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ABSTRACT OF THE DISSERTATION 

THE THERMODYNAMICS AND STATISTICAL MECHANICS OF

PROTEIN FOLDING 

by

Prem P. Chapagain 

Florida International University, 2005 

Miami, Florida 

Professor Bernard S. Gerstman, Major Professor 

The physics of self-organization and complexity is manifested on a variety of 

biological scales, from large ecosystems to the molecular level. Protein molecules exhibit 

characteristics of complex systems in terms of their structure, dynamics, and function. 

Proteins have the extraordinary ability to fold to a specific functional three-dimensional 

shape, starting from a random coil, in a biologically relevant time. How they accomplish 

this is one of the secrets of life. In this work, theoretical research into understanding this 

remarkable behavior is discussed. Thermodynamic and statistical mechanical tools are 

used in order to investigate the protein folding dynamics and stability. Theoretical 

analyses of the results from computer simulation of the dynamics of a four-helix bundle 

show that the excluded volume entropic effects are very important in protein dynamics 

and crucial for protein stability. The dramatic effects of changing the size of sidechains 

imply that a strategic placement of amino acid residues with a particular size may be an 

important consideration in protein engineering. Another investigation deals with 

modeling protein structural transitions as a phase transition. Using finite size scaling 

theory, the nature of unfolding transition of a four-helix bundle protein was investigated



and critical exponents for the transition were calculated for various hydrophobic strengths 

in the core. It is found that the order of the transition changes from first to higher order as 

the strength of the hydrophobic interaction in the core region is significantly increased. 

Finally, a detailed kinetic and thermodynamic analysis was carried out in a model two- 

helix bundle. The connection between the structural free-energy landscape and folding 

kinetics was quantified. I show how simple protein engineering, by changing the 

hydropathy of a small number of amino acids, can enhance protein folding by 

significantly changing the free energy landscape so that kinetic traps are removed. The 

results have general applicability in protein engineering as well as understanding the 

underlying physical mechanisms of protein folding.
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INTRODUCTION 

THE COMPLEX PHYSICS OF LIVING SYSTEMS

Sir Isaac Newton formulated the foundations of physics in the late 17th Century, 

but it was not until the latter half of the 20th Century that physicists began to understand 

biological systems in the manner that they had understood a variety of non-living systems 

over hundreds of years. Living systems have an extraordinary ability for a high level of 

self-organization. This maintenance of low entropy requires a level of complexity that is 

far above any other system. Complexity is a characteristic that physicists had little 

experience with. The self-organizing behavior of living systems is new physics.

The physics of self-organization and complexity is manifested on a variety of 

biological scales, from large ecosystems, down through individual organisms, to the 

molecular level. Protein molecules exhibit characteristics of complex systems in terms of 

their structure, dynamics, and function. They carry out a variety of functions, are 

flexible, and are self-organizing. They are also one of the simpler systems that display 

such complex behavior. Starting with Kendrew’s first determination of the three 

dimensional structure of a protein in 1958 [1], much experimental work has been done on 

the structure and dynamics of protein molecules. In this dissertation, I report on 

theoretical research that investigates and explains the complex behavior of proteins.

A fundamental understanding of a system requires knowledge of the constituents 

of the system, knowledge of all the relevant forces, and an understanding of how the 

constituents respond to the forces. Macroscopic objects are affected by just the 

gravitational force and electromagnetic force, which may manifest itself in a variety of



ways such as the normal force and tension. The response of the objects to these forces is 

described by Newton’s Laws of Classical Mechanics. Microscopic particles also feel the 

effects of nuclear forces, and the fundamental forces are recast as gravity, the strong 

force, and the electro-weak interaction. The response of microscopic particles to these 

forces is described by quantum mechanics. Relativity is required at high speeds or strong 

gravitational fields. Great progress has been made in the last 100 years in understanding 

the behavior of microscopic particles in a variety of systems. Electrons in conductors was 

an early triumph and our understanding of superconductivity has increased dramatically. 

Not so for living systems.

Biological physics was originally intended to apply the techniques of theoretical 

and experimental physics towards the understanding of living systems. However, the 

flow of ideas has also occurred in the other direction. Biology has opened up new fields 

of physics for the study of self-organization and complexity. The difficulty for physicists 

in making progress with biological systems arises from the inherent complexity of living 

systems. In order to self-organize and maintain low entropy, living systems must contain 

and process a tremendous amount of information. This requires a large number of 

different types of “particles” and a large number of distinct arrangements. This was 

discussed by Schrodinger in 1944 in his book “What is life?” [2]. The number of 

different types of constituents in living systems is larger than physicists are accustomed 

to working with. Electronic conduction in metals is determined by two types of 

constituents: electrons and positive ions, whereas proteins are composed of 20  different 

amino acids. The conduction electrons move in a periodic lattice arrangement of positive 

ions. The periodicity means that little information is needed to describe the position of all



the atoms of the system; you need to make measurements of the positions of only a few 

atoms. Living systems are aperiodic. The measurement of the position of a few amino 

acids in a protein will not allow you to predict the location of the positions of the other 

amino acids.

