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ABSTRACT OF THE DISSERTATION 

ADVANCED ELECTRODE MATERIALS BY ELECTROSTATIC SPRAY 

DEPOSITION FOR LI-ION BATTERIES 

by 

Chunhui Chen 

Florida International University, 2016 

Miami, Florida 

 Professor Chunlei Wang, Major Professor 

Recent development in portable electronics and electric vehicles have increased the 

demand for high performance lithium ion batteries. However, it is still challenging to 

produce high energy and high power lithium ion batteries. The major objective of this 

research is to fabricate advanced electrode materials with enhanced power density and 

energy density. Porous Li4Ti5O12 (LTO) and its nanocomposites (with Si and reduced 

graphene oxide (rGO)) synthesized by electrostatic spray deposition (ESD) technique were 

mainly studied and promising electrochemical performance was achieved. 

            In chapter 3, porous LTO thin film electrode was synthesized by ESD to solve the 

low energy density and low power density issues by providing good ionic and electronic 

conductivities. Electrochemical test results showed that it had a large specific capacity of 

357 mAh g-1 at 0.15 A g-1, which was even higher than its theoretical capacity. It also 

exhibited very high rate capability of 98 mAh g-1 at 6 A g-1. The improved electrochemical 

performance was due to the advantage of ESD generated porous structures. In order to 

further enhance the power density of LTO, ESD derived LTO/rGO composite electrodes 

were studied in chapter 4. In chapter 5, high energy density component Si was introduced 
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into LTO composite. The synergistic effect between commercial LTO and Si powder was 

studied. Then, ESD derived LTO/Si/rGO composite was prepared and evaluated. At 0.15 

A g-1, a stable capacity of 624 mAh g-1 was observed, which was much higher than the 

capacities of LTO and LTO/rGO electrodes. In addition, effect of activation process on 

electrochemical performance of carbon nanofibers (ACNFs) and feasibility of ion 

intercalation into 2D MMT montmorillonite clay (MMT) were studied and discussed in 

chapter 6.  

          In summary, we have successfully synthesized various LTO based electrodes by 

ESD. Both high energy and high power density were achieved as compared to commercial 

LTO electrode. Through electrochemical characterization and charge storage distribution 

analysis, origins of the high rate capability were proposed. This work demonstrates ESD 

as a powerful tool for fabricating high performance porous structures and nanocomposite 

electrode materials. 
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1. INTRODUCTION 

1.1 Overview  

             Rechargeable lithium-ion battery (LIB) is one of the most important energy storage 

systems used in a wide range of applications, ranging from portable electronics to electric 

vehicles. The global market of LIB is expanding dramatically mainly because of its high 

energy density, high power density and long cycle life. Three major application areas for 

the LIB are: (i) portable electronics, (ii) power tools and electric vehicles (such as pure 

electric vehicles, hybrid electric vehicles and plug-in hybrid electric vehicles), and (iii) 

stationary electrical energy storage for renewable energies (wind and solar power). LIB 

technology has revolutionized the portable electronics market in the past two decades.  

             The overall performance of LIBs is related to the properties and characteristics of 

the various components in the cell, such as: anodes, cathodes, and electrolytes materials. 

Much effort has been focused on replacing the currently commercialized graphite anode 

by other materials. LTO recently has attracted great interests because of its excellent 

cyclability, good rate capability, structure stability and solid electrolyte interphase (SEI) 

free nature. However, it has low energy density due to low theoretical capacity of 175 mAh 

g-1 (when cutoff voltage = 1 V) and high working voltage of 1.55 V. Lots of research efforts 

have been put to resolve this issue. On the one hand, different nanostructured (mesoporous, 

hierarchical, core-shell, 1D nanofiber/nanotube, 2D nanosheets) LTO electrodes have been 

synthesized because of their attractive properties, such as higher surface area and shorter 

Li+ diffusion length which could improve reaction kinetics and enable high rate 

performance. On the other hand, many kinds of LTO based composites have been prepared 

taking advantages of higher specific capacities of the compositing components. Great 
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electrochemical performance enhancement of LTO based electrodes have been observed 

due to these research efforts. 

1.2 Objective and Research Plan 

             The objective of this dissertation is to develop high energy and high power 

electrode materials for LIBs. LTO and its nanocomposites were mainly studied in order to 

enhance its electrochemical performance.  

            In order to improve the energy and power density of Li4Ti5O12 (LTO) electrode, 

porous binder free thin film structured electrode is fabricated. Electrostatic spray 

deposition (ESD) is utilized in developing LTO electrode with the proposed structures. 

One of the promising aspects of ESD is that various structures and morphologies can be 

formed by controlling deposition conditions. The resulting porous structures enable higher 

surface area and shorter Li+ diffusion length which may improve reaction kinetics and 

enable the enhanced high rate performance. In addition, the LTO electrode will be 

discharged to 0 V, which not only can increase the specific capacity of LTO, but also can 

decrease the average working voltage, which is beneficial for high energy performance. 

In order to improve the energy density and power density of LTO electrode, various 

types of LTO based nanocomposites are developed. Reduced graphene oxide (rGO) and 

silicon are selected to make composite with LTO, as a rate capability enhancement 

component and a capacity enhancement component, respectively. The positive synergic 

effect between LTO and Si in the composite is expected since LTO can alleviate the 

stresses from volumetric changes of Si upon cycling, while Si can add to the capacity of 

the composite.  
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            In addition, other types of electrode materials, such as activated CNFs and MMT 

clay are studied. For CNF electrode, chemical activation by KOH is applied to create 

porous structures on CNFs in order to increase its specific capacity and rate capability. For 

MMT clay electrode, since this is the first time to utilize MMT as electrode material for 

LIB, we focus on evaluating the feasibility of lithium ions to reversibly intercalate/de-

intercalate into its 2D layered structures. Figure 1.1 presents the flow chart of this thesis 

research. 

 

Figure 1.1 Flow chart of the research plan. 
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1.3 Scope of the Dissertation 

            Chapter 2 provides a general review on LIBs and electrode materials for the system. 

In order to provide new insight for further investigations of electrode materials for LIBs, a 

background of batteries and two types of anode materials are discussed. In addition, chapter 

2 describes the experimental techniques used in this study. The fabrication process and 

evaluation of porous LTO thin film electrode are presented in chapter 3. Studies on 

electrochemical performance of resulting LTO are focused on various aspects including: 

origin of the extra capacity, reason for extreme fast reaction kinetics and capacitive charge 

contribution, etc.  Chapter 4 describes the advantages of adding rGO to enhance the 

electrochemical performance of LTO/rGO composites. The fabrication and evaluation of 

LTO/Si/rGO composite are presented in chapter 5. Si and rGO were used as capacity 

enhancement and rate capability improvement components in the study. In chapter 6, the 

study of other electrode materials including activated CNFs based electrodes and 

montmorillonite clay based electrodes are described. Chapter 7 gives a summary of the 

dissertation and proposes future works. 

             In this dissertation, the physical properties and structures of the electrode materials 

were characterized through various techniques, such as X-ray diffraction, scanning electron 

microscopy, transmission electron microscopy, Brunauer Emmett Teller 

adsorption/desorption measurement, thermogravimetric analysis and Raman spectroscopy 

measurement. The electrodes were prepared through traditional casting methods and ESD 

process. The electrochemical performance of resulting electrodes were tested in half-cells 

and characterized by different tests, such as galvanostatic charge-discharge test, cyclic 

voltammetry test and electrochemical impedance spectroscopy.  
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2. BACKGROUND AND LITERATURE REVIEW 

          Rechargeable LIB is one of the most important and widely used energy storage 

devices. The global market of LIB is growing dramatically which is mainly due to its high 

energy density and high power density as well as long cycle life compared to other primary 

and secondary batteries, such as: lead acid batteries, Ni-Cd batteries and Ni-MH batteries. 

Figure 2.1 shows the Ragone plot of various currently available electrical energy storage 

devices [1].  

 

Figure 2. 1 Ragone plot of various electrical energy storage devices [1]. 

 

            The specified advantages of LIB include high working voltage (~ 3.6 V), high 

energy density (~ 160 Wh kg-1), high power density (~ 440 W kg-1),  long cycling life (> 

1000 cycles), eco-friendliness and no memory effect, etc., as listed in Table 2.1 [2]. Since 

the commercialization of first LIB by SONY, great improvement has been realized due to 

better cell design, reduced amount of inactive materials, and optimized electrode materials. 
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Table 2. 1 Advantages of Li-ion batteries compared to other commonly used battery 

systems [2]. 

 
Battery type Pb-Acid Ni-Cd Ni-MH Li-ion 

Voltage/ V 2 1.25 1.25 3.6 

Specific energy density/ Wh/g 30~50 45~80 60~20 110~160 

Specific energy density/ Wh/l 70 100 245 440 

Peak load current 5C 20C 5C >30C 

Cycle life 200-300 1500 500 1000 

Self-discharge time/ months 5 20 30 10 

Operation Temperature/ ºC -20~60 -40~60 -20~60 -40~70 

 

2.1 Fundamental Aspects of Lithium-ion Batteries 

In LIBs, electrical energy is stored in the form of chemical energy in the anode and 

cathode.  A typical LIB inside package consists of a positive electrode (cathode), a negative 

electrode (anode), separator and an electrolyte. The electrolyte can be liquid, gel, or solid. 

Most of the lithium-ion batteries use liquid electrolyte which contains lithium salts (such 

as LiPF6, LiBF4, LiClO4, etc), dissolved in an organic alkyl carbonate solvents mixture. 

Solid electrolytes can physically isolated anode and cathode. However, when liquid 

electrolytes are used, porous membranes must be used as separator between two electrodes 

to prevent electrical contact and at the same time allow the lithium ions containing 

electrolyte to penetrate. The electrolyte is electronically insulating and ionically conducting 

which enables the shuttling of lithium ions between two electrodes [3-6]. A schematic 

drawing of a traditional lithium-ion battery with graphite as anode and LiCoO2 as cathode 

is shown in Figure 2.2. 
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Figure 2. 2 Schematic drawing of a typical lithium-ion battery. 

             Typically, a lithium-ion battery is assembled in discharged state in which cathode 

is in lithiated state and anode is in a state that can accommodate lithium ions. In charging 

process, lithium ions move from cathode side and intercalate into graphite anode through 

electrolyte. Electrons move from cathode to anode through the external circuit. During 

discharge, both lithium ions and electrons reverse their moving directions as in the charging 

process. The reactions that happened in anode, cathode as well as full cell are shown in 

Equations (2.1)-(2.3). During cycling, Li+ repeatedly shuttles between cathode and anode, 

which is why LIB is called the “rocking-chair” battery [7-11]. 

Anode:  LixC6 ↔ xLi+ + xe- + C6 (x<1)                                                                           (2.1) 

Cathode: Li1-xCoO2 + xLi+ + xe- ↔ Li1-xCoO2 (x<0.5)                                                    (2.2) 

Full cell: LiC6 + CoO2 ↔ C6 + LiCoO2                                                                                                                (2.3) 
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2.2 Electrode Materials for Anodes 

           Currently, the anode and cathode materials in commercial LIBs are graphite and 

lithium metal oxides ((LiCoO2) or (LiFePO4)). The theoretical capacity of graphite is 372 

mAh g-1 [12-14]. Developing alternative anode materials with much higher energy 

capacities is one of the challenges in improving the performance of LIBs. The development 

and current state-of-arts of Si and LTO anode materials are reviewed below. 

2.2.1 High Capacity Anode Material: Si 

          In the early 70s, Dey demonstrated that Li metal can electrochemically alloy with 

other metallic or semi-metallic elements at room temperature in a non-aqueous based 

electrolyte. Since then, alloying based anode materials have been widely investigated in 

the past few decades. Among various Li alloy elements, Si is considered as one of the most 

attractive candidates owing to its highest gravimetric and volumetric capacities. For 

example, Si has a theoretical capacity of 4200 mAh g-1, which is about 10 times higher 

than that of commercial graphite [15-16]. In addition, the discharge potential for Si is 

around 0.2 V (vs. Li/Li+), which is lower than most of other anode materials and enables a 

very high energy density in a Si containing full cell. Besides, its high theoretical 

performance, low cost, abundance as well as environmentally benign, make Si more 

promising to be applied in commercial LIBs [15-16]. However, the use of Si anode still 

remains challenging because of large volume expansion (>400%) during cycling. Such 

huge volume change will induce large stresses within Si and the whole electrode leading 

to active material pulverization and peeling off from current collector, which is the main 

reason for the capacity fading and even electrode failure [17]. Another challenge of Si 

anode is the continuous solid-electrolyte interphase (SEI) growth [18]. The organic 
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electrolyte will decompose at electrode surface when potential is below ~1 V and form an 

ionically conducting and electronically insulating layer which can prevent further SEI 

formation. For most of the anode materials, major SEI formation process happens in the 

first several cycles. However, the large volume change of Si makes it very challenging to 

achieve a stable SEI. Breakage of SEI layer due to volume expansion-contraction cycles 

and re-formation on new Si surface lead to a very thick SEI layer which can hinder further 

electrochemical reaction. This effect is more detrimental for a full cell which has limited 

amount of Li+ in the system, since increasing amount of Li+ will be trapped in the SEI 

layer. Moreover, the electrochemical reaction kinetics between Si and Li+ are hindered by 

relatively low (≈10-3 S cm-1) electronic conductivity and slow (diffusion coefficient 

between10-14~10-13 cm2 s-1) lithium diffusion in Si, which limit the full utilization of the 

active material and also the rate capability [19]. 

          In order to resolve these issues, various methods have been applied, including carbon 

or metal coating, utilizing electrochemical active/inactive buffering materials, formation 

of nanostructured/porous Si electrodes and use of new binders. Significant breakthroughs 

have been achieved in terms of extended cycle life and enhanced rate performance. For 

example, carbon coating from various organic precursors is a common way to improve the 

electronic conductivity of Si [20-21]. Carbon also serves as a buffer media to alleviate the 

stress from volume change of Si phase. Besides carbon, many other materials have been 

used as the matrix to reduce the volume change effect. However, there is a drawback of 

this approach that the presence of other low capacity components could lower the specific 

capacity of the composites. In addition, utilization of porous and/or nanosized silicon (0D 

nanoparticles [22], 1D nanowires [23] and nanotubes [24] and 2D thin films [25]) based 
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materials have shown significant enhanced electrochemical performance. Compared to 

bulk Si, engineered porous/nanosized silicon not only can effectively accommodate the 

volume through dramatically improved damage tolerance, but also enable fast 

(de)lithiation process due to reduced diffusion distance and large contact area with 

electrolyte. The main shortcoming for this approach is the low tap density which causes 

limited volumetric capacity. In order to tolerate the large volume change, besides active 

materials, binder also plays a critical role. Other than traditional binder, Poly(vinylidene 

fluoride) (PVDF) [26], various other binders, such as sodium carboxymethyl cellulose 

(NaCMC) [27], poly(acrylic acid) (PAA) [28], alginate (nature polysaccharide extracted 

from brown algae) [29] have been investigated for Si based anode materials. The enhanced 

electrochemical performance have been observed by selecting these novel binders. It could 

be due to one or several of the following reasons: a) less interaction between binder and 

electrolyte; b) better Li+ accessibility; c) higher elastic modulus; d) higher electronic 

conductivity. Although great progress has been achieved via above approaches, further 

improvement on buffering volume change, controlling SEI growth, enhancing reaction 

kinetics etc. could be expected to make Si more suitable for LIBs.  

2.2.2 High Rate Capability Anode Material: Li4Ti5O12 

            As an alternative anode material to graphite, lithium titanate (Li4Ti5O12), also 

written as Li (Li1/3Ti2/3)O4) has been extensively studied especially for high power and 

large scale Li-ion storage applications. LTO has a lot of advantages when cutoff voltage is 

1 V, which include: i) a very flat and stable charge/discharge platform at ~1.55 V; ii) high 

redox potential which restrains the SEI formation; iii) negligible volume change (also 

called “zero strain”) during Li insertion/extraction; iv) excellent cycling reversibility and 
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cycle life; v) inexpensive and environmental friendly material [30] . However, untreated 

coarse LTO exhibits poor electrochemical performance, especially under high current 

densities, mainly due to its inherent low electronic conductivity (<10-13 S cm-1) and 

sluggish Li+ diffusivity (<10-6 cm2 s-1) [30]. Table 2.2 summarized the advantages and 

disadvantages of LTO as anode for LIBs.  

Table 2. 2 Advantages and disadvantages of spinel-LTO as anode. 

