification. Based on converging evidence from anthropology (Berlin et al., 1973; 

Raven et al., 1971), Rosch et al. (1976) proposed that there is a set of “privileged” classes 

coined basic level categories.  

Basic level categories became the subject of active research in psychology and cognitive 

sciences, generating considerable amount of evidence and making this concept one of the 

most established propositions in psychology (for reviews, see (G.L. Murphy, 2004; 
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Lassaline et al., 1992)). Below we review conclusions on basic level categories as a result 

of forty years of studies in psychology. 

First, as follows from the special function of basic-level categories of optimizing the 

tradeoff between cognitive economy and inferential utility, basic level tends to be a 

taxonomic middle. Concepts that belong to this level tend to reside between the highest 

and lowest level in a conceptual hierarchy (e.g., “dog” is higher than “collie” and lower 

than “animal”).  

Second, it has been suggested that a basic level category is often an entry category – the 

first concept thought by a user when encountering a phenomenon (Jolicoeur et al., 1984). 

Gregory L Murphy and Brownell (1985) called it the “necessary first step” of 

identification (p. 72). Being the entry points, these classes tend to be retrieved extremely 

quickly and accurately (Lukyanenko et al., 2014; Zhou et al., 2010). While the use of 

basic level categories, as opposed to more accurate subcategories, may be contingent on 

one’s expertise (e.g., dog experts may bypass basic and immediately think of a breed), 

experts readily relate to the basic level (in contrast to lower levels that require familiarity 

and expertise for use)(Tanaka and Taylor, 1991).  

Third, basic-level categories tend to be common words such as bird, tree, fish, cup, chair, 

and house (for more examples, see Table 1). Psychologists further demonstrated that 

children learn basic categories before superordinate ones (Carolyn B. Mervis et al., 1994) 

and consequently adults use more frequently in ordinary (non-specialized) day-to-day 

communication (Lassaline et al., 1992; Rosch et al., 1976) since these categories apply 

across domains. In addition to categories for nature, researchers have demonstrated basic 
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level categories for events (Rifkin, 1985), personality types (Cantor and Mischel, 1979), 

environmental scenes (Tversky and Hemenway, 1983), and for psychiatric diagnostic 

categories (Cantor et al., 1980).  

Table 1. Some examples of basic-level categories from psychology studies 
  Basic-level category Source 
Bird, dog  Tanaka and Taylor (1991) 
Bear, rhino, pig, seal, bug, cat, turtle, crab, dog, fish, 

elephant, rabbit, horse, lizard, hippo, duck, snake, frog 

Waxman and Klibanoff (2000) 
Horse, rhino, lizard, pig, hippo, bug, duck, turtle, 

snake, dog, frog, elephant  

Klibanoff and Waxman 

(Klibanoff and Waxman, 2000) 
Tree, fish, bird Rosch et al. (1976) 
Flower Mervis et al. (1994) 
Dog, duck, cat Rhemtulla and Hall (2009) 
Mouse, fish, butterfly, bird, rabbit, beetle, dolphin, 

horse, dog, tree, monkey, chicken 

Op de Beeck and Wagemans 

(2001)  
Apple, pear, orange, lime, coconut, pineapple, carrot, 

peas, corn, pepper, pumpkin, avocado, bird, dog 

Jolicoeur et al. (1984) 
Birds, dogs, fish, other common animals (Johnson and Mervis, 1997) 
Bird, dog (Macé et al., 2009) 
Apple, melon, berry Wales et al. (1983) 
Horse, spider, chicken, fish, dog Mandler and Bauer (1988) 
Cat, dog, horse, bird, bat Younger and Fearing (2000) 
Bush, tree, flower Murphy and Wisniewski (1989) 
Cow, sheep Zhou et al. (2010) 
Bird, dog, flower, fish Grill-Spector and Kanwisher 

(2005) 
Cat, dog, horse, cow, apple, pear, daffodil, sunflower Bowers and Jones (2008) 
Dog, tree Rorissa (2008) 
Bird, flower, tree Barr and Caplan (1987) 
 

Fourth, compared to other levels, subcategories within basic category are perceived to be 

most similar to each other (Rhemtulla and Hall, 2009) while two neighboring basic-level 

categories have many psychologically relevant differences (Markman, 1991). In general, 

basic level maximizes “both within-category similarity and between-category 

dissimilarity” (Mandler and Bauer, 1988). Rosch et al. (1976) proposed that basic-level 

categories have the most defining attributes (e.g., more diagnostic attributes that describe 

bird than those that describe a specific bird).   
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Fifth, Basic level categories are at a level in the taxonomy at which category members 

can be visualized. In cognitive science, a category exists whenever two or more 

distinguishable objects are treated equivalently for some purpose (C. B. Mervis and 

Rosch, 1981). Categories can be derived as a result of sensory perception, cognitive, 

conceptual, and emotional processing of objects (Ozcan et al., 2014).  

Sixth, basic level categories tend to be short (see Table 1 for examples). Word length is 

associated to the frequency of its use – things have many equally correct names some of 

which are more common than others. Objects named with infrequent words take longer to 

name than objects named with frequent words (Oldfield and Wingfield, 1965). 

Seventh, Adults have notions about the kind of language appropriate for use with children 

(e.g., long names are troublesome for children). Carolyn B Mervis and Crisafi (1982) 

suggested that children’s categorization ability is acquired in the order: basic, 

superordinate, and subordinate. The options are constrained by the contextual contrasts to 

be expressed rather than by the linguistic ability of the interlocutor (Wales et al., 1983). 

Last, psychology research further explored formal models of basic-level categories. An 

early model by Rosch et al. (1976) advocated cue validity, a sum of the conditional 

probabilities that an object is in a target class (e.g., fish) given that it possesses a set of 

attributes (e.g., can swim, has scales). Rosch et al. (1976) argued that since basic-level 

categories hold the greatest number of attributes, cue validity of such classes would be 

maximal. This argument was refuted by Murphy (1982), who pointed out that cue 

validity model lacked constraints (e.g., limited cognitive capacity constraint) and was 

unbounded. To balance cue validity, another measure, category validity was proposed. It 
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reversed the conditional probability of cue validity and measured the probability of an 

object having features of interest (e.g., can fly, has wings) given that it is assigned a 

particular category (e.g., bat).  

Combining cue and category validity models appeared to offer a mathematical balance to 

compensate for lack of binding constraints. The problem, however, is that it is unclear 

how to combine category and cue validity in such a way that their individual 

contributions genuinely reflect the importance of these functions to humans. Several 

heuristic approaches and algorithms, mainly in artificial intelligence, cognitive science, 

and economics have been proposed. Jones (1983) developed a collocation model. In this 

model, cue and category validity were multiplied to produce a concave function with a 

unique maximum. The collocation measure was argued to be the greatest for basic-level 

categories. While the collocation model resolved the unboundedness issue of cue and 

category validity, it still lacked a theoretical rationale for combining the two measures in 

a particular way (Corter and Gluck, 1992).  

Building on the above theories, a model of classification optimality and category utility 

was proposed by Corter and Gluck (1992; 2012). This model is designed to directly 

operationalize the tradeoff between cognitive economy and inferential utility in a way 

that adheres to the widely held propositions about human cognition in psychology. This 

model has been applied in artificial intelligence and used as part of more complex 

algorithms (Gennari et al., 1989; Nakamura et al., 1993). The model assumes a class 

hierarchy (e.g., ENT condition – Rhinitis – Hay Fever, such as in Figure 2). Corter and 

Gluck (1992; 2012) argue that the usefulness of a class is rooted in the ability to predict 
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unobservable attributes (inferential utility). Moreover, a class is designed to optimize 

information processing and transfer (cognitive economy). An optimizing function of 

category utility (CU) was then defined. Corter and Gluck (1992) posit that classes with 

the highest CU will also be most universal among all humans, since knowing and storing 

them provides the greatest value. Classes with greater CU therefore can be considered 

basic. The category utility function for the domain is: 

𝑚𝑎𝑥 𝐶𝑈 = 𝑓 𝑐,𝐹 = 𝑃 𝑐 [𝑃 𝑓! 𝑐 ! −   𝑃 𝑓! !!
!!! ]                           

In this formula, some class, c is defined by a set of objects o. Each object is characterized 

by a finite feature (attribute) set, 𝐹 = {𝑓!, 𝑓!,… , 𝑓!}. Consider that with no knowledge 

about a class membership, 𝑓! (or a set F) can be predicted using its base-rate probability 

𝑃(𝑓!). This probability, in turn, reflects the occurrence of that feature in reality. Such 

random guess, will be, on average, correct 𝑃(𝑓!) times, leading to the final probability of 

correct guessing in the absence of a class being the product of the two probabilities, or 

𝑃(𝑓!)!. Extending the same rationale to the probability of guessing a feature under the 

assumption of a class membership the correct guess will be 𝑃(𝑓!|𝑐!)! . Thus, the 

difference between 𝑃(𝑓!)! and 𝑃(𝑓!|𝑐!)! denoted the additional benefit gained from the 

class membership. This difference, however, needs to be weighted by the probability of a 

class 𝑐!  occurring in the world, since the guess is made under the condition of 𝑐! 

identification. 

Category utility ranges between 0 (when predicted frequencies are equal to base-rate) and 

1 (if the base-rate frequencies are low, while conditional probabilities are high). An 



 

 24 

interesting property of CU is its relationship to the communication theory by Shannon 

and Weaver (Shannon, 1948). CU can be considered as the expected reduction of 

uncertainty due to communication of category information through some cue. The 

uncertainty is maximal when no category is present and it is being reduced the more 

“informative” the category becomes (but balanced by the frequency of the category). The 

category utility offers opportunities for computational approaches to conceptual modeling 

and automatic discovery of basic-level categories. 

To summarize, classification theory in psychology amasses considerable evidence for the 

existence of classes that maximize agreement among people with different backgrounds, 

education, and functional needs. Coined basic level categories, these classes have been 

shown to carry a multitude of benefits resulting in a significant cognitive bias toward 

these classes. Furthermore, studies in psychology proposed methods for identification and 

selection of these classes. In the next section we use and expand upon the conceptual 

motivations highlighted in this section to develop guidelines for identifying basic classes 

in conceptual modeling. 
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Guidelines for Identifying Basic Classes in Conceptual Modeling 

A natural application of the theoretical propositions in psychology is to construct a set of 

design guidelines (see Table 2) an analyst (or generically, agent) could follow. In 

proposing the conceptual modeling guidelines, we first consider relevant evidence in 

psychology (reviewed in (Lassaline et al., 1992; G.L. Murphy, 2004) and highlighted 

above) and then derive specific design propositions based on widely-held psychological 

propositions. We then illustrate the application of each guideline with at least one 

example.    

Table 2. Guidelines for Identifying Basic Classes in Conceptual Modeling 
Guideline Name Guideline Description 

G1: Middle level Identify classes in a domain in the middle of the conceptual hierarchy. 

G2: Entry Category Elicit entry categories from a sample of potential users for the domain objects of 
interest. 

G3: Frequent Word Identify the most frequent domain words used in a typical discourse. 

G4: Cohesion and 
Coupling 

Find a taxonomic level, for which sibling categories have maximal difference and 
their respective children have maximal similarity. 

G5: Object 
Visualization 

Find the highest category in the taxonomy for which category members can be 
easily visualized. 

G6: Simplest Words Among the classes in a domain, identify shortest and morphologically simple words. 

G7: Original Words If applicable, identify the first words or concepts learned by children or used by 

mothers to talk to children. 
G8: Cognitive Utility 
(CU) 

Identify classes with the greatest CU coefficient. 

Guideline 1. Middle level.  

Knowledge about objects in the world typically has a hierarchical organization (de Beeck 

and Wagemans, 2001; Roach et al., 1978). Indeed the conceptual model in Figure 2 

depicts classes that are organized in a hierarchy from more abstract (e.g., ENT Condition) 

to more specific (e.g., Hay Fever). Organizing knowledge hierarchically is important for 

both cognitive economy and inference. According to psychology, inferences about 
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properties of abstract objects are less reliable than inferences drawn from more specific 

objects (e.g., knowing something is a Laryngopharyngeal Reflux suggests there is no 

heartburn). As discussed before, psychologists contend that humans favor those classes 

that maximally exploit predictive power of classes and their cognitive economy. In our 

conceptual model, knowing the condition is rhinitis or reflux allows us to better 

characterize the condition as opposed to knowing something is a nasal allergy or an 

esophagus disorder. 

One of the most widely accepted propositions about basic level categories is that they 

tend to be in the middle of taxonomic hierarchies (Lassaline et al., 1992; Rosch et al., 

1976). The basic level falls somewhere in the middle of taxonomic hierarchies, regardless 

of how many levels they contain (Neisser, 1987). Objects at the subordinate (lower than 

basic) level need higher perceptual processing compared to that of basic-level 

categorization (Jolicoeur et al., 1984) whereas middle-level categories are learned most 

quickly or can be named more quickly after they were learned (Corter and Gluck, 1992). 

Incorporating the notion of basic level being taxonomic middle leads to the following 

conceptual modeling guideline: 

Guideline 1 (G1): Identify classes in a domain in the middle of the conceptual 

hierarchy. 

To apply this guideline, analysts could arrange classes in a domain in a hierarchy (e.g., 

such as that in Figure 2) and identify classes in the middle. As much human knowledge is 

organized hierarchically, analysts could also leverage many existing repositories (e.g., 

research databases, wikis, books) to identify core concepts within a particular domain. 
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This process can also be automated whereby ontology is being provided as an input to an 

algorithm that outputs classes in the taxonomic middle. However, it is important to 

mention one cautionary note when applying this guideline. Psychology research does not 

offer precise guidance on determining which classes should be selected in the case when 

the hierarchy is deep (e.g., containing more than 3 levels). It is further unclear how to 

select the middle class when the number of levels is even. As a general rule that applies 

broadly to the guidelines presented in this paper, we suggest to consider all eight 

guidelines together when making the final determination. Indeed, the seminal paper on 

basic level categories by Rosch et al. (1976) introduces this concept in psychology, 

proceeded under the assumption of two competing levels (e.g., rose vs. flower, eagle vs. 

bird) and in the course of a dozen experiments, settled on the level of bird, flower rather 

than rose, eagle as basic. Thus, one approach to the practical application of G1 is to select 

more than one level from the middle of the hierarchy. These levels can then be refined by 

considering other guidelines. 

