
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

10-29-1998

Contract manager anywhere and internet-enabled
database application
Yao-Jen Chang
Florida International University

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Chang, Yao-Jen, "Contract manager anywhere and internet-enabled database application" (1998). FIU Electronic Theses and
Dissertations. Paper 2109.
http://digitalcommons.fiu.edu/etd/2109

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F2109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/2109?utm_source=digitalcommons.fiu.edu%2Fetd%2F2109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami,. Florida

CONTRACT MANAGER ANYWHERE

AN INTERNET-ENABLED DATABASE APPLICATION

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Yao-Jen Chang

1998

To: Dean Arthur W. Herriott
College of Arts and Sciences

This thesis written by Yao-Jen Chang, and entitled Contract Manager Anywhere -·- An
Internet-enabled Database Application, having been approved in respect to style and
intellectual content, is referred to you for judgement.

We have read this thesis and recommended that it be approved.

Date of Defense: October 29, 1998

The thesis of Yao-Jen Chang is approved.

Dawn Holmes

Nagarajan Prabhakaran

Wei Sun, Major Professor

Dean Arthur W. Herriott
College of Arts and Sciences

Dean Richard L. Campbell
Division of Graduate Studies

Florida International University. I 998

ii

This thesis is dedicated to my Father, Chang, Chi;

my Mother, Chen, Sue-1.

They teach me how to think.

ACNOWLEDGEMENTS

The author acknowledges the contribution and support of the members of my committee,

Dr. Dawn Holmes and Dr. Nagarajan Prabhakaran, who offered their helpful comments

and patience.

A special "thank you" goes to Dr. Wei Sun who gave me his guidance, inspiration,

support and great help through all my graduate studying, especially for having the

confidence in me.

I also wish to acknowledge my friends for their support and comments: Kuanwen Fang,

Debra L. Davis, Maria I. Monteagudo, Nanchun Lin, Mr. and Mrs. Hsu with Cooperate

Bank and Nick Baldwin with FLDOE.

I could not have accomplished this project without them. Thank you.

iv

ABSTRACT OF THE THESIS

CONTRACT~AGERANYWHERE

AN INTERNET-ENABLED DATABASE APPLICATION

by

Yao-Jen Chang

Florida International University, 1998

Miami, Florida

Professor Wei Sun, Major Professor

This thesis describes the design and implementation of an Internet-enabled database

application which uses ASP (Active Server Pages) and other related knowledge such as

ADO (ActiveX Data Object), ODBC (Open DataBase Connectivity) and OLE-DB

(Object Linking and Embed-DataBase). Because it is an Internet-enabled application, the

subject of "Security" was also studied by implementing ASP technology. The database

was created using Microsoft Access 97 and the web interface was built using HTML,

VBScript and JavaScript. This system will be fully functioning at the Florida Department

of Education (FLDOE) site and will enable remote access to allow users to monitor

hundreds of contracts. Features include advanced scheduling, warning and accounting

capability. The Internet-enabled feature allows nationwide users, including FLDOE

project managers, FLDOE technical advisors and independent contractors, to follow the

status of contracts, contractors, and payments very closely.

v

TABLE OF CONTENTS

CHAPTER PAGE

CHAPTER 1 INTRODUCTION .. 1

1.1 Brief Project History ... 1

I.2Why The Internet? ... 2

CHAPTER 2 SYSTEM OVERVIEW .. .4

2.1 System Operation .. 4

2.2 System Technical Terms ... 6

2.3 System Features ... 7

CHAPTER3 SYSTEMDESIGN .. 10

3.1 System Architecture and User Interfaces ... 10

3.1.1 Super Users .. 13

3 .1.1.1 Contract and Contractor Controls ... 15

3.1.1.2 Paytnent Scheduling .. 19

3.1.1.3 Others ... 21

3.1.2 End Users ... 24

3.2 System Security .. 26

3.2.1 User Access , ... 27

3.2.2 Valid Users-Only Areas on The System Server 28

3.3 System Database ... 30

3.4 System Major Functionality ... 32

vi

CHAPTER 4 SYSTEM IMPLEMENTATION .. .34

4.1 Platform ... 34

4.1.1 Software and Hardware ... ,, ... 34

4.1.2 Operating System .. 35

4.1.3 Web Server .. 36

4.1.4 Programming Language ... 3 7

4.2 ASP Implementation ,, , .. 37

4.2.1 Why use ASP? ... 37

4.2.2 ASP and HTML ... 39

4.2.3 ASP and Dynamic HTML .. .40

4.3 www ,, ········· ················ ······ 40

4.4 Database Cotmectivity .. 42

CHAPTER 5 CONCLUSION .. .46

LIST OF REFERENCES .. 48

APPENDICES .. 50

vii

LIST OF FIGURES

FIGURE PAGE

Figure 2-1 Processing of an ASP Request .. 5

Figure 2-2 Client/Server Interaction in ASP .. 7

Figure 3-1 System Architecture .. . 11

Figure 3-2 System Login Interface .. 13

Figure 3-3 Super User Main Page 14

Figure 3-4 Super User Contracts Control Interface ... 17

Figure 3-5 Super User Contractors Control Interface ... 18

Figure 3-6 Super User Payment Scheduling Interface ... 21

Figure 3-7 Login Account Management Interface .. 24

Figure 3-8 End User Main Page .. 25

Figure 3-9 System Security Process .. 27

Figure 3-10 User Validation Process .. 29

Figure 3-11 ODBC ... 31

Figure 3-12 Login User Table Design ... 32

Figure 4-1 The WWW Communication ... 41

Figure 4-2 OLE-DB Architecture .. .43

Figure 4-3 The Architecture of ADO Objects .. 45

viii

CHAPTER 1 INTRODUCTION

This thesis describes the development of the Projects and Grants Management (PGM)

system. This system originally called State Administrative Expense Tracking System

(SAETS) is an Internet-enabled database application which was developed for the Florida

Department of Education (FLDOE). It is a PC-based client-server system used to

effectively manage and trace contracts, contractors and payment schedules. The primary

purpose of this system is to provide remote access for users from anywhere in the USA.

Thus, users are able to implement this system from other computers and are no longer

confined to one typical PC and software. Before the development of this Internet-enabled

system, a desktop system had been used for the purpose of control and tracking for

contracts and contractors.

1.1 Brief Project History

Before this system was developed, FLDOE staff members managed all the contracts,

contractors and grants manually. Software, such as Microsoft Access and Lotus

Organizer, was used solely to store data for which human resources were used to control

and track the other necessary follow-up work. Secretaries played the important rolls in

the whole filing process. Filing papers was one of the major tasks performed on a daily

basis. The same information was often converted into different formats. This sometimes

resulted in misleading information which caused extra workloads and time. Furthermore,

there were problems with getting reports from the Comptroller in a timely fashion.

Contractors also experienced difficulty with the old system. It was very difficult for them

to keep track of payment activities and a great deal of time was spent waiting for reports

to come out. A software package designed in Microsoft Access 97 could solve these

problen1s but would still have disadvantages such as a lack of client/server interaction

and a limitation of where it can be implemented.

It is due to these inefficient processes and disadvantages that this project was hom.

1.2 Why The Internet?

The Internet is the place where affordable computing and navigable, distributed

information go to work on expanding knowledge. It is growing substantially each day and

it is estimated that there are over 7 5 million users of this media. The number of people

who get infonnation on the Internet keeps increasing. The Internet is vastly and quickly

becoming a way of doing everyday business and is expanding business hours to include

more conventional "off hours". We now l1ave the ability to communicate more

extensively, author interactive Web pages, add audio components to our sites and so

much more.

Statistics show that the Internet is growing by 1 0~ 15% per month. The Internet nowadays

has more than 2 million nodes (i.e., computers which are always connected to each other)

and is expected to increase to more than 100 million nodes by the year 2000. By the end

of last year 1997. 82 million PCs were connected worldwide to the Internet. This is a 71

percent increase from 1996. Dataquest [1] predicts that by 2001. the Internet will be such

2

a major part of business operations worldwide that the number of "wired" computers will

rise to 268 million.

Due to the increasing number of Internet users, the Internet software and services market

produce revenues of US$12.2 billion in 1997, a 60 percent growth from 1996, when

revenues came in at $7.5 billion. Dataquest estimates that by 2001, the Internet software

and services market will reach $32.2 billion in revenue.

With those persuadable statistics and overwhelming growing popularity, there is little

doubt that the Internet is the best communication medium for client/server interaction.

This project indeed serves as one of the pioneering Internet-based projects that will

eventually be the mainstream choice for deploying projects with boundless access,

control and tracing capabilities for all data processing.

3

CHAPTER 2 SYSTEM OVERVIEW

This chapter gives a general overview of this system. This will enable us to have a better

understanding of how this system works and its features. Details of design concepts will

be presented in chapter 3.

2.1 System Operation

The major functions of this system include connecting user browsers to databases at the

web server side, providing good user interfaces and granting various privileges for

different types of users. There are two types of users a super user and an end user or

contractor. All data information including a user's login accounts, contracts, contractors

and payment details are stored in the database on the server side. A database is an

example of a data store. A data store could be any store of information. The database tool

used here is Microsoft Access 97.

On the browser side, all users have to establish their login accounts for navigating in the

system. The identification of users is required for login. After successfully logging in,

users will be able to place requests to the system. Once a user makes a request, the web

server processes the request using Active Server Pages and sends the resulting

information back in plain HTML format to the browser that requested it. Figure 2·1

illustrates a schematic overview of how this processing is done.

4

HTTP Request •

.,..411--- HTTP Response

Client Web Server

Components

Figure 2-1 Processing of an ASP Request

5

2.2 System Technical Terms

The main technique used to develop this system is called ASP (Active Server Pages).

ASP was officially announced to the world by Microsoft on July 16, 1996 and was

codenruned "Denali" [2]. It is the latest sever-based technology designed to create

dynamic and interactive HTML pages for WWW sites. ASP is revolutionizing the way

Web applications are developed almost the same way Windows NT revolutionized

client/server computing. ASP is designed to be used together with HTML to create

dynamic pages. In fact, ASP actually creates HTML code. A Web page that uses ASP is

likely to consist of a mixture of three types of syntax. Some of the page will be

constructed fron1 simple text, part will be HTML, and part will be ASP code. ASP is

actually an extension to the web server that allows server-side scripting. At the same time

it also provides a compendiwn of objects and components which manage interaction

between the web server and the browser. Those objects can be manipulated by scripting

languages. Figure 2-2 interprets that ASP neatly divides up into and uses different types

of objects, each of which manages its own part of the interaction between cJient and

server. ASP is a new technique for web developers to make a web site interactive.

Prior to ASP, the development of a typical interactive Web application n1eant compiling

an executable application using a traditional application development environment such

as Visual C++. After the application was compiled, it was copied to a CGI directory of

the web server. Even the slightest change to the application meant recompiling the entire

application and replacing the previous version of the executable file. This process is

6

unnecessarily resource intensive in a production environment. ASP solves this problem

by providing a more direct and easier way to create web applications. [3]

"'"I Request Object I
Server , I ...

Object

Client
Server

... I Response Object
, ...

~ r
Application

Object

~ I ObjectContext Object L. Session
~ l r~ Object

Figure 2-2 Client/Server Interaction in ASP

2.3 System Features

This system was designed and developed for the FLDOE. There are some features

included in the system.

• Clear identification for users:

7

Once a user logons to the system. :successfully, the system shows clearly ·a column

banner indicating what type of account the user has. Different types of users will be

directed to different pages and given different privileges.

• Security control:

This system is used to track Food and Nutrition Management Projects and Grants for

the Florida Department of Education. Only specific users (i.e., FLDOE super users or

valid contractors) have access to information on the Web page. Other than login page,

all pages on the Web server can only be accessed by using a valid login account. And

every page is protected from unauthorized users.

• Friendly and intelligent interface:

This system provides easily, understandable, and user .. friendly on-line instructions.

With very little experiences of using browser, users can implement this system

quickly and easily. Use of the system is particularly facilitated by providing feedback

for the actions a user has taken, instructions concerning a user's alternative actions,

n1essage showing mistakes that have been made and available hot links to other

useful and related pages.

• Online functions of add, delete, search and update:

This was the primary motivation for developing this system. FLDOE super users can

implement this system from any PC at anytime. The data can be updated and posted

8

simultaneously. Specialized software or a specific physical location is not required as

long as the user has a browser connect to the Internet.

• Login account management:

FLDOE super users have absolute control over all login accounts including

contractors and other super users. The information such as the login usemame and

password, the date an account was created and the date last time login a user logged

in can be seen and monitored. If a user forgets his/her password, he/she can simply

send a request to the system administrator and the login account will be reset with an

assigned username and password and the user will be able to log onto the system and

change the password.