Advantages  Excellent Li+ insertion/extraction reversibility 

 Negligible volume/structure change 

 Long cycle life (over 1000 cycles) 

 Excellent safety characteristics 

 Flat discharge profile 

 Solid electrolyte interphase (SEI) free (cutoff voltage= 1V) 

 Better high temperature performance (< 60 οC) 

 High rate performance (90% capacity retention at 10 C) 

Disadvantages  Low electronic conductivity (10-13 S cm-1) 

 Low theoretical specific capacity (175 mAh g-1 @ 1V cutoff voltage) 

 High reaction voltage (1.55 V) 

           

           In order to overcome the disadvantages of LTO,  lots of efforts have been devoted 

in various aspects including: i) applying different synthesis methods (solid state reaction, 

sol-gel method, hydro/Solve-thermal method, spray pyrolysis method, etc.); ii) structure 

and morphology modifications (nanoparticle, nanoplate, nanofiber, nanotube, porous, etc.); 

iii) surface and material modifications (carbon coating, doping); iv) forming composite 

materials (LTO/carbon, LTO/TiO2, LTO/other anode materials). LTO has been used in 

some commercial applications, such as hybrid/plug-in electrical vehicles and large scale 

energy storage for renewable energy generations.  

           From structure point of view, LTO has a defective spinel structure with a space 

group of 𝐹𝑑3̅𝑚, in which all tetrahedral 8a sites are occupied by lithium, 32e positions are 
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occupied by oxygen  and the octahedral 16d sites are shared by lithium and titanium in a 

ratio of 1 : 5 [31]. So Li4Ti5O12 can also be write as [Li3]
8a[ ]16c[Li1Ti5]

16d[O12]
32e. During 

lithium intercalation process, three Li ions at 8a sites move towards 16c sites and three 

more Li ions intercalate into 16c sites causing fully filled 16c sites and emptied 8a sites, 

resulting in Li7Ti5O12, [ ]
8a[Li6]

16c[Li1Ti5]
16d[O12]

32e . The process can be expressed as in 

Equation 2.4 [31]. In the atomic structure of Li7Ti5O12, 8a sites are still empty and could 

provide more spaces for further lithium ions storage. According to ab initial calculation, 

additional 1.5 Li ions can be stored at 8a sites when cut off voltage is 0 V, resulting in 

[Li1.5]
8a[Li6]

16c[Li1Ti5]
16d[O12]

32e (Li8.5Ti5O12). The process can be expressed as in Equation 

2.5.  Through this process, the theoriterical capacity of  LTO increased to 263 mAh g-1, 1.5 

times higher than that of when cutoff voltage is 1 V. From structure point of view, 

Li8.5Ti5O12 still has half of the 8a sites empty which can be further used to store Li ions. 

The possible reaction can be expressed as in Equation 2.6. The ending member will be 

Li10.5Ti5O12 when all 8a and 16c sites are occupied, corresponding to a capacity of 350 

mAh g-1. However, this reaction will not happen because a negative voltage is required 

which is not possible for the Li half cell [32-33].  

[Li3]
8a[ ]16c[Li1Ti5]

16d[O12]
32e + 3e- + 3Li+ ↔[ ]8a[Li6]

16c[Li1Ti5]
16d[O12]

32e                   (2.4) 

[ ]8a[Li6]
16c[Li1Ti5]

16d[O12]
32e + 1.5 e- + 1.5 Li+ ↔[Li1.5]

8a[Li6]
16c[Li1Ti5]

16d[O12]
32e     (2.5) 

[Li1.5]
8a[Li6]

16c[Li1Ti5]
16d[O12]

32e +1.5 e- +1.5 Li+ ↔[Li3]
8a[Li6]

16c[Li1Ti5]
16d[O12]

32e     (2.6) 

           Spinel Li4Ti5O12 can be synthesized via various methods, such as solid-state reaction 

[34], sol−gel method [35], hydro-thermal/solve-thermal method [36], spray pyrolysis 

method [37], electrospinning method [38] and so on. The properties of LTO such as 

morphology, particle size and distribution, phase purity, surface area, crystallinity, are 
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greatly affected by the synthesis methods/processes and conditions.  As a result, the 

electrochemical performance is highly dependent on the synthesis method. The merits and 

shortcomings for various LTO synthesis methods are summarized in Table 2.3.  

Table 2. 3 Merits and shortcomings of various LTO synthesis methods. 

Synthesis 

method 

Synthesis Process Merits Shortcomings 

Solid-state 

reaction[34] 

 

Stoichiometric amount of Li2CO3 

and TiO2 are mixed evenly first, 

then heat-treated at 700–1000 οC 

for 1–20 h 

 

Simple and easy 

process;  

low cost; 

potential commercial 

application 

low homogeneity; 

irregular morphology; 

significant 

agglomeration; 

coarse particle size; 

long calcination time 

 

Sol-gel[35] 

 

Stoichiometric Li and Ti sources 

are dissolved and form a gel 

which will be dried to obtain the 

organic precursors. Then heat 

treatment at 500–800 οC is 

performed to obtain LTO 

 

 

High purity; 

sub-micron size 

particles; 

homogeneous size 

distribution; 

low synthesis  

temperature;  

short calcination time 

 

High material cost; 

Complex synthetic 

route 

 

Hydro/Solve

-thermal[36] 

 

First Li and Ti sources are 

dissolved in solvent then react in 

autoclave at 100-200 οC followed 

by low temperature calcination.  

Fast reaction; 

High purity; 

Small particle size; 

Homogenous 

distribution; 

Low calcination 

temperature; 

Scale up easily 

 

Expensive precursor; 

Require autoclave as 

reactor; 

Need washing process 

 

 

Spray 

Pyrolysis[37] 

Precursor solutions are prepared 

and feed as atomized phase into a 

heated chamber for 

decomposition 

High productivity; 

Easy control of size; 

Homogenous particles; 

Micrometer range size 

             

           It is well known that particle size and morphology have great influence on 

electrochemical performance of electrode materials due to modified surface area, surface 

chemistry, surface energy, ion diffusion distance, etc [39]. Reduced particle sizes could 

enable large contact area between electrode and electrolyte and also reduced diffusion 

length for lithium ions and electrons. As a result, fast reaction kinetics could be achieved 
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which leads to enhanced high rate performance. In addition, defects in nanomaterials may 

also act as Li+ storage sites that can increase the total charge storage capacity. For example, 

porous LTO consisting ultra-small interconnected nanoparticles (3-4 nm) was synthesized 

through solve-thermal method. The resulting LTO showed a capacity of 175 mAh g-1 at 50 

C and furthermore, 74 % of the initial capacity can be maintained at an extreme high rate 

of 800 C for over a thousand cycles.  The drastically enhanced reaction kinetics is mainly 

because of the nanoscale building blocks with enhanced charge transfer and reduced 

ion/electron diffusion length [40]. However, there are some drawbacks with nanosizing, 

such as: low tap density, more side reactions, difficulty in controlling the synthesis 

reactions and procedures, etc. Considering the low tap density issue, Lu et al. fabricated 

mesoporous LTO (4.5 nm pore size) consisting large sphere particles (660 nm) and small 

primary particles (20-100 nm) with high tap density of 1.62 g cm-3 [41]. The increased tap 

density made it more suitable for practical applications.  The nanosized pores and primary 

particles still maintained the advantage of improved reaction kinetics. A high charge 

capacity of 179 mAh g-1 was obtained at 0.5 C with high first cycle coulombic efficiency 

of 93.5 %. The charge capacity decreased to 109 mA h g-1 when charge rate increased to 

10 C and the capacity retention for over 100 cycles was 97.8 %. Such nano/micro-

combined structure with high tap density is desirable towards practical applications [41].  

           Besides creating nanostructures, surface modification is another commonly used 

method to improve the electrochemical performance of LTO. Among all surface 

modification methods, surface coating is generally employed and proved to be effective 

towards performance enhancement. Various types of carbons [42-45] and metals (such as 

Ag [46], Au [47]), metal oxides (such as TiO2 [48], CuxO [49], ZnO [50]) and other 
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conductive species are frequently selected as coating materials for LTO. Carbon is one of 

the most widely used coating materials due to its unique chemical and physical properties 

and the feasibility of conducting coating process. The insulating nature of LTO can be 

easily altered by carbon coating. High rate performance has been remarkably improved due 

to enhanced electronic conductivity. The level of the electrochemical performance 

improvement is strongly dependent on the properties of carbon coating, such as thickness, 

uniformity, degree of graphitization, defects and vacancies, which are mainly decided by 

the carbon sources, coating processes and post treatments [42-45]. 

           In addition to the surface modification, various types of LTO based composites have 

also been studied. One type of composite is carbon based LTO composite formed by adding 

carbon nanotubes (CNTs) [51] or graphene [52] into LTO, which will provide even higher 

electronic conductivity than graphic carbon coating. Furthermore, the high specific surface 

areas of these materials enable good contact between electrode and electrolyte and shorten 

the ion diffusion length. Since the capacity enhancement of composite electrode is closely 

related to the capacity of another component in the composite, in order to further increase 

the specific capacity of LTO based composites, high capacity anode materials are 

preferred. Unfortunately, the operational voltages for some anode materials that can be 

used to make composites with LTO are less than 1 V, which makes cutting off voltage 

below 1 V a prerequisite to utilize all components as active materials. This brings us back 

the SEI formation issue. Energy density enhancement through this method comes with 

trading off important advantage of SEI free for LTO. However, SEI formation could be 

alleviated by surface coating technology, such as ALD based Al2O3 coating. Till now, there 

are scattered efforts regarding the development of composites between LTO and high 



16 

 

capacity anode materials, such as: Sn [53], SnO2 [54], CuO [55], Fe2O3 [56] and Si [57]. 

Silicon is an excellent choice due to its highest theoretical capacity (4200 mAh g-1). 

However, one of the problems of using silicon alone is the ~400% volumetric change 

during cycling, which results in peeling and pulverization of the electrode and eventual 

capacity loss. We believe LTO/Si based composite could reduce the negative effect 

introduced by Si phase.  

2.3 Electrostatic Spray Deposition Technique 

            Electrostatic spray deposition (ESD) is a unique thin film fabrication method 

initially developed by Schoonman et al. at Delft University of Technology [58]. Due to the 

advantages of simple and low–cost setup, non–vacuum, low deposition temperature, high 

deposition efficiency, as well as good control of the composition and morphology, ESD 

technique shows some promising aspects as compared to other film formation processes, 

such as sputtering, chemical/physical vapor deposition, sol–gel and so on. Till now, various 

thin film electrodes with different morphologies have been synthesized through ESD for 

LIBs. The resulting electrodes could be dense, sponge-line porous, fractal–like porous etc. 

which can be controlled by varying deposition conditions [59]. It is belived that controling 

structures of electrodes is an effective way to optmize electrochemical performance 

regarding volume change buffering, decreasing ion diffusion passway and increasing 

contact areas between electrode and electrolyte. For example, the 3D sponge–like films 

with high surface area and high porosity are beneficial for buffering the large volume 

changes of anode materials during charge/discharge process and improving reaction 

kinetics with reduced diffusion length for lithium ions [60]. In addition, it is convenient to 

prepare uniform multi-component composites through ESD by varying the type and 
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concentration of precursor solutions. Clearly, ESD–derived thin films are favorable for 

application in lithium–ion batteries.  

            Figure 2.3a and b show schematic drawing and photo image of experimental set-up 

for ESD, respectively. The major components in the ESD set-up contain a nozzle connected 

with a syringe that supplies the precursor solution through a syringe pump, a substrate 

heated up at high temperature, and a DC high voltage power supply between nozzle and 

substrate. During deposition. A high DC voltage is used to generate a high electrostatic 

force and accelerate atomized liquid droplets at the tip of a nozzle; the charged droplets 

formed aerosol is sequentially deposited on a heated substrate to construct the designed 

thin film. The structures and morphologies of the resulting film can be controlled by 

varying: applied voltage, flow rate, deposition time, substrate temperature, needle to 

substrate distance, precursor concentration, mixture of solvents, selection of substrate, 

deposition atmosphere, etc. In general, the deposition process can be divided to five steps 

[61]: (i) Spray formation: A precursor solution is atomized into charged droplets at the tip 

of the nozzle by the electro-hydrodynamic force. (ii) Droplet transport, evaporation, and 

disruption: under the electric force, charged droplets move towards the substrate with the 

solvent evaporation. A charged droplet may be disrupted into a few smaller droplets after 

reaching a maximum attainable charge density. (iii) Preferential landing: The charged 

droplet will be attracted more towards these more curved areas due to the stronger electric 

field. Roughness of the substrate influences the morphology of thin film. (iv) Discharge 

and droplet spreading: The interfacial tensions determine the spreading rate of droplets: S 

= γsv-γsl-γlv, where γsv, γsl and γlv are interfacial tensions between substrate and ambient gas, 

substrate and liquid, and liquid and ambient gas, respectively. If S < 0, only partial wetting 
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occurs with equilibrium reached at a finite contact area. If S ≥ 0, the drop spreads until it 

completely covers the surface. (v) Decomposition and drying of the precursor salt: the 

decomposition and reaction (either partial or complete) of the solute may have occurred 

before the droplets reach the substrate. Rearrangement of these dry particles on the 

substrate surface by surface diffusion is not expected at moderate deposition temperatures 

less than 500 oC and a porous–like structure is expected to be formed instead of a very 

dense morphology. The schematic drawing of film formation process and photo image of 

corn-type spray are shown in Figure 2.3 (c) and (d), respectively. In our group, ESD has 

been demonstrated as a promising method for the formation of various porous structured 

and composite electrodes [62-65].  

 

Figure 2. 3 (a) Schematic drawing and (b) photo image of ESD experimental set-up. (c) 

Schematic drawing of film formation process and (d) zoomed in photo image of corn-type 

spray.            
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3. FABRICATION AND CHARACTERIZATION OF POROUS LTO THIN FILM 

ELECTRODES 

3.1 Introduction 

          Lithium titanate (Li4Ti5O12, LTO) is one of the candidate anode materials, which has 

attracted great attention due to its intrinsic properties. Usually its lower cutoff voltage is 

setting as 1V since the main reactions for LTO happen at ~1.55 V vs Li/Li+, exhibiting 

very flat charge-discharge plateaus. This makes it safer to use because it avoids the 

formations of solid electrolyte interphase (SEI) and lithium dendrite. Also, as a zero-strain 

insertion material, LTO is able to intercalate three lithium ions per molecule with negligible 

volumetric change giving rise to its excellent cycling performance [1-6]. These features 

make it promising for some applications, such as large scale and long cycle-life stationary 

batteries. However, one of the main issues for LTO is its low theoretical capacity, which 

is only 175 mAh g-1 corresponding to a structural transition from spinel (Li4Ti5O12) to rock 

salt (Li7Ti5O12). Both high working voltage and low theoretical capacity hinder its potential 

use in high energy density applications. 

        In order to improve the energy density of LTO, two strategies have been employed, 

including increasing the specific capacity and reducing the average working voltage. Ab 

initio calculations corroborated that it is possible to discharge LTO to 0 V to obtain a 

theoretical composition of Li8.5Ti5O12, corresponding to a capacity of 262 mAh g-1 [7]. In 

addition, fabricating composite materials with other high capacity anode materials may 

also enhance the energy capacity [8-12]. In order to utilize all of the components in the 

composite as active materials, it’s better to set the lower cutoff voltage to ~ 0 V since the 

operating voltages for some of anode materials are less than 1 V, such as Si and Sn.  
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         In this dissertation, our goal is to enhance the energy density of LTO by 

synthesizing LTO/Si/rGO nanocomposite electrode. Due to the low working voltages of Si 

and rGO, the resulting composite need to be discharged to ~ 0 V to make them active. In 

this chapter, we focus on the electrochemical performance evaluation of LTO when cutoff 

voltage is ~ 0 V. The porous LTO thin film electrode was synthesized by electrostatic spray 

deposition (ESD) process. The porous structure provides a large contact area between 

electrode and electrolyte which reduces the Li+ diffusion path and improves the high rate 

performance. Physical characterization showed that phase-pure LTO with a surface area of 

76.51 m2g-1 can be obtained under optimized conditions.  Electrochemical testing showed 

that the resulting LTO had a large specific capacity of 357 mAh g-1 at a current density of 

0.15 A g-1 and high rate capability of 98 mAh g-1 at 6 A g-1 (actual discharge time=60s). In 

addition, asymmetric rate behavior was observed with a faster charging but slower 

discharging process. When discharge current density was set as 3 A g-1, charge capacities 

at 3, 30, and 120 A g-1 were 162, 85 and 16 mAh g-1, respectively. Compared to commercial 

LTO powders, our superior electrochemical performance can be attributed to its ESD 

derived porous structures. 