Physicists hope to find fundamental laws of life that will allow living systems to 

be understood more clearly. Quantitative descriptions of the underlying forces that 

control the behavior of living systems are not difficult since living systems are 

predominantly controlled by biochemical, inter-atomic electronic forces and the 

fundamental description of these forces is well known. However, the effects of these 

forces are difficult to predict in living systems because of the large number of different 

constituents and the aperiodic manner in which they are arranged. The information 

content required to describe living systems is not easily understood in terms of 

fundamental particles and fundamental forces. It is the arrangements of these particles 

that are complex.

The disciplines of physics that are most concerned with these matters are 

statistical mechanics and thermodynamics. These disciplines were created to understand 

multi-particle systems where all particles were identical, or only a few different species 

of particles were present. The number of different types of particles in living systems is 

an added complication. Fortunately, the increasing speed of computers allows for the 

study of more complex systems. Though the full complexity of even the simplest living 

system, or even a small protein, is still not possible to model, it is now possible to 

mathematically describe systems with many degrees of freedom and explore increasing 

levels of complexity. Along with theoretical and computational improvements,



experimental techniques are supplying more detailed information about the structure and 

dynamics of living systems.

Investigating the complex behavior of proteins requires extensive use of statistical 

mechanics and thermodynamics. The behavior of all systems is constrained by energy 

conservation which tells what behavior is possible. For complex systems, this is of little 

guidance because there are a huge number of possibilities. In this situation, the Second 

Law of Thermodynamics is much more valuable because it tells us what behavior is most 

probable. Physically and mathematically, this is explored through entropy. The Second 

Law states that the entropy of the Universe will be maximized, within the constraints 

imposed by the conservation laws. Determining the entropy of the Universe by counting 

its available states is a daunting task. Fortunately, the Universe can be viewed as a heat 

reservoir and changes of its entropy can be calculated thermodynamically without 

counting states. This allows us to focus on the statistical mechanics of counting the 

number of states of just our small system of interest. The statistical mechanical details of 

the entropy of our system of interest (protein molecules) and the entropy of the rest of the 

Universe can be combined through the concept of the free energy of our system of 

interest, which will be used extensively in this research.

Proteins are the fundamental building blocks of all living cells. They are the 

biological nano-machines found in all biological cells that carry out complex vital 

functions such as digesting food, fighting infections, transfer of electrons and energy, and 

the catalysis of crucial biochemical reactions. There are hundreds of thousands of 

different proteins found in living organisms. Each type has unique functions that maintain 

life. In order for a protein to carry out its unique functions it must take on a unique



configuration, called the native state. The large number of degrees of freedom available 

to a protein offers an astronomical number of possible configurations. In spite of this, 

proteins almost always fold to their native state. How they accomplish this is one of the 

secrets of life, and is known as the “Protein Folding Problem”. In this work, I discuss my 

theoretical research into understanding this remarkable behavior of a complex system.

The dissertation is organized as follows. Chapter I contains a brief review of 

protein structure and dynamics. I briefly describe the concepts of free energy and energy 

landscape and the application of such concepts in understanding protein folding 

dynamics. Methods for calculating various thermodynamic quantities are described in 

Chapter n. In Chapter HI, the computer lattice model and the simulation of the protein 

chain are described. My research on the effects of entropic excluded volume on protein 

unfolding is extensively discussed in Chapter IV. A model four-helix bundle is used and 

the effects of varying the size of amino acid side chains on the native state stability are 

investigated. In Chapter V, phase transition studies carried out in a model four-helix 

bundle are presented. Critical exponents and the Binder Cumulants are calculated in order 

to characterize the nature of the unfolding transition. Chapter VI discusses various 

aspects of protein engineering. Kinetic and thermodynamic analyses are carried out on a 

model two-helix bundle. A sequence is designed by strategic replacement of amino acid 

residues that changes the free-energy landscape so that the kinetic traps are removed and 

the folding is enhanced. Finally, in Chapter VII, the main results and findings from this 

research are summarized and directions for future research are discussed.



