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ABSTRACT OF THE THESIS 

CONTRACT~AGERANYWHERE 

AN INTERNET-ENABLED DATABASE APPLICATION 

by 

Yao-Jen Chang 

Florida International University, 1998 

Miami, Florida 

Professor Wei Sun, Major Professor 

This thesis describes the design and implementation of an Internet-enabled database 

application which uses ASP (Active Server Pages) and other related knowledge such as 

ADO (ActiveX Data Object), ODBC (Open DataBase Connectivity) and OLE-DB 

(Object Linking and Embed-DataBase). Because it is an Internet-enabled application, the 

subject of "Security" was also studied by implementing ASP technology. The database 

was created using Microsoft Access 97 and the web interface was built using HTML, 

VBScript and JavaScript. This system will be fully functioning at the Florida Department 

of Education (FLDOE) site and will enable remote access to allow users to monitor 

hundreds of contracts. Features include advanced scheduling, warning and accounting 

capability. The Internet-enabled feature allows nationwide users, including FLDOE 

project managers, FLDOE technical advisors and independent contractors, to follow the 

status of contracts, contractors, and payments very closely. 
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CHAPTER 1 INTRODUCTION 

This thesis describes the development of the Projects and Grants Management (PGM) 

system. This system originally called State Administrative Expense Tracking System 

(SAETS) is an Internet-enabled database application which was developed for the Florida 

Department of Education (FLDOE). It is a PC-based client-server system used to 

effectively manage and trace contracts, contractors and payment schedules. The primary 

purpose of this system is to provide remote access for users from anywhere in the USA. 

Thus, users are able to implement this system from other computers and are no longer 

confined to one typical PC and software. Before the development of this Internet-enabled 

system, a desktop system had been used for the purpose of control and tracking for 

contracts and contractors. 

1.1 Brief Project History 

Before this system was developed, FLDOE staff members managed all the contracts, 

contractors and grants manually. Software, such as Microsoft Access and Lotus 

Organizer, was used solely to store data for which human resources were used to control 

and track the other necessary follow-up work. Secretaries played the important rolls in 

the whole filing process. Filing papers was one of the major tasks performed on a daily 

basis. The same information was often converted into different formats. This sometimes 

resulted in misleading information which caused extra workloads and time. Furthermore, 

there were problems with getting reports from the Comptroller in a timely fashion. 

Contractors also experienced difficulty with the old system. It was very difficult for them 



to keep track of payment activities and a great deal of time was spent waiting for reports 

to come out. A software package designed in Microsoft Access 97 could solve these 

problen1s but would still have disadvantages such as a lack of client/server interaction 

and a limitation of where it can be implemented. 

It is due to these inefficient processes and disadvantages that this project was hom. 

1.2 Why The Internet? 

The Internet is the place where affordable computing and navigable, distributed 

information go to work on expanding knowledge. It is growing substantially each day and 

it is estimated that there are over 7 5 million users of this media. The number of people 

who get infonnation on the Internet keeps increasing. The Internet is vastly and quickly 

becoming a way of doing everyday business and is expanding business hours to include 

more conventional "off hours". We now l1ave the ability to communicate more 

extensively, author interactive Web pages, add audio components to our sites and so 

much more. 

Statistics show that the Internet is growing by 1 0~ 15% per month. The Internet nowadays 

has more than 2 million nodes (i.e., computers which are always connected to each other) 

and is expected to increase to more than 100 million nodes by the year 2000. By the end 

of last year 1997. 82 million PCs were connected worldwide to the Internet. This is a 71 

percent increase from 1996. Dataquest [ 1] predicts that by 2001. the Internet will be such 
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a major part of business operations worldwide that the number of "wired" computers will 

rise to 268 million. 

Due to the increasing number of Internet users, the Internet software and services market 

produce revenues of US$12.2 billion in 1997, a 60 percent growth from 1996, when 

revenues came in at $7.5 billion. Dataquest estimates that by 2001, the Internet software 

and services market will reach $32.2 billion in revenue. 

With those persuadable statistics and overwhelming growing popularity, there is little 

doubt that the Internet is the best communication medium for client/server interaction. 

This project indeed serves as one of the pioneering Internet-based projects that will 

eventually be the mainstream choice for deploying projects with boundless access, 

control and tracing capabilities for all data processing. 
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CHAPTER 2 SYSTEM OVERVIEW 

This chapter gives a general overview of this system. This will enable us to have a better 

understanding of how this system works and its features. Details of design concepts will 

be presented in chapter 3. 

2.1 System Operation 

The major functions of this system include connecting user browsers to databases at the 

web server side, providing good user interfaces and granting various privileges for 

different types of users. There are two types of users a super user and an end user or 

contractor. All data information including a user's login accounts, contracts, contractors 

and payment details are stored in the database on the server side. A database is an 

example of a data store. A data store could be any store of information. The database tool 

used here is Microsoft Access 97. 

On the browser side, all users have to establish their login accounts for navigating in the 

system. The identification of users is required for login. After successfully logging in, 

users will be able to place requests to the system. Once a user makes a request, the web 

server processes the request using Active Server Pages and sends the resulting 

information back in plain HTML format to the browser that requested it. Figure 2·1 

illustrates a schematic overview of how this processing is done. 
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HTTP Request • 

.,..411--- HTTP Response 

Client Web Server 

Components 

Figure 2-1 Processing of an ASP Request 
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2.2 System Technical Terms 

The main technique used to develop this system is called ASP (Active Server Pages). 

ASP was officially announced to the world by Microsoft on July 16, 1996 and was 

codenruned "Denali" [2]. It is the latest sever-based technology designed to create 

dynamic and interactive HTML pages for WWW sites. ASP is revolutionizing the way 

Web applications are developed almost the same way Windows NT revolutionized 

client/server computing. ASP is designed to be used together with HTML to create 

dynamic pages. In fact, ASP actually creates HTML code. A Web page that uses ASP is 

likely to consist of a mixture of three types of syntax. Some of the page will be 

constructed fron1 simple text, part will be HTML, and part will be ASP code. ASP is 

actually an extension to the web server that allows server-side scripting. At the same time 

it also provides a compendiwn of objects and components which manage interaction 

between the web server and the browser. Those objects can be manipulated by scripting 

languages. Figure 2-2 interprets that ASP neatly divides up into and uses different types 

of objects, each of which manages its own part of the interaction between cJient and 

server. ASP is a new technique for web developers to make a web site interactive. 

Prior to ASP, the development of a typical interactive Web application n1eant compiling 

an executable application using a traditional application development environment such 

as Visual C++. After the application was compiled, it was copied to a CGI directory of 

the web server. Even the slightest change to the application meant recompiling the entire 

application and replacing the previous version of the executable file. This process is 
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unnecessarily resource intensive in a production environment. ASP solves this problem 

by providing a more direct and easier way to create web applications. [3] 

"'"I Request Object I .... 
Server ...... , I ... 

Object 

Client 
Server 

... I Response Object 
, ... 

~ r 
Application 

Object 

~ I ObjectContext Object L. Session 
~ l r~ Object 

Figure 2-2 Client/Server Interaction in ASP 

2.3 System Features 

This system was designed and developed for the FLDOE. There are some features 

included in the system. 

• Clear identification for users: 
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Once a user logons to the system. :successfully, the system shows clearly ·a column 

banner indicating what type of account the user has. Different types of users will be 

directed to different pages and given different privileges. 

• Security control: 

This system is used to track Food and Nutrition Management Projects and Grants for 

the Florida Department of Education. Only specific users (i.e., FLDOE super users or 

valid contractors) have access to information on the Web page. Other than login page, 

all pages on the Web server can only be accessed by using a valid login account. And 

every page is protected from unauthorized users. 

• Friendly and intelligent interface: 

This system provides easily, understandable, and user .. friendly on-line instructions. 

With very little experiences of using browser, users can implement this system 

quickly and easily. Use of the system is particularly facilitated by providing feedback 

for the actions a user has taken, instructions concerning a user's alternative actions, 

n1essage showing mistakes that have been made and available hot links to other 

useful and related pages. 

• Online functions of add, delete, search and update: 

This was the primary motivation for developing this system. FLDOE super users can 

implement this system from any PC at anytime. The data can be updated and posted 
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simultaneously. Specialized software or a specific physical location is not required as 

long as the user has a browser connect to the Internet. 

• Login account management: 

FLDOE super users have absolute control over all login accounts including 

contractors and other super users. The information such as the login usemame and 

password, the date an account was created and the date last time login a user logged 

in can be seen and monitored. If a user forgets his/her password, he/she can simply 

send a request to the system administrator and the login account will be reset with an 

assigned username and password and the user will be able to log onto the system and 

change the password. 

• Remote access to all contractors: 

Just as with super users, contractors will have pre-setup login account information 

available so that they can log on from any Internet-enabled computer at any time. 
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CHAPTER 3 SYSTEM DESIGN 

In this chapter, the core concepts involved in designing this system will be discussed. 

Topics include system architecture, system security, setting up the web server and system 

functions. The design details involved in using Microsoft Access are not the focus here 

since project's field of study is on the Internet client-server by implementing ASP. Other 

subjects such as system implementation will be introduced in the next chapter. 

3.1 System Architecture and User Interfaces 

Prominent and colorful images and icons contribute to making the user interfaces easy to 

use and visually appealing. All graphic designs were developed by modifying and 

updating the client's requests. Even at the time this paper is being delivered, the progress 

is continuing. The purpose of doing so is to ensure that the interfaces can be 

understandable from the client's points of view and to reduce the probability of a user 

making mistakes. The system architecture will be looked at first. The following 

illustration shows the architecture of the system: 

10 



Contracts 

View 
Update 
Add 
Delete 
Search 
Save 

HTTP Request 

HTTP Response 

View 
Schedule 
Search 
Modify 
Add 

View 
Edit 
Monitor 

Active Pages 
(Security Check, 

Session Management, 
Running Time~ User 

Type Check, 
Template Processor, 

etc.) 

View 
Update 

Figure 3-1 System Architecture 
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This system is designed to help FLDOE control and track all the projects and grants of its 

contractors. It also provides accounting capabilities to help FLDOE monitor and schedule 

payments. The system will automatically detect and determine the type of user and grant 

the appropriate privileges when the user logs in. Of course, a task of security check is 

performed here. Only valid and authorized users can successfully log onto this system. 

Failed attempts to log in will result in the display of a red blinking error message on the 

botton1 of the page. The type of error message returned reflect the type of mistakes made. 

Some examples are: "Please enter all information on the login fields!", "Right user name, 

Wrong password! Please try again!" and "Invalid account, Cannot login to this site!". 

Another function executed here is the recording of the login date of each user in that 

user's account. This function will help the FLDOE project managers have better control 

of their contractor's login activities. 

Figure 3-2 shows the login interface. The user type will be determined by processing 

some database lookup functions. Please see appendices. 
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3.1.1 Super Users 

The Food and Nutrition Management Section (F&NM) of the 
Florida Department of Education(FLDOE) is fWlded ·with moneys 
from the United States Depa.rtrnent of Agdcultu.re (USDA). All 
grants, projects or purchase orders entered il1to by F&NJ.\.II are 
subject to regular audits by botlt USDA, and Auditor General of the 
state of Florida 

Figure 

Super Users are FLDOE staff such as project managers and project technical advisors. 

When a super user log in, the system will bring the super user to his/her main page 

(Figure 3-3) where the function image icons are shown. These include contracts. 

contractors, payment information, reminders, login account management and update 

password icons. 



A colrunn banner on the left side of this page with big letters "SUPER USER" indicates 

the type of user currently logged in. This page is called the super user main page because 

of the specific function buttons, icons and hot links that appear on this page. It can also 

be considered a transfer center from which a super user can easily navigation through out 

the whole systetn. Of course access to this page is restricted to only authorized super 

users. The tnqjor ftmctions will be discussed in the next sections that follow. 

Figure 3-3 Super User f\tfain Page 
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3.1.1.1 Contract and Contractor Controls 

Contract and contractor controls are the major functions available to a super user. The 

super user can perform functions of view, update, add, delete and search on these pages. 

As can be seen in the Figure 3-4 and Figure 3-5, contract control interface and contractor 

control interface function pages are similar. The heading banner on the top of the screen 

is composed of three sections: heading and function buttons, instructions and system 

status. 

• Heading and function buttons: The text heading indicates which interface the super 

user is currently using and, next to it, several function buttons including buttons of 

update, add, delete, search and list view. Those buttons are the essential parts of this 

page. They are going to perform the functions as they show on their face value such 

as, update, add, delete, search and list view. The list view button is particularly 

helpful as it provides another perspective that can be used to view the various of 

contracts and contractors. Furthermore, there is a batch link between the list view and 

form view where the page we came from. The batch link is a link to a typical record. 