• Remote access to all contractors:

Just as with super users, contractors will have pre-setup login account information

available so that they can log on from any Internet-enabled computer at any time.

9

CHAPTER 3 SYSTEM DESIGN

In this chapter, the core concepts involved in designing this system will be discussed.

Topics include system architecture, system security, setting up the web server and system

functions. The design details involved in using Microsoft Access are not the focus here

since project's field of study is on the Internet client-server by implementing ASP. Other

subjects such as system implementation will be introduced in the next chapter.

3.1 System Architecture and User Interfaces

Prominent and colorful images and icons contribute to making the user interfaces easy to

use and visually appealing. All graphic designs were developed by modifying and

updating the client's requests. Even at the time this paper is being delivered, the progress

is continuing. The purpose of doing so is to ensure that the interfaces can be

understandable from the client's points of view and to reduce the probability of a user

making mistakes. The system architecture will be looked at first. The following

illustration shows the architecture of the system:

10

Contracts

View
Update
Add
Delete
Search
Save

HTTP Request

HTTP Response

View
Schedule
Search
Modify
Add

View
Edit
Monitor

Active Pages
(Security Check,

Session Management,
Running Time~ User

Type Check,
Template Processor,

etc.)

View
Update

Figure 3-1 System Architecture

11

Contracts
Company Profile

View

This system is designed to help FLDOE control and track all the projects and grants of its

contractors. It also provides accounting capabilities to help FLDOE monitor and schedule

payments. The system will automatically detect and determine the type of user and grant

the appropriate privileges when the user logs in. Of course, a task of security check is

performed here. Only valid and authorized users can successfully log onto this system.

Failed attempts to log in will result in the display of a red blinking error message on the

botton1 of the page. The type of error message returned reflect the type of mistakes made.

Some examples are: "Please enter all information on the login fields!", "Right user name,

Wrong password! Please try again!" and "Invalid account, Cannot login to this site!".

Another function executed here is the recording of the login date of each user in that

user's account. This function will help the FLDOE project managers have better control

of their contractor's login activities.

Figure 3-2 shows the login interface. The user type will be determined by processing

some database lookup functions. Please see appendices.

12

3.1.1 Super Users

The Food and Nutrition Management Section (F&NM) of the
Florida Department of Education(FLDOE) is fWlded ·with moneys
from the United States Depa.rtrnent of Agdcultu.re (USDA). All
grants, projects or purchase orders entered il1to by F&NJ.\.II are
subject to regular audits by botlt USDA, and Auditor General of the
state of Florida

Figure

Super Users are FLDOE staff such as project managers and project technical advisors.

When a super user log in, the system will bring the super user to his/her main page

(Figure 3-3) where the function image icons are shown. These include contracts.

contractors, payment information, reminders, login account management and update

password icons.

A colrunn banner on the left side of this page with big letters "SUPER USER" indicates

the type of user currently logged in. This page is called the super user main page because

of the specific function buttons, icons and hot links that appear on this page. It can also

be considered a transfer center from which a super user can easily navigation through out

the whole systetn. Of course access to this page is restricted to only authorized super

users. The tnqjor ftmctions will be discussed in the next sections that follow.

Figure 3-3 Super User f\tfain Page

14

3.1.1.1 Contract and Contractor Controls

Contract and contractor controls are the major functions available to a super user. The

super user can perform functions of view, update, add, delete and search on these pages.

As can be seen in the Figure 3-4 and Figure 3-5, contract control interface and contractor

control interface function pages are similar. The heading banner on the top of the screen

is composed of three sections: heading and function buttons, instructions and system

status.

• Heading and function buttons: The text heading indicates which interface the super

user is currently using and, next to it, several function buttons including buttons of

update, add, delete, search and list view. Those buttons are the essential parts of this

page. They are going to perform the functions as they show on their face value such

as, update, add, delete, search and list view. The list view button is particularly

helpful as it provides another perspective that can be used to view the various of

contracts and contractors. Furthermore, there is a batch link between the list view and

form view where the page we came from. The batch link is a link to a typical record.

We may consider it a short cut to the record the user wants.

• Instntctions: This is a brief but clear instruction line for the users. For example, one

instruction is "To update this record, make changes in any fields below and then dick

the Update button." This one line instruction will tutor the user how to perform the

next possible action.

15

.., y ;,Lcul ;)LaLu.,. rt line of text denotes the status of current system function. If the super

user sees "Ready for search.", then the search button only needs to be clicked to

perforn1 the search function. Once the super user clicks the button the text "Ready for

search criteria." will then replace 11Ready for search." on this line and another

instruction, like "Please enter the keywords in any fields below to perform the

search.", will appear on the instruction line mentioned above. For example, if the

search criteria is a contract whose number is "131-30450-60151 ", the instruction

"Current Search: [Contract Number]='l31-30450-60151' "will appear and the record

will be found. Additionally, when the super user is in "Ready for search" status,

another function button called "How to Search" will appear on the first line of th.e

heading section. By clicking this button, a new pop-up window will appear containing

a HTML-fonnat instruction page regarding how to perform a search.

In the middle region of this page, the data or record were requested by the super user will

be retrieved from the database and be posted. This is a display section.

At the botton1 of the screen the record navigation buttons are displayed. These navigation

buttons such as "The First", "Previous", "Next", "The Last", and "Post Data" will help the

super user to move back and forth between records inside the database. The "Post Data"

button will perform a re-query action for a modification action that has just been made by

the super user. New data. if there is any, will not be posted onto the screen until this

button has been clicked.

)6

Figure 3-4 Super tlset· Contracts Control Interface

State.

ZIP .Code

TeJeptume. N.umber

Fax Number

Canta~ E-Mi!!U

Company

FLDOE Note

User

l8

3.1.1.2 Payment Scheduling

Accounting capabilities are included in this payment handling function. Function details

will be discussed later. The payment scheduling interface will be introduced in this

subsection.

The interface of this page is still similar to the contracts and contractors pages. Figure 3-6

illustrates the similarity between them. Same construction of this page is for the

convenient usage of super users. All payment schedules can be viewed, monitored,

scheduled and updated on this page. As with other super user pages, this page has

restricted access. The heading banner contains three buttons. The first button "First

Scheduling" is used to perform first time scheduling for a contractor who already has a

valid contract or contracts with the FLDOE but is not yet receiving any payments. When

it is clicked, a drop down list in a new page provides all contracts which are ready for the

first time scheduling. This design was developed due to the desire of FLDOE to

distinguish the initial payments from other old payments.

Another major function here is to edit and add payment schedules for a contractor. Before

allowing a user to edit or add payment schedule for a certain contractor, the system \\~11

retrieve the contractor's payment history (or past payment activities). This is done to

provide the super user with all the necessary information before taking any further

scheduling actions. A payment history is a list of information of past paytnent activities

such as the total an1ount being paid, current balance, amount of each payment, date of

each payment, payment scheduler and who approved the payment. Based on the

19

information of payment history, the super user will be able to perform more accurate

scheduling.

There is also a search function on this page. The search criterion of this function based

upon the payment due date. For purpose of convenience, the super user can just select

"On", "Prior to", and "After" from a drop down list and enter a date to perform the search.

For example, if the user selects "Prior to" on the list and then enters the date "09/20/98"

or "9/2011998", then the system will return all the payments and associated information

due prior to September 20, 1998. The result of this function can provide valuable

information that will help FLDOE project managers and technical advisors control, track

and monitor all ~he payment activities.

This function is slightly similar to the reminder function which will be introduced in the

follow subsection. The difference is to inquiry the payment due date in different query

requests. This function is performed on the base of the "date" of payment due and

reminder function is executed on the base ofhnumber of date'' before due date.

20

"'"""""""·"---·- Record. Do Not Oeh~te Cl9!25m!98 :mD
000-00000-(JOOOOTl!~mo Record. Clo Not Dal~te 10/10/1998 5000

0
280-34160..S0132 Ha<~rtlanr.! Educational Cmt 0

0
llniversit}' 12/12i19981lJOO

371·30480-80011 F!orida Stat~ Urnversi!y 12/311199133000
Dept of Health

Nick
09i25119.00 On time, Good.
09130!1~)8 Paid ahead!

Not:e
No Note
No Note

10/10l1900 Remember to
1212011998 Paid ahaad
lnDiMtJl~:CJR On Time!

Figure J ... 6 Super User Payment Scheduling Interface

3.1.1.3 Others

Other available and thoughtful designs for the super users are "Reminders", "Update

Password", and "Login Account Management".

• Reminders:

A reminder is a time sensitive notice or memo. It allows the super user to view all the

payments due within certain number of days entered by the super user. It is a slightly

21

different from the search function on the payment information page mentioned above.

The super user doesn't have to know the exact date a payment is due. For example, if a

super user wishes to know if there are any payments due within next 3 days, 3 is entered

into the input box and the "Go" button clicked. The system will return all payments that

are due within the next 3 days. Indeed, within the Microsoft Access environment, the

desktop version of the system will automatically execute this reminder function with pop

up reminders when a super user just logs onto the system. The default setting for the

number of the threshold days is 10.

• Update Passwords:

In the original ~esign, users were to be allowed to create their own login account names

and passwords online the first time they logged in, if they could provide all accurate

infonnation required about himself/herself. However, for the security reasons, this was

not implemented currently, all login accounts for both super users and contractors are

pre-setup. The system administrator creates all login accounts including login usemames

and passwords in advance. Of course, users themselves can update their passwords

anytime they Jog in.

• Login Account Management:

Currently login account management allows the project managers or technical advisors to

retrieve all users' login account information and login activities and to edit accounts. The

super user will be able to know the last]ogin date of a user and can obtain all the login

names and passwords.

22

For the convenience of usage, the interface of this function is designed using a drop down

list (See Figure 3-7). All users whose valid accounts had been pre-setup will be displayed

on the drop down list in an alphabetic order. All super users' names, for examples, will

appear in a format of "Last Name, First Name" and for all end users, the list information

will show in a format of "Contract Number, Company Name". The system administrator

just has to simply select one account from the list and click the "Go" button. The system

will retrieve the data and display the account information of the administrator's selection

on the screen. The account information includes user type, super user's real name,

contract number and company name of a contractor, login username, login password, the

date of account _created and the date of last time login activity.

Once a super user obtained the account information, if necessary, he/she can edit the

account by clicking on the button of "Edit Password of This Account". A pop-up window

interface will allow the user to update the password.

Not only does this function provide a way of retrieving account information, but also can

it prevent users from forgetting the login passwords.

23

Figure 3-7 Login Account Management Interface

3.1.2 End Users

has at one contract

will be cre~ttea

current user is an user

to As users,

<.~urrent user.

24

will

who

accounts

onto

user

colun1n banner on

user can

only view regarding his/her own record. For example, information regarding that user's

contract or contracts with FLDOE, company profile and the payment information binding

with the typical contract can be obtained. Of course, as was mentioned previously, the

end user still has the privilege to change his/her own password at any time.

Another interaction between FLDOE super users and contractors is that through the

Internet, the end user will be able to see any information, announcement or notice posted

by the FLDOE immediately and simultaneously.

Food&Nutrition
Management

The Miil>i<>n of lho f<H>d 41'1<1 Nululior,

Mll'llg<tmtnt S•c1illn of tl>- O•p~rtm•nt

ol EduNh<:iO that qtuli!v Child
Uut11luH1 P1og11rm &rt: pr¢'oldt~ lo tliQiblt
clients !h!O<Jgil df•cti•~ ou!h>ar;t •.
guida~c•. ttJini<•Q. tt~l\nl<:&l UllbUnee.
!undir,g, dnd

Figur·e 3-8 End lJscr .l\1ain Page

25

3.2 System Security

Security has always been one of the big issues on the Internet. In fact, thousands of

papers have been published studying this topic. Of course, we also need to consider

security in the design of this system. This is a system used to control, track and monitor

all contracts and contractors of FLDOE. It is not a system that could or should be public

to the world. Building a membership-based community is necessary and important. The

system administrator, super users, and end users (or contractors) are the three types of

users of this system. In addition to a valid and pre-setup user account mentioned

previously, there are other kinds of security protections applied in this system.

One protection. used in this system is called "time out". If any page is left untouched,

unattended or unused for over 30 seconds, then this page will expire. If the user then try

to reload or refresh that page, the system will automatically bring the user back to the

login page and the user will have to re-login. In other words, the system does not know

whether or not the current user is the same one who successfully logged on 30 seconds

ago. Thus, the login process must be carried out again. Time~out has to be set in the

global.asa file and will be applied to every page in the system. As the global.asa file is an

optional file that relates directly to the Application and Session objects, it is not a concern

in this project.

There are two other major security protections implemented in this system. One

protection used is the implementation of liS (Internet Information Server) and another is

the implementation of ASP.