Domain ontologies are typically represented in a hierarchy that may span both in depth 

(vertical axis) and breadth (horizontal axis). If the number of classes in the vertical axis 

of the hierarchy was odd – ENT condition, rhinitis, and hay fever (n = 3) – the basic level 

category would be that of the taxonomic middle, in this example rhinitis. If the number of 

classes in the vertical axis of our taxonomy is even – ENT condition, esophagus disorder, 

reflux, and gastroesophageal reflux (n = 4) – we could argue that both esophagus 

disorder and reflux are both in the taxonomic middle. When n is even and greater than 

four – ENT condition, nasal allergy, rhinitis, non-allergic rhinitis, and vasomotor rhinitis 
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(n = 5) – the taxonomic middle, as described above, could be every class between the 

superordinate (e.g., ENT condition) and the subordinate (e.g., vasomotor rhinitis), which 

we refer as inclusive middle or the classes closest to the hierarchy’s middle (e.g., rhinitis 

–one class since it is a hierarchy with an odd number of classes), which we refer in this 

paper as exclusive middle. In the ENT example in Figure 1, the tuple of classes at the 

inclusive middle are: {Ear infection/Otitis; Nasal allergies, rhinitis, non-allergic rhinitis; 

nasal allergies, rhinitis, allergic rhinitis; esophagus disorders, reflux}. The tuple of classes 

at the exclusive middle are: {Ear infection/Otitis; rhinitis; esophagus disorder, reflux}. 

The excluded classes, in both cases, would be the superordinate class {ENT condition} 

and the subordinate classes {Suppurative otitis media, vasomotor rhinitis, hay fever, 

gastroesophageal reflux, and laryngopharyngeal reflux}.  

Guideline 2. Entry Category 

It has been suggested that basic categories often become an entry category – the first 

concept thought by a user when encountering a phenomenon (Jolicoeur et al., 1984). 

Gregory L Murphy and Brownell (1985) called it the “necessary first step” of 

identification (p. 72). Bering the entry points, these classes tend to be retrieved extremely 

fast, accurately, and efficiently (Zhou et al., 2010). Naturally, the entry point process is 

context-sensitive (Tanaka and Taylor 1991). Basic-level is the most abstract level at 

which people are able to form an integrated perceptual representation of a category. 

These basic-level concepts are activated faster than subordinate concepts because they 

are perceptually distinctive. For example, an apple is matched with the name “apple” 

faster than with “delicious apple” or with “fruit” (Rosch et al., 1976).  
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Psychology research demonstrates that subjects first categorize objects at the basic level 

before evaluating membership at other levels via additional perceptual processing 

(Jolicoeur et al., 1984; Rosch et al., 1976). However, there are some exceptions in which 

atypical subordinates are differentiated and informative enough that are considered as 

basic rather than subordinate (Gregory L Murphy and Brownell, 1985). An entry category 

may be different in situations when a phenomenon is an atypical representative of its 

basic class (e.g., subordinate penguin of the basic category bird). In this case, humans 

tend to ignore a general basic category and reason about an object using specialized 

categories that seen more fitting to an atypical stimuli (e.g., duck, penguin, chicken). This 

raises the question that there might be multiple basic level categories (e.g., bird, duck; 

bird; chicken) within the same taxonomic tree. Entry level categories explain the shorter 

reaction times found at the subordinate level for some atypical members of basic 

categories (Macé et al., 2009). Incorporating the notion of entry category leads to the 

following conceptual modeling guideline: 

Guideline 2: Elicit entry categories from a sample of potential users for the domain 

objects of interest. 

It should be noted that an entry category may be contingent on domain expertise, general 

familiarity with objects in a domain, and are also affected by typicality of objects. Studies 

show that people may use subordinate names more often for typical exemplars (e.g., 

penguin vs. bird) (Jolicoeur et al., 1984). Research further suggests that experts may 

categorize things at the subordinate level as fast as they can categorize them at the basic 

level whereas non-experts use basic level names (Johnson and Mervis, 1997; Tanaka and 
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Taylor, 1991). Expertise does not have to span an entire domain; it could be narrow in 

scope (e.g., a single subordinate category). For example, a person who owns a collie and 

spends a lot of time with the dog could be considered a “collie expert” (Tanaka and 

Taylor, 1991). Likewise, people are faster at categorizing a boxing glove as a boxing 

glove than as a glove, even though the latter is the basic category (Gregory L Murphy and 

Brownell, 1985). Such a person might be aware of the distinguishing features of collies, 

but know little about other sub-level species of dogs.  Similarly, Boster (1986) found that 

women from Aguarana, who typically are engaged in cultivating manioc, tended to refer 

to manioc plants with highly specific (species-level) names. Other members who 

interacted less with manioc named these plants at the basic level (Wales et al., 1983; 

Brown, 1958). These individual differences of classification can be a function of 

idiosyncratic life experiences which analysts may not be aware of. Thus, it is important to 

elicit entry categories from potential users regardless of their perceived basic level status. 

Other guidelines can be then considered for narrowing the set to those that are entry for 

most potential users. 

Consider the case of selecting classes for an OIE like the one in Figure 2. It may be more 

effective to have information organized in a way that is aligned to the individual’s 

knowledge. Knowing a patient has a nose allergy does not give the individual enough 

information to select an effective course of treatment. At a general level, we know the 

patient has an abnormal condition (e.g., which may prevent him from performing daily 

activities). At a specific level, differentiating between the two is critical since non-

allergic rhinitis should be treated differently from allergic rhinitis. Yet, some users may 



 

 31 

not be familiar with the condition and course of treatment—especially for non-chronic 

conditions. Patients familiar with a condition will post content at a specific level (e.g., “I 

never get sick but I suffer from vasomotor rhinitis which means I often can't breathe 

through my nose”) or less informed patients may post at a more general level (e.g., “I 

wish I never had this kind of allergy…Go away, rhinitis. Shoo!”). Patients not aware of 

the condition may refer to the symptoms in an attempt to assess their medical condition 

(e.g., “Googling the symptoms I am experiencing for several weeks now I suspect I suffer 

from allergic rhinitis - I can’t breathe through my nose!”). Guideline 2 provides a 

mechanism to elicit relevant classes from users, including non-experts users. We 

illustrate the need for model inclusion with two examples: 

Example 1: Modeling a symptom checker 

The conceptual structure of a symptom checker project such as the WebMD symptom 

checker (symptoms.webmd.com) allows the patient to input their symptoms to learn 

about plausible conditions and next steps.  These models can be sourced from available 

medical ontologies, scientific publications, or subject experts. The structure used in 

WebMD symptom checker is one that requires the input of symptoms by the user. In 

developing such system, we argue that users with varying knowledge can inform the 

structure of the information systems developed. For instance, following the hierarchy on 

Figure 2, if a non-expert user reflects a very specific symptom such as lacrimation, the 

probability of accurately inferring the patient has Hay Fever is higher than if the user had 

input the symptom fatigue, which would yield a higher number of potential conditions. 

Thus, we can complement existing models by eliciting potential categories from non-
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expert users. In Figure 3 a user is asked to input potential classes for specific instances 

they observe of a patient with Hay Fever. For instance, there could be some atypical 

subordinate categories (e.g., lacrimation) that may be familiar to users based on their 

personal experiences (e.g., chronic conditions or past conditions). Other users may state 

broader categories such as having a runny nose or having red eyes. 

 
Figure 3: Modeling citizen science 

  

A second illustration we use is the example of modeling the graduate business school 

admissions process adapted from (Saaty and Vargas, 2012). The goal of the admission 

process is to select the best candidates from a prospective pool of applicants by analyzing 

their qualifications and fit to the program. 

Example 2: Modeling the graduate business school admission process 

The selection process involves choice and logical decisions. Saaty and Vargas (2012) use 

the Analytic Hierarchy Process (Saaty, 1988) to mathematically model the relevant 
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characteristics of a candidate. Ideally we need “as much information about the 

candidate”. For instance, information about their learning style (e.g., active, visual, 

sequential), use of technology (e.g., computer literacy), self-efficacy, reasons for 

education, academic literacy, Intellectual Quotient (IQ), among many other individual 

traits that completely characterizes the individual. In reality, however, an admission 

committee focuses on a limited set of basic categories (e.g., scores, years of work 

experience) that characterize the student. These characteristics could be elicited from 

interested parts (e.g., admission committee members, faculty, students) through different 

methods (e.g., interviews, questionnaires, brainstorming sessions, use cases, or role-

playing, among others). For example, in designing the system, we could gather a pool of 

potential users to elicit potential classes (See Figure 4).  From the inputs introduced in the 

UI in Figure 4, someone familiar with the admission process and comprehensive adaptive 

exams (CATs) may refer to the potential class GMAT (an atypical subordinate) as 

opposed to score (a basic level) or they may refer to GPA as opposed to grade. The result 

is a comprehensive list of potential classes – both general and specific. 
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Figure 4: Modeling the admission process 

  

Guideline 3. Frequent Words 

Basic level categories are words that occur most often in ordinary daily discourse. Zipf 

(1935) stated that the length of a word is inversely related to its frequency (e.g., there is a 

small number of words that occurs frequently, while most words occur infrequently). 

Folk taxonomists have demonstrated an indexical relationship between the length of a 

name and the rank of that name in the hierarchical nomenclature system (Brown, 1958), 

since objects named with infrequent words take longer to name than objects named with 

frequent words (Oldfield and Wingfield, 1965). As categories become more 

differentiated, they become more basic. This idea leads to the third guideline: 

Guideline 3: Identify the most frequent domain words used in a typical discourse. 

The list of potential classes in guideline 2 depends on the sample of users the analyst is 

eliciting information from. Guideline 3 provides a mechanism to expand the candidate 
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classes. The goal is to extract data from different sources and to identify common words. 

For a citizen science scenario or a healthcare scenario, the analyst could parse 

information from scientific publications, biology ontologies, or user generated content, to 

identify common words that can suggest potential classes. For instance, the Catalogue of 

Life (www.catalogoflife.com), a comprehensive index of species containing information 

on names and relationships of over 1.6 million species. In this catalogue each instance 

has a taxonomic hierarchy that contains information that range from most abstract (e.g., 

kingdom), middle (e.g., class, order, family), to the most specific (e.g., genus, species, 

and subspecies). In the healthcare scenario, the analyst can leverage on existing ENT 

ontologies such as the Ear, Nose, and Throat Findings Ontology 

(http://purl.bioontology.org/ontology/AIR/U000041) or the Systematized Nomenclature 

of Medicine – Clinical Terms (SNOMED CT) (Stearns et al., 2001) to retrieve potential 

classes that relate to the domain of interest. 

Following the hierarchy in Figure 2, for each of the instances in the ENT domain, we 

could automate the process by parsing exemplars in our domain of interest and extract 

concepts at any of the levels in the taxonomy. Next we filter out the most common terms 

(e.g., based on frequency or any other established metric) and ask potential users – both 

experts and non-experts – to identify basic classes. A simple framework to increase the 

potential terms to our basic taxonomy is to collect reports and documents in the field of 

interest (e.g., parse from domain ontologies, UGC mediums) and plot the frequency of 

each of the terms, keeping the most relevant ones (e.g., top N). 
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Guideline 4.Cohesion and Coupling 

The basic-level effect arise because exemplars of categories are quite similar to one 

another and quite distinct from the exemplars of other categories – by knowing that a 

canary is a bird, we can generalize to items with similar characteristics (e.g., other kind of 

birds) but not with items that are dissimilar (e.g., other kind of animals) (Rogers and 

Patterson, 2007). Basic level categories are the most differentiated (Gregory L Murphy 

and Brownell, 1985) and can be seen as a compromise between the accuracy of 

classification at a maximally general level and the predictive power of a maximally 

specific level (G.L. Murphy, 2004). People are able to list more attributes for different 

objects belonging to the same basic level concept than for objects belonging to more 

abstract concepts (Rosch et al., 1976). Individual dogs are all represented with quite 

similar patterns, whereas other kinds of animals (e.g., pigs, goats, birds, etc.) are 

represented with somewhat different patterns, and non-animals are represented with 

dramatically different patterns. In other words, basic-level categories correspond to 

relatively tight and widely separated clusters of distributed representations in the network 

of categories – they are both distinctive and informative (Rogers and Patterson, 2007). 

Basic level categories are in general more distinctive than subordinate categories. 

Subordinate level categories are more specific but include only small sets of members 

(Schmid, 2007; Rosch et al., 1976; Lakoff and Johnson, 2008). Members of a basic 

category tend to resemble each other – and do not resemble members of neighboring 

basic categories from the same superordinate, maximizing both the within-category 

similarity and between-category dissimilarity (Macé et al., 2009). Rifkin (1985) found 
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evidence that the basic level would be the most inclusive level in event taxonomies at 

which clusters of features are attributed to categories.  

Subordinate concepts correspond to smaller and less well-separated clusters within the 

basic-level cluster and have many near neighbors from different subordinate groups – 

they are informative but not distinctive. Superordinate concepts correspond to more 

inclusive but sparser clusters – they are distinctive but not as informative (Rogers and 

Patterson, 2007). Category membership has a degree (gradient) of membership rather 

than a binary membership (member/non-member) and objects that are highly typical of a 

category have a high degree of membership in the category as opposed to less typical 

objects – lower degree of membership or no membership if it is a completely unrelated 

object (McCloskey and Glucksberg, 1978).  

Guideline 4: Find a taxonomic level, for which sibling categories have maximal 

difference and their respective children have maximal similarity. 

The amount of terms will depend on the scope of the domain we are trying to model. 

Notwithstanding, the next step is to understand the relationship among concepts in our 

pool of potential categories. We can calculate the total possible combinations of r objects 

from a set of n objects C(n,r). In our ENT example in Figure 2 we have 13 classes in 

total, thus, a total of 120 different combinations (see Formula 1). 

C   n, r =
𝑛!

𝑟! 𝑛 − 𝑟 !
=> 𝐶 13,2 =   

13!
2! 11!

=
13 ∗ 12
2

= 78      𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡  𝑝𝑎𝑖𝑟𝑠 

Formula 1: Combination of pairs from a set of 16 objects 
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For illustration purposes, we are going to use only three terms (objects): <hay fever, 

reflux, ENT condition>. The total number of possible combinations of 2 terms from a set 

of 3 terms C (3,2) is 3 (See Table 3). We then classify whether two terms are related or 

not. This task can be automated and validated by multiple users (e.g., crowdsourcing task, 

or by the internal team). For example, the outcome for pair <term 1, term 2> could be: a) 

term 1 is associated to term 2; b) term 1 is not associated to term 2; c) term 1 is similar to 

term 2 (e.g., eagle vs. bird, boxing glove vs. glove). 