We may consider it a short cut to the record the user wants. 

• Instntctions: This is a brief but clear instruction line for the users. For example, one 

instruction is "To update this record, make changes in any fields below and then dick 

the Update button." This one line instruction will tutor the user how to perform the 

next possible action. 
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.., y ;,Lcul ;)LaLu.,. rt line of text denotes the status of current system function. If the super 

user sees "Ready for search.", then the search button only needs to be clicked to 

perforn1 the search function. Once the super user clicks the button the text "Ready for 

search criteria." will then replace 11Ready for search." on this line and another 

instruction, like "Please enter the keywords in any fields below to perform the 

search.", will appear on the instruction line mentioned above. For example, if the 

search criteria is a contract whose number is "131-30450-60151 ", the instruction 

"Current Search: [Contract Number]='l31-30450-60151' "will appear and the record 

will be found. Additionally, when the super user is in "Ready for search" status, 

another function button called "How to Search" will appear on the first line of th.e 

heading section. By clicking this button, a new pop-up window will appear containing 

a HTML-fonnat instruction page regarding how to perform a search. 

In the middle region of this page, the data or record were requested by the super user will 

be retrieved from the database and be posted. This is a display section. 

At the botton1 of the screen the record navigation buttons are displayed. These navigation 

buttons such as "The First", "Previous", "Next", "The Last", and "Post Data" will help the 

super user to move back and forth between records inside the database. The "Post Data" 

button will perform a re-query action for a modification action that has just been made by 

the super user. New data. if there is any, will not be posted onto the screen until this 

button has been clicked. 
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Figure 3-4 Super tlset· Contracts Control Interface 
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3.1.1.2 Payment Scheduling 

Accounting capabilities are included in this payment handling function. Function details 

will be discussed later. The payment scheduling interface will be introduced in this 

subsection. 

The interface of this page is still similar to the contracts and contractors pages. Figure 3-6 

illustrates the similarity between them. Same construction of this page is for the 

convenient usage of super users. All payment schedules can be viewed, monitored, 

scheduled and updated on this page. As with other super user pages, this page has 

restricted access. The heading banner contains three buttons. The first button "First 

Scheduling" is used to perform first time scheduling for a contractor who already has a 

valid contract or contracts with the FLDOE but is not yet receiving any payments. When 

it is clicked, a drop down list in a new page provides all contracts which are ready for the 

first time scheduling. This design was developed due to the desire of FLDOE to 

distinguish the initial payments from other old payments. 

Another major function here is to edit and add payment schedules for a contractor. Before 

allowing a user to edit or add payment schedule for a certain contractor, the system \\~11 

retrieve the contractor's payment history (or past payment activities). This is done to 

provide the super user with all the necessary information before taking any further 

scheduling actions. A payment history is a list of information of past paytnent activities 

such as the total an1ount being paid, current balance, amount of each payment, date of 

each payment, payment scheduler and who approved the payment. Based on the 
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information of payment history, the super user will be able to perform more accurate 

scheduling. 

There is also a search function on this page. The search criterion of this function based 

upon the payment due date. For purpose of convenience, the super user can just select 

"On", "Prior to", and "After" from a drop down list and enter a date to perform the search. 

For example, if the user selects "Prior to" on the list and then enters the date "09/20/98" 

or "9/2011998", then the system will return all the payments and associated information 

due prior to September 20, 1998. The result of this function can provide valuable 

information that will help FLDOE project managers and technical advisors control, track 

and monitor all ~he payment activities. 

This function is slightly similar to the reminder function which will be introduced in the 

follow subsection. The difference is to inquiry the payment due date in different query 

requests. This function is performed on the base of the "date" of payment due and 

reminder function is executed on the base ofhnumber of date'' before due date. 
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"'"""""""·"---·- Record. Do Not Oeh~te Cl9!25m!98 :mD 
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Nick 
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Not:e 
No Note 
No Note 

10/10l1900 Remember to 
1212011998 Paid ahaad 
lnDiMtJl~:CJR On Time! 

Figure J ... 6 Super User Payment Scheduling Interface 

3.1.1.3 Others 

Other available and thoughtful designs for the super users are "Reminders", "Update 

Password", and "Login Account Management". 

• Reminders: 

A reminder is a time sensitive notice or memo. It allows the super user to view all the 

payments due within certain number of days entered by the super user. It is a slightly 

21 



different from the search function on the payment information page mentioned above. 

The super user doesn't have to know the exact date a payment is due. For example, if a 

super user wishes to know if there are any payments due within next 3 days, 3 is entered 

into the input box and the "Go" button clicked. The system will return all payments that 

are due within the next 3 days. Indeed, within the Microsoft Access environment, the 

desktop version of the system will automatically execute this reminder function with pop 

up reminders when a super user just logs onto the system. The default setting for the 

number of the threshold days is 10. 

• Update Passwords: 

In the original ~esign, users were to be allowed to create their own login account names 

and passwords online the first time they logged in, if they could provide all accurate 

infonnation required about himself/herself. However, for the security reasons, this was 

not implemented currently, all login accounts for both super users and contractors are 

pre-setup. The system administrator creates all login accounts including login usemames 

and passwords in advance. Of course, users themselves can update their passwords 

anytime they Jog in. 

• Login Account Management: 

Currently login account management allows the project managers or technical advisors to 

retrieve all users' login account information and login activities and to edit accounts. The 

super user will be able to know the last ]ogin date of a user and can obtain all the login 

names and passwords. 
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For the convenience of usage, the interface of this function is designed using a drop down 

list (See Figure 3-7). All users whose valid accounts had been pre-setup will be displayed 

on the drop down list in an alphabetic order. All super users' names, for examples, will 

appear in a format of "Last Name, First Name" and for all end users, the list information 

will show in a format of "Contract Number, Company Name". The system administrator 

just has to simply select one account from the list and click the "Go" button. The system 

will retrieve the data and display the account information of the administrator's selection 

on the screen. The account information includes user type, super user's real name, 

contract number and company name of a contractor, login username, login password, the 

date of account _created and the date of last time login activity. 

Once a super user obtained the account information, if necessary, he/she can edit the 

account by clicking on the button of "Edit Password of This Account". A pop-up window 

interface will allow the user to update the password. 

Not only does this function provide a way of retrieving account information, but also can 

it prevent users from forgetting the login passwords. 
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Figure 3-7 Login Account Management Interface 

3.1.2 End Users 
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only view regarding his/her own record. For example, information regarding that user's 

contract or contracts with FLDOE, company profile and the payment information binding 

with the typical contract can be obtained. Of course, as was mentioned previously, the 

end user still has the privilege to change his/her own password at any time. 

Another interaction between FLDOE super users and contractors is that through the 

Internet, the end user will be able to see any information, announcement or notice posted 

by the FLDOE immediately and simultaneously. 

Food&Nutrition 
Management 

The Miil>i<>n of lho f<H>d 41'1<1 Nululior, 

Mll'llg<tmtnt S•c1illn of tl>- O•p~rtm•nt 

ol EduNh<:iO that qtuli!v Child 
Uut11luH1 P1og11rm &rt: pr¢'oldt~ lo tliQiblt 
clients !h!O<Jgil df•cti•~ ou!h>ar;t •. 
guida~c•. ttJini<•Q. tt~l\nl<:&l UllbUnee. 
!undir,g, dnd 

Figur·e 3-8 End lJscr .l\1ain Page 
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3.2 System Security 

Security has always been one of the big issues on the Internet. In fact, thousands of 

papers have been published studying this topic. Of course, we also need to consider 

security in the design of this system. This is a system used to control, track and monitor 

all contracts and contractors of FLDOE. It is not a system that could or should be public 

to the world. Building a membership-based community is necessary and important. The 

system administrator, super users, and end users (or contractors) are the three types of 

users of this system. In addition to a valid and pre-setup user account mentioned 

previously, there are other kinds of security protections applied in this system. 

One protection. used in this system is called "time out". If any page is left untouched, 

unattended or unused for over 30 seconds, then this page will expire. If the user then try 

to reload or refresh that page, the system will automatically bring the user back to the 

login page and the user will have to re-login. In other words, the system does not know 

whether or not the current user is the same one who successfully logged on 30 seconds 

ago. Thus, the login process must be carried out again. Time~out has to be set in the 

global.asa file and will be applied to every page in the system. As the global.asa file is an 

optional file that relates directly to the Application and Session objects, it is not a concern 

in this project. 

There are two other major security protections implemented in this system. One 

protection used is the implementation of liS (Internet Information Server) and another is 

the implementation of ASP. 
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3.2.1 User Access 

The Internet Information Server (liS) enables access to resources only after the user's 

access privileges have been verified. Figure 3-9 shows the security checks performed 

before a user is permitted to access a requested page. 

liS receives request 
No 

Yes 

No 

Yes 

No 

Yes 

Figure 3-9 System Security Process 
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The IIS web service can be set to enable only users on computers in a given range of IP 

addresses to access tiles on this server. This provides additional security on an Intranet 

web server by disabling all IP addresses other than the local ones. It also is possible to 

disallow specific IP address for the web server, for example, addresses you know hacking 

attempts were made from. 

3.2.2 Valid Users-Only Areas on The System Server 

The next level of access control is to verify the user's login information according to the 

user data stored in the database. The login user table stores information used to define 

various types of users. 

Indeed, there are three approaches that can be used to create members-only areas: 

• Use NTFS file security to enable access to the members' area for specific user 

accounts or groups. This is a good approach for Intranets. However, the disadvantage 

is that an NT adrninistrator has to create an NT user account for every member. 

• Create an ISAPI (Internet Server API) f1lter that implements a custom authentication 

schetne. Multiple me1nbers are mapped to a single NT user account which is granted 

access to a specific members' area on the server. 

• Create a custom authentication based on Active Server Pages. Every user is validated 

before access to any resources in the valid users-only areas on the system server. 
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The third approach is the one used to provide security for this .• system. Every page of the 

system has to check whether the user has already been validated. Figure 3-10 shows how 

the validation process works. 

Yes 

Some page of the 
members area Yes 

No 
Login page 
(login. asp) 

Figure 3·10 User Validation Process 

No 

The user validation process is based on the Microsoft Access server table and a stored 

procedure to validate the validation of a user trying to log on. It is advantageous to use a 

database because of the easy Inaintenance of user information. The table that contains the 

user infonnation could be very simple and easily updated in the future. The table which 
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stores all users' login account information will be introduced in the next section. First the 

concept of database connectivity will be discussed. 

3.3 System Database 

Databases play a key role when we want to provide personalized and live content. 

Databases can be used to store any kind of information, from quotes of the day to full

featured online stores. The database behind this system was constructed by using 

Microsoft Access 97. Microsoft provides access to the database with the ActiveX Data 

Objects (ADO), which builds upon OLE-DB. OLE-DB will be introduced in chapter 4. 

A well·known. technique that is often used to connect to a database is ODBC (Open 

DataBase Connectivity). ODBC is a single, well-defined interface for uniformly 

accessing different database management systems regardless of the provider-specific 

interface. The ODBC programming interface (API) defines a database-independent 

programming n1odel that provides a single API interface. It is designed to allow a 

comn1on set of routines to be used to access databases, although it was primarily aimed at 

relational databases. This allows a programmer to connect to a database using ODBC and 

manipulate the data without worrying exactly where the data was stored, or what 

particular database was storing it. (See Figure 3-11) 
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Program 

ODBC 

Figure 3-11 ODBC 

For example, Figure 3-12 illustrates a table which stores user login information. It stores 

the user type, first name and last name, company name, login user name, login password, 

date the login account created and the last login date. For security reasons, the initial 

login account set up has to be done by the system administrator in an internal-use desktop 

system but the values in the password field are on-line updateable. The user type field is 

used to determine the type of login user and where the program should direct the user as 

well as what the appropriate privileges are. 
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3.4 System Major Functionality 

The user interfaces and associated function operations were discussed in section 3.1 This 

section discusses the functionality of the system. The functionality can be broken down 

into several areas: 

• Different privileges for different types of users: As was previously mentioned, there 

are two types of users with legal accounts allowed to log onto this system. One type 

of user is the Super User. Super users are the FLDOE system administrators, project 

managers and technical advisors. The other type of user is the Contractor or End User 



who has at least one valid contract with the FLDOE. The system will determine what 

privileges to give the current user by bringing the user to the correct location. 

Contractors will be able to update their login account passwords but will only be in 

the system's View mode ...... i.e., they can only view their own information. 