26

3.2.1 User Access

The Internet Information Server (liS) enables access to resources only after the user's

access privileges have been verified. Figure 3-9 shows the security checks performed

before a user is permitted to access a requested page.

liS receives request
No

Yes

No

Yes

No

Yes

Figure 3-9 System Security Process

27

The IIS web service can be set to enable only users on computers in a given range of IP

addresses to access tiles on this server. This provides additional security on an Intranet

web server by disabling all IP addresses other than the local ones. It also is possible to

disallow specific IP address for the web server, for example, addresses you know hacking

attempts were made from.

3.2.2 Valid Users-Only Areas on The System Server

The next level of access control is to verify the user's login information according to the

user data stored in the database. The login user table stores information used to define

various types of users.

Indeed, there are three approaches that can be used to create members-only areas:

• Use NTFS file security to enable access to the members' area for specific user

accounts or groups. This is a good approach for Intranets. However, the disadvantage

is that an NT adrninistrator has to create an NT user account for every member.

• Create an ISAPI (Internet Server API) f1lter that implements a custom authentication

schetne. Multiple me1nbers are mapped to a single NT user account which is granted

access to a specific members' area on the server.

• Create a custom authentication based on Active Server Pages. Every user is validated

before access to any resources in the valid users-only areas on the system server.

28

The third approach is the one used to provide security for this .• system. Every page of the

system has to check whether the user has already been validated. Figure 3-10 shows how

the validation process works.

Yes

Some page of the
members area Yes

No
Login page
(login. asp)

Figure 3·10 User Validation Process

No

The user validation process is based on the Microsoft Access server table and a stored

procedure to validate the validation of a user trying to log on. It is advantageous to use a

database because of the easy Inaintenance of user information. The table that contains the

user infonnation could be very simple and easily updated in the future. The table which

29

stores all users' login account information will be introduced in the next section. First the

concept of database connectivity will be discussed.

3.3 System Database

Databases play a key role when we want to provide personalized and live content.

Databases can be used to store any kind of information, from quotes of the day to full

featured online stores. The database behind this system was constructed by using

Microsoft Access 97. Microsoft provides access to the database with the ActiveX Data

Objects (ADO), which builds upon OLE-DB. OLE-DB will be introduced in chapter 4.

A well·known. technique that is often used to connect to a database is ODBC (Open

DataBase Connectivity). ODBC is a single, well-defined interface for uniformly

accessing different database management systems regardless of the provider-specific

interface. The ODBC programming interface (API) defines a database-independent

programming n1odel that provides a single API interface. It is designed to allow a

comn1on set of routines to be used to access databases, although it was primarily aimed at

relational databases. This allows a programmer to connect to a database using ODBC and

manipulate the data without worrying exactly where the data was stored, or what

particular database was storing it. (See Figure 3-11)

30

Program

ODBC

Figure 3-11 ODBC

For example, Figure 3-12 illustrates a table which stores user login information. It stores

the user type, first name and last name, company name, login user name, login password,

date the login account created and the last login date. For security reasons, the initial

login account set up has to be done by the system administrator in an internal-use desktop

system but the values in the password field are on-line updateable. The user type field is

used to determine the type of login user and where the program should direct the user as

well as what the appropriate privileges are.

31

3.4 System Major Functionality

The user interfaces and associated function operations were discussed in section 3.1 This

section discusses the functionality of the system. The functionality can be broken down

into several areas:

• Different privileges for different types of users: As was previously mentioned, there

are two types of users with legal accounts allowed to log onto this system. One type

of user is the Super User. Super users are the FLDOE system administrators, project

managers and technical advisors. The other type of user is the Contractor or End User

who has at least one valid contract with the FLDOE. The system will determine what

privileges to give the current user by bringing the user to the correct location.

Contractors will be able to update their login account passwords but will only be in

the system's View mode i.e., they can only view their own information.

• Contracts and contractors control: The system will be in Edit mode when a super user

logs in. Therefore, the super users will have full control (such as add, delete, update

and save) of all records in the database.

• Advanced payment scheduling: The system will allow super users to schedule

payment dates in advance and monitor the delivery status for each payment.

Accounting capabilities were applied to allow calculation of the total amount paid and

the remaining balance of the contracts. Of course all payment information such as

who made the payment and who approved the payment can also be kept track of and

edited in future follow-up work.

• Reminders of payment schedules: A reminder function will execute if a payment is

due within a certain number of days which depends upon a super user's inquiry

criteria.

• On-line login account management: Super users will have control over all login

accounts. All login usemames and passwords can be retrieved should a super user

request it. This function will handle the situation in which users forget their

passwords.

CHAPTER 4 SYSTEM IMPLEMENTATION

We have discussed the technologies like ASP and ODBC in the previous chapters. Now,

in this chapter, we are moving to the issue of system implementation. Various

technologies in different fields had been implemented to develop this system. We will

take a look on each of them.

4.1 Platform

4.1.1 Software and Hardware

Since ASP is the advanced technique used to develop the web application, its software

and hardware requirements are critical. The minimum software and hardware

requirements for developing ASP applications are:

• A Pentium-based computer

• 32MB of RAM

• 100MB offree hard drive space

• Windows NT Server 4.0 with TCPIIP networking support properly installed and

configured.

• Internet Information Server (IIS) 3.0 or better is required for Windows NT Server;

Microsoft Personal Web Server (PWS) is required for Windows 95; Microsoft Peer

Web Services is required for Windows NT Workstation

• A database that supports ODBC (such as Microsoft Access or Microsoft SQL Server)

For a user (client), the minimal and recommended system configuration is:

34

• Windows 3.1 (Windows 95 or Windows NT is highly recommended)

• 486 CPU (a Pentium-based computer is highly recommended)

• 8 MB RAM (16 MB RAM or better is highly recommended)

• 10MB of free hard drive space (50MB is highly recommended)

• 28.8 kbps data modem (33.3 kbps or better is highly recommended)

• VGA adapter and monitor

4.1.2 Operating System

The best choice of an operating system is Windows NT. Windows NT in conjunction

with liS and ASP provides a very powerful platform for developing and deploying web

applications. Further, there are some advantages we can benefit from by using Windows

NT: [9]

• Better performance: Windows NT Server has been optimized to provide the best

performance for network-intensive server applications. On the other hand, Windows

95 and Windows NT Workstation have been optimized to provide the best

performance for productivity applications. Therefore, Windows NT Server yields

better performance when hosting ASP applications.

• More secure: Because IIS uses NTFS security when running under Windows NT

Server 4.0, Windows NT Server is a more secure platform to host ASP applications.

Windows 95 cannot implement security using NTFS security permissions because it

uses PWS (Personal Web Server), a watered-down version of Internet Information

Server.

35

• Easy integration with enterprise-quality applications: Enterprise-quality applications,

such as applications· in the Microsoft BackOffice Suite;· require Windows·NT Server.

Therefore, choosing Windows NT Server to develop ASP applications will make it

easier for a developer to integrate ASP applications with various components of

BackOffice to develop sophisticated Web applications.

4.1 .. 3 Web Server

A web site is composed of three components: the hardware (the computer), the software,

and a network connection. Each of these three plays a symmetrical role in establishing a

reliable web server. Because the technique used to develop the system here is ASP,

certainly the relationship between US, Windows NT Server, ASP and the database need

to be discussed.

Windows NT is not actually the only choice. There are three kinds of servers that can be

used to develop an ASP application. Internet Information Server (liS) is required if we

are using Windows NT Server, Microsoft Personal Web Server (PWS) is required if we

are using Windows 95, and Microsoft Peer Web Services is required if we are using

Windows NT \Vorkstation. Why? Because the ASP component is actually an ISAPI

(Internet Server API) application, the web developer should be able to develop ASP

applications with any ISAPI-compliant Web server by simply downloading the ASP

con1ponent of liS and installing it. [6] Although Windows NT Workstation as well as

Windows 95 can be used to develop ASP applications, the Windows NT is still

considered the preferred choice. The details will be discussed later.

36

4.1.4 Programming Language

The choice of programming language running at the server side is Visual Basic. Visual

Basic is the most compatible development system to use in conjunction with Microsoft

Access that is the database driver used for the system. In industry, Visual Basic is

considered a development tool that is easy to use and has built in local area network

(LAN) and Internet deployment models. Rich component encapsulation and reuse are an

industry-leading array of third-party components and the ability to use existing Visual

Basic code and technology. Visual Basic offers advanced features such as optimized

native code compilation and enhanced database access. The Microsoft Transaction Server

provides state-of-the art application performance and scalability for the additional

client/server, three-tier distributed and Internet application architectures. The new

released version of Visual Basic has the ability to merge client/server and Internet

technologies. Developers are no longer required to choose between performance and

productivity.

4.2 ASP Implementation

We briefly introduced the client/server interaction in ASP in an earlier in chapter 2

section (See Figure 2-2). But why choose ASP? How does it work with HTML? What is

the difference between it and dynamic HTML? Those topics are discussed in the

following sections.

4.2.1 Why Use ASP?

37

The primary difference between ASP and the other new generation technologies is that

ASP must be executed on the Web server, while the pages generated by other

technologies are interpreted by the browser (or client). The advantages that ASP enjoys

over CGI and Perl are those of simplicity and speed.

At one time, the browser could do everything you needed --- it interpreted HTML pages,

displayed graphics in a certain way and handled errors. However, with the passing of

time, browsers have had to cope with an ever-increasing list of tasks such as handling

scripts and having built in controls. Consequently, browsers have become bigger and

slower.

The idea behind ASP is to decrease the demand on browsers by getting the server to do

some of the work instead. A large central machine can be used to take some of the load,

performing some of these tasks itself instead of relaying them to the browser.

Some significant advantages are:

• minimizes network traffic by limiting the need for the browser and server to talk to

each other

• makes for quicker loading time since, in the end, you're only actually downloading a

page ofHTML

• allows you to run programs in languages that aren't supported by your user's browser

• can provide the client with data that does not reside on the client's machine

• provides improved security measures since you can code things which can never be

viewed from the browser

• enables Visual Basic developers to perform functions that previously required CGI or

ISAPI programming

• integrate ActiveX server components

38

4.2.2 ASP and HTML

The Hyper Text Markup Language (HTML) is used for the design layout and exhibition

of each page. All the forms and user interfaces are created by using HTML. As we

mentioned earlier, ASP is designed to be used together with HTML to create dynamic

pages. In fact, ASP actually creates HTML code. A web page that uses ASP is likely to

consist of a mixture of three types of syntax. Part of the page will be constructed from

simple text, part will be HTML and part will be ASP code. The following table

summarizes each of these aspects: [7]

Information to Viewer's browser on Simple ASCII text
Text be shown on the their PC shows the text

page

Instructions to Viewer's browser on Each tag within < >
HTML the browser their PC interprets the delimiters; usually has
tags about how to tags to format the text open and close tags, such

format text and as <TABLE>,
display images </TABLE>

Instructions to Web site host's Web Each ASP section
the Web server server software with contained within ~/o %>

ASP running ASP ASP extensions delimiters; ASP
statements about how to performs the statements have a flavor

create portions instructions of the ASP of Visual Basic, with the
of the page to code appearance of
be sent out programming code with

variables, decision trees,
etc.

39

4.2.3 ASP and Dynamic HTML

ASP and Dynamic HTML can both be thought of as extensions to scripting languages

and HTML; however, neither of them are programming languages in their own right.

ASP takes the scripting language code and converts it into HTML on the server, before

sending it back to the browser.

On the other hand, Dynamic HTML is just like scripting in that the script is interpreted

by the browser level that creates a representation of the page in HTML. In fact, the only

way in which Dynamic HTML differs from scripting is that it allows access to extra

features such as the ability to animate pages and position graphics and text precisely by

using (X, Y) type coordinates. [8] We could put it this way: ASP is a server-side

technology, while Dynamic HTML is a closely related client-side technology.

4.3WWW

The best choice of interface between all users (client) and the system (server), doubtless,

is the World Wide Web (WWW).

When the WWW [9] was introduced to the world in 1989, it added browsing capability to

the Internet. Users are able to access text, images, video and audio in a consistent

manner. Moreover, users can retrieve information using a graphical user interface rather

then using a dumb text terminal. The WWW operates on a client-server model. Every

web page has an address called its Uniform Resource Locator (URL). A URL contains

the object name, its address and the protocol used to find the object. A client sends a

40

service request to a server, and the server searches the web page locally and then sends

the result back to the client. Client and server communication is via Hypertext Transfer

Protocol (HTTP), which defines how documents are referenced and exchanged.

Because the client software interacts with the server according to a predefined protocol,

the client software can be customized for the user's particular computer host. Therefore

the server doesn't have to worry about the hardware particularities of the client software.

Separate versions of the information do not need to be developed for any particular

hardware platform since the customizations necessary are written into the client software

Figure 4-1 The WWW Communication

41

for each platform. Figure 4-1 is a simple diagram of how web server and web clients are

connected through the WWW.