CHAPTER I

PROTEINS: STRUCTURE, DYNAMICS, AND ENERGY LANDSCAPE

1.1 Protein Structure

All types of proteins are composed from a set of only 20 different building blocks 

called amino acids. All amino acids consist of a central carbon atom (CJ that has four 

bonds to other atoms. Three of the four bonds are the same for all amino acids: a 

hydrogen atom (H), an amino group (-NH2), and a carboxyl group (-COOH). The only 

difference that distinguishes the 20  different types of amino acids is the group of atoms in 

the fourth position, called the side chain. All proteins are linear, unbranched chains 

composed of amino acid residues linked end to end by peptide bonds. A peptide bond 

connects the carbon atom of a carbonyl group (=CO) on one amino acid to the nitrogen 

atom of an amine group on the next amino acid. In forming the peptide bond, the 

carbonyl group loses an OH and the amine group loses an H. The OH and H join to form 

a water molecule. A peptide chain has a free amino group at the front end (N-terminus) 

and a free carboxyl group at the other end (C-terminus).

Protein chains can be tens or hundreds of amino acids long. The one-dimensional 

sequence of amino acids is labeled the primary structure of a protein. In the functional 

native state, the chain assumes a compact three-dimensional structure. The functional 

properties of proteins depend on their three-dimensional structures. These diverse and 

seemingly irregular but very specific folds have evolved through selection pressure to 

perform desired functions. However, there are regular features present in the protein 

structures. Protein structures can be classified in a hierarchical scheme in which a protein



molecule has a primary, secondary, and tertiary structure [3]. Multimeric proteins have 

yet another level of organization, referred to as the quaternary structure.

Segments of the peptide chain can form local regular structures, which are called 

secondary structures. Secondary structures provide local stability among groups of amino 

acids as well as promote global stability by allowing hydrophobic parts of the protein to 

be buried while hydrophilic parts, including the backbone chain itself, are exposed to the 

aqueous solvent. The two most common types of secondary structures are the a-helix and 

the p-strand. The a-helix consists of approximately 3.6 amino acid residues per turn with 

hydrogen bonds between the C=0 of residue i and the NH of residue i+4 so that the 

structure is stabilized by hydrogen bonding and dipole interactions, a-helices vary 

considerably in length in globular proteins, ranging from a single turn to over a dozen 

turns. An a-helix can, in principle, be either right-handed or left-handed depending on 

the screw direction of the chain. However, individual amino acids are chiral and all 

protein molecules are composed of amino acids of the same chirality, L stereoisomers, so 

that the a-helices are almost always right-handed. Some amino acids are found more 

often in a-helices than other amino acids and this implies that these amino acids have a 

structural preference. For example, alanine, glutamic acid, leucine, and methionine are 

good a-helix formers, while proline, glycine, tyrosine, and serine are very poor. The 

helix forming propensity of these amino acids also depends on their position along the 

chain [4].

The other major secondary protein structure is the p-sheet. In contrast to the a- 

helix, this structure is built up from a combination of several regions, known as P-strands, 

of the polypeptide chain, p-strands are aligned adjacent to each other such that hydrogen



bonds can form between C=0 groups of one p-strand and NH groups of adjacent p-strand 

and vice versa. The p-sheets thus formed can be in either parallel or antiparallel fashion. 

In parallel p-sheets, either the amino acids in the adjacent p-strands all run in same 

direction (amino to carboxy terminal) whereas in antiparallel p-sheets, the direction is 

alternated with amino to carboxy and carboxy to amino terminal.

Simple combinations of a few secondary structure elements, termed 

supersecondary structure or motifs, are frequently observed in protein molecules. Several 

motifs usually combine to form compact globular tertiary structures called domains. 

Domains are the simplest protein units that can carry out biological functions. For longer 

polypeptide chains these domains are the fundamental units of tertiary structure. The 

precise nature of the assembly of domains into larger proteins is crucial for the 

biomolecules to function. Large proteins comprise a number of relatively small domains, 

which are usually 100-250 residues long [5, 6 ]. Even though the combination of 

individual domains generates an enormous variety of proteins, the number of distinct 

domain folds is apparently limited to a few thousand [6 , 7]. This has led to development 

of systematic structural genomics projects so that at least one example of each kind of 

domain folds can be found in the Protein Data Bank [8 ,9].

Finally, some functioning biomolecules are complexes of multi-peptide chains 

and are called multimeric proteins. The peptide chains are held together by van der Waals 

interactions or salt bridges, as in the case of four myoglobin units comprising 

hemoglobin. This level of organization is usually referred to as quaternary structure. If 

the different peptide chains are identical, the subunits will have the same function and 

may act either independently of each other or cooperatively. For example, the allosteric



function of hemoglobin results from cooperative effects on oxygen-binding affinity when 

the subunits are arranged in their quaternary structure [10, 11]. This effect allows oxygen 

to be released from the molecule at venous oxygen pressure.