• Contracts and contractors control: The system will be in Edit mode when a super user 

logs in. Therefore, the super users will have full control (such as add, delete, update 

and save) of all records in the database. 

• Advanced payment scheduling: The system will allow super users to schedule 

payment dates in advance and monitor the delivery status for each payment. 

Accounting capabilities were applied to allow calculation of the total amount paid and 

the remaining balance of the contracts. Of course all payment information such as 

who made the payment and who approved the payment can also be kept track of and 

edited in future follow-up work. 

• Reminders of payment schedules: A reminder function will execute if a payment is 

due within a certain number of days which depends upon a super user's inquiry 

criteria. 

• On-line login account management: Super users will have control over all login 

accounts. All login usemames and passwords can be retrieved should a super user 

request it. This function will handle the situation in which users forget their 

passwords. 



CHAPTER 4 SYSTEM IMPLEMENTATION 

We have discussed the technologies like ASP and ODBC in the previous chapters. Now, 

in this chapter, we are moving to the issue of system implementation. Various 

technologies in different fields had been implemented to develop this system. We will 

take a look on each of them. 

4.1 Platform 

4.1.1 Software and Hardware 

Since ASP is the advanced technique used to develop the web application, its software 

and hardware requirements are critical. The minimum software and hardware 

requirements for developing ASP applications are: 

• A Pentium-based computer 

• 32MB of RAM 

• 100MB offree hard drive space 

• Windows NT Server 4.0 with TCPIIP networking support properly installed and 

configured. 

• Internet Information Server (IIS) 3.0 or better is required for Windows NT Server; 

Microsoft Personal Web Server (PWS) is required for Windows 95; Microsoft Peer 

Web Services is required for Windows NT Workstation 

• A database that supports ODBC (such as Microsoft Access or Microsoft SQL Server) 

For a user (client), the minimal and recommended system configuration is: 
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• Windows 3.1 (Windows 95 or Windows NT is highly recommended) 

• 486 CPU (a Pentium-based computer is highly recommended) 

• 8 MB RAM (16 MB RAM or better is highly recommended) 

• 10MB of free hard drive space (50MB is highly recommended) 

• 28.8 kbps data modem (33.3 kbps or better is highly recommended) 

• VGA adapter and monitor 

4.1.2 Operating System 

The best choice of an operating system is Windows NT. Windows NT in conjunction 

with liS and ASP provides a very powerful platform for developing and deploying web 

applications. Further, there are some advantages we can benefit from by using Windows 

NT: [9] 

• Better performance: Windows NT Server has been optimized to provide the best 

performance for network-intensive server applications. On the other hand, Windows 

95 and Windows NT Workstation have been optimized to provide the best 

performance for productivity applications. Therefore, Windows NT Server yields 

better performance when hosting ASP applications. 

• More secure: Because IIS uses NTFS security when running under Windows NT 

Server 4.0, Windows NT Server is a more secure platform to host ASP applications. 

Windows 95 cannot implement security using NTFS security permissions because it 

uses PWS (Personal Web Server), a watered-down version of Internet Information 

Server. 
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• Easy integration with enterprise-quality applications: Enterprise-quality applications, 

such as applications· in the Microsoft BackOffice Suite;· require Windows·NT Server. 

Therefore, choosing Windows NT Server to develop ASP applications will make it 

easier for a developer to integrate ASP applications with various components of 

BackOffice to develop sophisticated Web applications. 

4.1 .. 3 Web Server 

A web site is composed of three components: the hardware (the computer), the software, 

and a network connection. Each of these three plays a symmetrical role in establishing a 

reliable web server. Because the technique used to develop the system here is ASP, 

certainly the relationship between US, Windows NT Server, ASP and the database need 

to be discussed. 

Windows NT is not actually the only choice. There are three kinds of servers that can be 

used to develop an ASP application. Internet Information Server (liS) is required if we 

are using Windows NT Server, Microsoft Personal Web Server (PWS) is required if we 

are using Windows 95, and Microsoft Peer Web Services is required if we are using 

Windows NT \Vorkstation. Why? Because the ASP component is actually an ISAPI 

(Internet Server API) application, the web developer should be able to develop ASP 

applications with any ISAPI-compliant Web server by simply downloading the ASP 

con1ponent of liS and installing it. [6] Although Windows NT Workstation as well as 

Windows 95 can be used to develop ASP applications, the Windows NT is still 

considered the preferred choice. The details will be discussed later. 
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4.1.4 Programming Language 

The choice of programming language running at the server side is Visual Basic. Visual 

Basic is the most compatible development system to use in conjunction with Microsoft 

Access that is the database driver used for the system. In industry, Visual Basic is 

considered a development tool that is easy to use and has built in local area network 

(LAN) and Internet deployment models. Rich component encapsulation and reuse are an 

industry-leading array of third-party components and the ability to use existing Visual 

Basic code and technology. Visual Basic offers advanced features such as optimized 

native code compilation and enhanced database access. The Microsoft Transaction Server 

provides state-of-the art application performance and scalability for the additional 

client/server, three-tier distributed and Internet application architectures. The new 

released version of Visual Basic has the ability to merge client/server and Internet 

technologies. Developers are no longer required to choose between performance and 

productivity. 

4.2 ASP Implementation 

We briefly introduced the client/server interaction in ASP in an earlier in chapter 2 

section (See Figure 2-2). But why choose ASP? How does it work with HTML? What is 

the difference between it and dynamic HTML? Those topics are discussed in the 

following sections. 

4.2.1 Why Use ASP? 
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The primary difference between ASP and the other new generation technologies is that 

ASP must be executed on the Web server, while the pages generated by other 

technologies are interpreted by the browser (or client). The advantages that ASP enjoys 

over CGI and Perl are those of simplicity and speed. 

At one time, the browser could do everything you needed --- it interpreted HTML pages, 

displayed graphics in a certain way and handled errors. However, with the passing of 

time, browsers have had to cope with an ever-increasing list of tasks such as handling 

scripts and having built in controls. Consequently, browsers have become bigger and 

slower. 

The idea behind ASP is to decrease the demand on browsers by getting the server to do 

some of the work instead. A large central machine can be used to take some of the load, 

performing some of these tasks itself instead of relaying them to the browser. 

Some significant advantages are: 

• minimizes network traffic by limiting the need for the browser and server to talk to 

each other 

• makes for quicker loading time since, in the end, you're only actually downloading a 

page ofHTML 

• allows you to run programs in languages that aren't supported by your user's browser 

• can provide the client with data that does not reside on the client's machine 

• provides improved security measures since you can code things which can never be 

viewed from the browser 

• enables Visual Basic developers to perform functions that previously required CGI or 

ISAPI programming 

• integrate ActiveX server components 
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4.2.2 ASP and HTML 

The Hyper Text Markup Language (HTML) is used for the design layout and exhibition 

of each page. All the forms and user interfaces are created by using HTML. As we 

mentioned earlier, ASP is designed to be used together with HTML to create dynamic 

pages. In fact, ASP actually creates HTML code. A web page that uses ASP is likely to 

consist of a mixture of three types of syntax. Part of the page will be constructed from 

simple text, part will be HTML and part will be ASP code. The following table 

summarizes each of these aspects: [7] 

Information to Viewer's browser on Simple ASCII text 
Text be shown on the their PC shows the text 

page 

Instructions to Viewer's browser on Each tag within < > 
HTML the browser their PC interprets the delimiters; usually has 
tags about how to tags to format the text open and close tags, such 

format text and as <TABLE>, 
display images </TABLE> 

Instructions to Web site host's Web Each ASP section 
the Web server server software with contained within ~/o %> 

ASP running ASP ASP extensions delimiters; ASP 
statements about how to performs the statements have a flavor 

create portions instructions of the ASP of Visual Basic, with the 
of the page to code appearance of 
be sent out programming code with 

variables, decision trees, 
etc. 
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4.2.3 ASP and Dynamic HTML 

ASP and Dynamic HTML can both be thought of as extensions to scripting languages 

and HTML; however, neither of them are programming languages in their own right. 

ASP takes the scripting language code and converts it into HTML on the server, before 

sending it back to the browser. 

On the other hand, Dynamic HTML is just like scripting in that the script is interpreted 

by the browser level that creates a representation of the page in HTML. In fact, the only 

way in which Dynamic HTML differs from scripting is that it allows access to extra 

features such as the ability to animate pages and position graphics and text precisely by 

using (X, Y) type coordinates. [8] We could put it this way: ASP is a server-side 

technology, while Dynamic HTML is a closely related client-side technology. 

4.3WWW 

The best choice of interface between all users (client) and the system (server), doubtless, 

is the World Wide Web (WWW). 

When the WWW [9] was introduced to the world in 1989, it added browsing capability to 

the Internet. Users are able to access text, images, video and audio in a consistent 

manner. Moreover, users can retrieve information using a graphical user interface rather 

then using a dumb text terminal. The WWW operates on a client-server model. Every 

web page has an address called its Uniform Resource Locator (URL). A URL contains 

the object name, its address and the protocol used to find the object. A client sends a 
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service request to a server, and the server searches the web page locally and then sends 

the result back to the client. Client and server communication is via Hypertext Transfer 

Protocol (HTTP), which defines how documents are referenced and exchanged. 

Because the client software interacts with the server according to a predefined protocol, 

the client software can be customized for the user's particular computer host. Therefore 

the server doesn't have to worry about the hardware particularities of the client software. 

Separate versions of the information do not need to be developed for any particular 

hardware platform since the customizations necessary are written into the client software 

Figure 4-1 The WWW Communication 
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for each platform. Figure 4-1 is a simple diagram of how web server and web clients are 

connected through the WWW. 

In the WWW, information is organized using hypertext/hypermedia. Users can use web 

browsers to travel between documents. There are many web browsers, such as Netscape, 

Microsoft Explorer, Mosaic and Lynx, available today. Netscape is probably the most 

popular accounting for over 70% of all browsers currently in use. [1 0] 

The WWW is the most exciting development in the Internet. It supports not only text but 

also images, videos, sounds as well as graphics. Users can easily connect to web sites by 

using any kind of browser. By taking advantage of the WWW, the system defmitely can 

use it as the interface. 

4.4 Database Connectivity 

In this section, we are going to discuss the system database connection. What is a 

connection? A connection is what links the ASP script code to the database; it is a way to 

tie them together. Once we have a way of connecting to a database, we need to know next 

is how to identify the database and the Data Source Name (DSN). In this case, the Access 

database is identified as the .mdb file. 

We mentioned that the database used in this system was constructed by using Microsoft 

Access 97. We also know that Microsoft provides access to a database with the ActiveX 
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Data Objects (ADO), which builds upon OLE-DB. OLE-DB is a very similar idea to 

ODBC (Figure 4-2), but, in fact, it has a much broader range of data stores and can sit on 

the top of ODBC. That means that we will be able to ·keep our existing ODBC 

connections and use the new OLE-DB drivers. It introduces two new items: data 

providers and data consumers. A data provider is something that provides data and a data 

conswner is something that uses that data. In this contract manager system, the data 

consumer is ASP. In another context, the data consumer could well be an application that 

OLE· DB 
Provider 

ODBC 

Program 

ActiveX Data Objects 

OLE-DB 
Provider 

OLE-DB 
Provider 

OLE-DB 
Provider 

Figure 4-2 OLE-DB Architecture 
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is written in another language, such as Visual Basic or Visual C++. In fact, ADO is the 

actual consumer, because ADO talks to OLE-DB and we talk to ADO. 

Indeed, we don't need to know anything about OLE-DB because ADO will hide all of the 

complexity from us and give us a simple way of accessing data from the database. It is 

the way we actually get data to and from a database. Figure 4-3 shows a diagram of how 

the objects provided by ADO relate to each other. The topics, such as how the recordset 

or fields collections work, are not our concern here. In this database connectivity section, 

we just need to know how the system and backstage database got connected. Simple, we 

just need to write one line of codes as below in our ASP file and then we will be able to 

connect the system with our Access database: 

Amazingly, this one-line code is actually the interaction between the database, ADO and 

ASP. 
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CHAPTER 5 CONCLUSION 

In this thesis, we designed and implemented an Internet-enabled database application by 

using ASP and other related technologies. As shown in this thesis, we have studied how 

to develop an on-line Internet application and, because it is Internet-enabled application, 

we also have included a detail interpretation on the subject of security. 