In the WWW, information is organized using hypertext/hypermedia. Users can use web

browsers to travel between documents. There are many web browsers, such as Netscape,

Microsoft Explorer, Mosaic and Lynx, available today. Netscape is probably the most

popular accounting for over 70% of all browsers currently in use. [1 0]

The WWW is the most exciting development in the Internet. It supports not only text but

also images, videos, sounds as well as graphics. Users can easily connect to web sites by

using any kind of browser. By taking advantage of the WWW, the system defmitely can

use it as the interface.

4.4 Database Connectivity

In this section, we are going to discuss the system database connection. What is a

connection? A connection is what links the ASP script code to the database; it is a way to

tie them together. Once we have a way of connecting to a database, we need to know next

is how to identify the database and the Data Source Name (DSN). In this case, the Access

database is identified as the .mdb file.

We mentioned that the database used in this system was constructed by using Microsoft

Access 97. We also know that Microsoft provides access to a database with the ActiveX

42

Data Objects (ADO), which builds upon OLE-DB. OLE-DB is a very similar idea to

ODBC (Figure 4-2), but, in fact, it has a much broader range of data stores and can sit on

the top of ODBC. That means that we will be able to ·keep our existing ODBC

connections and use the new OLE-DB drivers. It introduces two new items: data

providers and data consumers. A data provider is something that provides data and a data

conswner is something that uses that data. In this contract manager system, the data

consumer is ASP. In another context, the data consumer could well be an application that

OLE· DB
Provider

ODBC

Program

ActiveX Data Objects

OLE-DB
Provider

OLE-DB
Provider

OLE-DB
Provider

Figure 4-2 OLE-DB Architecture

43

is written in another language, such as Visual Basic or Visual C++. In fact, ADO is the

actual consumer, because ADO talks to OLE-DB and we talk to ADO.

Indeed, we don't need to know anything about OLE-DB because ADO will hide all of the

complexity from us and give us a simple way of accessing data from the database. It is

the way we actually get data to and from a database. Figure 4-3 shows a diagram of how

the objects provided by ADO relate to each other. The topics, such as how the recordset

or fields collections work, are not our concern here. In this database connectivity section,

we just need to know how the system and backstage database got connected. Simple, we

just need to write one line of codes as below in our ASP file and then we will be able to

connect the system with our Access database:

Amazingly, this one-line code is actually the interaction between the database, ADO and

ASP.

44

Errors
Collection
(Optional)

Error
(Optional)

Active
Connection

Execute

Active
Connection

Command
(Optional)

Recordset

Fields
Collection

Source

Figure 4-3 The Architecture of ADO Objects

45

Parameters
Collection

Parameter
(Optional)

Field

CHAPTER 5 CONCLUSION

In this thesis, we designed and implemented an Internet-enabled database application by

using ASP and other related technologies. As shown in this thesis, we have studied how

to develop an on-line Internet application and, because it is Internet-enabled application,

we also have included a detail interpretation on the subject of security.

An on-line Internet application is very efficient for the both super users and end users for

a number of reasons:

• always on-line

• user does not get involved with system administration

• no installation needed

• no constraints on using specific software and PC

• no limitation on the location of the implementation

This system will be fully functioning at the FLDOE site. It enables remote access to

monitor hundreds of contracts with advanced scheduling, warning and accounting

capabilities. Because of the Internet-enabled feature, nationwide users, including

FLDOE project managers, FLDOE technical advisors and contractors, can follow on the

status of the contracts and contractors very closely.

46

To our best knowledge, the browsers still have some shortcomings need to be improved.

For example, instead of using reload function on each page, browsers cannot work

simultaneously with the database update function to post data. In the future, we may use

some newer technologies to enhance the functionality of the system on every part of it.

Overall, this project will make dramatic improvements on the contract tracking process

and more fully utilize the precious human resources available. Using this system is the

fastest and easiest way to accomplish the tasks for both contractors and the government

of the state Florida.

47

LIST OF REFERENCES

[1] Netscape World; http://www.netscapeworld.com/netscapeworldlnw-09-1997/nw-09-

dataquest.html; Kathleen Ohlson, IDG News Service Boston Bureau

[2] Knowledge Base on http://www.microsoft.com

[3] Sanjaya Hettihewa and Kelly Held, Active Server Pages, Sams.net Publishing, 1997,

IN., USA

[4] T. Bemers-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann, World-Wide Web: The

Information Universe, in: Electronic Networking: Research, Applications and Policy, vol.

1, No.2 (1992) 52-58.

[5) Microsoft Corporation: Windows NT.

[6] Brian Francis, John Kauffmann, Juan I. Llibre, David Sussman, and Chris Ullman, Active

Server Pages, Wrox Publishing, 1998, Chicago, Illinois, USA.

[7] Hyper Text Markup Language v3.2 Reference,

http:/ /www2. wvitcoe. wvnet.edu/-sbolt!html3.

[8] Internet Magazine, March, I 998

[9] Mark Handley and Jon Crowcroft, World-JVide Web: Beneath the Surf, UCL Press,

1994.

[10] Internet White Paper (EARTHWEB), http://www.idl.com/whitepap.html.

[1 I] Brent Baccala, Connected: An Internet Encyclopedia,

http://www.freesoft.org/connected/index.html, 1996

[I 2] Tracy LaQuey, The Internet Companion (A Beginner's Guide to Global networking),

ddison-Wes]ey, 1996

48

[13] D. Comer, Internetworking with TCPIIP: Principles, Protocols, Architectures,

Prentice Hall, 1988

[14] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William

Lorensen, Object-Oriented Requirements Analysis and Logical Design, John Wiley and

Sons, New York, 1993.

[15] Microsoft Corporation: Building Applications with Microsoft Access for Window95

Programming with Visual Basic for Application, 1997.

[16] R. Ebnasri, S.B. Navathe: Fundamentals of Database Systems. The Benjamin

Cammings Publishing Company, 1994

[17] Microsoft Corporation: Building Web Applications with Microsoft Active Server

Pages, 1997. ·

[18] Microsoft Corporation: Microsoft SQL Server version 6.0 Transact - SQL

Reference, 1997.

49

APPENDICES

~lo msg=session(''msg")%>
<HTML>
<HEAD>

<META HTTP~EQUIV="Content-Type" CONTENT="textlhtml; charset=iso-8859-
1 ">

<META NAME="Author" CONTENT="Yaojen Chang">
<TITLE>FLDOE SAE T~acking System</TITLE>

</HEAD>
<BODY>

<Table align=center cellspacing=O border=O>
<tr>

<td rowspan=2><irnage src=irnages/DoeLogo Top l.gif>
<td align=left><image src=images/DoeLogo Top22.jpg><tr>
<td>
<p>The Food and Nutrition Management Section (F&NM) of the Florida
Department of Education(FLDOE) is funded with moneys from the United States
Department of Agriculture (USDA). All grants, projects or purchase orders
entered into by F&NM are subject to regular audits by both USDA, and Auditor
General of the state of Florida<tr>
<ltd>

</tr>
<!Table>

<TABLE align=center WIDTH=640 BORDER=O CELLPADDING=5
CELLSPACING=O BGCOLOR=O>
<TR><TD BGCOLOR="#BODOBA" ALIGN=CENTER>

<TABLE>
<TR><TD>

<TABLE>
<TR>

<TD V ALIGN=CENTER></TD>
<TD WIDTH=16></TD>
<TD V ALIGN=CENTER><FONT SIZE=+ I
FACE="Verdana, AriaL, Helvetica"> Welcome, please identify
yourself:
Note: <u>All
inputs are case sensitive. </u></TD>

50

</TR>
</TABLE>

<lTD>
</TR>
</TABLE>
<hr>
<FORM Method="Post" Action="LoginCheck.asp">
<TABLE BORDER=O>
<TR>

<TD>Usemame:<ITD>
<TD><INPUT Type="Text" name="U serName" value="" maxlength=20></TD>

<ITR>
<TR>

<TD> Password:</TD>
<TD><INPUT Type="Password'' name="Password" value=""
MAXLENGTH=20></TD>
<TD align=center><INPUT Type=" Submit" value="Login"></TD>

</TR>
</TABLE>
</FORM>
</TD></TR> ·
</TABLE>

<Center>First-time login users Ciick
Here</ a> to request your login accounts. </Center>

<bl ink><1l/o=msgo/o><lblink>
<%

if session("msg")="" then
session. abandon

End If
session(''msg")=11

"

%>
</BODY>
</HTML>

<Script Language=VBScript runat=server>
Function Redirect()

Response.Redirect "Login.asp"
End function

51

</Script>

<'>lo
set Conn=Server.CreateObject("ADODB.Connection")
Conn.Open("SAEforASP")

IfRequest.Form("UserName")="" or Request.Form("Password")="" then
session(''msg")="<h3><center>Oops! You must enter all
information needed. </center><lh3>"

Else

Endlf

Redirect

sqlLogin="Select *From Login Users Where
((LoginUsers.User~ame='"&Request.form("UserName")&"'));"
set rsLogin=Conn.Execute(sqlLogin)

If rsLogin.eof then
rsLogin.close
session("msg")="<H3><center>INV ALID Account. Please try
again or quit. </center><IH3>"
Redirect

Elseifnot rsLogin("Password")=Request.Fonn("Password") then 'match the usemame,
check password

Else

rsLogin.close
session("msg")="<h3><center>Right user name but Wrong
password. Please try again or quit. </center><IH3>"
Redirect

session("UserType")=rsLogin("UserType")
session("UserName")=rsLogin("UserName")
session(" Password ")==rsLogin("Password")
session("ContractNumber")=rsLogin("LNameOrContractNo")
session("CompanyName")=rsLogin("FNameOrCompanyName")
session("LogonStatus")= 1
session(" AdrnOnlineDate")=rsLogin(" AdrnOnlineDate ")
sql="Update LoginUsers Set LoginUsers.AdmOnlineDate=#"&Date()&"# Where
((Login U sers.Password)='" &Request.form("Password ")&"');"
set rs2=Conn.Execute(sql)

SELECT CASE session("UserType")
case "S"

Response.Redirect "SuperU serMain.asp"
case "s"

Response.Redirect "SuperU serMain.asp"
case "C"

52

Response.Redirect "EndUserMain.asp"
case "c"

Response.Redirect "EndUserMain.asp"
END SELECT

End If

rsLogin.close
Conn. Close

o/o>

<%@ LANGUAGE="vbscript11 %>
<%

'---------------------------------------~-----------------·----------·"-------------------------------------
' Modes: The form mode can be controlled by passing the following
' nrune/value pairs using POST or GET:

FormMode=Edit
FormMode=Search
ForrnMode=Add

'-If a field contains a URL to an in1age and has a name that begins with "img_"
' (case-insensitive), the image will be displayed using the IMG tag.
'-If a field contains a URL and has a name that begins with "uri_"
' (case-insensitive), ajun1p will be displayed using the Anchor tag.