Table 3. Combinations and relation between the different term pairs 

C   n, r =
𝑛!

𝑟! 𝑛 − 𝑟 !
=   

3!
2! 1!

= 3 

Pair Relation 
<hay fever, reflux> 0: hay fever is not reflux 

<hay fever, ENT condition> 1: hay fever is an ENT 
condition 

<reflux, ENT condition> 1: reflux is an ENT condition 
The binary classification allows the designer to create a diagram with the mappings 

between concepts. The relevance of each class can be assessed by the number of 

connections a class has to other classes (e.g., ENT condition is connected to reflux and 

hay fever). The next guideline attempts to account for the multi-level aspect of related 

concepts by finding the highest category in the taxonomy (e.g., reflux is an ENT 

condition but not all ENT conditions are reflux– thus ENT condition is above reflux in 

the hierarchy.   

Guideline 5: Object Visualization 

A concept is a mental representation of an object or a class of similar objects. Concepts 

can also represent abstract notions, which are implicitly experienced (e.g., adventure) or 

emotions (e.g., love) (Gregory L Murphy, 1996; Lakoff and Johnson, 2008). Categories 

can occur as a result of sensory perception, cognitive, conceptual, and emotional 
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processing of objects (Ozcan et al., 2014). Basic level categories are the most inclusive 

categories that allow for the construal of a visual gestalt (e.g., an organized whole that is 

perceived as greater than the sum of its parts) image of a category schema compatible 

with most category members. For example, the outer shapes of most members of the 

category dog are so similar that it is possible to imagine a picture of a dog “as such”. This 

is clearly impossible for superordinate categories because their members’ outer shapes 

are divergent. Basic level categories are those categories for which this informativeness 

and facilitation of feature prediction is maximal – compared with superordinate and 

subordinate categories. 

For instance, a visual stimulus such as a shore birds first activates the bird node, 

providing rapid access to the name bird and other typical bird properties (e.g., has wings 

and can fly) (Rogers and Patterson, 2007). 

Guideline 5: Find the highest category in the taxonomy for which category members 

can be easily visualized. 

Following the citizen science taxonomy from Figure 1, an analyst may list the categories 

at the bottom of the hierarchy and ask users to identify a single visual object that 

represents that category. For instance, in the ENT hierarchy in Figure 2, the classes at the 

bottom of the hierarchy would be suppurative otitis media, vasomotor rhinitis, hay fever, 

gastroesophageal reflux, and laryngopharyngeal reflux. The task for the user is to identify 

a visual object at the most abstract level but that is still attributable to that class. For 

example, for a gastroesophageal reflux, the highest category the user may think of is 

himself or someone else having a reflux. If the user goes to a more abstract category (e.g., 
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ENT condition) it is difficult to derive the class reflux because an ENT condition could 

also refer to an otitis or a nasal allergy– both different from the instance reflux.  On the 

other hand, an expert user may visualize a rhinitis as the highest category for hay fever. 

Once we have the list of visual objects, the designer could then validate whether these 

visual objects can be considered basic categories. 

Guideline 6: Simplest Words 

Things have many equally correct names, but some of these names are more common 

than others. Typically, things are first named so as to categorize them in a useful way 

(e.g., spoon rather than silverware) but these categorizations may change over time (and 

context). Nonetheless, shorter names tend to be the most frequently used names for a 

thing. Zipf’s law predicts that the basic taxonomic level, because of its frequent use, will 

be labeled with shorter, morphologically simpler terms than superordinate and 

subordinate levels (Craig, 1986). In other words, word length is primarily determined by 

frequency of use.  

Psychologists have shown that human memory is both flexible and extendable, provided 

the information is structured. Lexical development is characterized with an increasing 

morphological complexity. Basic names tend to be shorter termed primary lexemes 

(Brown, 1958; Rosch et al., 1976) whereas subordinate terms tend to be secondary 

lexemes that are formed from the basic level term and a modifier (Berlin et al., 1973). 

Objects named with infrequent words take longer to name than objects named with 

frequent words (Oldfield and Wingfield, 1965). 
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Adults have notions about the kind of language appropriate for use with children. The 

sequence in which words are acquired is set by adults rather than by children and may be 

based on utility. Children have trouble pronouncing long names and so should always be 

given the shortest possible names. A word is preferable to a phrase and a monosyllable is 

better than a polysyllable – this predicts the preference for dog over boxer or animate 

being. 

Sometimes the frequency-brevity principle makes the wrong prediction. For instance, a 

pineapple is called a pineapple and not a fruit, which is the shorter and more frequent 

term. Similarly, they will say apple, banana, orange – rather than fruit (Brown, 1958). 

Brown (1958) argues in favor of referent-name counts (local frequencies), which may be 

unique for some, while general for others. The best generalization seems to be that each 

thing is first given its most common name. 

Guideline 6: Among the classes in a domain, identify shortest and morphologically 

simple words. 

The probabilistic reduction technique posits that words that are more commonly used 

tend to be shorter. Short words are used to make communication more efficient – because 

of pressure for communication efficiency. Short words tend to be predictable, and, on 

average, convey relatively little information (Piantadosi et al., 2011). For example, we 

may refer to a vasomotor rhinitis as a rhinitis or refer to a gastroesophageal reflux as 

simply a reflux. 
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Guideline 7: Original Words 

The formal models of classification proposed in psychology can also inform 

identification of basic classes. The most complete and comprehensive model is that of 

(Corter and Gluck, 1992). 

Adults have notions about the kind of language appropriate for use with children (e.g., 

long names are troublesome for children). The most common name is at the level of usual 

utility but adults do not necessarily provide a child with the name that is at the level of 

usual utility in the adult world (e.g., a child would refer to a coin as a coin rather than a 

dime since children do not necessarily focus on the monetary value of the coin) (Brown, 

1958). 

Objects tend to be named first at a generic level that is perceptually primary (Berlin, 

2014). The naming practices of adults determine the child’s early vocabulary (Brown, 

1958). Mothers use more frequent and more general terms for their children (Wales et al., 

1983). The names used to refer to categories at this level tend to be brief. Considerable 

agreement exists across time, languages, and children in the first words children acquire 

(Clark, 1979). The options are constrained by the contextual contrasts to be expressed, 

than by the linguistic ability of the interlocutor (Wales et al., 1983). For example, when 

naming the same object for a child and an adult, adults will sometimes provide the child 

with a different name than the name they use with the adult (Anglin, 1977). Carolyn B 

Mervis and Crisafi (1982) suggested that children’s categorization ability is acquired in 

the order basic, superordinate, and subordinate. 
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Guideline 7: If applicable, identify the first words or concepts learned by children or 

used by mothers to talk to children. 

Following the ENT taxonomy in Figure 2, we could parse the content from medical 

books and store the terms in these documents. We then remove words that do not add 

value to the analysis (e.g., a, an, and, be, at, among others) and perform statistical 

analysis (e.g., term frequency-inverse document frequency, latent semantic analysis) to 

identify common words and or concepts and build a dictionary of common words used in 

medical books (e.g., ENT specialty). These common words are then added to the pool of 

potential basic categories. In the healthcare ENT taxonomy, we could use the 

Otolaryngology Head and Neck Surgery: Clinical Reference Guide (Pasha and Golub, 

2013), which covers rhinology and paranasal sinuses (e.g., allergy, rhinitis, immunology), 

endocrinology (e.g., thyroid, parathyroids), among others. For the citizen science, for 

example, the Kingfisher First Encyclopedia of Animals covers mammals (e.g., lion, 

elephant, wolf, bear, polar bear, walrus, etc.), reptiles (e.g., lizard, rattlesnake), birds 

(e.g., eagle, vulture, parrot, gull, and penguin), fish (e.g., fish, goldfish, salmon, seahorse, 

shark), or invertebrates (e.g., worm, spider, crab, fly, bee, wasp), among others. As we 

see from these examples, some of these exemplars are subordinates (e.g., parathyroid is a 

subordinate of thyroid, rattlesnake is a subordinate of snakes, or goldfish is a subordinate 

of fish), some of these overarching categories are those that are identified as basic (e.g., 

allergy, bird, fish), and some are more abstract (e.g., immunology, mammals). 
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Guideline 8: CU Coefficient 

The perceived world is not an unstructured total set of equiprobable co-occurring 

attributes. Rather, the material objects of the world are perceived to possess high 

correlational structure (e.g., wings co-occur with feathers more than with fur).  

Categories group together non-identical elements, which, by virtue of their common 

membership, can be treated as equivalent (Gregory L Murphy and Brownell, 1985). The 

main benefit of categories is to aid in prediction of feature values (J. R. Anderson and 

Matessa, 2014). A category is useful to the extent that it can be expected to improve the 

ability of a person to accurately predict features of instances of that category. Category 

utility provides a quantitative measure of the goodness of a category for summarizing and 

transmitting information (Corter and Gluck, 1992). The best categories are those that 

maximize feature predictability and optimize information transfer (Corter and Gluck, 

1992). C. B. Mervis and Rosch (1981) found that basic level categories are those that 

carry the most information about attributes. 

The main function of semantic memory is to support inferences about the unobserved 

properties of objects and events from partial information (J. R. Anderson, 1991). 

Guideline 8: Identify classes with the greatest CU coefficient. 

To demonstrate application of the CU function, consider the iSpot example in Figure 1 

and a hierarchy animal-bird-osprey. Assume the corresponding hypothetical feature 

probabilities given in Table 4. 
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Table 4. Feature probabilities to illustrate Corter and Gluck model 
 Base-rate P(k | animal) P(k | bird) P(k | osprey) 

motile 0.9 1 1 1 

can fly 0.4 0.5 0.95 1 

eats fish 0.006 0.007 0.01 0.9 

 

Computing these probabilities for each category gives CU measure shown in Table 5. 

Table 5. Category probabilities and CU measures to illustrate Corter and Gluck model 
Class animal bird osprey 

Probability of category, 𝑃(𝑐) 0.9 0.33 0.005 

CU measure* 0.25 0.31 0.01 

 

Based on these calculations, bird has the greatest CU coefficient. According to Corter 

and Gluck (1992), this result is explained by the relative balance between the frequency 

of the class bird and its predictive power relative to other classes. 

Summary of Guidelines 

The guidelines are not mutually exclusive and can be applied sequentially – the output of 

one guideline is the input for the next guideline. Some categories may overlap across 

different principles (e.g., a particular class can be in the middle of a taxonomy for a 

particular domain but can also be a word that was elicited from users). For example, G3 

provides a list of frequent words for a particular domain (e.g., animal, dog, cat, collie, 

snowshoe siamese). G1 represents a subset of keywords that are in the middle of the 

hierarchy (e.g., dog, cat). There is a significant overlap between G1 and G3 since G1 is a 

subset of G3. There may be words that are not frequent yet represent atypical 

subordinates that can be considered basic (e.g., bulldog). G2 represents the categories that 
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were classified by users (experts and non-experts). G8 represents the classes with the 

greatest category utility. Many of the words elicited from users will fall under the basic 

category (hence the overlap of G2 with G1 and G8). Some guidelines depend on the 

existence of a prior categorization (e.g., to identify classes with the greatest CU we need 

a subset of potential classes on which to perform the category utility calculation). The 

analyst may evaluate the final pool by having a group of users (e.g., domain experts, 

regular users, designers) rank these classes (e.g., based on a pre-established criteria) and 

select the best candidates. Alternatively, the analyst may leverage the overlap and retain 

only the classes that are identified by most or all guidelines. Each strategy would be 

contingent on situational demands of the project and available resources. 

Once these guidelines are followed, analysts should generate a list of candidate basic 

classes. It is entirely possible that some guidelines may be more applicable than others 

(e.g., analysts may not have the knowledge of the first words used by children relevant to 

the domain of interest). Rather than seeing these guidelines as necessary and sufficient, 

we suggest considering them as cumulative evidence in support of a hypothesis for a 

particular class. This is consistent with psychology, as psychologists widely recognize 

that no single guideline is necessary or sufficient for the definitive identification of basic-

level categories (Lassaline et al., 1992). Thus, analysts are encouraged to consider the 

totality of evidence when making the determination.  

There are many potential ways these guidelines can be applied in the context of IS 

development. For example, these classes can be the only classes used in the information 

system if the objective is to capture the objects in the domain in terms of basic classes. 



 

 47 

Earlier we discussed several scenarios where such strategy can be effective. Specifically, 

when dealing with heterogeneous information sources resorting to basic classes may be a 

reasonable strategy. At the same time, we note that other implementation alternatives 

may be pursued. For example, a system can be designed following traditional approaches 

to conceptual modeling premised on the elicitation of all classes provided by the users. 

Once these classes are elicited the analyst can apply the guidelines and identify those 

classes that are basic. This knowledge can then guide user interface design and the 

functionality of the system. For example, when building a multiuser system to support 

healthcare applications (where both doctors and patients are expected to use the same 

system) the knowledge of basic classes can be instrumental in personalizing user 

experiences to different user groups (e.g., structures that are patient-facing can be based 

primarily on basic classes whereas doctor-facing interface can use a wider gamut of 

classes). We hope the guidelines proposed in this work can be used in these and other 

fruitful ways to make information systems more effective at accomplishing their 

objectives. 

Implications, Contributions, and Conclusions  

Traditionally, conceptual modeling research has relied extensively on users for the 

identification and selection of classes in a domain. However, in an increasingly 

expanding range of applications, this practice becomes problematic. For example when 

modeling systems to capture user-generated content, analysts may no longer rely on the 

ability to reach all relevant users. Even if each user is reached, these users may not be 

subject matter experts and their requirements may not be as accurate and reliable as in 
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traditional settings. In online settings, user views may be extremely diverse – further 

complicating the ability to achieve consensus and generate a common unified view of the 

domain. In each case, traditional approaches to conceptual modeling may be limited. This 

paper contributes to the theory and practice of conceptual modeling and development of 

emerging information systems by proposing a novel approach to conceptual modeling 

based on the notion of basic-level categories, a widely researched topic in psychology.  

The paper contributes to theory of conceptual modeling by surveying theoretical 

foundations in psychology. The review of psychology provides strong motivation for the 

importance of special kinds of classes referred to as basic level categories. Following 

psychology research, we believe the special classes are those for which agreement among 

heterogeneous online users is the highest. In particular, whereas specialized classes 

require specialized training and familiarity, which may be absent for some user groups, 

basic level categories are equally familiar to subject matter experts and non-experts alike. 

