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ABSTRACT OF THE DISSERTATION 

THE INDIVIDUAL AND INTERACTIVE EFFECTS OF NITROGEN AND PHOSPHORUS ON 

CORAL REEFS 

by 

Andrew A. Shantz 

Florida International University, 2016 

Miami, Florida 

Professor Deron E. Burkepile, Major Professor 

Human domination of global nutrient cycles is profoundly altering our planet. Yet on coral 

reefs, the effects of changing nutrient regimes have likely been over-simplified. This dissertation 

investigates the complexity of animal-nutrient interactions at the organismal level and explores 

how the outcomes of these interactions cascade through levels of biological organization. To do 

so, I examined the effects of nitrogen (N) and phosphorus (P) on corals and macroalgae, and 

how these effects in turn influenced reef communities and entire ecosystems. I show that P 

consistently increases coral growth rates while N has variable, often negative, effects on coral 

growth. The majority of this variability was explained by the contrasting responses of corals to 

ammonium, which had negligible effects on coral growth, versus nitrate, which consistently had 

negative effects on corals. Experimental manipulations of nutrient regimes revealed that these 

effects could be attributed, in part, to increased damage to the photosynthetic components of the 

corals’ endosymbionts. Nitrogen and P-enrichment also impacted macroalgae, increasing the 

nutrient content of algal tissue and in turn, consumption patterns of herbivorous fishes. Initial 

phase parrotfishes and juvenile surgeonfishes increased their feeding rates on algae rich in N 

and P respectively. However, adults from both species were irresponsive to algal nutrient content. 

At the community level, the effects of N and P on corals, algae and herbivory were linked to the 

development of distinct benthic communities. Algae cover was lower and coral growth rates 

higher around reef structures that were consistently enriched with N and P excreted by sheltering 

fishes. At the ecosystem level, I found that the responses of corals to N and P enrichment were 
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similar to those of other nutrient-sharing mutualists. Across terrestrial and marine environments, I 

show that N and P enrichment consistently decouples mutualism performance, benefiting one 

partner at the expense of the other.  Thus, collectively this dissertation demonstrates that the 

impacts of global nutrient loading resonate from single organisms through whole ecosystems. 
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Since the latter half of the last century human activity has played a greater role in the 

biogeochemical cycling of limiting nutrients, such as nitrogen (N) and phosphorus (P) than all 

biological processes combined (Vitousek et al. 1997; Elser et al. 2007). This pervasive nutrient 

enrichment has repercussions that resonate across ecosystems worldwide. The supply rates of N 

and P shape the dynamics and productivity of terrestrial and marine environments and often 

dictate the structure of ecological communities (e.g., Lindeman 1942; Chapin et al. 1997; Smith et 

al. 1999; Smith and Schindler 2009). Nutrient levels may be particularly important on coral reefs, 

where anthropogenic nutrient enrichment is often associated with the collapse of coral 

communities and phase shifts to algae dominated reefs. However, nutrients have traditionally 

been considered to be of secondary importance in shaping reef communities when compared 

with top-down processes (e.g., Ogden and Lobel 1978; McCook 1999; Szmant 2002; Bellwood et 

al. 2004; Burkepile and Hay 2006). As a result, the impacts of nutrient enrichiment on coral reefs 

remain regularly under-studied.  

In this dissertation, I examine the impact of nutrients across levels of biological 

complexity to expand on our limited understanding of the pathways through which nutrients affect 

reefs. In Chapter II, I compile the available literature assessing the responses of reef building 

corals to enrichment with nitrate (NO3-), ammonium (NH4+), phosphate, or combinations of these 

nutrients. Using meta-analyses, I show that N and P impact corals through two different 

pathways. Nitrogen affects corals via direct effects on the endosymbionts within corals, 

Symbiodinium, but the responses further depend on the identity of N provided. Nitrate tends to 

impair coral growth and increase the chlorophyll content in Symbiodinium while NH4+ has 

negligible effects on coral growth but still benefits the Symbiodinium within corals. In contrast, P-

enrichment has no measurable impact on Symbiodinium populations but alters coral growth, most 

likely via direct effects on the calcification process. 

To explore the mechanisms that mediate these responses, in Chapter III I experimentally 

manipulate coral exposure to different nutrient regimes. Using polymer coated slow-release 

fertilizers, I expose three species of important reef building corals to either NO3-, NH4+, P, or a 
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combination of NO3- and P (NP). I track the growth rates of each coral and use pulse amplitude 

modulated (PAM) fluorometry to assess the health and performance of photosystem II (PSII) in 

corals subjected to each nutrient regime. I show that coral responses to enrichment are species-

specific. Neither N nor P-enrichment impact the photobiology of the staghorn coral, Acropora 

cervicornis, or the round starlet coral, Siderastrea siderea. However, P-enrichment increases A. 

cervicornis growth rates. In contrast, NO3- ,P, and NP significantly increase the excitation 

pressure on PSII in the massive star coral Montastraea cavernosa, with NO3- enrichment 

resulting in the accumulation of photodamge to PSII. Furthermore, impaired PSII performance in 

M. cavernosa  significantly reduced the growth rates of these corals. Thus, Chapter III improves 

our understanding of the mechanisms through which nutrients impact coral growth and suggests 

new avenues of investigation in coral-nutrient research.        

In Chapter IV I shift focus from the impact of nutrients on corals, to herbivores and 

herbivory. Ecological stoichiometry predicts that animals should target resources that best match 

their elemental body composition (Sterner and Elser 2002). Dietary matching presents a 

particular challenge for herbivores because elements like nitrogen (N) and phosphorus (P) are 

typically far more prevalent in animal tissue than plant tissue. As a result, animals are often N and 

P-limited and selectively forage on resources rich in these nutrients (Mattson 1980; Barboza et al. 

2009; Lemoine et al. 2013). Indeed, experiments comparing the consumption of nutrient enriched 

algae to controls often document higher rates of grazing and biomass removal of algae enriched 

with N and P (e.g., Boyer et al. 2004; Chan et al. 2012). However, as of yet no studies have 

differentiated the effects of N versus P on reef fish foraging, nor clarified the responses of 

different fish taxa to these enrichments. Chapter IV shows that grazing rates of initial, but not 

terminal phase sparisomid parrotfishes increase with algal N-content while grazing rates of 

juvenile, but not adult acanthurid surgeonfishes increase with algal P-content. Consequently, 

juvenile and initial phase fishes likely fill functional roles that distinctly differ from those of adult 

fishes. My results show that both the N and P content of algae can influence herbivore feeding 



 4 

decisions and that the nutritional content of resources may play a role in partitioning herbivory on 

coral reefs.  

Chapter V scales upwards to examine how the effects of nutrients on coral, algae, and 

herbivores can impact reefs at the community level. Aggregations of animals within a landscape 

often cause spatial or temporal variation in nutrient delivery, potentially creating nutrient 

“hotspots” (McClaine et al. 2003). I examine the potential for sheltering schools of grunts to create 

biogeochemical hotspots on a reef in the upper Florida Keys and the impact these hotspots have 

on benthic communities. I show that N and P delivery is respectively 10 and 7 times greater at 

grunt shelter sites than at structurally similar sites that lack schools of these fishes. As a result, 

coral growth is roughly 1.5 times greater and herbivore grazing rates approximately 3 times 

greater at grunt-derived hotspots. These differences in nutrient delivery, coral growth and grazing 

result in the development of distinct benthic communities with increased cover of crustose 

coralline algae and reduced total algal abundance at grunt aggregation sites. Thus, schooling reef 

fish and their nutrient subsidies can play an important role mediating community structure on 

coral reefs and overfishing may have critical negative consequences on ecosystem functions.  

With a better understanding of the impact of nutrients on organisms and the importance 

this can have on community structure, Chapter VI again scales upwards to explore the effects of 

N and P on ecosystems across the globe. Nutrient-exchange symbioses are reciprocal 

partnerships in which a heterotroph provides limiting nutrients, primarily N or P, to a phototrophic 

partner in exchange for photosynthetically-fixed carbon (C). While these relationships form the 

foundation of coral reefs, over 80% of plant species also partake in nutrient exchange symbioses 

with mycorrhizal fungi (van der Heijden et al. 2015). In Chapter VI, I show that nutrient loading 

can destabilize these mutualisms across ecosystems by altering the costs and benefits each 

partner incurs from interacting. Using meta-analyses, I show a near ubiquitous decoupling in 

mutualism performance in which phototrophs benefit from enrichment at the expense of their 

heterotrophic partners. These nutrient-driven changes in mutualism performance may alter 

community organization and ecosystem processes and increase costs of food production, with 
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potentially severe consequences for human populations. Consequently, the decoupling of 

nutrient-exchange mutualisms via alterations of the world’s nitrogen and phosphorus cycles 

represents an emerging threat of global change. 

In conclusion, this dissertation advances our knowledge with respect to the effects of 

nutrient enrichment across levels of biological complexity. I show that nutrient enrichment effects 

the growth rates and photobiology of corals, alters the nutritional content of algae, and influences 

herbivore feeding decisions. In turn, these changes cascade upwards to shape entire reef 

communities and impact foundation species of ecosystems worldwide.   
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Abstract 

 Human-mediated increases in nutrient availability alter patterns of primary production, 

alter species diversity, and threaten ecosystem function. Nutrients can also alter community 

structure by disrupting the relationships between nutrient-sharing mutualists that form the 

foundation of communities. Given their oligotrophic nature and the dependence of reef building 

corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. 

However, individual studies suggest complex, even contradictory, relationships among nutrient 

availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general 

patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. 

Overall, we found that over a wide range of concentrations, N reduced coral calcification on 

average 11% but enhanced metrics of coral photobiology, such as photosynthetic rate. In 

contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts 

on the calcification process, but minimally impacted coral photobiology. There were few 

synergistic impacts of combined N and P on corals, as the nutrients impact corals via different 

pathways. Additionally, the response of corals to increasing nutrient availability was context-

dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For 

example, naturally occurring enrichment from fish excretion increased coral growth while human-

mediated enrichment tended to decrease coral growth. Understanding the nuances of the 

relationship between nutrients and corals may allow for more targeted remediation strategies and 

suggest how other global change drivers such as overfishing and climate change will shape how 

nutrient availability impacts corals. 

 
Introduction 

 In most ecosystems, nitrogen (N) or phosphorus (P) limits primary production (Elser et al. 

2007), but humans have increased the supply of these nutrients to well above the natural levels 

found in many systems (Vitousek et al. 1997a, b; Elser et al. 2007). Increases in nutrient loading 

can have severe consequences on the environment, often resulting in the dominance of species 

best suited to monopolize these new nutrient regimes, and the competitive exclusion of 
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subordinate species (Tilman 1988; Smith et al. 1999). These changes result in declines in 

biological diversity, greater susceptibility to disturbances, and the loss of ecosystem services 

(Vitousek 1997a; Smith et al. 1999; Harpole and Tilman 2007). Aquatic systems may be 

particularly vulnerable to nutrient loading due to downstream transport of nutrients, making 

increasing nutrient delivery a primary threat to coastal ecosystems (Vitousek et al. 1997b).  

Although anthropogenic enrichment often delivers both N and P, the concentration of 

each nutrient will differ with the source of enrichment. For example, regions with intense 

agricultural activity or urban development often experience greater delivery of N to coastal waters 

(Howarth et al 1996; Carpenter et al. 1998). In contrast, municipal and industrial wastewater, as 

well as run-off from regions with intense livestock production, often deliver substantial P to 

coastal systems (Conley et al. 2009). Geomorphology can also play a large role in shaping the 

identity of nutrient loads as soil type, age, and pH affect sorption of P and its downstream 

availability (Schachtman et al. 1998). Additionally, different N species (nitrate or ammonium) are 

often found in different anthropogenic or natural nutrient sources and primary producers often 

have significant preferences for one versus the other (Raven 1992). Given that different nutrient 

sources frequently deliver different ratios or types of N and P, it is imperative to understand how 

altering the magnitude and identity of nutrients delivered to coastal systems will impact them. 

On coral reefs, increasing nutrient availability may be a critical driver of degradation as it 

often promotes fast-growing algae that can hinder coral growth and survivorship (Mumby and 

Steneck 2008). The effects of these nutrients on algal communities of coral reefs have received 

considerable attention (McCook 1999; Szmant 2002; Burkepile and Hay 2006). Yet, there has 

been no quantitative synthesis of the impacts of nutrient availability on corals, the foundation 

species of these ecosystems. Although the negative impacts of nutrients are widely assumed 

(reviewed by Fabricius 2005), the direct effects of nutrients on corals are likely complex as 

enrichment may affect both the coral host and their symbiotic dinoflagellates, Symbiodinium spp.  

Understanding the individual impacts of N or P loading is important, as both nutrients 

may impact coral growth rates through a host of possible mechanisms. For example, N 
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enrichment may inhibit coral growth by increasing the density of Symbiodinium within corals 

(Muscatine et al. 1989; Hoegh-Guldberg and Smith 1989). As a result, greater densities of 

Symbiodinium may monopolize dissolved inorganic carbon (DIC) for photosynthesis, limiting the 

DIC available for calcification and reducing coral growth rates (Muscatine et al. 1998). In contrast, 

P enrichment may have negligible effects on Symbiodinium (Muscatine et al. 1989; Godinot et al. 

2011) but may impair coral growth by inhibiting the formation of calcium carbonate crystals 

thereby hindering skeletal formation (Simkiss 1964; Dunn et al. 2012).  However, some studies 

have documented positive effects of both N and P on coral growth (e.g. Meyer and Schultz 

1985a; Holbrook et al. 2008; Godinot et al. 2011). These positive effects may be driven by 

physiological changes in the coral such as increased photosynthetic output providing more 

energy to the coral or pH shifts within the coral tissue that facilitate calcification (Tambutte et al. 

2011). Ultimately, the conflicting reports of negative and positive effects of nutrients on coral 

growth suggest that the effects of nutrient enrichment on the coral-algal mutualism may be 

context dependent. 

Because symbiotic relationships such as the coral-algal mutualism typically incur both 

costs and benefits to each participant (Herre et al. 1999), any factors that shift the cost-benefit 

ratio of the interaction for one or both participants have the potential to alter the dynamics of the 

symbiosis. For example, plant-mycorrhizae interactions, one of the best-studied nutrient-sharing 

mutualisms, are frequently vulnerable to increases in nutrient loading (Hoeksema et al. 2010). In 

these mutualisms, plants provide more energy to mycorrhizal fungi when nutrients are limiting but 

reduce energy delivery to mycorrhizae as nutrient levels increase, causing fungal populations to 

decline and plant growth to suffer (Johnson et al. 2008). Nutrient enrichment may ultimately 

reorganize plant communities by allowing species that are less dependent on mycorrhizae to 

become competitively dominant when nutrient loading slows the growth mycorrhizae-dependent 

species (Tilman 1988; Treseder 2004, Johnson et al. 2008). Whether enrichment-driven 

breakdowns in nutrient-sharing symbioses are ubiquitous or exclusive to plants and their 
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mutualists is currently unclear. But, the coral-algal mutualism may be similarly vulnerable to 

increases in nutrient availability. 

Here, we used meta-analysis of 208 independent experiments from 47 studies to quantify the 

impact of N and P loading on coral growth and photobiology. With our data set, we were able to 

assess: (1) how N vs. P impact corals differently, (2) how coral morphology and taxonomy 

influence responses to nutrients, and (3) how the source of nutrient enrichment determines the 

effect on corals. Our analyses reveal contrasting effects of N and P, illustrate the importance of 

nutrient source for coral growth, and suggest that there are common patterns across ecosystems 

in how altered nutrient supply affects the dynamics of nutrient-sharing mutualisms.  

 

Methods 

Coral growth is variously measured through calcification rates, skeletal extension rates, 

and changes in skeletal density. However nutrient enrichment can affect each metric differently, 

making quantitative comparisons among them difficult. For example, Dunn et al. (2012) showed 

that in Acropora muricata, P enrichment caused increased extension rates but reduced skeletal 

density. To account for these differences in our analyses, we divided coral growth responses into 

metrics of: (1) calcification rates, (2) extension rates, and (3) skeletal density. Similarly, nutrients 

can affect the density of chlorophyll within Symbiodinium, the density of Symbiodinium within 

corals, or both. Therefore, photobiology measurements were grouped as responses in: (1) 

chlorophyll a within Symbiodinium cells, (2) Symbiodinium cell density within coral hosts, (3) 

chlorophyll a density per unit area of coral (a product of Symbiodinium cell density and chlorophyll 

a per Symbiodinium), and (4) maximum gross photosynthesis of corals. 

We compiled studies assessing the impact of N and P on any of the above metrics of 

coral growth and photobiology using ISI Web of Science (1978 – 2012). Search terms included 

key words such as ‘nutr* and coral’, ‘coral growth’, ‘nutr* and Symbiodinium’, etc. We identified 

additional studies by searching the references of studies identified in our Web of Science 

searches. For inclusion, studies were required to compare the effect of N and/or P between 
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control and treatment corals on at least one of our metrics of coral growth or photobiology. To 

minimize confounding factors, studies that obtained measurements from corals growing on reefs 

rather than controlled lab settings, were only included when the environments around control and 

treatment corals (e.g. depth, temperature, etc.) were controlled for as much as possible. As a 

result, studies that examined the response of corals to factors such as upwelling were not 

included due to co-occurring differences in temperature, which also impacts coral growth (e.g. 

Leichter and Genovese 2006). Similarly, measurements from studies that manipulated factors in 

addition to N or P that could impact coral growth, such as the presence of competitors or coral 

predators (e.g. Burkepile and Hay 2009), were excluded from our data set as it was often difficult 

to decouple the effects of nutrients from other confounding factors. We restricted our analyses of 

photobiology to include only studies that assessed the impact of nutrient enrichment on 

Symbiodinium within the coral host rather than responses in culture.  

We obtained data from the text of the studies, directly from the authors, or extracted 

measurements from digital PDFs using DataThief III V1.6 (Tummers 2006). When studies 

reported growth rates throughout a time series we averaged the measurements to calculate a 

mean effect for the whole study duration. For studies that provided measurements from multiple 

nutrient treatments (i.e. N and P independently) or across several enrichment levels, each 

treatment level was counted as an independent experiment. The exceptions to this were three 

studies that exposed the same corals to multiple enrichment levels through time (Appendix A1). 

In these instances, we calculated the average growth rate through the entirety of the experiment 

to test the effect of nutrient identity but excluded these results from tests of enrichment level.  

We found 26 studies with 101 separate experiments from 17 species of coral that met all 

of our criteria for the analyses of nutrient loading on coral growth. Studies which reported the 

change in mass per unit volume of whole colonies through time were used in our analysis as 

measurements of both calcification rates and skeletal density. As a result we were able to obtain 

59 independent measurements of calcification from 21 studies, 37 measurements of skeletal 

extension rates from 14 studies, and 19 measurements of skeletal density from 5 studies (Table 
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A1). To assess the impact of nutrient enrichment on Symbiodinium and photosynthesis, we 

identified 21 studies with 107 separate experiments from 13 species of corals. We found 27 

experiments from 8 studies that assessed how nutrient input alters chlorophyll a density within 

Symbiodinium, 38 experiments from 15 studies examining Symbiodinium density, 27 experiments 

from 11 studies examining chlorophyll a density per unit area of coral, and 15 experiments from 6 

studies examining the gross photosynthetic rates of corals (Table A2).   

Analysis 

To standardize the effect of nutrient enrichment on different metrics of coral growth and 

photobiology we used a log response ratio in which effect sizes for each study were calculated as 

𝐿𝐿𝐿𝐿𝐿𝐿 = ln (𝑋𝑋𝐸𝐸
𝑋𝑋𝑐𝑐

) where XE is the mean response to nutrient enrichment and XC is the mean control 

response. This metric estimates the effect size as a proportionate change between the response 

and control groups such that values equal to zero signify no effect of enrichment, values less than 

zero indicate a negative effect of nutrient enrichment, and positive values indicate a positive 

response to nutrients. Log response ratios are often a useful metric when replication is low and 

Type II error can prevent the detection of biologically meaningful responses (Rosenberg et al. 

1999; Harpole et al. 2011). Weighting effect sizes can account for inequality in study variance as 

well as increase the power and precision of tests by as much as 50-100% (Stewart 2010). Thus, 

we calculated weighted effect sizes using the inverse of the sampling variance, in which the 

variance for each effect size was 

 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 =  (sE)2

𝑛𝑛𝐸𝐸(𝑋𝑋𝐸𝐸)2
+   (𝑠𝑠𝐶𝐶)2

𝑛𝑛𝐶𝐶(𝑋𝑋𝐶𝐶)2
 

where sE and sC are the variance of treatment and control groups respectively and NE and NC are 

the replication of each group. For all our analyses we plotted standardized effect sizes against a 

standard normal distribution and calculated fail-safe numbers using Rosenthal’s method to 

confirm the absence of publication bias.   

Because responses may vary with experimental conditions among studies (e.g. 

temperature, light, etc), we used mixed-effect models in MetaWin V2.0 that considered the 

treatment variable of interest as a fixed factor and study as a random factor (Rosenberg et al. 
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1999). We calculated weighted cumulative effect sizes and assessed significance by constructing 

standard 95% confidence intervals around the weighted mean effect size for each response 

variable examined. We tested the effect of nutrient enrichment on each metric of growth and 

photobiology for each nutrient type across all coral species. To determine if growth form had an 

impact on the response of corals to nutrients, we grouped corals by morphology (branching 

versus mounding) and examined their response to each metric. We addressed taxonomic 

variation in responses to nutrients by repeating our analyses with Acropora spp. and Porites spp., 

the only two genera with enough replication for meaningful tests.  

 To test whether enrichment source affected coral growth we divided studies into groups 

based on whether enrichment was the result of naturally occurring fish excretion, anthropogenic 

pollution, or experimental manipulations of nutrient levels. We used Welch’s T-tests to determine 

whether enrichment levels differed between N species (i.e. ammonium versus nitrate) and tested 

whether N species had differential effects on coral growth and photobiology. To account for the 

effect of background N and P levels on responses we used multiple regressions that included an 

interaction term for N and P to test for changes in the magnitude of effect size with control N and 

P levels for each of our metrics of growth and photobiology.  For most organisms, there is a 

general expectation that performance peaks at an optimal level of nutrient supply, beyond which 

increases in nutrients have no impact or may even become toxic (Barboza et al. 2009). 

Therefore, using the MuMIn package in R (Barton 2012) we used AICc to select the best fit from 

linear and quadratic models to examine how the enrichment level and the ratio of  N:P provided 

impacted the effect sizes for each metric of growth and photobiology. 

Although coral size and experimental duration could also affect the magnitude of coral 

responses to nutrients, there was not a wide enough range of either coral size or experimental 

duration for meaningful statistical analyses. Age of coral tissue can also influence growth rates 

(Elahi & Edmunds 2007) but was not reported in any of the studies that we used. Therefore, we 

cannot exclude the possibility that age played a role in the reported growth differences. However, 
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most studies used in our analysis used similar sized coral fragments cut from the distal portions 

of adult colonies, suggesting that the tissue age was similar among the corals in each study.  

 

Results 

Studies used for our analyses of coral growth came from both manipulative experiments 

in the lab and field as well as measurements taken along existing nutrient gradients. N and P 

enrichment ranged from 0.5-26 µM and 0.11-26 µM respectively (Table A1), which equated to 

levels that were 0.15-25.5 µM higher than controls for N and 0.05-25.5 µM higher for phosphorus. 

All of the studies used to explore the effects of nutrient availability on Symbiodinium and 

photosynthesis were tank-based except for four field-based experiments (Table A2). Nitrogen 

enrichment ranged from 1 – 50 µM while P enrichment trials spanned 0.5 – 4 µM. This equated to 

nutrient levels 0.8 -50 and 0.4 - 4 µM above control levels for N and P respectively. For studies 

that enriched in N + P the range for P was similar to the single nutrient studies, 0.3-4 µM (0.28-4 

higher than controls), while N levels were slightly more restricted than N-only trials, 5 - 20 µM, (4-

18 µM higher than control levels). 

Coral Growth 

Nitrogen enrichment resulted in significant declines in coral calcification (mean = -0.278, 

95% CI = -0.376/-0.181), which equated to 11% lower calcification rates on average (Fig. 2.1a). 

In contrast, P enrichment caused a significant increase in calcification, on average 9% greater 

than controls (mean = 0.136, 95% CI = 0.011/0.262). When provided in concert, N + P had no 

effect on calcification (Fig. 2.1a). Branching corals made up >70% of the replicates for all 

enrichment treatments. Therefore, the effect of nutrients on calcification in branching corals was 

nearly identical to the effect on all corals (Fig. 2.1b). For mounding corals, N enrichment caused a 

greater inhibition of calcification than was seen in branching morphologies (Fig. 2.1c). 

Calcification in Acropora spp. was not inhibited by N or N+P, but was enhanced in the presence 

of P alone (mean = 0.149, 95% CI = 0.039/0.259) (Fig. 2.1d). For Porites spp., N enrichment 

caused a significant decline in calcification (mean = -0.371, 95% CI = -0.518/-0.224) (Fig. 2.1e). 
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Although Porites spp. included both mounding and branching species, this reduction remained 

significant even when only branching Porites spp. were included (mean = -0.378, 95% CI = -

0.523/-0.233) suggesting the effect was not solely driven by morphology. N+P had no effect on 

calcification of Porites spp., and no studies documented the impact of P in isolation on 

calcification.  

For coral extension rates, both N and N+P had significant negative effects (mean = -

0.414, 95% CI = -0.740/-0.089 and -0.231, 95% CI = -0.393/-0.069 respectively; Fig. A1a). P 

enrichments increased extension rates by 35.4% over control corals but this effect was not 

significant (mean = 0.248, 95% CI = -0.257/0.752), possibly due to high variability and low 

replication (n = 5). Enrichment had no significant effects on skeletal density. However, replication 

was low and there were trending negative effects of P and N+P enrichment, which caused a 

nearly 9% and 10% decline in skeletal density respectively (Fig. A1b). 

When we assessed how background nutrient levels impacted the effect of enrichment, 

the only significant pattern was a decline in effect size as control nutrient levels rose for the effect 

of phosphorus on coral calcification rates (Table A3), suggesting that initial differences in nutrient 

limitation minimally influenced patterns in effect sizes. Similarly, enrichment level had little impact 

on effect sizes. In every case, linear models best described the relationship between enrichment 

level and effect size, but these best fit models yielded no significant relationships (Table A4). 

When we assessed how the ratio of N:P impacted corals, replication was only sufficient to 

examine studies that utilized ammonium and phosphorus for enrichment. For these studies, the 

relationship between effect size and N:P ratio was best explained by a quadratic model for 

calcification and skeletal extension and a linear model for skeletal density (Table A5). The ratio of 

N:P provided had a marginally significant effect on calcification and a significant effect on skeletal 

extension (df = 2,8, F = 4.26, p = 0.055 and df = 2,9, F = 4.64, p = 0.041 respectively; Fig. A2). In 

both cases, effect sizes peaked near the Redfield Ratio of 16:1, N:P, however our results should 

be interpreted with caution as the replication across the range of ratios provided was low and N:P 

ratios were confounded with enrichment level.  
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Coral Photobiology 

Nitrogen enrichment caused significant increases in the amount of chlorophyll a within 

the Symbiodinium of corals (Fig. 2.2a; mean = 0.204, 95% CI = 0.072/0.338) while enrichment 

with P caused a nearly 20% decline but the 95% confidence intervals crossed zero slightly (mean 

= -0.269, 95% CI = -0.582/0.045), likely due to low replication (n=6). When provided together, 

both nutrients resulted in an average 15% increase in chlorophyll a and a similar mean effect to N 

alone although the effect of N+P was not significant (mean = 0.185, 95% CI = -0.186/0.556). 