The first x-ray crystallographic structure of a globular protein, myoglobin, was 

reveled by Kendrew et al. [1] in 1958. Myoglobin (PDB entry lmbn) is a very compact 

protein consisting of mainly a-helices as displayed in Fig. 1.1. This was a hallmark effort 

that laid the foundation for an understanding of the connection between the structure and 

function of a protein. Computers, synchrotron radiation, NMR, and improved detectors 

have changed both the quality and quantity of the protein structure determination. To 

date, more than 30,000 structures have been deposited in the Protein Data Bank.

Fig. 1.1. Ribbon diagram of structure of myoglobin.



1.2 Protein Folding Dynamics

The question of how a given protein sequence efficiently and reliably folds to its 

specific native structure, out of an enormously large number of conformations, in a 

biologically relevant time, is known as the “Protein Folding Problem”. Understanding 

protein folding has been one of the most fascinating and challenging problems in science 

for decades and, despite the intense research in fields as diverse as physics, chemistry, 

computer science, and biology, the search for the general principles that govern the 

folding process still goes on. However, significant progress has been achieved both 

theoretically and experimentally [12-14], thanks to improved experimental techniques, 

advances in the theoretical understanding of complex systems, and the continual increase 

in computational power.

All proteins start as a one-dimensional chain when they are synthesized in 

ribosomes. In order to be able to carry out their biological function, however, each 

protein has to fold to a very specific compact three-dimensional structure called the 

“native” state. Though some proteins require assistance from chaperone molecules, under 

the appropriate physiological conditions, many unfolded, denatured proteins fold back to 

their native states on their own [15]. This implies that the information to fold to the native 

state is encoded in the primary sequence. This also suggests that once the correct 

Hamiltonian of the system is determined and solved, one can predict the native structure 

from first principles.

A critical aspect of The Protein Folding Problem involves time scales. How does 

folding occur in biologically relevant time scales of milliseconds? If we make an 

underestimation that each amino acid has only eight possible states arising from two



possible configurations for each of three degrees of freedom (rotational degrees of 

freedom ip, <p, and sidechain), then a typical protein made up of 100 amino acids would 

have 8 100 ~ 1090 possible conformations. Even with the assumption of an overly fast 

sampling rate of 10 '12s per conformation, it would still take ~ 1070 years to randomly find 

the native state, whereas the actual protein folding time is milliseconds. This is known as 

the Levinthal paradox, which suggests that there exist specific pathways for folding, 

rather than a random search for the native state throughout the conformation space [16]. 

An efficient path through the configuration space implies feedback amongst the various 

interactions, which act in a non-linear fashion in order to prevent misdirected wanderings 

in the multidimensional configuration space.

Different models have been proposed to reconcile the Levinthal paradox and 

explain the mechanisms that guide protein folding. In the nucleation-growth model [17], 

one or more critical kinetic structural nuclei are formed in the rate-limiting step and the 

rest of the structure grows around these nuclei. This model suggests that tertiary structure 

forms as an immediate consequence of the formation of secondary structure. In the 

diffusion-collision or framework model [18, 19], local secondary structure elements are 

first formed, independent of tertiary structure, followed by the docking of those elements 

to form tertiary interactions in the rate-limiting step. The model is supported by 

experimental findings [2 0 ] that secondary structure elements can be partially folded in the 

absence of tertiary interactions. Another model, hydrophobic collapse model [21, 22], 

considers the hydrophobic effect to be the driving force for folding. First, hydrophobic 

residues push out water in a nonspecific manner to form a more compact collapsed 

structure, and native protein conformation forms by rearrangement of the partially



collapsed structure. The collapsed state is the early step in the folding and is called a 

molten globule. Experiments have shown [23] that many large proteins adopt a molten 

globule state under mild denaturing conditions such as varying pH, supporting the 

hydrophobic collapse model. The framework and hydrophobic collapse models suggest 

the formation of kinetic intermediates that the nucleation model does not. The nucleation- 

condensation model [24, 25] incorporates the transition state and suggests that an 

extended folding nucleus is formed and consolidated through the transition state and the 

elements of secondary structures are formed concomitantly with tertiary structure. The 

nucleation-condensation model has been supported by experimental evidence from 

several small proteins. However, some proteins such as SH3, fold in an even higher 

hierarchical way where part of the structure forms early on, whereas other parts remain 

unstructured until the last steps of the folding reaction [26, 27]. Bamase folds with yet 

another mechanism, first to an intermediate, where two folding modules are 

independently formed according to a nucleation condensation mechanism [28, 29], and 

subsequently the two modules coalesce according to the framework mechanism to give 

the final native structure.