3.2 Experimental 

         Porous LTO thin film was prepared by an electrostatic spray deposition (ESD) set-

up. The precursor solution was prepared by adding Titanium (IV) butoxide (0.34032 g) and 

Lithium acetate (0.0528 g) into a solvent mixture of ethanol and butyl carbitol (4:1 volume 

ratio, 20 ml). The resulting solution was used as the precursor solution for ESD process. 

The flow rate of the precursor solution was set at 2 mL h-1 and controlled by a syringe 

pump. Porous nickel foam was used as the deposition substrate. The nozzle-to-substrate 
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distance was kept at 5 cm. A high voltage of 6-8 kV was applied between the nozzle and 

the substrate. The deposition temperature was 250 °C. ESD-derived films were next heated 

in a tube furnace at 750 °C for 2 hours in an argon gas environment. 

      The morphology of the ESD-LTO electrode was investigated using a field emission-

scanning electron microscopy (JEOL 6335FE-SEM) and transmission electron microscopy 

(Philips CM200 FEG TEM).  Selected area electron diffraction (SAED) was performed 

and the resulting diffraction patterns were analyzed by “Digital Micrograph” software. N2 

adsorption-desorption isotherms were collected by a Micromeritics instrument at 77 K. X-

ray diffraction (XRD) patterns were recorded using a D-5000 diffractometer with Cu Kα 

radiation (λ=0.154056 nm), (40 kV/25 mA) at the scan rate of 1ο min-1 from 10ο to 90ο. 

The patterns were identified by the program "search-match" using databases “Joint 

Committee on Powder Diffraction Standards - International Center for Diffraction Data 

(JCPDS ICDD)”. 

           Electrochemical test cells (2032 coin cells) were assembled in an argon filled glove 

box. The ESD derived electrode was used as the working electrode while lithium foil was 

used as the counter and reference electrodes. Celgard 2400 microporous polypropylene 

was used as the separator. The electrolyte used was 1 M lithium 

bis(perfluoroethylsulfonyl)imide dissolved in ethylene carbonate (EC): diethyl carbonate 

(DEC): ethyl methyl carbonate (EMC) in the volume ratio of 1:1:1. Cleaned Ni foam was 

used during cell assembly acting as a spacer to adjust the thickness of all components to 

ensure a good electric contact. Cyclic voltammetry (CV) was performed at a scan rate of 

0.2 mV s-1 within voltage range from 0.02 to 3 V by using a Bio-logic versatile 

multichannel potentiostat (VMP3, Bio logic). The data points will be recorded every 5 mV 



28 

 

or every 60 s, whichever comes first. All electrochemical cells were galvanostatically 

cycled at room temperature using a NEWARE BTS-610 Battery Test System. EIS were 

performed using Bio-logic versatile multichannel potentiostat (VMP3, Bio logic). The EIS 

was potentiostatically measured with an AC oscillation of 10 mV amplitude over the 

frequencies ranging from 100 kHz to 0.01 Hz at various voltage stages. The voltage stage 

was achieved by charging the cell at a constant current density and stabilizing for 2 hours 

before EIS tests. The EIS data were fitted using Z-fit function in EC-Lab (V10.40) 

software. 

3.3 Results and Discussion 

           The porous LTO thin film electrode was prepared via ESD followed by a high 

temperature annealing process. Physical properties and structures were examined and the 

results are shown in Figure 3.1. The LTO powder was scratched off from Ni foam substrate 

for X-ray diffraction (XRD) and Brunauere-Emmette-Teller (BET) tests. The XRD pattern 

can be indexed as spinel LTO, according to the JCPDS card no. 49-0207 (Figure 3.1a) [13]. 

The BET surface area and the total pore volume of LTO powder are 76.51 m2g-1 and 0.17 

m3g-1, respectively, according to the nitrogen adsorption/desorption isotherms in Figure 

3.2b. There is an obvious H2 type adsorption-desorption hysteresis loop which is attributed 

to the pore connectivity effect from relatively uniform channel-like pores [14].  The 

average pore width is calculated to be about 8 nm based on the Barrett-Joyner-Halenda 

(BJH) adsorption. SEM images in Figure 3.1c exhibit uniform deposition of LTO on 3D 

inter connected porous Ni foam. The porous structure observed is typical for materials 

deposited via the ESD process due to the solvent evaporation and the decomposition of 

organic salts. The selected area electron diffraction (SAED) pattern exhibits the poly-
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crystalline property of LTO. From the above characterization it can be seen that porous 

polycrystalline LTO was formed through ESD and post annealing process. 

 

Figure 3. 1 (a) XRD pattern of ESD-LTO after annealing at 750 oC. (b) Nitrogen 

adsorption-desorption isotherm of ESD-LTO powder. (c) SEM Images (insert: at higher 

magnification) and (d) TEM images (insert: SAED pattern) of ESD-LTO after annealing 

at 750 oC.  

 

            To investigate the electrochemical behavior of lithium intercalation into the LTO 

electrode, typical cyclic voltammetry (CV) was first measured at a scan rate of 0.2 mV s-1 

in the voltage range from 0.02 to 3 V for 10 cycles, as shown in Figure 3.2a. In the first 

cycle, a pair of redox peaks appears at 1.47 V (reduction) and 1.68 V (oxidation) 

corresponding to the Li+ insertion and extraction process of LTO, as expressed in Equation 

2.4, which is in good agreement with literature [15-16]. There is a 0.21 V voltage separation 

in the first cycle between the anodic and cathodic peaks which is most likely because of 
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the polarization resulting from the sluggish lithium diffusion and relatively low electrical 

conductivity [16]. In the following cycles, the positions for this pair of peaks slightly 

shifted far away, resulting in a gradually increased polarization, which may be due to the 

resistance increase caused by SEI layer. Other than this pair of redox peaks, there is broad 

band below 1.45 V in the first cathodic cycle which may be due to two possible reasons. 

The first reason is because of the formation of a solid electrolyte interface (SEI) layer and 

the second reason could be due to the further intercalation of Li+ into Li7Ti5O12 structure 

[15-16]. The broad peak disappeared in the following cycles indicating the SEI formation 

was almost complete.  

 

Figure 3. 2 (a) CV curves of ESD-LTO electrode in the voltage window of 0.02-3 V at 0.2 

mV s-1. (b) The 5th cycle of CV curves at various scan rates ranging from 0.1 to 0.5 mV s-

1. (c) The relationship between anodic/cathodic peak currents and scan rates in CV curves 

at the scan rates between 0.1-0.5 mV s-1. (d) Calculated capacitive charge storage 

contribution at 0.5 mV s-1. 
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          CV at various scan rates were also performed to investigate the kinetic responses of 

the system, which also can provide quantitative information about diffusion controlled and 

non-diffusion controlled (capacitive) charge storage processes (See detailed introduction 

of this method in appendix). CV curves at low scan rates from 0.1 to 0.5 mV s-1 are shown 

in Figure 3.2b. The relationships between peak currents and scan rates have been plotted 

in Figure 4.2c. Based on equation , in which a and b are adjustable parameters that 

may vary at different voltages, v is the applied scan rate, i is the current at any point on CV 

curve, the corresponding b values were calculated for both the anodic and cathodic peaks 

[17-18]. There are two well-defined conditions: b=0.5 (diffusion controlled charge storage 

contribution) and b=1.0 (non-diffusion controlled charge storage contribution). It is 

apparent that the anodic process has more capacitve charge storage than cathodic process 

due to larger b value. To quantitatively determine the contributions from these two different 

charge storage mechanisms, equation  was used, where k1 and k2 are 

variables that will change at different voltages, k1υ represents the non-diffusion controlled 

charge storage and k2υ
 1/2 represents the diffusion controlled charge storage [17-18]. The 

capacitive charge contribution at 0.5 mV s-1 was calculated and shown in Figure 3.2d. It 

can be seen that the the capacitive charge storage resigned in the whole voltage range and 

takes ~60 % of the total charge storage. Though through the above mentioned method we 

can calculate the distribution of diffusion controlled and capacitive charge storages, it has 

some limitations from both (a) theoretical aspects and (b) data collection/calculation 

aspects, which make the obtained value a rough estimation. The detailed discussions from 

these two aspects are provided as below [20-25].  
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(a) Limitations from theoretical aspects.  

          The limitations coming from theoretical aspects will be discussed in detail from three 

points. (i) The two parts in the equation may not represent all the electrochemical reactions 

that happening in LIB, which are complicate processes. For some of the reactions, we know 

the reaction process and can express it mathematically in the equation, such as lithium 

insertion/extraction process of LTO. For some of the reactions, we know they may be 

happening during charge/discharge, but the mathematic expressions of the reactions are 

still unknown, such as SEI formation and decomposition process. Furthermore, there may 

be existing more reactions that haven’t been discovered yet. In addition, it’s very hard to 

separate the diffusion controlled process with pseudocapacitance, especially for 

nanomaterials. Since for diffusion controlled process, it always will encounter certain non-

diffusion controlled process first then start the diffusion controlled reactions. The amount 

of non-diffusion controlled process depends on the properties of the material, such as 

particle size, electronic and ionic conductivities. However, the above used equation 

simplified the situation under the assumption that all the reactions are either diffusion 

controlled processes or non-diffusion controlled (capacitive) processes. So for the 

electrochemical processes that are closer to this assumption, more accurate results can be 

obtained. (ii) Not all equations follows exact rule that current is proportional to scan rate 

(𝑣) or square root of scan rate (𝑣
1

2). For example,  the current does not exactly proportional 

to the square root of the scan rate for quasi-reversible system. However, in the calculation 

equation, it still treat the quasi-reversible reaction that current is proportional to square root 

of scan rate. In a battery, only in the situation that the reaction kinetics are very fast or 

sluggish, the reaction can be treated as reversible or totally irreversible. In the appendix, 
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we discussed how to distinguish these processes theoretically and experimentally. If the 

diffusion controlled reaction belongs to a quasi-reversible system, some error can be 

introduced by the equation.  (iii) The actual reaction conditions may not meet the conditions 

under which the equations were developed. The appendix shows the important assumptions 

and conditions of the equations for both diffusion controlled and non-diffusion controlled 

processes. In addition, the boundary conditions applied during equation development may 

not be met in real test environment. For example, in order to apply Fick’s diffusion law to 

Nernst equation, the boundary conditions that the initial reactant is uniformly distributed 

throughout the solution at a bulk concentration at the start of the experiment. However, this 

cannot always be achieved. In our battery, after lithium insertion and extraction, not all 

LTO can be recovered to LTO, which leaves the unsatisfied boundary conditions for the 

next cycle. This also introduces in errors during calculation. In addition, during equation 

development, the planner diffusion process is applied which is not always true, especially 

for our porous electrode. This may also cause some errors during estimation. 

(b) Limitations from data collection/calculation aspects.  

        The limitations coming from data collection/calculation aspects will be discussed in 

detail from three points. (i) CV data collection process: There are lots of parameters that 

have influence on CV testing, such as scan rate, voltage window, cycle number, electrolyte 

concentration, position of working and reference electrodes, morphology of electrode etc. 

In our test, the cell was first stabilized under CV test at 0.2 mV s-1, then various scan rates 

from 0.1~0.5 mV s-1 were applied. Though the same cell and same voltage window were 

used for all scans, it was still possible that the initial status of the battery at each scan rates 

were different. The curve change due to such difference was considered as the change 
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caused by the scan rate change which may introduce errors in data collection process. (ii) 

Scan rates selection process: For the reversible and total irreversible reactions, peak current 

is propositional to the square root of scan rate and peak position is independent with the 

scan rate. However, in real case, cathodic peak and anodic peak will shift to lower and 

higher voltage, respectively, as the scan rate increase. Such shift is considered as one of 

the reason for the inaccurate calculation, as discussed in appendix in detail. In order to 

minimize the peak shift, low scan rates ranging from 0.1~0.5 mV s-1 were used in our 

experiment. In another aspect, the calculation of capacity distribution only need two set of 

CV data at different scan rates. For example, CV data at 0.1 and 0.2 mV s-1 can be used to 

calculate the capacity distribution at both scan rates. But the obtained k1 and k2 can only be 

used at these two scan rates, not applicable to other scan rates. To make the k1 and k2 values 

more universal, in another words, can be applied for a larger scan rate range, five scan rates 

were used in our experiment. The obtained k1 and k2 can not only be used at 0.1 mV s-1, but 

also at 0.5 mV s-1. We applied the “solve” function in excel to estimate the best k1 and k2 

values which give the smallest variance. In our calculation, the variances at different 

voltages were in the range between 10-8~10-10, which is acceptable for the actual current 

values in the test. (iii) Data points selection: There are lots of data points in a CV curve 

which make it hard for us to calculate the capacity contribution at each point.  So only 

limited amount of data points will be calculated and used to plot the capacitive charge 

storage contribution within the original CV curves, as what had been done in Figure 3.2d. 

In our calculation, we selected data points every 0.25 V in both anodic and cathodic 

processes and the obtained curve is relatively smooth. But we admit that selection of more 

data points is good for getting a more accurate estimation. According to the above 
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mentioned limitations for such calculation, we can treat the obtained results as a rough 

estimation instead of accurate calculation. However, such estimation is still useful 

especially when it is used in combination with other analytical methods to give insight of 

the electrochemical reactions.  

              To test the rate capability and cycle life of LTO electrodes, charge-discharge 

measurements were carried out under various current densities ranging from 0.15 to 6 A g-

1 followed by another 100 cycle cyclability test at 0.6 A g-1. The results are shown in Figure 

3.3a. The major trend for the rate capability test in the first 120 cycles is that as the current 

density increases, the capacity decreases. After that, the cell experiences a gradual capacity 

increase in the following 100 cycle test at 0.6 A g-1. The discharge and charge capacities 

for the first cycle are 714 mAh g-1 and 384 mAh g-1, respectively, resulting in a coulombic 

efficiency of 53.8%. Then the coulombic efficiency rapidly increases to about 98% in the 

second cycle and remains nearly 100% thereafter. The capacity loss in the first cycle may 

be attributed to SEI layer formation below 0.75 V. Future effort is required to improve the 

Columbic efficiency to make it more suitable for the use in commercial LIBs. For rate 

capability test, the discharge capacities are 357, 307, 270, 207, 153 and 98 mAh g-1 at 0.15, 

0.3, 0.6, 1.5, 3, and 6 A g-1, respectively. Notably, the actual charge-discharge time for 98 

mAh g-1 capacity at 6 A g-1 is only 60 s. In chapter 5 we have provided the rate capability 

test results of LTO electrode casted with commercial LTO power. It exhibits much lower 

capacity than ESD derived porous electrode. For example, the discharge capacity are 118, 

86, 50 and 10 mAh g-1 at 0.3, 0.6, 1.5, and 3 A g-1, respectively.  Moreover, for ESD-LTO 

electrode, even after cycling at such a high rate (6 A g-1), the capacity can reach 299 mAh 

g-1, when the current density is set back to 0.6 A g-1. Since a significant amount of capacity 
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is still available when testing at 6 A g-1, even higher rate capability tests were performed 

at 6, 15, 30 and 45 A g-1, pushing the charge-discharge time to within 1 minute. The 

capacity drops a lot when the current density reaches 30 A g-1. Under 45 A g-1, almost no 

capacity can be detected. Thus, it indicates that a current density of 45 A g-1 is the 

charge/discharge limit for LTO electrode. After this harsh condition test, it is noteworthy 

that the cell is still functioning, delivering a capacity of 181 mAh g-1 at 3 A g-1 for 500 

cycles, which is even higher than that of previous round 3 A g-1 test. Additionally, the cell 

has been cycled for over 1100 cycles and thus far there is no sign of cell failure. From 

above cyclability test it can be seen the electrochemical performance of ESD derived LTO 

electrode is stable even after high current density tests. Furthermore, setting the cutoff 

voltage as low as 0 V is proved to be beneficial for the enhancement of capacity.  

     To get a better understanding of the electrochemical reaction of LTO, the charge-

discharge curves for different cycles at various current densities are plotted, as shown in 

Figure 3.3b. In the first discharge process, the plateau near 1.55 V stands for the typical 

two phase reaction. The discharge curve below 1.50 V could be divided to two continuous 

slope parts with different slopes. These two parts deliver a total capacity of 540 mAh g-1, 

76% of the 1st cycle discharge capacity. However, after the first cycle, the capacity 

delivered in the slope region below 1.50 V decreased significantly. This could be caused 

by severe SEI formation in the first cycle. From the second cycle to the 20th cycle, the 

discharge curves have no significant changes, indicating a stable electrochemical 

performance. For the charging curve from the 1st cycle to the 20th cycle, the charging 

capacities decreased slightly without major curve changes. In Figure 3.3c, at the 20th cycle 

of 0.15 A g-1 test, a stable capacity of 357 mAh g-1 is obtained with approximately 100% 
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coulombic efficiency. From figure 4.4c it can be seen that the plateaus are obvious at 0.15, 

0.3 and 0.6 A g-1 but gradually disappear as the current density increased to 6 A g-1. The 

polarization between the charge-discharge plateaus are 0.06 V, 0.10 V and 0.14 V for 0.15, 

0.3 and 0.6 A g-1, respectively. They are relatively low and indicating good kinetics at low 

current densities.  