 N enrichment resulted in higher Symbiodinium densities than in control corals (mean = 

0.260, 95% CI = 0.150/0.370), and when N and P were provided together the effect size more 

than doubled (mean = 0.549, 95% CI = 0.292/0.806) (Fig. 2.2b). There was no effect of P on 

Symbiodinium density. Accordingly, because both N and N+P enrichments increased the 

chlorophyll a in Symbiodinium and the Symbiodinium density in corals, the effects of these 

enrichments on chlorophyll a per unit of coral tissue were even more pronounced. Both N and 

N+P significantly increased the density of chlorophyll a in corals (mean = 0.824, 95% CI = 

0.516/1.133 and mean = 0.978, 95% CI = 0.494/1.146 respectively) (Fig. 2.2c) whereas P again 

had no effect. Our analysis of gross photosynthetic rates revealed that N enrichment elicited 

higher rates of photosynthesis (mean = 0.232, 95% CI = 0.032 to 0.432) while the effect of P was 

non-significant and highly variable and N+P lacked sufficient replication for analysis (Fig. 2.2d). 

Because ~80% of the studies that examined nutrients and coral photobiology were conducted on 

branching corals, we did not attempt comparisons between functional groups or genera. There 

were no significant effects of enrichment level or N:P ratio on any of our metrics of photobiology 

for which we had sufficient data to analyze (Tables A3 & A4).  

Enrichment Source 

Enrichment source was analyzed to determine whether naturally-occurring enrichment 

processes impacted coral growth differently than did anthropogenic pollution or manipulative 

enrichment. We found six experiments from five studies examining the effect of natural, fish-

derived enrichment (fish excretion) on coral calcification rates. Two experiments from two studies 



 18 

reported the effect of this type of enrichment on extension rates of corals and one experiment 

reported the effect on skeletal density. In all cases the effect of natural enrichment on corals was 

positive, although due to low replication, only significant for calcification (mean = 0.353, 95% CI = 

0.109/0.598) (Fig. 2.3). In contrast, when enrichment was the result of anthropogenic pollution, 

such as wastewater delivery or high levels of agricultural runoff, nutrients resulted in a 5% decline 

in average calcification rates (mean = -0.120, 95% CI = -0.289/0.050), although the 95% 

confidence intervals slightly crossed zero. In manipulative experiments, N enrichment resulted in 

significant declines in calcification (mean = -0.278, 95% CI = -0.375/-0.181) and extension rates 

(mean = -0.476, 95% CI = -0.870/-0.081) while P enrichment caused increased calcification 

(mean = 0.136, 95% CI = 0.012/0.261) but had no effect on other growth metrics. N+P 

enrichment caused significant reductions in extension rates (mean = -0.508, 95% CI = -0.751/-

0.264) but had no effect on calcification or skeletal density. We were unable to explore the impact 

of enrichment source on coral photobiology because all but two studies were from manipulative 

experiments.    

Differences between ammonium and nitrate enrichment were analyzed only for studies of 

calcification, chlorophyll a within Symbiodinium, and Symbiodinium density due to lack of 

replication for other metrics. For coral growth studies, when ammonium was the sole source of N-

enrichment, N concentrations were over 1.5 times higher than when nitrate used for enrichment 

(13.59 µM vs. 8.07 µM respectively; t = 2.11, df = 18.07, p = 0.05).  Similarly, for studies of 

photobiology ammonium was provided at nearly 3 times higher concentrations than nitrate in 

single N enrichment studies (20.62 µM vs. 7.66 µM; t = 4.13, df = 59.17, p = 0.001).   

Nitrate caused a significant reduction in calcification (Mean = -0.476, 95% CI = -0.583/-0.369) 

while there was no effect of ammonium (mean = -0.037, 95% CI = -0.150/0.075) (Fig. 2.4a). 

Nitrate also caused a significant increase in chlorophyll a density within Symbiodinium (mean 

0.278, 95% CI = 0.017/0.538) but again ammonium had no effect (Fig. 2.4b). In contrast, only 

ammonium caused a significant increase in the Symbiodinium density within coral tissue (mean = 
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0.508, 95% CI = 0.334/0.683) (Fig. 2.4c) while nitrate had a trending positive, but non-significant, 

effect (mean = 0.106, 95% CI = -0.036/0.249).  

 

Discussion 

Nutrient loading represents one of the greatest threats to the function of coastal 

ecosystems (Vitousek et al. 1997b). Our analyses of the effects of nutrient loading on coral the 

coral-algal mutualism both supports and challenges some commonly held beliefs concerning the 

impact of nutrients on corals. In general, our data support the broadly held notion that nitrogen 

inhibits coral growth (reviewed by Fabricius 2005). However, we show that these effects are 

context-dependent and vary with coral taxa, N identity (ammonium vs. nitrate), enrichment source 

(fish excretion vs. anthropogenic nutrients), and the presence or absence of P. Furthermore, 

rather than suppressing growth as has been commonly assumed, P enrichment enhances 

calcification in corals but may compromise skeletal integrity. Nitrogen drives the effects of nutrient 

loading on coral photobiology but acts synergistically with P in co-enrichments to further increase 

Symbiodinium populations. Ultimately, our analyses suggest that changing nutrient loading 

patterns in coastal oceans will impact the dynamics of the coral-algal mutualism and may alter 

their susceptibility to stressors associated with global climate change.  

Nitrogen enrichment decreased coral growth (Fig. 2.1) while increasing all metrics of 

coral photobiology (Fig. 2.3). These patterns are consistent with proposed N-induced inhibition of 

growth via DIC limitation whereby abundant Symbiodinium fix carbon so rapidly that it becomes 

limiting for calcification in the coral (Muscatine et al. 1989). Unexpectedly, this is dependent on 

nitrogen identity with nitrate causing strong reductions in calcification but ammonium having no 

effect (Fig. 2.4). Significantly, higher concentrations of ammonium vs. nitrate could have 

contributed to this pattern. However, if the magnitude of enrichment were the primary driver of 

patterns in coral growth, then coral growth rates should have been lower in ammonium 

enrichment studies than in nitrate enrichment experiments. Yet, we showed that nitrate strongly 

inhibited coral growth while ammonium had no effect.  
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Instead, the different effects of N identity may be driven by differential utility of ammonium 

and nitrate by Symbiodinium and subsequent changes in the delivery of photosynthate to coral 

hosts. Coral calcification is enhanced during periods of photosynthesis (Gattuso et al. 1999), 

presumably through internal changes in pH or the delivery of surplus oxygen or photosynthetic 

products to the coral host (Tambutte et al. 2011). However, unlike ammonium, nitrate utilization 

by photoautotrophs requires an energetically costly reduction (Patterson et al. 2010), potentially 

reducing the benefits that Symbiodinium provide to the coral by decreasing the surplus energy 

available for transfer to the host when nitrate is the dominant N source. This may also explain 

increases in Symbiodinium density under ammonium but not nitrate enrichment, as marine 

microalgae often have higher specific growth rates when using ammonium versus nitrate due to 

the differential costs of utilization (Raven 1992).  

The density and species composition of mutualists may also shape the response of 

symbioses to altered abiotic conditions. For example, species-specific plant traits shape the 

diversity and abundance of their mycorrhizal associates (Eom et al. 2000), consequentially 

impacting the response of plants to enrichment (Johnson et al. 2008). Here, taxa specific 

differences in Symbiodinium density may have shaped the response of different coral taxa to 

nutrient enrichment, with N inhibiting calcification more strongly in mounding morphologies and 

Poritids than in branching morphologies or Acroporids (Fig 2.1). Symbiodinium densities are 

typically lower in branching versus mounding corals (Li et al. 2008), and Poritids had twice the 

Symbiodinium density of Acroporids (mean = 2.608 * 106 versus 1.133 * 106 respectively) in our 

dataset. These differences may result in lower rates of DIC use, and consequently less DIC 

limitation, in Acroporids and branching corals. Additionally, mass transfer rates are faster in 

branching corals, allowing replenishment of DIC from the water column more rapidly than in 

mounding corals and further mitigating carbon limitation associated with higher Symbiodinium 

densities under nutrient enrichment (van Woesik et al. 2012). This taxonomic variation in 

responses to nutrients means that coral species composition could influence the vulnerability of 

reefs to nutrient loading. For example, in the Caribbean almost half of reef-building corals are 
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Poritids or mounding species, possibly making these reefs more susceptible to the negative 

effects of excess nutrients than reefs in regions such as the Indo-Pacific with more Acroporids 

and branching corals. 

In contrast to the negative effects of nitrogen, P enrichment increased calcification rates 

of corals (Fig 2.1) but had no effect on extension rates or skeletal density. This pattern was 

surprising given that phosphorus inhibits calcium carbonate precipitation (Lin and Singer 2006). 

However coral calcification involves active biomineralization, rather than passive precipitation of 

CaCO3 (Tambutte et al. 2011). Dunn et al. (2012) proposed that corals incorporate CaHPO4 into 

the skeleton when phosphate is abundant, allowing calcification to proceed at high phosphorus 

levels but distorting the skeletal lattice and creating a more porous coral skeleton. While we found 

no significant evidence of reduced skeletal density to support this hypothesis, five of six 

measurements in our analysis reported decreased skeletal density under P enrichment. 

Decreased skeletal density but increased rates of calcification seem to be at odds with one 

another. However, because calcification was often measured via changes in coral mass, rates of 

calcification may not have changed significantly. Rather, corals may have incorporated a greater 

amount of heavy CaHPO4 into their skeletons, instead of CaCO3, resulting in heavier but more 

porous skeletons as Dunn et al. (2012) suggested. Increased porosity leads to greater 

susceptibility of corals to boring organisms and breakage (Caroselli et al. 2011), potentially 

making them more vulnerable to disturbances under P enrichment.  

Synergistic effects of N and P on primary production are common across a variety of 

ecosystems (Elser et al. 2007). However, the coral-Symbiodinium mutualism adds complexity 

with nutrients directly affecting both the coral and their mutualists. The only synergistic effect of N 

and P in our analyses was on Symbiodinium density with N+P enrichment having more than twice 

the effect of N alone and 15 times more than P alone (Fig 2.2b). Despite super-additive 

responses in Symbiodinium and the apparent increase in photosynthesis, the effects of N+P on 

coral growth were largely additive (Fig. 2.1). Thus for Symbiodinium growth, enrichment with N+P 

over the range of levels provided appears to shift nutrient limitation to whichever of the two is 
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least abundant yielding synergistic effects. Yet for calcification, N enrichment appears to shift 

limitation to DIC, regardless of P level. Furthermore, P may actually alleviate DIC limitation in part 

by replacing carbonate in the skeletal lattice with HPO4 (Dunn et al. 2012), effectively cancelling 

out the negative effect of N and explaining the absence of effects of N+P in our analyses. 

Ultimately, N and P appear to impact the coral-Symbiodinium mutualism in fundamentally 

different ways. 

One surprising pattern in our analyses was the differential effect of enrichment source on 

corals. Natural enrichment via fish excretion always enhanced coral growth (Fig. 2.3). In contrast, 

human-derived nutrients, whether from manipulative experiments or anthropogenic pollution, 

tended to have negative effects on corals. Differences in nutrient identity, concentration, and 

consistency between fish excretion and human-derived nutrients as well physical parameters like 

the flow rates around corals may drive these differential effects. For example, fish excretion 

delivers primarily ammonium and P (Meyer and Schultz 1985b), while anthropogenic enrichment 

tended to deliver more nitrate, which easily leaches from soils relative to phosphorus (Appendix 

1). Our analyses show that nitrate tends to slow coral growth while ammonium has little effect 

(Fig. 2.4). Further, the combined ammonium and P delivered by fishes may benefit corals more 

than N-dominated anthropogenic sources as N-only enrichment drove decreases in coral 

calcification (Fig. 2.1). Fishes may also be a source of particulate organic matter which corals 

could ingest, further enhancing their growth rates (Meyer and Schultz 1985b).  

Fishes could also alter rates of nutrient uptake by increasing mixing in the water column 

via their movement around corals and facilitate mass transfer. Additionally, water flow may 

influence the impact of different nutrient sources. For example, downstream plumes from river 

discharge on the Great Barrier Reef range from 0.26 µM to 16.1 µM N, depending on distance 

from shore and the water currents at each site (Schaffelke and Klumpp 1998). Similarly, when 

nutrients are delivered in discrete pulses, such as via fish excretion or upwelling events, currents 

and tidal flushing can quickly dissipate nutrients from an area and modify either their positive or 

negative impact (Hatcher & Larkum 1983). As a result, water flow can act as either a dissipater or 
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deliver of nutrients depending on the origin of enrichment, potentially modifying the differential 

effects of nutrients. 

Animals are often important sources of limiting nutrients across many disparate 

ecosystems. For example, large ungulates can facilitate primary production in terrestrial systems 

via urine and dung deposits (Burkepile 2013). Likewise, fishes often deliver important limiting 

nutrients in oligotrophic ecosystems (Allgeier et al. 2013) and can be important sources of 

nutrients on coral reefs (Burkepile et al. 2013). Thus, overfishing on coral reefs, an important 

driver of change in these ecosystems (Hughes et al. 2007), could disrupt the critical link between 

fish excretion and corals and dramatically alter production and coral growth (Layman et al. 2011). 

Given that increasing human populations along coastlines result in both overfishing and 

increased input of anthropogenic nutrients to coastal waters (Halpern et al. 2008), the trajectory 

of current global change may mean that corals suffer from a reduction of beneficial nutrient 

sources and an increase in detrimental ones. 

Excess nutrients may also increase coral susceptibility to the effects of climate change 

such as coral bleaching, due to the effects of nutrient availability on Symbiodinium. Wooldridge 

and Done (2009) suggested that nutrient-induced increases in Symbiodinium density drove 

correlations between water-column nitrogen and bleaching on the Great Barrier Reef. 

Additionally, Cunning and Baker (2012) found that elevated Symbiodinium densities in corals 

increased their susceptibility to bleaching due to increased production of reactive oxygen species 

during periods of thermal/light stress. Thus, the nutrient-induced increases in Symbiodinium from 

both N and N+P enrichment that we show (Fig. 2.2) may make corals more vulnerable as 

bleaching conditions become more common. Furthermore, N enrichment in the absence of 

increased P can lead to P starvation of Symbiodinium, further increasing bleaching susceptibility 

(Wiedenmann et al. 2012). As a result, the simultaneous loading with N and P, such as from fish 

excretion, may actually be less harmful to, or even benefit, corals under bleaching conditions. 

Nutrients also interact with other important drivers of coral reef decline that warrant 

consideration. For example, disease is a strong driver of coral decline on reefs worldwide (Bruno 
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et al. 2007), and although nutrients influence the pathology of coral diseases (Vega Thurber et al. 

2013), the role of specific nutrients in coral epidemiology remains unknown. Similarly, interactions 

between nutrient loading and ocean acidification require critical analysis. Increased atmospheric 

CO2 lowers oceanic CO32- concentrations and impairs calcification (Hoegh-Guldberg et al. 2007). 

How DIC-limited photosystems of enriched corals will respond to these changes remains unclear, 

but preferential use of CO32- by Symbiodinium could exacerbate the negative effects of nutrients 

as CO2 levels rise (Marubini et al. 2008). Our analysis also highlights several gaps in our 

understanding of the effects of nutrient loading on reefs. In particular, experiments assessing a 

wider range of enrichment levels are needed to assess non-linear responses to enrichment. For 

example, Gil (2013) documented a unimodal growth curve for Porites spp. across a gradient of 

enrichment in which peak growth occurred between 1 – 3 µM N and declined above this level. In 

our analyses, almost 75% of the studies we found used enrichment levels higher than these peak 

values, potentially explaining the linear decline in coral growth with increasing enrichment levels 

that we found and the absence of expected unimodal responses to nutrient enrichment. 

Ultimately, our work emphasizes the importance of nutrient availability to the health of coral reefs 

and that a more nuanced understanding of impact of nutrients on corals is sorely needed. 

At a more fundamental level, our analyses provide insight into the effects of nutrient 

loading on symbiotic interactions. Cost-benefit tradeoffs in symbioses are often state-dependent 

and exogenous factors, such as nutrient availability, may dictate where such interactions fall 

along the continuum of mutualism and parasitism (Leung and Poulin 2008). For example, 

Wooldridge (2010) proposed that the coral host maintains active control of N delivery to 

Symbiodinium in order to regulate symbiont populations. In this case, N loading may alter the 

cost-benefit tradeoff for Symbiodinium by alleviating dependence on host-derived N. In turn this 

disrupts the coral’s control over Symbiodinium populations, leading to increased competition 

between the host and symbiont for DIC and photosynthate, which may be monopolized by the 

now N-replete Symbiodinium for population growth. Increased Symbiodinium populations and 

slower coral growth under N enrichment documented here support these hypotheses that nutrient 
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enrichment can potentially decouple this mutualism. In analogous plant-mycorrhizae (Hoeksema 

et al. 2010) and legume-Rhizobium (Zahran 1999) symbioses, increased nutrient availability from 

nutrient loading can reduce the benefits provided by symbionts to plant hosts and push these 

interactions from mutualism to parasitism. Our study reveals similar patterns in the responses of 

foundational marine species and suggests that there may be general patterns in how nutrient-

sharing mutualists respond to nutrification. Understanding patterns such as these are a 

fundamental goal of ecology and provide insight into how global change will impact community 

structure and function. 
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Figure 2.1 – Cumulative effect sizes for coral calcification rates in response to enrichment with 
nitrogen (N), phosphorus (P) or joint nitrogen and phosphorus (N + P). Responses are shown for: 
(a) all corals, (b) branching corals, (c) mounding corals, (d) Acropora spp., and (e) Porites spp.  
Data are means ± 95% confidence intervals.  Numbers in parenthesis indicate the number of 
experiments used to calculate effect sizes. 
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Figure 2.2 – Cumulative effect sizes of nutrient enrichment on different metrics of photobiology of 
corals: (a) the density of chlorophyll a within individual Symbiodinium, (b) the density of 
Symbiodinium within corals, (c) the density of chlorophyll a per area of coral, and (d) gross 
photosynthesis. Statistics as in Fig. 2.1 
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Figure 2.3 – Cumulative effect sizes of fish-derived (naturally occurring), manipulative, or 
anthropogenic nutrient enrichment on the calcification rates of corals. Nutrients provided for 
manipulative studies are indicated in parentheses on the X-axis. Statistics as in Fig. 1 
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Figure 2.4 – Cumulative effect sizes for the impact of ammonium or nitrate on: (a) the calcification 
rates of corals, (b) the concentration of chlorophyll a within Symbiodinium, and (c) the density 
of Symbiodinium in coral tissue. Statistics as in Fig. 1 
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CHAPTER III 

SPECIES-SPECIFIC DIFFERENCES IN THE GROWTH AND PHOTOBIOLOGY OF THREE 

CARIBBEAN CORALS UNDER NITRATE, AMMONIUM, AND PHOSPHATE ENRICHMENT  
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Abstract 

 Chronic nutrient enrichment is an increasingly prevalent problem on coral reefs, yet there 

is still a great deal of uncertainty regarding how nutrient enrichment may impact coral physiology 

and performance. Here, we examined the impacts of prolonged nutrient enrichment on two 

important performance metrics: the photobiology and growth of three Caribbean corals. Over six 

weeks we tracked changes in the growth rates and functioning of photosystem II (PSII) in three 

reef building corals on a reef in the Florida Keys, USA. We enriched fragments of Acropora 

cervicornis, Montastraea cavernosa, and Siderastrea siderea with either nitrate (NO3-), 

ammonium (NH4+), phosphorus (P), or a combination of NO3- and P (NP) to compare with corals 

maintained at ambient nutrient levels. Using fluorometry, every week we measured the impact of 

each treatment regime on: (1) the maximum dark-adapted quantum yield of PSII (FV/FM) before 

sunrise, (2) the excitation pressure on PSII under peak irradiance (Qm) and (3) the accumulation 

of photodamage at the end of the day (qI). At the culmination of the experiment we calculated the 

growth rates of each fragment to explore the relationship between growth and PSII performance. 

For A. cervicornis, we found no effects of any of the enrichment treatments on PSII performance, 

yet coral growth rates increased under P enrichment and declined in nitrogen treatments. For M. 

cavernosa, excitation pressure on PSII (Qm) was significantly elevated by treatments containing 

nitrate, phosphorus, or a combination of the two, and qI was significantly higher in nitrate-

enriched corals. Coral growth rate was negatively correlated with Qm in M. cavernosa. In contrast 

to the other species, Siderastrea siderea showed no changes in growth or PSII performance 

under any of the nutrient regimes. Our study indicates that chronic nutrient enrichment can impair 

PSII function and thereby reduce coral growth, but both nutrient identity and the species-specific 

responses of corals mediate the severity of these effects. On chronically polluted reefs, species-

specific coral responses to enrichment like those we report here could shape the depth 

distribution of different species within reefs and provide insight into the vulnerability of different 

coral species to bleaching events. Thus, our data join a small but growing collection of literature 
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showing that the identity and ratio of nutrients on reefs must be taken into consideration when 

considering how nutrient pollution will impact coral reefs. 

Introduction 

 
1. Introduction 

Coral reefs are historically resilient ecosystems capable of enduring both acute and 

chronic disturbances (Connell 1997). However, in recent years, human activity has increased the 

frequency with which reefs are subjected to multiple stressors, jeopardizing the integrity of these 

ecosystems (Polidoro and Carpenter 2013). Perhaps one of the most ubiquitous and persistent 

sources of chronic stress is coastal nutrient loading (Fabricius 2005; Halpern et al. 2007). 

Although nutrient loading can often disrupt the performance of nutrient-exchange mutualisms, 

such as the coral-Symbiodinium partnership (Shantz et al. 2016, nutrient loading on reefs has 

predominantly been studied in conjunction with other stressors (e.g. overfishing – Burkepile and 

Hay 2009; Rasher et al. 2012; or thermal anomalies - Wooldridge 2009; Wiedenmann et al. 2012; 

Tanaka et al. 2014). As a result, we still have only a rudimentary understanding of how nutrients 

affect coral biology. Our lack of knowledge is particularly true of assessments of nutrient effects 

on corals over ecologically relevant time frames and under natural environmental conditions. 

Because the future of many reefs will depend on corals’ ability to survive and grow under nutrient 

stress, a better understanding of how nutrient loading directly impacts corals is urgently needed. 

Nutrients are believed to impact coral growth primarily via direct effects on Symbiodinium 

- the endosymbiotic dinoflagellates within corals. Reef building corals rely on photosynthetically-

derived carbohydrates from their endosymbionts for the majority of their energetic requirements 

(Houlbréque and Ferrier-Pagés 2009). Phosphorus (P) is vital for ATP production and energy 

transfer while nitrogen (N) is an essential nutrient for protein synthesis, chlorophyll production, 

and photosynthesis (Shelly et al. 2010). Accordingly, both nutrients are essential for the energy 

production that sustains the coral-algal holobiont. Yet human-mediated increases in levels of 

these nutrients often impair coral growth (Fabricious 2005, Shantz and Burkepile 2014; Shantz et 

al. 2015). 
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Various mechanisms may explain the different impacts of nutrient enrichment on corals. 

For example, P-enrichment increases coral growth (Shantz and Burkepile 2014) but this is likely 

the result of incorporation of calcium phosphate into the coral skeleton. Consequentially, P-

enriched corals grow faster but may be more susceptible to breakage (Dunn et al. 2012). 

Similarly, the increased photosynthesis that occurs under N-enrichment may monopolize 

dissolved inorganic carbon and make this resource limiting for calcification (Muscatine et al. 

1998), reducing coral growth rates. However, in a recent meta-analysis Shantz and Burkepile 

(2014) found that only nitrate (NO3-) regularly impaired coral growth, despite ammonium (NH4+) 

consistently benefitting Symbiodinium populations. Similarly, Ezzat et al. (2015) reported that 

NH4+ enrichment increases photosynthesis in the coral Stylophora pistillata but found that 

NO3- enrichment depressed photosynthesis. Thus, while there has been considerable progress 

resolving the complexity of coral nutrient interactions, substantial gaps in our understanding of 

how nutrients impact corals still remain. 

One mechanism through which nutrients could affect corals is by influencing the 

production of reactive oxygen species (ROS). Oxygenic photosynthesis routinely produces ROS 

that damage organic tissue (Vass 2012), particularly the D1 protein in the reaction center of 

photosystem II (PSII) (Aro et al. 1993). Nitrogen enrichment may fuel ROS production by 

increasing Symbiodinium populations in corals and directly increasing ROS production 

(Wooldridge and Done 2009; Wooldridge 2013; Cunning and Baker 2012). Furthermore, rapidly 

proliferating Symbiodinium can monopolize P, leading to P-starvation. Because P is an important 

component of the thylakoid membrane, which actively sequesters and scavenges ROS, P-

starvation can alter the membrane’s ionic character and increase oxidative damage (Lesser 2006; 

Shelly et al. 2010; Wiedenmann et al. 2012). D1 protein damage in PSII is a considerable burden 

for primary producers, both in terms of energy spent on PSII repair, and the photosynthetic 

production that cannot occur until the damaged D1 protein has been replaced. For example, 

normal daily rates of oxidative damage to PSII in plankton may reduce daily net photosynthesis 

by 20%, monopolize ~5% of protein budgets, and ~15% phosphorus budgets (Raven 2011). 
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Given this energetic cost of PSII damage, even minor nutrient-induced increases in ROS 

production could substantially reduce the energy transferred from Symbiodinium to their coral 

hosts and result in lowered coral growth rates. 

Here, we examine changes in the growth and photobiology of three Caribbean corals 

subjected to five different nutrient regimes. Over six weeks, we maintained fragments of Acropora 

cervicornis, Montastraea cavernosa, and Siderastrea siderea under either ambient conditions, or 

enriched with NO3-, NH4+, P, or a combination of NO3- and P at a ~3:1 molar ratio (NP). We used 

pulse amplitude modulated (PAM) fluorometery to track changes in PSII performance and 

assessed the influence of these changes on the growth rates of each coral species. We predicted 

that chronic NO3-, NH4+, and NP enrichment would increase ROS production and elevate 

excitation pressure on PSII but this effect would be absent in P-enriched corals. For NO3 

enrichments, we predicted that this would result in the accumulation of photodamage throughout 

the day. In contrast, due to the greater utilization efficiency of NH4+ for photosynthesis (Ezzat et 

al. 2015), we predicted that D1 protein turnover rates would be enhanced under NH4+ 

enrichment, allowing for the complete recovery of PSII and negligible effects on photochemical 

efficiency. Similarly, we predicted that despite increased pressure on PSII in NP enrichments the 

additional P would alleviate P-starvation, helping to maintain the integrity of the thylakoid 

membranes and minimizing oxidative damage to PSII. Cumulatively, we expected these patterns 

to lead to reduced coral growth rates under NO3- treatments but that this effect would be 

ameliorated under the other enrichment regimes. 

  

2. Materials & Methods 

2.1 Experimental Setup 

 In July 2014 we deployed 20 experimental growth platforms at 8-9 m depth on a sand flat 

near Pickles Reef in the Florida Keys National Marine Sanctuary, USA (24.99º N 80.40º W). Each 

platform consisted of a 75 x 50 x 4 cm (length x width x height) concrete base supporting a ring of 

six, 25 cm tall PVC stands with flat caps (Fig. 3.1). Growth platforms were deployed at least 3 m 
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apart from each other. We epoxied a single coral fragment to the cap on each stand so that each 

platform contained two A. cervicornis, two M. cavernosa, and two S. siderea fragments 

haphazardly arranged on the PVC stands. For A. cervicornis, we cut 10 cm fragments with a 

single apical tip from parent colonies of the same genotype provided by the Coral Restoration 

Foundation. For M. cavernosa and S. siderea two colonies of each, provided by the NOAA 

Nursery in Key West, FL, USA, were cut into 10 cm x 10 cm fragments. Corals were epoxied to 

the growth platforms in early July and given two weeks to acclimate to conditions at the field site.  

After two weeks, we collected all 120 coral fragments and transported them to shore in fresh 

seawater. We then measured the buoyant weight for each fragment and calculated the surface 

area of live tissue using a standard foil technique (Marsh 1970). We then returned all of the 

fragments to the field on the same day and allowed the corals an additional 5 day recovery period 

before beginning the nutrient enrichment portion of the study. 