'---

' -------------------~-------------------------------·--------------------------·-----------------------------
' Purpose: Substitutes Empty for Null and trims leading/trailing spaces
'Inputs: varTemp -the target value
'Returns: The processed value

'---

Function ConvertNull(varTemp)
If IsNull(varTemp) Then

ConvertNull = ""

Else
ConvertNu11 = Trim(varTemp)

End If
End Function

53

I --.--------- ... ·-----------------------------------.-------------·---· .. ---------------·-------------------------·
'Purpose: Embeds bracketing quotes around the string
'Inputs: varTemp ~the target value
' Returns: The processed value
f

--------~·-------·---------------------~---·-----------------------

Function QuotedString(varTemp)
If IsNull(varTemp) Then

QuotedString = Chr(34) & Chr(34)
Else

QuotedString = Chr(34) & CStr(varTemp) & Chr(34)
End If

End Function

'---
' Purpose: Tests string to see if it is a URL by looking for protocol
' Inputs: varTemp - the target value
' Returns: True - if is URL, False if not

'---

Function IsURL(varTemp)
IsURL =True
IfUCase(Left(Trim(varTemp), 6)) ="HTTP:/" Then Exit Function
IfUCase(Left(Trim(varTemp), 6)) ="FILE:/" Then Exit Function
IfUCase(Left(Trim(varTemp), 8)) ="MAIL TO:/" Then Exit Function
IfUCase(Left(Trim(varTemp), 5)) = "FTP:/" Then Exit Function
IfUCase(Left(Trim(varTemp), 8)) ="GOPHER:/" Then Exit Function
IfUCase(Left(Trim(varTemp), 6)) ="NEWS:/" Then Exit Function
IfUCase(Left(Trim(varTemp), 7)) = "HTTPS:I" Then Exit Function
IfUCase(Left(Trim(varTemp), 8)) = "TELNET:/" Then Exit Function
lfUCase(Left(Trim(varTemp), 6)) = "NNTP:/" Then Exit Function
IsURL =False

End Function

'---
'Purpose: Tests whether the field in the recordset is updatable
'Assumes: That the recordset containing the field is open
1 Inputs: strFieldName - the name of the field in the recordset
1 Returns: True if updatable, False if not

·---

Function Can UpdateField(strFieldName)
Dim intUpdatable
intUpdatable = (adFidUpdatable Or adFldUnknownUpdatable)
CanUpdateField =True

54

Then
If (rsSContractContractors(strFieldNarne).Attributes And intUpdatable) = False

CanUpdateField =False
End If

End Function

~---
1 Purpose: Handles the display of a field from a recordset depending on its data type,
1 attributes, and the current mode.
'Assun1es: That the recordset containing the field is open That strFormMode is initialized
'Inputs: strFieldName- the name of the field in the recordset
' strLabel - the label to display

blnldentity- identity field flag
avarLookup- array of lookup values

'---

Sub ShowField(strFieldName, strLabel, blnldentity, avarLookup)
Dim blnFieldRequired
Dim intMaxSize
Dim intlnputSize
Di1n strOption 1 State
Din1 str0ption2State
Dim strFieldValue
Dim nPos
strFieldValue = ""
nPos=Instr(strFieldNatne,".")
Do While nPos > 0

strFieldName= Mid (strFieldNan1e, nPos+ 1)
nPos=Instr(strFieldNarne,". ")

Loop
' If not in Edit form mode then set value to empty so doesn't display
strFieldValue = '"'
If strFormMode ="Edit" Then strFieldValue =

RTrim(rsSContractContractors(strFieldName))

'See if the field is required by checking the attributes
blnFieldRequired =False
If (rsSContractContractors(strFieldName).Attributes And adFldlsNullable) = 0
Then

blnFieldRequired =True
End If

55

' Set values for the MaxLength and Size attributes
intMaxSize = dtMaxSize
intinputSize = rsSContractContractors(strFieldName).DefinedSize + 2
If strFormMode <:> "Search" Then intMaxSize = intinputSize - 2

'Write the field label and start the value cell
Response. Write "<TR V ALIGN=TOP>11

Response. Write "<TD HEIGHT=25 ALIGN=Left NOWRAP><FONT SIZE=-
1 > " & strLabel & "</FON1></TD>"
Response. Write "<TD WIDTH= tOO% >"

' If the field is not updatable, then handle
' it like an Identity column and exit
If Not CanUpdateField(strFieldName) Then

' Special handling if Binary
Select Case rsSContractContractors(strFieldName). Type

Case adBinary, adV arBinary, adLong V arBinary 'Binary
Response. Write "[Binary]"

Case Else
Select Case strF o.nnMode

Case "Edit"
Response. Write ConvertNull(strFieldValue)
Response. Write "<INPUT TYPE= Hidden
NAME=" & QuotedString(strFieldName)
Response. Write " VALUE=" &
QuotedString(strFieldValue) & ">"

Case 11Add"
Response. Write "[AutoNun1ber]"
Response. Write "<INPUT TYPE=Hidden
NAME=" & QuotedString(strFieldName)
Response. Write " VALUE=" &
QuotedString(strFieldValue) & " >"

Case ~~search"

End Select

Response. Write "<INPUT TYPE=Text
NAME=" & QuotedString(strFieldName)
Response. Write" SIZE=" & intlnputSize
Response. Write" MAXLENGTH=" &
intMaxSize
Response. Write " VALUE=" &
QuotedString(strFieldValue) & ">"

56

End If

End Select
Response.Write "<ffD><ITR>"
Exit Sub

' Handle lookups using a select and options
If Not IsNull(avarLookup) Then

End If

Response. Write "<SELECT NAME=" & QuotedString(strFieldName) &
">"
1 Add blank entry if not required or in search mode
If Not blnFieldRequired Or strFormMode ="Search" Then

End If

If (strFormMode ="Search" Or strFormMode = "Add") Then
Response. Write "<OPTION SELECTED>"

Else
Response.Write "<OPTION>"

End If

1 Loop thru the rows in the array
For intRow = 0 to UBound(avarLookup, 2)

Response .. Write ''<OPTION VALUE=" &
QuotedString(avarLookup(O, intRow))
IfstrFormMode ="Edit" Then

Next

End If

If ConvertNull(avarLookup(O, intRow)) =

ConvertNull(strFieldValue) Then
Response. Write " SELECTED"
End If

Response. Write ">"
Response. Write ConvertNull(avarLookup(l, intRow))

Response. Write "</SELECT>"
IfblnFieldRequired And strFormMode ="Add" Then

Response. Write n Required"
End If
Response. Write "</TD></TR>11

Exit Sub

' Evaluate data type and handle appropriately
Select Case rsSContractContractors(strFieldN arne). Type

Case adBoolean, adUnsignedTinylnt 'Boolean
If strFormMode = "Search" Then

strOption 1 State = " >Yes"
str0ption2State =" >No"

57

Else
Select Case strFieldValue

Case "True", "1 ", "-1"
strOptionlState ="CHECKED> Yes"
str0ption2State =">No"

Case "False11
, "0"

strOption 1 State = " >Yes"
str0ption2State = '' CHECKED> No"

Case Else
strOptionlState =">Yes"
str0ption2State = " >No"

End Select
End If
Response.Write "<INPUT TYPE=Radio VALUE=l NAME=" &
QuotedString(strFieldName) & strOptionlState
Response. Write "<INPUT TYPE= Radio V ALUE=O NAME=" &
QuotedString(strFieldName) & str0ption2State
If strFormMode ="Search" Then

End If

'Response. Write "<INPUT TYPE=Radio NAME=" &
QuotedString(strFieldName) & "CHECK.ED>Neither"
Response. Write "<INPUT TYPE=hidden NAME=" &
QuotedString(strFieldName) & 11 CHECKED><=
MUST Check One Of These For The Status Of Contract."

Case adBinary, adVarBinary, adLongVarBinary 'Binary

Response. Write "[Binary]"

Case adLongVarChar, adLongVarWChar 'Men1o

Response.Write "<TEXT AREA NAME=" &
QuotedString(strFieldNaxne) & n ROWS=3 COLS=80>"
Response. Write
Server.HTl\1LEncode(ConvertNull(strFieldValue))
Response.Write "</TEXT AREA>"

Case Else

Dim nType
nType=rsS ContractContractors(strFieldName). Type
If (n,Type <--:> adVarChar) and (nType <> adWVarChar) and
(nType <> adBSTR) and (nType <> adChar) and (nType <>
adWChar) Then intinputSize = (intinputSize-2)*3+2

58

If strFormMode <:> "Search" Then intMax.Size =
intlnputSize ... 2
End If

If blnidentity Then

Else

Select Case strFormMode

Case "Edit"
Response. Write ConvertNull(strFieldValue)
Response. Write "<INPUT TYPE= Hidden NAME=" &
QuotedString(strFieldName)
Response. Write" VALUE=" & QuotedString(strFieldValue) & "
>"

Case "Add"
Response. Write " [AutoN umber]"
Response. Write "<INPUT TYPE=Hidden NAME=" &
QuotedString(strFieldName)
Response. Write" VALUE=" & QuotedString(strFieldValue) & "
>"

Case "Search"

End Select

Response. Write "<INPUT TYPE=Text NAME=" &
QuotedString(strFieldName) & "SIZE=" & tlnputSize
Response. Write " MAXLENGTH=" & tMaxSize & " VALUE="
& Quoted String(strFieldValue) & " >"

If intinputSize =50 Then

intlnputSize = 9
Response. Write "<INPUT TYPE=Text NAME='' &
QuotedString(strFieldName)
Response. Write " SIZE=" & intlnputSize
Response. Write " MAXLENGTH=" & intMaxSize
Response. Write "VALUE=" & QuotedString(strFieldValue) & " >"
elseif intinputsize =26 then
intlnputSize = 9
Response. Write "<INPUT TYPE= Text NAME=" &
QuotedString(strFieldName)
Response. Write " SIZE=" & intlnputSize

59

Else

Response. Write " MAXLENGTH=" & intMaxSize
Response. Write" VALUE=" & QuotedString(strFieldValue) & ">"
else if intinputsize> 50 then
Response. Write "<TEXT AREA NAME=" & QuotedString(strFieldName)
& II ROWS=2 COLS=34>"
Response. Write Server.HTMLEncode(ConvertNull(strFieldValue))
Response. Write "<!TEXT AREA>"

intlnputS ize= 15
Response. Write ''<INPUT TYPE=Text NAME=" &
QuotedString(strFieldN arne)
Response. Write " SIZE=" & intinputSize
Response. Write " MAXLENGTH=" & intMaxSize
Response. Write" VALUE=" & QuotedString(strFieldValue) & ">"

'If intinputSize > 80 Then intinputSize = 80
'Response. Write "<INPUT TYPE= Text NAME=" &
QuotedString(strFieldN arne)
'Response. Write " SIZE=" & intinputSize

· 'Response. Write" MAXLENGTH=" & intMaxSize
'Response. Write" VALUE=" & QuotedString(strFieldValue) & ">"

' Check for special field types
Select Case U Case(Left(rsSContractContractors(strFieldName).Name, 4))

Case "IMG "
IfstrFieldValue <>""Then
Response.Write "

<IMG SRC=" &
QuotedString(strFieldValue) & ">

"
End If

Case "URL_"
If strFieldValue <> "" Then
Response. Write " <A HREF=" &
QuotedString(strFieldValue) & ">"
Response. Write "Go"
Response. Write ""
End If

Case Else
If IsURL(strFieldValue) Then
Response. Write " <A HREF=" &
QuotedString(strFieldValue) & ">"
Response. Write "Go"

60

Response. Write ""
End If

End If

End Select
End If

End Select

IfblnFieldRequired And strFormMode ="Add" Then
'Response. Write" <<===Required; You MUST indicate the status for the
contract."

End If
Response. Write "</TD></TR>"

End Sub
</SCRIPT>

<%@ LANGUAGE="VBScript" o/o>
<%

'---
'Action Page
' This file is an Active Server Page that contains the server script that handles filter,
' update, insert, and delete commands from the form view of a Data Form. It can also
' echo back confirmation of database operations and report errors.
' Some cmnmands are passed through and redirected.

'---
%>

<SCRIPT RUNAT=Server LANGUAGE="VBScript">

'---
' Purpose: Substitutes Null for Empty
'Inputs: varTemp -the target value
'Returns: The processed value

'---

Function RestoreNull(varTemp)
IfTrim(varTemp) =""Then

RestoreNull =Null
Else

RestoreNull = varTemp
End If

End Function

61

Sub RaiseError(intErrorValue, strFieldName)
DimstrMsg
Select Case intErrorV alue

Case errinvalidPrefix
strMsg = "Wildcard characters * and % can only be used at the end of the
criteria"
Case errlnvalidOperator

strMsg = "Invalid filtering operators - use <= or >= instead."
Case errlnvalidOperatorUse

strMsg = "The 'Like' operator can only be used with strings."
Case errNotEditable

strMsg = strFieldName & " field is not editable."
Case errValueRequired

strMsg ="A value is required for" & strFieldName & "."
End Select
Err.Raise intErrorValue, "DataForm", strMsg

End Sub

'---
' Purpose: Converts to subtype of string - handles Null cases
'Inputs: varTemp -the target value
' Returns: The processed value

'---

Function ConvertToString(varTemp)
IfisNull(varTemp) Then

ConvertToString =Null
Else

ConvertToString = CStr(varTemp)
End If

End Function

'---
' Purpose: Tests to equality while dealing with Null values
' Inputs: varTempl -the first value
' varTemp2 -the second value
' Returns: True if equal, False if not

'---

Function IsEqual(ByVal varTempl, By Val varTemp2)
IsEqual =False
If IsNull(varTemp I) And IsNull(varTemp2) Then

IsEqual = True
Else

62

IfisNull(varTempl) Then Exit Function
If IsNull(varTemp2) Then Exit Function

End If
IfvarTempl = varTemp2 Then IsEqual =True

End Function

'-------~---------------~--------~*--••-••-•------~~----••••------••••----~w•-------------------------------
1 Purpose: Tests whether the field in the recordset is required
'Assumes: That the recordset containing the field is open
1 Inputs: strFieldName -the name of the field in the recordset
1 Returns: True if updatable, False if not

'---

Function IsRequiredField(strFieldName)
IsRequiredField = False
If (rsSContractContractors(strFieldName).Attributes And adFldlsNullable) = 0

Then
IsRequiredField = True

End If
End Function

'---
1 Purpose: Tests whether the field in the recordset is updatable
' Assumes: That the recordset containing the field is open
' Effects: Sets Err object if field is not updatable
'Inputs: strFieldName- the name of the field in the recordset
'Returns: True ifupdatable, False if not