The nucleation-condensation might be understood as a unifying mechanism 

applicable in many proteins [30], where its extreme manifestation is the framework 

model when secondary structure becomes overstabilized or the hydrophobic collapse 

model when tertiary structure is overstabilized [31]. As can be seen from the number of 

different proposals just described, protein folding is not easily explained in terms of a 

single mechanism.



A more general theoretical framework of protein folding pathways has emerged 

more recently [32]. This describes the protein folding pathways in terms of funnel shaped 

free energy landscapes [33, 34] where many paths exist from the unfolded to the native 

state. Each of the above mechanisms may be possible. The free energy landscape has 

slopes with varying degrees of roughness and the protein molecule may follow the 

steepest path at each point. Alternatively, a protein may follow a slower path passing 

through several local minima and transition states in order to avoid a trap at the bottom of 

a steep pathway. The roughness of the slopes of the energy landscapes may present local 

minima that represent misfolded configurations, which act as kinetic traps and make the 

folding process less efficient. This phenomenon is known as frustration. The concept of 

free energy and energy landscape will be discussed in the next section.

Despite steadily increasing computational power, proteins are still too complex to 

simulate folding by following the behavior of all the atoms. However, simpler, reduced 

lattice models and Monte Carlo methods require less computer power and have been 

extremely useful for exploring protein folding conformational space, making it possible 

to investigate phenomena that are intractable experimentally. In this dissertation, a lattice 

computer model, discussed in a later chapter, is used to investigate various aspects of 

protein folding dynamics such as thermodynamics, phase transitions, and protein design.

13  Free Energy and Energy Landscape

Energy conservation determines the possible changes in a system. For a multi- 

particle system, the constraint of energy conservation will still allow a huge number of 

possible outcomes. The maximization of the entropy of the universe as required by the



Second Law of Thermodynamics must be used to determine which outcome is most 

likely. If we can enumerate the detailed nature of every energy state of the universe, we 

could then use the Second Law of Thermodynamics to predict the probable evolution of 

the universe at each instant of time. Enumerating the details of the universe is a daunting 

task. Fortunately, we are interested only in the time evolution of the structure of a protein 

molecule. We will try to enumerate the detailed structure of the states of a protein 

molecule and predict their probable evolution. In order to make use of the Second Law of 

Thermodynamics, we must take into account the entropy of the molecule as well as the 

entropy of the rest of the universe. The concept of free energy allows us to do both, while 

examining the details only of the molecule.

Free energy is one of the most important thermodynamic quantities. The term 

“free” comes from the fact that it is the amount of energy of a system that is available for 

work. Most of the physical properties of biochemical reactions depend directly or 

indirectly on the free energy of the system. For example, rate constants, binding 

constants, dissociation constants, and conformational preferences are all directly related 

to the difference in free energy between alternate states. Free energy is a statistical 

property, and like entropy, can be seen as a measure of the probability of finding a system 

in a given state, and depends on the extent of the phase space accessible to the system.

Consider a system, in our case a protein molecule, at constant temperature and 

pressure. In any spontaneous process, the combined entropy of the system and rest of the 

universe (reservoir) is given as

M toto/=AS + AS' (1.1)

where A S and A S ' are the entropy changes of the protein molecule and the surrounding



heat reservoir, respectively. If a small amount of heat, H, is absorbed by the protein 

molecule from the surrounding, then the entropy change of the surrounding heat reservoir 

is given simply asA5'= -HIT. Equation (1.1) becomes

A S - - A S - j  (1.2)

Conservation of energy is equally satisfied whether the energy H  resides in the molecule 

or in the heat reservoir, and does not favor either one.

The Second Law of Thermodynamics states that the most probable (equilibrium) 

distribution is the one in which AStotat is maximized. This allows us to determine how 

much H  is likely to be transferred from the reservoir to the molecule. We rewrite Eq. 

(1.2) as

- T A S ^ - H - T A S  (1.3)

The Gibb’s free energy of a system such as a protein molecule is defined as

G ■ -TStotal - H - T S  (1.4)

where H  is the enthalpy and S is the entropy of the system, and T is the temperature of the 

heat reservoir. When the enthalpic term consists of only the internal energy E instead of 

H  (=E+PV)y the free energy is given as F = E -  TS, where F is called the Helmohltz’s 

free energy. Since G=-TSTotah maximizing STotal means minimizing G of the protein chain.