 On July 31, 2014t we began nutrient enrichment treatments. Each growth platform was 

randomly assigned to one of five treatments (control, NO3-, NH4+, P, or NP; n = 4 platforms per 

treatment with each platform holding 2 fragments of each coral species). Enrichment was 

achieved by adding enough slow release fertilizer of the appropriate type (Floricote ™ Slow 

Release Nitrate, Ammonium, Phosphate, or a combination of Nitrate and Phosphate) to provide 

25 g of the desired nutrient. Fertilizer pellets were poured into 15 x 6.5 cm (length x diameter) 

PVC tubes with six 1.5 cm holes drilled in the sides to facilitate water flow, and then wrapped in 

window screen. One PVC tube containing the desired nutrient treatment was secured to the 

center of each growth platform. This method has been successfully used in the past and shown to 

successfully enrich ~1m radius around the nutrient diffusers up to 6 weeks (e.g. Burkepile and 

Hay 2009; Vega Thurber et al., 2014). Nonetheless, to ensure our enrichments were working, we 

collected water samples from 25 cm above the base of growth platform from each treatment 14 

days after placing the fertilizer tubes at the start of the experiment. Water samples were slowly 

drawn into 60 ml acid-washed syringes, GF/F filtered into acid washed bottles and frozen until 

analysis. For analysis, ammonium, nitrate, and soluble reactive phosphorus (SRP) concentrations 
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were determined via autoanalyzer. At the end of the experiment, we collected all of the corals to 

obtain final buoyant weights and calculate growth rates. 

2.2 Photobiology Measurements 

We used PAM fluorometry to quantify the performance of PSII. Measurements were taken once a 

week from approximately the same spot on each coral fragment, using markings on each PVC 

stand as a guideline. We deployed two Odyssey cosine light loggers (Dataflow Systems, 

Christchurch, NZ) at opposite ends of the experimental area to record relative downwelling 

irradiance. Using a diving PAM we measured the maximum dark adapted quantum yield of PSII 

both before and after sunset and the effective light dependent reduction in quantum yield at solar 

noon. These data allowed us to quantify three parameters of PSII health:  

(i) Maximum dark adapted quantum yield before sunrise (hereafter Fv/Fm). These values 

range from 0 – 1 and are the ratio of photons absorbed by PSII that are directed towards 

photochemistry versus those emitted as fluorescence (See Maxwell and Johnson 2000 

for a review on chlorophyll fluorescence). Numbers closer to 1 indicate a greater portion 

of absorbed light is directed towards photochemistry. Although values are species 

dependent (Suggett et al. 2009), lower Fv/Fm values within a species are often an early 

indicator of stress (Maxwell and Johnson 2000).  

(ii) Maximum excitation pressure on PSII (Qm). We used measurements of the effective 

light dependent reduction in quantum yield of each fragment at solar noon (∆F/Fm’) and 

the dark adapted quantum yield before sunrise to calculate Qm as 1- [(∆F/Fm’)/ (Fv/Fm) ] 

(Iglesias-Prieto et al. 2004). Qm values range from 0-1. Values near zero occur when 

there is little pressure on PSII and can indicate light limitation. Increasing values occur as 

the reaction centers within PSII are closed, which occurs through the normal process of 

photochemistry or when the D1 protein within the reaction center is damaged. Thus 

increasing values of Qm can be indicative of photodamage (Warner et al. 2010).  

(iii) Photoinhibition at the end of the day (qI). Because PSII repair is energetically 

expensive, the vast majority of D1 repair can only occur during the day, thus differences 
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in the maximum dark adapted yield in the morning before sunrise and the dark adapted 

yield immediately after sunset are indicative of accumulated photodamage throughout the 

day (Aro et al. 1993; Hill et al. 2005).  We calculated qI as [1-((Fv/Fm in the evening)/ 

(Fv/Fm in the morning))] such that values ranged from -1 to 1 with values significantly 

greater than zero indicative accumulated photodamage to PSII.  

2.3 Analysis 

  Understanding the effects of chronic enrichment on PSII requires incorporating natural 

environmental variability over an ecologically relevant time period. Symbiodinium can 

photoacclimate by changing their macromolecular composition to maximize performance under 

different environmental regimes as well as photoadapt over time as some symbiont genotypes 

outperform others within host corals (Huot and Babin 2010). In addition, environmental conditions 

(e.g., cloud cover, temperature, salinity, water flow; Maxwell and Johnson 2000) and the 

interactions between them can influence PSII performance. For example, rates of water flow 

mediate the effect of temperature on PSII performance (Carpenter and Patterson 2007). 

Furthermore, PSII performance is also dependent on the recent environmental history corals 

experience. For example severe photodamage one day would depress the maximum dark 

adapted quantum yield the next morning, potentially impacting measurements of Qm and qI made 

later that day. As a result, measurements from one week to the next are highly variable and the 

data needed for more meaningful assessment of temporal changes in PSII performance (i.e., 

daily measurements) were beyond the logistic capabilities of our study. Instead, we calculated the 

average values of each metric of photobiology (Fv/Fm, Qm and qI) for each coral fragment to 

assess the cumulative effects of enrichment over time. Although less preferable to more data-

intensive repeated measures designs, this allowed us to capture the biologically relevant 

responses of corals through time while reducing the possibility of making spurious conclusions 

based on anomalous environmental conditions from individual days.   

We used these averaged values for each coral as a response variable in a nested mixed 

effects models to analyze the cumulative impact of nutrient enrichment on each metric of PSII 
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performance and the size-corrected growth rates of each coral. In each model, corals were 

nested within their respective platforms. Treatment was considered a fixed effect with 5 levels (C, 

NO3-, NH4+, P, and NP) and we included a random effect for potential variability between 

platforms. When significant differences were detected, we used Tukey’s HSD to determine 

differences between the treatment levels. Throughout the study, corals were periodically broken, 

likely by turtles (pers. obs.), and preyed on by parrotfish (see Results). Preliminary analyses of 

the photobiology data revealed that as long as the tissue was not damaged near the sight of 

fluorescence measurements, there was no impact on our measurements of quantum yield. 

Therefore, for our analyses of photobiology, we only excluded corals in which damage occurred 

within 2 cm of the original measurement site or breakage made measuring the same location 

impossible.  

For our analyses of coral growth however, corallivory and breakage resulted in 

substantial losses in skeletal mass. Therefore, all of the broken and predated corals were 

excluded from our growth analyses. For A. cervicornis this resulted in the exclusion of all but one 

of the control fragments. Therefore, to test the effect of nutrients on A. cervicornis growth we 

excluded the control coral and tested for differences between the four enrichment types only. Our 

analysis revealed significant differences in growth between A. cervicornis enriched with P versus 

those subjected to other enrichment regimes (see Results). Based on these differences we 

treated these corals as two different populations and used a modified t-test for single samples to 

test the probability that the growth rate of the single remaining control coral was equal to either of 

the populations (Sokal and Rohlf 1995). While this approach is not ideal, it was the only way to 

quantitatively test our hypotheses given the loss of the control corals. 

To assess whether PSII performance influenced coral growth rates, we used mixed 

effects models similar to those described above, with growth rates as the response variable and 

including the average Fv/Fm, Qm, qI, scores as predictors rather than nutrient treatment. We once 

again included a random effect for platform, which encompassed both potential random 

environmental variability between platforms as well as any nutrient effects on corals not 



 43 

represented in our metrics of photobiology. For each coral species, the optimal model was 

selected by fitting multiple models with all combinations of the predictors and comparing the 

Akaike Information Criterion corrected for small sample sizes (AICc) (Anderson 2008). For the 

three best models we calculated marginal and conditional R2 values to examine the percentage of 

variation explained by each model (Nakagawa and Schielzeth 2013). Marginal R2 values 

represent the variance explained by the fixed effects and were calculated as: 

𝑅𝑅(𝑚𝑚)
2 =  

𝜎𝜎𝑓𝑓2

𝜎𝜎𝑓𝑓2 + ∑(𝜎𝜎𝑙𝑙2)
+ 𝜎𝜎𝑒𝑒2 + 𝜎𝜎𝑑𝑑2 

where 𝜎𝜎𝑓𝑓2 is the variance of the fixed effects and ∑(𝜎𝜎𝑙𝑙2) is the sum of all variance components and 

𝜎𝜎𝑑𝑑2 is variance due to additive dispersion. Conditional R2 values are the variance explained by the 

full model and were calculated as:  

𝑅𝑅(𝑐𝑐)
2 =  

(𝜎𝜎𝑓𝑓2 +  ∑(𝜎𝜎𝑙𝑙2))
𝜎𝜎𝑓𝑓2 + ∑(𝜎𝜎𝑙𝑙2)

+  𝜎𝜎𝑒𝑒2 + 𝜎𝜎𝑑𝑑2 

 

Thus, comparing the marginal vs. conditional R2 values allows us to determine the 

variance in growth explained by the fixed effects (i.e. parameters of PSII performance) versus 

variance in growth explained by the random effect (i.e. additional effects of nutrients beyond PSII 

performance and random variation by platform).  

All analyses were conducted in R (R Core Team 2012) using the nlme and MuMIn 

packages (Barton 2014; Pinheiro et al. 2015). Assumptions of normality and equal variances 

were verified via Shapiro-Wilk and Levine’s Tests and visual examination of QQ plots.  

 

3. Results 

3.1 Nutrient Measurements 

 For NO3-, NH4+, and P enrichments water column nutrient samples suggested our 

enrichments were substantially increasing levels of the desired nutrients. Nitrate enrichment 

resulted in 3.18 µM NO3- compared to 0.71 µM NO3- at the control platform. Similarly NH4+ 

enrichment (1.71 µM) and P enrichment (3.51 µM) were both substantially higher than the control 
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levels of these nutrients (0.47 and 0.14 µM respectively). In the NP enrichment levels were still 2-

3x greater than control levels (1.07 µM NO3- and 0.47 µM P) however, they were lower than the 

levels recorded in the individual NO3- and P enrichment.  This difference was likely because by 

alleviating NO3- and P limitation, both nutrients were utilized until another nutrient became limiting 

(Sterner and Elser 2002).  

3.2 Coral Photobiology 

Because of breakage and corallivory, we excluded 7 measurements from our analyses of 

PSII performance (A. cervicornis: 1 NO3-, 1 NH4+, 1 NP, 1 P; M. cavernosa: 1 NP; S. siderea: 1 C 

and 1 NH4+). Dark adapted quantum yield was highest for A. cervicornis, intermediate for S. 

siderea and lowest for M. cavernosa, but there were no effects of enrichment on any of the three 

species (Fig. 3.2a). In contrast, Qm, the excitation pressure exerted on PSII during peak 

irradiance, was lowest for A. cervicornis, highest for M. cavernosa, and again intermediate for S. 

siderea. Enrichment had no effect on Qm values for A. cervicornis or S. siderea but significantly 

affected Qm for M. cavernosa (F4,15 = 5.04, p < 0.01; Fig 3.2b). For these corals, average Qm was 

~40% higher than controls in NO3-, NP, and P enriched corals but statistically indistinguishable 

from controls in NH4+ enrichments. Similarly, nutrient enrichment had no effect on qI for A. 

cervicornis or S. siderea but significantly increased the average photoinhibition in NO3- enriched 

M. cavernosa (F4,15 = 5.25, p < 0.01; Fig. 3.2c).  

3.3 Coral Growth 

Breakage and corallivory forced us to exclude 35 measurements of coral growth from our 

analyses (A. cervicornis: 7 C, 1 NO3-, 4 NH4+, 4 NP, 4 P; M. cavernosa: 1 NO3-, 1 NH4+, 1 NP, 1 

P; and S. siderea: 3 C, 3 NO3-, 4 NH4+, 1 NP). Despite the loss of replication, we found species-

specific effects of enrichment on coral growth. On average, P-enriched A. cervicornis grew 2.51 ± 

0.04 mg · cm-2 · day-1 (mean ± SE), significantly faster than those enriched with any type of 

nitrogen (1.93 ± 0.14, 1.72 ± 0.19 and 1.84 ± 0.17 for NO3-, NH¾, and NP respectively; F3,9 =3.97, 

p = 0.047; Fig. 3.3). Furthermore, the lone control coral grew at an intermediate rate of 2.14 mg · 

cm-2 · day-1 which differed from both the P-enriched population (t(4) = -136.35, p < 0.01) and the 
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N-enriched population (t(15) = 2.63 p = 0.019). Due to large variance between replicates, we found 

no significant effect of enrichment on M. cavernosa growth rates (F4,15 = 2.22 p = 0.12). However, 

there appeared to be a trend towards P and particularly NH4+ increasing M. cavernosa growth 

relative to controls (Fig. 3.3). Siderastrea siderea growth rates were the most variable of the three 

corals. Growth patterns were qualitatively similar to A. cervicornis, (i.e., control and P-enriched 

corals growing fastest, NO3-, NH4+, and NP enriched corals growing more slowly) but differences 

between the treatments groups were statistically indistinguishable (F4,12 = 0.51, p = 0.72). 

3.4 Model Selection 

 For all three coral species, the single best explanatory model of coral growth included 

Qm, qI, and the interaction between the two factors (Table 3.1). For A. cervicornis this model 

explained 75% of the variation in coral growth, although 64% of the variation resulted from the 

random platform effect (which included different enrichment types) and only 11% could be 

attributed to differences in photobiology. For M. cavernosa, the best model explained 64% of the 

variation in coral growth rates, nearly 30% of which was explained by the metrics of PSII 

performance. Finally, the best fitting model for S. siderea accounted for only 10% of the variation 

in growth, all of which could be attributed to the metrics of PSII performance.  

 

4. Discussion 

 Nutrient loading presents a significant threat to coral reefs. Understanding how nutrients 

influence coral photobiology, and consequentially coral performance, will help predict how reefs 

respond to ongoing changes water quality associated with global change. Our study revealed 

species-specific variations in the responses of three corals to different types of nutrient 

enrichment. For A. cervicornis the responses in three common metrics of PSII health and 

performance were surprisingly consistent across all four types of enrichment and explained little 

variation in coral growth. However, the growth rates of these corals were significantly elevated 

under phosphorus enrichment (Fig. 3.3). In contrast, for M. cavernosa none of the enrichment 

treatments affected coral growth, but N enrichment did significantly increase excitation pressure 



 46 

and photoinhibition of PSII. Furthermore, changes in these metrics of photobiology explained 

nearly one third of the observed differences in M. cavernosa growth rates. Siderastrea siderea 

appeared to be the most tolerant species to nutrient enrichment, displaying no significant 

changes in growth or photobiology under any of the enrichment regimes. Thus, our study 

highlights the varied responses of corals to nutrient loading depend on coral species identity and 

the type of nutrient.  

Nutrient enrichment is well known to impact the growth rates of corals. Yet, it is often 

unclear if these effects are associated with impacts on the coral endosymbionts, their 

photobiology, or the calcification process itself. Our study suggests that nutrients influence all 

three and that these effects are likely dependent on the coral species in question and their 

environment. For A. cervicornis we found no significant effects of nutrients on any of our metrics 

of photobiology, but still found significant differences in coral growth between treatments. 

Acropora cervicornis subjected to P-enrichment grew faster than any other corals while those 

subjected to any of the various N containing enrichments grew more slowly (Fig. 3.3). Whether 

this was due to increased growth under P-enrichment or decreased growth under N-enrichments 

is less certain, as all but one replicate of the controls were broken. Higher growth rates under P-

enrichment may occur if P is incorporated directly into the CaCO3 lattice of the coral skeleton 

(Dunn et al. 2012). The optimal model of the effects of PSII performance on coral growth supports 

this as metrics of A. cervicornis photobiology explained only 11% of the variation in coral growth 

rates. Yet, the overall effects of nutrients, irrespective of their impacts on photobiology, explained 

over five times as much of the observed variation in growth rates (Table 3.1).  

In contrast, we found that nutrients had significant effects on Qm and qI in M. cavernosa 

and these explained the most variation in observed coral growth rates. Average excitation 

pressure on PSII was significantly elevated by NO3-, P, and NP enrichments (Fig. 3.2b), 

indicating a greater potential for the accumulation of photodamage in these corals. Although N 

enrichment can increase Symbiodinium density, which may increase ROS production and 

damage to PSII (Cunning and Baker 2012), we found no effect of NH4+ enrichment on Qm. 
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Previous studies have shown that NH4+ enrichment results in greater levels carbohydrate 

production during photosynthesis and higher protein content in Symbiodinium (Ezzat 2015). 

Therefore, it is possible that higher turnover rates of damaged D1 proteins in NH4+ enriched 

corals drove the differences in PSII performance between NO3- and NH4+ enrichments. Because 

photosynthesis is often correlated with the quantum yield of PSII, this could lead to greater rates 

of net photosynthesis in NH4+ enriched corals and consequentially account for the significant 

relationship between Qm and M. cavernosa growth. Additionally, despite comparable levels of Qm 

under NO3-, NP and P enrichments, qI was significantly elevated only in NO3- enriched corals 

(Fig. 3.2c). Phosphorus-starvation jeopardizes the integrity of the thylakoid membrane 

(Wiedenmann et al. 2012), which plays an important role in containing and scavenging ROS to 

prevent damage to chloroplasts (Asada 2006). Therefore, the additional P in NP and P 

enrichments may have alleviated P-starvation and thereby reduce the accumulation of 

photodamage throughout the day. Thus, NO3- appears to increase photodamage in corals while 

NH4+ and P could actually help repair and alleviate photodamage. 

In contrast to both A. cervicornis and M. cavernosa, we found no effects of nutrients on S. 

siderea growth or any of the three metrics of PSII performance. For these corals the overall 

patterns in PSII performance were similar to those recorded in M. cavernosa but the values were 

generally lower and more variable. Our inability to detect any significant effects of nutrients or 

photobiology on growth may have been due to lower replication, as there were more S. siderea 

replicates that were excluded due to corallivory as compared to M. cavernosa. However this 

would still not explain why we did not detect any effects of enrichment on PSII performance. 

Instead these corals may simply be more physiologically tolerant to different nutrient regimes. 

Coral species vary in their stress responses, such as the production Heat Shock Proteins, and 

these differences can mediate their tolerance to environmental stress (Fitt et al. 2009). The 

apparent tolerance for a wide array of nutrient regimes may explain the distribution and success 

of Siderastrea spp. across a variety of habitats, including heavily human impacted ones (Muthiga 

and Szmant 1987; Lirman and Manzello 2009). 
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Numerous additional factors likely contributed to the species-specific responses to 

nutrient loading documented here. Acropora cervicornis is a shallow water species that is 

adapted for high light levels (Torres et al. 2007), and the low Qm values we recorded here 

suggest that the ambient light at our experimental site put very little pressure on PSII in these 

corals. Had we conducted this study at shallower depths it is possible that we may have observed 

stronger responses in A. cervicornis photobiology. Differences in morphology were likely 

important as well, as growth form (i.e. plating vs. mounding vs. branching), tissue thickness, and 

skeletal architecture all influence the realized light levels that corals experience (Enríquez et al. 

2005; Hoogenboom et al. 2008; Wangpraseurt et al. 2012). Thus branching A. cervicornis likely 

experienced very different realized light levels than the mounding M. cavernosa and S. siderea. 

Furthermore, at equivalent levels of water flow branching corals typically experience greater rates 

of mass transfer than mounding species (van Woesik et al. 2012). As a result, A. cervicornis may 

be more capable of reducing pressure on PSII by dissipating excess absorbed energy as heat 

(i.e. non-radiative quenching; Cosgrove and Borowitzka 2010) than the two mounding 

morphologies.  Additionally, some clades of Symbiodinium are more resistant to heat and light 

stress than others (Robinson and Warner 2006). Unfortunately we were unable to assess 

Symbiodinium clade. However, the differences in photobiology responses between the 

morphologically similar M. cavernosa and S. siderea could be a result of differences in symbiont 

identity, as S. siderea often hosts a greater diversity of Symbiodinium clades than does M. 

cavernosa (Finney et al. 2010). The overall importance of each of these factors is likely to be 

context dependent and future research exploring how these factors interact with nutrient 

availability to explain the resilience of corals may be fruitful. 

Our results suggest that both the identity of nutrients and their stoichiometric ratio have 

important effects on coral photobiology. The low values of Qm we recorded in M. cavernosa under 

NH4+ enrichment and lower qI values under NH4+, NP, and P enrichments suggest that these 

nutrients may not be as harmful as NO3-. Of particular interest for future researchers may be the 

potential for P to alleviate some of the harmful effects of NO3- loading on PSII, as the average 
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level of D1 protein damage in M. cavernosa under NP enrichments was nearly 60% lower than 

under similar levels of NO3- enrichment alone (Fig. 3.2c). Furthermore, preserving natural nutrient 

pathways on reefs may help to alleviate harmful nutrient pollution. For example, fish excretion is 

predominantly comprised of NH4+ and P, typically at low N:P ratios (Shantz et al. 2015), and thus 

may reduce or alleviate damage to PSII. The combined roles of NH4+ and P from fishes may be 

one reason why fish-derived nutrients often benefit coral growth (Shantz and Burkepile 2014). 

Unfortunately, because P is readily bound by calcareous sediments (Jensen et al. 1998) and 

nitrification rapidly converts NH4+ to NO3- (Peterson et al. 2001), nutrients in ground water and 

terrestrial run-off are predominantly elevated in NO3- (Heisler et al. 2008). Thus, attempts to 

manage high-nutrient levels on impacted reefs should consider the identity and ratios of the 

nutrients present.  

Species-specific responses to nutrient loading may affect the competitive abilities of 

corals and ultimately influence their abundance and distribution on chronically enriched reefs. For 

example, the depth distribution of some corals can be explained by measurements of excitation 

pressure on PSII (Iglesias-Prieto et al. 2004). By elevating Qm, chronic enrichment, particularly 

with NO3-, could drive more vulnerable corals from their upper depth distributions and influence 

the coral species composition on reefs across a depth gradient. The interaction between Qm and 

depth may also be particularly important when bleaching events occur. While nutrient loading can 

increase the frequency and severity of bleaching (Wooldridge and Done 2009; Vega Thurber et 

al. 2014), there is often a depth refuge where temperature and light levels are lower and corals do 

not bleach (Smith et al. 2014). By increasing pressure on PSII, enrichment may extend bleaching 

to deeper portions of the reef. This could be particularly problematic for reefs where the maximum 

depth is limited or for coral species whose growth is restricted to shallow waters. Thus 

understanding how coral species respond to nutrient enrichment may be a critical component of 

predicting the future of coral reefs in a rapidly changing world. 
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Table 3.1 – Parameters and values for the three best performing models, based on AICc, of coral 
growth in response to changes in the measured metrics of PSII health and performance for each 
coral species. P-values for each term as well as the marginal and conditional R2 values for the 
model are listed. Marginal R2 values represent the variance explained by the fixed effects, 
conditional R2 values represent the variance explained by the full model. 
 

Optimal models for photobiology on coral growth 

 Model AIC
c 

∆AICc p R2Margin

al 

R2Condition

al 
Acropora 

cervicornis 
Qm x qI + 

random(platform) 

17.1 0 Qm – 0.14;  
qI – 0.43; 

Qm x qI – 0.33 

0.11 0.75 

 qI + random(platform) 22.5 5.4 qI – 0.44 0.02 0.79 
 Qm + qI + 

random(platform) 
24.4 7.3 Qm – 0.72;  

qI – 0.41 
0.03 0.73 

Montastraea 
cavernosa 

Qm * qI * 
random(platform) 

37.2 0 Qm < 0.01;  
qI – 0.39; 

Qm x qI – 0.38 

0.27 0.64 

 Qm + qI + 
random(platform) 

44.2 7 Qm < 0.01;  
qI – 0.41; 

0.24 0.65 

 Qm + 
random(platform) 

45.0 7.8 Qm < 0.01 0.24 0.68 

Siderastrea 
siderea 

Qm * qI * 
random(platform) 

61.0 0 Qm – 0.28;  
qI – 0.47; 

Qm x qI – 0.32 

0.10 0.10 

 Qm + qI + 
random(platform) 

68.0 7 Qm – 0.27;  
qI – 0.47; 

0.06 0.06 

 qI + random(platform) 69.2 8.2 qI – 0.31 0.04 0.04 
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Figure 3.1 – Schematic of the growth platforms used for our coral experiments. Each platform 
was 75 x 50 cm and contained six elevated posts to hold coral fragments. Nutrient diffusers, 
represented as the hashed cylinder, were filled with the respective nutrient treatment and secured 
to a post in the center of the platform. 
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Figure 3.2 – The impact of chronic nutrient loading with nitrate (NO3-), ammonium (NH4+), nitrate 
and phosphate (NP) or phosphate (P) on A. cervicornis, M. cavernosa, and S. siderea. (a) 
Maximum dark adapted quantum yield of photosystem II taken before sunrise, (b) Maximum 
excitation pressure on photosystem II (Qm) at solar noon, and (c) Photoinhibition of photosystem 
II (qI). N.S. indicates no significant differences while letters represent significant differences at α = 
0.05. Data are means ± 1 S.E. 
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Figure 3.3 – Growth rates of A. cervicornis, M. cavernosa, and S. siderea subjected to enrichment 
with either: nitrate (NO3-), ammonium (NH4+), nitrate and phosphate (NP) or phosphate (P). N.S. 
indicates no significant differences while letters represent significant differences at α = 0.05. Data 
are means ± 1 S.E. 
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CHAPTER IV 

ENRICHMENT-INDUCED CHANGES IN ALGAL NITROGEN AND PHOSPHORUS CONTENT 

MODIFY HERBIVORE GRAZING 
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Abstract 

  The majority of coral reefs around the world are subjected to nitrogen (N) and 

phosphorus (P) pollution. Nutrient pollution can alter the concentration of these nutrients in algal 

tissue, and in turn may influence herbivore feeding. To explore the impacts of enrichment on 

herbivory, we conducted feeding assays on a coral reef using Sargassum polyceratium grown 

under N, P, or a combination of N+P enrichment. We found that grazing rates of initial, but not 

terminal, phase Sparisoma spp. parrotfishes increased with algal N-content. Similarly, grazing 

rates of juvenile, but not adult, surgeonfishes increased with algal P-content. As a result, 

consumption of N and NP-enriched algae was ~20% greater than control algae. Our data suggest 

that nutrient content of resources plays a role in partitioning herbivory among coral reef taxa. 

Importantly, juvenile and initial phase fishes likely fill functional roles that distinctly differ than 

those of adult fishes. 

 
Introduction 

On coral reefs, herbivores consume algae that compete with corals (Bellwood et al. 2004; 

Hughes et al. 2007). Herbivory is particularly important for reef health, as algae can poison coral 

tissue (Rasher and Hay 2010), reduce coral growth rates (Vega Thurber et al. 2012), vector coral 

diseases (Smith et al. 2006), and impede the settlement and survival of coral larvae (Vermeij et 

al. 2009; Dixon et al. 2010). Thus, herbivores are vital for coral reef resilience (Adam et al. 2011) 

and understanding the factors that influence patterns of herbivore feeding is essential for coral 

reef management. 

Ecological stoichiometry predicts that animals should target resources that best match 

their elemental body composition (Sterner and Elser 2002). Stoichiometric mismatch presents a 

particular challenge for herbivores because elements like nitrogen (N) and phosphorus (P) are 

typically far more prevalent in animal tissue than plant tissue. As a result, animals are often N and 

P-limited and may selectively forage on resources rich in these nutrients (Mattson 1980; Barboza 

et al. 2009; Lemoine et al. 2013). However, a variety of physiological and morphological 

characteristics can influence consumer’s need for N versus P. For instance, P is an important 
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nutrient for lipid and carbohydrate metabolism in all animals but because of its essential role in 

bone mineralization and scale formation, is one of the most important mineral nutrients for teleost 

fishes (Sales & Janssens 2003). Similarly, N is essential for protein production, which may be 

more important in juvenile animals that need to support rapid muscle growth (Barboza et al. 

2009). Such differences in the stoichiometric needs of consumers suggests that the N and P 

content of macroalgae could be important for mediating species-specific foraging decisions of 

herbivorous fishes on coral reefs (e.g., Bellwood et al. 2006; Rasher et al. 2013; Adam et al. 

2015). Indeed, consumption rates of N and P enriched algae are often greater than those of algae 

that has not experienced nutrient enrichment (e.g. Boyer et al. 2004; Chan et al. 2012). However, 

it remains unclear how N vs. P may affect the intensity of herbivory, or whether different herbivore 

species respond differently to these nutrients. 