'---

Function CanUpdateField(strFieldName)
Dim intUpdatable
intUpdatable = {adFldUpdatable Or adFldUnknownUpdatable)
CanUpdateField =True
If (rsSContractContractors(strFieldName).Attributes And intUpdatable) =False

Then
CanUpdateField =False

End If
End Function

'---------------------------------~------------------------------------8~---------------------------------·-
'Purpose: Insert operation- updates a recordset field with a new value
' during an insert operation.
' Assumes: That the recordset containing the field is open
' Effects: Sets Err object if field is not set but is required
'Inputs: strFieldName- the name of the field in the recordset

63

' Returns: True if successful, False if ngt

'--------------------------·---------------~--~-·-·~----~---·~--

Function InsertField(strFieldName)
lnsertField=True
If IsEmpty(Request(strFieldName)) Then Exit Function
Select Case rsSContractContractors(strFieldName). Type

Case adBinary, adVarBinary, adLongVarBinary 'Binary
Case Else

End Select
End Function:

If CanUpdateField(strFieldName) Then

End If

If IsRequiredField(strFieldName) And
lsNull(RestoreNull(Request(strFieldName))) Then

RaiseError errValueRequired, strFieldName
InsertField = False
Exit Function

Endlf
rsSContractContractors(strFieldN arne) =

RestoreNull(Request(strFieldName))

'---~-------------------------------------
1 Purpose: Update operation - updates a recordset field with a new value
' Assumes: That the recordset containing the field is open
'Effects: Sets Err object if field is not set but is required
'Inputs: strFieldName- the name of the field in the recordset
1 Returns: True if successful, False if not

~---

Function U pdateField(strFieldN arne)
UpdateField = True
If lsEmpty(Request(strFieldN arne)) Then Exit Function
Select Case rsSContractContractors(strFieldNarne). Type

Case adBinary, adVarBinary, adLongVarBinary 'Binary
Case Else

' Only update if the value has changed
If Not
IsEqual(ConvertToString(rsSContractContractors(strFieldName)),
RestoreNull(Request(strFieldNarne))) Then
If Can UpdateField(strFieldName) Then

If IsRequiredField(strFieldName) And
IsNuli(RestoreNull(Request(strFieldName))) Then
RaiseError errValueRequired, strFieldNarne

64

Else

End If
Endlf

UpdateField = False
Exit Function

Endlf
rsSContractContractors(strFieldName) =
RestoreNull(Request(strFieldName))

RaiseError errNotEditable, strFieldN arne
UpdateField =False

End Select
End Function

~---
1 Purpose: Criteria handler for a field in the recordset. Determines
1 correct delimiter based on data type
'Effects: Appends to strWhere and strWhereDisplay variables
'Inputs: strFieldName- the name of the field in the recordset
' avarLookup - lookup array - null if none

'---

Sub FilterField(ByVal strFieldName, avarLookup)
Dim strFieldDelimiter
Dim strDisplayValue
Dim strValue
Dim intRow
strValue = Request(strFieldName)
strDisplayValue = Request(strFieldName)

' If empty then exit right away
IfRequest(strFieldName) = '"' Then Exit Sub

'IF request(strFieldName)="Content" then
'strFieldName=""

'ELSE

' Concatenate the And boolean operator
If strWhere <> "" Then strWhere = strWhere & " And"
If strWhereDisplay <> ""Then strWhereDisplay = strWhereDisplay & "And"

' If lookup field, then use lookup value for display
If Not IsNull(avarLookup) Then

For intRow = 0 to UBound(avarLookup, 2)
If CStr(avarLookup(O, intRow)) = Request(strFieldName) Then

strDisplayValue = avarLookup(l, intRow)
Exit For

65

Next
End If

'END IF

Endlf

'Set delimiter based on data type
Select Case rsSContractContractors(strFieldName). Type

Case adBSTR, adChar, adWChar, adVarChar, adVarWChar 'string types
strFieldDelimiter = ""'

Case adLongVarChar, adLongVarWChar 'long string types
strFieldDelimiter = "'"

Case adDate, adDBDate, adDBTimeStamp 'date types
strFieldDelimiter = "#"

Case Else
strFieldDelimiter = ""

End Select

' Modifies script level variables
strWhere = strWhere & " " & PrepFilterltem(strFieldName, strValue,
strFieldDelimiter)
strWhereDisplay = strWhereDisplay & "" & PrepFilterltem(strFieldName,
strDisplay Value, strFieldDelimiter)

End Sub

'---
1 Purpose: Constructs a name/value pair for a where clause
1 Effects: Sets Err object if the criteria is invalid
' Inputs: strFieldName - the name of the field in the recordset
I strCriteria - the criteria to use

strDelimiter- the proper delimiter to use
1 Returns: The name/value pair as a string

~---

Function PrepFilterltem(ByVal strFieldName, ByVal strCriteria, ByVal strDelimiter)
Dim strOperator
Dim intEndOtword
Dim strWord

'Char, VarChar, and LongVarChar must be single quote delimited.
1 Dates are pound sign delimited.
' Numerics should not be delimited.
'String to Date conversion rules are same as VBA.
'Only support for ANDing.
' Support the LIKE operator but only with * or o/o as suffix.

66

strCriteria = Trim(strCriteria) 'remove leading/trailing spaces
strOperator = "=" 'sets default
strV alue = strCriteria 'sets default

' Get first word and look for operator
intEndOfWord = lnStr(strCriteria," ")
If intEndOfW ord Then

Else

strWord = UCase(Left(strCriteria, intEndOfWord- 1))
' See if the word is an operator
Select Case strWord

Case"=","<",">","<=",">=", "<:>","LIKE"
strOperator = strWord
strValue = Trim(Mid(strCriteria, intEndOfWord + 1))

Case"=<","=>"
RaiseError errinvalidOperator, strFieldName

End Select

strWord = UCase(Left(strCriteria, 2))
Select Case strWord

Case"<=",">=","<:>"
strOperator = strWord
strValue = Trim(Mid(strCriteria, 3))

Case"=<", "=>"
RaiseError errlnvalidOperator, strFieldName

Case Else
str Word = UCase(Left(strCriteria, 1))
Select Case strWord

Case "=11
, "<", ">"

strOperator = strWord
strValue = Trim(Mid(strCriteria, 2))

End Select
End Select

End If

' Make sure LIKE is only used with strings
If strOperator = "LIKE" and strDelimiter <:> ""' Then

RaiseError errlnvalidOperatorUse, strFieldName
End If

' Strip any extraneous delimiters because we add them anyway
' Single Quote
lfLeft(strValue, 1) = Chr(39) Then strValue = Mid(strValue, 2)
If Right(strValue, 1) = Chr(39) Then strValue = Left(strValue, Len(strValue)- 1)

' Double Quote -just in case

67

lfLeft(strValue, 1) = Chr{34) Then strValue = Mid(strValue, 2)
IfRight(strValue, 1) = Chr(34) Then strValue = Left(strValue, Len(strValue)- 1)

' Pound sign - dates
IfLeft(strValue, 1) = Chr(35) Then strValue = Mid(strValue, 2)
IfRight(strValue, 1) = Chr(35) Then strValue = Left(strValue, Len(strValue)- 1)

' Check for leading wildcards
IfLeft(strValue, I)= 11*11 Or Left(strValue, 1) ="%"Then

RaiseError errlnvalidPrefix, strFieldName
End If

PrepFilterltem = "[" & strFieldName & "]" & " " & strOperator & " " &
strDelimiter & strValue & strDelimiter
End Function

</SCRIPT>

<o/o
If Not IsEmpty(Request("DataAction")) Then

strDataAction = Trim(Request("DataAction"))
Else

Response.Redirect "SContractForm.asp?FormMode=Edit"
End If

Select Case strDataAction

Case "List View"

Response.Redirect "SContractList.asp"

Case "Cancel"

Response.Redirect "SContractF orm.asp?F ormMode=Edit"

Case "Search"

On Error Resume Next
Session("rsSContractContractors_Filter") = ""
'Session("rsSContractContractors _ FilterDisplay") = '"'

Session("rsSContractContractors _Record set").Filter = ""

68

Response.Redirect "SContractForm.asp?FormMode=" & strDataAction

Case 11Add"

On Error Resume Next
Session("rsSContractContractors_Filter") = ""

Session("rsSContractContractors_FilterDisplay11
) = ""

Session("rsSContractContractors _ Recordset").Filter = ""

Response.Redirect 11 SContractForm.asp?FonnMode=11 & strDataAction

Case "Find"

Session("rsSContractContractors_PageSize") = 1 'So we don't do standard
page conversion
Session(''rsSContractContractors _ AbsolutePage") =

CLng(Request("Bookmark"))
Response.Redirect "SContractForm.asp"

Case 11 All Records 11

On Error Resume Next
Session(11rsSContractContractors _Filter") = ""
Session(''rsSContractContractors _ FilterDisplay11

) = " 11

Session("rsSContractContractors _ Recordset").Filter = 1111

Session('' rsSContractContractors _ AbsolutePage") = 1
Response.Redirect "SContractForm.asp11

Case 110011

On Error Resume Next
' Make sure we exit and re-process the form if session has timed out
If IsEmpty(Session("rsSContractContractors _ Recordset")) Then

Response.Redirect 11 SContractForm.asp?F ormMode=Edit"
Endlf

Set rsSContractContractors =

Session("rsSContractContractors _ Recordset")

strWhere = "''

strWhereDisplay = ""
FilterField "Complete", Null
FilterField "Title", Null
Filter Field "ContractorNumber", Null
FilterField "BeginDate", Null
FilterField "EndDate", Null

69

FilterField 11 Amount", Null
Filter Field "IntFundingSource", Null
FilterField "Content", Null
FilterField "DOEStaff", Null
FilterField "DOETech", Null
FilterField "DoeNote", Null
FilterField "DoeNotice", Null

'Filter the recordset
IfstrWhere <>""Then

Else

Session(''rsSContractContractors _Filter") = str Where
Session("rsSContractContractors _ FilterDisplay") =
strWhereDisplay
Session("rsSContractContractors_AbsolutePage") = 1

Session("rsSContractContractors _Filter") = ""
Session("rsSContractContractors_FilterDisplay") = ""

End If

. ' Jump back to the form
IfErr.Number = 0 Then Response.Redirect "SContractForm.asp"

Case "Save"

On Error Resume Next
' Make sure we exit and re-process the form if session has timed out
If IsEmpty(Session("rsSContractContractors _ Recordset")) Then

Response.Redirect "SContractF orm.asp?F ormMode=Edit"
End If

Set rsSContractContractors =

Session(''rsSContractContractors _ Recordset")
rsSContractContractors.AddNew

Do
If Not lnsertField("Complete") Then Exit Do
If Not InsertField(''Title") Then Exit Do
If Not lnsertField("ContractorNumber") Then Exit Do
If Not InsertField("BeginDate") Then Exit Do
If Not InsertField("EndDate") Then Exit Do
If Not InsertField("Amount11

) Then Exit Do
If Not InsertField("IntFundingSource") Then Exit Do
If Not InsertField("Content") Then Exit Do
If Not InsertField("DOEStaff') Then Exit Do
If Not InsertField("DOETech") Then Exit Do

70

Loop

If Not InsertField("DoeNote") Then Exit Do
If Not InsertField("DoeNotice") Then Exit Do

rsSContractContractors. Update
Exit Do

IfErr.Number <> 0 Then

Else

End If

Case "Update"

If rsSContractContractors.EditMode Then
rsSContractContractors.CancelUpdate

If lsEmpty(Session("rsSContractContractors _ AbsolutePage")) Or
Sess,ion("rsSContractContractors_AbsolutePage") = 0 Then
Session("rsSContractContractors _ AbsolutePage") = 1
End If
' Requery static cursor so inserted record is visible
If rsSContractContractors.CursorType = adOpenStatic Then
rsSContractContractors.Requery
Session("rsSContractContractors_Status") ="Record has been
inserted"

On Error Resume Next
' Make sure we exit and re-process the form if session has timed out
If IsEmpty(Session("rsSContractContractors _ Recordset")) Then

Response.Redirect "SContractForm.asp?FormMode=Edit"
End If

Set rsSContractContractors =
Session("rsSContractContractors _ Recordset")
If rsSContractContractors.EOF and rsSContractContractors.BOF Then
Response.Redirect "SContractF orm.asp"

Do

If Not UpdateField(11Complete") Then Exit Do
If Not UpdateField("Title") Then Exit Do
If Not UpdateField(11ContractorNumber") Then Exit Do
If Not UpdateField(11BeginDate") Then Exit Do
If Not UpdateField("EndDate") Then Exit Do
If Not UpdateField("Amount") Then Exit Do
If Not UpdateField("lntFundingSource") Then Exit Do
If Not UpdateField("Content") Then Exit Do

71

Loop

If Not UpdateField("DOEStaff') Then Exit Do
If Not UpdateField("DOETech'') Then Exit Do
If Not UpdateField("DoeNote") Then Exit Do
If Not UpdateField("DoeNotice") Then Exit Do

If rsSContractContractors.EditMode Then
rsSContractContractors. Update
Exit Do

IfErr.Number <> 0 Then
If rsSContractContractors.EditMode Then
rsSContractContractors. CancelU pdate

End If

Case "Delete"

On Error Resume Next

. ' Make sure we exit and re-process the form if session has timed out
If IsEmpty(Session("rsSContractContractors _ Recordset")) Then

Response.Redirect "SContractForm.asp?F ormMode=Edit"
Endlf

Set rsSContractContractors =
Session(" rsSContractContractors _ Recordset")
If rsSContractContractors.EOF and rsSContractContractors.BOF Then
Response.Redirect "SContractForm.asp"

rsSContractContractors.Delete

' Proceed if no error
If Err.Number = 0 Then

' Requery static cursor so deleted record is removed
If rsSContractContractors.CursorType = ad Open Static Then
rsSContractContractors.Requery

I Move off deleted rec
rsSContractContractors.MoveNext

1 If at EOF then jump back one and adjust AbsolutePage
If rsSContractContractors.EOF Then

rsSContractContractors.MovePrevious

72

S ession("rsSContractContractors _ AbsolutePage") =
Session("rsSContractContractors _ AbsolutePage") • 1

If rsSContractContractors.BOF And
rsSContractContractors.EOF Then
rsSContractContractors.Requery

End Select
%>

<%

End If
Endlf

Select Case strDataAction

Case "Save"

Response. Write(" Unable to save the record into Contractors.")