 

Figure 3. 3 (a) Cyclability and rate capability of ESD-LTO electrode. (b) Charge-discharge 

curves of the 1st, 2nd, 3rd, 10th and 20th cycles under current density of 0.15 A g-1, 

respectively, and (c) Charge-discharge curves under current densities of 0.15, 0.3, 0.6, 1.5, 

3 and 6 A g-1, respectively. 

 

           From the rate capability test it can be seen that the ESD derived LTO thin film 

electrode exhibited excellent high rate performance. Here we have given some possible 

reasons for such high rate performance: 1) Continuous conductive pathways. Though no 
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conductive additives were used, the insulating character of pristine LTO is not a bottleneck 

for high rate performance. During the early stages of lithium intercalation, even a small 

amount of lithium ions can cause a dramatic improvement in conductivity, which makes 

conductive additives unnecessary [5]. Furthermore, under high rates the charged or 

discharged products will not be the end members predicted in the reaction, which means 

that there will be very little Li4Ti5O12 in the electrode during cycling. 2) Short diffusion 

length. The porous structure facilitates Li+ diffusion and electron transportation and 

provides a larger contact area between the electrode and the electrolyte for reaction, 

ensuring fast reaction kinetics and enhanced rate performance. 3) Enriched grain 

boundaries. Nanosized particles generate more grain boundaries which enhance the Li+ 

diffusion by its migration through grain boundaries [26]. 4) Pseudocapacitive charge 

storage. There is a large contribution from pseudocapacitive charge storage in the total 

charge and such a charge storage is barely influenced by the charge/discharge rates. 

Therefore, the capacity contribution from capacitive charge will not decrease much as it 

would be in bulk electrodes. 

 

Figure 3. 4 Asymmetric rate capability test results of ESD-LTO electrode. Test conditions: 

constant charge current density: 3 A g-1, discharge current density: 3-60 A g-1; constant 

discharge current density: 3 A g-1, charge current densities: 3-120 A g-1. 
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            The rate capability of a battery is mainly determined by the kinetics of the 

electrochemical reactions, which rely on electronic conductivity, ionic diffusivity, charge 

transfer speed, etc. In most cases, the rate capability tests are performed by applying 

identical current to both charge and discharge processes. However, the kinetics in charge 

and discharge process are not necessarily the same [27]. So the capacity decrease under 

high current densities could be partially due to the slow cathodic or anodic process. To 

examine this scenario, asymmetric rate capability tests were performed, as shown in Figure 

3.4. The cell which was tested for cyclability and symmetric rate capability was 

subsequently used in this test as well. Charging at a constant current density of 3 A g-1 and 

discharging at various current densities ranging from 0.3 to 60 A g-1 was first performed, 

followed by discharging at a constant current density of 3 A g-1 and charging at various 

current densities ranging from 0.3 to 120 A g-1. It can be observed that the performance of 

asymmetric rate tests are all better than symmetric rate tests. In addition, the capacities in 

the constant discharge process are always higher than that from the constant charge process 

under the same rates which indicates that the discharge process has slower reactions and is 

one of the reasons for the drop in capacity in symmetric rate tests. Since very high rates 

were tested, the time scale for charging or discharging was pushed to several seconds, 

making it more like a capacitor. Most likely, this is due to capacitively stored Li ions at the 

surface. The simultaneous 8a and 16c occupation at the surface will hinder further Li+ 

insertion, leading to large polarization below the open cell potential. In discharge process, 

Li+ first occupy 8a and 16c sites on the surface and hinder the further Li+ insertion. But in 

charge process, the Li ions occupying the surface will move first, making the remaining Li 

ions in the bulk able to diffuse more readily [5].  
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3.4 Conclusions 

           The electrochemical performance of ESD derived porous LTO electrode was 

evaluated when the lower cutoff voltage was ~ 0 V. Without adding any binder and 

conductive additive, ESD-LTO demonstrated both high power density and high energy 

density. The porous and thin film structures provide good ionic and electronic 

conductivities which enable high power performance. Electrochemical studies showed that 

it can deliver 357 mAh g-1 capacity at current density of 0.15 A g-1, which is much higher 

than the theoretical capacity of LTO when the lower cutoff voltage is 1V. At a high current 

density of 6 A g-1, which corresponds to an actual charge/discharge time of 60s, a capacity 

of 98 mAh g-1 was still achievable. In addition, asymmetric rate tests were performed and 

revealed that the charging process was much faster than the discharging process. 

Furthermore, the cell lasted for more than 1400 cycles even after harsh condition tests. This 

study proves that ESD derived LTO electrode is capable to deliver high capacity when 

lower cutoff voltage is ~ 0 V and it can be used to make composites and discharge to ~ 0 

V.  
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4. FABRICATION AND CHARACTERIZATION OF LTO/RGO COMPOSITE 

ELECTRODES 

4.1 Introduction 

           The electrochemical performance of porous LTO prepared by ESD has been 

described in chapter 3, which exhibit enhanced energy density by discharging below 1 V. 

Further electrochemical performance improvements could be achieved by addition of rate 

capability enhancement elements, such as conductive additives. Graphene is one of the 

most appealing additives for electrode materials due to its high surface area and high 

electronic conductivity. However, it is more convenient to use graphene oxide (GO) 

instead. GO offers advantages in its ease of reduction by thermal or chemical treatment to 

recover conductivity, as well as good solution processability. Though the conductivity for 

rGO is not comparable to graphene, it is sufficient in electrode application [1-3]. For 

example, Chen et al. reported that small amount of rGO (1.2 wt %) had great effect on 

electrochemical performance of resulting composite [3]. Some of other researcher also 

applied higher rGO loadings in the composites and obvious high rate performance 

enhancement had been achieved. This chapter describes the results of electrochemical 

performance of LTO/rGO composite electrodes as compared to bare ESD-LTO. 

 4.2 Experimental 

            The LTO/rGO composite electrodes were prepared by the method similar to the 

process as for pure LTO with additional 5 wt. % and 20 wt. % GO in the precursor solutions 

for ESD-LTO-5rGO and ESD-LTO-20rGO, respectively. The electrochemical cell 

assembling and test conditions were the same as for ESD-LTO electrode. 
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4.3 Results and Discussion 

         The LTO/rGO composite electrodes were synthesized through ESD process with the 

same deposition parameters as for ESD-LTO electrode, as described in chapter 3. The 

resulting LTO-5rGO composite powders were scratched off from Ni foam substrate for 

physical property tests. As shown in Figure 4.1a, the Brunauere-Emmette-Teller (BET) 

surface area is 67.32 m2g-1 which is similar as for pure ESD-LTO powder. It also has an 

obvious H2 type adsorption-desorption hysteresis loop which is attributed to the pore 

connectivity effect from relatively uniform channel-like pores [6]. The XRD pattern can 

be indexed to spinel LTO and no obvious influence is observed from additional rGO phase. 

 

Figure 4. 1 (a) Nitrogen adsorption-desorption isotherm and (b) XRD pattern of ESD-LTO-

5rGO powder. 

           The morphologies of as-deposited and after heat treatment electrodes were 

examined and the SEM images are shown in Figure 4.2. From low magnification of as-

deposited electrode in Figure 4.2a it can be seen that the composites were uniformly 

deposited on 3D inter connected porous Ni form. The porous structure can be seen in the 

magnified image in Figure 4.2b.The porous structure is typical for ESD process due to the 

solvent evaporation and the decomposition of organic salts. After heat treatment, the 

deposited film shrinked and generated larger cracks within the film, as shown in Figure 
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4.2c. In Figure 4.2d, small particles were separate out and uniformly distributed in the film. 

These small particles could be LTO particles which grow during heat treatment. 

 

Figure 4. 2 SEM images of ESD-LTO-5rGO electrode (a-b) as-deposited and (c-d) after 

heat treatment. 

           To investigate the electrochemical behavior of lithium intercalation into the LTO-

5rGO composite electrode, typical cyclic voltammetry (CV) was measured at a scan rate 

of 0.2 mV s-1 in the voltage range from 0.02 to 3 V for 10 cycles, as shown in Figure 4.3. 

The major peaks at 1.48 V in cathodic branch and 1.64 V in anodic branch correspond to 

the Li+ insertion and extraction process of LTO. The peak separation at 10th cycle is 0.16 

V, which is smaller than what was observed in pure LTO electrode (0.21 V at 10th cycle). 

This can be ascribed to the enhanced electronic conductivity by the incorporation of rGO. 

There also exists a broad peak at 0.75 V which is due to the SEI formation process and 

further Li+ intercalation into Li7Ti5O12.  
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Figure 4. 3 The first 10 cycle CV curves of ESD-LTO-5rGO electrode at 0.2 mV s-1. 

             To test the rate capability and cycle life of the ESD-LTO-5rGO electrodes, charge-

discharge measurements under various current densities ranging from 0.15 to 60 A g-1 were 

carried out. The results are shown in Figure 4.4. The major trend for the rate capability test 

in the first 120 cycles is the capacity decreases as the current density increase. But even at 

current density of 6 A g-1, a discharge capacity of 106 mAh g-1 is still available, 

corresponding to a charge/discharge time of 60 s. Further, the cell experience a gradual 

capacity increase in the following 100 cycle test at 0.6 A g-1. The cell was also tested at 

extreme high rate conditions. Highest current density was pushed to 60 A g-1. Although 

only trace of capacity was observed under such high current density, the cell was not 

damaged and still showed stable performance at 6 A g-1 with a discharge capacity of 100 

mAh g-1. A total cycle number of over 1400 cycles was tested without signs of cell failure. 

As compared with pure LTO electrode, only slight capacity difference was observed for 

the composite with 5 wt % rGO.  



47 

 

 

Figure 4. 4 Cyclability and rate capability (0.15-6 A g-1) test results of ESD-LTO-5rGO 

electrode.  

             The asymmetric rate capability test was performed for LTO-5rGO electrode after 

symmetric rate capability test, as shown in Figure 4.5. It is observed that charging is 

relatively faster than discharging. For example, when charged at 3 A g-1
  and discharged at 

30 A g-1, a capacity of 30 mAh g-1 was obtained, which was higher than symmetric test at 

30 A g-1
  (16 mAh g-1 ). However, when charged at 30 A g-1

 and discharged at 3 A g-1, a 

higher capacity of 65 mAh g-1 was observed. Such trend is similar to the results obtained 

for pure ESD-LTO electrode.   

 

Figure 4. 5 Asymmetric rate capability test results of ESD-LTO-5rGO electrode. Test 

conditions: constant charge current density: 3 A g-1, discharge current density: 3-60 A g-1; 

constant discharge current density: 3 A g-1, charge current densities: 3-60 A g-1.              
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         In order to study the effect of rGO content on the electrochemical performance of 

LTO/rGO composite, another type of samples with 20 wt % rGO in the LTO/rGO 

composite were synthesized and tested.  The symmetric and asymmetric rate capability 

tests are shown in Figure 4.6a and b, respectively. For the symmetric rate capability test at 

low current density (<3 A g-1), more rGO in the composite enables higher specific 

capacities. One of the reason for the higher capacity is because rGO as anode material 

exhibits higher capacity than LTO at low current density [3]. In addition, more rGO in the 

composite may lead to even faster reaction kinetics which is beneficial for obtaining the 

higher capacity. However, at higher current densities, the capacities decrease significantly 

with values similar to composite with low rGO content. For the asymmetric rate test, higher 

rGO content shows better performance especially in constant discharge mode. For 

example, LTO-20rGO delivers a capacity of 88 mAh g-1 at 60 A g-1 charge and 3 A g-1 

discharge current density. While the value for LTO-5rGO is only 28 mAh g-1.  
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Figure 4. 6 (a) Symmetric rate capability (0.15-6 A g-1) test results of ESD-LTO-20rGO 

electrode. (b) Asymmetric rate capability test results of ESD-LTO-20rGO electrode Test 

conditions: constant charge current density: 3 A g-1, discharge current density: 3-60 A g-1; 

constant discharge current density: 3 A g-1, charge current densities: 3-120 A g-1. 

4.4 Conclusions  

           LTO/rGO composite thin film electrodes with different amount of rGO contents 

were fabricated through ESD process. As compared to ESD-LTO, additional rGO 

decreased the polarization as observed in CV curves. The ESD-LTO-5rGO composite 

electrode showed similar electrochemical performance as ESD-LTO electrode. A 

discharge capacity of 106 mAh g-1 was still available at current density of 6 A g-1 for LTO-

5rGO electrode, corresponding to a charge-discharge time of 60 s. Similar to ESD- LTO, 

asymmetric charge-discharge character was also observed for LTO/rGO composite. Higher 

rGO content in ESD-LTO-20rGO composite results in much higher specific capacities as 

compared to ESD-LTO and ESD-LTO-5rGO electrodes which is due to the great 

enhancement of reaction kinetics by large involvement of high surface area and high 

electron conductivity component rGO.  

4.5 References 

1. Ni, H., Song, W.L. and Fan, L.Z., 2014. A strategy for scalable synthesis of 

Li4Ti5O12/reduced graphene oxide toward high rate lithium-ion batteries. 

Electrochemistry Communications, 40, pp.1-4. 

 

2. Chen, W., Jiang, H., Hu, Y., Dai, Y. and Li, C., 2014. Mesoporous single crystals 

Li4Ti5O12 grown on rGO as high-rate anode materials for lithium-ion batteries. Chemical 

Communications, 50(64), pp.8856-8859. 

 

3. Chen, C., Huang, Y., Zhang, H., Wang, X., Li, G., Wang, Y., Jiao, L. and Yuan, H., 

2015. Small amount of reduce graphene oxide modified Li4Ti5O12 nanoparticles for 

ultrafast high-power lithium ion battery. Journal of Power Sources, 278, pp.693-702. 

 

4. Chen, W., Jiang, H., Hu, Y., Dai, Y. and Li, C., 2014. Mesoporous single crystals 

Li4Ti5O12 grown on rGO as high-rate anode materials for lithium-ion batteries. Chemical 

Communications, 50(64), pp.8856-8859. 



50 

 

 

5. Ni, H., Song, W.L. and Fan, L.Z., 2014. A strategy for scalable synthesis of 

Li4Ti5O12/reduced graphene oxide toward high rate lithium-ion batteries. 

Electrochemistry Communications, 40, pp.1-4. 

 

6. Kruk, M. and Jaroniec, M., 2001. Gas adsorption characterization of ordered organic-

inorganic nanocomposite materials. Chemistry of Materials, 13(10), pp.3169-3183. 

 

  



51 

 

5. FABRICATION AND CHARACTERIZATION OF LTO/SILICON/RGO 

COMPOSITE ELECTRODES 

5.1 Introduction 

          In the previous chapters we have successfully synthesized LTO and LTO/rGO 

composites and evaluated their electrochemical performance when lower cutoff voltage 

was set as ~ 0 V. Further energy density enhancement could be achieved by introducing 

other high capacity anode materials into the composites [1-8]. Since the enhancement in 

capacity is a direct result of the other composite components, silicon makes an excellent 

choice given its theoretical capacity (4200 mAh g-1), which is about 13 times higher than 

that of LTO (even when it is discharged to 0 V) [9]. In addition, considering the structure 

stability of LTO, it is expected that LTO can also alleviate some of the volumetric 

expansion from silicon during the cycling process by acting as a buffer. Until now, only a 

few studies have been reported on the use of LTO/Si composite electrodes. Lin et al. [10] 

deposited a thin coating of amorphous silicon on the surface of LTO electrode by thermal 

evaporation aiming to improve the cycling performance of LTO at elevated temperatures. 

However, there is a lack of systematic study on LTO/Si composites for LIB electrodes. 