If a system whose external parameters except its volume are kept fixed is in 

thermal contact with a heat reservoir, the stable equilibrium situation is characterized by 

the condition of minimum free energy. Statistical mechanically, this can be quantified in 

terms of the number of ways that the Universe can arrange itself. The statistical physics 

definition of entropy is



where ^ U S x lO 23 J/K is Boltzmann’s constant and Qtotal is the number of ways that the 

Universe can arrange itself. Qtoto/=£2£2’ where Q is the number of accessible states of the 

protein and Q ’ is the number of accessible states of the heat reservoir representing the 

rest of the Universe. The probability, P{H), for the protein molecule to absorb a specific 

value of H  from the reservoir is proportional to Qtotal = Qtotal (H) for that transfer of H. 

From Eq. (1.4) and Eq. (1.5), we see that

An expression similar to Eq. (1.7) can be written for the probability of finding our system 

with any specific value of any parameter y, i.e. P(y)« e G(y)/KT. This type of probability 

expression is extremely useful if the functional dependence of G on y is known.

is a minimum. However, G(H) may not be a monotonic function of H. The state of the 

system can be changed by transferring H  from the reservoir to the molecule. This will 

lower the entropy of the reservoir, but raise the entropy of the molecule. The amount by 

which the entropy of the reservoir is lowered is given by -HIT. The amount by which the 

entropy of the molecule is raised when you transfer H  depends on the details of the 

molecular structure, AS=AS(H)=KlnQf - KlnQ{ . Thus, precisely how much H  should be 

transferred to maximize Stotal (minimize G), depends on the detailed microscopic states of 

the molecule before and after H  is transferred and T of the reservoir. This balancing

(1.6)

Equation (6) then gives

P(H) oze~GiH)lkT (1.7)

Equation (1.7) shows that the most probable situation for the Universe is when G



determines how much H  will flow into the molecule at a given T.

The free energy G is defined so that the entropy of the Universe is maximized and 

equilibrium occurs when G is a minimum. This has the advantage of appearing analogous 

to the simple physical equilibrium situation of a ball rolling downhill to a potential 

energy minimum as a result of the gravitational force. The additional advantage of G is 

that it contains parameters H  and S that depend only on the details of our small system of 

interest. We would like to understand the details of our protein molecule well enough to 

be able to use Eq. (1.5) to calculate the entropy of the molecule. In contrast, the heat 

reservoir has far too many degrees of freedom to possibly use Eq. (1.5). Fortunately, we 

are not interested in the detailed structure of the heat reservoir. The use of G requires that 

the only information needed about the reservoir is its temperature T, which is easy to 

measure. Thus, G allows us to determine how to maximize the entropy of the Universe by 

concentrating on details only of our small system of interest.

Fig. 1.2. (a) Free energy profile of a protein folding. The landscape is rugged as shown by 

the dashed curve, (b) Funnel shaped energy landscape.



Biological systems have a microscopic arrangement of states, Q(H), that allow 

them to self-organize and maintain low entropy. Under proper biochemical conditions, 

protein folding that lowers S can occur spontaneously, which means that the more 

organized, low entropy folded state of the molecule is more probable. However, the 

lowering of the protein’s entropy can only occur if the entropy of the surrounding 

environment (water) is increased by as much, or more. The entropy of the surrounding 

water can be increased through two processes. As the protein organizes and forms bonds, 

it can give off heat (enthalpy) to the water, or, as the protein folds, water molecules that 

were organized in clathrates around amino acids can become free to enter the bulk water, 

as occurs when hydrophobic amino acid sidechains come into contact with each other. 

Changes in free energy of the molecule compare the change in entropy of the molecule to 

the change in entropy of the surroundings. Protein structural transitions, such as from a 

random coil to a globular state, occur spontaneously if the free energy decreases.

A simple two-state first order transition has a simple free energy profile as a 

function of some parameter, called the reaction co-ordinate. In the case of protein folding 

dynamics, this parameter can be the radius of gyration, end-to-end distance, number of 

native contacts, or helicity. A representative free energy profile for such a system is 

shown in Fig. 1.2(a). A free energy barrier, known as the transition state, separates the 

free energy minima of the unfolded and folded configurations. The difference between 

the entropy of the protein in its folded versus its unfolded configuration has a relatively 

small dependence on temperature because it is a relatively small system. However, the 

change in entropy of the heat reservoir upon folding of the protein depends strongly on T 

because of the H  involved, which can be spread over the large number of degrees of



freedom of the reservoir. Therefore, the determination of whether the unfolded or folded 

protein structure is the global minimum depends on temperature.

At low temperatures, the combined entropy is maximized and the free energy 

minimized when the protein is in its native folded state. Though the protein molecule’s 

native state has low entropy, the combined entropy is maximized because the reservoir’s 

entropy is high. This trade-off at low temperatures can be understood in several ways. 

Equations (1.1) and (1.2) show that at low T, any H  given to the reservoir will cause a 

huge increase in the reservoir’s entropy since AS’=H/T. The folded state of the protein 

involves many bonds that release H to the reservoir and greatly increase its S’. 