An on-line Internet application is very efficient for the both super users and end users for 

a number of reasons: 

• always on-line 

• user does not get involved with system administration 

• no installation needed 

• no constraints on using specific software and PC 

• no limitation on the location of the implementation 

This system will be fully functioning at the FLDOE site. It enables remote access to 

monitor hundreds of contracts with advanced scheduling, warning and accounting 

capabilities. Because of the Internet-enabled feature, nationwide users, including 

FLDOE project managers, FLDOE technical advisors and contractors, can follow on the 

status of the contracts and contractors very closely. 
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To our best knowledge, the browsers still have some shortcomings need to be improved. 

For example, instead of using reload function on each page, browsers cannot work 

simultaneously with the database update function to post data. In the future, we may use 

some newer technologies to enhance the functionality of the system on every part of it. 

Overall, this project will make dramatic improvements on the contract tracking process 

and more fully utilize the precious human resources available. Using this system is the 

fastest and easiest way to accomplish the tasks for both contractors and the government 

of the state Florida. 
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APPENDICES 

~lo msg=session(''msg")%> 
<HTML> 
<HEAD> 

<META HTTP~EQUIV="Content-Type" CONTENT="textlhtml; charset=iso-8859-
1 "> 

<META NAME="Author" CONTENT="Yaojen Chang"> 
<TITLE>FLDOE SAE T~acking System</TITLE> 

</HEAD> 
<BODY> 

<Table align=center cellspacing=O border=O> 
<tr> 

<td rowspan=2><irnage src=irnages/DoeLogo Top l.gif> 
<td align=left><image src=images/DoeLogo Top22.jpg><tr> 
<td><font color=darkblue><b> 
<p>The Food and Nutrition Management Section (F&NM) of the Florida 
Department of Education(FLDOE) is funded with moneys from the United States 
Department of Agriculture (USDA). All grants, projects or purchase orders 
entered into by F&NM are subject to regular audits by both USDA, and Auditor 
General of the state of Florida</b></font><tr> 
<ltd> 

</tr> 
<!Table> 
<br> 

<TABLE align=center WIDTH=640 BORDER=O CELLPADDING=5 
CELLSPACING=O BGCOLOR=O> 
<TR><TD BGCOLOR="#BODOBA" ALIGN=CENTER> 

<TABLE> 
<TR><TD> 

<TABLE> 
<TR> 

<TD V ALIGN=CENTER><IMG SRC="images/handshake.jpg"></TD> 
<TD WIDTH=16></TD> 
<TD V ALIGN=CENTER><STRONG><FONT SIZE=+ I 
FACE="Verdana, AriaL, Helvetica"> Welcome, please identify 
yourself:</FONT></STRONG> <br><font color=red><b>Note: <u>All 
inputs are case sensitive. </u></b></font></TD> 
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</TR> 
</TABLE> 

<lTD> 
</TR> 
</TABLE> 
<hr> 
<FORM Method="Post" Action="LoginCheck.asp"> 
<TABLE BORDER=O> 
<TR> 

<TD><FONT F ACE="Verdana,Arial,Helvetica">Usemame:</FONT><ITD> 
<TD><INPUT Type="Text" name="U serName" value="" maxlength=20></TD> 

<ITR> 
<TR> 

<TD><FONT F ACE="Verdana,Arial,Helvetica"> Password:</FONT></TD> 
<TD><INPUT Type="Password'' name="Password" value="" 
MAXLENGTH=20></TD> 
<TD align=center><INPUT Type=" Submit" value="Login"></TD> 

</TR> 
</TABLE> 
</FORM> 
</TD></TR> · 
</TABLE> 

<Center><b>First-time login users <a href="mailto:ychangOl@cs.fiu.edu">Ciick 
Here</ a> to request your login accounts. </b></Center> 

<br> 

<bl ink><1l/o=msgo/o><lblink> 
<% 

if session("msg")="" then 
session. abandon 

End If 
session(''msg")=11

" 

%> 
</BODY> 
</HTML> 

<Script Language=VBScript runat=server> 
Function Redirect() 

Response.Redirect "Login.asp" 
End function 
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</Script> 

<'>lo 
set Conn=Server.CreateObject("ADODB.Connection") 
Conn.Open("SAEforASP") 

IfRequest.Form("UserName")="" or Request.Form("Password")="" then 
session(''msg")="<h3><center><Font color=red>Oops! You must enter all 
information needed. </font></center><lh3>" 

Else 

Endlf 

Redirect 

sqlLogin="Select *From Login Users Where 
((LoginUsers.User~ame='"&Request.form("UserName")&"'));" 
set rsLogin=Conn.Execute(sqlLogin) 

If rsLogin.eof then 
rsLogin.close 
session("msg")="<H3><center><Font color=red>INV ALID Account. Please try 
again or quit. </font></center><IH3>" 
Redirect 

Elseifnot rsLogin("Password")=Request.Fonn("Password") then 'match the usemame, 
check password 

Else 

rsLogin.close 
session("msg")="<h3><center><Font color=red>Right user name but Wrong 
password. Please try again or quit. </font></center><IH3>" 
Redirect 

session("UserType")=rsLogin("UserType") 
session("UserName")=rsLogin("UserName") 
session(" Password ")==rsLogin("Password") 
session("ContractNumber")=rsLogin("LNameOrContractNo") 
session("CompanyName")=rsLogin("FNameOrCompanyName") 
session("LogonStatus" )= 1 
session(" AdrnOnlineDate")=rsLogin(" AdrnOnlineDate ") 
sql="Update LoginUsers Set LoginUsers.AdmOnlineDate=#"&Date()&"# Where 
((Login U sers.Password)='" &Request.form("Password ")&"');" 
set rs2=Conn.Execute(sql) 

SELECT CASE session("UserType") 
case "S" 

Response.Redirect "SuperU serMain.asp" 
case "s" 

Response.Redirect "SuperU serMain.asp" 
case "C" 
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Response.Redirect "EndUserMain.asp" 
case "c" 

Response.Redirect "EndUserMain.asp" 
END SELECT 

End If 

rsLogin.close 
Conn. Close 

o/o> 

<%@ LANGUAGE="vbscript11 %> 
<% 

'---------------------------------------~-----------------·----------·"-------------------------------------
' Modes: The form mode can be controlled by passing the following 
' nrune/value pairs using POST or GET: 

FormMode=Edit 
FormMode=Search 
ForrnMode=Add 

'-If a field contains a URL to an in1age and has a name that begins with "img_" 
' (case-insensitive), the image will be displayed using the IMG tag. 
'-If a field contains a URL and has a name that begins with "uri_" 
' (case-insensitive), ajun1p will be displayed using the Anchor tag. 

'-----------------------------------------------------------------------------------------------------------

' -------------------~-------------------------------·--------------------------·-----------------------------
' Purpose: Substitutes Empty for Null and trims leading/trailing spaces 
'Inputs: varTemp -the target value 
'Returns: The processed value 

'-----------------------------------------------------------------------------------------------------------

Function ConvertNull(varTemp) 
If IsNull(varTemp) Then 

ConvertNull = "" 

Else 
ConvertNu11 = Trim(varTemp) 

End If 
End Function 
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I --.--------- ... ·-----------------------------------.-------------·---· .. ---------------·-------------------------· 
'Purpose: Embeds bracketing quotes around the string 
'Inputs: varTemp ~the target value 
' Returns: The processed value 
f 

--------~·-------·---------------------~-------------------------------------------·-----------------------

Function QuotedString(varTemp) 
If IsNull(varTemp) Then 

QuotedString = Chr(34) & Chr(34) 
Else 

QuotedString = Chr(34) & CStr(varTemp) & Chr(34) 
End If 

End Function 

'-----------------------------------------------------------------------------------------------------------
' Purpose: Tests string to see if it is a URL by looking for protocol 
' Inputs: varTemp - the target value 
' Returns: True - if is URL, False if not 

'-----------------------------------------------------------------------------------------------------------

Function IsURL(varTemp) 
IsURL =True 
IfUCase(Left(Trim(varTemp), 6)) ="HTTP:/" Then Exit Function 
IfUCase(Left(Trim(varTemp), 6)) ="FILE:/" Then Exit Function 
IfUCase(Left(Trim(varTemp), 8)) ="MAIL TO:/" Then Exit Function 
IfUCase(Left(Trim(varTemp), 5)) = "FTP:/" Then Exit Function 
IfUCase(Left(Trim(varTemp), 8)) ="GOPHER:/" Then Exit Function 
IfUCase(Left(Trim(varTemp), 6)) ="NEWS:/" Then Exit Function 
IfUCase(Left(Trim(varTemp), 7)) = "HTTPS:I" Then Exit Function 
IfUCase(Left(Trim(varTemp), 8)) = "TELNET:/" Then Exit Function 
lfUCase(Left(Trim(varTemp), 6)) = "NNTP:/" Then Exit Function 
IsURL =False 

End Function 

'-----------------------------------------------------------------------------------------------------------
'Purpose: Tests whether the field in the recordset is updatable 
'Assumes: That the recordset containing the field is open 
1 Inputs: strFieldName - the name of the field in the recordset 
1 Returns: True if updatable, False if not 

·-----------------------------------------------------------------------------------------------------------

Function Can UpdateField(strFieldName) 
Dim intUpdatable 
intUpdatable = (adFidUpdatable Or adFldUnknownUpdatable) 
CanUpdateField =True 
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Then 
If (rsSContractContractors(strFieldNarne).Attributes And intUpdatable) = False 

CanUpdateField =False 
End If 

End Function 

~-----------------------------------------------------------------------------------------------------------
1 Purpose: Handles the display of a field from a recordset depending on its data type, 
1 attributes, and the current mode. 
'Assun1es: That the recordset containing the field is open That strFormMode is initialized 
'Inputs: strFieldName- the name of the field in the recordset 
' strLabel - the label to display 

blnldentity- identity field flag 
avarLookup- array of lookup values 

'-----------------------------------------------------------------------------------------------------------

Sub ShowField(strFieldName, strLabel, blnldentity, avarLookup) 
Dim blnFieldRequired 
Dim intMaxSize 
Dim intlnputSize 
Di1n strOption 1 State 
Din1 str0ption2State 
Dim strFieldValue 
Dim nPos 
strFieldValue = "" 
nPos=Instr(strFieldNatne,".") 
Do While nPos > 0 

strFieldName= Mid (strFieldNan1e, nPos+ 1) 
nPos=Instr(strFieldNarne,". ") 

Loop 
' If not in Edit form mode then set value to empty so doesn't display 
strFieldValue = '"' 
If strFormMode ="Edit" Then strFieldValue = 

RTrim(rsSContractContractors(strFieldName)) 

'See if the field is required by checking the attributes 
blnFieldRequired =False 
If (rsSContractContractors(strFieldName).Attributes And adFldlsNullable) = 0 
Then 

blnFieldRequired =True 
End If 
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' Set values for the MaxLength and Size attributes 
intMaxSize = dtMaxSize 
intinputSize = rsSContractContractors(strFieldName).DefinedSize + 2 
If strFormMode <:> "Search" Then intMaxSize = intinputSize - 2 

'Write the field label and start the value cell 
Response. Write "<TR V ALIGN=TOP>11 

Response. Write "<TD HEIGHT=25 ALIGN=Left NOWRAP><FONT SIZE=-
1 ><B>&nbsp;&nbsp;" & strLabel & "</B></FON1></TD>" 
Response. Write "<TD WIDTH= tOO% ><FONT SIZE=-I>" 

' If the field is not updatable, then handle 
' it like an Identity column and exit 
If Not CanUpdateField(strFieldName) Then 

' Special handling if Binary 
Select Case rsSContractContractors( strFieldName ). Type 

Case adBinary, adV arBinary, adLong V arBinary 'Binary 
Response. Write "[Binary]" 

Case Else 
Select Case strF o.nnMode 

Case "Edit" 
Response. Write ConvertNull(strFieldValue) 
Response. Write "<INPUT TYPE= Hidden 
NAME=" & QuotedString(strFieldName) 
Response. Write " VALUE=" & 
QuotedString(strFieldValue) & ">" 

Case 11Add" 
Response. Write "[AutoNun1ber]" 
Response. Write "<INPUT TYPE=Hidden 
NAME=" & QuotedString(strFieldName) 
Response. Write " VALUE=" & 
QuotedString(strFieldValue) & " >" 

Case ~~search" 

End Select 

Response. Write "<INPUT TYPE=Text 
NAME=" & QuotedString(strFieldName) 
Response. Write" SIZE=" & intlnputSize 
Response. Write" MAXLENGTH=" & 
intMaxSize 
Response. Write " VALUE=" & 
QuotedString(strFieldValue) & ">" 
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End If 