         In this chapter, our first goal is to investigate if LTO/Si composites hold potential 

as high-performance Li-ion battery anodes. We have evaluated the electrochemical 

performance of LTO/Si composites based on commercial battery grade electrode materials 

using conventional battery fabrication procedures. The synergism between LTO and Si was 

investigated by studying the influence of different weight ratios of LTO and Si on the rate 

capability and cyclability of the composites. Our results show that the LTO/Si composites 

exhibit both improved energy capacity and high rate capability. It is believed that the 



52 

 

energy density of LTO/Si composite electrode will be further improved by replacing micro-

sized LTO particles with ESD derived porous LTO. So the second goal of this study is to 

synthesize LTO/Si based nanocomposite by ESD to further increase its energy density. As 

demonstrated in chapter 4 that reduced graphene oxide (rGO) has positive effect in 

LTO/rGO composite due to its superior electronic conductivity, structural flexibility, large 

surface area as well as chemical stability. It was also added into LTO/Si composite to form 

ESD-LTO/Si/rGO nanocomposite. In such hybrid structure, rGO not only works as 

templates for dispersing nanoparticles but also acts as conductive matrix enabling fast 

electron conduction. Furthermore, it also can buffer the stress and accommodate the 

volumetric changes during cycling. Therefore, we designed and synthesized LTO/Si/rGO 

nanocomposite electrode by ESD and its electrochemical performance will be discussed in 

this chapter.  

5.2 Experimental 

            Fabrication of LTO-Si Composite Electrode: Silicon powder (< 100 nm) and 

Li4Ti5O12 (D10 = 1.09 μm) powders were used as received, without any further treatment. 

The composite electrodes were prepared by casting a slurry on copper foil. The slurry was 

prepared by mixing different amounts of Li4Ti5O12 powder, silicon powder, poly (acrylic 

acid) (PAA) and Super P Li® in ethanol, as summarized in Table 5.1. In this work, the 

current densities at different C-rates were calculated based on their theoretical values as 

well as the weight ratios of LTO and Si components. Poly (acrylic acid) (PAA) and super 

P Li® were used as binder and conducting additive, respectively.  

           Synthesis of LTO-10Si-5rGO Electrode: Nanosized Si particle (<100 nm, 10 wt %) 

and GO (5 wt %) were added to LTO precursor to form the new precursor for LTO/Si/rGO 
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composite. In order to get a stable precursor suspension, 1,2-propanediol (in 50 volume %) 

was added into LTO precursor. Other synthesis conditions are the same as what were used 

for LTO. The deposition was carried out in Ar atmosphere. 

Table 5. 1 Summary of sample compositions in LTO/Si composites. 

 

Sample 
Composition (wt %) 1 C Current Density a 

mA g−1 Si LTO PAA Super P Li® 

pure-LTO 0 70 15 15 298 

65LTO5Si 5 65 15 15 577 

50LTO20Si 20 50 15 15 1413 

35LTO35Si 35 35 15 15 2249 

pure-Si 70 0 15 15 4200 

 

5.3 Results and Discussion 

        The morphologies of typical as-casted LTO/Si composite electrodes are shown in 

Figure 5.1a–c. For pure Si in Figure 5.1a, it can be seen that the average size of silicon 

particles was around 100 nm and the particles were relatively uniformly mixed with other 

additives, which includes carbon black and polymer binder. From the pure LTO in Figure 

5.1b, it can be observed that the LTO particles were relatively large with particle size 

ranging from 0.2 to 1 μm. The large size and irregular shape of LTO particles results in 

relatively low-density composites. Figure 5.1c shows the morphology of 50LTO20Si 

composite electrode. No obvious cracks were observed in the as-deposited electrodes. 

However, the particle size of LTO in 50LTO20Si is smaller than that in pure-LTO 

electrode, which may be due to the grounding effect of Si nanoparticles in the sample 

preparation process. Morphologies of the respective electrodes after electrochemical tests 

are shown in Figure 5.1d–f and will be discussed later. 
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Figure 5. 1 Typical SEM images of electrodes based on (a) pure-Si; (b) pure-LTO and 

50LTO20Si before the electrochemical test (a–c) and after the electrochemical test (d–f), 

respectively. 

    Figure 5.2a exhibits the CV curves for the pure-Si electrode. A broad peak can be 

seen at around 0.4–0.95 V in the cathodic branch of first and second cycles. However, this 

broad peak disappears in the third cycle. No obvious oxidation peaks corresponding to this 

reduction process is observed in the anodic branch, which indicates that this peak 

corresponds to the solid electrolyte interphase (SEI) formation [11-12]. There is a 

distinctive reduction peak which starts at 0.3 V and becomes quite sharp below 0.1 V. This 

peak is attributed to the lithiation of silicon [13-14]. During charging, two well defined 

peaks centered at 0.34 and 0.51 V are observed and are ascribed to the formation of 

intermediate LixSi and amorphous silicon, respectively [13-14]. The magnitude of current 

at these two anodic peaks increases from 0.05 to 0.12 mA from the first to the fifth cycle 

due to activation process from Si phase [15-16]. However, the peak current stays almost 

the same at the 10th cycle, implying that the activation process of Si is almost completed 

at the end of 10th cycle. The observed CV curves and the activation process are in good 
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agreement with previous report of porous silicon [12–16]. The reconstruction of crystal 

structure near silicon surface is explained as the reason for the activation phenomenon. 

   

Figure 5. 2 CV curves of electrodes based on (a) pure-Si, (b) pure-LTO and (c) 50LTO20Si 

at scan rate of 0.2 mV s−1 in the range of 0.02–3 V, respectively. 

 Figure 5.2b displays the CV curves of pure-LTO electrode: a pair of redox peaks 

appears at 1.38 V (reduction) and 1.78 V (oxidation), which corresponds to the Li+ insertion 

and extraction process of LTO, which is in good agreement with literature [17]. The 0.5 V 

separation between the anodic and cathodic peaks is most likely because of the polarization 

resulting from the sluggish lithium diffusion and relatively low electrical conductivity [18-

19]. Further Li intercalation into Li7Ti5O12 leads to a broad shoulder from 0.02 to 0.5 V. A 

small peak at around 0.75 V can be seen from the first to the 10th cycle, which is also due 

to the further lithium intercalation into the Li7Ti5O12 structure [17]. In the second cathodic 

cycle the current value dips as compared to the first cycle. This decrease in current is 

attributed to the SEI formation owing to the low operational voltage [18].        

 Figure 5.2c displays the CV curves for the 50LTO20Si composite electrode. As compared to 

Figure 5.2a-b, this electrode has both anodic and cathodic peaks for both Si and LTO as 

expected and the peak positions remain unchanged, which proves that both Si and LTO can 

work well with each other without interfering with the activity of the other component. 
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       In order to further examine the synergy between LTO and silicon, rate capability 

and cycling behavior, the composites were evaluated for different LTO:Si ratios. Figure 

5.3 shows the rate performance of five different samples with different LTO:Si ratios and 

their corresponding charge/discharge curves. It can be seen from Figure 5.3a that the 

specific capacities of pure-Si sample at 0.1, 0.2, 0.5 and 1 C are 542, 76, 18 and 8 mAh g-

1, respectively. The first cycle discharge capacity is only 377 mAh g-1, which gradually 

increases to a maximum value of 850 mAh g-1 at the 7th cycle.  

The low discharge capacity during the first cycle is probably due to partial utilization of the 

silicon particles and the enhanced capacity in later cycles can be explained by the activation 

process in silicon [15,16], which is consistent with what has been observed in the CV curve. 

However, the capacity decreases to 542 mAh g-1 at the 20th cycle, and most of the capacity 

is delivered between 0.05 and 0.2 V which can be seen in the corresponding charge-

discharge curves. The capacity decreases as the C-rate increases and at 1 C, only 8 mAh g-

1 was achieved. When charged back to 0.1 C, a capacity of 275 mAh g-1 was recovered, 

which stabilized at 100th cycle. In order to understand the capacity decrease and partial 

recovery of pure-Si electrode, the coin cell was disassembled after the rate capability tests 

at 100th cycle and structural changes in the electrode were examined, as shown in Figure 

1d. Severe cracks were generated, which led to the isolation of some islands and failure of 

the electrode. In some areas, peeling was also observed (not shown in Figure 5.1), which 

is a common problem for pristine Si electrodes.  
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Figure 5. 3 The rate performance and corresponding charge-discharge curves for electrodes 

based on (a,b) pure-Si, (c,d) pure-LTO, (e,f) 35LTO35Si, (g,h) 50LTO20Si  and (i,j) 

65LTO5Si, respectively.  

 The cyclability of pure LTO electrode is shown in Figure 5.3c–d. For the first discharge 

and charge cycle at 1 C, capacities of 520 and 266 mAh g-1 were achieved, which resulted 

in a columbic efficiency of 51%. In the discharge curve, a capacity of about 115 mAh g-1 

was delivered as a plateau near 1.5 V and about 390 mAh g-1 was delivered as a long slope 

between 0.05 and 1.5 V. The plateau at 1.5V represents the phase equilibrium between the 

two end members Li4Ti5O12 and Li7Ti5O12 [17]. In traditional LTO based electrodes test 

where the cut off voltage is 1 V, most of the capacity is observed in the plateau region. The 

capacity in the slope region is mainly due to further intercalation of Li7Ti5O12 to Li8.5Ti5O12 

and the SEI formation process [18]. During the first charging process, capacity delivered 

in plateau region at around 1.6 V is around 70 mAh g-1 which is 45 mAh g-1 less than the 

discharge process. The electrode tends to stabilize at the 20th cycle and the capacity is 118 

mAh g-1. The columbic efficiency is near 100% at this point. However, when the charge 

and discharge curves are compared with the first cycle, it could be seen that the 1.5 V 

plateaus in both charge and discharge curves diminished and only long slopes were left in 

the 20th cycle. The capacities decreased when the C-rates increased, however, when the 

cell was cycled back to 5 C, an increased capacity of 64 mAh g-1 was observed as compared 

to the previous 5 C test. Unlike pure silicon electrode, the disassembled pure LTO electrode 

at 220th cycle (in Figure 5.1e) had a few smaller cracks but the structural integrity was 

retained, which can be considered as one of the reasons for the total capacity recovery when 

the cell was charged back at 5 C.  
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    As shown in Figure 5.3e–f, the first cycle charge and discharge capacities of 

35LTO35Si electrode were 955 and 1240 mAh g-1, respectively. In the discharge curve, 

instead of a plateau, a slope starting from 1.5 to 0.1 V was observed. A long plateau below 

0.1 V that had a capacity of 970 mAh g-1 was mainly due to the alloying process of silicon. 

In the following charging processes, the plateau at 1.6 V still existed, same as pure LTO 

electrode, and delivered a capacity of 50 mAh g-1. At the 10th cycle under the same C-rate, the 

discharge capacity decreased to 1004 mAh g-1 and gave a columbic efficiency of 96.6%. The 

plateau on the charge curve diminished. The capacity achieved at 0.1 C was excellent as 

compared to both pure silicon and LTO electrodes and proved the positive effect by using 

these two materials. When C-rates increased from 0.5 to 1 C, the discharge capacity 

decreased from 581 to 265 mAh g-1, respectively. Although a large amount of the capacity 

was decreased, 265 mAh g-1 was still comparable to the theoretical capacity of LTO when 

discharged to 0 V. At an even higher C-rate of 2 C, a capacity of only 10 mAh g-1 was 

retained. When the cell was charged back to 0.5 C, a recovery of 70% was observed, which 

is attributed to the stable structure of the composite sample. Another reason, which 

contributed to the decreased capacity at high C-rates could be its sluggish kinetics from the 

silicon component. The 50LTO20Si electrode showed similar charge-discharge curves and 

capacities for the first cycle, as shown in Figure 5.3g–h. However, unlike 35LTO35Si, 

when the C-rate increased, even at 1 C, the plateau at 1.6 V did not diminish in the charging 

curve. At lower C-rates (<1 C), the electrode with lower LTO contents showed higher 

capacity whereas, at high C-rates (>1 C), higher LTO concentration was helpful to maintain 

the performance. As for 50LTO20Si at 5 C, 100 mAh g-1 capacity was still achievable. For 

the disassembled electrode image at 195th cycle in Figure 5.1f, no obvious cracks were 
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generated in such electrode even after high C-rate testing. The stable capacity at high C-

rates could be attributed to the structural integrity of the composite. In Figure 5.3i–j, the 

65LTO5Si electrode shows relatively stable capacities under various C-rates, however, the 

capacities are not comparable to that of 50LTO20Si and 35LTO35Si because of low 

concentration of Si. It should be noted that there is no capacity decrease when the cell was 

charged back at 1 C even after 10 C tests for 20 cycles. In its charge-discharge curves, it 

should be noted that only slopes instead of plateaus existed in the curves from the very first 

cycle. Comparing our composite electrodes, the plateaus at 1.5 V in discharge curves and 

at 1.6 V in charging curves differed from the first cycles and the following cycles, and also 

varied from low C-rates to high C-rates. However, it is ambiguous (i) if discharging the 

cell to 0V had an influence on the 1.5V plateau region; (ii) if the C-rates had any effect on 

the plateau and/or (iii) if other active materials affected the plateau. Further studies are 

required in order to investigate these phenomena.  

          Since Si and LTO have a huge difference in theoretical capacities, the current 

densities of the composite samples at the same C-rate of different samples are greatly 

varied. As shown in Table 5.1, the current density of 35LTO35Si at 1 C is about 4 times 

that of 65LTO5Si for the same C-rate, which makes current density a useful parameter as 

opposed to the commonly used C-rate to analyze such composite electrodes. Figure 5.4 

shows the relationship between capacity and current density for each sample. The 

synergism between LTO and silicon is obvious and there is major enhancement in 

capacities, especially at current densities lower than 3 A g−1. The stability of 65LTO5Si is 

similar to pure-LTO but the capacity of the electrode is limited due to low Si contents. 

50LTO20Si and 35LTO35Si show relatively better overall performance since the capacity 
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enhancement is realized without sacrificing much rate performance. At lower current 

densities (<3 A g−1), 35LTO35Si performs better than 50LTO20Si due to higher Si 

involvement. However, when current density is higher than 3 A g-1, 50LTO20Si delivers 

higher capacity than 35LTO35Si. Even at a high current density of 7 A g-1, a capacity of 

100 mAh g-1 is still achievable, which is mainly attributed to the contribution of LTO. 

Compared to the theoretical capacities of graphite (372 mAh g-1) and LTO (175 mAh g-1 

when discharged to 1 V), the performance of both 50LTO20Si and 35LTO35Si were 

excellent at the current density of 3 A g-1. 

 

Figure 5. 4 Relationship between capacities and current densities of pure Si, pure LTO, 

35LTO35Si, 50LTO20Si and 65LTO5Si electrodes. 

            From the above results, we have confirmed our strategy to achieve better energy 

capacity and rate capability by using LTO/Si composites. The addition of Si can enhance 

the specific capacity of the electrode and at the same time LTO could effectively buffer the 

volume change of Si, thereby resulting in enhanced C-rate performance. A thin layer of 

oxide (thickness: 3–5 nm) has been observed in our previous work by TEM using same Si 

product [12]. The effect of such thin oxide layer on the electrochemical performance could 

be complicated. At one hand, the oxide layer usually has poor electron conductivity, which 

could be a limiting factor for the poor rate performance of the Si based battery electrodes 
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[20]. At another hand, it is reported that SiO2 and non-stoichiometric silicon oxides are 

electrochemical active with reasonable Li ion storage capacity [10, 21]. We believe that 

great enhancement in the electrochemical performance of the composites can be realized 

with careful engineering of each component. Because of that, we synthesized ESD-LTO-

10Si-5rGO composite electrodes via ESD technique and discussed in the following section. 

          The electrochemical performance of ESD-LTO-10Si-5rGO electrode will be 

discussed below. Figure 5.5a shows the CV curves of ESD-LTO-10Si-5rGO electrodes at 

0.2 mV s-1 for 10 cycles. An obvious difference compared with ESD-LTO and ESD-LTO-

5rGO electrodes is the appearance of strong de-alloying peaks from Si at ~0.31 V and ~0.52 

V. From the insertion it can be seen that the peaks are not strong in the first several cycles 

but gradually increased in the following cycles. This may be due to the full embedment of 

Si particles in the composite electrode and a gradual activation happened in the first several 

cycles [9-10]. Other than Si de-alloying peaks, LTO peaks at ~ 1.55 V are strong and stable 

from 2nd cycle to 10th cycle. CV at various scan rates were also performed from 0.2 to 10 

mV s-1 as shown in Figure 5.5b. Broad LTO anodic and cathodic peaks can be observed at 

even high rate of 10 mV s-1. However, no Si peaks can be seen at higher scan rates.  