This important property of basic level categories makes them applicable to modeling 

heterogeneous online contexts. Indeed, recent research in conceptual modeling has 

already benefited from the concept of basic level categories to operationalize a condition 

in an experimental study (Lukyanenko et al., 2014). This paper contributes by providing 

strong theoretical justification for the importance and utility of basic level categories in 

conceptual modeling research. 

Having identified basic level categories as a potentially useful construct in conceptual 

modeling, this paper proposes guidelines for identifying basic level categories in a 

domain. These guidelines are derived from well-established propositions in psychology 
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research that were corroborated in numerous empirical studies. These guidelines provide 

concrete practical procedures analysts could follow when performing conceptual 

modeling. It is notable that the guidelines we proposed in this paper can be automated 

enabling discovery of basic level categories in big data sets. To further increase practical 

utility of this research, we illustrated the application of each guideline using examples, in 

addition, as there can be substantial procedural ambiguity when applying a theoretical 

design guideline in practice (Dreyfus, 1992; Gregor and Jones, 2007; Lukyanenko and 

Parsons, 2013c), we discussed potential pitfalls in implementation by referencing the 

relevant work in psychology. Taken together, we believe the proposed guidelines 

constitute an important novel addition to the conceptual and practical toolbox in IS 

development. 

An important theoretical implication of the notion of basic level categories is a novel 

opportunity to use the properties of this classification level in explaining experimental 

findings in conceptual modeling research. Experimental work in conceptual modeling 

often involves giving analysts and users a conceptual modeling script that represents a 

domain and then asking questions about the domain based on the script (Bodart et al., 

2001; Burton-Jones and Meso, 2008; Burton-Jones et al., 2009; Gemino and Wand, 2003; 

Parsons and Cole, 2005). While such script can be constructed using meaningless words 

(Parsons, 2011), often the scripts contain meaningful concepts that vary in their level of 

familiarity. Some of these concepts could be deemed basic level categories. The presence 

of basic level categories in such scripts can potentially confound experimental findings, 

as people might be attracted to those levels and leverage their familiarity with these levels 
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in answering these questions. We are not aware of any work so far that considers the 

potential confounding effects due to the presence of basic level categories in the scripts. 

We hope, with this work, to raise more attention to the important properties of basic level 

categories in knowledge representation that can be used to better explain experimental 

findings. We hope to have provided an increased understanding of the role of basic level 

categories and that this knowledge can be leveraged in future experimental research in 

conceptual modeling – when constructing experimental stimuli and measures. 

Conceptual modeling research generally does not distinguish classes within the taxonomy 

(e.g., assumes all classes may be equally relevant), yet not all classification levels are 

equally salient for different people. We show that some classes in a domain have 

particularly interesting properties.  An intriguing theoretical consequence of the basic 

class concept is the idea of an information gradient. The salience of basic level 

categories for people suggests that classes in a domain can be arranged in the order of 

their category utility, salience, and familiarity, rather than taxonomically. For example, 

using the category utility criteria used in the example in Guideline 8, the hierarchy can be 

arranged in the descending order of the category utility, which would result in the 

sequence of bird, animal, osprey. We call such arrangement of classes an information 

gradient to contrast it with the traditional generalization and specialization hierarchy that 

is based on property inheritance.  
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The gradient concept can be used as an alternative to hierarchical representations of 

knowledge that are based on category utility, category salience, and other functions. We 

hope future research will build on the intriguing possibilities implied by the special status 

of basic level categories and expand the notion of the information gradient. 

Another intriguing possibility is whether the concept of basic level categories can become 

a modeling construct. For example, identifying a class in a conceptual modeling script as 

a basic level category can send important signals for other stages of IS development and 

inform database and interface design. Thus having a list of basic level categories can 

suggest navigational structures and high-level menu items. As conceptual models are 

widely used to develop other IS objects, the question becomes whether it is advantageous 

to identify basic level categories inside of conceptual modeling scripts. We believe this 

possibility should be explored in future studies. 

While the discussions in this paper focused on the conceptual modeling phase of the 

information systems development, the concept of basic level categories carries important 

implications for other aspects of information systems development and use. This involves 

selecting navigational structures in the project, presenting choices to users, particularly in 

mobile settings where there could be space constraints. The concept of basic level 

categories can also be helpful for information retrieval and query processing. For 

example, if a non-expert user is trying to learn about Hay Fever or any low-level category 

within a taxonomy, upper level categories and sibling categories would be helpful for him 

to make a decision on what to query next to achieve a certain goal. In addition, by adding 

contextual information to the query, the system can determine the right level of 
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abstraction at which to present the information to the user. J. R. Anderson (1990) has 

referred to this as the development of cognitive schemas that individuals are using to 

create a hierarchy of their knowledge.   We hope future research will benefit from the 

survey of psychology research provided in this paper and the proposed guidelines by 

applying the arguments and procedures proposed here to address problems in other 

domains. 

While in this paper we painted a positive role of basic level categories in knowledge 

representation, it is important to also acknowledge the potential negative consequences of 

dealing with basic level categories. Psychologists have argued that basic level constitutes 

an important psychological bias. Due to the privileged status of basic level categories 

people may prefer to use this level at the expense of other levels. As we argued, in many 

applications this is a desirable outcome. However one should also be cautious and 

recognize that this behavior can also be detrimental under certain circumstances. For 

example, following the theories discussed above, we can predict that if a non-expert user 

is given a choice of different classification levels the user will tend to prefer working 

with the basic level (e.g., navigating structures based on this level, providing information, 

querying the information base, acting upon information). If it is more important that the 

user attends to other levels, inclusion and the availability of basic level categories may 

preclude users from considering these other levels. We hope future researchers will begin 

to consider negative applications of including basic level categories as well and propose 

strategies for mitigating them. 
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Chapter 3: Identifying Organizational Style: An Institutional Theory Perspective 

In the course of normal business, organizations generate electronic documentation 

describing daily operations and transactions. The purpose of this documentation is 

generally tactical.  For example, IT help desk staff documents reported technical issues, a 

police officer enters the details of an incident, or a clinician documents a case in progress 

notes. What is similar about all these examples is that each report is unique, but all 

reports within an organization are guided by the organizational objectives. Effectively, 

these data represent the daily transactions of the organization’s daily business activities. 

In many cases, the data collected is used for purely tactical purposes.  How does the IT 

staff resolve the issued ticket?  How does the court system resolve a traffic violation? 

How does a clinician decide when to discharge a patient?  

Information systems (IS) should be able to faithfully represent the world they are 

trying to model—by observing the behavior of an information system, we obviate the 

need to observe the behavior of the real-world system it represents) (Weber, 2003, 1997; 

Burton-Jones and Grange, 2012). IS provide the structure necessary to support the 

organization’s business needs’ and allow the organization to conduct their daily 

operations (S. March et al., 2000). Planning and successful decision-making requires 

processing and analyzing the data assets of the organization. These data reside in 

different forms, depending on the system design and range from unstructured data to 

structured data that lives in a relational database (Abiteboul, 1997; Skoutas and Simitsis, 

2007). The information required to solve a task at hand can be encoded in free-text 

whereby a user reviews the data and takes action. 
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Information is generated at a faster pace than individuals and organizations can make 

sense of it (Lerch and Harter, 2001). The challenge is not collecting and storing more 

information, but utilizing the data for better decision-making. Organizations need to cope 

with limited resources to analyze available data –both structured and unstructured. One of 

the challenges in doing so, particularly with unstructured data, is the inherent flexibility 

on how these data are entered/captured in an information system (e.g., free-form text, 

selecting from drop-down lists, templates). Users may deviate from the deep structure 

(“the meaning”) of the system by capturing different information in a field that was not 

originally intended for (Boudreau and Robey, 2005; Wand and Weber, 1995). For 

example, in a study of an electronic patient record for hypertensive patients, Berg and 

Goorman (1999)) found that although physicians were able to successfully enter coded 

complaints, diagnosis, blood pressure results, and medication, many physicians 

complained that the system was too “rigid” to capture the core reason of the patient’s 

visit. To overcome this limitation physicians started to use a text field labeled as 

conclusion to enter such information and regarded it as a central field for subsequent 

patient’s visits (Berg and Goorman, 1999; Berg, 2001).  

Traditional IS development assumes a fixed schema that can be defined apriori to 

introducing any data needed to support the business needs’ (e.g., screens that allow for 

coded input of data that adheres to a regular schema, facilitating the extraction from a 

database and analysis)(Ramakrishnan and Gehrke, 2000; Shneiderman, 1996). An 

instantiation of this are relational databases, which have been used in banking, insurance, 

enterprise resource planning (ERP), finance, and healthcare among other fields. The fixed 
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schema format of relational databases may be less practical when designing systems that 

need to support changing needs’, require the aggregation of data, or are structured in 

ways that are unknown to the existing schema (Abiteboul, 1997; Parsons and Wand, 

2014). No question IS can facilitate and support work routines, but as seen in the 

previous example, it may also constrain the workflow of individuals using the system. 

Nevertheless, organizations should be able to analyze data in the aggregate to enable 

effective decision-making.  

Structured information has the advantage of consistency (e.g., the form in which the 

data is stored has been modeled in advance), facilitating analysis, aggregation, and 

integration with other systems (Lukyanenko, 2014; John Mylopoulos, 1998; Fry and 

Sibley, 1976). Yet, current data/knowledge-bases do not support schema changes and rely 

on predefined entities of interest and static relationships between them (P. P. Chen, 2006; 

Parsons and Wand, 2000). Ultimately, how designers choose to model the world (as 

reflected by the structure imposed by the system) constrains the degree to which the 

system is able to reflect reality without neglecting the “dynamic” nature of the world it 

represents. Lukyanenko (2014)) found that relaxing rigid constraints of a system may 

help in capturing user input more objectively and completely –and even allow to extend 

the original scope of the system.  

Despite much research has focused on well-defined information needs via structured 

data entry, IDC estimates that more than 90% of the data generated is unstructured 

(Gantz and Reinsel, 2011). We operationalize unstructured data as data without a pre-

defined data model (e.g., free-form text) and we include semi-structured data that is 
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neither raw (e.g., images, sound) nor explicitly structured (e.g., data in a relational 

database) in our definition (Zhu and Azar, 2015; Abiteboul, 1997; Silberschatz et al., 

1996; Buneman, 1997). The IS field defines information as “data that has been processed 

into a form that is meaningful to the recipient and is of real or perceived value in current 

or prospective actions or decisions” and defines information technology (IT) as the 

artifacts used to “acquire and process information in support of human purposes” (Davis 

and Olson, 1984; S. T. March and Smith, 1995). Yet, traditional IS research offers limited 

guidance in studying the effect of unstructured data-entry practices in decision-making 

(e.g., alignment between the information needs of data consumers and data contributors 

or promoting effective data-entry practices). To generate competitive edge, organizations 

should be able to leverage their existing stored data to solve tactical needs and be able to 

integrate these data with both internal and external data sources to solve emerging tasks 

efficiently.  

Business analytics is an emerging area that organizations are leveraging on to 

develop competitive edge (Davenport and Harris, 2007). The increasing computational 

power and the availability of analytical tools allow organizations to use these tools to 

solve unanticipated tasks. Data mining tools can help organizations identify patterns in 

complex data sets (Davenport and Harris, 2007). For unstructured data, additional insight 

can be uncovered using knowledge discovery strategies using ontologies, natural 

language processing, and semantics to generate structure meaningful to solving the 

organization’s business needs’. For example, previous research has predicted fall in the 

elderly by analyzing unstructured progress notes (Tremblay et al., 2009), identified 
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patient smoking status from discharge records (Uzuner et al., 2008), classified breast 

carcinomas based on variations in gene expression patterns and then correlate tumor 

characteristics to clinical outcome (Sørlie et al., 2001), created a cardiovascular profile 

score to predict presence of congestive heart failure (Hofstaetter et al., 2006), identified 

intellectual communities in the field of information systems (Larsen and Bong, 2016), 

detected discordant naming practices of constructs (e.g., same term to refer to different 

phenomena or using different terms to refer to the same phenomena) (Larsen and Bong, 

2016), identify adverse drug interactions (Iyer et al., 2014),  or extract information from 

textual documents in the electronic health record (Meystre et al., 2008). 

Motivated by the ever increasing growth of unstructured data in organizational 

settings and the need of organizations to leverage on existing data for decision making, in 

this paper (1) we hope to understand the underpinnings of unstructured-data-entry 

formats in the data collected by an organization; (2) the impact unstructured-data-entry 

formats have in solving a tactical need and (3) what are effective practices in 

unstructured-data-entry and how effective practices can help the organization in decision 

making. Our research aims to increase understanding of the implications of free-text-

data-entry strategies and its implications to solving tactical needs’. In the following 

section we further motivate the importance of adopting effective strategies. In subsequent 

sections we introduce our case study, which is in the context of case management in a 

large foster care organization. 
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Motivation 

In the context of foster care, it is particularly important to track the status of at-risk 

patients, (e.g., those with conditions or history associated with adverse outcomes). 

Clinicians must identify the population of clients with the condition(s) and/or history of 

interest, and then track the status of urgency over time to try to avoid unexpected adverse 

events that could otherwise have been prevented. Thus, task prioritization is one 

important aspect in achieving timely interventions and better outcomes. This is 

challenging in real-world settings because each patient’s case history is encoded in a set 

of unstructured encounter notes.  In fact, even the first step, correctly classifying clients 

into at-risk groups, can be difficult, because the encounter notes may or may not be 

explicitly coded with markers indicating conditions or history of interest.  

Failure to identify at-risk clients is highly problematic, because adverse outcomes 

can include serious health issues—including death. It is well known that decision making 

performance is directly tied to the quality of the information used to make decisions 

(O'Reilly, 1982; Zmud, 1978). In health care settings, clinicians and administrators adopt 

medical quality management and case review practices to ensure compliance. Since data 

is often encoded in free-text form (e.g., reports, case notes, progress notes), we want to 

study the impact of data-entry formats have in solving a tactical need. 

Our goal is to comprehend whether different data entry practices lead to different 

outcomes. To do so we are going to address the following research questions:  

Research Question 1: Does unstructured data entry result in differences in how 

information is collected across organizational units in an organization? 
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Research Question 2:  Do individuals from different organizational units adopt 

consistent practices when entering free-text-notes into the information system? 

Research Question 3: Can organizations foster effective unstructured-data-entry 

practices that result in more effective data collection? 