Analogously, Eq. (1.4) shows that at low T, the S of the protein loses importance in 

determining G. The H of the protein is then the dominating factor, and smaller H results 

in a deeper minimum of G. The two viewpoints are equivalent. The more fundamental 

understanding comes from Eq. (1.2), but the free energy explanation is more useful for 

calculating probabilities and thermodynamic parameters.

At high temperatures, the reservoir has such large entropy that the flow of H 

available from the protein has a very small effect on S’. In this case, the S of the protein 

plays a dominant role in determining STotal in Eq. (1.2), or Gmin from Eq. (1.4), and the 

higher 5, unfolded protein configuration is more probable and is the global free energy 

minimum. At an in-between temperature, Tc, the effect of H  in changing S ’ and the 

difference in S between the protein’s folded and unfolded configurations are equal, i.e. 

AS’(folded,unfolded)= H/Tc = A S (folded,unfolded). The entropy of the Universe, or 

equivalently, the G of the protein, is the same whether H  is in the protein (unfolded) or in



the heat reservoir (folded protein); Sroto/(folded)= Sroto/(unfolded) -> G(folded)= 

G(unfolded). This Tc is known as the transition temperature, or the critical temperature.

The complex structure and dynamics of the protein molecule are a result of the 

energy landscape of attractors and basins. Simple systems have a simple low-dimensional 

energy landscape having a unique ground state minimum and few excited state local 

minima, whereas complex systems are characterized by complicated multidimensional 

and rugged energy landscapes with many humps and bumps. The folding scenario of a 

protein molecule is often understood in terms of a funnel-like energy landscape [33-36] 

as shown in Fig. 1.2(b). The higher-energy unfolded state has high entropy with many 

higher-energy configurations. As the folding proceeds, the conformational space is 

narrowed due to collapse of the chain into a molten globule and/or towards the native 

state. The low energy conformations are more and more native-like.



CHAPTER II

CALCULATION OF STATISTICAL MECHANICAL AND THERMODYNAMIC

QUANTITIES

Deep insights into the dynamics of a system, such as a protein molecule, can be 

obtained from various thermodynamic and statistical mechanical quantities. The 

dynamics of the system are determined by various interaction energies along with 

entropic considerations. In this chapter, I give a brief introduction to some fundamental 

statistical mechanical and thermodynamic quantities and explain how such quantities are 

calculated from a time series of data about a system. In the following chapter, the 

computer model and the interaction Hamiltonian that is used to simulate protein 

dynamics and generate realistic simulated data will be discussed.

2.1 Free Energy

The free energy profile discussed in Chapter 1.3 can be calculated as a function of 

one or more protein structural parameters such as the radius of gyration (Rg), fraction of 

helical content (q), fraction of native tertiary contacts (Q), or end-to-end distance of the 

peptide (dee). At equilibrium, the probability that the system has a value y for a parameter

_  F ( v ) l  kT — F ( y ) /k Tis proportional to e as discussed in the previous chapter, i.e. P(y)=C(T)e

Then the Helmholtz’s free energy of the system as a function of y can be expressed as

F(y\T) = -kT\nP(y\T) + c(T) (2.1)

where P{y;T) is the probability for the configuration to have the parameter y at 

temperature T, and c(T)=kT InC(T) is a normalization factor that depends on T but is



independent of y. Since the dynamics of the system depend on relative values of F, we set 

c(7)s0 when comparing free energies for different y at the same 7\ giving 

F { y J )— kT\*P{y\T).

Because of its complexity, it is usually important to describe protein structure in 

terms of two or more structural parameters. The quantities in Eq. (2.1) would then be 

expressed as F(ylfy2;T) and P{yI,y2;T). The free energy profiles are then described as 

contour maps or landscapes, with the height of the landscape representing F. For 

example, if the probability of forming a peptide configuration with specific values for the 

fraction of native tertiary contacts Q and end-to-end distance dee is P(Q,dee;T), then the 

Helmholtz’s free energy is calculated as

F(Q,dee'J )  = -kT  In P(Q, dee;T) (2.2)

Free energy profiles at different temperatures can provide information on the nature of 

the protein folding kinetics and the stability of the protein. In many places in this 

dissertation, the T dependence will be implicit and quantities will be written without 

explicit T dependence; e.g. F(Q,dee;T)-^F{Q,dee).

2.2 Heat Capacity

The heat capacity of a system is defined as

where jc is a thermodynamic parameter such as P or V, that is kept constant during the 

process. This heat capacity is a valuable quantity because it can give important statistical



mechanical information about the microscopic states of the system, and is straightforward 

to measure experimentally using techniques such as differential scanning calorimetry.