 

Figure 5. 5 CV curves of ESD-LTO-10Si-5rGO electrodes (a) at fixed scan rate of 0.2 

mV s-1; (b) at various scan rates from 0.2 to 10 mV s-1. 
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           The rate capability and cycle life tests were performed under various current 

densities ranging from 0.15 to 150 A g-1, as shown in Figure 5.6. At 0.15 A g-1. A stable 

discharge capacity of 624 mAh g-1 was observed, which is much higher than the discharge 

capacity for pure LTO electrode and LTO-5rGO electrode. It can be attributed to the 

incorporation of Si which provides large capacity with small concentration. As the current 

density increases, the capacity gradually decreases. However, the remaining capacity is 

still much higher than pure ESD-LTO electrode, which only maintain a capacity of 54 mAh 

g-1 at 15 A g-1. The rate capability test was extended with current density reaching 150 A 

g-1. After such harsh test condition, the cell remained undestroyed and delivered a capacity 

of 290 mAh g-1 at 6 A g-1, corresponding to a discharge time of ~ 3 mins. The total test 

cycle number was over 1400. From such rate capability test it can be seen that the 

involvement of small amount of Si has great effect on the capacity performance, as 

compared to ESD-LTO and ESD-LTO/rGO electrodes. In addition, the stability of the 

composite electrode was not destroyed because of additional Si in it. The stability of the 

electrode is not only due to the buffer effect from porous ESD generated structure but also 

due to the zero volume change property of LTO. 
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Figure 5. 6 Cyclability and rate capability performance of ESD-LTO-10Si-5rGO 

electrode at current densities ranging from 0.15 to 150 A g-1 for over 1400 cycles. 

 

           To better understand the electrochemical reaction of LTO, the charge-discharge 

curves for the first cycle and the last cycle of each rate are plotted in Figure 5.7. The 

plateaus from LTO, showed a similar trend as LTO and LTO-rGO electrodes. Also, 

obvious charge-discharge plateaus from Si can be observed at low current density tests. 

However, as the current density increase to over 3 A g-1, plateaus from Si almost 

disappeared. The polarization at LTO plateau (~1.55 V) were 0.038, 0.066 and 0.104 V for 

tests under current densities of 0.15, 0.3 and 0.6 A g-1, respectively. Higher polarizations 

were observed in pure LTO electrode, 0.067, 0.098 and 0.138 V for 0.15, 0.3 and 0.6 A g-

1, respectively. This is an indication that rGO works well in the composite in order to 

enhance the rate capability. 

 

Figure 5. 7 Charge-discharge curves of ESD-LTO-10Si-5rGO electrode at current 

densities of 0.15, 0.3, 0.6, 1.5, 3, 6, 9, 12 and 15 A g-1, respectively. 

 

              Asymmetric rate capability tests were performed and the results are shown in 

Figure 5.8. It was observed that the performance of asymmetric rate tests were all better 
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than regular symmetric rate capability tests. A discharge capacity of 150 mAh g-1 at 120 A 

g-1 was obtained when the charging current density was 3 A g-1. Also, the capacities in the 

constant discharge process were always higher than that from constant charge process 

under the same rates, indicating that the discharge process has slower reactions, the same 

as what has been observed in ESD-LTO and ESD-LTO/rGO electrodes.  

 

Figure 5. 8 Asymmetric rate capability performance of ESD-LTO-10Si-5rGO electrode 

Test conditions: constant charge current density: 3 A g-1, discharge current density: 3-60 

A g-1; constant discharge current density: 3 A g-1, charge current densities: 3-120 A g-1.  

 

Figure 5. 9 (a) Symmetric rate capability performance comparison between ESD-LTO and 

its composites. (b) Asymmetric rate capability performance (constant discharge current 

density: 3 A g-1, charge current density: 3-120 A g-1) comparison between ESD-LTO and 

its composites. 
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              To compare the electrochemical performance of ESD-LTO and its 

nanocomposites, Figure 5.9 describes both symmetric and asymmetric rate capability tests 

results. Several changing trends can be summarized as follows: (1) ESD-LTO electrode 

and ESD-LTO-5rGO composite electrode have similar capacities at both symmetric and 

asymmetric rate capability tests; (2) LTO-20rGO composite show higher capacities than 

both pure LTO and LTO-5rGO composite, especially at low current density symmetric rate 

capability test; (3) LTO-10Si-5rGO composite delivers the highest capacity in both test 

modes compared with all other electrodes. From the above performance comparison it can 

be seen that Si is one of the most important components that can greatly enhance the 

composite performance even with a small amount. In ESD-LTO/rGO composite, though 5 

wt % rGO in the composite can decrease the polarization as observed in CV peak shift, the 

capacity enhancement is limited mainly due to the low concentration of rGO in the 

composite. As the concentration of rGO increased to 20 wt %, obvious capacity 

enhancement was observed compared to both ESD-LTO and ESD-LTO-5rGO electrodes. 

5.4 Conclusions 

         In this chapter, the synergistic effect of LTO and Si was evaluated by comparing the 

electrochemical performance of the composite electrodes with Si and LTO electrodes 

separately, at varying concentrations with different current densities. It was shown that the 

LTO/Si composite electrodes exhibited both improved energy capacity and rate capability. 

This indicates that LTO/Si composites, benefited from both high energy capacity of silicon 

and the good rate capability of LTO.  Then ESD-LTO-10Si-5rGO composite thin film 

electrodes were fabricated through ESD technique. RGO was used to enhance the rate 

capability and Si was added to improve the energy density of the composite electrodes. The 
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resulting electrode showed extremely high capacity, even at high rates. The main reason 

for the capacity increase was attributed to the incorporation of Si. However, the electrode 

stability was not destroyed by Si due to the volume change buffering effect from both LTO 

and ESD generated structure pores. In addition, the asymmetric rate performance was also 

observed with charge current density increased to a value as high as 120 A g-1. So it 

concludes that Si is one of the important component in the ESD-LTO-10Si-5rGO 

composite that can greatly enhance the composite performance even with a small amount. 
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6. FABRICATION AND CHARACTERIZATION OF OTHER ELECTRODE 

MATERIALS 

6.1 Activated Carbon Nanofiber Electrodes 

6.1.1 Introduction 

          Currently, the most commonly used anode material in commercial Li-ion batteries is 

graphite [1-2]. However, its lower theoretical capacity (372 mAh g-1) is not enough to 

satiate the ever increasing energy demands, especially of the automobile sector. Thus, 

intensive research efforts are being carried out in order to explore alternative electrode 

materials in alloying mechanism and conversion mechanism, such as silicon [3-5], SnO2 

[6], and other transition metal oxides such as NiO [7], CuO [8], Fe2O3 [9], etc. Although 

there have been improvements in electrochemical performance, large volumetric expansion 

and poor electrical conductivity are major challenges that need to be addressed in such 

materials, as a result of which, there is a plethora of  issues such as, poor cycle performance, 

connectivity with the  current collectors, poor columbic efficiency in the first cycle, etc.   

These drawbacks therefore, shift much focus back on developing high performance carbon 

based anodes for LIBs. 

The intercalation and de-intercalation processes of Li+ into carbonaceous materials can 

be expressed as [10-11]: 

                                           6C + 𝑥Li + 𝑥𝑒− ↔ 𝐿𝑖𝑥C6                                             (6.1) 

where 𝑥 is the stoichiometric factor in 𝐿𝑖𝑥C6. It is about 1 for graphitic carbon. Non-

graphitic carbon synthesized at low temperatures (500-1000 oC) can be classified into two 

categories: low specific energy capacity carbon, where 𝑥 is about 0.5-0.8; high specific 
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energy capacity carbon, where 𝑥 is about 1.2-3.0. Higher 𝑥 is the reason why high specific 

energy capacity carbon can provide more capacity than other kinds of carbon. 

       Electrospinning is a promising technique to produce continuous nanofibers on a 

large scale and also it is a relatively easy and fast process. The fiber diameter can be 

adjusted from nanometers to microns [12-14]. Carbon nanofibers (CNFs) can be obtained 

by carbonizing electrospun polymer nanofibers at certain temperature. A lot of work has 

been done based on CNFs as anode materials for Li-ion batteries. Furthermore, precursors 

of other active materials, such as Si [15], SnO2 [16], Fe3O4 [17], TiO2 [18], NiO [19], etc. 

have been added to the polymer precursor to synthesize CNF/active material composites.   

In addition to these additives, the porosity of CNFs has also been tailored in some of the 

works. For example, Liwen Ji et al. reported the fabrication of porous CNFs by 

electrospinning a bi-component polymer solution. The resulting porous CNFs had a 

relatively large surface area of about 235 m3g-1 and delivered a capacity of 435 mAh g-1 at 

the 50th cycle [20]. They also added SiO2 to the polymer precursor followed by HF 

treatment to introduce porosity into CNFs [21]. In addition, they also fabricated porous 

CNFs by in-situ activation with ZnCl2 [22]. 

           Carbon is used extensively as the electrode materials in Electrochemical Double 

Layer Capacitors (EDLC). With the recent development of Li-ion capacitors (LICs), which 

combine both the advantages of LIBs and EDLCs, carbon especially activated carbon (AC) 

is gaining popularity as LIC electrode as well. For example, AC has been mixed with 

cathode material LiMn2O4 [23], or anode material Li4Ti5O12 [24] to act as cathode or anode 

in Li-ion capacitors. Because capacitance is a direct consequence of surface area, both 

CNFs and ACNFs can be employed as LIC electrodes. However, not much work has been 
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reported on activated CNFs as electrode candidates for Li-ion batteries.  Therefore it is 

important to look into the performance of ACNFs in LIBs, and as a result, their application 

can be extended to Li-ion capacitors.  

            In this section, we have prepared CNFs by electrospinning polyacrylonitrile (PAN) 

followed by heat treatment. The activation of CNFs was carried out by KOH chemical 

activation. Both CNFs and ACNFs have been tested and have shown to be promising 

candidates for application in Li-ion batteries 

6.1.2 Experimental 

         PAN (M.W. 86,000), KOH and solvent N, N-dimethyformatide (DMF) were 

purchased from Sigma-Aldrich. A typical electrospinning method was used to fabricate 

CNFs. 0.75 g PAN was dissolved in 10mL DMF to form a polymer precursor, which was 

used for electrospinning. The solution was stirred overnight at 80 oC before transferring 

into a syringe. A flat copper foil was put about 15 cm away from the needle used as a 

collector of polymer fibers. The flow rate of the syringe pump was 1mL h-1 and a positive 

direct current (DC) voltage adjusted between 12–14 kV was applied between the needle 

and the collector to generate a stable and continuous PAN nanofiber network. The collected 

fibrous mat was transferred to a tube furnace for heat treatment. First, PAN nanofibers were 

stabilized in an air environment at 280 oC for 5.5 h at a heating rate of 5 oC min-1. Then 

carbonization was carried out at 800 oC for 1 h at a heating rate of 2 oC min-1 in an argon 

atmosphere. The as-prepared CNFs were then soaked in aqueous KOH solution (with a 

KOH/CNFs mass ratio of 5) for 10 h, followed by filtration and drying, to form the 

CNFs/KOH mixture for chemical activation. The CNFs/KOH mixture was then put in a 

tube furnace in an argon atmosphere, and heated at 800 oC for one hour, at a heating rate 
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of 5 oC min-1. The activated product was then washed using HCl (2 mol L-1) and distilled 

water, filtered and then dried at 105 oC. 

             The ACNFs electrode was prepared by casting a slurry on copper foil. The slurry 

was made by mixing 85 wt % of activated CNFs and 15 wt % of PAA in ethanol, followed 

by hand milling for 1 h. Then the electrode was transferred into a vacuum oven and dried 

at 80 °C for 12 h. The CNFs electrode was prepared by attaching CNFs mat onto the copper 

foil directly without any binder. Electrochemical test cells (2032 coin cells) were 

assembled in an argon-filled glove box. 

6.1.3 Results and Discussion 

       Figure 6.1a shows the morphologies of PAN fibers. It can be seen that the diameter 

of the fiber was around 250 nm and the surface was smooth. After heat treatment, the PAN 

fibers were transformed to CNFs. The resulting CNFs had similar morphologies as PAN 

fibers, but the diameter decreased slightly to 200 nm, as shown in Figure 6.1b. Figure 6.1c 

exhibits the XRD pattern of CNFs. The large peak near 2θ=25o indicates (002) layers of 

graphitic structure. Besides, the peak of (100) layers (at 2θ=45o) is barely seen in the 

pattern, which indicates the amorphous nature of the fibers with partial graphitic structure 

[22, 25-26]. In Figure 6.1d, Raman spectra shows two strong peaks centered near 1350 cm-

1 (D line) and 1600 cm-1 (G line). The D line is a typical feature of carbon with structural 

defects and disorder, while G line represents the high frequency E2g mode typically found 

in graphitic carbon. The existence of both D and G bands is consistent with XRD results 

that such CNFs have an amorphous structure with partially graphitized layers [25-26]. 
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Figure 6. 1 (a)-(b) SEM images of as-electrospun PAN fibers before and after heat 

treatment. (c) XRD pattern of CNFs and (d) Raman spectra of CNFs. 

      Table 6.1 shows the BET results of both CNFs and ACNFs. The specific surface area 

of CNFs increases from 31.6 to 167.9 m2 g-1 by KOH activation, and the total pore volume 

also increased from 0.099 to 0.132 cm3 g-1. It is obvious that the KOH activation is effective 

to introduce porosity into CNFs and subsequently increase the surface area of CNFs.  

Table 6. 1 BET test results of CNFs and ACNFs. 

Sample SSAa (m2 g−1) TPVb (cm3g-1) 

CNFs 31.6 0.099 

ACNFs 167.9 0.132 
a SSA: Specific surface area 
b TPV: Total pore volume. 

        Figure 6.2a displays the CV curves of the CNFs electrode. There is a broad peak at 

around 0.45-0.8 V in cathodic branch of the first cycle, however, this broad peak 

disappeared from the second cycle. And in the anodic branch, there is no obvious peak 

corresponding to this reduction process. This peak is related to the solid electrolyte 

interphase (SEI) formation. The main intercalation of lithium into carbon occurred below 
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0.45 V, and the extraction process is between 0.1- 0.5 V, shown as a broad shoulder in 

anodic branch. The shapes of the CV curves  show no discernable changes from the second 

cycle to the 10th cycle, which indicates that the SEI formation  mainly occurred  during the 

first cycle and that the electrochemical performance of the electrode  was stable. Figure 

6.2c shows the charge-discharge curves of CNFs electrode at different cycles. In the first 

discharge cycle, only one obvious plateau at around 0.75-0.45 V can be seen which agrees 

with the CV curve of the first cycle. The first discharge and charge specific capacity is 988 

and 438 mAh g-1 respectively which leads to an irreversible capacity of 550 mAh g-1during 

the first cycle. From the second to the 100th cycle, specific capacity decreases only by 28 

mAh g-1, which accounts for an average capacity fade of 0.28 mAh g-1 per cycle. Figure 

6.2b shows the CV curves of the ACNFs electrode. Compared to Figure 6.2a, the SEI 

formation peak is broader. In Figure 6.2d, the corresponding plateau is also obvious from 

1.0 to 0.5 V. The specific capacity of the first discharge and charge cycle is 2242 and 991 

mAh g-1 respectively, which leads to an irreversible capacity of 1251 mAh g-1. In the second 

cycle, the discharge capacity still remains 786 mAh g-1, which is much higher than that of 

CNFs electrode. The discharge capacity decreases to 512 mAh g-1 at the 100th cycle. Thus, 

the ACNFs electrode exhibits extraordinarily high specific capacity and such behavior of 

carbon has also been observed by other researchers. For example, H. Q. Li et al [27] 

reported that the discharge and charge capacity of the first cycle of ordered mesoporous 

carbon was 3083 and 1048 mAh g-1, respectively. Some researchers have demonstrated 

that the ability of lithium intercalation and deintercalation in non-graphitic carbonaceous 

materials depends on the properties like crystalline phase, micro structure, hydrogen-

presence and micromorphology. For our ACNFs electrode, the reversible capacity is higher 
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as compared to CNFs electrode. This is because of its larger surface area which facilitates 

interfacial/surface Li ion storage. Li ion storage in defective locations such as cavities and 

nanopores of CNFs could be another reason to explain the higher reversible capacity of the 

ACNFs electrode than the CNFs electrode [28]. 

 

Figure 6. 2 CV curves of (a) CNFs and (b) ACNFs electrodes at a scan rate of 0.2 mV s-1 

in the range of 0.02-3 V. Galvanostatic charge-discharge curves of (c) CNFs and (d) 

ACNFs electrodes between 0.02 and 3 V at a current density of 100 mA g-1. 

     The cycling performance and columbic efficiency of the CNFs electrode and the 

ACNFs electrode are shown in Figure 6.3. The reversible capacities of both samples are 

stabilized after first several cycles. Beyond that there is nearly no reversible capacity 

decrease in both samples. For the CNFs electrode, reversible capacity slightly increases 

from the 50th cycle to 100th cycle. The first cycle columbic efficiencies of CNFs electrode 

and ACNFs electrode are both 44%. Then it increases dramatically to around 100% in the 

following cycles for both the samples.  
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Figure 6. 3 The cycling performance and columbic efficiency of (a) CNFs electrode and 

(b) ACNFs electrode, respectively. 