Child Welfare  

The child welfare system describes a continuum of services that include child 

protective services and foster care. Children in foster care are at increased risk of child 

abuse and neglect (e.g., emotional, behavioral, developmental, and physical health 

problems) (Halfon and Klee, 1991; Simms et al., 2000). Many of these children remain 

for significant periods of time in the foster care system. The child’s background (e.g., 

age, race, health status) is what most likely determines the services needed by them. 

Some of the risk factors experienced by these children include low levels of parental 

education, residential mobility, poverty, and poor parenting (e.g., parental substance 

abuse, maltreatment). It is likely for these children to undergo anxiety, depression, 

suicidal thoughts, eating disorders, hostile behavior, and substance dependency (Barbell 

and Freundlich, 2001; Schneiderman, 2003). Moreover, due to the extenuating conditions 

these children face, they are more likely to suffer from acute and chronic health 

conditions (e.g., respiratory infections, dental caries, and malnutrition). The goal is to 

keep children safe and protect them from harm (Whitaker, 2004).  

Since the service systems have not kept pace with demand, prevention and early 

intervention services required for these children becomes a challenge. A study found that 

children that have experienced multiple placements tend to have higher levels of 
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behavioral and emotional problems and as a result, remained longer in foster care 

(Barbell and Freundlich, 2001). 

Federal and State Legislation 

Federal legislation has played and continues to play a key role in shaping foster care 

through public policy and legislation. U.S. Congress enacted the Adoption and Safe 

Families Act (ASFA) in 1997 to ensure the child’s safety and to promote adoption with 

the principle of “reasonable effort”. ASFA was also designed to hold states more 

accountable for achieving positive outcomes for children and families (Whitaker, 2004). 

The U.S. Department of Health and Human Services (HHS) mandates periodic child and 

family service reviews to assess each state’s performance on three critical outcomes of 

foster care: child safety (e.g. protection from abuse and neglect), permanence (e.g., 

stability of children’s living arrangements), and well being (e.g., adequate education and 

physical and mental health needs). Thus, it is imperative to have an experienced and 

competent workforce. Yet, the high staff turnover, the ever-increasing workloads per 

caseworker, and the rising rate at which children are entering the foster care system 

makes it challenging. This is further aggravated by high stress from poor administrative 

support, bureaucracy, insufficient salaries, or budget-driven staff reductions (Rycraft, 

1994; Barbell and Freundlich, 2001; D. G. Anderson, 2000). It is estimated that child 

welfare workers spend 50 to 80 percent of the time on paperwork (Office, 2003). 

To support the ever-increasing workload, States are leveraging on technology to 

make the case management process more efficient for the caseworkers and safer for the 

children by reducing information silos, increasing accountability, and ensuring data 
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quality. In Florida, data is stored in the Florida Safety Families Network (FSFN), a 

Statewide child welfare and client management information system developed by HHS to 

document child protective investigations and child welfare case management (e.g., 

reporting abuse and neglect, adoptions, permanency planning). HHS contracts with 

Community-Based Care (CBC) agencies to provide services for vulnerable children and 

their families. CBC agencies may subcontract some services to specialized providers. The 

organization completes quarterly quality reviews with the Department of Children and 

Families (DCF) covering tasks ranging from family engagement to supervisory reviews. 

Ultimately, the goal is to use the resources necessary to achieve better outcomes. 

Information is retrieved from different systems –both internal and external. Examples of 

external systems include the school system, juvenile justice system, medical system, and 

legal system.  

Foster Care and Case Management 

This chapter focuses on how unstructured data shapes practice across organizational 

units in the context of case management in a foster care organization—where different 

caseworkers (from different agencies) report on the home visits made to the foster 

children. The focus of this essay is to understand the dynamics in how different full case 

management agencies (FCMAs), which we refer to as organizational units of a governing 

parent organization, collect data via unstructured formats (Eisenhardt, 1989). The focus 

becomes in studying whether the effectiveness of solving a tactical need is dependent on 

the organizational unit doing the reporting. 
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The organization is a non-profit corporation created by advocacy communities in 

response to the need for leadership, oversight, and coordination of a system of care for 

abused and/or neglected children, and children at-risk of abuse and/or neglect. The 

organization's purpose is to develop, operate, expand, and enhance initiatives aimed at the 

prevention of child abuse and neglect; to support networks of coordinated resources and 

activities to better strengthen and support families; and reduce the likelihood of child 

abuse and neglect. The organization’s approach is designed to address the individual 

needs of children and their families and articulates specific principles of care, including 

the requirement that all child-serving sectors (mental health, education, child welfare, 

juvenile justice, and physical health care) integrate and coordinate their service provision.  

The social work profession involves caring for those who are most likely poor, 

neglected, and vulnerable. Social workers often make personal and professional 

commitments to protect children. We surveyed 30 staff members at the organization that 

work in different capacities (e.g., supervision, management, services). At the time of the 

interview, the median for the time of employment in the organization was 23 months with 

a range from 4 to 156 months.  

The Office (2003) found that the average tenure of child welfare workers is less than 

24 months. The median age of the staff was 31 years old with a range from 24 to 66 years 

old. Almost 43% of the caseworkers held Bachelor degrees (2 respondents held a 

Bachelor’s in Social Work [BSW] degree), almost 36% held a master’s degree (4 held a 

master of social work [MSW] degree), and the rest have either registered nurse or 

business associate degrees. Seven respondents did not report their ethnicity. Out of the 23 
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left, close to 30% were Hispanic, 30% black, 17% African American, and 22% are 

White.  

The Child Welfare League of America (CWLA) recommends caseloads not exceed 

18 per worker. Supervisors are required to complete quarterly supervisory reviews with 

the staff and case managers they supervise. In our study, the full case management 

agencies seem homogenous on the surface—they all report to the same overseeing 

organization; use the same systems to carry out their functions; are geographically 

collocated in the same city; have employees with similar educational background and 

similar demographics; train caseworkers in the same facility, by the same trainer, and use 

the same information systems and devices.  

Identifying Psychotropic Drug Use 

Children in foster care are three to ten times more likely to suffer from mental health 

conditions (Harman et al., 2000) thus receiving behavioral health services to a greater 

extent compared to other children. Psychotropic medication is prescribed to help them 

cope with behavioral problems such as attention-deficit/hyperactivity disorder (ADHD), 

depression, bipolar disorder, and psychotic disorders –in many cases these children are 

prescribed concomitant medication with dosages that are regularly used for adults. 

Despite their challenging lives as foster children, those with behavioral problems are 

frequently the ones that do not find a stable placement, limiting the possibility of reliable 

and consistent treatment as a result of inaccurate medical, behavioral, and psychological 

history from previous care providers (Zima et al., 1999). This is threatening for the 

children especially when using: 1) antidepressants, in which adverse side effects include 
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suicidal thoughts; 2) anti-anxiety medications, which side-effects could trigger blurred 

vision, drowsiness and dizziness, and nightmares; or 3) mood stabilizers, which treat 

bipolar disorders but may have side effects such as hallucinations and suicidal thoughts 

(GAO, 2011). 

In April of 2009, Gabriel Myers, a 7-year-old child who had been taken from his 

drug-abusing mother and who had been sexually abused in a previous foster home, 

locked himself in the bathroom and hanged from a detachable showerhead and committed 

suicide. At that time he had several psychiatric drugs prescribed –three of which were 

labeled as “black box” medication (the strongest advisory alert that the U.S. Food and 

Drug Administration issues, indicating that the drug can pose life-threatening adverse 

effects including suicidal tendencies in children) (Martinez, 2010). Another impactful 

case is that of Denis Maltez, a 12-year-old autistic boy who died of “serotonin syndrome” 

after being prescribed several psychotropic drugs in the highest doses, dosages that are 

typically given to adults. In this particular case, DCF received a report from a school 

teacher stating that Denis was “sleeping in class, shaking, and trembling” and a second 

medical report from the hospital which stated that “Denis was sleepy because he was 

over-medicated” (Miller, 4/18/2010). 

To ensure safety and well being of the children, DCF tracks, via the state run FSFN, 

all psychotropic drugs provided to children in foster care. Some of the fields include, but 

are not limited to, medication name, dosage prescribed, number of refills, prescribing 

physician, whether the drug is used as psychotropic medication, and the start and stop 

date. This system assumes that the information introduced by the case manager is reliable 
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and complete, but unfortunately there are few built-in mechanisms to prevent data quality 

issues.  For example, a generic medication to which the caseworker does not know the 

brand equivalent is placed as “other”.  Adding to data quality problems is the ability to 

leave blank fields (Group, 2009). 

According to Section 65C-30.007 of the Florida Administrative Code (F.A.C.), 

children under the state’s supervision need to have a face-to-face visit at least every 30 

days. The record of this visit should include developmental, physical, emotional, and 

mental health needs and whether those needs are being met. These visits should also be 

documented in the child’s FSFN within two working days. Although not explicitly stated 

in the case notes whether the child takes psychotropic medication or not, we attempt to 

use these home visit notes to identify children taking psychotropic medication, a tactical 

purpose for which home visit notes were not originally intended for. 

Supervisory notes have been a good proxy to identify children on psychotropic 

medication as they contain explicit notes regarding the use of psychotropic medication 

(e.g. drug name, dosage). However, using visualization techniques, we found that the 

frequency in which these notes type were reported was very scarce (see Figure 1). Upon 

further investigation, we found out that the DCF OP under section 3-14 (n-p), which 

refers to supervisory reviews for children prescribed psychotropic medication, state that 

behavioral events should be reported by DCM and CPI supervisors on an “ongoing” 

basis, without stating specifically the frequency in which these reports should be written. 

The organization conducts monthly reviews of 100% of all children listed on FSFN that 

are taking psychotropic medication. Additionally, a 10% random sample of all the out-of-
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home children who do not have an active medication profile in the system notes are 

reviewed, in an attempt to identify false negatives.  We found out that, among children 

under psychotropic medication, the frequency of supervisory notes varied drastically—in 

many cases they were non-existent. Home visit notes, on the other hand, need to be filed 

at least once every 30 days. Consequently, we want to determine whether these home 

visit notes can serve as a proxy for identifying children on psychotropic medication. 

 

Figure 1. Evaluation Metrics for each of the FCMAs (Agencies) 
 

Although supervisory notes might contain more explicit information about 

psychotropic drug use, these notes are written less frequently than home visit notes. 

Supervisory notes are written by case managers when they engage with foster children 
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through visits or telephone calls and may include interrelated behavioral indicators such 

as symptoms (e.g. aggression, lack of eye contact, bedwetting, extreme distraction) of a 

child taking psychotropic medication. The amount of case notes of all the foster children 

in this particular organization is large, making it difficult to oversee more than a portion 

of records manually. Although the problem of predicting psychotropic medication use is 

a big data problem, we have observed that institutional factors such as organizational 

norms and procedures can indicate differences in how different organizational units 

document –what is emphasized or de-emphasized in a document. 

Theory and Propositions 

In this section we seek theoretical foundation to understand what makes effective 

practices in settings that rely on unstructured data-entry. We review research in 

organizational behavior to try to explain the impact unstructured data formats have on 

data collection practices and ultimately assess the impact on the organization’s 

performance in decision-making. 

For research questions one and two which seek to study whether there are any 

differences in the way different organizational units adopt and are consistent in how to 

document home visit notes, we turn to organizational behavior theories to try to 

understand why individuals in organizations adopt established practices and create new 

ones that are adopted over time. To answer research question three, which relates to 

effective practices of data-entry, we turn to psychology theories to explain the tradeoff of 

generalization/specification in data collection practices. 
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Institutional Theory 

Organizational activity (social and non-social) can become a pattern that is repeated 

by individuals in the organization. The concept of institution has been operationalized in 

diverse ways throughout the years. Early versions of institutional theory viewed 

institutionalization as a process of adaptively changing commitments and by which 

individuals come to accept a shared definition of social reality (W. R. Scott, 1987).   

Rules, norms, and meanings arise in interaction, and they are preserved and modified 

by the behavior of individuals (Giddens, 1979; Sewell Jr, 1992). Social order is created as 

a shared reality by which individuals interpret actions that are then internalized and 

shared with others as a socially defined reality (Berger and Luckmann, 1991). These 

interpretations enable actors to respond in a similar way as taken-for-granted realities that 

reach stability and which structure’s may evolve over time (Barley, 1986; Giddens, 1984; 

Selznick, 1984). Formally, institutional theory considers the processes by which 

structures, including schemes, rules, norms, and routines become established as 

authoritative guidelines for social behavior (W Richard Scott, 1995; W. R. Scott, 1987).  

Institutions have been studied at various levels of analysis - from micro interpersonal 

systems to transnational or world systems. Of particular interest to our research is to 

understand institutionalization at the organizational field level and at the population level 

(see Table 1). Field refers to a community of organizations that partakes on a common 

meaning system and whose participants interact with one another more frequently than 

with actors outside the organizational field (W Richard Scott, 1995). Populations refer to 

groups of organizations that are “alike in some respect” (Hannan and Freeman, 1977). 
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Table 1. Unit of Analysis of Institutionalization 
 Adapted from Scott (2001 p. 85) 

Level of Analysis Example in the Context of the Case Study 
Societal Children’s well-being in Foster Care 
Organizational Field Foster Care Management  
Organizational Population CBC Agencies 
Organization Agency A, B, or C 
Organizational Subsystem Case Management at Agency A 

 

Institutions are built on three pillars –regulative, normative, and cognitive (W Richard 

Scott, 1995). The regulative pillar regulates individual actions and behaviors to avoid the 

violation of institutional rules and prevent organizational sanctions (e.g., rule-setting, 

monitoring, and sanctioning activities). The normative pillar provides a structure for 

legitimization by which specific behaviors are believed appropriate and introduces a 

prescriptive, evaluative, and obligatory dimension through values (desirable outcome) 

and norms (how things should be done) (W Richard Scott, 1995). Some values and norms 

are applicable to all members in the organization and others apply to a subgroup via roles, 

which can be viewed as patterns, goals, attitudes, and behaviors that are characteristic of 

individuals under certain situations –becoming the controlling character of 

institutionalization (Berger and Luckmann, 1991; Searing, 1991).  