Case '~Update"

Response. Write("Unable to post the updated record to Contractors.")

Case "Delete"

Response. Write("Unable to delete the record from Contractors.")

End Select
o/o>

'---
' Purpose: Substitutes Null for Empty
' Inputs: varTemp -the target value
'Returns: The processed value

'---

Function RestoreNull(varTemp)
IfTrim(varTemp) =""Then

RestoreNull =Null
Else

RestoreNull = varTemp
End If

73

End Function

Sub RaiseError(intErrorValue, strField.Name)
DimstrMsg
Select Case intErrorValue

Case errinvalidPrefix
strMsg = "Wildcard characters * and % can only be used at the end
of the criteria"

Case errinvalidOperator
strMsg = "Invalid filtering operators - use <= or >= instead."

Case errinvalidOperatorUse
strMsg = "The 'Like' operator can only be used with strings."

Case errNotEditable
strMsg = strFieldName & " field is not editable."

Case errValueRequired
strMsg ="A value is required for" & strFieldName & "."

End Select
Err.Raise intErrorValue, "DataForm", strMsg

End Sub

'---
1 Purpose: Converts to subtype of string - handles Null cases
'Inputs: varTemp- the target value
'Returns: The processed value

'---

Function ConvertToString(varTemp)
IflsNull(varTemp) Then

ConvertToString =Null
Else

ConvertToString = CStr(varTemp)
End If

End Function

'--~--·--~--------------··
' Purpose: Tests to equality while dealing with Null values
1 Inputs: varTempl -the first value
1 varTemp2 - the second value
' Returns: True if equal, False if not

~---

Function IsEqual(ByVal varTempl, ByVal varTemp2)
IsEqual =False

If lsNull(varTemp 1) And IsNull(varTemp2) Then
IsEqual = True

74

Else
lflsNull(varTempl) Then Exit Function
If IsNull(varTemp2) Then Exit Function

Endlf
IfvarTempl = varTemp2 Then IsEqual =True

End Function

' ----------------w---------------------------•-¥M~----------•--•-••--•••-•••-------------------------~-~-~~-
'Purpose: Tests whether the field in the recordset is required
'Inputs: strFieldName- the name of the field in the recordset
'Returns: True ifupdatable, False if not
I

Function IsRequired.Field(strFieldName)
IsRequiredField = False
If (rsSPaymentSQLQuery(strFieldName).Attributes And adFldlsNullable) = 0

Then
IsRequiredField = True

End If
End Function

'---
'Purpose: Tests whether the field in the recordset is updatable
' Inputs: strFieldName - the name of the field in the record set
' Returns: True if updatable, False if not
I

--~--

Function CanUpdateField(strFieldName)
Dim intUpdatable
intUpdatable = (adFldUpdatable Or adFldUnknownUpdatable)
CanUpdateField =True
If (rsSPaymentSQLQuery(strFieldName).Attributes And intUpdatable) =False

Then
CanUpdateField =False

End If
End Function

,
--·--~-·--•••w••~-~---------------------------

1 Purpose: Insert operation - updates a recordset field with a new value
' during an insert operation.
1 Inputs: strFieldName - the name of the field in the recordset
' Returns: True if successful, False if not
·---~---···-·~-~~M·--*~~------------------

Function lnsertField(strFieldName)

75

InsertField = True
If IsEmpty(Request(strFieldName)) Then Exit Function
Select Case rsSPaymentSQLQuery(strField.Name). Type

Case adBinary, adVarBinary, ad.LongVarBinary
Case Else

If CanUpdateField(strFieldName) Then

Endlf

If IsRequiredField(strFieldName) And
IsNuH(RestoreNull(Request(strFieldName))) Then

RaiseError errValueRequired, strFieldName
lnsertField = False
Exit Function

Endlf
rsSPaymentSQLQuery(strFieldName) =
RestoreNull(Request(strFieldN arne))

End Select
End Function

I

--------··--~---~--
1 Purpose: Update operation - updates a recordset field with a new value
' Inputs: sirFieldName - the name of the field in the recordset
1 Returns: True if successful, False if not

'---

Function UpdateField(strFieldName)
UpdateField = True
IflsEmpty(Request(strFieldName)) Then Exit Function
Select Case rsSPaymentSQLQuery(strFieldName).Type

Case adBinary, adVarBinary, adLongVarBinary
Case Else

'Only update if the value has changed
If Not
IsEqual(ConvertToString(rsSPaymentSQLQuery(strFieldName)),
RestoreNull(Request(strFieldName))) Then

If CanUpdateField(strFieldName) Then

Else

If IsRequiredField(strFieldName) And
IsNull(RestoreNull(Request(strFieldName))) Then

RaiseError errV alueRequired, strFieldName
UpdateField = False
Exit Function

Endlf
rsSPaymentSQLQuery(strFieldName) =

RestoreNull(Request(strFieldName))

76

Endlf
End If

RaiseError errNotEditable, strFieldName
UpdateField = False

End Select
End Function

I --................. _____ ~---M-MoOa·-----------------------.. ~--~--~~~------.liiilii-ile-iilfjM4ill!liiii-!MiW--Iilolliil!illl.fMI ___________ III!M-IIIII!-iMIIIii!•MIIa-llll-llli! , ••
1 Purpose: Criteria handler for a field in the recordset. Determines correct delimiter
1 based on data type
1 _Inputs: strFieldName - the name of the field in the recordset
' avarLookup - lookup array - null if none
I

------------------------------~---------------------------·----~--------·~-~-------~-------------------~-~-

Sub FilterField(ByVal strFieldName, avarLookup)
Dim strFieldDelimiter
Ditn strDisplayValue
Dim strValue
Dim intRow
strValue = Request(strFieldName)
strD!splayValue = Request(strFieldName)

' If empty then exit right away
IfRequest(strFieldName) = 1111 Then Exit Sub

' Concatenate the And boolean operator
If strWhere <>""Then strWhere = strWhere & "And"
If strWhereDisplay <>""Then strWhereDisplay = strWhereDisplay & "And"

' If lookup field, then use lookup value for display
If Not IsNull(avarLookup) Then

For intRow = 0 to UBound(avarLookup, 2)

Next
End If

IfCStr(avarLookup(O, intRow)) = Request(strFieldName) Then
strDisplayValue = avarLookup(l, intRow)
Exit For

Endlf

' Set delimiter based on data type
Select Case rsSPaymentSQLQuery(strFieldName). Type

Case adBSTR, adChar, adWChar, adVarChar, adVarWChar
strFieldDelimiter = ""'

Case adLongVarChar, adLongVarWChar
strFieldDelimiter = ""'

77

Case ad.Date, adDBDate, adDBTimeStamp
strField.Delimiter = "#"

Case Else
strField.Delimiter = •m

End Select

' Modifies script level variables
strWhere = strWhere & " " & PrepFilterltem(strFieldName, strValue,
strFieldDelimiter)
strWhereDisplay = strWhereDisplay & "" & PrepFilterltem(strFieldName,
strDisplayValue, strFieldDelimiter)

End Sub

~---
1 Purpose: Constructs a name/value pair for a where clause
1 Inputs: strFieldNarne- the name of the field in the recordset

strCriteria - the criteria to use
strDelimiter - the proper delimiter to use

' Returns: The name/value pair as a string

'---

Function PrepFilterltem(ByVal strFieldName, By Val strCriteria, By Val strDelimiter)
Dim strOperator
Dim intEndOfWord
Dim strWord

strCriteria = Trim(strCriteria)
strOperator = "="
strValue = strCriteria

' Get first word and look for operator
intEndOfWord = InStr(strCriteria," ")
If intEndOfWord Then

Else

strWord = UCase(Left(strCriteria, intEndOfWord- 1))
' See if the word is an operator
Select Case strWord

Case"=","<",">","<=",">=", "<>","LIKE"
strOperator = strWord
strValue = Trim(Mid(strCriteria, intEndOfWord + 1))

Case"=<", "=>"
RaiseError errlnvalidOperator, strFieldName

End Select

strWord = UCase(Left(strCriteria, 2))

78

Select Case strWord
Case"<=", ">=", "<>"

strOperator = strWord
strValue = Trim(Mid(strCriteria, 3))

Case "=<", "=>"
RaiseError errlnvalidOperator, strFieldName

Case Else
strWord = UCase(Left(strCriteria, 1))
Select Case strWord

Case "='\ "<", ">"
strOperator = strWord
strValue = Trim(Mid(strCriteria, 2))

End Select
End Select

End If

1 Make sure LIKE is only used with strings
If strOperator = "LIKE" and strDelimiter <> 11111 Then

RaiseError errlnvalidOperatorU se, strFieldName
End If

'Single Quote
IfLeft(strValue, 1) = Chr(39) Then strValue = Mid(strValue, 2)
IfRight(strValue, 1) = Chr(39) Then strValue = Left(strValue, Len(strValue)- 1)

'Double Quote- just in case
IfLeft(strValue, 1) = Chr(34) Then strValue = Mid(strValue, 2)
IfRight(strValue, 1) = Chr(34) Then strValue = Left(strValue, Len(strValue)- 1)

1 Pound sign- dates
IfLeft(strValue, I)= Chr(35) Then strValue = Mid(strValue, 2)
IfRight(strValue, 1) = Chr(35) Then strValue = Left(strValue, Len(strValue)- 1)

' Check for leading wildcards
IfLeft(strValue, 1) ="*"Or Left(strValue, 1) ="%"Then

RaiseError errlnvalidPrefix, strFieldName
Endlf

PrepFilterltem = "[" & strFieldName & '']'' & "" & strOperator & "" &
strDelimiter & strValue & strDelimiter
End Function

---~---
' Purpose: Display field involved in a database operation for feedback.
' strFieldName - the name of the field in the recordset

79

' -~-~·R--M·-------------------~---~----~-------~----------------------

Sub FeedbackField(strFieldLabel, strFieldName, avarLookup)
Dim strBool
Dim intRow
Response. Write "<TR V ALIGN=TOP>"
Response. Write "<TD ALIGN=Left> " &
strFieldLabel & "<IB><IFONT><ITD>"
Response. Write "<fD BGCOLOR=White WIDTH=lOO% ALIGN=Left><FONT
SIZE=- I>"

1 Test for lookup
If Not IsNull(avarLookup) Then

Endlf

For intRow = 0 to UBound(avarLookup, 2)

Next

If CStr(avarLookup(O, intRow)) = Request(strFieldName) Then
Response. Write Server.HTMLEncode(avarLookup(l,
intRow))
Exit For

Endlf

Response. Write "<ITD></TR>"
Exit Sub

' Test for empty
IfRequest(strFieldName) =""Then

Response. Write " "

End If

Response. Write "</TD><ITR>"
Exit Sub

1 Test the data types and display appropriately
Select Case rsSPaymentSQLQuery(strFieldName).Type

Case adBoolean, adUnsignedTinylnt
strBool = ""
IfRequest(strFieldName) <> 0 Then

strBool = "True"
Else

strBool = "False"
Endlf
Response. Write strBool

Case adBinary, adVarBinary, adLongVarBinary
Response. Write "[Binary]"