 

       Figure 6.4 shows the rate performance of both the electrodes at increased current 

densities. As the current density increases from 100 to 1000 mA g-1, the specific capacity 

decreases from 413 to 139 mAh g-1, and from 512 to 265 mAh g-1 for CNFs and ACNFs 

electrodes respectively. However, the specific capacity of ACNFs electrode decreases 

much slower than that of the CNFs electrode, especially when tested at 1000 mA g-1.  This 

is because of the large surface area and porous structure of ACNFs, which shorten the 

diffusion path, making diffusion more facile. After the 1000 mA g-1 test, the specific 

capacity increases to around 600 mAh g-1 for both the electrodes.  The possible reason for 

this increase in specific capacity could be the activation of the electrode material because 

of the previous high current density testing, creating further sites for Li+ ion storage. 

 

Figure 6. 4 The rate performance of CNFs and ACNFs electrodes at various current 

densities ranging from 100 mA g-1 to 1000 mA g-1. 
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6.1.4 Conclusions 

      Activated carbon nanofibers (ACNFs) with a surface area of 167.9 m2 g-1 were 

prepared by carbonization of PAN fibers by electrospinning, followed by KOH activation. 

The electrochemical performance was enhanced due to its special properties, such as high 

surface area and porous structure. The ACNFs delivered a reversible capacity of 512 mAh 

g-1 at the 100th cycle for a current density of 100 mA g-1. Even at very high current density 

of 1000 mA g-1, the reversible capacity reached 265 mAh g-1. The present results show that 

the ACNFs are promising anode materials in Li-ion battery application. 
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6.2 Montmorillonite Clay Electrodes  

6.2.1 Introduction 

        Two-dimensional (2D) materials are a group of materials of crystalline solids with 

sheets of atomic or molecular thicknesses; the sheets are held with strong covalent or ionic 

intralayer bonding but weaker van der Waals or electrostatic interlayer bonding [1-5]. A 

great deal of 2D materials have been reported including [6-10], graphene and its 

derivatives, transition metal dichalcogenides (such as MoS2, WSe2), layered metal oxides 

(such as MnO2, V2O5), MXenes, clays and so forth. Owing to their ability to intercalate 

ions into the layered structures, 2D materials have recently attracted much scientific 

attention for energy storage systems, especially lithium-ion batteries (LIBs) and 

supercapacitors in recent years [11-12]. Montmorillonite (MMT) is a type of clay mineral 

that has a 2D layered structure and naturally exists in the earth. Each layer comprises two 

silica tetrahedral sheets with a central alumina octahedral sheet; the layers are separated 

with interlayer spaces which contain charge-balancing hydrated cations (shown in Figure 

6.5 a) [13-15]. Due to its high surface area, cation intercalation/exchange capability and 

tunable interlayer distance, MMT is a material of wide interest in applications such as 

adsorbents, catalysts, sensors, filtration membranes and so on [16-19]. For example, MMT 

is used for the removal of heavy metal ion pollution due to its cation exchange capability 

[16]. It has also been used as a reinforcement with polymers because of the very high aspect 

ratio and high strength [17]. Additionally intercalation of conductive polymer in the MMT 

interlayers makes it possible to tailor its conductivity over a wide range [18]. In addition, 

MMT has been used to synthesize polymer-in-ceramic membranes for LIBs [19].  
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         The electrochemical performance of 2D materials depends on several factors 

including surface area, interlayer distances and the species residing in them, and electronic 

conductivity. For instance, 2D materials and especially their single or few-layer 

counterparts, usually have high surface area which enables a large electrode/electrolyte 

interface, short ion and electron diffusion paths which enable high rate performance [20]. 

In addition, several other surface related aspects, such as functional groups attached on the 

surface [21], side reactions [22] and re-stacking of the nanosheets [23] also have a great 

effect on the electrode performance. In addition, tunable interlayer distance and ion species 

could affect ion-intercalation, diffusion, kinetics, and energy storage capacity [24-29]. For 

example, Hao et al. synthesized highly ordered mesoporous MoS2 with expanded d-spacing 

and achieved high rate capacity of 608 mAh g-1 at 10 A g-1 due to the ultra-fast lithium ion 

intercalation [25]. Zhao et al. reported interlayer expansion through pre-intercalation of 

appropriate alkali metal ions was a facile and effective method to enhance cycling stability 

and rate capability by regulating the diffusion channels of intercalation compounds [29].  

         Due to structural similarity, MMT may react in a similar way as other 2D materials 

did in some of the properties. Besides, MMT has other advantages like its natural 

occurrence in the earth, abundance and cost-effectiveness, which make it a potential 

candidate material for LIBs. However, unlike graphene or other 2D layered materials, to 

the best of our knowledge, there is no report on the use of clay as an electrochemically 

active material. Whether or not lithium ions can reversibly intercalate into MMT layers has 

not been studied. In this work, one of our aims is to explore the feasibility of using MMT 

as electrodes for LIBs. And the results show that the naturally occurring water containing, 

“hydrated MMT” (HMMT) is able to reversibly intercalate lithium ions into its structure. 
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A reversible capacity of 52 mAh g-1 is maintained for 1000 cycles at current density of 0.5 

A g-1. In addition, we also studied the effect of the interlayer water on electrochemical 

performance of MMT. Removal of interlayer water from MMT (dehydrated MMT, 

DMMT) will have deteriorative effect on its performance as the interlayer water can serve 

served as facile ion migration pathways and enabled the fast and reversible ion 

intercalation.  

6.2.2 Experimental 

            MMT powder was used as received. Dehydration of MMT powder was carried out 

in a Lindberg alumina-tube furnace at 900 C for 2 h in argon atmosphere. The composite 

electrodes were prepared by casting a slurry on Ti foil. The slurry was prepared by mixing 

MMT powder, polyvinylidene fluoride (PVDF) and Super P Li® in N-methyl-2-

pyrrolidone (NMP) at the weight ratio of 70:15:15. Electrochemical test cells (2032 coin 

cells) were assembled in an argon filled glove box. The current density and capacity data 

were calculated using the total mass of the electrode materials. 

6.2.3 Results and Discussion 

         SEM and TEM were used to characterize the morphology and structure of HMMT. 

As shown in Figure 6.5 b, the surface of HMMT clay is flaky and the flakes are in 

micrometer range which agglomerate to larger sized particles. In HMMT structure, 2D 

layers are stacked together with water molecules in between. The interlayer spacing varies 

with the nature of the interlayer cations and amount of water present between the layers 

[30]. TEM images in Figure 6.5 c displays the 2D layered structure. The average basal 

spacing at different place varies from 1.46 nm to 2.71 nm, corresponding to different 

amounts of water and ions in the interlayers. 
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Figure 6. 5 (a) Schematic drawing of HMMT structure. (b) SEM and (c) TEM images of 

HMMT powders. 

         To further study the physical properties of MMT clay, various tests were performed 

and the results are shown in Figure 6.6. The thermogravimetric analysis (TGA) test showed 

that there was a 10% weight loss between ambient temperature and 150 0C, which is due 

to the loss of the water adsorbed at the surface of HMMT powder. Further weight loss is 

observed at higher temperatures – approximately 8% weight loss for ~700 0C. This gradual 

weight loss may be attributed to the interlayer water loss [31]. BET surface area analysis 

was performed on both HMMT and DMMT powders. The surface area of DMMT increases 

from 28.75 to 69.19 m2g-1 as compared to the HMMT.  The increase in surface area could 

be a result of partial delamination of clay layers upon the removal of interlayer water. The 

hysteresis loops of both isotherms seem to be of type H3, corresponding to slit-shaped 



85 

 

pores in layered materials [32]. Fourier transform infrared spectroscopy (FTIR) test was 

conducted and the dehydration process was confirmed. The FTIR spectra is illustrated in 

Figure 6.6 c and peak identifications are summarized in Table 6.2 [33]. X-ray diffraction 

(XRD) was performed to study the change in the d-spacing after the dehydration process, 

as shown in Figure 6.6 d. Major peaks of MMT clay have not changed after heat treatment. 

Instead of one sharp peak, both samples show two broad peaks at lower angle which 

indicates different d-spacings [32]. Two d-spacings are obtained (HMMT: d=1.07, 1.43 

nm; DMMT: d=1.07, 1.50 nm), as calculated from Bragg’s law. The resulting values are 

smaller than what have been observed in TEM. 

 

Figure 6. 6 (a) TGA curve of HMMT powder. (b) Nitrogen adsorption-desorption 

isotherms, (c) FTIR spectra and (d) XRD patterns of both HMMT and DMMT powders. 
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Table 6. 2 Summary of FTIR peak identification of MMT clay. 

 

 

Figure 6. 7 CV curves of (a) HMMT and (b) DMMT at 1 mV s-1, in the voltage window of 

0.05-3.8 V. 

 

              Figure 6.7 a and b display the CV curves of HMMT and DMMT electrodes at a 

scan rate of 1 mV s-1 between a potential of 0.05 and 3.8 V (vs Li/Li+). In the first cycle 

cathodic branch of HMMT, two peaks were observed at 0.448 and 1.16 V, while no obvious 

peak other than a tiny peak at 1.086 V was observed for the anodic branch in this range. 

Due to the fact that solid electrolyte interphase (SEI) formation typically takes place around 

this potential range, the two cathodic peaks could be partially due to SEI formation [34]. 

However, stable peaks with smaller current values were observed in the subsequent cycles 

at approximately 0.679 and 1.512 V which could correspond to similar reactions as the first 

cycle. The change in peak shift and current density could be attributed to the combined 

Wave number (cm-1) Assignment 

3624 O-H stretching, (Mg, Al)-OH 

3415 H-O-H hydrogen bonded water 

1635 H-O-H deformation 

1003 Si-O-Si stretching 

910 Deformation of OH linked to 2Al3+ 

847 Deformation of OH linked to Al3+ and Mg2+ 

788 Si-O deformation perpendicular to optical axis 
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effect of SEI formation and reversible reactions.  Other than the aforementioned cathodic 

peaks, another peak is observed at 1.943 V. Unlike the two peaks in the first cycle, these 

three peaks were stable and had little change in peak positions and peak currents for the 

next 9 cycles. In the anodic branch of CV curves, the two major peaks at 1.576 and 2.512 

V remained stable in the first 10 cycles. The small broad peak at around 1 V in the first 

cycle disappears in the following cycles. These repeatable major peaks indicate the 

reversible lithium ions storage in HMMT electrode. However, conclusive remarks about 

any possible redox reactions taking place in the major components of MMT (Al2O3, SiOx) 

cannot be made with these CV curves. Al2O3 is usually considered as electrochemically 

inactive and is often used as coating materials for cathode [35-36]. The observed peaks 

from the HMMT electrode do not match with the redox peaks for possible reactions 

between SiOx and lithium ions from other’s researches [37-41]. When compared to the 

other layered materials, such as graphite, it is possible that the redox peaks could could 

correspond to the reversible intercalation/deintercalation of lithium ions in the different 

layers of MMT with charge transfer process at the electrode/electrolyte interface [42]. 

Therefore, these peaks can be assigned as the characteristic peaks of MMT clay and further 

investigation is required to understand the mechanism corresponding to the redox peaks. 

To study the water effect on the electrochemical performance of MMT, same CV test were 

also performed for DMMT electrode (Figure 6.7b). Four major peaks at similar voltages 

as in HMMT electrode are observed in the first cycle. However, these peaks diminished 

quickly in the following cycles. At the 10th cycle, no obvious peaks could be observed. By 

comparing the CV curves of both samples, it can be seen that DMMT electrode has larger 

current density than HMMT electrode which indicates that DMMT stores more charge than 
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HMMT in the first several cycles. This could be explained by higher surface area and more 

effective mass than HMMT considering 18 % water removal. The decreasing trend of 

current density of DMMT was more obvious than HMMT because the structure integrity 

was destroyed by removing the interlayer water. 

 

Figure 6. 8 (a) Cycliability performance of both HMMT and DMMT electrodes at current 

density of 0.5 A g-1, 0.05 V-3.8 V. (b) Rate capability performance of both HMMT and 

DMMT electrodes at current density of 0.2, 0.5, 1 and 2 A g-1. Corresponding charge-

discharge curves of (c) HMMT and (d) DMMT at different cycles.        

            In order to determine the long term cyclability, both the electrodes were charged 

and discharged for 1000 cycles, as shown in Figure 6.8a. For HMMT electrode, the whole 

process can be divided into three zones from the trend in capacity change. In zone I, the 

capacity gradually decreased from 95 mAh g-1 at the first cycle to 15 mAh g-1 in the 40th 

cycle. After 40 cycles, the capacity kept increasing until around the 300th cycle which forms 
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zone II. In this zone, the capacity increased by 180% reaching 42 mAh g-1. After 400th 

cycle, the electrode stabilized and at 1000th cycle, a capacity of 52 mAh g-1 capacity was 

achieved. The capacity loss in the first cycle can be attributed to an SEI layer formation, as 

well as to the irreversible reduction of electrochemically active surface groups such as 

possibly hydroxyls [43]. The columbic efficiency for the first cycle was around 30%, which 

is typical for high surface area electrode materials [44]. But from the second cycle, it 

increased to almost 100% around the 10th cycle and was maintained at the same level for 

the prolonged cycles. The DMMT electrode displayed similar trend as the HMMT 

electrode, especially in zone I and III, but with lower specific capacities. This is a good 

indication that the removal of the interlayer water deteriorates the Li+ intercalation 

performance, as a result of the shrinkage of the interlayer distance resulting in destruction 

of the facile ion migration pathways. Similar phenomena have been observed for vanadium 

oxide xerogel [27, 29]. In the first 10 cycles in Zone I, DMMT shows higher specific 

capacity than HMMT which is consistent with what has been observed in CV curves. In 

zone II of DMMT, although an increasing trend was maintained but the capacity increase 

in this zone was much less than of HMMT. Notably, this increased capacity has been 

observed for many materials. This phenomenon may be attributed to the growth of an 

electrochemically active gel-like polymer layer, which can enhance lithium ion storage 

[45]. For another reason, it may due to the gradual activation process of electrode materials 

[46]. In addition, recent results showed that for RuO2·yH2O, besides the traditional 

conversion reaction, formation of LiOH by surface reaction between -OH group and 

lithium ions can provide additional capacity through reversible conversion of LiOH to form 

Li2O and LiH [47]. So for HMMT electrode, similar reaction could be responsible for the 
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increased capacity in zone II. But for DMMT electrode, due to the reduced amount of –OH 

group, the increase in capacity is limited. The charge-discharge curves for both electrodes 

are compared in Figure 6.8c. For HMMT, it shows some slight curvatures at ~ 1.5 V in 

discharge and ~ 2.5 V in charge curves, which are consistent with the above CV results. 

The other part of the charge-discharge curves are most straight lines with different slopes, 

implying the different amount of surface charging contribution. As compare to HMMT, 

the curvatures in the curves for DMMT are not obvious, especially after the second cycle, 

which is also consistent with the CV curves that no strong peaks after the second scan. 

           To test the high rate performance of MMT electrode, further charge-discharge 

measurements under various current densities from 0.2 to 2 A g-1 were carried out after the 

1000 cycles test, and the results were shown in Figure 6.8b and d. The highest capacity 

was obtained at a current density of 0.2 A g-1 for both samples. As the current density 

increases, the capacity decreases remained stable for each rate, which indicates that the 

MMT structure was stable even under such high current density. At the current density of 

2 A g-1, a stable capacity of 19 mAh g-1 is obtained for 50 cycles for the HMMT electrode. 

It should be noted that the current densities selected for this study are much larger than that 

are used for traditional tests. For example, 2 A g-1 equals up to 11 C for Li4Ti5O12 and 7 C 

for graphite (based on the theoretical capacity). Such rate performance is mainly due to the 

2D layered structure of MMT clay which makes it easy for the electrolyte ions to access 

the entire surface and do not require the lithium ions to diffuse into a 3D lattice structure.  

The DMMT electrode showed lower capacity than the untreated sample under all current 

densities, which could be due to the lack of lithium ion traveling channel-inter layer water.  
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 Figure 6. 9 (a) Nyquist plots of both HMMT and DMMT electrodes at freshly assembled 

state (b) Nyquist plots of HMMT electrode at different voltages. 