Understanding how N and P impact herbivore feeding patterns may be particularly 

important given the rapid rates that humans are increasing the delivery of these nutrients to 

coastal ecosystems (Wear and Vega Thurber 2015). Nutrient-induced changes in algal 

palatability may occur because in some algae, excess N and P results in luxury consumption in 

which excess nutrients are incorporated into the algae tissue for storage (Droop 1973), potentially 

increasing their value to herbivores. Here, we explore the impact of algae N and P content on 

herbivore feeding decisions and the overall consumption of the palatable Caribbean alga 

Sargassum polyceratium. We grew S. polyceratium in aquaria under either ambient nutrient 

conditions or enriched with N, P, or a combination of N+P. Each week we transplanted feeding 

assays of nutrient-enriched algae to the reef and filmed fishes feeding on the algae. We 

measured both overall mass of algae removed and consumption rates of different herbivore 

species in response to the treatments. We predicted that fishes would consume algae enriched 

with N, P and N+P faster than algae grown in ambient conditions. For N and N+P assays we 

predicted this would be the result of higher feeding rates amongst all herbivorous fishes. For P-

enriched assays however, we predicted that only surgeonfishes (Acanthuridae), which have 

roughly two-times more P in their tissue than parrotfishes (Sidwell et al. 1977), would increase 
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their consumption rates. Finally, we predicted that, within fish families, younger individuals would 

forage more intensely on enriched algae than adults because of their higher N and P demands to 

support rapid growth. 

 

Methods 

From June through August of 2013 we deployed feeding assays of S. polyceratium 

enriched with either N, P, N+P, or maintained as controls on a shallow forereef site near Conch 

Reef in the Florida Keys, USA (24.9614° N and 80.4539° W). Prior to deploying the first round of 

assays, we swam ten 25 x 2 m transects around the site to characterize the fish community. For 

each transect, a diver slowly swam the length of transect, recording the species and size of all 

herbivorous fishes present within the area.  

To create assays of varying nutritional content, each week we collected ~200 g of S. 

polyceratium from an offshore patch reef for nutrient enrichment. We transported the S. 

polyceratium to shore in fresh seawater, where we cleaned off any epiphytic growth using a razor 

blade and tweezers, and divided the cleaned algae evenly into four, 50 l aquaria. We maintained 

the aquaria outdoors under shade cloth in a seawater bath chilled to 26º C. Each tank was 

supplied with a continuous drip of fresh seawater at ~500 ml hour. To enrich the S. polyceratium, 

we spiked the seawater supply of three of the tanks with commercial aquarium supplements 

(FlourishTM Nitrogen and Phosphorus, Seachem Laboratories, Madison, GA. USA) to increase N 

and P levels by 10 µm N, 1 µm P, or 10 µm N + 1 µm P for the respective N, P, and N+P 

enrichments.  

For each assay, we allowed the sections of S. polyceratium to grow for one week in their 

respective aquaria. After one week, we collected a ~5 g portion of algae from each tank for 

nutrient analysis. The remainder of each clump was spun dry in a salad spinner for 1 min, 

weighed to ~40 g, and transported to the reef in a bag containing water from the appropriate 

treatment tank for deployment. For each assay, we secured one pre-weighed S. polyceratium 

section from a single treatment to an array of 5 clothes pegs. We used arrays of 5 pegs to ensure 
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that the sections of S. polyceratium did not float away when bitten. Review of preliminary assay 

footage revealed that all algae loss from the pegs was due to herbivory, therefore we did not 

deploy any cage controls to test for autogenic changes in mass in the algae.  

Each week for nine weeks, we deployed four assays (1 Control, 1 N, 1 P, 1 N+P) 

separated by at least 10 m at 6-8 m depth (n=9 for each treatment over the study duration). 

Assays were deployed between 10:00 and 11:00 AM and left undisturbed for a two hour feeding 

period. We filmed each assay by placing a GoPro digital camera 1 m away from the algae to 

record any grazing activity. After two hours, we collected all of the assays and returned them to 

shore to obtain a final weight as described above. We scored videos to record the species, size, 

and phase of any fish observed feeding during the assay. Fish size was estimated from a marker 

of known length included in each video. In addition, we recorded the total number of bites taken 

throughout the assay by each herbivore and the number of bites per foray. We counted bites as 

any time the fishes’ mouth was seen to make clear contact with the algae. We considered a foray 

to begin with the first bite and to end after any pause longer than necessary for the fish to reapply 

its jaws to the algae (Bellwood and Choat 1990). To determine bite rates, we divided the number 

of bites observed by the total assay duration in minutes. 

Analysis 

To ensure that our treatments increased the assay nutrient content, we measured the 

carbon (C), N, and P content of S. polyceratium from each assay. For C and N analysis, samples 

from each assay were dried at 60º C to a constant weight, ground to a fine powder, and analyzed 

via a carbon-nitrogen elemental analyzer (Thermo Fisher Scientific, Waltham MA. USA). 

Phosphorus content was measured using dry oxidation-acid hydrolysis extraction followed by 

colorimetric analysis. We tested for differences in the C:N and C:P content of S. polyceratium 

assays grown under the different nutrient enrichments via one-way ANOVA. We tested for 

differences in total algal consumption based on differences in initial and final weights with a one-

way ANOVA that included a random effect for deployment date to account for any differences in 

herbivory among days. 
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Videos of the assays revealed that over 95% of the bites taken could be attributed to 5 

species of fish (2 species of surgeonfish; Acanthurus tractus and A. coeruleus, and 3 species of 

parrotfish; Sparisoma aurofrenatum, Sp. chrysopterum, and Sp. rubripinne). Because all species 

did not feed on every assay and we expected fishes within the same family to be 

stoichiometrically similar, we pooled the data for the surgeonfishes and parrotfishes by family to 

increase our replication. For both fish families, we tested for differences in the average feeding 

rates and number of forays among treatments using two-way ANOVA with N and P treatments as 

interacting factors and a random effect for the assay date. For both analyses, data were log 

transformed to meet assumptions of normality. 

Finally, we used linear regression to determine whether ontogeny influenced nutritional demands. 

We regressed the average number of bites taken by each species of parrotfish or surgeonfish 

against the C:N and C:P ratios of the assay, including a factor for phase (parrotfishes) or class 

(juvenile vs adult surgeonfishes). Regression data were square root transformed to meet 

assumptions of normality. Data for both regressions were square root transformed to meet 

assumptions of normality.  All analyses were conducted in R using the package nmle (R Core 

Team; Pinhiero et al. 2015). 

 

Results & Discussion 

Herbivorous fish biomass at our site averaged 7.0 g m-2 and was comprised of 10 species 

of common Caribbean herbivores (3 surgeonfish species: Acanthurus coeruleus, A. chirurgus, 

and A. tractus; and seven parrotfish species: Scarus coelestinus, Sc. guacamaia, Sc. iserti, Sc. 

taeniopterus, Sparisoma aurofrenatum, Sp. chrysopterum, and Sp. rubripinne) (Fig. 1). From this 

group, we primarily observed the Acanthurus spp. and Sparisoma spp. feeding on the assays. 

Although Acanthurus spp. are not often considered important grazers on reefs (Lewis 1985; 

Burkepile and Hay 2008), the assays were cleaned of epiphytes and it was clear that these fishes 

were feeding on the S. polyceratium tissue.  Because >95% of the bites captured on video were 
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taken by A. coeruleus, A. tractus, Sp. aurofrenatum, Sp. chrysopterum, and Sp. rubripinne our 

analyses focuses on these five species.    

Nitrogen addition increased the N the content in S. polyceratium, ~25%, decreasing the 

molar C:N by ~22.5% in N-enrichments and 19.5% in NP-enrichments (F3,31 = 3.21, p = 0.04; Fig 

2a). Phosphorus addition also lowered C:P by an average of 17.2% in P-enrichments and 14.4% 

in NP-enrichments, although these differences were not statistically significant (F3,31 = 0.58, p = 

0.63). Average N:P ratios were 17.6:1 in both the control and NP assays, 20.5:1 in the N-enriched 

assays and 14.6 in P-enriched assays but did not statistically differ from each other.   

On average, fish consumed 98.1% ± 0.10 (mean ± S.E.) of the biomass from N-enriched 

assays and 97.4% ± 0.02 of biomass from NP-enriched assays. In contrast, consumption of 

Control (73.8% ± 10) and P-enriched assays (78.8 ± 0.09%) were significantly lower (F3, 23 = 

3.34, p = 0.04; Fig. 2b). For the Sparisoma spp. we found that N-enrichment significantly 

increased the feeding rates (F1,23 = 6.93, p = 0.01 Fig. 3a) and number of forays (F1,23 = 6.19, p = 

0.02; Fig. 3c) but there was no effect of P or interaction between N and P on either metric of 

grazing. For surgeonfishes, neither the bite rates nor the number of forays differed between any 

of the nutrient treatments (Figs 3b & 3d). Regressing the number of bites taken from each assay 

by surgeonfishes against the number of bites taken by parrotfishes fishes revealed no pattern 

between the two families (T23 = 0.70, p = 0.49). Therefore feeding by one family did not appear to 

influence feeding by the other. 

Selective removal of enriched resources has been documented in numerous studies 

(e.g., Boyer et al. 2004; Burkepile and Hay 2009; Chan et al. 2012; Shantz et al. 2015) but to this 

point it has remained unclear whether N versus P drives this pattern. We found that N-enriched 

algae is preferentially consumed by parrotfishes but that P-enrichment had little effect on 

parrotfish foraging. Because parrotfish are responsible for the majority of algal biomass removal 

on Caribbean coral reefs (Mumby 2006), this equated to increased biomass removal of algae 

enriched with N. While herbivory is generally considered to be more important than nutrients in 

structuring coral reef communities (Burkepile and Hay 2006, 2009; Jackson et al. 2014), selective 
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feeding on enriched resources suggests the relative importance of top-down and bottom-up 

forcing on coral reefs may vary with the spatial scale of enrichment. 

 Nutrients also influenced the number of bites taken per feeding foray. For parrotfish, this 

manifested as a significant interaction between C:N content of the assay and the fish phase. 

Initial phase parrotfish on average took fewer bites per foray with declining N-content but this 

pattern was not present for terminal phase adults (t59 = 2.74, p < 0.01, r2 = 0.45; Fig. 4a). Analysis 

of parrotfish foraging versus the C:P of S. polyceratium revealed that initial phase fishes took 

more bites per foray across all treatments (t59 = 3.04, p < 0.01) but there was no impact of 

enrichment on the average bite rates (Fig. 4b). For surgeonfish, S. polyceratium C:N had no 

impact on the number of bites taken per foray for any sized fish (Fig. 4c). Instead, bite rates for 

juvenile fishes increased with algal P-content, whereas bite rates by adult surgeonfish were 

similar across the range of algal C:P (t23 = 2.42, p = 0.02, Fig. 4d).  

Thus, herbivorous reef fishes preferentially consume resources enriched in N, and to 

some extent P, but these responses differ with both species identity and ontogeny. Specifically, 

initial phase parrotfish targeted S. polyceratium that was high in N, whereas younger surgeonfish 

appeared to prefer algae rich in P. For adults of both species, differences in algal nutrient content 

are less important than in juvenile feeding decisions. Differences in nutrient selection between 

size and age classes likely results from changes in physiology with life history. Protein 

requirements to sustain maximum growth rates decline throughout the lifespan for several fish 

species (Dabrowski 1986). Additionally, parrotfish are protogynous hermaphrodites, meaning that 

most initial phase fishes are female and terminal phase fishes are always male (Robertson and 

Warner 1978). Eggs are more nutritionally demanding than sperm to produce and increasing 

dietary protein yields greater egg production (Brooks et al. 1997). Thus, initial phase female 

parrotfishes may also consume more N in their diets to increase reproductive output. Taken 

together, these factors could explain why initial phase parrotfish targeted N-enriched algae but 

terminal phase males did not.  
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In contrast, morphology may drive P-demand in surgeonfish. Phosphorus is a primary 

constituent of bone and scales (Lall and Lewis-McCrea 2007), and on a per gram basis, 

surgeonfish contain almost two times more P in their tissue than parrotfish (3.24 ± 0.90 mg P g-

1 in surgeonfish versus 1.67 ± 0.23 mg P g-1 in parrotfish; Sidwell et al. 1977). Because fish obtain 

the majority of their P from their diet, this higher P-requirement likely necessitates that young 

surgeonfishes forage on P-rich foods to grow. In contrast, slower growing adult fishes may not 

have this dietary constraint.  

The functional diversity of herbivores on coral reefs is vital for maintaining healthy reefs 

(Burkepile and Hay 2008, Rasher et al. 2013) and promoting recovery after disturbances 

(Bellwood et al. 2006). Many different traits influence the functional diversity of herbivores 

including feeding morphology (Bellwood and Choat 1990), body size (Lokrantz et al. 2008), 

tolerance of chemical defenses (Rasher et al. 2012), foraging range and habitat use (Adam et al. 

2015), and microhabitat use (Brandl and Bellwood 2014). Here, we show that algal nutrient 

content may be an important axis of niche diversification and influence complementarity and 

redundancy patterns among and within herbivore species. For example, parrotfishes clearly 

targeted N-rich foods while P content more strongly influenced surgeonfish feeding. Moreover, 

the quality of resources targeted appears to differ with size and age, with juvenile surgeonfishes 

and initial phase parrotfishes targeting nutrient-rich foods relative to larger fishes. Thus, body size 

may be an important factor shaping not only the types of bites that fishes take from resources 

(e.g., Bonaldo and Bellwood 2008) but also the type and quality of resources these fishes 

choose. Importantly, this suggests that the loss of large herbivores due to overfishing not only 

reduces overall grazing intensity but also may be vacating functional niches that are not filled by 

smaller juvenile fishes, even within the same species.  

Ultimately, our study suggests herbivorous fishes selectively target resources rich in 

specific nutrients and that ecological stoichiometry can effectively predict the importance of 

particular nutrients to different consumers. In turn, discerning the relative importance of different 

nutritional currencies to consumers may aid in predicting the optimal foraging strategies of 
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herbivorous fishes and help better understand the functional roles of different species on coral 

reefs. Such knowledge will be important for understanding the function of an intact guild of 

herbivorous fishes and how these herbivores influence the resilience of coral reefs.           
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Figure 4.1 – The biomass of herbivorous fishes (g m-2) recorded at our study site prior to the 
beginning of the study. Data are means ± 1 S.E. 
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Figure 4.2 – ((a) The average molar ratios (C:N – circles, C:P – triangles) measured from S. 
polyceratium feeding assays. (b) Average consumption of feeding assays after two hour 
deployments. Data are means ± 1 S.E. Capital letters above each treatment denote significant 
differences in C:N based on Tukey’s HSD following one-factor ANOVA. C:P showed no 
differences across treatments. 
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Figure 4.3 – Average grazing rates in bites minute-1 on S. polyceratium assays for Sp. 
aurofrenatum, Sp. chrysopterum, and Sp. rubripinne combined (a) or A. coeruleus and A. tractus 
(b). Number of feeding forays hour-1 for the above parrotfish species (c) and surgeonfish species 
(d). Data are means ± 1 S.E. P-values for nitrogen enrichment (N), phosphorus enrichment (P) 
and the interaction (N*P) are from two-factor ANOVA. 
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Figure 4.4 – Average bites minute-1 for Sp. aurofrenatum, Sp. chrysopterum, and Sp. rubripinne 
from each assay regressed against (a) the C:N and (b) C:P of S. polyceratium assays. Initial 
phase parrotfish are in blue and terminal phase parrotfish in grey. Average bites minute-1 for A. 
coeruleus and A. tractus are presented in panels (c) and (d). Juvenile surgeonfishes are shown in 
dark green, adults in light green. P-values for significant model terms or interactions are provided. 
N.S. indicates that no terms were significant. 
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CHAPTER V 

FISH-DERIVED NUTRIENT HOTSPOTS SHAPE CORAL REEF BENTHIC COMMUNITIES 
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Abstract 

 Animal-derived nutrients play an important role in structuring nutrient regimes within and 

between ecosystems. When animals undergo repetitive, aggregating behavior through time, they 

can create nutrient hotspots where rates of biogeochemical activity are higher than those found in 

the surrounding environment. In turn, these hotspots can influence ecosystem processes and 

community structure. We examined the potential for reef fishes from the family Haemulidae 

(grunts) to create nutrient hotspots and the potential impact of these hotspots on reef 

communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which 

shelter at reef sites during the day but forage off reef each night, and measured the impact of 

these fish schools on benthic communities. We found that grunt schools showed a high degree of 

site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient 

hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times 

the respective rates of delivery to structurally similar sites that lacked schools of these fishes.  In 

turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times 

those of sites where grunts were rare. These differences in nutrient delivery and grazing led to 

distinct benthic communities with higher cover of crustose coralline algae and less total algal 

abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at 

grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling 

reef fish and their nutrient subsidies play an important role in mediating community structure on 

coral reefs and that overfishing may have important negative consequences on ecosystem 

functions. As such, management strategies must consider mesopredatory fishes in addition to 

current protection often offered to herbivores and top-tier predators. Furthermore, our results 

suggest that restoration strategies may benefit from focusing on providing structure for 

aggregating fishes on reefs with low topographic complexity or focusing the restoration of nursery 

raised corals around existing nutrient hotspots. 
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Introduction 
 

 Mobile animals can influence the availability of limiting nutrients across landscapes 

through the consumption and excretion of resources (Vanni 2002; Estes et al. 2011). Ungulates 

(McNaughton et al. 1997), seabirds (Croll et al. 2005) and fishes (Burkepile et al. 2013) are just a 

few examples of animals that accelerate nutrient cycling and enhance nitrogen (N) and 

phosphorus (P) availability within their habitats. Animals that move between systems also 

transport nutrients, serving as nutrient sinks in the systems in which they feed and nutrient 

sources in the systems where waste is excreted. For example, seabirds move nutrients from 

marine to terrestrial systems, alleviating nutrient limitation in plants and changing plant 

community structure and ecosystem processes (Croll et al. 2005). Such animals act as mobile 

links between systems and can provide recipient systems with nutrient subsidies that often 

exceed abiotic sources of nutrients, ultimately altering nutrient storage and rates of primary 

productivity in the recipient systems (Lundberg & Moberg 2003; Vanni 2002; Vanni et al. 2013).  

  Aggregations of animals within a landscape can lead to spatial or temporal variation in 

nutrient delivery, potentially creating nutrient “hotspots” (McClaine et al. 2003). These spatially 

heterogeneous patches of nutrients can influence the abundance and distribution of primary 

producers by altering species performance and competitive interactions (Chesson 2000; John et 

al. 2007). Nutrient hotspots may also attract herbivores and intensify grazing pressure as 

herbivores seek out high quality resources (Steinauer & Collins 2001; Anderson et al. 2010). 

Despite the well-recognized importance of animal-derived nutrients in both terrestrial (e.g. 

McNaughton et al. 1997; Hilderbrand et al. 1999; Croll et al. 2005) and freshwater systems (e.g. 

Larkin & Slaney 1997; Moore 2006; McIntyre et al. 2008), the potential influence of animal-

mediated nutrient hotspots in structuring marine communities have rarely been demonstrated (but 

see Layman et al. 2013). 

In marine systems, the majority of studies investigating nutrient subsidies focus on 

nutrients derived from nitrogen fixation, physical processes such as upwelling or run-off, or 

anthropogenic sources (e.g. Welsh 2000; Leichter et al.2003; Schaffelke et al. 2005). However, 
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fishes can be important sources of nutrients, particularly in oligotrophic systems such as tropical 

seagrass beds and coral reefs (Layman et al. 2011; Burkepile et al. 2013). For example, in the 

Florida Keys, fishes are one of the most important sources of N on reefs and can impact algal 

and coral abundance on a reef-wide scale (Burkepile et al. 2013). Many species of carnivorous 

fishes, particularly grunts (family Haemulidae), shelter on reefs during the day but forage in 

adjacent seagrass, sand-flat, and mangrove habitats at night, thereby vectoring nutrients to reefs 

when they return daily. Because these fishes show high fidelity towards specific shelter sites, 

often returning to the same coral heads (Ogden & Quinn 1989; Heck et al. 2008), they may create 

consistent nutrient hotspots that could alter primary production and benthic community 

composition. Furthermore, fish-derived nutrients affect corals in fundamentally different ways than 

anthropogenic sources, with nutrients from fishes often facilitating coral growth and 

anthropogenic nutrients often slowing coral growth (Shantz & Burkepile 2014). Given the high 

biomass of fishes on pristine coral reefs (e.g. Friedlander et al. 2010), the rates and patterns of 

fish excretion may strongly influence the dynamics of reef communities and be important 

components of healthy reef systems. Yet, we know very little about how the distribution of fishes 

and their nutrients within the reef landscape impacts ecological processes or community 

structure.     

Here, we examined the role of fishes as generators of nutrient hotspots on an Atlantic 

coral reef and explored how these hotspots influenced benthic community structure. Over three 

months, we monitored the biomass of fishes sheltering across twenty structurally similar coral 

heads on a shallow forereef. We estimated the rates of nutrient delivery from fishes and assessed 

the impact of these nutrients on coral growth, algal community structure, and herbivorous fish 

grazing at each site. We predicted that aggregations of fishes would create nutrient hotspots 

around the coral heads where they sheltered and that these fish-derived hotspots would increase 

coral growth and alter the composition of primary producer communities. Additionally, we 

predicted that by creating hotspots of important limiting nutrients, fish aggregations would 

concentrate herbivore grazing on nutrient-enriched algae growing in these hotspots. Herbivory is 
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a fundamentally important process for structuring coral reefs, with high levels of herbivory 

keeping reefs free of excess harmful algae and facilitating coral recruitment, survivorship, and 

growth (Hughes et al. 2007; Burkepile & Hay 2008). Accordingly, we expected the cumulative 

effects of fish-derived nutrients to create distinct benthic communities around hotspots. 

 

Methods  

Study Species and Site 

We conducted our research on a shallow forereef (5-7 m deep) in the Florida Keys 

National Marine Sanctuary, USA (24.992°N 80.408°W) from May through August of 2013. This 

site is dominated by primarily dead colonies of the massive, digitate coral Dendrogyra cylindrus. 

During the day, large schools of grunts consistently shelter around some of these D. cylindrus 

colonies, while remaining consistently absent at other colonies.  

Experimental Setup 

In April 2013 we tagged every D. cylindrus colony in a 60 x 20 m section of the reef. Over 

the ensuing month we conducted weekly surveys between 10:00 AM and 3:00 PM to record the 

number, size, and species of fishes within a 0.5 m perimeter of each tagged colony. From these 

preliminary surveys we selected twenty study colonies with live tissue, haphazardly distributed 

across the reef, that consistently sheltered either high or low biomass of fishes and were 

separated by at least 2 m (n = 10 each; Appendix A). Colonies were interspersed throughout the 

site to ensure that any large scale abiotic factors such as nutrient delivery from internal waves, 

which rarely reach these depths in the Florida Keys (Leichter et al. 2003), or land-based sources 

of pollution, which are negligible at these sites >10 km offshore (Briceño & Boyer 2012), would 

affect both high and low biomass colonies equally. 

Study colonies ranged in size from 1 x 1 x 0.75 m to 2 x 2 x 2.25 m (length x width x 

height), with fish tending to shelter at taller colonies. To determine the consistency of fish 

residency we conducted five-minute surveys between 10:00 AM and 3:00 PM at each study 

colony every 7 – 9 days from May to mid-August (n = 11 surveys) and recorded the number, size, 
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and species of fishes at each colony. Fish were considered residents of the colony if they spent 

the entirety of the survey within 0.5 m of the colony’s perimeter. Each week we began our 

surveys at a randomly selected colony and surveyed colonies from nearest to the start location to 

furthest away in order to prevent any artifacts that may have occurred from surveying colonies in 

the same order. For our analyses, we converted estimates of fish length to biomass using 

published length-weight relationships (Bohnsack and Harper 1988; Marks and Klomp 2003). 

Estimates of Nutrient Delivery 

Fishes excrete nitrogenous waste as ammonia, and to some extent urea, while P is 

excreted in both soluble and fecal forms (Dosdat et al. 1995). As a result, fish-derived nutrients 

are quickly diluted in the water column and rapidly utilized by benthic organisms, making it difficult 

to capture the signal of fish-derived nutrients in water samples. Therefore, we used bioenergetics 

models from Burkepile et al. (2013) to estimate nutrient excretion rates from sheltering fishes at 

each colony. Bioenergetics models use a mass balance approach given a priori knowledge of a 

fishes’ diet, physiology, and the environmental conditions to provide accurate estimates of 

excretion via linear models (e.g. Vanni 2002; Allgeier et al. 2013; Burkepile et al. 2013). We used 

these linear models to estimate excretion rates (mg nutrient fish-wet-weight-1 day-1) of nitrogen 

and phosphorus based on the biomass of all Haemulid fishes sheltering around D. cylindrus 

colonies. We focused solely on Haemulid fishes as they represented 99% of the biomass of 

resident fishes across all study colonies.  

We complemented our bioenergetics models to evaluate nutrient output by assessing the 

nutrient content of macroalgae at the different study colonies, as it reflects ambient nutrient 

conditions over a relatively long time frame (i.e., weeks to months) (Atkinson & Smith 1983). 

Thus, algae in consistently enriched environments typically show higher tissue nutrients (e.g. 

Burkepile and Hay 2009, Vega Thurber et al. 2014). During Weeks 7 and 14 samples of the 

macroalga Dictyota menstrualis were collected from within the survey areas at each colony for 

analysis of N and P content. Samples were immediately placed on ice, transported to the lab, and 

frozen until processed. Samples were rinsed with deionized water and scraped free of epiphytes 
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before being dried at 50° C to a constant weight and ground to powder. Total carbon and N 

content was determined via elemental analysis using a CHN analyzer (FlashEA 1112 Series, 

Thermo Electron Corporation). We measured P content through a standard oxidation-acid 

hydrolysis extraction followed by a colorimetric analysis. 

Community Structure 

To determine how differences in fish-derived nutrients impacted community structure, we 

established 0.5 m x 0.5 m permanent quadrats adjacent to the southwestern side of each study 

colony. These areas fell within the radius of our fish surveys, and their position was selected to 

standardize for differences in water motion and light availability that could have occurred based 

on their position relative to the study colony. To estimate the percent cover of benthic organisms, 

we took digital photos of each permanent quadrat during the final week of the study. We overlaid 

a one hundred-point grid on each photo and identified the organism below each point to the 

lowest taxonomic level possible. After identification, each point was categorized as either: 1) 

brown macroalgae (>90% Dictyota spp.), 2) red macroalgae (primarily articulated corallines from 

the genera Amphiroa and Galaxaura), 3) green macroalgae (Halimeda spp.), 4) filamentous turf 

algae, 5) crustose coralline algae (CCA), 6) turf algae mixed with sediment mats (TAS), 7) 

cyanobacteria, 8) soft corals, or 9) stony corals. In addition, we pooled all upright algae (brown 

algae, red algae, green algae, and both turf groups) into a “Total Algae” group, as members from 

these groups can impair coral recruitment and growth (Birrell et al. 2008). 

Fish excretion can increase the growth of the corals in which they shelter (Meyer et al. 

1983, Shantz & Burkepile 2014). However, it is unclear how fish schools impact corals that they 

are not directly sheltering in. Therefore, in Week 2 of the study we transplanted four Acropora 

cervicornis fragments (10 cm each) around each study colony to investigate the effect of fish-

derived nutrients on corals around shelter sites. We transplanted two fragments into each 

permanent benthic quadrat. To examine if potential differences in abiotic forces (e.g. flow rate, 

shading, sedimentation) could account for variation in coral growth, we transplanted the other two 

A. cervicornis fragments to the top of dead D. cylindrus pillars on the southwestern edge of each 
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study colony. These corals were within 1 m of those placed in our permanent benthic quadrats, 

but could have experienced different flow, light, and sedimentation regimes than the corals at the 

base of the colonies. All corals were tagged, measured, and photographed at the time of out-

planting. During Weeks 7 and 14 each coral was re-measured and photographed to calculate the 

total linear extension. Differences between final and initial sizes were used to calculate the 

percent growth day-1. 