Case adLongV arChar, adLongV arWChar
Response. Write Server.HTMLEncode(Request(strFieldName))

80

Case Else

End Select

If Not CanUpdateField(strFieldName) Then
Response. Write " [Auto Number]"

Else
Response. Write
Server.HTMLEncode(Request(strFieldName))

Endlf

Response. Write "<ITD></TR>"
End Sub

Select Case strDataAction

Case "List View"

Response.Redirect 11 SPayrnentList.asp"

Case "Cancer'

Response. Redirect "SPayrnentF onn.asp?F ormMode=Edit"

Case "Filter"

On Error Resume Next
Session(11rsSPaymentSQLQuery _Filter")=""
Session("rsSPaymentSQLQuery _FilterDisplay") = 1111

Session("rsSPaymentSQLQuery _Recordset").Filter = ""
Response.Redirect 11 SPaymentForrn.asp?FormMode=11 & strDataAction

Case "New"

On Error Resume Next
Session("rsSPaymentSQLQuery _Filter")=""
Session("rsSPaytnentSQLQuery _FilterDisplay") = '"'

Session(''rsSPaymentSQLQuery_Recordset").Filter = ""
Response.Redirect "SPaymentForm.asp?FormMode=" & strDataAction

Case "Find"

Session("rsSPaymentSQLQuery _PageSize") = 1 'So we don't do standard
page conversion

81

Session("rsSPaymentSQLQuery _ AbsolutePage") =
CLng(Request("Bookmarkn))
Response.Redirect "SPaymentForm.asp"
'Response.Redirect "SPaymentEdit2.asp"

Case "All Records"

On Error Resume Next
Session("rsSPaymentSQLQuery _Filter") = '"'
Session("rsSPaymentSQLQuery _ FilterDisplay") = ""
Session("rsSPaymentSQLQuery _Recordset").Filter = ""
Session("rsSPaymentSQLQuery _AbsolutePage") = 1
Response.Redirect "SPaymentF orm.asp"

Case "Apply"

On Error Resume Next

1 Make sure we exit and re-process the form if session has timed out
If IsEmpty(Session("rsSPaymentSQLQuery _ Recordset")) Then

Response.Redirect "SPaymentF onn.asp?F onnMode=Edit"
End If

Set rsSPaymentSQLQuery = Session("rsSPaymentSQLQuery _Recordset")

strWhere = ""
str WhereDisplay = ""
Filter Field "ContractorNumber", Null
FilterField "Title", Null
FilterField "Pay Date", Null
Filter Field "Pay", Null
Filter Field "MadeBy", Null
Filter Field "ApprovedBy", Null
FilterField "Status". Null
FilterField "Note", Null

1 Filter the recordset
If str Where <> "" Then

Else

Session("rsSPaymentSQLQuery _Filter")= strWhere
Session("rsSPaymentSQLQuery _FilterDisplay") =

strWhereDisplay
Session("rsSPaymentSQLQuery _AbsolutePage") = 1

Session("rsSPaymentSQLQuery _Filter")=""
Session("rsSPaymentSQLQuery _FilterDisplay") = ""

82

Endlf

1 Jun1p back to the form
IfErr.Number= 0 Then Response.Redirect "SPaymentForm.asp"

Case "Insert"

On Error Resume Next

1 Make sure we exit and re-process the form if session has timed out
If lsEmpty(Session("rsSPaymentSQLQuery _ Recordset")) Then

Response.Redirect "SPaymentF orm.asp?F ormMode=Edit"
End If

Set rsSPaymentSQLQuery = Session("rsSPaymentSQLQuery _Recordset")
rsSPaymentSQLQuery.AddNew

Do

Loop

IfNot lnsertField("ContractorNumber"} Then Exit Do
If Not lnsertField("Title") Then Exit Do
If Not InsertField("PayDate") Then Exit Do
If Not InsertField("Pay") Then Exit Do
If Not InsertField(''MadeBy") Then Exit Do
If Not InsertField("ApprovedBy") Then Exit Do
If Not InsertField("Status"} Then Exit Do
If Not InsertField("Note") Then Exit Do

rsSPaymentSQLQuery.Update
Exit Do

IfErr.Number <> 0 Then

Else

End If

If rsSPaymentSQLQuery .EditMode Then
rsSPaymentSQLQuery. Cancel Update

If IsEmpty(Session("rsSPaymentSQLQuery _AbsolutePage")) Or
Session("rsSPaymentSQLQuery _ AbsolutePage") = 0 Then
Session("rsSPaymentSQLQuery _AbsolutePage") = 1
End If
' Requery static cursor so inserted record is visible
If rsSPaymentSQLQuery.CursorType = adOpenStatic Then
rsS PaymentSQ LQuery .Requery
Session("rsSPaymentSQLQuery_Status"} ="Record has been
inserted"

83

Case "Update"

On Error Resume Next

' Make sure we exit and re-process the form if session has timed out
If IsEmpty(Session(nrsSPaymentSQLQuery _ Recordset")) Then

Response.Redirect "SPaymentForm.asp?Form.Mode=Edit"
End If

Set rsSPaymentSQLQuery = Session("rsSPaymentSQLQuery _Recordset")
IfrsSPaytnentSQLQuery.EOF and rsSPaymentSQLQuery.BOF Then
Response.Redirect "SPaymentForm.asp"

Do

Loop

IfNot UpdateField("ContractorNumber") Then Exit Do
If Not UpdateField(''Title") Then Exit Do
If Not UpdateField("PayDate") Then Exit Do
IfNot UpdateField("Pay") Then Exit Do
If Not UpdateField("MadeBy") Then Exit Do
If Not UpdateField("ApprovedBy") Then Exit Do
If Not UpdateField("Status") Then Exit Do
If Not UpdateField("Note") Then Exit Do

If rsSPaymentSQLQuery .EditMode Then
rsSPaymentSQLQuery. Update
Exit Do

IfErr.Number <> 0 Then
If rsSPaymentSQLQuery .EditMode Then
rsSPaymentSQLQuery .Cancel Update

End If

Case "Delete"

On Error Resume Next

' Make sure we exit and re-process the form if session has timed out
If IsEmpty(Session("rsSPayn1entSQ LQuery _ Recordset")) Then

Response.Redirect "SPaytnentForm.asp?FormMode=Edit"
End If

Set rsSPayn1entSQLQuery = Session(''rsSPayn1entSQLQuery _Recordset")

84

End Select

<%
If Err Then

IfrsSPaymentSQLQuery.EOF and rsSPaymentSQLQuery.BOF Then
Response.Redirect "SPaymentF orm.asp11

rsSPaymentSQLQuery .Delete

' Proceed if no error
If Err.Number = 0 Then

' Requery static cursor so deleted record is removed
IfrsSPaymentSQLQuery.CursorType = adOpenStatic Then
rsSPaymentSQLQuery .Requery

' Move off deleted rec
rsSPaymentSQLQuery.MoveNext

'If at EOF then jump back one and adjust AbsolutePage
IfrsSPaymentSQLQuery.EOF Then

End If
End If

rsSPaymentSQLQuery .MovePrevious
Session("rsSPaymentSQLQuery _ AbsolutePage") =
Session("rsSPaymentSQLQuery _ AbsolutePage") - 1

IfrsSPaymentSQLQuery.BOF And
rsSPaymentSQLQuery.EOF Then
rsSPaymentSQLQuery .Requery

Select Case Err.Number
Case -2147467259

strErrorAdditionallnfo =" This may be caused by an attempt to
update a non-primary table in a view."

Case Else

End Select
%>

<HTML>
<HEAD>

strErrorAdditionallnfo = ""

<MET A NAME=" GENERA TOR" CONTENT="Microsoft VisuallnterDev">
<META HTTP-EQUIV="Content-Type" CONTENT="textlhtml; charset=IS0-8859-1">

85

<META NAME="keywords" CONTENT=" Payment History --- For View Only Form">
<TITLE> Payment History--- For View Only Form</TITLE>
</HEAD>
<BASEFONT FACE=11Arial, Helvetica, sans-serif''>
<LINK REL=STYLESHEET HREF=" ./Stylesheets/Grid/Style2.css">
<BODY BACKGROUND=".IImages/Grid/Background/Back2.jpg" BGCOLOR=White>
<TABLE WIDTH=lOOo/o CELLSPACING=O CELLPADDING=O BORDER=O>
<TR>

</TR>
<TR>

<TH COLSP AN=2 NO WRAP ALIGN=Left BGCOLOR=Silver
BACKGROUND=" ./lmages/Grid/Navigation/Nav l.jpg">
 Message:
</TH>

<TD BGCOLOR=#FFFFCC COLSPAN=2>

<%
Select Case strDataAction

Case 111nsert"
Response.Write("Unable to insert the record into SQLQuery.")

Case "Update"
Response. Write("Unable to post the updated record to
SQLQuery.")

Case "Delete"
Response.Write("Unable to delete the record from SQLQuery.")
End Select

o/o>

<lTD>

<ITR>
</TABLE>

<TABLE WIDTH=IOO% CELLSPACING=l CELLPADDING=2 BORDER=O>
<TR>

</TR>
<TR>

<TD ALIGN=Left BGCOLOR=Silver><FONT SIZE=-
1 > I tem</TD>
<TD WIDTH= I 00% ALIGN=Left BGCOLOR=Silver><FONT SIZE=-
1 >Description</TD>

<TD> Source:</TD>
<TD BGCOLOR=White><o/o= Err.Source %></TD>

</TR>
<TR>

86

</TR>
<TR>

</TR>
<TR>

<TD NOWRAP> Error
Number:<IB><ITD>
<TD BGCOLOR=White><'»/o= Err.Number
%></TD>

<TD> Description:<IB><IFONT></TD>
<TD BGCOLOR=White><'»/o=
Server.HTMLEncode(Err.Description & strErrorAdditionallnfo)
o/o></TD>

<TD COLSPAN=2><HR></TD>
</TR>
<TR>

<TD>
<%Response. Write "<FORM ACTION=""SPaymentForm.asp""
METHOD=""POST"">" o/o>
<INPUT TYPE="Hidden" NAME="FormMode" V ALUE="Edit">
<INPUT TYPE=" SUBMIT" V ALUE="Form View">
<!FORM>
<lTD>
<TD>

To return to the form view with the previously entered
information intact, use your browsers "back" button
<!FONT>
<lTD>

</TR>
</TABLE>
</BODY>
<IHTML>

<%Else%>
<%

Response.Redirect "SPaymentForm.asp"
%>
<o/o
End If
Set rsSPaymentSQLQuery = Nothing
%>

87

	Florida International University
	FIU Digital Commons
	10-29-1998

	Contract manager anywhere and internet-enabled database application
	Yao-Jen Chang
	Recommended Citation

	FI14060141_003
	FI14060141_005
	FI14060141_007
	FI14060141_009
	FI14060141_011
	FI14060141_013
	FI14060141_015
	FI14060141_017
	FI14060141_019
	FI14060141_021
	FI14060141_023
	FI14060141_025
	FI14060141_027
	FI14060141_029
	FI14060141_031
	FI14060141_033
	FI14060141_035
	FI14060141_037
	FI14060141_039
	FI14060141_041
	FI14060141_043
	FI14060141_045
	FI14060141_047
	FI14060141_049
	FI14060141_051
	FI14060141_053
	FI14060141_055
	FI14060141_057
	FI14060141_059
	FI14060141_061
	FI14060141_063
	FI14060141_065
	FI14060141_067
	FI14060141_069
	FI14060141_071
	FI14060141_073
	FI14060141_075
	FI14060141_077
	FI14060141_079
	FI14060141_081
	FI14060141_083
	FI14060141_085
	FI14060141_087
	FI14060141_089
	FI14060141_091
	FI14060141_093
	FI14060141_095
	FI14060141_097
	FI14060141_099
	FI14060141_101
	FI14060141_103
	FI14060141_105
	FI14060141_107
	FI14060141_109
	FI14060141_111
	FI14060141_113
	FI14060141_115
	FI14060141_117
	FI14060141_119
	FI14060141_121
	FI14060141_123
	FI14060141_125
	FI14060141_127
	FI14060141_129
	FI14060141_131
	FI14060141_133
	FI14060141_135
	FI14060141_137
	FI14060141_139
	FI14060141_141
	FI14060141_143
	FI14060141_145
	FI14060141_147
	FI14060141_149
	FI14060141_151
	FI14060141_153
	FI14060141_155
	FI14060141_157
	FI14060141_159
	FI14060141_161
	FI14060141_163
	FI14060141_165
	FI14060141_167
	FI14060141_169
	FI14060141_171
	FI14060141_173
	FI14060141_175
	FI14060141_177
	FI14060141_179
	FI14060141_181
	FI14060141_183
	FI14060141_185
	FI14060141_187
	FI14060141_189
	FI14060141_191