        The Electrochemical Impedance Spectroscopy (EIS) tests were performed for both 

MMT electrodes as fresh cells and are shown in Figure 6.9a. The Nyquist plots were similar 

in shape, comprising a depressed semicircle in the high frequency region, followed by a 

relative straight slopping line in the low frequency region. The semicircle in the high-

frequency range is usually associated with the surface properties of the electrode, and the 

diameter of the semicircle corresponds to the charge-transfer resistance of the electrode, 

also known as Faraday resistance [48]. It can be easily observed that the diameters of the 

semicircles clearly larger for DMMT compared with HMMT which indicates larger charge 

transfer resistance. DMMT electrode displays higher values of the contact resistance, 

charge transfer resistance, solid electrolyte interphase resistance and Li+ diffusion 

resistance than the HMMT electrode. Figure 6.9b exhibits the Nyquist plots for HMMT 

electrode at different voltages in charging process. From  magnified figure it can be seen 

that the intercepts with real part are almost the same, which means that at all voltages 

exhibit the same combination resistance of the intrinsic resistance of the HMMT, the ionic 

resistance of the electrolyte and the contact resistance. And the number is pretty small, 
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which indicates that by casting with 15% super P Li®, the conductivity of the whole 

electrode has improved dramatically as compared to the low conductivity nature of MMT 

clay. The diameters of the semicircles in the high-frequency range clearly decrease as the 

voltage increases, especially from 0.11 V to 0.46 V, which indicates the decrease of 

electrical conductivity. At lower frequencies, the straight lines represent the diffusive 

resistance of lithium ions in the electrode. The slope angles gradually decrease from ca. 

75.6o at 0.11 V to ca. 39.7o at 3.42 V. The steeper low-frequency tail (more close to vertical) 

indicates higher lithium ion conductivity in the electrode materials [49]. At higher voltage, 

as more lithium ions are intercalated into the MMT structure, it turns harder for additional 

ions to intercalate into the structure. The Columbic repulsion from intercalated Li+ is 

responsible for this increased diffusive resistance.  

6.2.4 Conclusions 

          In this work, we have demonstrated MMT clay is possible choice as a new green 

electrode materials for lithium ion batteries. With layered structures and water in between, 

a capacity of 52 mAh g-1 was achieved at 1000 cycle at the current density of 0.5 A g-1 for 

HMMT electrode. Rate capability test exhibits that at lower current density of 0.2 A g-1, 

higher capacity of 80 mAh g-1 could be achieved for HMMT electrode. A key feature of 

this study is that we demonstrated importance of water in the structure for the lithium ion 

migration through comparison with DMMT electrode. Our finding provides lots of options 

to use other nature materials that have similar 2D structures as MMT as electrode materials 

for lithium ion batteries. 
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7. SUMMARY AND FUTURE WORK 

7.1 Summary 

           This dissertation presents fabrication, characterization and evaluation of 

electrostatic spray deposition derived high performance electrode materials for lithium ion 

batteries. Lithium titanate (Li4Ti5O12) is one of the most promising candidate anode 

materials due to its excellent cyclability, good rate capability, structure stability and SEI 

free nature (when cutoff voltage= 1 V). However, its energy density is relatively low due 

to low theoretical capacity and high working voltage. One of the objectives of this study is 

to increase the energy density by two strategies: i) fabrication of ESD derived porous thin 

film LTO electrode and evaluation of its electrochemical property when cutoff voltage is 

around 0 V; ii) developing LTO based nanocomposites by adding rate capability 

enhancement component rGO and energy density enhancement component Si. Besides 

LTO based electrode materials, activated CNFs as well as MMT clay based electrode have 

also been studied.  

             Firstly, ESD was used to synthesize porous LTO thin film electrode. 

Electrochemical studies showed that it can deliver 357 mAh g-1 capacity at 0.15 A g-1, 

which doubled the theoretical capacity of LTO when cutoff voltage window is 1V. At high 

current density test of 6 A g-1, corresponding to an actual charge/discharge time of 60s, a 

capacity of 98 mAh g-1 was still achievable. From reaction kinetics study it was observed 

that the capacitive Li storage contribution was not negligible compared to diffusion 

controlled Li storage contribution in such porous thin structures.  At even higher rate, Li+ 

is predominantly stored by capacitive charge because bulk ion transport is not able to keep 

up with the applied galvanostatic current due to the sluggish kinetics. In addition, 
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asymmetric rate tests were performed and it was revealed that the charging process was 

much faster than discharging process. Furthermore, the cell lasted for more than 1400 

cycles even after harsh condition tests.  Then rGO and Si were introduced into LTO 

separately to form LTO/rGO and LTO/Si composites, respectively. The rate capability 

enhancement from rGO was studied by evaluating LTO/rGO composites. The synergic 

effect between LTO and Si was proved by preparing various LTO/Si composites. It was 

demonstrated that the addition of Si and concentration optimization was an easy and 

effective way to produce high energy density LTO-based electrodes for LIBs. Finally, both 

rGO and Si were added in ESD-LTO-10Si-5rGO composite thin film electrode by ESD 

technique. It turns out that the resulting composite exhibited both high energy and high 

power densities. More importantly, the cycle life can be over 1000 cycles which is 

promising than most of silicon involving composite electrode. In summary, it was 

concluded that ESD is a versatile technique that can not only be used to synthesize 

electrode materials with designed structures and morphologies, but also can easily be 

employed in fabricating nanocomposite materials. The resulting ESD derived LTO and its 

nanocomposites electrodes exhibit promising electrochemical performance. 

            In the last part of this thesis, it presents studies of other electrode materials, such as 

CNFs & ACNFs, and MMT clay. The effect of chemical activation process on the 

electrochemical performance of CNFs from electrospinning have been studied. For MMT 

clay electrode, we demonstrated for the first time the feasibility of lithium ions to reversibly 

intercalate/de-intercalate into MMT clay. The importance of interlayer water has also been 

proved in the study. The advantages of using these materials as anode for LIBS was 

discussed.  
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7.2 Future Work 

            The present dissertation has introduced the application of ESD technique to 

fabricate various electrode materials with controlled structures and morphologies. The 

work has been focused on LTO and its nanocomposites to exemplify the merits of using 

ESD in terms of improving energy density and power density of LTO. Additionally, other 

different types of materials have also been studied. 

             In the studies of LTO based electrodes, the success of two proposed strategies to 

increase its energy density has been illustrated through formation of porous structures and 

fabrication of nanocomposites. For porous LTO thin film electrode, though the origin of 

extra capacity compared to theoretical number and the excellent kinetics have been 

observed and discussed, deeper understanding and direct evidence will be needed to further 

confirm the mechanism. Additionally, we have proved the energy and power enhancement 

effect from Si and rGO in ESD-LTO-10Si-5rGO composite, however the composition for 

each component were not optimized. One of the future research directions could focus on 

this aspect. For ESD derived electrode materials, though very promising electrochemical 

performance have been achieved, much effort is still needed to meet the requirements of 

practical commercial application. For example, issues on how to scale up the fabrication 

process, how they will perform in a large cell with more active material loading, what their 

real performance in a practical full cell paring with commercial cathode materials will be, 

as well as other problems may not be obvious in the coin cell, such as the gassing problem.    

            In this dissertation, MMT clay as a 2D electrode material has also been studied for 

the first time. Preliminary results about the influence of interlayer water to electrochemical 

performance of MMT have been provided. By applying various modification strategies, 
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such as delamination/exfoliation of bulk MMT clay, insertion of interlayer spacer (0D 

nanoparticles, 1D nanotubes/wires and 2D nanosheets), compositing with other electrode 

materials, the electrochemical performance of MMT could be improved.  
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APPENDIX 

Charge Storage Distribution Calculation Based on 

Scan Rate Dependent Cyclic Voltammograms Analysis 

            In a battery, although the diffusion controlled charge storage processes are usually 

of primary interest to be investigated, the effects of the non-diffusion controlled processes 

need to be taken into account for some cases, such as the study for nanomaterial based 

electrodes which have unneglectable non-diffusion controlled charge storage contribution. 

Cyclic voltammetry is one of the most widely used techniques for evaluating 

electrochemical reactions, proving information on thermodynamics and kinetics of electron 

transfer reactions, chemical reactions and adsorption processes. In CV curves, there are 

several important parameters that need to be considered in evaluating a given curve, such 

as peak current, peak position, half-wave potential, scan rate, voltage window, etc. In this 

appendix, we will focus on the relationship between current and scan rate for various type 

of reactions. In an electrochemical cell, diffusion controlled reaction is one of the main 

reactions that will happen. Based on the reversibility, diffusion controlled reactions can be 

divided into three categories: (i) reversible, (ii) totally irreversible and (iii) quasi-reversible 

processes. Besides diffusion controlled reactions, there may exist some other reactions that 

not controlled by diffusion, including (iv) double layer capacitance and (v) 

pseudocapacitance. For each different type of charge storage process, the conclusive 

mathematical equations will be presented. We have more interest and will focus on the 

assumptions and conditions applied during equation development which may leads to the 

application limitations of this charge storage distribution calculation. 
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         Equation A1 represents a chemically reversible system with the forward and reverse 

electron transfer rate constant kf and kb, respectively. Ox and R represent oxidant and 

reductant, respectively [2]. 

                                                                                               (A1)  

At equilibrium, the kf and kb have same value when the applied potential is equal to the E0 

(standard potential) of the redox couple. At such case, kf and kb  value can also be called the 

standard rate constant ks with the units of cm s-1. ks is a measure of kinetic facility of a redox 

couple. Large ks value represents that following the application of an applied potential, 

equilibrium between Ox and R can be re-established quickly. The reactions with large ks 

value is considered as a reversible system. Small ks value represents the slow kinetics and 

longer time requirement to establish equilibrium. When the ks value is very small or the 

electrode kinetics are very sluggish, the reactions is considered as totally irreversible 

systems.      Though the reversibility of a system can be determined by the above mentioned 

ks value, experimentally, the reversibility is also depends on the scan rate employed. In 

another way, the appearance of reversibility depends on the time window of the 

experiment. For certain reaction, it would be a reversible system at low scan rate but would 

change to irreversible system when scan rate increases. Experimentally, the zone 

boundaries are defined as:   

                                                    Ʌ ≥ 15; 𝑘0 ≥ 0.3𝑣
1

2 cm s-1                                              Reversible 

              15 ≥ Ʌ ≥ 10−2(1+𝑎);  0.3𝑣
1

2 ≥ 𝑘0 ≥ 2 × 10−5𝑣
1

2 cm s-1                  Quasi-reversible 

                                Ʌ ≤ 10−2(1+𝑎);  𝑘0 ≤ 2 × 10−5𝑣
1

2 cm s-1                         Totally irreversible 
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          The relationships between current and scan rate of various reaction processes have 

been summarized in Table A1. 

Table A 1 Summary of relationships between current and scan rate of various reaction 

processes. 

Reaction 
Relationship between Current 

and Scan rate (a) 

Assumptions and Boundary 

Conditions 
Ref. 

Diffusion 

Controlled 

Reversible Reaction 

𝑖 = 𝑛𝐹𝐴𝐶𝑂
∗(𝜋𝐷𝑂𝜎)

1

2𝜒(𝜎𝑡) (b) 

 

𝑖𝑝 = 0.4463 (
𝐹3

𝑅𝑇
)1/2𝑛3/2𝐴𝐷𝑂

1/2
𝐶𝑂

∗ 𝑣1/2 

Semi-infinite liner diffusion;  

Planar electrode; Solution 

initially containing only 

species O; Rate of electron 

transfer is rapid at the 

electrode surface; flux 

balance; 

 

[2] 

Diffusion 

Controlled Totally 

Irreversible 

Reaction 

𝑖 = 𝐹𝐴𝐶𝑂
∗ 𝐷𝑂

1

2𝑣
1

2 (
𝑎𝐹

𝑅𝑇
)

1

2
𝜋

1

2𝜒(𝑏𝑡) (c) 

 

𝑖𝑝 = (2.99 × 105)𝑎1/2𝐴𝐷𝑂
1/2

𝐶𝑂
∗𝑣1/2 

One step, one electron 

reaction; Planar electrode; 

Semi-infinite liner diffusion; 

Solution initially containing 

only species O;  

𝑘𝑓/ 𝑘𝑏 ≈ 0; 

 

[2] 

Diffusion 

Controlled Quasi-

reversible Reaction 

𝑖 = 𝐹𝐴𝐶𝑂
∗ 𝐷𝑂

1

2𝑓
1

2𝑣
1

2𝛹(𝐸) (d) 

 

𝑖𝑝 = 𝑖𝑝(𝑟𝑒𝑣)𝐾(Ʌ, 𝑎) (e) 

One step, one electron 

reaction; Planar electrode; 

Semi-infinite liner diffusion; 

Solution initially containing 

only species O; 

 

[2] 

Double Layer 

Capacitance 

 

 

𝑖𝑑𝑙 = 𝑣𝐶𝑑𝑙𝐴 

The interphasial region 

between electrode and ionic 

solution is ideally polarizable; 

the electrode is in a state of 

electrostatic equilibrium; 

[3] 

Pseudocapacitance 𝑖𝑝 =
𝑛2𝐹2𝛤0𝑣

4𝑅𝑇
 

Planar electrode; kinetics of 

the process is sufficiently 

facile; monolayer deposition; 

[3] 
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 (a) i is current at any point on CV curves, ip is the peak current on CV curves, 𝑣 is scan 

rate,  F is Faraday constant, A is electrode area, 𝐶𝑂
∗  is surface concentration, 𝐷𝑂 is chemical 

diffusion coefficient, n is number of electrons transferred in the redox event, a is the 

transfer coefficient, 𝐶𝑑𝑙is double layer capacitance, 𝛤0 is surface coverage. 

(b) The general results of solving 𝜒(𝜎𝑡) is a set of values as a function of 𝜎𝑡 or n(E-E1/2).   

(c) 𝜒(𝑏𝑡) can also be solved as a set of values but different from 𝜒(𝜎𝑡). 

(d) 𝛹(𝐸) =
𝑖

𝐹𝐴𝐶𝑂
∗ 𝐷𝑂

1
2

(
𝑛𝐹

𝑅𝑇
)

1

2𝑣
1

2  and Ʌ =
𝑘𝑠

(𝐷𝑂
1−𝑎𝐷𝑅

𝑎𝑓𝑣)1/2
   

(e) 𝑖𝑝(𝑟𝑒𝑣) is the reversible ip value. 

             From the table it can be seen that for reversible and totally irreversible reactions, 

the peak current and the current at any other points on the curve are proportional to the 

square root of the scan rate. But for quasi-reversible reactions, they are not strictly 

proportional to the square root of the scan rate. However, for both double layer capacitance 

and pseudocapacitance, the current is proportional to scan rate 𝑣. 

             In general, the current in CV curve obeys a power law relationship with scan rate 𝑣, 

which can be expressed as in Equation A2 [4]: 

                                                              𝑖 = 𝑎𝑣𝑏                                                            (A2) 

Both a and b are adjustable parameters that may vary at different voltages, and i represents 

the current value of any point on CV curve. There are two well-defined conditions: b = 0.5 

(diffusion controlled current contribution) and b = 1.0 (non-diffusion controlled current 

contribution or capacitive contribution). By performing CV analysis at various scan rates, 

a and b values can be obtained. The b values at different voltage give basic information 

about whether the current is from diffusion controlled process or non-diffusion controlled 
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process. However, it is hard to quantify the contribution from each component based on 

this equation. 

 

Figure A 1. Capacitive charge storage contribution of different materials at various scan 

rates. (a) LTO thin film (35 nm) electrode at 2 mV s-1 [5]. (b) Graphene oxide wrapped 

amorphous copper vanadium oxide electrode at 2 mV s-1 [6]. (c) Na2Ti3O7@CNTcoaxial 

nanocables electrode at 0.6 mV s-1 [7]. (d) V2O5/CNT electrode at 10 mV s-1 [8]. (e) In 

Nb2O5@Carbon core–shell nanoparticles and reduced graphene oxide nanocomposites 

electrode at 0.1 mV s-1 [9]. (f) Nb2O5@C electrode at 0.1 mV s-1 [10]. (g) Mesoporous 

MoS2 electrode at 1 mV s-1 [11]. (h) VOPO4 nanosheets electrode at 1 mV s-1 [12].  



107 

 

    

       In another way, Equation A2 can also be written as Equation A3 and by applying this 

equation, it is possible to separate these two types of current contributions in the CV curves 

[4].  

                                                      𝑖(𝑉) = 𝑘1𝑣 + 𝑘2𝑣1/2                                              (A3) 

where k1υ represents the non-diffusion controlled charge storage and k2υ
 1/2 represents the 

diffusion controlled charge storage and and i represents the current value of any point on 

CV curve. k1 and k2 values can be solved by applying various 𝑣 and 𝑖 values to equation 

A3.  

         The above mentioned method has been widely used for various types of materials in 

recent research works and the conclusions obtained from such analysis were supported by 

their other electrochemical analysis, see Figure A1 [5-12].  
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