End Select 
Response.Write "</FONT><ffD><ITR>" 
Exit Sub 

' Handle lookups using a select and options 
If Not IsNull(avarLookup) Then 

End If 

Response. Write "<SELECT NAME=" & QuotedString(strFieldName) & 
">" 
1 Add blank entry if not required or in search mode 
If Not blnFieldRequired Or strFormMode ="Search" Then 

End If 

If (strFormMode ="Search" Or strFormMode = "Add") Then 
Response. Write "<OPTION SELECTED>" 

Else 
Response.Write "<OPTION>" 

End If 

1 Loop thru the rows in the array 
For intRow = 0 to UBound(avarLookup, 2) 

Response .. Write ''<OPTION VALUE=" & 
QuotedString(avarLookup(O, intRow)) 
IfstrFormMode ="Edit" Then 

Next 

End If 

If ConvertNull(avarLookup(O, intRow)) = 

ConvertNull(strFieldValue) Then 
Response. Write " SELECTED" 
End If 

Response. Write ">" 
Response. Write ConvertNull(avarLookup(l, intRow)) 

Response. Write "</SELECT>" 
IfblnFieldRequired And strFormMode ="Add" Then 

Response. Write n Required" 
End If 
Response. Write "</FONT></TD></TR>11 

Exit Sub 

' Evaluate data type and handle appropriately 
Select Case rsSContractContractors( strFieldN arne). Type 

Case adBoolean, adUnsignedTinylnt 'Boolean 
If strFormMode = "Search" Then 

strOption 1 State = " >Yes" 
str0ption2State =" >No" 
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Else 
Select Case strFieldValue 

Case "True", "1 ", "-1" 
strOptionlState ="CHECKED> Yes" 
str0ption2State =">No" 

Case "False11
, "0" 

strOption 1 State = " >Yes" 
str0ption2State = '' CHECKED> No" 

Case Else 
strOptionlState =">Yes" 
str0ption2State = " >No" 

End Select 
End If 
Response.Write "<INPUT TYPE=Radio VALUE=l NAME=" & 
QuotedString(strFieldName) & strOptionlState 
Response. Write "<INPUT TYPE= Radio V ALUE=O NAME=" & 
QuotedString(strFieldName) & str0ption2State 
If strFormMode ="Search" Then 

End If 

'Response. Write "<INPUT TYPE=Radio NAME=" & 
QuotedString(strFieldName) & "CHECK.ED>Neither" 
Response. Write "<INPUT TYPE=hidden NAME=" & 
QuotedString(strFieldName) & 11 CHECKED><= 
MUST Check One Of These For The Status Of Contract." 

Case adBinary, adVarBinary, adLongVarBinary 'Binary 

Response. Write "[Binary]" 

Case adLongVarChar, adLongVarWChar 'Men1o 

Response.Write "<TEXT AREA NAME=" & 
QuotedString(strFieldNaxne) & n ROWS=3 COLS=80>" 
Response. Write 
Server.HTl\1LEncode(ConvertNull(strFieldValue)) 
Response.Write "</TEXT AREA>" 

Case Else 

Dim nType 
nType=rsS ContractContractors(strFieldName). Type 
If (n,Type <--:> adVarChar) and (nType <> adWVarChar) and 
(nType <> adBSTR) and (nType <> adChar) and (nType <> 
adWChar) Then intinputSize = (intinputSize-2)*3+2 
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If strFormMode <:> "Search" Then intMax.Size = 
intlnputSize ... 2 
End If 

If blnidentity Then 

Else 

Select Case strFormMode 

Case "Edit" 
Response. Write ConvertNull(strFieldValue) 
Response. Write "<INPUT TYPE= Hidden NAME=" & 
QuotedString(strFieldName) 
Response. Write" VALUE=" & QuotedString(strFieldValue) & " 
>" 

Case "Add" 
Response. Write " [AutoN umber]" 
Response. Write "<INPUT TYPE=Hidden NAME=" & 
QuotedString( strFieldName) 
Response. Write" VALUE=" & QuotedString(strFieldValue) & " 
>" 

Case "Search" 

End Select 

Response. Write "<INPUT TYPE=Text NAME=" & 
QuotedString(strFieldName) & "SIZE=" & tlnputSize 
Response. Write " MAXLENGTH=" & tMaxSize & " VALUE=" 
& Quoted String( strFieldValue) & " >" 

If intinputSize =50 Then 

intlnputSize = 9 
Response. Write "<INPUT TYPE=Text NAME='' & 
QuotedString(strFieldName) 
Response. Write " SIZE=" & intlnputSize 
Response. Write " MAXLENGTH=" & intMaxSize 
Response. Write "VALUE=" & QuotedString(strFieldValue) & " >" 
elseif intinputsize =26 then 
intlnputSize = 9 
Response. Write "<INPUT TYPE= Text NAME=" & 
QuotedString(strFieldName) 
Response. Write " SIZE=" & intlnputSize 
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Else 

Response. Write " MAXLENGTH=" & intMaxSize 
Response. Write" VALUE=" & QuotedString(strFieldValue) & ">" 
else if intinputsize> 50 then 
Response. Write "<TEXT AREA NAME=" & QuotedString(strFieldName) 
& II ROWS=2 COLS=34>" 
Response. Write Server.HTMLEncode(ConvertNull( strFieldValue)) 
Response. Write "<!TEXT AREA>" 

intlnputS ize= 15 
Response. Write ''<INPUT TYPE=Text NAME=" & 
QuotedString( strFieldN arne) 
Response. Write " SIZE=" & intinputSize 
Response. Write " MAXLENGTH=" & intMaxSize 
Response. Write" VALUE=" & QuotedString(strFieldValue) & ">" 

'If intinputSize > 80 Then intinputSize = 80 
'Response. Write "<INPUT TYPE= Text NAME=" & 
QuotedString( strFieldN arne) 
'Response. Write " SIZE=" & intinputSize 

· 'Response. Write" MAXLENGTH=" & intMaxSize 
'Response. Write" VALUE=" & QuotedString(strFieldValue) & ">" 

' Check for special field types 
Select Case U Case(Left( rsSContractContractors( strFieldName ).Name, 4)) 

Case "IMG " 
IfstrFieldValue <>""Then 
Response.Write "<BR><BR><IMG SRC=" & 
QuotedString(strFieldValue) & "><BR>&nbsp;<BR>" 
End If 

Case "URL_" 
If strFieldValue <> "" Then 
Response. Write "&nbsp;&nbsp;<A HREF=" & 
QuotedString(strFieldValue) & ">" 
Response. Write "Go" 
Response. Write "</A>" 
End If 

Case Else 
If IsURL(strFieldValue) Then 
Response. Write "&nbsp;&nbsp;<A HREF=" & 
QuotedString(strFieldValue) & ">" 
Response. Write "Go" 
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Response. Write "</A>" 
End If 

End If 

End Select 
End If 

End Select 

IfblnFieldRequired And strFormMode ="Add" Then 
'Response. Write" <<===Required; You MUST indicate the status for the 
contract." 

End If 
Response. Write "</FONT></TD></TR>" 

End Sub 
</SCRIPT> 

<%@ LANGUAGE="VBScript" o/o> 
<% 

'-----------------------------------------------------------------------------------------------------------
'Action Page 
' This file is an Active Server Page that contains the server script that handles filter, 
' update, insert, and delete commands from the form view of a Data Form. It can also 
' echo back confirmation of database operations and report errors. 
' Some cmnmands are passed through and redirected. 

'-----------------------------------------------------------------------------------------------------------
%> 

<SCRIPT RUNAT=Server LANGUAGE="VBScript"> 

'-----------------------------------------------------------------------------------------------------------
' Purpose: Substitutes Null for Empty 
'Inputs: varTemp -the target value 
'Returns: The processed value 

'-----------------------------------------------------------------------------------------------------------

Function RestoreNull(varTemp) 
IfTrim(varTemp) =""Then 

RestoreNull =Null 
Else 

RestoreNull = varTemp 
End If 

End Function 
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Sub RaiseError(intErrorValue, strFieldName) 
DimstrMsg 
Select Case intErrorV alue 

Case errinvalidPrefix 
strMsg = "Wildcard characters * and % can only be used at the end of the 
criteria" 
Case errlnvalidOperator 

strMsg = "Invalid filtering operators - use <= or >= instead." 
Case errlnvalidOperatorUse 

strMsg = "The 'Like' operator can only be used with strings." 
Case errNotEditable 

strMsg = strFieldName & " field is not editable." 
Case errValueRequired 

strMsg ="A value is required for" & strFieldName & "." 
End Select 
Err.Raise intErrorValue, "DataForm", strMsg 

End Sub 

'-----------------------------------------------------------------------------------------------------------
' Purpose: Converts to subtype of string - handles Null cases 
'Inputs: varTemp -the target value 
' Returns: The processed value 

'-----------------------------------------------------------------------------------------------------------

Function ConvertToString(varTemp) 
IfisNull(varTemp) Then 

ConvertToString =Null 
Else 

ConvertToString = CStr(varTemp) 
End If 

End Function 

'-----------------------------------------------------------------------------------------------------------
' Purpose: Tests to equality while dealing with Null values 
' Inputs: varTempl -the first value 
' varTemp2 -the second value 
' Returns: True if equal, False if not 

'-----------------------------------------------------------------------------------------------------------

Function IsEqual(ByVal varTempl, By Val varTemp2) 
IsEqual =False 
If IsNull(varTemp I) And IsNull(varTemp2) Then 

IsEqual = True 
Else 
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IfisNull(varTempl) Then Exit Function 
If IsNull(varTemp2) Then Exit Function 

End If 
IfvarTempl = varTemp2 Then IsEqual =True 

End Function 

'-------~---------------~--------~*--••-••-•------~~----••••------••••----~w•-------------------------------
1 Purpose: Tests whether the field in the recordset is required 
'Assumes: That the recordset containing the field is open 
1 Inputs: strFieldName -the name of the field in the recordset 
1 Returns: True if updatable, False if not 

'-----------------------------------------------------------------------------------------------------------

Function IsRequiredField( strFieldName) 
IsRequiredField = False 
If (rsSContractContractors(strFieldName).Attributes And adFldlsNullable) = 0 

Then 
IsRequiredField = True 

End If 
End Function 

'-----------------------------------------------------------------------------------------------------------
1 Purpose: Tests whether the field in the recordset is updatable 
' Assumes: That the recordset containing the field is open 
' Effects: Sets Err object if field is not updatable 
'Inputs: strFieldName- the name of the field in the recordset 
'Returns: True ifupdatable, False if not 

'-----------------------------------------------------------------------------------------------------------

Function CanUpdateField(strFieldName) 
Dim intUpdatable 
intUpdatable = {adFldUpdatable Or adFldUnknownUpdatable) 
CanUpdateField =True 
If (rsSContractContractors(strFieldName).Attributes And intUpdatable) =False 

Then 
CanUpdateField =False 

End If 
End Function 

'---------------------------------~------------------------------------8~---------------------------------·-
'Purpose: Insert operation- updates a recordset field with a new value 
' during an insert operation. 
' Assumes: That the recordset containing the field is open 
' Effects: Sets Err object if field is not set but is required 
'Inputs: strFieldName- the name of the field in the recordset 
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' Returns: True if successful, False if ngt 

'--------------------------·---------------~--~-·-·~----~---·~----------------------------------------------

Function InsertField(strFieldName) 
lnsertField=True 
If IsEmpty(Request(strFieldName )) Then Exit Function 
Select Case rsSContractContractors(strFieldName ). Type 

Case adBinary, adVarBinary, adLongVarBinary 'Binary 
Case Else 

End Select 
End Function: 

If CanUpdateField(strFieldName) Then 

End If 

If IsRequiredField( strFieldName) And 
lsNull(RestoreNull(Request(strFieldName))) Then 

RaiseError errValueRequired, strFieldName 
InsertField = False 
Exit Function 

Endlf 
rsSContractContractors( strFieldN arne) = 

RestoreNull(Request( strFieldName)) 

'---------------------------------------------------------------------~-------------------------------------
1 Purpose: Update operation - updates a recordset field with a new value 
' Assumes: That the recordset containing the field is open 
'Effects: Sets Err object if field is not set but is required 
'Inputs: strFieldName- the name of the field in the recordset 
1 Returns: True if successful, False if not 

~-----------------------------------------------------------------------------------------------------------

Function U pdateField( strFieldN arne) 
UpdateField = True 
If lsEmpty(Request( strFieldN arne)) Then Exit Function 
Select Case rsSContractContractors( strFieldNarne ). Type 

Case adBinary, adVarBinary, adLongVarBinary 'Binary 
Case Else 

' Only update if the value has changed 
If Not 
IsEqual(ConvertToString(rsSContractContractors(strFieldName)), 
RestoreNull(Request(strFieldNarne))) Then 
If Can UpdateField(strFieldName) Then 