The cognitive pillar provides a structure of signification via cognitive guides that help 

individuals understand how they should act. The regulatory processes, normative 

systems, and cultural frameworks shape the tasks of the individuals and ultimately shape 

the design and use of technical systems (e.g., which systems to use, what data to input 

into the information system). 
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In the absence of contextual change, actors are more likely to replicate scripted 

behavior, making institutions persistent (Hughes, 1936; Barley and Tolbert, 1997). Yet, 

this behavior can evolve over time as a result of changing regulations and norms (e.g., 

solving an emergent tactical purpose or when solving wicked problems). The demand for 

such coherence also cultivates strong expectations regarding styles, creating preferred 

forms of knowledge representation and production. The process of standardizing 

procedures among members of a population from these pillars is referred to as 

institutional isomorphism, which is triggered by coercive, normative, and mimetic 

forces—constraining the ways in which individuals perform their activities (DiMaggio 

and Powell, 1983). Coercive isomorphism stems from political influence and formal and 

informal pressures exerted on organizations by other organizations of which they are 

dependent from or by cultural expectations in society (e.g., laws, policies, social norms). 

Mimetic isomorphism results from the adoption of existing practices to reduce 

uncertainty and achieve legitimization (e.g., mimicking the behavior of other 

organizations perceived as legitimate). Normative isomorphism is associated with 

professionalization and the collective struggle of members to define conditions and 

methods of their work (e.g., formal education, network, skills, and knowledge of the 

workforce) (DiMaggio and Powell, 1983). Institutions are made up of different 

combinations of these institutional elements—varying among one another and over time 

in the elements given priority.  

Although regulative features are more visible, they can also be more superficial, 

"thinner," and less consequential than normative and cultural elements (W Richard Scott, 
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2008). Governmental regulations have traditionally been depicted as forms of coercive 

power, imposing conformity on affected actor (whether individual or collective). 

Neoinstitutionalists emphasize the extent to which such "requirements" are subject to 

interpretation, manipulation, revision, and elaboration by those subject to them, implying 

a transfiguration over time of regulative into normative and cultural-cognitive elements. 

For example, we mentioned earlier the example of vague operating procedures in the 

context of foster care management, such as the DCF OP section 3-14 (n-p), which state 

that behavioral events should be reported on an “ongoing” basis, without stating 

specifically the frequency in which these reports should be written, leading to a 

incomplete set of supervisory notes of children that may be taking psychotropic 

medication or children. This regulative measure in practice can be improved by the 

organization (or organizational units) by specifying what “ongoing” should be. Table 2 

summarizes (from the literature) the theory elements of institutionalization, indicators, 

and predictors of isomorphic change. For illustration purposes we provide, for each of the 

theory elements, an example of potential triggers of isomorphism in the context of foster 

care. 
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Table 2. Institutional Theory Elements  
Adapted from (DiMaggio and Powell, 1983; W Richard Scott, 1995) 

Theory 
element 

Indicator Predictors of Isomorphic 
Change 

Isomorphism Triggers in 
Foster Care 

Regulative 
(Coercive) 

Rules, laws, 
and 
sanctions 

“The greater the dependence 
of an organization on 
another organization, the 
more similar it will become 
to that organization in 
structure, climate, and 
behavioral focus”.  
“The greater the 
centralization of an 
organization A’s resource 
supply, the greater the 
extent to which organization 
A will change 
isomorphically to resemble 
the organizations on which 
it depends for resources” 
(DiMaggio and Powell, 
1983). 

Compliance with the 
Adoption and Safe 
Families Act (ASFA). 
Funding is determined 
based on compliance with 
statutory requirements. 
This is done through 
external quality assurance 
to monitor and support 
services. 
Measurement: 
Compliance can be 
monitored through the use 
of performance 
scorecards, corrective 
action plans, customer 
satisfaction surveys, and 
complaint monitoring and 
investigation. 

Normative 
(Normative) 

Certification, 
accreditation 

“The greater the extent of 
professionalization in a field 
(e.g., credentials, 
certificates, training 
programs), the greater the 
amount of institutional 
isomorphic change”  
“The greater the reliance on 
academic credentials in 
choosing managerial and 
staff personnel, the greater 
the extent to which an 
organization will become 
like other organizations in 
its field” (DiMaggio and 
Powell, 1983). 

Foster care staff requires a 
strict set of qualifications 
to be able to work with 
foster children. The 
organization requires for 
its case managers to have 
at least a bachelor’s 
degree in social work 
[BSW]. Many of the case 
managers also hold a 
master’s degree in social 
work [MSW] with similar 
demographics. 
 

Cognitive 
(Mimetic) 

Prevalence, 
isomorphism 

“The more uncertain the 
relationship between means 
and ends the greater the 
extent to which an 
organization will model 
itself after organizations it 

Foster care organizations 
may adopt practices 
(imitate) from institutions 
they perceive to be 
successful as to avoid 
uncertainty. An example 
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perceives to be successful”. 
“The more ambiguous the 
goals of an organization, the 
greater the extent to which 
the organization will model 
itself after organizations that 
it perceives to be 
successful” (DiMaggio and 
Powell, 1983) 

at the organization was to 
add GPS tracking to 
enhance the accountability 
of home visits and safety 
of the children. Mobility 
solutions like this have 
worked successfully in 
other industries such as 
fleet tracking, police force 
tracking, or tracking 
services for the elderly.  

 

A more balanced rationale for understanding institutional order involves “softer” 

cultural, cognitive, and normative elements (W. W. R. Scott, 2013)—looking at 

institutions and actions as intertwined together in a process of structuration (Barley and 

Tolbert, 1997; Orlikowski and Barley, 2001; DeSanctis and Poole, 1994). Social structure 

(as defined by (Barley, 1986)) can be influenced by the interaction of institutionally-

triggered and technology-triggered change processes. If organizational practices are 

deeply influenced by historical traditions and enduring value (and if they are supported 

by societal sources of legitimacy), strong resistance to transformation can be expected 

(Robey and Boudreau, 1999; Boudreau and Robey, 2005). Practices and behavioral 

patterns may not be equally institutionalized –institutions that have a relatively short 

history or that have not yet gained widespread acceptance by members of a collective are 

more vulnerable to change and less apt to influence action (Tolbert and Zucker, 1999). 

Organizations are involved in both horizontal (cooperative-competitive) and vertical 

(power and authority) connections. They operate in systems composed of both similar 

and diverse forms. These organizations typically establish processes to solve tactical 
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problems—as reflected by the standard operating procedures, which are followed by 

individuals in the organization. Despite the quest for isomorphic practice, individuals in 

different organizational units may deviate from these procedures. For example, in the 

context of foster care management, when leaving too much flexibility to caseworker’s 

data entry (e.g., free-form text notes), the style of the notes (although adhering to the 

general standard) can differ from that of other individuals within and across 

organizational units–based on internal norms of a subgroup (e.g., an internal tactical 

purpose they are interested in capturing or by inherent styles in data collection practices). 

The question then becomes, how does unstructured data entry result in differences in how 

information is collected across organizational units in the organization? 

Organizational decision-making is not just a byproduct of individual intellectual 

information processing, it also involves social information processing (M. S. Feldman 

and March, 1981; P. A. Anderson, 1983) that in the absence of contextual change, actors 

are more likely to replicate scripted behavior, making institutions persistent (Hughes, 

1936; Barley and Tolbert, 1997). Institutional isomorphism constrain the ways in which 

individuals perform their daily activities (DiMaggio and Powell, 1983). This coherence 

cultivates expectations regarding the style of knowledge representations and production. 

The concept of institutional isomorphism in organizational behavior theory leads to our 

first proposition: 

Proposition 1: Data collected using unstructured-data-entry formats become 

isomorphic within organizational units. 
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Organizations collect data in different forms (e.g. structured, unstructured) following 

a pre-defined process of reporting established by the organization –and its goals. The 

inherent flexibility on how free-text data are entered/captured in an information system 

allow users to deviate from the original structure and capture different information in a 

field that was not originally intended for (Boudreau and Robey, 2005; Wand and Weber, 

1995; Berg and Goorman, 1999). Despite this, organizations should be able to analyze 

data in the aggregate and enable effective decision-making.  

Institutionalization has been viewed as a bottom-up social process by which 

individuals come to accept a shared definition of social reality (W. R. Scott, 1987). 

Organizations are coerced to conform (imitate) to the existing status quo—that allows the 

organization to gain the legitimacy and resources needed to survive (Meyer and Rowan, 

1977). By incorporating institutional rules within their own structures, organizations 

become more homogenous over time, achieving stability, which is reflective of the 

influences in this shared definition of social reality (Selznick, 1984; W Richard Scott, 

1995). The resulting structure and processes can be a formal social order (e.g. table of 

organization), or an informal social order (e.g. cross-functional actors involved in a given 

process). The social order may vary from the expectations but it is also based on a shared 

reality between the social actors.  

Social actors can create semi-institutional structures (that differ from the norm) that 

can be subject to objectification and become diffused despite having a short history. 

While these informal structures may acquire some degree of normative acceptance, 

adopters nonetheless are apt to remain cognizant of the effectiveness of adopting such 
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structure, which can be legitimized and achieve stability over time (Barley, 1986; 

Giddens, 1984; Selznick, 1984). 

The data collection isomorphism principle would suggest the potential for 

organizations to adopt standard practices in how they collect and use the information to 

solve a tactical need. The effectiveness on their decision-making is tied to the information 

at hand to solve such tactical purpose. As the number of autonomous decision-making is 

minimized, the risk associated with having to make a choice is also minimized, reaching 

isomorphism. Institutional features of organizational environments, however, can shape 

the actions actors take (e.g., the level of detail –specificity or focus– at which they input 

the information into the IS). This notion of institutional factors of reporting leads to our 

second proposition: 

Proposition 2: Institutional factors can establish data entry practices that result in 

highly cohesive (similar within the same organizational unit) and loosely coupled 

(different across organizational units) data collection. 

Psychological Foundation 

To address research question three, which relates to effective practices of data-entry, 

we turn to psychology theories to explain the tradeoff of generalization/specification in 

data collection practices. According to psychology, classes support vital functions of an 

organism via cognitive economy and inductive inference (Lakoff, 1987; Roach et al., 

1978; E.E. Smith and Medin, 1981; Edward E Smith, 1988; Parsons, 1996). Both 

functions compete for limited cognitive resources of human memory and processing 
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power. Cognitive economy is achieved by maximally abstracting from individual 

differences among objects and then grouping objects in categories of larger scope (Fodor, 

1998; G.L. Murphy, 2004; E.E. Smith and Medin, 1981). Overemphasizing cognitive 

economy, however, comes at the expense of ignoring certain individual characteristics of 

organisms that may be vital for the organism’s function and survival.  

A category groups together non-identical elements, which, by virtue of their 

common membership, can be treated as equivalent (Gregory L Murphy and Brownell, 

1985). Categories improve the ability of a person to accurately predict features of 

instances of a category. The best categories are those that maximize feature predictability 

and optimize information transfer (Corter and Gluck, 1992). For example, suppose we 

wish to discern if a mushroom is poisonous or edible. Classifying it as a fungus (a less 

specific high-level object) versus Clitocybe rivulosa (a more specific kind of poisonous 

mushrooms) provide a higher likelihood of this object having the property of interest. The 

likelihood of a Clitocybe rivulosa being poisonous is substantially higher than the 

likelihood that any fungus is poisonous. This example also demonstrates why a domain, 

such as biology, is interested in a finer species level of classification. Knowing that a 

phenomenon is Clitocybe rivulosa affords greater inferences and action than knowing it is 

a Fungi. Thus, the ability to predict attributes of instances of a class, or the inferential 

power, increases as the scope of the class decreases.  

The trade-off between these competing functions is considered one of the defining 

mechanisms of human cognition and behavior (Corter and Gluck, 1992; Roach et al., 

1978). According to cognitive theories and theories of classification, classes provide 
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cognitive economy and inferential utility, enabling humans to efficiently store and 

retrieve information about phenomena of interest (Parsons, 1996; Roach et al., 1978). A 

class is a mental model of perceived reality learned or derived from prior experience 

(G.L. Murphy, 2004). Psychology hypothesize that humans favor (e.g., learn, 

communicate) those classes that maximally exploit both predictive power of classes and 

their cognitive economy. Rosch et al. (1976)) argued that humans favor classes that are 

most capable of supporting these competing objectives of classification. While cognitive 

economy mainly deals with communication, memory, and processing, inferences are the 

primary drivers of human behaviour and decisions (Tsui et al., 2010; E. Smith, 1989). 

Thus, specificity allows for unanticipated uses and increases the predictive accuracy—

since it provides the ability to make more inferences from the data (Cruse, 1977; Brown, 

1958; Tanaka and Taylor, 1991). 

The basic-level advantage changes with expertise (Johnson and Mervis, 1997; 

Tanaka and Taylor, 1991). Experts in some domain of knowledge can make use of 

attributes that are ignored by the average individual. Expertise does not have to span an 

entire domain. Instead, it could be quite narrow in scope, perhaps limited to a single 

specific category. For example, a person who owns a collie and spends a lot of time with 

the dog could be considered a “collie expert.” Such person might be aware of the 

distinguishing features of collies, but know very little about distinctive properties of other 

breeds of dogs. Thus, individual differences in how objects are categorized can be a 

function of idiosyncratic life experiences and/or culture (Tanaka and Taylor, 1991; Wales 

et al., 1983; Brown, 1958). In the healthcare domain, a patient with a chronic condition 
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such as diabetes may have developed some expertise in the care of that condition but 

does not make him an expert in other medical conditions. Experts frequently use the 

subordinate name in their field of expertise whereas non-experts use basic level names 

(Macé et al., 2009; Tanaka and Taylor, 1991; Jolicoeur et al., 1984). Research has shown 

that for categories outside the domain of expertise (e.g., bird categories for dog experts), 

subjects are able to list more features for basic-level categories than for subordinate-level 

(more specific) categories. Experts, however, know as much about the features of basic-

level categories as they know features of the subordinate-level categories, whereas novice 

individuals may only be familiar with categorization at the basic level (Tanaka and 

Taylor, 1991). In general, as people specialize they are more comfortable using specific 

language, which has higher inferential utility.  

Users with different levels of expertise tend to produce information that differs in 

quality. Accuracy is contingent on providing users with classification structures more 

congruent with the level of expertise of the user. Lukyanenko et al. (2014) suggests that 

in a free-form data entry task, non-experts will classify more accurately at the basic level 

than at a more specific level. When we collect structured data the level of specificity is 

fixed at the time of system design. Users entering unstructured data, on the other hand, 

can adjust to their level of specificity—by being more or less detailed. Since specificity 

results from expertise, unstructured data collection can capture expertise better, which 

may lead to better performance (e.g., providing relevant information for decision-

making).  
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Our research questions reflect on whether organizations can foster effective 

unstructured-data-entry practices that could result in richer data collection. We do so 

through the following propositions: 

Proposition 3: Unstructured data formats can help shape effective data-entry 

practices in solving well-defined needs. 