To assess how fish aggregations impacted herbivore foraging, in Weeks 10 and 11 we 

filmed each study colony for two hours and documented the species, size, and total number of 

bites taken by herbivorous fishes within each permanent quadrat. All colonies were filmed 

between 10:00 AM and 1:00 PM over the course of two days. When the videos were scored, only 

bites taken within the permanent quadrats were counted towards the total number of bites taken. 

To ensure that differences in grazing resulted from nutrient delivery from grunts and the ensuing 

enrichment of algae on the benthos rather than some other intrinsic factors of the colony, we also 

transplanted pre-weighed sections of a palatable alga, Laurencia sp., into each permanent 

quadrat to measure algal biomass removal rates. All Laruencia sp. was collected from a ~3 m2 

area in a nearby backreef location to ensure similar nutrient quality. Prior to deployment, 

Laurencia sp. was spun dry in a salad spinner and divided into 20 individually weighed portions 

(initial weight 15.0 – 20.0 g). Pre-weighed algae were kept in aerated seawater overnight and 

randomly assigned to a study colony the following day for assays. At each colony, algae were 

secured to clothespins, attached to the substrate and left for two hours. After two hours, assays 

were collected in individual bags, returned to the lab, spun dry, and re-weighed to determine 

mass lost during deployment. Half of the assays were filmed using GoPro digital cameras to 

confirm that the mass lost was due to herbivory. 

Statistical Analyses 

Because fish biomass tended to cluster at either low or high levels rather than along a 

continuum of occupation (see Results), we used agglomerative hierarchical clustering to 

categorize study colonies as “High Biomass” or “Low Biomass” sites. Biomass status was 



 82 

assigned using the biomass of grunts around each colony throughout the study based on Wards 

method using Euclidean distances and the Cluster library in R (Maechler et al. 2013). Differences 

in fish biomass based on cluster (High Biomass vs. Low Biomass) and time were assessed by 

mixed effects repeated measures ANOVA with the nlme package in R (Pinheiro et al. 2007). To 

conform to assumptions of ANOVA biomass data were log transformed. Because biomass was 

significantly and consistently higher at High Biomass versus Low Biomass sites throughout the 

entirety of the experiment (see Results), we used these groups as a treatment variable for all 

subsequent analyses.  

We used mixed-model ANOVAs that considered biomass status (High vs. Low) a 

treatment factor and included a random effect for colony to test for differences in the mean N and 

P delivery from fishes (as calculated from bioenergetics models), and the algal mass lost from 

feeding assays. Because grazing rates on the benthos were filmed over separate days, we 

included an additional treatment factor for day to test for differences in grazing between colonies. 

Both excretion rates and algal mass loss from feeding assay data were log transformed, while 

grazing rate data were square root transformed to meet assumptions of ANOVA. Differences in 

the N and P content of D. menstrualis were tested via mixed effects repeated measures ANOVA. 

We tested for differences in the growth rates of A. cervicornis transplants via a nested 

two-way ANOVA that considered biomass status and position (elevated vs. colony base) as 

predictors and included an interaction between the two. Transplants suffered high rates of 

breakage, likely due to the many careless recreational divers visiting the site (pers. obs). 

Therefore, we restricted our analysis to transplants that showed no signs of breakage at the time 

of measurement. This limited our analysis to 46 of the 80 transplants, 18 from High biomass 

colonies (8 elevated and 10 at the base of colonies) and 28 from Low biomass colonies (15 

elevated and 13 base). 

We used mixed-effects ANOVA to test for differences in the percent cover of each 

benthic category as well as the overall cover of Total algae at High vs. Low Biomass colonies. For 

groups that were rare (i.e. <5% of benthic cover) we used Fishers Exact Tests to test for 
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differences in their presence or absence between colonies. We also used ANOSIM and SIMPER 

analyses to test for similarity in the benthic algal community. We visualized differences in the 

benthic algal communities via nonmetric multidimensional scaling (nMDS) using a random 

starting configuration and Bray-Curtis distance based on the percent cover of each benthic 

category at each colony. ANOSIM and nMDS analyses were conducted using the Vegan package 

in R (Oksanen et al. 2013). All data are reported as means ± S.E.  

 

Results 

Grunts accounted for the majority of biomass observed at D. cylindrus colonies and 

nearly 99% of the variation between High and Low Biomass colonies. The biomass of resident 

grunts sheltering among corals varied from 0 to 830 g m-2, and agglomerative clustering indicated 

that colonies could be classified as either High Biomass or Low Biomass sites (Fig. 5.1a).  

Biomass was relatively consistent at colonies identified as Low Biomass but showed significant 

variation through time at High Biomass sites (Biomass x Time effect: F10,180 = 3.81,  p < 0.001; 

Table B1). Despite this variability, grunt biomass remained consistently higher at sites designated 

as High Biomass versus those designated as Low Biomass for the entirety of the study (Biomass 

effect: F1,18 =67.83, p < 0.001; Fig. 5.1b).  

From our bioenergetics models, the average modeled grunt excretion rates of N and P 

around High Biomass sites were ~10 times greater than at Low Biomass sites (F1,16 = 91.07, p< 

0.001 and F1,16 = 25.07, p<0.001 respectively; Fig 5.2a). Modeled mean N excretion around High 

Biomass sites was 50.07 ± 9.43 mg m-2 day-1 while P excretion was 5.32 ± 1.01 mg m-2 day-1. 

Calculated excretion rates around Low Biomass sites also represented a sizable contribution of N 

and P to the area (5.72 ± 0.72 mg N m-2 day-1 and 0.53 ± 0.08 mg P m-2 day-1), but were 

approximately an order of magnitude lower than at High Biomass sites. Additionally, nitrogen 

content of D. menstrualis was roughly 15% higher near High Biomass than Low Biomass sites 

(F1,18 = 4.64, p = 0.045; Fig. 5.2b), but we found no difference in P content (F1,18 < 0.001, p = 

0.98). 
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 ANOSIM showed a significant difference in the benthic algal communities between High 

and Low Biomass sites (R = 0.31, p =0.007). Dissimilarity between sites was driven primarily by 

TAS (26.7% of dissimilarity), CCA (24.5%), and brown macroalgae (24.0%) (Table B2). These 

results were supported by our nMDS analysis, which suggested that High and Low Biomass sites 

were similar in turf cover, and to some extent red macroalgae, but diverged in percent cover of 

most other benthic groups (Fig. 5.3).  

Colonies that sheltered large schools of grunts tended to have lower overall cover of 

Total Algae and TAS (p = 0.01 and 0.001 respectively; Fig. 5.4) than colonies without large 

schools of grunts. The percent cover of CCA was also ~70% higher around High Biomass 

colonies than Low Biomass colonies (p = 0.013 Fig. 5.4). There were no significant differences in 

the percent cover of brown or red macroalgae individually. Green macroalgae cover was low 

across sites. However, these algae were present at 7 of 10 High Biomass sites but completely 

absent at all Low Biomass sites (p = 0.003, two-tailed Fisher’s exact test). Other rare benthic 

groups (e.g. stony coral, soft coral, cyanobacteria) did not differ between sites either in percent 

cover or presence/absence (Fig. 5.4).  

A. cervicornis transplanted around High Biomass sites grew nearly 75% faster than 

transplants at Low Biomass sites (F1,16 = 6.63, p = 0.02; Fig. 5.5). We found no difference in 

growth rates between elevated coral transplants and those at the base of colonies (F1,12 = 0.22, p 

= 0.65) and no interaction between biomass and position (F1, 12 = 0.39, p = 0.55). 

 No herbivorous fishes (e.g. Acanthurids or Scarids) spent enough time around any colony 

to be considered resident fish. Nonetheless, grazing rates by these herbivores were roughly three 

times greater at the High Biomass sites than at the Low Biomass sites (1.52 ± 0.36 versus 0.50 ± 

0.10 bites per minute respectively; F1,17 =  8.56, p = 0.009; Fig. 5.6) and day had no effect (F1,17 = 

2.57, p = 0.127). Grazing rates were roughly 1.5-2 times higher for all herbivorous fishes except 

the ocean surgeonfish (Acanthurus tractus) and the yellowtail parrotfish (Sparisoma rubripinne), 

which increased grazing roughly 9 and 15 fold in High Biomass sites, respectively, and the queen 

parrotfish, Scarus vetula, which showed no change in grazing rates between sites. In contrast to 
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grazing patterns on the benthos, herbivores consumed similar amounts of Laurencia from feeding 

assays at both High and Low Biomass sites (46.6 ± 10% mass consumed versus 35.9 ± 8% 

consumed respectively, F1,18 = 0.71, p = 0.41). 

 

Discussion 

 On coral reefs consumer-mediated nutrient cycling is rarely appreciated as an important 

driver of community structure. However, we show that fish-derived nutrients from common 

mesopredators that occupy the middle of food chains can play an important role in dictating 

community structure. Our bioenergetics models show that the high site fidelity of sheltering 

Haemulid fishes increased the delivery of both N and P around their shelter sites by an order of 

magnitude. These nutrient hotspots had higher coral growth rates, less harmful algae, and more 

crustose coralline algae compared to areas where fishes rarely sheltered. Interestingly, the 

increased input of limiting nutrients at hotspots led to increased feeding by herbivorous fishes, 

which likely drove much of the difference in benthic community structure at the High Biomass 

sites. Our data are some of the first to indicate that fish aggregations and their nutrient subsidies 

can be important determinants of ecosystem processes and community structure on coral reefs. 

High rates of nutrient delivery often influence the species composition and dominance of 

primary producer communities, as well as impact overall rates of production, elemental storage 

and ecosystem function (Chapin et al. 1997). For example, Burkepile et al. (2013) documented a 

positive relationship between fish excretion rates and the percent cover of macroalgae across 

multiple reefs in the Florida Keys, including the site used in this study. However, the spatial 

distribution of nutrients may be as important as total delivery rates for determining ecological 

processes. Heterogeneity in resource supply can have profound effects on ecosystems by 

creating gradients in species-performance within the landscape (Chesson 2000) or altering the 

feeding patterns of consumers (Barboza et al. 2009). At our site, the majority of fish-derived 

nutrients were not distributed evenly across the reef. Instead, bioenergetics models indicated that 

large schools of grunts provided on average roughly ten times more N and P to discrete sites 
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where they consistently sheltered. Importantly, our study site had the lowest reef-wide rates of N 

and P excretion among reefs in the upper Florida Keys, but the consistent aggregation of fishes 

at specific sites within our study reef created nutrient hotspots where nutrient excretion rates 

exceeded those of most other reefs in the region (Burkepile et al. 2013). Thus, fish aggregations 

appear to be important for determining both within and among reef patterns in nutrient 

distribution. 

High Biomass sites also possessed distinctly different algal communities than structurally 

similar sites that lacked large schools of grunts (Fig. 5.3). Low rates of nutrient supply typically 

favor slow-growing algae that are effective in nutrient acquisition, storage, and use, while high 

nutrient levels often promote rapidly growing, ephemeral species such as filamentous turf 

(Herbert & Fourqurean 2008). Surprisingly, we found no difference in the percent cover of turf or 

macroalgae between sites. Instead, the lower cover of TAS and higher cover of CCA at High 

Biomass sites accounted for over 50% of the differences between High and Low Biomass sites 

(Fig. 5.4; Table B2). Given that fast growing algae are typically favored by excess nutrients, one 

might expect the opposite pattern. However, previous experiments manipulating nutrients on 

reefs have reported that both shorter filamentous turf algae and TAS are mediated by grazing 

rather than nutrients, while CCA responds positively to nutrient enrichment in the presence of 

grazers (Burkepile & Hay 2009; Walsh 2011). Our findings are consistent with these patterns and 

suggest that the nutrient-induced concentration in grazing around nutrient hotspots had more 

influence on benthic algal communities than did the direct effects of nutrients on algal growth and 

competition. 

Given that herbivores are often nutrient limited, they should focus their foraging on high 

quality primary producers (Barboza et al. 2009; Lemoine et al. 2014). We found that herbivorous 

fishes fed at roughly three times greater rates around High Biomass sites than Low Biomass sites 

(Fig. 5.6). This is similar to large herbivores in terrestrial systems such as bison in tall-grass 

prairies (Steinauer & Collins 2001) and large ungulates in African savannahs (Anderson et al. 

2010) that exhibit higher grazing rates around nutrient hotspots. Accordingly, the increased 
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grazing at High Biomass sites likely explains the absence of higher macroalgal cover associated 

with high levels of fish-derived nutrients on a reef-wide scale (Burkepile et al. 2013), as more 

intense herbivory likely compensates for increased algal production at the scale of individual coral 

heads.  

We also found that the high levels of fish-derived nutrients at High Biomass sites 

promoted coral growth, with extension rates of A. cervicornis approximately 1.5 times greater at 

these sites than at sites where grunt biomass was low (Fig. 5.5). This pattern has been 

documented for corals that shelter fishes directly within their branches. For example, growth of 

Porites furcata was approximately 1.4 times greater when colonies sheltered schools of grunts 

(Meyer & Schultz 1985). While this value is similar to the increased growth rates recorded here, 

our study shows that corals receive benefits from fishes by merely growing in the proximity (≤ 1m) 

of large schools of fishes. Given the high fish biomass on reefs with low fishing pressure (Sandin 

et al. 2008, Friedlander et al. 2010), corals may be adapted to thrive in areas with high rates of 

nutrient recycling by fishes, so long as macroalgal cover remains low. Indeed, Allgeier et al. 

(2014) suggested that fish may deliver nutrients to corals at an optimum N:P ratio for coral growth 

of around 20:1, a level almost identical to the 20.3:1 calculated in our study. Thus, fish-derived 

nutrients and nutrient hotspots may be an important positive feedback on coral success that could 

facilitate coral dominated communities. 

As a result, nutrient hotspots may serve as important nodes for the recovery of degraded 

reefs. On coral depauperate reefs, diffuse grazing by fishes may be insufficient to consistently 

suppress macroalgae and facilitate coral recovery (Mumby et al. 2007; Sandin & McNamara 

2012). However, we show that nutrient hotspots can focus grazing from herbivorous fishes on 

discrete patches, leading to decreased cover of upright algae, which can inhibit coral settlement 

and growth (Birrell et al. 2008), and increased cover of CCA, which can promote the settlement 

and survival of coral larvae (Harrington et al. 2004). Furthermore, higher coral growth rates 

around fish-derived hotspots may reduce the time corals spend in smaller size classes, when 

they are weaker competitors and suffer greater levels of size-dependent mortality (Bak & Meester 
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1999). Thus, fish-derived nutrient hotspots may not only improve coral settlement but also 

increase survival rates. 

These positive feedbacks are likely important for the recovery of degraded reefs and may 

be important when considering restoration efforts. For example, reefs with low topographic 

complexity may benefit from artificial structure to provide aggregation points for fishes. Likewise, 

on coral depauperate reefs, planting nursery-raised corals around existing fish aggregation sites 

may improve the growth, survival, and potential reproductive output of transplanted corals. In 

turn, the increased topographic complexity afforded by restored corals may provide more 

sheltering habitat for fishes, encouraging a positive feedback that promotes reef recovery (e.g. 

Mumby & Steneck 2008). Accordingly, the significant positive effects of fish-derived nutrient 

hotspots on grazing and coral growth rates demonstrated in this study may be an important 

consideration for coral restoration strategies. 

One potential concern with our study is that the sites where grunts aggregated could 

have coincided with some unique location effects such as different wave exposure, currents, or 

abiotic nutrient delivery that attracted herbivorous fishes and resulted in different benthic 

communities but was unrelated to fish-derived nutrients. However, both High and Low Biomass 

sites were well interspersed over a 20 m X 60 m area of reef (Appendix A). This interspersion 

minimized the chances of any physical forces such as wave exposure or currents affecting only 

High or Low Biomass sites. Further, in the Florida Keys, the major sources of abiotic nutrients are 

typically internal waves (e.g. Leichter et al. 2003) or delivery of nutrients from land-based 

sources. However, internal waves rarely reach the shallow depths where we were working and 

are extremely variable in space and time when they do reach these shallow depths (Leichter et al. 

2003), which would make them an unlikely explanatory factor for generating very consistent 

spatial and temporal differences in fish and benthic communities. Further, land-based sources of 

pollution are quite rare on these outer forereefs that are >10km offshore (Briceño & Boyer 2012). 

Even if these abiotic sources were important deliverers of nutrients to our field site, the 
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interspersion of our High and Low Biomass sites would have made it very unlikely that these 

nutrient sources would have biased our data set in a significant way.  

Another potential explanation of differences in increased herbivore foraging around High 

Biomass sites could be that these sites just attract more types of all fishes regardless of fish-

derived nutrients. However, while grunts spend the entire day in shelter sites (Ogden & Quinn 

1989), both parrotfish and surgeonfish are roving herbivores with average territory sizes ranging 

from 100 m2 to over 1,000 m2 (Mumby & Wabnitz 2002, Catano et al. 2015). Due to the small size 

of our study site (20 m x 60 m), individual parrotfish and surgeonfish would likely range over the 

majority of our site, including both High and Low Biomass colonies. The fact that we found a 

threefold increase in foraging on the benthos only around High Biomass colonies strongly 

suggests that these fishes consistently choose to forage in these areas. In contrast to benthic 

grazing rates on the existing algal community, there was no difference in consumption of 

Laurencia sp. during feeding assays between High and Low Biomass sites. If grazing at these 

coral colonies were based on attraction of herbivores to these sites via mechanisms unrelated to 

fish-derived nutrients, than we would have expected consumption of algae in the feeding assays 

to follow the same pattern as we saw in grazing on the benthos. However, these data suggest 

that increased grazing around High Biomass sites was a direct result of nutrient delivery from 

fishes and the subsequent increase in nutritional quality in naturally occurring algae rather than 

herbivorous fishes being attracted to High Biomass sites for reasons unrelated to fish-derived 

nutrients. 

Ideally, we would have been able to conduct a fish removal/addition experiment that 

would conclusively show that fish aggregations impacted herbivore foraging and benthic 

dynamics. But, these experiments were not possible at this popular dive site within a national 

marine sanctuary. However, recent experimental studies have shown that the creation of artificial 

reefs in oligotrophic seagrass beds promote fish aggregations (especially grunts and snappers) 

that, in turn, lead to increased delivery of fish-derived nutrients, increased primary production and 

biomass accumulation (e.g. Dewsbury & Fourqurean 2010; Layman et al. 2013; Allgeier et al. 



 90 

2013). Thus, in experiments that have directly altered fish aggregations, the impacts on nutrient 

cycling and benthic dynamics that they show support our hypotheses about the impact of fish-

derived nutrients in this reef system.  

Finally, the level of increase in the N content of algae around the High Biomass sites that 

we recorded requires a large and consistent amount of N input to generate. For example, in a 

recent experiment (Vega Thurber et al. 2014), we enriched plots of reef with ~600g m-2 of slow 

release N+P fertilizer, replaced monthly, for three years. This enrichment increased N and P in 

the water column ~6-8 times above ambient levels, although the actual delivery rate was likely 

higher as some of the N and P was diffused and absorbed before we could measure it. This 

enrichment experiment resulted in a 20% increase in the N content of D. menstrualis, which is 

very similar to the 15% increase that we documented at High biomass sites in this study. This 

indicates that the differences in algal tissue N we report here, between study colonies often 

separated by just a few meters, requires an extremely substantial, localized, and consistent input 

of N to achieve. It seems extremely unlikely that differences in physical forcing could generate 

these differences in algal N content at such small scales given both the interspersion of our sites 

within the reef and the lack of other physical mechanisms (e.g. internal waves or land-based 

pollution) that could drive such large differences in nutrient delivery. Thus, the concentration of 

fish-derived nutrients at High Biomass sites are the mostly likely explanation driving increases in 

algal N content, alterations to herbivore foraging, differences in benthic communities, and 

increases in coral growth.  

Human activity is likely to continue to cause biodiversity loss and habitat fragmentation 

capable of disrupting consumer-mediated nutrient regimes. Accordingly, studies are needed to 

quantify the importance of animal-derived nutrients on community structure and ecosystem 

function before important consumer-mediated nutrient-pathways are inadvertently broken and 

valuable ecological processes lost. Our understanding of the impact of fish-derived nutrients on 

coral reefs is sorely incomplete. This study demonstrates that by creating nutrient hotspots, coral 

reef mesopredators play an important, yet previously unrecognized, role in shaping coral reef 



 91 

communities. As a result, overfishing of mesopredators may undermine coral reef health by 

disrupting the natural delivery and distribution of nutrients on reefs. This is noteworthy because 

management strategies often focus protection on herbivores and apex predators but overlook 

these mid-level predators. Furthermore, this pattern is likely not unique to reefs and may 

represent a less recognized threat of overfishing to marine systems. For example, Layman et al. 

(2011) documented an approximately 500% decline in nutrient delivery in fished versus unfished 

tidal creeks in the Bahamas and subsequent declines in primary production with the removal of 

fishes. Because many mobile-link organisms, including the grunts in this study, cross system 

boundaries to forage or shelter (Lundberg & Moberg 2003, Heck et al. 2008), conservation must 

focus not only on the organisms themselves but also on both the donor and recipient ecosystems 

for the nutrients that they translocate. Our study suggests that whole-system management plans, 

such as no-take reserves, or targeted protection for these mobile-link species may be needed to 

retain these important nutrient pathways. 
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Figure 5.1 – (a) Results from agglomerative cluster analysis categorizing the 20 study colonies as 
either High Biomass or Low Biomass sites based on the biomass of grunts sheltering at each site 
during weekly surveys. (b) Biomass of grunts calculated from weekly surveys at High vs. Low 
Biomass sites throughout the study. P-values from repeated-measures ANOVA. Data are means 
± SE. 
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Figure 5.2 – a) Daily excretion rates, as calculated by bioenergetics modeling, of nitrogen and 
phosphorus from grunts around High Biomass and Low Biomass sites. (b) Percent nitrogen and 
phosphorus content in the tissue of the alga Dictyota menstrualis collected from High Biomass vs. 
Low Biomass sites. P-values from mixed effects ANOVA. Data are means ± SE. 
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Figure 5.3 – Results of nonmetric multidimensional scaling (nMDS) depicting algal community 
structure around High Biomass vs. Low Biomass sites. Benthic categories depict the distance 
relationships between colonies based on the percent cover of the category. P-value from 
ANOSIM. 
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Figure 5.4 – Percent cover of different benthic groups at High Biomass vs. Low Biomass sites. P-
values from mixed effects ANOVA. Data are means ± SE. 
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Figure 5.5 – Skeletal extension rates, as a percent of total linear extension per day, for Acropora 
cervicornis transplants located at High Biomass vs. Low Biomass sites. P-value from mixed 
effects ANOVA. Data are means ± SE. 
 
 

 
 
  



 101 

Figure 5.6 – Grazing rates of herbivorous fishes at High Biomass vs. Low Biomass colonies. P-
value from mixed effects ANOVA. Data are means ± SE. 
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CHAPTER VI 

NUTRIENT LOADING ALTERS THE PERFORMANCE OF KEY NUTRIENT EXCHANGE 

MUTUALISMS 
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Abstract 

Nutrient exchange mutualisms between phototrophs and heterotrophs, such as plants 

and mycorrhizal fungi or symbiotic algae and corals, underpin the functioning of many 

ecosystems. These relationships structure communities, promote biodiversity, and help maintain 

food security. Nutrient loading may destabilize these mutualisms by altering the costs and 

benefits each partner incurs from interacting. Using meta-analyses, we show a near ubiquitous 

decoupling in mutualism performance across terrestrial and marine environments in which 

phototrophs benefit from enrichment at the expense of their heterotrophic partners. Importantly, 

heterotroph identity, their dependence on phototroph-derived C and the type of nutrient 

enrichment (e.g. nitrogen vs. phosphorus) mediated the responses of different mutualisms to 

enrichment. Nutrient-driven changes in mutualism performance may alter community organization 

and ecosystem processes and increase costs of food production. Consequently, the decoupling 

of nutrient exchange mutualisms via alterations of the world’s nitrogen and phosphorus cycles 

may represent an emerging threat of global change. 

 

Introduction 

Nutrient exchange symbioses are reciprocal partnerships in which a heterotroph provides 

limiting nutrients, primarily nitrogen (N) or phosphorus (P), to a phototrophic partner in exchange 

for photosynthetically-fixed carbon. Over 80% of plant species partake in nutrient exchange 

symbioses (van der Heijden et al. 2015) while in marine environments these mutualisms sustain 

foundation species such as corals and sponges (Muscatine & Porter 1977; Cardini et al. 2014). In 

many natural systems, nutrient exchange mutualisms are essential for maintaining diversity and 

ecosystem function, while in managed systems they support agriculture by improving crop 

production and reducing fertilizer expenditures (Stachowicz 2001; Kiers et al. 2002). Furthermore, 

these partnerships can provide participants with benefits beyond direct nutrient exchange, such 

as improved tolerance to toxins, disease, drought, and herbivory (Littman et al. 2010; van der 
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Heijden et al. 2015). Thus, nutrient exchange symbioses are critical components of ecosystems 

worldwide.  

However, cooperation is rarely favored in nature and theory suggests mutualisms can 

best be viewed as reciprocal exploitations that provide a net benefit to each partner (Herre 

TREE). Thus nutrient exchange symbioses are not fixed as positive-positive interactions, but 

instead exist along a continuum from mutualism to parasitism depending on whether the benefits 

of interacting outweigh the costs for each partner (Johnson et al. 1997; Sachs & Simms 2006; 

Johnson & Graham 2013). Accordingly, changes in biotic and abiotic conditions can alter the 

costs and benefits for each partner and may jeopardize the performance and stability of the 

mutualism (Johnson 1993; Johnson et al. 1997; Akҫay & Simms 2011). These trade-offs variously 

predict linear, non-linear, and threshold relationships in partner performance, with the outcome 

often dependent on how the symbiosis is maintained (e.g. Doebeli & Knowlton 1998; Neuhauser 

& Fargione 2002; Wyatt et al. 2014). Given the importance of these mutualisms and the scale at 

which humans are altering the planet, it is critical to examine how global change will influence the 

performance of these partnerships.  

Human activity now dominates global N and P cycles. Over the last century, 

anthropogenic nutrient delivery has increased to such an extent that anthropogenically-derived 

nutrients dwarf natural nutrient sources (Vitousek et al. 1997; Bennett et al. 2001). Empirical 

evidence suggests that this pervasive addition of limiting nutrients may disrupt important nutrient 

exchange mutualisms (Treseder 2004; Shantz & Burkepile 2014). Nutrient loading can alleviate 

phototroph dependence on heterotrophically-derived N and P, decreasing the net benefit of 

associating with heterotrophic symbionts and causing phototrophs to reduce the amount of C 

allocated to their partners (e.g. Dennison 2000; Kiers et al. 2003; 2011). Yet the mechanisms that 

mediate nutritional symbioses are diverse. For example, plants and mycorrhizal fungi use a 

system of reciprocal trade that provides both partners a degree of control over the symbiosis 

(Kiers et al. 2011). In contrast, plant-rhizobia relationships can be maintained via resource 

sanctions in which plants reduce the amount of carbon delivered to under-performing symbionts 
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(Kiers et al. 2003; Akҫay & Simms 2011). Corals may display yet another strategy by keeping 

phototrophic algal symbionts nutrient limited to maximize carbon return (Falkowski et al. 1984; 

Wooldridge 2010). As a result, nutrient loading may have fundamentally different effects on 

different types of nutrient exchange mutualisms. 

Several studies have synthesized the responses of single partners (e.g. phototrophs or 

heterotrophs only) to enrichment in some of the better-studied mutualisms such as mycorrhizae 

(Treseder 2004; Karst et al. 2008; Hoeksema et al. 2010) and corals (Shantz & Burkepile 2014). 

However, no study to date has tested how nutrient enrichment may impact the predicted 

fundamental trade-offs in partner performance (e.g. Johnson et. al. 1997; West et al. 2002; Kiers 

& van Der Heijden 2006). Furthermore, we still lack a general understanding of how global 

increases in nutrient availability may affect the integrity of different types of nutrient exchange 

mutualisms.  