If IsRequiredField( strFieldName) And 
IsNuli(RestoreNull(Request(strFieldName))) Then 
RaiseError errValueRequired, strFieldNarne 
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Else 

End If 
Endlf 

UpdateField = False 
Exit Function 

Endlf 
rsSContractContractors( strFieldName) = 
RestoreNull(Request(strFieldName)) 

RaiseError errNotEditable, strFieldN arne 
UpdateField =False 

End Select 
End Function 

~-----------------------------------------------------------------------------------------------------------
1 Purpose: Criteria handler for a field in the recordset. Determines 
1 correct delimiter based on data type 
'Effects: Appends to strWhere and strWhereDisplay variables 
'Inputs: strFieldName- the name of the field in the recordset 
' avarLookup - lookup array - null if none 

'-----------------------------------------------------------------------------------------------------------

Sub FilterField(ByVal strFieldName, avarLookup) 
Dim strFieldDelimiter 
Dim strDisplayValue 
Dim strValue 
Dim intRow 
strValue = Request(strFieldName) 
strDisplayValue = Request(strFieldName) 

' If empty then exit right away 
IfRequest(strFieldName) = '"' Then Exit Sub 

'IF request(strFieldName)="Content" then 
'strFieldName="" 

'ELSE 

' Concatenate the And boolean operator 
If strWhere <> "" Then strWhere = strWhere & " And" 
If strWhereDisplay <> ""Then strWhereDisplay = strWhereDisplay & "And" 

' If lookup field, then use lookup value for display 
If Not IsNull(avarLookup) Then 

For intRow = 0 to UBound(avarLookup, 2) 
If CStr(avarLookup(O, intRow)) = Request(strFieldName) Then 

strDisplayValue = avarLookup(l, intRow) 
Exit For 
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Next 
End If 

'END IF 

Endlf 

'Set delimiter based on data type 
Select Case rsSContractContractors( strFieldName ). Type 

Case adBSTR, adChar, adWChar, adVarChar, adVarWChar 'string types 
strFieldDelimiter = ""' 

Case adLongVarChar, adLongVarWChar 'long string types 
strFieldDelimiter = "'" 

Case adDate, adDBDate, adDBTimeStamp 'date types 
strFieldDelimiter = "#" 

Case Else 
strFieldDelimiter = "" 

End Select 

' Modifies script level variables 
strWhere = strWhere & " " & PrepFilterltem(strFieldName, strValue, 
strFieldDelimiter) 
strWhereDisplay = strWhereDisplay & "" & PrepFilterltem(strFieldName, 
strDisplay Value, strFieldDelimiter) 

End Sub 

'-----------------------------------------------------------------------------------------------------------
1 Purpose: Constructs a name/value pair for a where clause 
1 Effects: Sets Err object if the criteria is invalid 
' Inputs: strFieldName - the name of the field in the recordset 
I strCriteria - the criteria to use 

strDelimiter- the proper delimiter to use 
1 Returns: The name/value pair as a string 

~-----------------------------------------------------------------------------------------------------------

Function PrepFilterltem(ByVal strFieldName, ByVal strCriteria, ByVal strDelimiter) 
Dim strOperator 
Dim intEndOtword 
Dim strWord 

'Char, VarChar, and LongVarChar must be single quote delimited. 
1 Dates are pound sign delimited. 
' Numerics should not be delimited. 
'String to Date conversion rules are same as VBA. 
'Only support for ANDing. 
' Support the LIKE operator but only with * or o/o as suffix. 
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strCriteria = Trim( strCriteria) 'remove leading/trailing spaces 
strOperator = "=" 'sets default 
strV alue = strCriteria 'sets default 

' Get first word and look for operator 
intEndOfWord = lnStr(strCriteria," ") 
If intEndOfW ord Then 

Else 

strWord = UCase(Left(strCriteria, intEndOfWord- 1)) 
' See if the word is an operator 
Select Case strWord 

Case"=","<",">","<=",">=", "<:>","LIKE" 
strOperator = strWord 
strValue = Trim(Mid(strCriteria, intEndOfWord + 1)) 

Case"=<","=>" 
RaiseError errinvalidOperator, strFieldName 

End Select 

strWord = UCase(Left(strCriteria, 2)) 
Select Case strWord 

Case"<=",">=","<:>" 
strOperator = strWord 
strValue = Trim(Mid(strCriteria, 3)) 

Case"=<", "=>" 
RaiseError errlnvalidOperator, strFieldName 

Case Else 
str Word = UCase(Left( strCriteria, 1)) 
Select Case strWord 

Case "=11
, "<", ">" 

strOperator = strWord 
strValue = Trim(Mid(strCriteria, 2)) 

End Select 
End Select 

End If 

' Make sure LIKE is only used with strings 
If strOperator = "LIKE" and strDelimiter <:> ""' Then 

RaiseError errlnvalidOperatorUse, strFieldName 
End If 

' Strip any extraneous delimiters because we add them anyway 
' Single Quote 
lfLeft(strValue, 1) = Chr(39) Then strValue = Mid(strValue, 2) 
If Right(strValue, 1) = Chr(39) Then strValue = Left(strValue, Len(strValue)- 1) 

' Double Quote -just in case 
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lfLeft(strValue, 1) = Chr{34) Then strValue = Mid(strValue, 2) 
IfRight(strValue, 1) = Chr(34) Then strValue = Left(strValue, Len(strValue)- 1) 

' Pound sign - dates 
IfLeft(strValue, 1) = Chr(35) Then strValue = Mid(strValue, 2) 
IfRight(strValue, 1) = Chr(35) Then strValue = Left(strValue, Len(strValue)- 1) 

' Check for leading wildcards 
IfLeft(strValue, I)= 11*11 Or Left(strValue, 1) ="%"Then 

RaiseError errlnvalidPrefix, strFieldName 
End If 

PrepFilterltem = "[" & strFieldName & "]" & " " & strOperator & " " & 
strDelimiter & strValue & strDelimiter 
End Function 

</SCRIPT> 

<o/o 
If Not IsEmpty(Request("DataAction")) Then 

strDataAction = Trim(Request("DataAction")) 
Else 

Response.Redirect "SContractForm.asp?FormMode=Edit" 
End If 

Select Case strDataAction 

Case "List View" 

Response.Redirect "SContractList.asp" 

Case "Cancel" 

Response.Redirect "SContractF orm.asp?F ormMode=Edit" 

Case "Search" 

On Error Resume Next 
Session("rsSContractContractors_Filter") = "" 
'Session("rsSContractContractors _ FilterDisplay") = '"' 

Session( "rsSContractContractors _Record set" ).Filter = "" 
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Response.Redirect "SContractForm.asp?FormMode=" & strDataAction 

Case 11Add" 

On Error Resume Next 
Session("rsSContractContractors_Filter") = "" 

Session("rsSContractContractors_FilterDisplay11
) = "" 

Session("rsSContractContractors _ Recordset").Filter = "" 

Response.Redirect 11 SContractForm.asp?FonnMode=11 & strDataAction 

Case "Find" 

Session("rsSContractContractors_PageSize") = 1 'So we don't do standard 
page conversion 
Session(''rsSContractContractors _ AbsolutePage") = 

CLng(Request("Bookmark")) 
Response.Redirect "SContractForm.asp" 

Case 11 All Records 11 

On Error Resume Next 
Session(11rsSContractContractors _Filter") = "" 
Session(''rsSContractContractors _ FilterDisplay11

) = " 11 

Session("rsSContractContractors _ Recordset").Filter = 1111 

Session('' rsSContractContractors _ AbsolutePage") = 1 
Response.Redirect "SContractForm.asp11 

Case 110011 

On Error Resume Next 
' Make sure we exit and re-process the form if session has timed out 
If IsEmpty(Session("rsSContractContractors _ Recordset")) Then 

Response.Redirect 11 SContractForm.asp?F ormMode=Edit" 
Endlf 

Set rsSContractContractors = 

Session("rsSContractContractors _ Recordset") 

strWhere = "'' 

strWhereDisplay = "" 
FilterField "Complete", Null 
FilterField "Title", Null 
Filter Field "ContractorNumber", Null 
FilterField "BeginDate", Null 
FilterField "EndDate", Null 
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FilterField 11 Amount", Null 
Filter Field "IntFundingSource", Null 
FilterField "Content", Null 
FilterField "DOEStaff", Null 
FilterField "DOETech", Null 
FilterField "DoeNote", Null 
FilterField "DoeNotice", Null 

'Filter the recordset 
IfstrWhere <>""Then 

Else 

Session(''rsSContractContractors _Filter") = str Where 
Session("rsSContractContractors _ FilterDisplay") = 
strWhereDisplay 
Session("rsSContractContractors_AbsolutePage") = 1 

Session("rsSContractContractors _Filter") = "" 
Session("rsSContractContractors_FilterDisplay") = "" 

End If 

. ' Jump back to the form 
IfErr.Number = 0 Then Response.Redirect "SContractForm.asp" 

Case "Save" 

On Error Resume Next 
' Make sure we exit and re-process the form if session has timed out 
If IsEmpty(Session("rsSContractContractors _ Recordset")) Then 

Response.Redirect "SContractF orm.asp?F ormMode=Edit" 
End If 

Set rsSContractContractors = 

Session(''rsSContractContractors _ Recordset") 
rsSContractContractors.AddNew 

Do 
If Not lnsertField("Complete") Then Exit Do 
If Not InsertField(''Title") Then Exit Do 
If Not lnsertField("ContractorNumber") Then Exit Do 
If Not InsertField("BeginDate") Then Exit Do 
If Not InsertField("EndDate") Then Exit Do 
If Not InsertField("Amount11

) Then Exit Do 
If Not InsertField("IntFundingSource") Then Exit Do 
If Not InsertField("Content") Then Exit Do 
If Not InsertField("DOEStaff') Then Exit Do 
If Not InsertField("DOETech") Then Exit Do 
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Loop 

If Not InsertField("DoeNote") Then Exit Do 
If Not InsertField("DoeNotice") Then Exit Do 

rsSContractContractors. Update 
Exit Do 

IfErr.Number <> 0 Then 

Else 

End If 

Case "Update" 

If rsSContractContractors.EditMode Then 
rsSContractContractors.CancelUpdate 

If lsEmpty(Session("rsSContractContractors _ AbsolutePage")) Or 
Sess,ion("rsSContractContractors_AbsolutePage") = 0 Then 
Session("rsSContractContractors _ AbsolutePage") = 1 
End If 
' Requery static cursor so inserted record is visible 
If rsSContractContractors.CursorType = adOpenStatic Then 
rsSContractContractors.Requery 
Session("rsSContractContractors_Status") ="Record has been 
inserted" 

On Error Resume Next 
' Make sure we exit and re-process the form if session has timed out 
If IsEmpty(Session("rsSContractContractors _ Recordset")) Then 

Response.Redirect "SContractForm.asp?FormMode=Edit" 
End If 

Set rsSContractContractors = 
Session("rsSContractContractors _ Recordset") 
If rsSContractContractors.EOF and rsSContractContractors.BOF Then 
Response.Redirect "SContractF orm.asp" 

Do 

If Not UpdateField(11Complete") Then Exit Do 
If Not UpdateField("Title") Then Exit Do 
If Not UpdateField(11ContractorNumber") Then Exit Do 
If Not UpdateField(11BeginDate") Then Exit Do 
If Not UpdateField("EndDate") Then Exit Do 
If Not UpdateField("Amount") Then Exit Do 
If Not UpdateField("lntFundingSource") Then Exit Do 
If Not UpdateField("Content") Then Exit Do 
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Loop 

If Not UpdateField("DOEStaff') Then Exit Do 
If Not UpdateField("DOETech'') Then Exit Do 
If Not UpdateField("DoeNote") Then Exit Do 
If Not UpdateField("DoeNotice") Then Exit Do 

If rsSContractContractors.EditMode Then 
rsSContractContractors. Update 
Exit Do 

IfErr.Number <> 0 Then 
If rsSContractContractors.EditMode Then 
rsSContractContractors. CancelU pdate 

End If 

Case "Delete" 

On Error Resume Next 

. ' Make sure we exit and re-process the form if session has timed out 
If IsEmpty(Session("rsSContractContractors _ Recordset")) Then 

Response.Redirect "SContractForm.asp?F ormMode=Edit" 
Endlf 

Set rsSContractContractors = 
Session(" rsSContractContractors _ Recordset") 
If rsSContractContractors.EOF and rsSContractContractors.BOF Then 
Response.Redirect "SContractForm.asp" 

rsSContractContractors.Delete 

' Proceed if no error 
If Err.Number = 0 Then 

' Requery static cursor so deleted record is removed 
If rsSContractContractors.CursorType = ad Open Static Then 
rsSContractContractors.Requery 

I Move off deleted rec 
rsSContractContractors.MoveNext 

1 If at EOF then jump back one and adjust AbsolutePage 
If rsSContractContractors.EOF Then 

rsSContractContractors.MovePrevious 
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S ession("rsSContractContractors _ AbsolutePage") = 
Session("rsSContractContractors _ AbsolutePage") • 1 

If rsSContractContractors.BOF And 
rsSContractContractors.EOF Then 
rsSContractContractors.Requery 

End Select 
%> 

<% 

End If 
Endlf 

Select Case strDataAction 

Case "Save" 

Response. Write(" Unable to save the record into Contractors.") 