Proposition 3a: Higher levels of specificity in the data collected leads to increased 

inferential utility. 

Proposition 3b: Higher levels of specificity in the data collected facilitate 

unanticipated use of the data. 

We evaluate the propositions presented here via a case study of case management 

practices in a large foster care organization. The next section describes the characteristics 

of the organization, their practice, and the tactical purpose studied. 

Method 

A case study is a suitable observational evaluation method of an artifact in a business 

environment (von Alan et al., 2004). The case method allows us to understand the nature 

and complexity of the processes taking place by answering "how" and "why" questions 

by examining a phenomenon in its natural setting (Benbasat et al., 1987; Dubé and Paré, 

2003; Lee, 1989). The case study method has been an essential form of research in the 

social sciences and management (Chetty, 1996).  Yin (2013) defined case studies as a 

research strategy that focuses on understanding the dynamics within single or multiple 

settings (Eisenhardt, 1989). Case studies can employ multiple levels of analysis within a 
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single study and can combine different data collection methods –both qualitative and 

quantitative (e.g., interviews, questionnaires, physical artifacts, and observations) (Yin, 

2013).  

Case studies can provide description (Kidder, 2011), test theory (P. A. Anderson, 

1983), or build theories (Eisenhardt, 1989; Gersick, 1988; Harris and Sutton, 1986; Dubé 

and Paré, 2003). In this paper, we adopt Walls et al. (1992) definition of information 

system design theory (ISDT) as a prescriptive theory to produce more effective 

information systems through design propositions (Dubin, 1970; Simon, 1996). What 

distinguishes design theory is the inclusion of a kernel theory to explain testable 

propositions or design principles in developing comprehensive bodies of knowledge 

(Gregor and Hevner, 2013; Gregor and Jones, 2007). Analyzing data constitutes the 

“heart” of building theory from case studies (Eisenhardt, 1989). Two key features of 

analysis are: within-case analysis (to provide familiarity with the case at hand) and cross-

case analysis (look at the data using different lenses). Tying the emergent propositions to 

existing organizational theory enhances the internal validity and generalizability of the 

theoretical propositions (Eisenhardt, 1989; Chetty, 1996). The proposed design 

propositions are an approximation to what will work in different contexts and can be 

tested through an instantiation or deductive logic that lead to conclusions with some 

generality (Gregor and Jones, 2007; Gregor, 2006). 
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Solution Approach 

We adopt a mixed-method approach to evaluate the propositions derived from 

theory. To evaluate proposition one in this case study, we use text mining techniques to 

discover and extract knowledge from unstructured data (Hearst, 1999). To evaluate 

proposition two we use a particular application of text mining named Stylometry. To 

evaluate proposition three we adopt both a quantitative and qualitative approach to assess 

any similarities or differences within notes from different organizational units. From a 

quantitative standpoint, we use text mining techniques to assess whether there are any 

significant lexical, syntactic, or semantic differences in the text authored by different 

organizational units.  

Text Mining 

Text mining is a process of knowledge discovery via a set of techniques and tools 

that allow for “nontrivial extraction of implicit, previously unknown, and potentially 

useful information from given [free-form, or textual] data” (R. Feldman and Dagan, 

1995).  We use an inductive classification approach to classify children taking 

psychotropic medication and evaluate the results of our design by benchmarking with the 

results given by expert case managers.  

Text mining has had significant improvement over the years and has shifted from 

simple metrics (e.g., word frequency) to more complex use of natural language 

processing (NLP) techniques. Common NLP tools include document tokenizing, 

stemming, parts-of-speech tagging, noun group extraction, applying stop lists, entity 

identification, and multiword terms handling (Christopher D Manning and Schütze, 
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1999). The document is parsed and tagged based on the syntactical relationship between 

terms –based on the position in a sentence and rules of grammar (Berry and Castellanos, 

2004). The aim is to convert human language into formal representations computers can 

manipulate, including part-of-speech tagging (POS), POS sequences, or n-gram models 

(see Table 3) (Abbasi and Chen, 2008; Holmes, 1998; Christopher D Manning and 

Schütze, 1999). Because authors do not always follow grammatical rules, the complexity 

of multiple meanings for words, and the domain specific use of vocabulary may require 

some additional considerations.   

Table 3. Parts-of-speech (adapted from (Bird et al., 2009) 
Part-of-speech Example Example Text 

Adjective Psychotropic, happy, clean, visible “Prescribed psychotropic 
medication”, “child has a visible 
bruise” 

Adverb Reportedly, temporarily, friendly “Child was reportedly not home”, 
“ he was friendly” 

Conjunction If, but, and, or “Appropriately dressed and 
groomed” 

Determiner, article, 
quantifier 

The, a, few, most, little, no, which “No signs of abuse and neglect” 

Noun Husband, guardian, mommy “To see his mommy and daddy” 
Pronoun I, that, he, who, them “I went to school” 
Verb Risk, reunify, hit, fight, approve “She doesn’t fight anymore” 

 

Text classification is a discipline at the crossroads of machine learning and 

information retrieval—an inductive process of building a text classifier that is able to 

learn from a training set of labeled documents without being explicitly programmed. In 

information retrieval, a document is parsed and then transformed into a vector space 

model (VSM), a numerical representation of the document (G. Salton et al., 1975). To 

algorithmically process the text it is necessary to create a term-by-document matrix, a 
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matrix in which table columns represent all terms in a document and each row represents 

a document. The resulting cells represent either the existence (term frequency – local 

weight) or relevance (term weighting – global weight).  

Term weighting techniques provide a greater degree of discrimination among terms 

by modifying the frequency weights to adjust for document size and term distribution, 

distinguishing individual documents from a collection of documents (Sparck Jones, 1974; 

Singhal et al., 1996; Gerard Salton and Buckley, 1988). A common weighting technique 

is term-frequncy-inverse-document-frequency (tf-idf), which produces a composite 

weight that increases proportionally to the term frequency but is sensitized by the number 

of documents (Powers, 1998). Other weighting techniques include probabilistic idf, 

information gain, or chi-square (Lan et al., 2009). In our VSM, each document is a vector 

that captures the relative important terms. Representing these documents as vectors 

allows us to perform operations such as scoring documents on a query, document 

classification, and document clustering (Christopher D. Manning et al., 2008). 

Deerwester et al. found a way to improve document similarity based on linear algebra 

called latent semantic indexing (LSI) (Deerwester et al., 1990). LSI assumes a “latent” 

semantic structure, reducing the dimensionality by using a singular value decomposition 

(SVD) –a technique related to eigenvector decomposition and factor analysis (Furnas et 

al., 1988; Dumais et al., 1988; Deerwester et al., 1990).  

 



 

 85 

Stylometry 

A particular application of text mining is stylometry, which refers to the statistical 

analysis of writing style. Stylometry has been influenced by techniques from computer 

science and artificial intelligence which regards stylometry as a problem of pattern 

recognition that may distinguish one author from another (Holmes, 1998; Forsyth, 1999; 

Ramyaa and Rasheed, 2004). The premise is that authors have an inherent writing style 

that makes their work distinct to that of others. So far most of the efforts in Stylometry 

research have been in author identification, also known as author categorization, and in 

similarity detection, which is calculating the similarity between two or more documents 

(De Vel et al., 2001) (Holmes, 1998; Zipf, 1935; Mosteller and Wallace, 1964). Both of 

these applications fall under a more general “authorship analysis” (AA).  

AA seeks to uncover unconsciously written features from the documents including, 

but not limited, to lexical (e.g., word or sentence length), semantic, syntactic (e.g., 

frequency of words), structural (e.g., paragraph length), or content-specific topic (e.g., 

keywords) features (Holmes, 1998) (See Table 4). A well-known application of 

authorship analysis is that of the Federalist Papers (Mosteller and Wallace, 1964). In the 

Mosteller and Wallace study they used author-specific features to establish the authorship 

of some of the Federalist Papers. Some of these features included unusual diction, 

frequency in which words appear, and habits of hyphenation and grammar style. Zheng et 

al. (2006) proposed a framework for authorship identification that includes (besides 

lexical, syntactic, and structural features) content-specific features. 
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Table 4. Stylometric Identification. Adapted from (Abbasi and Chen 2008) 
Category Feature Group Examples Information Type 

Lexical Word Lexical words count, words size 

Opinions 
Style 

Genres 

Character Lexical total characters, alphanumeric 
characters 

Vocabulary 
Richness 

Hapax legomana, Yules K 

Word Length 
Distribution 

frequency of various word 
sizes 

Character N-grams ut, utt, utte  
Digit N-grams 150, 50, 5 

Syntactic 
(NLP) 

POS Tag N-Grams combinations of parts of 
speech 

Opinions 
Style 

Genres 

Word N-grams to be, be or not 
Noun Phrases child, caretaker, parent 
Named Entities United States, Dr. Phil 
Bag-of-Words all words except function 

words 
Structural Document Structure interview parent, interview 

child, concerns Style 

 

In this study we extend the concept from an individual level to the aggregate identity 

of an organization. If we are able to accurately identify authorship at the organizational 

unit level, we would demonstrate that case notes coming from different organizations 

have enough differences between them as to agree there is indeed an “organizational unit 

style”.  

Data Preparation 

Among the most important data preparation activities was to solicit the help of nurse 

case managers. We developed an accurate data sample to construct a ‘‘gold standard’’ 

dataset with correctly labeled cases of our target variable –psychotropic medication use. 

The organization agreed to dedicate resources to make sure each of the case notes in our 
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gold standard were coded and labeled correctly. All case notes were manually checked 

and coded and include, among other attributes, the content of the home visit note, the 

authoring organizational unit, and a flag indicating whether the child is taking 

psychotropic medication. 

Many of the cases were difficult to categorize.  For example, some of the cases were 

of children that were previously on psychotropic medication but switched mental health 

providers and the new physician felt they were too young to take medications and 

discontinued their treatment.  In other cases, the children were refusing medications, or 

indicating that they are continuing their treatments yet they were not showing up in the 

system as having received a refill of a prescribed medication. Another limitation of using 

home visit notes is an issue of cardinality. There is a case note for a home but there can 

be many foster children living in the same home. This is problematic in cases where one 

foster child is taking psychotropic medication and the others are not. The caseworker may 

emphasize one foster child over another yet the home visit is for all. 

Data was retrieved from the secure front-end website via Ruby on Rails scripts and 

were stored in a database on a secure internal server (see Figure 2 for the database 

structure). Since there is health-related information contained in the various case notes 

we had to follow strict HIPAA guidelines for personal health information (PHI) de-

identification. Using sentence processing heuristics can help in situations where 

individuals’ names can coincide with dictionary words by either removing them or 

labeling them as “ambiguous” for manual processing (Neamatullah et al., 2008).  All 

labels related to location, contact information, and other PHI was removed. For the free-
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text section, because the child and other individuals directly involved in the care were 

identified in structured sections of the data, those names formed the lookup table for 

parsing the free-text. Although the dates for the case notes themselves were not 

particularly important in this study, the order is important, as it tells a chronologically 

ordered story.  For example, some cases resulted in multiple visits, and therefore multiple 

entries in the system for “Home Visit-Child’s Current Residence”.  The dates were 

replaced with an ordinal number (1, 2, 3…n) to represent the recency of it relative to the 

child’s other case notes in that month (if any). Children and case identifiers were de-

identified by generating a random number and using that number for reference of the 

child/case.  The dataset contained only information relevant for our purpose, including 

the free-text in the case notes and the target variable. 

 

 

 

 

 

We removed any guiding templates (questions intended to guide the caseworkers’ 

narrative of the home visit) to (1) avoid misleading results, and (2) saturating the 

existence of a word/phrase due to inclusion of it in a template (Luther et al., 2011).  An 

example would be if we left a template question that asks to “…list any bruises or 

markings you observed…”. Due to its existence in much of the data, the signal of what 

 
Figure 2. SQL Database Structure 



 

 89 

would have been an interesting stemmed word, “bruis”, would be degraded in the rest of 

the non-template body of text.  

Analysis and Results 

To evaluate the differences in performance between the models (for propositions 1 

and 2) different predictive models were evaluated and compared using commonly 

accepted metrics: recall, precision, and F-measure. Recall (R) reflects the percentage of 

correct positive predictions out of all the possible positives; precision (P) reflects the 

percentage of correct positive predictions out of the predicted positives; and the F-

measure represents a ratio of overall goodness of fit for precision and recall. The F-

measure is better suited for evaluation since it provides a harmonic mean of the precision 

and recall (Christopher D. Manning et al., 2008). The definitions are provided in Table 5 

where TP represents true positives, FP represents false positives, TN represents true 

negatives, and FN represents false negatives.   

Table 5. Evaluation Metrics 
Precision (P)  Recall (R)  F-measure 

 

𝑃 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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𝐹 =   
2(𝑃 ∗ 𝑅)
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Proposition 1: Data collected using unstructured-data-entry formats become 

isomorphic within organizational units. 

 In this section we focus on an inductive (classification) text mining technique. First, 

an expert case manager provides a gold standard with labeled instances. Case notes are 

labeled “Yes” (uses psychotropic medication) or “No” (no use of psychotropic 
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medication), depending on whether the child is taking psychotropic medication or not. 

The data mining process followed is shown in Figure 3.  

 
Figure 3: Data mining process (process followed for Agency A) 

 

We create individual models for each organizational unit (Agency A, B, and C) and 

we evaluate each within its own organizational unit (intra) and across organizational units 

(inter)(see Figure 4). We first filter out case notes by organizational unit (e.g., Agency A, 

Agency B, and Agency C). We follow the same process shown in Figure 3 for Agency B 

and Agency C. We split the data using a random sample (for each organizational unit) 

into a training set containing 70% of the cases and a test set containing the remaining 

30% of the data.  

Using SAS Text Miner 9.4 (as shown in Figure 3), we evaluate the performance of 

these models and all the permutation comparisons across organizational units.  We use a 

z-test for proportions for precision and recall as a mechanism for statistically comparing 

results from the different models (Kachigan, 1986; Adomavicius et al., 2005).   
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Figure 4. Intra and Inter-Agency Data mining process 
 

The precision, recall, and F-measure metrics reflect the performance of the classifier 

on the binary outcome (e.g., classifying an individual as a psychotropic medication user 

or not). In this context, due to the negative consequences of not identifying a positive 

case, we consider a better predictive model to be one that has a higher recall –minimizing 

the number of false negatives (e.g., classifying children as not taking psychotropic 

medication when in fact they do take medication). The z-test for proportions evaluates the 

statistical difference between two population proportions p1 and p2 (Kachigan, 1986; 

Fleiss et al., 2013). To test the difference between proportions we compute the following: 

𝑧!"#!#"$%#&' =   
𝑝! −   𝑝!