To address this gap, we used meta-analyses to assess the extent and consistency to 

which anthropogenic nutrient pollution disrupts a diverse array of nutrient exchange mutualisms. 

We identified 306 experiments from 76 studies, spanning three ocean regions and every 

habitable continent, which recorded the performance of both phototroph and heterotroph partners 

to control and nutrient enriched conditions (Fig. 1; see Table S1 for details). For each experiment, 

we examined the simultaneous responses of both heterotroph and phototroph partners to nutrient 

enrichment. Our results reveal a nearly ubiquitous response to enrichment across mutualism 

types, in which phototroph performance improves at the expense of their heterotrophic partners. 

These trade-offs were context dependent and mediated by the identity of the heterotrophic 

partner and the identity of the enriched nutrient. Together, these data show that nutrient 

enrichment affects a wide array of nutrient exchange mutualisms by altering the costs and 

benefits of interacting. 
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Methods 

Study selection & performance criteria  

To identify studies for our analyses, we conducted an extensive literature search using ISI’s Web 

of Science (1977 – 2014). We used multiple search terms that included “mutualism” and nutr* or 

enrich*, and multiple mutualism types crossed with these terms (e.g., “coral” and (enrich* or 

nutr*)) and identified additional studies from the references of papers from these searches. We 

identified 6 mutualism types with sufficient data available to be used in our analysis: 1) 

Symbiodinium exchanging C for N from Tridacnid clams (Algae-Clam). 2) Symbiodinium 

exchanging C for N from corals (Algae-Coral). 3) Algae or cyanobacteria exchanging C for N from 

fungi to form lichen (Algae/Cyanobacteria-Fungi). 4) Plants exchanging C for N and/or P from 

arbuscular mycorrhizal fungi (Plant-AM Fungi), 5) Plants exchanging C for N and/or P from 

ectomycorrhizal fungi (Plant-EM Fungi), which unlike AM Fungi do not form intracellular 

connections with host plants and may possess saprotrophic capabilities (Read et al. 2004), and 

6) Plants exchanging C for N from root-nodulating rhizobia (Plant–Bacteria).  

To be included, studies needed to report at least one performance metric for both 

heterotroph and phototroph partners under control and nutrient-enriched conditions. Phototroph 

performance was measured as increases in above ground biomass for plants. For algae, 

performance was measured as areal cell density, cells per clam (two studies), or chlorophyll a 

cm-2 in one instance, which was used as a proxy for cell density. Heterotroph performance was 

measured as growth as determined by changes in mass or extension rates (corals, clams, and 

lichen), chitin (a proxy for fungal mass in lichen), hyphae mass or percent of root colonization 

calculated from equal sized root samples (mycorrhizal fungi), or nodule biomass or number 

(rhizobia). Response metrics were standardized for area (e.g. equal sized root samples in plants, 

symbiont cells cm-2 in corals) to minimize correlation between phototroph and heterotroph 

responses. When multiple metrics were available, we used measurements of mass rather than 

other metrics to avoid including multiple response metrics within analyses that could be 

differentially sensitive to nutrient enrichment. Although these metrics are often not ideal 
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measurements of performance, they are the most commonly used measurements of performance 

available in the published literature for these groups and provide a strong indicator of an 

organisms’ ability to flourish, grow, and occupy their available habitat.  

We identified 76 studies containing 306 experiments (5 studies, 19 experiments for 

Algae-Clam mutualisms; 13 studies, 31 experiments for Algae-Coral mutualisms; 3 studies, 19 

experiments for Algae/Cyanobacteria-Fungi mutualisms; 24 studies, 84 experiments for Plant-AM 

Fungi mutualisms; 5 studies, 38 experiments for Plant-EM experiments; and 26 studies, 115 

experiments for Plant-Bacteria mutualisms; Table S1). Data were taken from the text or extracted 

from digital PDFs using DataThief III V1.6 (Tummers 2006). When studies included multiple 

independent experiments at different nutrient levels or with different species, each experiment 

was treated as an individual replicate. For marine studies, enrichment magnitudes ranged from 1-

109 µM N and 0.2-18.6 µM P. In terrestrial systems the units of enrichment were variable but 

ranged from 2-20 times greater than control conditions for N and 1.5-220 times greater for P. 

These values represent a gradient from low anthropogenic impact to severe pollution (see Table 

S1 for details). 

To examine the impact of nutrient addition on nutrient exchange mutualisms, we 

calculated the log response ratios (RR) for both phototroph and heterotroph partners from each 

study. We used Bayesian meta-analyses to calculate effect sizes with 80% and 95% Bayesian 

credible intervals to examine the overall effect of enrichment and of different enrichment types 

(e.g. N vs. P) on both partners for each mutualism type and an overall effect across all mutualism 

types (see Analysis for details). Measuring the simultaneous response of both partners rather 

than single partner responses limited the number of studies available but allowed us to capture 

tradeoffs between partner performance that have not been examined in other meta-analyses (e.g. 

Treseder 2004; Hoeksema 2010; Shantz & Burkepile 2014).  We tested for tradeoffs in 

performance between partners using hierarchical Bayesian regressions for each mutualism type. 

Models & Analysis 
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A frequent problem for meta-analyses in ecology is poor reporting of ecological data. 

Approximately 40% of the studies failed to properly report sample sizes or variances. Therefore, 

we first conducted an unweighted Bayesian meta-analysis that allowed us to make use of the 

entire data set, regardless of deficiencies in reporting, followed by a weighted Bayesian model for 

comparison (see below for model details). Weighting can improve the power and precision of 

tests but may sacrifice replication by excluding studies where data are poorly reported (Gurevitch 

& Hedges 1999; Stewart 2010). Although weighted analyses are preferred, unweighted tests are 

encouraged when potentially large amounts of data would otherwise be lost (Gurevitch & Hedges 

1999). Weighting reduced our data set by ~40% to a subset of 191 experiments from 51 studies 

(Table S1), but yielded nearly identical results as our unweighted model (see Table 1). Funnel 

plots revealed no evidence of publication bias in either model. Given the substantially larger 

dataset and the fact that both analyses showed quantitatively similar patterns, we focus on the 

unweighted model here and present results from the weighted analyses in the supplemental 

material.  

We used a hierarchical Bayesian model to conduct both unweighted fixed-effects and 

weighted random-effects meta-analyses. This Bayesian method is similar to frequentist methods 

used in traditional meta-analyses, allowing for group-level predictors and random effects while 

providing the flexibility to conduct Type II hierarchical regressions (Sutton & Abrams 2001). 

Furthermore, Bayesian methods allowed us to calculate exact posterior probabilities of effects, 

improving the interpretation of results when compared with traditional significance levels. 

We calculated the log response ratio (RR) for each experiment as ln (𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� ) where 

𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡 is the mean of the nutrient-enriched treatment group and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 the mean of the control group. 

A positive RR means that nutrient enrichment increased performance while a negative RR means 

that nutrient enrichment caused a decline in performance. When sample size and variances were 

appropriately reported, the standard error of the RR for each partner in each experiment was 

calculated using an unpooled variance estimate: 
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𝑆𝑆.𝐸𝐸. =  �
𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 +
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡2 = 𝑠𝑠𝑖𝑖 

where, 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  and 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2  are the respective control and treatment group variances and 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡 

are sample sizes of each group. Thus, each experiment produced a log response ratio RRi, and 

~60% of experiments (Table S1) also produced known standard deviation of the response si for 

use in weighted analyses. 

We first conducted our unweighted model including only a single error term for between 

study variance so we could incorporate experiments that did not report estimates of variance. 

This model assumes that the response ratio for each study varied around the group-level means 

directly. That is, the ith study in the jth mutualism type was normally distributed around the 

mutualism mean (𝑦𝑦𝚥𝚥� ) with a between-study variance (𝜏𝜏𝑗𝑗): 

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖~𝑁𝑁(𝑦𝑦𝚥𝚥� , 𝜏𝜏𝑗𝑗) 

Thus, there was no assumption of homogeneity of variances among mutualism types. The mean 

for each type was a linear function of the overall mean (𝜇𝜇) and a deflection from the overall mean 

for each mutualism type (𝛿𝛿𝑗𝑗): 

𝑦𝑦𝚥𝚥� = 𝜇𝜇 + 𝛿𝛿𝑗𝑗 

In this model, mutualism types were fixed-effects. We imposed sum-to-zero constraints on the 

deflections 𝛿𝛿𝑗𝑗. 

The weighted, random effects model considered the RR of each study as randomly 

varying around the ‘true’ study value θij with response-ratio variance calculated for the study 𝑠𝑠𝑖𝑖𝑖𝑖2 : 

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖~𝑁𝑁�𝜃𝜃𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑖𝑖𝑖𝑖2 � 

‘True’ study values were assumed to be normally distributed around the mean for each mutualism 

type (𝑦𝑦�) with a between-study variance specific to that mutualism type (𝜏𝜏) as described in the 

fixed effects model: 

𝜃𝜃𝑖𝑖𝑖𝑖~𝑁𝑁(𝑦𝑦𝚥𝚥� , 𝜏𝜏𝑗𝑗) 
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The mean for each mutualism type was a linear function of the overall mean and a deflection from 

the overall mean as described above. This model allowed each study to have its own true 

response, where true responses of each mutualism type varied around the mutualism type mean. 

To test for performance trade-offs, we used Bayesian hierarchical regression that 

modeled the heterotroph RR as a linear function of phototroph RR in each mutualism type. This 

was a standard hierarchical regression for the full dataset. For the restricted dataset, both 

heterotroph and phototroph response ratios were assumed to be subject to sampling error with a 

known variance calculated as described above. Thus, for the ith experiment, both phototroph and 

heterotroph RR were assumed to be normally distributed around some ‘true’ value and a 

hierarchical linear regression was carried out that allowed model parameters to vary among the j 

groups. The ‘true’ heterotroph and phototroph values for each experiment in the jth group were 

normally distributed around some predicted value with a variance specific to the group: 

𝜃𝜃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖  ~ 𝑁𝑁�𝑦𝑦�𝐻𝐻𝐻𝐻𝐻𝐻 , 𝜏𝜏𝐻𝐻𝐻𝐻� 

𝜃𝜃𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖  ~ 𝑁𝑁�𝑦𝑦�𝑃𝑃𝑃𝑃𝑃𝑃 , 𝜏𝜏𝑃𝑃𝑃𝑃� 

The ‘true’ heterotroph value was a linear function of the phototroph ‘true’ value: 

𝜃𝜃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗𝜃𝜃𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 

such that each group j was allowed a different intercept and slope. The parameters a and b for 

each group were drawn from a normal distribution with means 𝜇𝜇𝑎𝑎 and 𝜇𝜇𝑏𝑏 and variances 𝜔𝜔𝑎𝑎2 and 

𝜔𝜔𝑏𝑏
2, respectively. The only difference between the models for the full dataset and the restricted 

dataset was that response ratios for the full dataset did not vary around a ‘true’ value. 

 We calculated pseudo-R2 values, which differ from R2 in that they are calculated for each 

mutualism type within a hierarchical model for each posterior sample, following the standard 

formula for R2 from linear regression. For each posterior sample of parameters, we calculated the 

sum-of-squared errors (SSR) between observed and fitted data as a measure of residual variation 

and the sum-of-squared errors between observed data and the mean (SST). Pseudo-R2 is then 

1 − 𝑆𝑆𝑆𝑆𝑅𝑅
𝑆𝑆𝑆𝑆𝑇𝑇� . We then took the median posterior value as the R2 for each mutualism type.  
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Performance may also be expected to change with the level of enrichment or study 

duration. However, studies differed widely in the amounts of nutrients provided, duration, and rate 

of nutrient addition (Table S1). To account for these differences, we assessed the effect of overall 

enrichment magnitude on performance and converted the reported enrichment levels into 

average enrichment per day by dividing the total amount of nutrients added by the experimental 

duration. Numerous studies reported enrichment in non-comparable units (e.g. mg nutrient kg-1 of 

soil versus mg nutrient m-2; Table S1). Therefore, rather than examining each metric and 

increasing the probability of committing a Type I error, we used whichever units of measurement 

provided the greatest replication. This reduced our available data by ~30% for Algae-Coral 

mutualisms, ~50% for Algae-Clam, Plant-AM Fungi, and Plant-Bacteria mutualisms and 100% for 

Plant-EM Fungi mutualisms, which all used different enrichment metrics. We visually examined 

the impact of enrichment magnitude and enrichment per day on the response of each partner 

under both N and P enrichment by plotting effect sizes against enrichment. Quantitative 

regressions of these relationships were not possible due to poor replication across treatment 

levels.  

Additionally, we examined potential differences in effect sizes between lab and 

glasshouse-based experiments versus those conducted in natural outdoor environments. As 

virtually all of the experiments involving clams, corals, and lichen were conducted in highly 

controlled environments, we were only able to conduct these analyses on Plant-Bacteria and 

Plant-Fungi mutualisms. 

Bayesian models were run in STAN, accessed via PyStan in Python v2.7. In all models, 

coefficients were given weakly informative priors of N(0, 4) and variance parameters given 

uninformative priors of U(0, 10). We ran four MCMC chains simultaneously, each with 25,000 

burn-in iterations followed by 25,000 sampling iterations, resulting in 100,000 posterior samples 

for each parameter. We verified chain convergence by ensuring that 𝑅𝑅� = 1 for all parameters and 

by examining posterior density plots.   
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Results 

Nutrient enrichment increased the performance of nearly all phototroph groups (Fig. 2A; 

Table 1). Although the median response across all studies was a nearly 65% increase in 

performance, there was significant heterogeneity among group responses. The weakest 

response occurred in the algae/cyanobacteria in lichen (Fig. 2A, Table 1) with a 15% greater 

performance under enrichment (Probability of an effect: Pr(RR>0) = 0.92). Phototrophs from all 

other mutualism types showed improved performance, ranging from ~45% greater performance 

in the Plant-Bacteria mutualism to ~110% increase in performance of Symbiodinium in the Algae-

Clam relationship (Pr(RR>0) = 1.00 for all other groups).  

Similarly, there was an overall 10% decline in heterotroph performance with enrichment 

that varied substantially among different mutualism types (Fig. 2A). Coral, lichen, AM fungi and 

rhizobia displayed declines in performance ranging from 13% (lichen) to 31% (coral; Table 1). In 

contrast, EM fungi showed only minimal signs of impairment (average 8% decline, Pr(RR<0) = 

0.80) while clams showed an 85% increase in growth with nutrient enrichment (Table 1; Pr(RR>0) 

= 1.00). This pattern was nearly identical in the weighted model (Fig. S1A, Table 1). However, 

differences were present for lichens where heterotrophs were less consistently impaired by 

nutrient enrichment in the weighted (Pr(RR<0) = 0.90) versus unweighted analysis (Pr(RR<0) = 

0.98) and for Plant-EM relationships where EM Fungi showed greater and more consistent 

declines in the weighted model (Pr(RR<0) = 1.00; Table 1). 

The responses of different mutualism types to enrichment varied considerably with the 

identity of nutrients provided by the heterotroph (i.e. N versus P). In the unweighted model, 

phototroph and heterotroph responses to N-enrichment were nearly identical to those observed 

under all enrichment types, except EM fungi, which benefitted from N addition (Pr(RR)>0 = 0.98; 

Fig 2B).  Phosphorus-enrichment regularly improved phototroph performance in Algae-Clam, 

Plant-AM Fungi, Plant-EM Fungi and Plant-Bacteria mutualisms but impaired heterotroph 

performance for AM and, to a lesser extent, EM fungi (Pr(RR<0) = 1.00 & 0.92 respectively; Fig. 

2C). When experiments co-enriched with N+P, phototroph performance improved in all mutualism 
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types. For heterotrophs however, N+P enrichment resulted in a 95% increase in clam 

performance, reduced but variable performance of bacteria, AM fungi, and the fungi in lichen, and 

consistently impaired performance in corals and EM fungi (Fig. 2D; Table 1).  

In our weighted analysis, phototroph responses to N-enrichment were nearly identical 

(Fig. 2 vs. Fig. S1). For heterotrophs, fungi in lichen showed only a 5% decline in performance in 

the weighted analysis versus a 12% decline in the unweighted model (Pr(RR<0) = 0.74 vs. 

Pr(RR<0) = 0.96 respectively). Surprisingly, EM fungi performance improved by 50% under N 

enrichment in our unweighted analysis (Fig. 2B; Pr(RR)>0 = 0.98), but showed no response to N 

in the weighted analysis (Fig S1B; Pr(RR)>0 = 0.34), likely due to low replication (n=2). For both 

P and N+P enrichments, the responses of both phototroph and heterotrophs were nearly identical 

between the models for all mutualism types except Plant-EM Fungi. EM fungi were impaired 

under P-enrichment in the unweighted model (Fig. 2C) but not in the weighted model (Fig. S1C), 

while N+P enrichment impaired EM in the weighted model (Fig. S1D) but not the unweighted 

model (Fig. 2D).    

We found evidence of linear trade-offs between the performance of heterotrophs and 

phototrophs under nutrient-enrichment in every mutualism type except for Algae-Clam and the 

Plant-AM symbiosis (Fig. 3). For Algae-Clam mutualisms, the response was opposite our 

predictions, with a positive relationship between clam and phototroph performance (Fig. 3A). 

However, Algae-Coral, Algae/Cyanobacteria-Fungi, Plant-EM and Plant-Bacteria mutualisms all 

showed linear declines in heterotroph performance as phototroph performance improved (Fig. 3; 

Table S2). The weighted model showed similar results with minor differences as trade-offs were 

no longer detected in Algae/Cyanobacteria-Fungi or Plant-EM Fungi partnerships (Fig. S2). For 

Plant-EM interactions, the difference between models was largely due to a loss of over half the 

replicates in the weighted analysis. However, for Algae/Cyanobacteria-Fungi, replication was 

equal in both analyses and the different responses were entirely due to weighting. 

Visual examination of the effects of enrichment magnitude and average daily enrichment 

on phototroph and heterotroph performance revealed few clear patterns (Fig. S3 & S4). Rhizobia 
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under N enrichment and AM fungi under P enrichment both declined in performance with 

increasing enrichment levels (Figs. S3 & S4). However for all other groups no clear patterns 

emerged. Enrichment levels were similar for Algae-Clam and Algae-Coral mutualisms. In 

terrestrial systems, P enrichment levels were much lower for Plant-EM Fungi experiments than 

for Plant-AM Fungi and Plant-Bacteria experiments, potentially contributing to the dissimilar 

patterns observed between these groups. Unfortunately, not enough studies reported baseline 

nutrient levels to assess how background levels may have influenced the results. Although it is 

reasonable to suspect that the magnitude of enrichment could impact the effect of nutrients on 

phototrophs and heterotrophs, there are not sufficient data to robustly test this hypothesis. 

The overall effect of nutrients on mycorrhizal fungi and rhizobia were similar in both field 

studies and lab-based manipulations (Table S3). In both cases enrichment also positively 

impacted plant performance (Pr(RR)>0 = 1.00 for both mutualism types in both types of studies).  

Thus, it is unlikely that having a mix of field and lab-based studies in our analyses impacted our 

results.  

  

Discussion 

We show that anthropogenic nutrient pollution presents a potentially serious threat to 

nutrient exchange mutualisms, with phototrophs benefitting at the expense of their heterotrophic 

partners. This general response was consistent across most mutualism types in terrestrial and 

marine environments. These patterns support the hypothesis that nutrient loading disrupts 

nutritional mutualisms by reducing the net benefit that phototrophs derive from their heterotrophic 

partners, leading the phototrophs to reduce the amount of C they reciprocate in return (Johnson 

et al. 1997). However, heterotroph identity, the enrichment type, and the interaction between the 

two appeared to mediate the specific impact of nutrient enrichment.  

Nutrient loading should only alter the costs of resource trade if the enriched nutrient is 

limiting for the phototroph and of the same type as that provided by the heterotrophic partner 

(Johnson et al. 1997; 2015). In support of this, we found that the performance of rhizobia and 
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corals, which primarily deliver N to phototrophs (Dennison 2000; Shantz & Burkepile 2014), 

declined substantially under N enrichment but not P enrichment (Fig. 2). In contrast, mycorrhizal 

fungi can facilitate both N and P uptake depending on the fungal type (e.g. AM vs. EM), plant and 

fungal stoichiometry, and soil characteristics. However, due to the higher mobility of N versus P in 

soil, mycorrhizae often benefit plants most through P supplementation (Smith & Read 1997; 

Johnson et al. 2015; van der Heijden et al. 2015). Accordingly, P enrichment impaired AM and 

EM fungi performance while N enrichment resulted in moderate declines in performance only in 

our weighted model (Figs. 2B, 2C & S1).  

When experiments co-enriched with N+P, the effects on heterotrophs were generally 

smaller and more variable than the declines observed under single nutrient enrichments (Fig. 2). 

This suggests that the ratio of N:P provided plays a strong role in mediating the outcome of 

enrichment and that co-enrichment can still result in nutrient limitation, potentially maintaining 

phototroph demand for heterotroph-derived nutrients (Johnson et al. 2015). Thus, the identity of 

the heterotrophic partner and the nutrients they provide can reasonably predict how nutrient 

exchange mutualisms respond to different types of nutrient pollution. 

The effect of nutrient enrichment on nutrient sharing mutualisms may also depend on the 

heterotrophs’ dependence on phototroph-derived C. Heterotrophs that are less reliant on 

phototrophs for C should suffer less from C-sanctions imposed by their phototrophic partners. We 

found that clams, which can obtain as much as 65% of their C by filter feeding (Klumpp et al. 

1992) and digest up to 89% of newly formed algal symbionts (Maruyama & Heslinga 1997), 

benefitted from enrichment. In contrast, root-colonizing rhizobia, AM fungi, and corals are typically 

more dependent on their phototrophic partners for C (Dennison 2000; Houlbréque & Ferrier-

Pagés 2009; van der Heijden et al. 2015), and enrichment largely impaired the performance of 

these groups (Fig. 2). Interestingly, the responses of EM fungi to nutrient enrichment were more 

variable than the consistent declines we observed in AM fungi performance. This increased 

variability in EM fungi responses might be expected if EM fungi can scavenge C from the 

environment via the decomposition of organic matter (Read et al. 2004), decoupling the 
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performance of EM from their plant hosts. However, the ability of many EM to acquire biologically 

meaningful amounts of C through saprotrophy appears limited (Lindahl & Tunlid 2015), and the 

factors that shape potential differences in the response of AM and EM fungi to nutrient loading 

will be a fruitful area for future research. Overall however, our data suggest that mutualisms in 

which heterotrophs are heavily dependent on photosynthetically-derived C are particularly 

vulnerable to nutrient-induced decline.  

Understanding whether resource trade is based on the direct exchange of nutrients for C 

or balanced among multiple currencies is essential to predict the effects of enrichment on nutrient 

exchange mutualisms. The linear relationships between the RR of heterotrophs and phototrophs 

in nearly all of the mutualisms we examined suggest that reciprocal trade of nutrients for C plays 

a strong role in maintaining most types of mutualisms An interesting exception to this pattern 

appears to occur in AM fungi, in which no evidence of linear trade-offs was observed (Fig. 3D). 

One potential explanation may be that the reciprocal reward system that mediates Plant-AM 

Fungi interactions provides more flexible responses to enrichment than the single-partner control 

thought to mediate the other mutualism types. Another potentially important difference between 

AM mutualisms relative to the other groups is that AM fungi can provision both N and P (van der 

Heijden et al. 215) and form common mycelia networks (CMNs) that allow interplant signaling 

(Johnson & Gilbert 2015), something not documented in EM networks. These CMNs create more 

complex interactions by allowing mycorrhizal fungi to interact with multiple plant partners (Walder 

et al. 2012; van der Heijden et al. 2015) and transport signaling compounds that improve plant 

defenses against herbivory and infection among all of the network members (Song et al. 2010; 

Babikova et al. 2013). Thus, mutualisms between plants and AM fungi may be paid in multiple 

currencies and limit the direct negative tradeoffs between phototroph and heterotroph 

performance. 

Understanding drivers the variation in the responses of different mutualism types to 

enrichment will require focused research on the physiological mechanisms that mediate individual 

mutualism types. However, continuing to identify general patterns in how nutrient exchange 
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mutualisms respond to global change will provide more rapid and broadly applicable 

management and remediation strategies, as well as help guide future research efforts. In 

particular, exploring the importance of nutrient stoichiometry of both mutualist partners, the 

enrichment source, and the form of enrichment (e.g. nitrate versus ammonium) will likely be 

fruitful avenues of research (e.g. Johnson et al. 2010, 2015; Weidenmenn et al. 2012). For 

example, Shantz and Burkepile (2014) found that nitrate enrichment had no effect on the density 

of algal symbionts in corals but strongly suppressed coral growth while ammonium enrichment 

increased Symbiodinium density but had no effect on coral growth. Thus, different sources of the 

same nutrient may generate different tradeoffs in mutualisms and may reveal even more context-

dependency in how these mutualisms are regulated. Finally, the diversity and identity of partners 

in these symbioses may modify responses to nutrient pollution. For example, the genetic diversity 

of algal symbionts in corals and of microbial communities in soils can mediate the responses of 

Algae-Coral and Plant-Fungi mutualisms, respectively, to different environmental conditions 

(Hoeksema et al. 2010; Lesser et al. 2013; Cunning & Baker 2014). Future research examining 

the generalities that we identified in how mutualisms respond to nutrient pollution will help to 

better understand the context-dependent nature of these intricate symbioses.  

Interestingly, the fundamentally different architecture of marine and terrestrial symbioses 

may play a strong role in dictating how systems respond to mutualism disruption. In marine 

systems such as coral reefs, the ecosystem engineers are often heterotrophic mutualists with 

endosymbiotic phototrophs. Thus, impaired heterotroph performance on reefs may negatively 

impact corals with cascading effects on the goods and services these systems provided (e.g. reef 

dependent fisheries, shoreline protection, land accretion, etc.). In contrast, the ecosystem 

engineering mutualists of terrestrial systems are typically phototrophs that house symbiotic 

heterotrophs. As a result, the effect of enrichment-induced changes in mutualism strength on the 

structure, goods, and services of terrestrial communities is harder to predict. For example, 

increased phototroph performance could provide greater above-ground carbon storage (Weider 

et al. 2015), but this may be offset by impaired mycorrhizal sequestration of C in soils, which can 
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account for as much as 70% of C storage in some ecosystems (Clemmensen et al. 2013). 

Similarly, increased productivity will benefit resource production but declining heterotroph 

performance could bear financial costs. Nitrogen fixation by rhizobia in agricultural systems 

provides at least 70 million metric tons of N per year (Kiers et al. 2002), or roughly $28.7–$59.3 

billion worth of fertilizer application (Nehring 2013), that must otherwise be replaced to maintain 

productivity if the plant-rhizobia relationship is drastically altered. Similarly, enrichment-driven 

declines in mycorrhizae performance may jeopardize the non-nutritional benefits that fungi confer 

to plants, such as tolerance to water stress, pathogens, and soil toxins (van der Heijden et al. 

2015). Accordingly, resolving the consequences and benefits of anthropogenic disruption of 

nutrient sharing mutualisms will be a critical aspect of understanding global change in the 21st 

century.  
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Table 6.1 – The mean log response ratio (RR) and upper and lower 95% Bayesian credible 
intervals for phototroph and heterotroph partners from each mutualism type overall and to each 
enrichment type. Data are provided for both the unweighted and weighted models for 
comparison. 
 