Case '~Update" 

Response. Write("Unable to post the updated record to Contractors.") 

Case "Delete" 

Response. Write("Unable to delete the record from Contractors.") 

End Select 
o/o> 

'-----------------------------------------------------------------------------------------------------------
' Purpose: Substitutes Null for Empty 
' Inputs: varTemp -the target value 
'Returns: The processed value 

'-----------------------------------------------------------------------------------------------------------

Function RestoreNull(varTemp) 
IfTrim(varTemp) =""Then 

RestoreNull =Null 
Else 

RestoreNull = varTemp 
End If 
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End Function 

Sub RaiseError(intErrorValue, strField.Name) 
DimstrMsg 
Select Case intErrorValue 

Case errinvalidPrefix 
strMsg = "Wildcard characters * and % can only be used at the end 
of the criteria" 

Case errinvalidOperator 
strMsg = "Invalid filtering operators - use <= or >= instead." 

Case errinvalidOperatorUse 
strMsg = "The 'Like' operator can only be used with strings." 

Case errNotEditable 
strMsg = strFieldName & " field is not editable." 

Case errValueRequired 
strMsg ="A value is required for" & strFieldName & "." 

End Select 
Err.Raise intErrorValue, "DataForm", strMsg 

End Sub 

'-----------------------------------------------------------------------------------------------------------
1 Purpose: Converts to subtype of string - handles Null cases 
'Inputs: varTemp- the target value 
'Returns: The processed value 

'-----------------------------------------------------------------------------------------------------------

Function ConvertToString(varTemp) 
IflsNull(varTemp) Then 

ConvertToString =Null 
Else 

ConvertToString = CStr(varTemp) 
End If 

End Function 

'------------------------------------------------------------------------------------~--·--~--------------·· 
' Purpose: Tests to equality while dealing with Null values 
1 Inputs: varTempl -the first value 
1 varTemp2 - the second value 
' Returns: True if equal, False if not 

~-----------------------------------------------------------------------------------------------------------

Function IsEqual(ByVal varTempl, ByVal varTemp2) 
IsEqual =False 

If lsNull(varTemp 1) And IsNull(varTemp2) Then 
IsEqual = True 
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Else 
lflsNull(varTempl) Then Exit Function 
If IsNull(varTemp2) Then Exit Function 

Endlf 
IfvarTempl = varTemp2 Then IsEqual =True 

End Function 

' ----------------w---------------------------•-¥M~----------•--•-••--•••-•••-------------------------~-~-~~-
'Purpose: Tests whether the field in the recordset is required 
'Inputs: strFieldName- the name of the field in the recordset 
'Returns: True ifupdatable, False if not 
I 

-----------------------------------------------------------------------------------------------------------

Function IsRequired.Field( strFieldName) 
IsRequiredField = False 
If (rsSPaymentSQLQuery(strFieldName).Attributes And adFldlsNullable) = 0 

Then 
IsRequiredField = True 

End If 
End Function 

'-----------------------------------------------------------------------------------------------------------
'Purpose: Tests whether the field in the recordset is updatable 
' Inputs: strFieldName - the name of the field in the record set 
' Returns: True if updatable, False if not 
I 

------------------------------------------~----------------------------------------------------------------

Function CanUpdateField( strFieldName) 
Dim intUpdatable 
intUpdatable = (adFldUpdatable Or adFldUnknownUpdatable) 
CanUpdateField =True 
If (rsSPaymentSQLQuery(strFieldName).Attributes And intUpdatable) =False 

Then 
CanUpdateField =False 

End If 
End Function 

, 
----------------------------------------------------------------·--~-·--•••w••~-~---------------------------

1 Purpose: Insert operation - updates a recordset field with a new value 
' during an insert operation. 
1 Inputs: strFieldName - the name of the field in the recordset 
' Returns: True if successful, False if not 
·---------------------------------------------------------------------~---···-·~-~~M·--*~~------------------

Function lnsertField(strFieldName) 
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InsertField = True 
If IsEmpty(Request(strFieldName)) Then Exit Function 
Select Case rsSPaymentSQLQuery(strField.Name ). Type 

Case adBinary, adVarBinary, ad.LongVarBinary 
Case Else 

If CanUpdateField(strFieldName) Then 

Endlf 

If IsRequiredField(strFieldName) And 
IsNuH(RestoreNull(Request(strFieldName))) Then 

RaiseError errValueRequired, strFieldName 
lnsertField = False 
Exit Function 

Endlf 
rsSPaymentSQLQuery( strFieldName) = 
RestoreNull(Request( strFieldN arne)) 

End Select 
End Function 

I 

--------··--~-------------------------------------------------~--------------------------------------------
1 Purpose: Update operation - updates a recordset field with a new value 
' Inputs: sirFieldName - the name of the field in the recordset 
1 Returns: True if successful, False if not 

'-----------------------------------------------------------------------------------------------------------

Function UpdateField(strFieldName) 
UpdateField = True 
IflsEmpty(Request(strFieldName)) Then Exit Function 
Select Case rsSPaymentSQLQuery(strFieldName).Type 

Case adBinary, adVarBinary, adLongVarBinary 
Case Else 

'Only update if the value has changed 
If Not 
IsEqual(ConvertToString(rsSPaymentSQLQuery(strFieldName) ), 
RestoreNull(Request( strFieldName))) Then 

If CanUpdateField(strFieldName) Then 

Else 

If IsRequiredField(strFieldName) And 
IsNull(RestoreNull(Request(strFieldName))) Then 

RaiseError errV alueRequired, strFieldName 
UpdateField = False 
Exit Function 

Endlf 
rsSPaymentSQLQuery( strFieldName) = 

RestoreNull(Request(strFieldName)) 
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Endlf 
End If 

RaiseError errNotEditable, strFieldName 
UpdateField = False 

End Select 
End Function 

I --................. _____ ~---M-MoOa·-----------------------.. ~--~--~~~------.liiilii-ile-iilfjM4ill!liiii-!MiW--Iilolliil!illl.fMI ___________ III!M-IIIII!-iMIIIii!•MIIa-llll-llli! ....... , •• 
1 Purpose: Criteria handler for a field in the recordset. Determines correct delimiter 
1 based on data type 
1 _Inputs: strFieldName - the name of the field in the recordset 
' avarLookup - lookup array - null if none 
I 

------------------------------~---------------------------·----~--------·~-~-------~-------------------~-~-

Sub FilterField(ByVal strFieldName, avarLookup) 
Dim strFieldDelimiter 
Ditn strDisplayValue 
Dim strValue 
Dim intRow 
strValue = Request(strFieldName) 
strD!splayValue = Request(strFieldName) 

' If empty then exit right away 
IfRequest(strFieldName) = 1111 Then Exit Sub 

' Concatenate the And boolean operator 
If strWhere <>""Then strWhere = strWhere & "And" 
If strWhereDisplay <>""Then strWhereDisplay = strWhereDisplay & "And" 

' If lookup field, then use lookup value for display 
If Not IsNull(avarLookup) Then 

For intRow = 0 to UBound(avarLookup, 2) 

Next 
End If 

IfCStr(avarLookup(O, intRow)) = Request(strFieldName) Then 
strDisplayValue = avarLookup(l, intRow) 
Exit For 

Endlf 

' Set delimiter based on data type 
Select Case rsSPaymentSQLQuery( strFieldName). Type 

Case adBSTR, adChar, adWChar, adVarChar, adVarWChar 
strFieldDelimiter = ""' 

Case adLongVarChar, adLongVarWChar 
strFieldDelimiter = ""' 
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Case ad.Date, adDBDate, adDBTimeStamp 
strField.Delimiter = "#" 

Case Else 
strField.Delimiter = •m 

End Select 

' Modifies script level variables 
strWhere = strWhere & " " & PrepFilterltem(strFieldName, strValue, 
strFieldDelimiter) 
strWhereDisplay = strWhereDisplay & "" & PrepFilterltem(strFieldName, 
strDisplayValue, strFieldDelimiter) 

End Sub 

~-----------------------------------------------------------------------------------------------------------
1 Purpose: Constructs a name/value pair for a where clause 
1 Inputs: strFieldNarne- the name of the field in the recordset 

strCriteria - the criteria to use 
strDelimiter - the proper delimiter to use 

' Returns: The name/value pair as a string 

'-----------------------------------------------------------------------------------------------------------

Function PrepFilterltem(ByVal strFieldName, By Val strCriteria, By Val strDelimiter) 
Dim strOperator 
Dim intEndOfWord 
Dim strWord 

strCriteria = Trim(strCriteria) 
strOperator = "=" 
strValue = strCriteria 

' Get first word and look for operator 
intEndOfWord = InStr(strCriteria," ") 
If intEndOfWord Then 

Else 

strWord = UCase(Left(strCriteria, intEndOfWord- 1)) 
' See if the word is an operator 
Select Case strWord 

Case"=","<",">","<=",">=", "<>","LIKE" 
strOperator = strWord 
strValue = Trim(Mid(strCriteria, intEndOfWord + 1)) 

Case"=<", "=>" 
RaiseError errlnvalidOperator, strFieldName 

End Select 

strWord = UCase(Left(strCriteria, 2)) 
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Select Case strWord 
Case"<=", ">=", "<>" 

strOperator = strWord 
strValue = Trim(Mid(strCriteria, 3)) 

Case "=<", "=>" 
RaiseError errlnvalidOperator, strFieldName 

Case Else 
strWord = UCase(Left(strCriteria, 1)) 
Select Case strWord 

Case "='\ "<", ">" 
strOperator = strWord 
strValue = Trim(Mid(strCriteria, 2)) 

End Select 
End Select 

End If 

1 Make sure LIKE is only used with strings 
If strOperator = "LIKE" and strDelimiter <> 11111 Then 

RaiseError errlnvalidOperatorU se, strFieldName 
End If 

'Single Quote 
IfLeft(strValue, 1) = Chr(39) Then strValue = Mid(strValue, 2) 
IfRight(strValue, 1) = Chr(39) Then strValue = Left(strValue, Len(strValue)- 1) 

'Double Quote- just in case 
IfLeft(strValue, 1) = Chr(34) Then strValue = Mid(strValue, 2) 
IfRight(strValue, 1) = Chr(34) Then strValue = Left(strValue, Len(strValue)- 1) 

1 Pound sign- dates 
IfLeft(strValue, I)= Chr(35) Then strValue = Mid(strValue, 2) 
IfRight(strValue, 1) = Chr(35) Then strValue = Left(strValue, Len(strValue)- 1) 

' Check for leading wildcards 
IfLeft(strValue, 1) ="*"Or Left(strValue, 1) ="%"Then 

RaiseError errlnvalidPrefix, strFieldName 
Endlf 

PrepFilterltem = "[" & strFieldName & '']'' & "" & strOperator & "" & 
strDelimiter & strValue & strDelimiter 
End Function 

-----------------------------------------------------------------~-----------------------------------------
' Purpose: Display field involved in a database operation for feedback. 
' strFieldName - the name of the field in the recordset 
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' -~-~·R--M·-------------------~-----------------------------------------~----~-------~----------------------

Sub FeedbackField(strFieldLabel, strFieldName, avarLookup) 
Dim strBool 
Dim intRow 
Response. Write "<TR V ALIGN=TOP>" 
Response. Write "<TD ALIGN=Left><FONT SIZE=-l><B>&nbsp;&nbsp;" & 
strFieldLabel & "<IB><IFONT><ITD>" 
Response. Write "<fD BGCOLOR=White WIDTH=lOO% ALIGN=Left><FONT 
SIZE=- I>" 

1 Test for lookup 
If Not IsNull( avarLookup) Then 

Endlf 

For intRow = 0 to UBound(avarLookup, 2) 