𝑝(1− 𝑝)( 1𝑛!
+    1𝑛!

)
 

In Table 6, we evaluate each Agency by comparing the performance when tested 

with data from the same organizational unit (intra-agency) and across organizational units 

(inter-agency). We highlight in bold any statistically significant differences for precision 

and recall using a z-test for proportions (two-tailed test at the 95% confidence level). 

There is no standard definition of what a substantial difference in F-measure 
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improvement should be. In the field of information retrieval a 5% performance 

improvement is considered a substantial improvement (Adomavicius et al., 2005; Sparck 

Jones, 1974). The difference in F-measure is substantial if the difference between F-

measures is more than 0.05 and the difference in precision or recall is statistically 

significant (determined using the z-test for proportions and highlighted in bold and with a 

* symbol)(Adomavicius et al., 2005).  

Table 6. Results in difference between proportions for Precision (P) and 
Recall (R) 

Train Evaluation Precision Recall F-Measure 

Agency A 

Agency A 78.57 70.97 74.58 
Agency B 65 52.7 58.21 
Agency C 31.94 30.67 31.29* 
Z-Value  
(Agency A-Agency B) 1.2858 1.7303   
Z-Value  
(Agency A-Agency C) 

4.2082 
(p<0.01) 

3.9911 
(p<0.01)   

Agency B 

Agency B 46.15 54.54 50 
Agency A 45.59 30.69 36.69* 
Agency C 32 21.33 25.6* 
Z-Value 
(Agency B-Agency A) 0.1377 

2.1261 
(p<0.05)   

Z-Value 
(Agency B-Agency C) 1.1864 

3.0229 
(p<0.01)   

Agency C 

Agency C 64.71 50 56.41 
Agency A 33.33 16.83 22.37* 
Agency B 59.26 21.62 31.68* 
Z-Value 
(Agency C-Agency A) 

2.2762 
(p<0.05) 

3.3621 
(p<0.01)   

Z-Value 
(Agency C-Agency B) 0.3613 

2.5992 
(p<0.01)   

 

The differences in F-measure are substantial in five out of the six pairs. The results 

of the analysis show that two of the agencies (Agency A and Agency C) consistently 

perform better in classifying cases of psychotropic drug use. Our initial explanation for 
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this phenomenon is that, despite the isomorphism directed by regulative, normative, and 

cognitive components, different agencies may have adopted institutional elements that 

may influence the information being recorded in the home-visit notes. In addition to what 

caseworkers are required to document, an organizational unit may have requested its 

caseworkers to include additional information that can be specific to a particular need 

(e.g., monitoring psychotropic drug use).  

It is reasonable that the best performing model for each organizational unit is a 

model trained with data from that same organizational unit. In the next section we 

analyze whether different organizational units are consistent in the way they encode 

home-visit notes. In other words, based on the content of a particular case note, can we 

predict to which agency that particular case note belongs? By doing so, we can assess 

what it is in the content of these case notes that makes them more amenable to solving a 

specific tactical need effectively. 

Proposition 2: Institutional factors establish data entry practices that result in data 

that is highly cohesive (similar within the same organizational unit) and loosely coupled 

(different across organizational units). 

Stylometric analysis is simply an application of text mining that uncovers metadata 

from the documents and allows for statistical comparisons of these metadata as a proxy 

for “style”.  Using statistical text mining software (SAS Text Miner 9.4), we predict, 

based on the text in the case note, to which agency a particular case note belongs. Our 

training set consists of all the case notes from the three agencies assigned to a mutually 

exclusive train and test set. We follow the data mining process shown in Figure 5 for the 
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predictive modeling. We train a classification model that has the case note text and our 

target variable—the agency from which that note is coming from. This target variable 

takes one of three levels: Agency A, Agency B, and Agency C.  

 
Figure 5: Predicting Agency (Stylometry) 

 

The results show that we could classify case notes and attribute to which agency they 

belong to with a high degree of certainty (see Table 7). These results show that each 

organization has their own style, which is consistently used by its caseworkers. Based on 

the results from the psychotropic models and the results of the stylometry analysis, we 

could argue that the structure of these notes is similar within organizational units (highly 

cohesive) and different from that of other organizational units (loosely coupled)—based 

on the ability of the predictive model to discriminate, with high degree of certainty, the 

authoring agency of a particular case note. 

Table 7. Case Distribution across Agencies 
Agency Precision (%) Recall (%) F-measure (%) 

Agency A 76.99 75.65 76.31 

Agency B 79.81 76.15 77.94 

Agency C 76.74 81.15 78.88 

 

Some researchers have argued that an author’s style is comprised of a limited 

number of distinctive features inherent to the author, neglecting the content/context-
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dependency of the writing (De Vel et al., 2001). In our study, these notes are all in the 

same context, reflect a specific aspect of case management, and are written by 

experienced staff acting as representatives of these agencies. If we combine the results of 

the analysis for proposition one and those of proposition two, we could argue that 

perhaps there is inherent features that are included in one of the agency’s case notes that 

others may be lacking and vice versa. Could we identify best reporting practices that help 

solve a tactical need effectively? 

Proposition 3: Unstructured data formats can help shape effective practices in 

solving well-defined needs. 

We turn to psychology research to illustrate how despite subtle differences in human 

language, there are unquantifiable yet salient qualities, such as specificity, that can 

provide inference. Psychology research reveals a tradeoff between cognitive economy and 

inductive inference (Lakoff, 1987; Roach et al., 1978; E.E. Smith and Medin, 1981; 

Edward E Smith, 1988; Parsons, 1996). Categories improve the ability of a person to 

accurately predict features of instances of a category. Some members of a category are 

more central than others and different concepts have a degree of membership to some of 

these categories.  

Proposition 3a: Higher levels of specificity in the data collected leads to increased 

inferential utility. 

Computers understand very little of the meaning of human language. Information 

retrieval research has assumed the meaning of words is closely connected to the statistics 
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of word usage (Turney and Pantel, 2010). For instance, (Sparck Jones, 1972) adopted a 

statistical interpretation of the concept of specificity as a function of term use rather than 

having to do with the accuracy of the concept representation. This measure of term 

specificity is what later became the concept of inverse document frequency (idf) in 

information retrieval research. Landauer (2002) estimates that 80% of the meaning of a 

passage comes from word choice and the remaining 20% comes from word order. 

From a quantitative approach, we assess language use (in terms of structure and 

meaning of the case notes) by including/excluding NLP features. We then assess whether 

there are any performance differences in the prediction accuracy of the models.  For the 

text analysis we use SAS Text Miner 9.4, which has built-in text parsing and text filtering 

features that use natural language processing (NLP). The results are shown in Table 8. 

We present three different models: The first one without removing any NLP features and 

using a mutual information weighting scheme, a second one without part-of-speech 

(POS) and noun group (NG) features, and a third one only with POS and NG features but 

no term weighting scheme. We evaluate the performance of these models by evaluating 

their precision, recall, and F-measure (see Table 8). The precision, recall, and F-measure 

metrics reflect the performance of the classifier on the nominal outcome –agency to 

which a particular case note belongs to). 

Table 8. Prediction results with features disabled 
Features Used in Model Precision (%) Recall (%) F-measure (%) 
POS, NG, TF, TW  76.15 79.81 77.94 
TF + TW 70.94 79.81 75.11 
POS + NG 60.53 66.35 63.31 
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Similarly to the analysis in proposition one, we use a z-test for proportions for precision 

and recall as a mechanism for statistically comparing results from the different models 

(see Table 9). The difference in F-measure is substantial if the difference between F-

measures is more than 0.05 and the difference in precision or recall is statistically 

significant (determined using the z-test for proportions and highlighted in bold and with a 

* symbol)(Adomavicius et al., 2005). 

Table 9. Results in difference between proportions for 
Precision (P) and Recall (R) 

Components Precision Recall F-measure 
POS, NG, TF, TW 76.15 79.81 77.94 
No POS, No NG, TF, TW 70.94 79.81 75.11 

Z-values 0.8857 0   
POS, NG, No TF, No TW 60.53 66.35 63.31* 

Z-values 2.503 2.1885   
Scores are z-values for Precision (P) and Recall (R).  Significance 
values are p<0.05* (two-tailed) 

 

The results in Table 9 show a statistical significant difference between the full model 

(one that contains NLP features and a term weighting scheme) and the model that only 

has a weighting scheme (TF, TW) but no NLP features. Results also show that there is no 

statistical significant difference between the full model and the model that has no POS 

and NG features but does have a term weighting scheme (TF, TW). Consistent with 

previous research, the terms used are a more salient factor of prediction compared to the 

language structure of a case note. Institutional factors can provide two plausible 

explanations for this: (1) different organizational units focus on different aspects when 

reporting a home-visit and (2) the depth at which they encode their notes can be more 

general/specific.  
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In the next section we provide an example of an application of the 

generalization/specification concept in effective data-entry practices. 

Proposition 3b: Higher levels of specificity in the data collected facilitate 

unanticipated use of the data. 

Human language is subtle, with many unquantifiable yet salient qualities. Users with 

different levels of expertise tend to produce information that differs in quality and level 

of abstraction. For example, within the category “taking medication”, a concept hierarchy 

can be the following: (a) medication (b) psychotropic medication (c) Lisdexamfetamine 

(d) Vyvanse, which goes from the most general (a) to the most specific (d). Knowing a 

child is taking Vyvanse (d) gives more information than just knowing a child is taking 

medication (a). Based on the results in the previous sections and in line with the literature 

on cognitive psychology (e.g., specifically on categorization and inference), we could 

argue that text with higher content specificity could be then abstracted for use in 

unanticipated applications. For an application such as psychotropic drug use monitoring 

(one for which the notes were not originally intended for) we could use the concept 

hierarchy introduced before as a qualitative mean to identify potential cases of 

psychotropic medication-use. In Table 10 we show fragments of home-visit notes from 

different agencies. These three case notes were cases in which the child was taking 

psychotropic medication. If an individual were to rank these based on the likelihood of 

being a case of psychotropic medication-use, which one would rank first? We argue 

based on psychology research that the higher the specificity, the higher the inferential 

utility. Knowing a child is taking 40 mgs of Vyvanse to cope with ADHD provides more 
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information than knowing the child is taking its medication—since the more general 

category medication also includes non-psychotropic medication. 

Table 10. Home-visit notes of children taking psychotropic medication 
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Discussion  

Motivated by the ever increasing growth of unstructured data in organizational 

settings in this paper we address (1) the implications of unstructured-data-entry in the 

data collected by an organization; (2) how it helps in solving a tactical need; and (3) 

effective data-entry strategies. Traditional IS research offers limited guidance in the 

effect of different data-entry practices and decision-making (e.g., alignment between the 

information needs of data consumers and data contributors or promoting effective data-

entry practices).  

Organizations collect data to solve tactical needs’. The data stored from daily 

transactions supports effective decision-making. These data may be encoded in free-text, 

which may hinder the organization from effectively using it—due to the inherent flexible 

structure of free-text. Nevertheless, trying to impose too much structure (e.g., guiding 

templates) may cause an unintentional focus on what needs to be recorded that may result 

in an omission of potentially interesting information. Future research should focus on 

finding what the optimal level on this dichotomy is.  As reported in our case study, 

allowing some degree of freedom can prove beneficial in solving tactical needs if 

effective data collection strategies are put in place by the organization. By adopting such 

practices, organizations can leverage on their data to solve needs that may have not been 

anticipated at the time of the system’s development. Moreover, it would allow the 

organization to adapt such information to a different context—a limitation of fixed 

schemas. 



 

 101 

 

 In this paper we do not argue in favor of unstructured notes over structured notes. 

However, we argue that for certain applications, although structured information has the 

advantage of consistency and ability for integration, it may hinder user input.  

Future studies should focus in analyzing the importance of a good system design 

(e.g. structured vs. free-flow). This complements research by Lukyanenko et al. (2014) 

which argues that by limiting data-entry to experts in a citizen science project (e.g., data 

input by users at the species level) it can preclude the input of valuable information from 

non-experts and can lead to data accuracy problems (e.g., non-experts trying to “guess” 

species-level attributes). Our research encourage experts to be as specific as they can 

while allowing non-experts to input information at a more basic-level. 

We found that unstructured data entry may result in differences in how information 

is collected across different organizational units in the organization. Institutional theory 

helps explain how institutional factors shape practices by individuals across 

organizational units, and how these practices can become stable over time and adopted by 

other individuals, making the practice persistent. The analysis of the data showed that 

data collected through free-text formats become isomorphic within organizational units 

and that individuals from different organizational units adopt consistent practices when 

entering free-text-notes into the information system. Effectively, institutional factors 

shape data-entry practices that result in highly cohesive and loosely coupled data 

collection.  
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We illustrate the impact data-entry formats using a case study in the context of case 

management in a foster care organization. Our tactical purpose is to monitor cases of 

psychotropic medication use. From the analysis of the data, we found that higher levels of 

specificity in the data collected leads to increased inferential utility, which can ultimately 

help the organization solve unanticipated tasks using these data. As shown in proposition 

1, treating all data in the aggregate can have a detrimental effect in the performance of 

predictive models. Future work should focus in providing a method to evaluate when 

using data in the aggregate is justified as opposed to highlighting meaningful segments 

for separate analysis. In this study, we use organizational units as boundaries but a 

generalizable approach should be able to inductively select what these segments should 

be. We also introduce the idea of organizational stylometry. To our knowledge, the use of 

stylometry at the population level has yet to be explored—in which there are many 

contributors to a body of text. Our research objective was to show that despite the fact 

that organizations have established guidelines of reporting, employees adopt new 

guidelines that become established over time.  

The results of this study can be generalized to other domains and can provide insight 

to effective system design—the effect of particular designs (that are more/less flexible). 

Moreover, we hope to increase understanding of the implications of free-text-data-entry 

strategies and its implications to solving tactical needs’. A practical implication is that 

depending on whether the individuals looking at the text is a non-experts vs. expert, the 

individual writing the text can choose to contribute beyond what he believes is the 

information required for the reader. This allows for increased inferential utility that can 
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prove beneficial when dealing with unanticipated use of the data. Higher specificity, 

however, requires higher expertise. Thus, requiring higher levels of specificity when 

capturing data may hinder collaboration from non-experts.  
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