 Mean RR and 95% Bayesian Credible Interval 
Unweighted 
Analysis 

All Nutrients N P N+P 

Algae-Clam 
(Phototroph) 

RR = 0.75 
CI95 = 0.55, 0.93 

RR = 0.54 
CI95 = 0.20, 0.85 

RR = 0.40 
CI95 = 0.12, 0.67 

RR = 0.99 
CI95 = 0.68, 1.29 

Algae-Clam 
(Heterotroph) 

RR = 0.61 
CI95 = 0.45, 0.76 

RR = 0.54 
CI95 = 0.11, 0.86 

RR = 0.29 
CI95 = -0.29, 0.73 

RR = 0.67 
CI95 = 0.29, 0.94 

Algae-Coral 
(Phototroph) 

RR = 0.50 
CI95 = 0.28, 0.72 

RR = 0.37 
CI95 = 0.17, 0.59 

RR = 0.20 
CI95 = -0.15, 0.64 

RR = 0.84 
CI95 = 0.35, 1.34 

Algae-Coral 
(Heterotroph) 

RR = -0.37 
CI95 = -0.56, -0.18 

RR = -0.38 
CI95 = -0.60, -0.16 

RR = 0.17 
CI95 = -0.24, 0.42 

RR = -0.49 
CI95 = -0.94, -0.01 

Algae/ 
Cyano–Fungi 
(Phototroph) 

RR = 0.14 
CI95 = -0.06, 0.36 

RR = 0.10 
CI95 = -0.13, 0.33 

RR = 0.16 
CI95 = -0.27, 0.68 

RR = 0.64 
CI95 = 0.03, 1.26 

Algae/ 
Cyano–Fungi 
(Heterotroph) 

RR = -0.15 
CI95 = -0.27, -0.02 

RR = -0.13 
CI95 = -0.27, 0.02 

RR = -0.03 
CI95 = -0.59, 0.55 

RR = -0.26 
CI95 = -0.77, 0.30 

Plant–AM 
Fungi 
(Phototroph) 

RR = 0.52 
CI95 = 0.39, 0.66 

RR = 0.36 
CI95 = 0.15, 0.58 

RR = 0.57 
CI95 = 0.37, 0.77 

RR = 0.51 
CI95 = 0.27, 0.80 

Plant–AM 
Fungi 
(Heterotroph) 

RR = -0.28 
CI95 = -0.42, -0.14 

RR = -0.20 
CI95 = -0.44, 0.03 

RR = -0.29 
CI95 = -0.48, -

0.10 

RR = -0.24 
CI95 = -0.79, 0.33 

Plant–EM 
Fungi 
(Phototroph) 

RR = 0.72 
CI95 = 0.49, 0.95 

RR = 0.34 
CI95 = 0.05, 0.66 

RR = 0.58 
CI95 = 0.22, 0.98 

RR = 0.93 
CI95 = 0.59, 1.30 

Plant–EM 
Fungi 
(Heterotroph) 

RR = -0.08 
CI95 = -0.26, 0.10 

RR = 0.41 
CI95 = 0.03, 0.75 

RR = -0.27 
CI95 = -0.66, 0.12 

RR = -0.16 
CI95 = -0.33, 0.01 

Plant–
Bacteria 
(Phototroph) 

RR = 0.36 
CI95 = 0.26, 0.46 

RR = 0.19 
CI95 = 0.12, 0.26 

RR = 0.36 
CI95 = 0.22, 0.49 

RR = 1.0 
CI95 = 0.51, 1.57 

Plant–
Bacteria 
(Heterotroph) 

RR = -0.36 
CI95 = -0.53, -0.18 

RR = -0.56 
CI95 = -0.75, -0.36 

RR = -0.01 
CI95 = -0.26, 0.26 

RR = -0.48 
CI95 = -1.25, 0.26 

Overall 
(Phototroph) 

RR = 0.50 
CI95 = 0.42, 0.58 

RR = 0.32 
CI95 = 0.20, 0.43 

RR = 0.38 
CI95 = 0.24, 0.54 

RR = 0.82 
CI95 = 0.62, 1.03 

Overall 
(Heterotroph) 

RR = -0.10 
CI95 = -0.17, -0.04 

RR = -0.05 
CI95 = -0.17, 0.05 

RR = -0.02 
CI95 = -0.22, 0.15 

RR = -0.16 
CI95 = -0.38, 0.06 

     
Weighted 
Analysis 

Overall N P N+P 

Algae-Clam 
(Phototroph) 

RR = 0.76 
CI95 = 0.56, 0.95 

RR = 0.52 
CI95 = 0.20, 0.85 

RR = 0.35 
CI95 = 0.03, 0.62 

RR = 1.04 
CI95 = 0.73, 1.35 

Algae-Clam 
(Heterotroph) 

RR = 0.56 
CI95 = 0.40, 0.73 

RR = 0.43 
CI95 = -0.16, 0.78 

RR = 0.20 
CI95 = -0.25, 0.65 

RR = 0.64 
CI95 = 0.27, 0.94 

Algae-Coral 
(Phototroph) 

RR = 0.44 
CI95 = 0.25, 0.64 

RR = 0.33 
CI95 = 0.16, 0.52 

RR = 0.12 
CI95 = -0.14, 0.45 

RR = 0.92 
CI95 = 0.29, 1.54 

Algae-Coral 
(Heterotroph) 

RR = -0.41 
CI95 = -0.59, -0.22 

RR = -0.41 
CI95 = -0.61, -0.20 

RR = 0.11 
CI95 = -0.29, 0.46 

RR = -0.59 
CI95 = -1.04, -0.05 

Algae/ 
Cyano–Fungi 
(Phototroph) 

RR = 0.17 
CI95 = -0.02, 0.37 

RR = 0.16 
CI95 = -0.05, 0.35 

RR = 0.08 
CI95 = -0.34, 0.48 

RR = 0.62 
CI95 = -0.13, 1.48 

Algae/ RR = -0.05 RR = -0.05 RR = 0.0 RR = -0.13 
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Cyano–Fungi 
(Heterotroph) 

CI95 = -0.15, 0.03 CI95 = -0.16, 0.05 CI95 = -0.50, 0.51 CI95 = -0.81, 0.48 

Plant–AM 
Fungi 
(Phototroph) 

RR = 0.39 
CI95 = 0.31, 0.49 

RR = 0.31 
CI95 = 0.19, 0.44 

RR = 0.42 
CI95 = 0.28, 0.57 

RR = 0.41 
CI95 = 0.27, 0.60 

Plant–AM 
Fungi 
(Heterotroph) 

RR = -0.25 
CI95 = -0.37, -0.14 

RR = -0.19 
CI95 = -0.39, -0.01 

RR = -0.22 
CI95 = -0.37, -

0.03 

RR = -0.30 
CI95 = -0.77, 0.20 

Plant–EM 
Fungi 
(Phototroph) 

RR = 0.90 
CI95 = 0.48, 1.33 

RR = 0.38 
CI95 = -0.18, 1.06 

RR = 0.15 
CI95 = -0.07, 0.46 

RR = 1.36 
CI95 = 0.85, 1.83 

Plant–EM 
Fungi 
(Heterotroph) 

RR = -0.16 
CI95 = -0.27, -0.06 

RR = -0.08 
CI95 = -0.73, 0.53 

RR = -0.06 
CI95 = -0.28, 0.21 

RR = -0.23 
CI95 = -0.42, -0.07 

Plant–
Bacteria 
(Phototroph) 

RR = 0.66 
CI95 = 0.39, 0.94 

RR = 0.29 
CI95 = 0.12, 0.46 

RR = 0.22 
CI95 = 0.10, 0.37 

RR = 1.57 
CI95 = 0.90, 2.16 

Plant–
Bacteria 
(Heterotroph) 

RR = -0.32 
CI95 = -0.61, -0.05 

RR = -0.30 
CI95 = -0.65, 0.04 

RR = 0.00 
CI95 = -0.20, 0.20 

RR = -0.56 
CI95 = -1.56, 0.36 

Overall 
(Phototroph) 

RR = 0.55 
CI95 = 0.45, 0.66 

RR = 0.33 
CI95 = 0.20, 0.48 

RR = 0.22 
CI95 = 0.11, 0.36 

RR = 0.99 
CI95 = 0.76, 1.23 

Overall 
(Heterotroph) 

RR = -0.11 
CI95 = -0.17, -0.04 

RR = -0.10 
CI95 = -0.26, 0.04 

RR = 0.01 
CI95 = -0.17, 0.18 

RR = -0.20 
CI95 = -0.45, 0.05 
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Figure 6.1 – Map of the locations and countries where marine (blue dots) and terrestrial (green 
shading) experiments used in our analyses were conducted. 
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Figure 6.2 – Estimated effect sizes based on log response ratios for phototrophs and 
heterotrophs from each mutualism type (blue=marine, green=terrestrial) and overall median 
response across all studies from the unweighted model as (A) pooled across all nutrients or 
under (B) nitrogen, (C) phosphorus, or (D) nitrogen+phosphorus enrichment. Thin and thick lines 
depict the 95% and 80% Bayesian credible intervals respectively. Numbers in parentheses 
denote the number of experiments used in each calculation. 
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Figure 6.3 – Results of Bayesian Type II regression of heterotroph log response ratios against 
phototroph log response ratios for the different mutualism types: (A) Algae-Clam, (B) Algae-
Coral, (C) Algae/Cyanobacteria-Fungi, (D) Plant-AM Fungi, (E) Plant-EM Fungi, and (F) Plant-
Bacteria. Shaded area represents the 95% Bayesian credible interval of the regression. 
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 Nutrient pollution presents a severe threat to coastal marine ecosystems. On coral reefs, 

excess nutrients can cause coral diseases, increase coral susceptibility to bleaching, and 

contribute to shifts from coral to algae dominated reefs (Lapointe 1997; Littler et al. 2006; 

Weidenmann et al. 2012; Vega Thurber et al. 2014). Yet nutrient enrichment on coral reefs has 

largely been considered to be less important than herbivory (e.g., Bellwood et al. 2004; Burkepile 

and Hay 2006; Jackson et al. 2014). Furthermore, although the primary nutrients in coastal 

pollution, N and P, each affect plants and animals differently, the majority of studies examining 

pollution on coral reefs have focused on the simultaneous addition of the two (e.g., Fabricius 

2005; Burkepile and Hay 2009; Rasher et al. 2012; Vega Thurber et al. 2014). This singular focus 

is problematic, as the relative amounts of N and P delivered to coastal waters vary by source, and 

unique remediation strategies exist for each. As a result, isolating the individual effects of N and P 

is important for understanding how nutrient pollution impacts reefs and developing appropriate 

management and restoration strategies. Chapter II establishes general patterns to create a 

consensus regarding how N and P affect coral growth and photobiology. I found that over a wide 

range of concentrations, N reduced coral calcification by 11% on average but enhanced metrics 

of coral photobiology, such as photosynthetic rates. In contrast, P enrichment increased average 

calcification rates by 9%, likely through direct impacts on the calcification process, but minimally 

impacted coral photobiology. 

 Various mechanisms may explain the different impacts of nutrient enrichment on corals. 

For example, P-induced increases in coral growth could be due to the incorporation of calcium 

phosphate into the coral skeleton (Dunn et al. 2012). Similarly, the increased photosynthesis that 

occurs under N-enrichment is hypothesized to monopolize dissolved inorganic carbon and make 

this resource limiting for calcification (Muscatine et al. 1998). However, I found that only NO3- 

regularly impaired coral growth, despite NH4+ consistently benefitting Symbiodinium populations. 

Similarly, Ezzat et al. (2015) reported that NH4+ enrichment increases photosynthesis in the coral 

Stylophora pistillata but found that NO3- enrichment depressed photosynthesis. Thus, while there 

has been considerable progress resolving the complexity of coral-nutrient interactions, substantial 
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gaps in our understanding still remain. Chapter III fills a portion of these gaps by exploring the 

effects of different nutrients on photobiological machinery that feeds corals. In this chapter, I 

propose a novel mechanism through which nutrients may impair coral growth by mediating the 

levels of photodamage to PSII. Due to an energetically expensive conversion, NH4+ is a more 

efficient nitrogen source for dinoflagellates than NO3- (Raven et al. 1992). As a result, 

Symbiodinium enriched with NH4+ tend to have more protein and lipid reserves than those 

enriched with NO3- (Ezzat et al 2015). Because harmful reactive oxygen species are a natural 

byproduct of oxygenic photosynthesis, Symbiodinium must be able to effectively repair damaged 

proteins in PSII to carry out photosynthesis and produce C to transfer to their coral hosts. I 

demonstrate that for some coral species, NO3- based enrichments increase the levels of 

energetically costly photodamage to PSII whereas NH4+ does not. Furthermore, metrics of 

photobiology in these corals that are closely associated with photodamage correlate well with 

reductions in coral growth rates that I recorded. 

 In chapter IV I expand my focus from individual organisms to important processes. 

Nutrients may contribute to algal blooms on coral reefs, but herbivores all well known to consume 

algae that competes with corals (Bellwood et al. 2004; Hughes et al. 2007). This process is 

particularly important for reef health, as algae can poison coral tissue (Rasher and Hay 2010), 

reduce coral growth rates (Vega Thurber et al. 2012), vector coral diseases (Smith et al. 2006), 

and impede the settlement and survival of coral larvae (Vermeij et al. 2009). Thus, herbivory is 

vital for promoting the resistance and resilience of coral reef ecosystems (Adam et al. 2011; 

2015). Chapter IV shows that N and P-enrichment can increase the nutrient content of algal 

tissue, in turn altering feeding patterns of herbivorous fishes and the process of herbivory that is 

so important in structuring coral reefs. I show that grazing rates of initial, but not terminal phase, 

Sparisomid parrotfishes increased with algal N-content. Similarly, grazing rates of juvenile, but 

not adult, surgeonfishes increased with algal P-content The differences in nutrient selection 

between size and age classes of herbivorous fishes I document in this chapter suggest that fish 

from different size and age classes may be functionally distinct. Because herbivore functional 



 130 

diversity is vital for maintaining coral health (Bellwood 2003; Burkepile and Hay 2008; Adam et al. 

2015) and driving recovery after disturbances (Bellwood et al. 2006), my data suggests that 

partitioning of resources along nutritional axes may be an important means of niche diversification 

on coral reefs. Furthermore, by targeting enriched resources on the reef, my data suggest that 

the effects of nutrient enrichment on coral-algal dynamics are likely to be dependent on the 

special scale of enrichment. 

 Chapter V utilizes the information from Chapters II-IV to explore the cumulative effects of 

nutrient-complexity on community development. I show that the effects of N and P on corals and 

herbivory interact with the spatial distribution of enrichment to structure a coral reef community. I 

show that fish excretion of NH4+ and P at locations where schools of fishes regularly shelter 

significantly enriches shelter sites with these beneficial nutrients. When compared to structurally 

similar sites that lack sheltering fishes, I show that coral growth rates are higher and herbivore 

grazing is increased at localized fish-derived nutrient hotspots. In turn, these sites possess 

distinctly different benthic communities than the rest of the reef. Thus, this chapter revealed an 

important, yet previously unrecognized, role of fish-derived nutrients in shaping coral reef 

communities. Furthermore, I present the implications for how such natural processes could be 

utilized to foster coral reef restoration. Thus, this chapter ties together information from the 

previous chapters to demonstrate the complexity and previously overlooked importance of 

nutrients in structuring coral reef communities.   

Finally, in Chapter VI I attempt to determine if the patterns I observed on coral reefs 

provide general rules applicable to other ecosystems. Reef building corals survive through a 

nutrient-exchange mutualism in which the heterotrophic coral provides limiting nutrients, such as 

N and P, to a phototroph partner in exchange for C. I previously show that changes in abiotic 

conditions (i.e. N and P loading) can destabilize these partnerships. As a result, N and P 

enrichment may jeopardize the performance and stability of nutrient-exchange mutualisms 

(Johnson 1993; Johnson et al. 1997; Akҫay and Simms 2011). Chapter VI assembles data from 

306 experiments across terrestrial and marine environments to reveal the effects of N and P-
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enrichment on ecologically and economically important nutrient-exchange mutualisms. I show 

that nutrient loading alters the costs and benefits that mutualists receive from interacting, 

benefiting phototrophs at the expense of their heterotrophic partners. The destabilization of these 

mutualisms reported in this chapter represent a potentially serious threat to nutrient-exchange 

mutualisms that could not only alter the ecology of natural systems but presents a pressing 

concern for ecosystem goods and services. For example, N-fixation by rhizobia in agricultural 

systems provides at least 70 million metric tons of N per year (Kiers et al. 2002), or roughly 

$28.7–$59.3 billion worth of fertilizer application (USDA 2011). Enrichment-driven declines in 

mycorrhizae performance may jeopardize the non-nutritional benefits that fungi confer to plants, 

such as tolerance to droughts, diseases, and soil toxins (Siddiqui et al. 2008). Such lost services 

ultimately increase the risk of crop failure from drought and disease. Similarly, the nutrient-

induced decline of reef building corals threatens populations of fishes that provide the principal 

protein source for nearly one billion people worldwide (UNEP 2004). As such, the potential for 

anthropogenic nutrient loading to disrupt nutrient-sharing mutualisms and their positive impacts 

on ecosystems, biodiversity, and human wellbeing may be one of the emerging threats of global 

change in the 21st century. 

 In summary, this dissertation provides a physiological perspective on the potential effects 

of N and P enrichment to explore how changes in the delivery of these nutrients will impact 

animals and their environments. By first examining coral and herbivore physiology and then 

testing the observed patterns in natural settings, this dissertation provides a mechanistic 

understanding of the effects of changing nutrient regimes on natural and managed ecosystems. 

Thus, this work considerably advances our knowledge with respect to the effects of global 

nutrient loading on the natural world. 
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Appendix A: Supplementary tables and figures for Chapter II. 
 
Table A1 – Summary of studies used for analyses of the effects of nutrients on coral growth. 
Categories are as follows: 
Study: the author(s) and year published of each study used. Letters in superscript listed after 
studies, when present, indicate additional notes provided below. 
Species: list of coral species used in each study. 
Metric: Growth metric used in our analyses. Cal = Calcification rate, Den = Skeletal Density, Ext = 
Extension Rate. Multiple metrics listed under a single study indicates use in each analysis. 
Nutrient: Type of enrichment used in the study. N=mixed/unspecified nitrogen, NH4=ammonium, 
NO3=Nitrate, P=Phosphate. Nutrients separated by ‘,’ indicate separate enrichments with each, 
nutrients separated by ‘+’ indicate joint enrichment. 
Source: Nutrient source used in each study. ANTH=enrichment resulted from anthropogenic 
pollution, MAN=enrichment resulted from manipulative nutrient additions, FISH=enrichment 
resulted from fish excretion. 
Control N/P: Background level or range of levels for nitrogen (N) and phosphorus (P) in 
micromoles recorded in control treatments. 
Enriched N/P: The level or range of levels for nitrogen (N) and phosphorus (P) in micromoles 
recorded in enriched treatments.   
. 
 

Study Species Metric  Nutrient Source Control 
N/P 

Enriched 
N/P 

L. Bongiorni et al. 2003. 
 Marine Ecology Progress 
Series, 253, pp. 137-144. 

Acropora 
eurystoma, 
Stylophora 
pistillata 

Cal. & 
Ext. NH4+P ANTH 0.32/0.04 1.4/0.12 

D.J. Bucher. The Effects of 
Experimentally elevate nutrient 
concentrations on growth rate, 
skeletal architecture and soft 
tissue morphology of Acroporid 
corals. Southern Cross 
University, New South Whales, 
Australia. 2000  

A. 
longicyathus, 

A. aspera, 
Porites porites 

Cal., 
Den. & 

Ext. 
NH4, P, 
NH4+P MAN 

0.51-
3.85/0.01

-0.16 10-20/2-4 
K. Koop et al. 2001. Marine 
Pollution Bulletin, 42, pp. 91-
120. A. longicyathus Ext. 

NH4, P, 
NH4+P MAN 3.85/0.16 10-20/2-4 

P.S. Davies, 1990. Marine 
Pollution Bulletin, 21, pp. 346-
348. P. porites Cal. N+P ANTH 0.45/0.06 0.65/0.11 
R.E. Dodge & G.W. Brass, 
1984. Bulletin of Marine 
Science, 34, pp. 288-307. a  

Montastraea 
annularis 

Cal., 
Den. & 

Ext. N+P ANTH NA NA 
J.G. Dunn et al. 2012. Journal of 
Experimental Marine Biology 
and Ecology, 411, pp. 34-44. A. muricata 

Cal., 
Den. & 

Ext. P MAN 0.13/0.09 0/0.2 
E.N. Edinger et al 2000. Marine 
Pollution Bulletin, 40, pp. 404-
425. b P. lobata Ext. P, N+P ANTH 0.34/0.18 

0.50-
0.63/0.3-

0.38 
E.M. Elizalde-Rendon et al. 
2010. Coral Reefs, 29, pp. 607-
614. P. astreoides 

Cal., 
Den. & 

Ext. N+P ANTH 5.76/1.1 14.65/2.8 
C. Ferrier-Pages et al. 2000. 
Coral Reefs, 19, pp. 103-113.c S. pistillata Cal. 

NH4+, P, 
NH4+P MAN 1.39/0.19 14.75/2.6 

C. Ferrier-Pages et al. 2001. 
Journal of Experimental Marine S. pistillata Cal. NO3 MAN 1.39/NA 2.13/NA 
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Biology and Ecology, 259, pp. 
249-261. 
C. Godinot et al. 2011. Journal 
of Experimental Marine Biology 
and Ecology, 409, pp. 200-207. S. pistillata Cal. P MAN NA/0.04 NA/0.5 
S.J. Holbrook et al. 2008. 
Marine Biology, 155, pp. 521-
530. 

Pocillopora 
eydouxi Cal. NH4+P FISH NA/NA 0.35/NA 

S.J. Holbrook et al. 2011. 
Oecologia, 166, pp. 739-749. Po. eydouxi Cal. NH4+P FISH NA/NA NA/NA 
J. Jompa & L.J. McCook 2002. 
Limnology and Oceanography, 
47, pp. 527-534. P. cylindrical Ext. NH4+P MAN 1/0.08 

5-10/0.5-
1.0 

T. Liberman et al. 1995. Marine 
Biology, 121, pp. 741-746. S. pistillata 

Cal. & 
Ext. NH4+P FISH NA/NA NA/NA 

F. Marubini & M.J. Atkinson 
1999. Marine Ecology Progress 
Series, 188, pp. 117-121. P. compressa Cal. NO3 MAN 0.42/NA 

0.91-
5.66/NA 

F. Marubini & P.S. Davies 1996. 
Marine Biology, 127, pp. 319-
328 P. porites Cal. NO3 MAN 0.2/0.05 1-20/0 
F. Marubini & B. Thake 1999. 
Limnology and Oceanography, 
44, pp. 716-720. P. porites 

Cal. & 
Ext. 

NH4, 
NO3 MAN 0.2/0.05 20/0 

J.L. Mate 1997. Proceedings of 
the 8th International Coral Reef 
Symposium, 1, pp. 515-520. 

Po. 
damicornis, 

Psammacora 
stellata Ext. NO3+P MAN 0.5/0.5 26/26 

J.L. Meyer et al. 1982. Science, 
220, pp. 1047-1049. P. furcata Cal. NH4+P FISH 2.8/NA 3.0/NA 
M.P. McGuire & A.M. Szmant 
1997. Proceedings of the 8th 
International Coral Reef 
Symposium, 1, pp. 909-914. P. astreoides Cal. NH4+P MAN 0.5/0.2 10/0 
J.L. Meyer & E.T. Schultz 1985. 
Limnology and Oceanography, 
30, pp. 157-166. P. furcata 

Cal., 
Den. & 

Ext. NH4+P FISH 3.71/NA 3.90/NA 
D.A. Renegar & B.M. Riegl 
2005. Marine Ecology Progress 
Series, 293, pp. 69-76.c A. cervicornis Cal. 

NO3, P, 
NO3+P MAN 0.5/0.08 7.5/3.15 

N. Stambler et al. 1991. Pacific 
Science, 45, 299-307. Po. damicornis Ext. 

NH4, 
NH4+P MAN 2.0/0.1 15-20/.5-2 

A.D. Broadbent, 1997. 
Proceedings of the 8th 
International Coral Reef 
Symposium, 1, pp. 867-872.c A. palifera Cal. 

NH4, P, 
NH4+P MAN 3.85/0.16 20/4 

T. Tomascik & F. Sander 1985. 
Marine Biology, 87, pp. 143-
155. M. annularis Ext. N, N+P ANTH 

0.36-
0.45/0.06 

0.55-
4.4/.11-

.21 
a TBF site near sewage outfall considered pristine, CHF considered enriched. 
b Measurements included only for sites where nutrient and turbidity data were provided. 
c Measurements were averaged from a time series of results. 
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Table A2 – Summary of studies used for analyses of the effects of nutrients on coral 
photobiology. Categories are: 
Study: the author(s) and year published of each study used. Letters in superscript listed after 
studies, when present, indicate additional notes provided below. 
Species: list of coral species used in each study. 
Metric: Photobiology metric used in our analyses. Chl.a = Chlorophyll a concentration obtained 
from an area of coral tissue, Chl. per Symbio = Chlorophyll a within individual Symbiodinium, 
SymDensity = Density of Symbiodinium within an area of coral tissue, Photosynth = Gross 
photosynthetic rate. Multiple metrics listed under a single study indicates use in each analysis. 
Nutrient: Type of enrichment used in the study. NH4=ammonium, NO3=Nitrate, P=Phosphorus. 
Nutrients separated by ‘,’ indicate separate enrichments with each, nutrients separated by ‘+’ 
indicate joint enrichment. 
Source: Nutrient source used in each study. ANTH=enrichment resulted from anthropogenic 
pollution, MAN=enrichment resulted from manipulative nutrient additions, FISH=enrichment 
resulted from fish excretion. 
N Level/P Level: The level or range of levels provided for N (nitrogen) and P (phosphorus).   
 

Study Species Metric  Nutrient Source Control 
N/P 

Enriched 
N/P 

C. Ferrier-Pages et al. 
2000. Coral Reefs, 19, 
pp. 103-113. S. pistillata Photosynth NH4+P MAN 

<1.5/0.2 18.5-
19.5/2.4-
2.8 

C. Ferrier-Pages et al. 
2001. Journal of 
Experimental Marine 
Biology and Ecology, 
259, pp. 249-261. S. pistillata 

Chl.a, 
SymDensity, 
Photosynth NO3 MAN 

<1.5/0.2 

2.5/NA 
C. Godinot et al. 2011. 
Journal of Experimental 
Marine Biology and 
Ecology, 409, pp. 200-
207a S. pistillata 

Chl. per 
Symbio, 
SymDensity, 
Photosynth P MAN 

NA/0.04 

NA/.5-2.5 
F. Marubini & P.S. 
Davies 1996. Marine 
Biology, 127, pp. 319-
328 

P. porites, M. 
annularis 

Chl. per 
Symbio, 
SymDensity, 
Photosynth NO3 MAN 

0.2/0.05 

1-20/0 
F. Marubini & B. Thake 
1999. Limnology and 
Oceanography, 44, pp. 
716-720. P. porites Chl.a  

NH4, 
NO3 MAN 

0.2/0.05 

20/0 
M.P. McGuire & A.M. 
Szmant 1997. 
Proceedings of the 8th 
International Coral Reef 
Symposium, 1, pp. 909-
914. P. astreoides 

Chl. per 
Symbio, 
SymDensity  NH4 MAN 

0.5/0.2 

10/0 
J.L. Meyer & E.T. 
Schultz 1985. Limnology 
and Oceanography, 30, 
pp. 157-166. P. furcata SymDensity NH4+P FISH 

3.71/NA 

3.90/NA 
A. Chauvin et al. 2011. 
Coral Reefs, 30 pp. 911-
923. A. muricata 

Chl.a, 
SymDensity NO3 ANTH 

0.61/0.12 

5/.14 
C. Godinot et al. 2009. 
Limnology and 
Oceanography, 54, 1627-
1633. S. pistillata SymDensity P MAN 

NA/<0.0
5 

NA/2.5 
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Y. Tanaka et al. 2007. 
Limnology and 
Oceanography, 52 pp. 
1139-1146. A. pulchra Chl.a NO3+P MAN 

1.5/0.08 

5/0.3 
Y. Tanaka et al. 2010. 
Coral Reefs, 29 pp. 675-
682. 

Montipora 
digitata Chl.a NO3+P MAN 

0.22/0.06 

10/0.5 
L. Muscatine et al. 1989. 
Proceedings of the Royal 
Society, Biology, 236, 
311-324. S. pistillata 

Chl.a, 
SymDensity 

NH4, P, 
NH4+P MAN 

Below 
detection 

20/2 
Snivdongs and Kinzie 
1994 

Po. 
damicornis Chl. per Symbio 

NH4, P, 

NH4+P MAN 
0.7/0.2 

15/1.2 
Stambler et al. 1994. 
Pacific Science, 48, pp. 
284-290. 