Next 

If CStr( avarLookup(O, intRow)) = Request( strFieldName) Then 
Response. Write Server.HTMLEncode(avarLookup(l, 
intRow)) 
Exit For 

Endlf 

Response. Write "</FONT><ITD></TR>" 
Exit Sub 

' Test for empty 
IfRequest(strFieldName) =""Then 

Response. Write "&nbsp;" 

End If 

Response. Write "</FONT></TD><ITR>" 
Exit Sub 

1 Test the data types and display appropriately 
Select Case rsSPaymentSQLQuery(strFieldName).Type 

Case adBoolean, adUnsignedTinylnt 
strBool = "" 
IfRequest(strFieldName) <> 0 Then 

strBool = "True" 
Else 

strBool = "False" 
Endlf 
Response. Write strBool 

Case adBinary, adVarBinary, adLongVarBinary 
Response. Write "[Binary]" 

Case adLongV arChar, adLongV arWChar 
Response. Write Server.HTMLEncode(Request(strFieldName)) 
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Case Else 

End Select 

If Not CanUpdateField(strFieldName) Then 
Response. Write " [Auto Number]" 

Else 
Response. Write 
Server.HTMLEncode(Request(strFieldName)) 

Endlf 

Response. Write "</FONT><ITD></TR>" 
End Sub 

Select Case strDataAction 

Case "List View" 

Response.Redirect 11 SPayrnentList.asp" 

Case "Cancer' 

Response. Redirect "SPayrnentF onn.asp?F ormMode=Edit" 

Case "Filter" 

On Error Resume Next 
Session( 11rsSPaymentSQLQuery _Filter")="" 
Session("rsSPaymentSQLQuery _FilterDisplay") = 1111 

Session("rsSPaymentSQLQuery _Recordset").Filter = "" 
Response.Redirect 11 SPaymentForrn.asp?FormMode=11 & strDataAction 

Case "New" 

On Error Resume Next 
Session("rsSPaymentSQLQuery _Filter")="" 
Session("rsSPaytnentSQLQuery _FilterDisplay") = '"' 

Session(''rsSPaymentSQLQuery_Recordset").Filter = "" 
Response.Redirect "SPaymentForm.asp?FormMode=" & strDataAction 

Case "Find" 

Session("rsSPaymentSQLQuery _PageSize") = 1 'So we don't do standard 
page conversion 
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Session("rsSPaymentSQLQuery _ AbsolutePage") = 
CLng(Request("Bookmarkn)) 
Response.Redirect "SPaymentForm.asp" 
'Response.Redirect "SPaymentEdit2.asp" 

Case "All Records" 

On Error Resume Next 
Session("rsSPaymentSQLQuery _Filter") = '"' 
Session("rsSPaymentSQLQuery _ FilterDisplay") = "" 
Session("rsSPaymentSQLQuery _Recordset").Filter = "" 
Session("rsSPaymentSQLQuery _AbsolutePage") = 1 
Response.Redirect "SPaymentF orm.asp" 

Case "Apply" 

On Error Resume Next 

1 Make sure we exit and re-process the form if session has timed out 
If IsEmpty(Session("rsSPaymentSQLQuery _ Recordset")) Then 

Response.Redirect "SPaymentF onn.asp?F onnMode=Edit" 
End If 

Set rsSPaymentSQLQuery = Session("rsSPaymentSQLQuery _Recordset") 

strWhere = "" 
str WhereDisplay = "" 
Filter Field "ContractorNumber", Null 
FilterField "Title", Null 
FilterField "Pay Date", Null 
Filter Field "Pay", Null 
Filter Field "MadeBy", Null 
Filter Field "ApprovedBy", Null 
FilterField "Status". Null 
FilterField "Note", Null 

1 Filter the recordset 
If str Where <> "" Then 

Else 

Session("rsSPaymentSQLQuery _Filter")= strWhere 
Session("rsSPaymentSQLQuery _FilterDisplay") = 

strWhereDisplay 
Session("rsSPaymentSQLQuery _AbsolutePage") = 1 

Session("rsSPaymentSQLQuery _Filter")="" 
Session("rsSPaymentSQLQuery _FilterDisplay") = "" 
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Endlf 

1 Jun1p back to the form 
IfErr.Number= 0 Then Response.Redirect "SPaymentForm.asp" 

Case "Insert" 

On Error Resume Next 

1 Make sure we exit and re-process the form if session has timed out 
If lsEmpty(Session("rsSPaymentSQLQuery _ Recordset")) Then 

Response.Redirect "SPaymentF orm.asp?F ormMode=Edit" 
End If 

Set rsSPaymentSQLQuery = Session("rsSPaymentSQLQuery _Recordset") 
rsSPaymentSQLQuery.AddNew 

Do 

Loop 

IfNot lnsertField("ContractorNumber"} Then Exit Do 
If Not lnsertField("Title") Then Exit Do 
If Not InsertField("PayDate") Then Exit Do 
If Not InsertField("Pay") Then Exit Do 
If Not InsertField(''MadeBy") Then Exit Do 
If Not InsertField("ApprovedBy") Then Exit Do 
If Not InsertField("Status"} Then Exit Do 
If Not InsertField("Note") Then Exit Do 

rsSPaymentSQLQuery.Update 
Exit Do 

IfErr.Number <> 0 Then 

Else 

End If 

If rsSPaymentSQLQuery .EditMode Then 
rsSPaymentSQLQuery. Cancel Update 

If IsEmpty(Session("rsSPaymentSQLQuery _AbsolutePage")) Or 
Session("rsSPaymentSQLQuery _ AbsolutePage") = 0 Then 
Session("rsSPaymentSQLQuery _AbsolutePage") = 1 
End If 
' Requery static cursor so inserted record is visible 
If rsSPaymentSQLQuery.CursorType = adOpenStatic Then 
rsS PaymentSQ LQuery .Requery 
Session("rsSPaymentSQLQuery_Status"} ="Record has been 
inserted" 
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Case "Update" 

On Error Resume Next 

' Make sure we exit and re-process the form if session has timed out 
If IsEmpty(Session(nrsSPaymentSQLQuery _ Recordset")) Then 

Response.Redirect "SPaymentForm.asp?Form.Mode=Edit" 
End If 

Set rsSPaymentSQLQuery = Session("rsSPaymentSQLQuery _Recordset") 
IfrsSPaytnentSQLQuery.EOF and rsSPaymentSQLQuery.BOF Then 
Response.Redirect "SPaymentForm.asp" 

Do 

Loop 

IfNot UpdateField("ContractorNumber") Then Exit Do 
If Not UpdateField(''Title") Then Exit Do 
If Not UpdateField("PayDate") Then Exit Do 
IfNot UpdateField("Pay") Then Exit Do 
If Not UpdateField("MadeBy") Then Exit Do 
If Not UpdateField("ApprovedBy") Then Exit Do 
If Not UpdateField("Status") Then Exit Do 
If Not UpdateField("Note") Then Exit Do 

If rsSPaymentSQLQuery .EditMode Then 
rsSPaymentSQLQuery. Update 
Exit Do 

IfErr.Number <> 0 Then 
If rsSPaymentSQLQuery .EditMode Then 
rsSPaymentSQLQuery .Cancel Update 

End If 

Case "Delete" 

On Error Resume Next 

' Make sure we exit and re-process the form if session has timed out 
If IsEmpty(Session("rsSPayn1entSQ LQuery _ Recordset")) Then 

Response.Redirect "SPaytnentForm.asp?FormMode=Edit" 
End If 

Set rsSPayn1entSQLQuery = Session(''rsSPayn1entSQLQuery _Recordset") 
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End Select 

<% 
If Err Then 

IfrsSPaymentSQLQuery.EOF and rsSPaymentSQLQuery.BOF Then 
Response.Redirect "SPaymentF orm.asp11 

rsSPaymentSQLQuery .Delete 

' Proceed if no error 
If Err.Number = 0 Then 

' Requery static cursor so deleted record is removed 
IfrsSPaymentSQLQuery.CursorType = adOpenStatic Then 
rsSPaymentSQLQuery .Requery 

' Move off deleted rec 
rsSPaymentSQLQuery.MoveNext 

'If at EOF then jump back one and adjust AbsolutePage 
IfrsSPaymentSQLQuery.EOF Then 

End If 
End If 

rsSPaymentSQLQuery .MovePrevious 
Session("rsSPaymentSQLQuery _ AbsolutePage") = 
Session("rsSPaymentSQLQuery _ AbsolutePage") - 1 

IfrsSPaymentSQLQuery.BOF And 
rsSPaymentSQLQuery.EOF Then 
rsSPaymentSQLQuery .Requery 

Select Case Err.Number 
Case -2147467259 

strErrorAdditionallnfo =" This may be caused by an attempt to 
update a non-primary table in a view." 

Case Else 

End Select 
%> 

<HTML> 
<HEAD> 

strErrorAdditionallnfo = "" 

<MET A NAME=" GENERA TOR" CONTENT="Microsoft VisuallnterDev"> 
<META HTTP-EQUIV="Content-Type" CONTENT="textlhtml; charset=IS0-8859-1"> 
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<META NAME="keywords" CONTENT=" Payment History --- For View Only Form"> 
<TITLE> Payment History--- For View Only Form</TITLE> 
</HEAD> 
<BASEFONT FACE=11Arial, Helvetica, sans-serif''> 
<LINK REL=STYLESHEET HREF=" ./Stylesheets/Grid/Style2.css"> 
<BODY BACKGROUND=".IImages/Grid/Background/Back2.jpg" BGCOLOR=White> 
<TABLE WIDTH=lOOo/o CELLSPACING=O CELLPADDING=O BORDER=O> 
<TR> 

</TR> 
<TR> 

<TH COLSP AN=2 NO WRAP ALIGN=Left BGCOLOR=Silver 
BACKGROUND=" ./lmages/Grid/Navigation/Nav l.jpg"> 
<FONT SIZE=6>&nbsp;Message:&nbsp;</FONT> 
</TH> 

<TD BGCOLOR=#FFFFCC COLSPAN=2> 
<FONT SIZE=3><B> 
<% 
Select Case strDataAction 

Case 111nsert" 
Response.Write("Unable to insert the record into SQLQuery.") 

Case "Update" 
Response. Write("Unable to post the updated record to 
SQLQuery.") 

Case "Delete" 
Response.Write("Unable to delete the record from SQLQuery.") 
End Select 

o/o> 
</B></FONT> 
<lTD> 

<ITR> 
</TABLE> 

<TABLE WIDTH=IOO% CELLSPACING=l CELLPADDING=2 BORDER=O> 
<TR> 

</TR> 
<TR> 

<TD ALIGN=Left BGCOLOR=Silver><FONT SIZE=-
1 ><B>&nbsp;&nbsp;I tem</B></FONT></TD> 
<TD WIDTH= I 00% ALIGN=Left BGCOLOR=Silver><FONT SIZE=-
1 ><B>Description</B></FONT></TD> 

<TD><FONT SIZE=-1 ><B>&nbsp;&nbsp;Source:</B></FONT></TD> 
<TD BGCOLOR=White><FONT SIZE=-l><o/o= Err.Source %></TD> 

</TR> 
<TR> 
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</TR> 
<TR> 

</TR> 
<TR> 

<TD NOWRAP><FONT SIZE=-l><B>&nbsp;&nbsp;Error 
Number:<IB></FONT><ITD> 
<TD BGCOLOR=White><FONT SIZE=-1><'»/o= Err.Number 
%></FONT></TD> 

<TD><FONT SIZE=-l><B>&nbsp;&nbsp;Description:<IB><IFONT></TD> 
<TD BGCOLOR=White><FONT SIZE=-1><'»/o= 
Server.HTMLEncode(Err.Description & strErrorAdditionallnfo) 
o/o></FONT></TD> 

<TD COLSPAN=2><HR></TD> 
</TR> 
<TR> 

<TD> 
<%Response. Write "<FORM ACTION=""SPaymentForm.asp"" 
METHOD=""POST"">" o/o> 
<INPUT TYPE="Hidden" NAME="FormMode" V ALUE="Edit"> 
<INPUT TYPE=" SUBMIT" V ALUE="Form View"> 
<!FORM> 
<lTD> 
<TD> 
<FONT SIZE=-1> 
To return to the form view with the previously entered 
information intact, use your browsers &quot;back&quot; button 
<!FONT> 
<lTD> 

</TR> 
</TABLE> 
</BODY> 
<IHTML> 

<%Else%> 
<% 

Response.Redirect "SPaymentForm.asp" 
%> 
<o/o 
End If 
Set rsSPaymentSQLQuery = Nothing 
%> 
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