M. verrucosa, 
Po. 
damicornis 

Chl. per 
Symbio, Chl.a, 
SymDensity NH4 MAN 

<2.0/NA 

2-50/0 
N. Stambler et al. 1991. 
Pacific Science, 45, pp. 
299-307. 

Po. 
damicornis 

Chl. per 
Symbio, Chl.a, 
SymDensity 

NH4, P, 
NH4+P MAN 

2.0/0.1 

15/0.5-2 
A.D. Broadbent 1997. 
Proceedings of the 8th 
International Coral Reef 
Symposium, 1, pp. 867-
872.  A. palifera 

Chl. per 
Symbio, 
SymDensity 

NH4, P, 
NH4+P MAN 

3.85/0.16 

20/4 
J. Stimson & R.A. Kinzie 
1991. Journal of 
Experimental Marine 
Biology and Ecology, 
153, pp. 63-74. 

Po. 
damicornis SymDensity NH4 MAN 

0.6/NA 

17/NA 
D.J. Bucher & P.L. 
Harrison 2002. 
Proceedings of the 9th 
International Coral Reef 
Symposium pp. 23-27.  

A. 
longicyanthus Chl.a 

NH4, P, 

NH4+P MAN 

3.85/0.16 

20/4 
O. Hoegh-Guldberg & 
G.J. Smith 1989. Marine 
Ecology Progress Series, 
57, pp. 173-186. 

S. hystrix, S. 
pistillata 

Chl.a, 
SymDensity, 
Photosynth NH4 MAN 

NA/NA 

10.0/NA 
G. Muller-Parker et al. 
1994. Pacific Science, 48 
pp. 273-283. 

Po. 
damicornis 

Chl.a, 
SymDensity NH4 MAN 

NA/NA 

20-50/NA 

E. Titlyanov et al. 2000. 
Marine Biology, 137 pp. 
463-472.b S. pistillata 

Chl. per 
Symbio, 
SymDensity, 
Photosynth NH4 MAN 

2.25/0.25 

10/0 
a Measurements averaged from two time periods. 
b Measurements only taken from highest irradiance levels which were closest to irradiance levels recorded at 
collection sites.  
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Table A3 – Results of linear regression analysis examining the relationship between effect 
sizes and the background nitrogen (N) and phosphorus (P) levels for each metric of coral 
growth and photobiology under N, P and N+P enrichment. 
 

Metric d.f. F p R2 
Calcification     

N 3,13 1.409 0.285 0.071 
P 3,7 29.32 0.001 0.895 

N+P 3,13 1.451 0.274 0.078 
Extension     

N 3,4 1.727 0.299 0.238 
P 1,2 1.778 0.314 0.206 

N+P 3,15 1.559 0.241 0.085 
Density     

N NA NA NA NA 
P 1,4 2.098 0.221 0.18 

N+P 3,3 2.292 0.257 0.392 
Chl. a per 
Symbiodinium 

    

N 3,9 0.413 0.748 0.172 
P 2,1 0.233 0.826 1.046 

N+P 2,1 45.71 0.104 0.968 
Symbiodinium 
density in coral 

    

N 3,18 0.520 0.674 0.074 
P 2,1 3.062 0.375 0.579 

N+P 3,1 45.49 0.109 0.971 
Chl. a per coral 
area 

    

N 3,10 1.52 0.269 0.107 
P 2,1 12.04 0.200 0.880 

N+P 3,3 0.793 0.573 0.115 
Gross 
photosynthesis 

    

N 2,5 5.484 0.055 0.562 
P NA NA NA NA 

N+P NA NA NA NA 
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Table A4 – Results from model selection for linear or quadratic models and the 
corresponding regression analysis for the relationship between effect sizes and enrichment 
level for calcification and each metric of photobiology. Best fit was determined via Akaike 
Information Criteria corrected for small sample sizes (AICc). For each metric, the best model 
type is listed along with the AICc score, the AICc difference between the two model types, 
and the regression statistics. NA = not sufficient data to conduct the analysis. 
 

Metric Best 
Model 

AIC
c 

∆AIC
c 

d.f. Slope F p R2 

Calcification         
Ammonium Linear 14.2

6 
29.98 1,4 0.024 1.0

4 
0.37 0.008 

Nitrate Linear 12.5
2 

3.18 1,10 -
0.006 

0.2
9 

0.60 0.069 

Phosphate Linear 23.2
2 

4.21 1,7 -
0.207 

2.9
1 

0.13 0.193 

Chl. a per 
Symbiodiniu
m 

        

Ammonium Linear 13.0
4 

4.48 1,8 0.008 1.6
3 

0.24 0.066 

Nitrate Linear 11.6
4 

23.27 1,4 0.014 2.5
4 

0.19 0.235 

Phosphate NA NA NA NA NA NA NA NA 
Symbiodiniu
m density in 
coral 

        

Ammonium Linear 33.2
9 

2.61 1,13 0.003 0.0
9 

0.76 0.069 

Nitrate Linear 1.16 5.48 1,6 -
0.015 

4.8
8 

0.07 0.357 

Phosphate NA NA NA NA NA NA NA NA 
Chl. a per 
coral area 

        

Ammonium Linear 32.3
6 

4.68 1,10 0.011 0.8
1 

0.39 0.018 

Nitrate NA NA NA NA NA NA NA NA 
Phosphorus NA NA NA NA NA NA NA NA 
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Gross 
photosynthes
is 

        

Ammonium NA NA NA NA NA NA NA NA 
Nitrate Linear 2.54 9.06 1,5 0.015 5.7

8 
0.06 

 
0.444 

Phosphate NA NA NA NA NA NA NA NA 
 

 

 

 

 

 

 

 

Table A5 – Results from model selection using Akaike Information Criteria corrected for small 
sample sizes (AICc) to select between linear and quadratic models of the effect of N:P ratio 
of different metrics of coral growth. For each metric, the best model type is listed along with 
the corresponding fit, AICc score and difference between the two model types. 
 

 Best Model r2 AICc ∆AICc 
Calcification Quadratic 0.395 15.658 2.294 
Extension Quadratic 0.508 30.159 2.866 
Density Linear 0.291 0.504 28.007 
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Figure A1 – Cumulative effect sizes for (a) skeletal extension rates for all corals and (b) 
skeletal density for all corals, in response to enrichment with N, P, or N+P. Data are means ± 
95% confidence intervals.  Numbers in parenthesis indicate the number of experiments used 
to calculate effect sizes. 
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Figure A2 – Regression analysis using best fitting quadratic models of the effect of N:P ratio on 
effect sizes for coral calcification (left), and skeletal extension rates (right). 
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Appendix B: Supplemental tables and figures from Chapter V. 

Table B1 – Results of repeated measures ANOVA to assess the biomass of grunts sheltering 
around study colonies throughout the duration of the study. 
 

 Numerator DF Denominator 
DF 

F-value p-value 

Intercept 1 180 1861.07 <.0001 
Biomass 
Status 

1 18 87.54 <.0001 

Time 10 180 4.07 <.0001 
Biomass 
Status x Time 

10 180 3.65 <.0001 
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Table B2 – Results from SIMPER analysis for the contribution of dissimilarity between High 
Biomass vs. Low Biomass sites for each benthic group. Contribution is the mean percent 
dissimilarity contribution from each benthic category. Cumulative contribution represents the total 
dissimilarity contribution from multiple groups. 
 

Benthic Group Contribution (%) S.D. Cumulative 
Contribution 

TAS 26.75 18.27 26.75 
CCA 24.51 14.17 51.26 
Brown 
Macroalgae 

23.97 15.75 75.23 

Turf 14.46 10.72 89.69 
Red Macroalgae 3.77 2.59 93.46 
Green Macroalgae 3.34 4.16 96.8 
Cyanobacteria 3.2 4.91 100.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 146 

 
 
Figure B1 – Google Earth image of the study location. Numbers indicate location of each of the 
20 study colonies, as determined by a diver towing a GPS attached to a dive float. Red numbers 
are High Biomass sites and white numbers are Low Biomass sites. 
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Appendix C: Supplemental tables and figures from Chapter VI. 

Table C1 – List of studies used in our analyses. “Type” indicates the mutualism group. “Site” denotes whether the study was conducted 
in an outdoor field setting (Field) or in a lab or glasshouse (Lab). “Location” provides the country or ocean region where the study took 
place. “Treat” denotes the type of nutrients provided with multiple nutrients listed if a study contained independent treatments of different 
nutrients. “N” provides the enrichment level and units for N-enrichments while “P” provides the enrichment level and units for P 
enrichments. “Duration” provides the length of the study in days. “Metric (P/H)” indicates the response metric used to measure the 
performance for the phototroph partner / the heterotroph partner. “Wtd. Anl.” Provides a Yes/No indication of whether or not the study 
was included in our weighted analysis. 

 
 

Study Type Site Location Treat N P Days Metric (P/H) Wtd. 
Anl. 

Beraud et al. 2013 Algae-Coral Lab Red Sea N 3.4 uM  7 Cells cm-2/ 
Growth 
(µMCaCO3 cm-2 h-

1) 

Y 

Chauvin et al. 2011 Algae-Coral Field La Réunion N 4.86 uM  1 Cells cm-2/ 
Growth (g) 

Y 

Ferrier-Pages et al. 
2001 

Algae-Coral Lab Jordan N 2.25 uM  63 Cells cm-2/ 
Growth (% d-1) 

Y 

Godinot et al. 2011 Algae-Coral Lab Red Sea P  0.5 – 2.5 uM  77 Cells cm-2/ 
Growth 
(µMCaCO3 cm-2 h-

1) 

Y 

Langdon and Atkinson 
2005 

Algae-Coral Lab USA NP 109 uM 13 uM 4 Cells cm-2/ 
(µMCaCO3 cm-2 h-

1) 

Y 

Marubini & Davies 1996 Algae-Coral Lab Barbados N 1-20 uM  30-40 Cells cm-2/ 
Growth (mg cm-

2 d-1) 

Y 

Marubini & Thake 1999 Algae-Coral Lab Barbados N 20 uM  9-23 µg Chl. a cm-2/ 
Growth (mg cm-

2 d-1) 

Y 
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Mate 1997 Algae-Coral Lab Panama NP 4.2 uM 18.6 uM  Cells cm-2/ 
Growth (mm m-1) 

Y 

McGuire & Szmant 
1997 

Algae-Coral Lab USA N 10 uM  28 Cells cm-2/ mg cm-

2 
Y 

Meyer and Schultz 1985 Algae-Coral Field St. Croix NP 3.9 uM  60 Cells cm-2/ 
Growth (g m-1) 

Y 

Muller-Parker et al. 
1994 

Algae-Coral Lab USA N 20-50 uM  49 Cells cm-2/ 
Biomass (mg cm-2) 

Y 

Steven and Broadbent 
1997 

Algae-Coral Field Australia N, P, 
NP 

20 µM 4 µM 365 Cells cm-2/ 
Growth (% d-1) 

Y 

Stambler et al. 1991 Algae-Coral Lab USA N, NP 15 uM 0.5-2 uM  28 Cells cm-2/ 
Growth (mm d-1) 

Y 

Ambariyanto and 
Hoegh-Guldberg 1997 

Algae-Clam Field Australia N, P, 
NP 

10 uM 2 uM 365 Cells Clam-1/ 
Biomass(% d-1) 

Y 

Belda et al. 1993 Algae-Clam Lab Australia N, P, 
NP 

5-10 uM 2-10 uM 90 Cells g-1 tissue/ 
Growth (∆g) 

Y 

Braley et al. 1992  Algae-Clam Lab Australia NP 20-40 uM 2.3 uM 91 Cells g-1 tissue/ g 
mm-1 shell 

Y 

Grice and Bell 1997 Algae-Clam Lab Solomon 
Islands 

N 40 µM  45 Cells g-1 tissue/ 
Biomass (∆g) 

Y 

Grice and Bell 1999 Algae-Clam Lab Solomon 
Islands 

N 35-80 uM  25 Cells Clam-1/ 
Biomass (mg d-1) 

Y 

Dahlman et al. 2002 Algae/ 
Cyano-
Fungi 

Field Sweden N, NP 20 mg m-

2 twice week-1 
NA 90 Chl.a (mg cm-2)/ 

Chitin (mg cm2) 
Y 

Gaio-Oliveira et al. 2004 Algae/ 
Cyano-
Fungi 

Field Portugal N 0.6-9.6 g m-

2 week-1 
 308 Chl. a (mg cm-2)/ 

Chitin (mg cm2) 
Y 

Johannsson et al. 2011 Algae/ 
Cyano-
Fungi 

Field Sweden N, P, 
NP 

2.5 mM in 1.6 
l day-1 

0.037 mM in 
1.6 l day-1 

62 Growth (mg dry 
weight)/ Growth 
(mg dry weight) 

Y 

Aggangan and Moon 
2013 

Plant-AM 
Fungi 

Lab Korea P  0.03-0.27 mg 
kg-1 

120 Biomass (g)/% 
Root Col. 

Y 
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Anderson and Liberta 
1992 

Plant-AM 
Fungi 

Field USA N,P 165 ml m-2 165 ml m-2 469 Biomass (g)/ % 
Root Col. 

Y 

Baon et al. 1993 Plant-AM 
Fungi 

Lab Australia P  10-20 mg kg-1 42 Biomass (g)/ % 
Root Col. 

Y 

Bi et al. 2003 Plant-AM 
Fungi 

Lab Ireland P  100 mg kg-1 40 Biomass (g)/ % 
Root Col. 

N 

Blanke et al. 2011 Plant-AM 
Fungi 

Field Germany N 8.5 g m-2 y-1  1460 Biomass (g)/ % 
Root Col. 

Y 

Borowicz 1997 Plant-AM 
Fungi 

Lab USA P  0.4 mM 84 Biomass (g)/ % 
Root Col. 

Y 

Grogan & Chapin Plant-AM 
Fungi 

Field USA N, P, 
NP 

20 g m-2 20 g m-2 56 Biomass (g)/ % 
Root Col. 

Y 

Hartwig et al. 2002 Plant-AM 
Fungi 

Lab Switzerland N 4.5 mM  42-60 Biomass (g)/ % 
Root Col. 

N 

Jeyanny et al. 2011 Plant-AM 
Fungi 

Lab Malaysia NP 100 mg kg-1 100 mg kg-1 90 Biomass (g)/ % 
Root Col. 

Y 

Johnson et al. 2015 Plant-AM 
Fungi 

Lab USA N, P, 
NP 

2.3 – 8.6 µg g-

1 
55 µg g-1 98 Biomass (g)/ 

HyphMass (m g-

1 soil) 

Y 

Karaca et al. 2013 Plant-AM 
Fungi 

Lab Turkey P  100 mg kg-1 45 Biomass (g)/ % 
Root Col. 

Y 

Lagrange et al. 2013 Plant-AM 
Fungi 

Field New 
Caledonia 

N, P, 
NP 

500 kg ha-1 200 kg ha-1 730 Biomass (g)/% 
Root Col. 

Y 

LeCroy et al. 2013 Plant-AM 
Fungi 

Lab USA N 34 kg ha-

1 week-1 
 28 Biomass (g)/% 

Root Col. 
Y 

Li et al. 2012 Plant-AM 
Fungi 

Field China P  175 mg kg-1  Biomass (g) 
/HyphMass (g m-

1 ) 

Y 

Liu et al. 2012 Plant-AM 
Fungi 

Field China NP 6.4–25.4 g m-

2 y-1 
7-28.2 g m-2 y-1 2900 Growth (kg m-

2)/HyphMass (g 
m-1 ) 

Y 

Montalba et al. 2010 Plant-AM 
Fungi 

Lab Chile N 60 kg ha-1 y-1  100 Biomass (g)/ % 
Root Col. 

Y 



 151 

Ochoa-Hueso et al. 
2013 

Plant-AM 
Fungi 

Field Spain N 10-50 kg ha-

1 y-1 
 540 Biomass (g)/% 

Root Col. 
Y 

Ortas 2012 Plant-AM 
Fungi 

Lab Turkey P  25-125 mg kg-1 51 Biomass (g)/% 
Root Col. 

Y 

Sangabriel-Conde et al. 
2014 

Plant-AM 
Fungi 

Lab Mexico P  65 mg kg-1 120 Biomass (g)/% 
Root Col. 

Y 

Schroeder-Moreno et 
al. 2012 

Plant-AM 
Fungi 

Lab USA N 8-100 kg ha-

1 y-1 
 84 Biomass (g)/% 

Root Col. 
Y 

Tawaraya et al. 2012 Plant-AM 
Fungi 

Lab Japan P  300-1500 mg 
kg-1 

167 Growth (g)/% 
Root Col. 

Y 

Waceke et al. 2002 Plant-AM 
Fungi 

Lab Kenya P  150-300 mg m-

2 
150 Biomass (g)/ % 

Root Col. 
N 

Watts-Williams et al. 
2013 

Plant-AM 
Fungi 

Lab Australia P  20-100 mg kg-1 63 Biomass (g)/% 
Root Col. 

Y 

Allen et al. 2010 Plant-
AM/EM 
Fungi 

Field USA N 10 g m-2 y-1  2190 Growth (g)/ 
Myco. Root tips 

N 

Bougher et al. 1990 Plant-EM 
Fungi 

Lab Australia P  0.17-0.23 mg 
kg-1 day-1 

120 Biomass (mg)/ EM 
Roots 

N 

Mason et al. 2000 Plant-EM 
Fungi 

Lab Chile N, P, 
NP 

35-71 mg l-1 7 mg l-1 , 4 
times week-1  

84 Biomass (g)/ % 
Root Col. 

N 

Oskarsson & 
Halldorsson 2008 

Plant-EM 
Fungi 

Field Iceland N, P, 
NP 

1.5 -24.2 g 
seedling-1 

11.1 – 55.6 g 
seedling-1 

1095 Biomass (g)/ % 
Root Col. 

Y 

Pampolina et al. 2002 Plant – EM 
Fungi 

Field Australia P  100-1000 kg 
ha-1 

365 Biomass (g)/ 
HyphMass (mg g-

1 soil) 

Y 

Shaw et al. 1987 Plant-EM 
Fungi 

Lab Great Britain NP 360 g m-3 210 g m-3 98 Biomass (g)/ % 
Root Col. 

N 

Abbasi et al. 2010 Plant-
Bacteria 

Lab Pakistan P    Biomass (g plant-

1)/ Nod.Mass (g 
plant-1) 

N 

Batterman et al. 2013 Plant-
Bacteria 

Lab Panama P, NP  24.71-219.78 
mg m-2 

182 Biomass (g)/ 
Nod.Mass (mg g-

1 plant) 

Y 
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Dumroese et al. 2009 Plant-
Bacteria 

Lab USA NP 0.35-1.79 kg 
m-3 

0.2-1.07 kg m-3 84 Biomass (g plant-

1)/ Nod.Mass (mg 
plant-1) 

Y 

Erman et al. 2009 Plant-
Bacteria 

Field Turkey P  30-90 kg ha-1 250 Biomass (g plant-

1)/ Nod. Plant-1 
Y 

Eskew et al. 1989 Plant-
Bacteria 

Lab Austria N 7.5-450 mg  82 Biomass (g plant-

1)/ Nod.Mass (mg 
plant-1) 

N 

Gibson and Harper 
1985 

Plant-
Bacteria 

Lab Australia N 0.5-1 mM  10 Biomass (g plant-

1)/ Nod. Plant-1  
N 

Hungria et al. 2006 Plant-
Bacteria 

Field Brazil N, P    Biomass (g plant-

1)/ Nod.Mass (mg 
plant-1) 

N 

Laberge et al. 2005 Plant-
Bacteria 

Lab Canada N   70 Biomass (mg 
plant-1)/ Nod. # 

N 

Malik et al. 2014 Plant-
Bacteria 

Field Pakistan N    Biomass (g plant-

1)/ Nod.Mass (mg 
plant-1) 

N 

Milton et al. 2000 Plant-
Bacteria 

Field Brazil N 50.1-300 mg 
m-2 

 20-35 Biomass (g plant-

1)/ Nod.Mass (mg 
plant-1) 

N 

Namvar et al. 2011 Plant-
Bacteria 

Field Iran N 50-100 kg ha-

1 
  Biomass (kg ha-1)/ 

Nod.Mass (mg 
plant-1) 

Y 

Nelson 1987 Plant-
Bacteria 

Lab Canada N 2-5 mM  104-106 Biomass (g plant-

1)/ Nod. Plant-1 
Y 

Ouertatanit et al. 2011 Plant-
Bacteria 

Lab Tunisia P    Biomass (g plant-

1)/ Nod.Mass (g 
plant-1) 

N 

Park and Buttery 1989 Plant-
Bacteria 

Lab Canada N 3.5-10.5 mM  40 Biomass (g plant-

1)/ Nod.Mass (mg 
plant-1) 

Y 
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Sanginga et al. 1996 Plant - 
Bacteria 

Lab Nigeria P  7 kg ha-1 98 Biomass (g plant-

1)/ Nod.Mass (mg 
plant-1) 

N 

Seneviratne et al. 2000 Plant-
Bacteria 

Field Sri Lanka NP    Biomass (g plant-

1)/ Nod.Mass (g 
plant-1) 

Y 

Shahzad et al. 2014 Plant-
Bacteria 

Field Pakistan P  100 g kg-1  Biomass (t ha-1)/ 
Nod.Mass (g 
plant-1) 

Y 

Sheoran et al. 1997 Plant-
Bacteria 

Field India N 100 kg ha-1  60 Biomass (kg ha-1)/ 
Nod.Mass (mg 
plant-1) 

N 

Singleton et al. 1985 Plant-
Bacteria 

Lab USA P  50-400 mg kg-1 33 Biomass (g plant -
1)/ Nod.Mass (mg 
plant-1) 

N 

Tahir et al. 2009 Plant-
Bacteria 

Field Pakistan N, P, 
NP 

25-50 kg ha-1 90 kg ha-1 150 Biomass (g plant-

1)/ Nod.Mass (g 
plant-1) 

N 

Temperton et al. 2003 Plant-
Bacteria 

Field Scotland N  24.71 mg m-2 850 Growth (mg g-

1 day)/ Nod.Mass 
(g g-1 root) 

Y 

Thies et al 1995 Plant-
Bacteria 

Field USA N 900 kg ha-1  40 Biomass (kg ha-1)/ 
Nod.Mass (mg 
plant-1) 

N 

Thomas et al. 2000 Plant-
Bacteria 

Lab Costa Rica N   100 Biomass (g plant-

1)/ Nod.Mass (g 
plant-1) 

Y 

Valladares et al. 2002 Plant-
Bacteria 

Lab Spain N   95 Biomass (g)/ 
Nod.Mass (g 
plant-1) 

Y 

Vankosky et al. 2011 Plant-
Bacteria 

Field Canada N 60 kg ha-1  ~60 
 

Biomass (g plant-

1)/ Nod. Plant-1 
Y 
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Zaman-Allah et al. 2007 Plant-
Bacteria 

Lab Tunisia P  200 mg plant-1  Biomass (g plant-

1)/ Nod.Mass (mg 
plant-1) 

N 
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Table C2 - Calculated slopes and the probability that slopes differ from zero for Bayesian Type II 
regressions of phototroph versus heterotroph response ratios for weighted and unweighted 
analyses. N indicates the number of experiments available for the regressions. 

 

Mutualism Type Unweighted Analysis Weighted Analysis 
Algae-Clam  Slope = 0.51,  

Pr(Slope > 0) = 0.99 
Pseudo-R2 = 0.43 

N = 19 

Slope = 0.48,  
Pr(Slope > 0) = 0.96 

Pseudo-R2 = 0.28 
N = 19 

Algae-Coral Slope = -0.32,  
Pr(Slope < 0) > 0.99 

Pseudo-R2 = 0.14 
N = 31 

Slope = -0.25,  
Pr(Slope < 0) = 0.98 

Pseudo-R2 = 0.14 
N = 31 

Algae/ Cyano-Fungi Slope = -0.24,  
Pr(Slope < 0) = 0.95 

Pseudo-R2 = 0.18 
N = 19 

Slope = 0.04,  
Pr(Slope > 0) = 0.59 

Pseudo-R2 = 0.0 
N = 19 

Plant- AM Fungi Slope = 0.11,  
Pr(Slope > 0) = 0.82 

Pseudo-R2 = 0.01 
N = 84 

Slope = 0.08,  
Pr(Slope > 0) =0.80 
Pseudo-R2 = 0.01 

N = 76 
Plant- EM Fungi Slope = -0.40,  

Pr(Slope < 0) > 0.99 
Pseudo-R2 = 0.26 

N = 38 

Slope = 0.04,  
Pr(Slope > 0) =0.73 

Pseudo-R2 = 0.0 
N = 16 

Plant-Bacteria Slope = -0.47,  
Pr(Slope < 0) > 0.99 

Pseudo-R2 = 0.08 
N = 115 

Slope = -0.35,  
Pr(Slope < 0) =0.98 
Pseudo-R2 = 0.22 

N = 30 
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Table C3 - The mean log response ration (RR) and upper and lower 95% Bayesian credible 
intervals for phototroph and heterotroph partners in the Plant-Fungi and Plant-Bacteria 
mutualisms calculated from studies in natural field settings versus controlled lab or glass-house 
environments. N indicates the number of experiments available for the calculations. 
 

Mutualism type Field Studies Glass-house/Lab 
studies 

Plant-Fungi 
(Phototroph)  

RR = 0.81 
CI95 = 0.52, 1.10 

N = 38 

RR = 0.61 
CI95 = 0.47, 0.76 

N = 84 
Plant-Fungi 
(Heterotroph) 

RR =  -0.20 
CI95 = -0.46, 0.067 

N = 38 

RR = -0.23 
CI95 = -0.38, -0.07 

N = 84 
Plant-Bacteria 
(Phototroph) 

RR = 0.61, 
CI95 = 0.41, 0.81 

 

RR = 0.11 
CI95 = 0.07, 0.15 

N = 57 
Plant-Bacteria 
(Heterotroph) 

RR = -0.30 
CI95 = -0.45, -0.15 

N = 59 

RR = -0.40 
CI95 = -0.70, -0.10 

N = 57 
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Figure C1 – Estimated effect sizes based on log response ratios from the subset of data used in 
our weighted analysis for comparison with the unweighted analysis (Figure 2 in the main text). 
The phototroph and heterotroph for each mutualism type (blue=marine, green=terrestrial) and the 
overall median response across all studies as (A) pooled across nutrients or under (B) nitrogen, 
(C) phosphorus, or (D) nitrogen+phosphorus enrichment. Thin and thick lines depict the 95% and 
80% Bayesian credible intervals respectively. Numbers in parentheses denote the number of 
experiments used in each calculation. 
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Figure C2 – Results from our weighted Bayesian Type II regression of heterotroph log response 
ratios against phototroph log response ratios for comparison with the unweighted model (Figure 3 
in the main text). Panels are (A) Algae-Clams, (B) Algae-Coral, (C) Algae/Cyanobacteria-Fungi, 
(D) Plant-AM Fungi, (E) Plant-EM Fungi, and (F) Plant-Bacteria. Shaded area represents the 95% 
Bayesian credible interval of the regression. 
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Figure C3 – Effect sizes plotted against total nitrogen and phosphorus enrichment magnitude. For 
each group, enrichment metrics are: (A) Algae-Clams: µM; (B) Algae-Coral: µM; (C) 
Algae/Cyanobacteria-Fungi: mg m-2; (D) Plant-AM Fungi: mg kg-1; (E) Plant-EM Fungi: mg kg-1 (F) 
Plant-Bacteria: mg m-2. Note that no measurements were available to examine the effect of daily 
phosphorus enrichment on lichen. 
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Figure C4 – Effect sizes plotted against total nitrogen and phosphorus enrichment magnitude. For 
each group, enrichment metrics are: (A) Algae-Clams: µM; (B) Algae-Coral: µM; (C) 
Algae/Cyanobacteria-Fungi: mg m-2; (D) Plant-AM Fungi: mg kg-1; (E) Plant-EM Fungi: mg kg-1 (F) 
Plant-Bacteria: mg m-2. Note that no measurements were available to examine the effect of daily 
phosphorus enrichment on lichen. 
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