Under conditions of constant volume, the heat dQ added to the system goes 

entirely to increase the internal energy of the system i.e. dQ = dE + pdVreduces 

to dQ = dE , so that

C -
/ ,t;\ dE
s dT ,

(2.4)

Therefore, measurements of Cv at several T supply information on the microscopic 

dependence E=E{T). The heat capacity at constant pressure is not as straightforward to 

interpret. At constant pressure, the addition of heat causes the volume to expand and the 

system performs mechanical work. Thus, for the same dQ, there is a smaller increase in 

internal energy dE = dQ -pdV . Since dT  depends on dE, the same dQ will cause a 

smaller dT at constant P than at constant V. Therefore, from Eq. (2.4), the heat capacity at 

constant pressure (Cp) is greater than the heat capacity at constant volume. The difference 

between Cp and Cv depends on the fraction of energy that is used to perform work, and at 

a given temperature can be expressed in terms of the isothermal compressibility, k, and 

volume expansion coefficient, a,

Cp - C v = VT—  (2.5)
K*

where V and T are the volume and temperature of the system respectively.

If a system is compact and undergoes very small changes in volume, the 

difference in Eq. (2.5) is small and the ratio (C/Cv =y) approaches 1. Experimental 

measurements of heat capacity in protein unfolding are earned out at constant pressure.



However, the folded state of a protein and the globular cluster unfolded configuration are 

both compact with similar volumes. The unfolded random coil configuration is not 

compact, but it is hard to define a volume for this configuration since it is effectively one­

dimensional. The spacing between the amino acids along the chain is the same as in the 

compact configurations, but the amino acids undergo more “sideways” fluctuations in the 

random coil. Though the approximation of constant volume is not great, the heat capacity 

at constant volume is used frequently in theoretical studies of protein folding because it 

can be readily calculated from energy fluctuations, which allows comparison with 

experimental results.

In this work, the fluctuation in the total energy of the protein at temperature T is 

used to calculate the heat capacity at constant volume. The fluctuations in the total energy 

is defined by the dispersion relation [37]:

(AE f  mE1- E 1 (2.6)

Using the definition of the partition function

Z - ^ V ' ’*' (2.7)

where i is the sum over all the microscopic states of the system, we have

/ \
d

<?lnZ 1 dZ 1
e-m,

- 4dp ZdP Z dp Z * f  dp Z * f \  dp

The last term in Eq. (2.8) requires especial attention. The energy levels of the 

system, £,, depend directly on V but do not depend directly on p (=l/kT). The last term



dE dE dVcan be expanded to — L = — L— . If the energy fluctuation occur at constant volume, 
dfi dV dp

dV=0, then dE(/dp =0. In this case, Eq. (2.7) reduces to

(2.9)

A similar derivation gives

E2 = 1 d2Z d f \ dz' 11 ____ (dz\
Z dp2 dp KZdPt z 2

2 —
= - ™  + E 

dp
(2.10)

Therefore,

(A£ )2 = E2 - E 2 = - —  
dp

(2.11)

where the volume V is kept constant in taking the derivative. Substituting T=\/kp , and 

using Eq. (2.5), this becomes

(AEY —  

Thus, the heat capacity is given as

C -

dE

\*T /

E 2- E 2

—  =  k t 1 dE '' -  kT C„ (2 . 12 )

k r
(2.13)

For convenience, the following expression is used to calculate the heat capacity at 

constant volume when T is given in the same units as E (e.g. T-^RT, Kcal/mol)

a  = (2.14)

The averages of E and E2 can be directly calculated from the energy time series in 

thermal equilibrium at temperature T. The reliability of the result depends on how well 

the energy data represents the actual phase space of the system. To ensure ergodicity and



generate time series of data that are canonically distributed, a computer model is used 

that has structural moves that allows the chain to reach any configuration from any other 

configuration, thus spanning all of structure space. To ensure a canonical distribution, the 

computer model used in this work incorporates a Metropolis test within a Monte Carlo 

algorithm. The details of the computer will be discussed in a later chapter.

The temperature dependence of the heat capacity can offer important insight into 

the microscopic behavior of the system, such as the extent of cooperativity 

(communication) throughout the peptide chain while folding or unfolding. A first-order­

like protein folding transition (all-or-nothing in terms of the global structure) is 

characterized by a sharp peak in the heat capacity curve as a function of temperature. The 

thermal averages of Eq. (2.14) at a given simulation temperature can be directly 

computed by averaging a time series of energies. Plotting the temperature dependence of 

Cv requires performing simulations at different temperatures. This can be a very time 

consuming process because many independent simulations are required at each 

temperature to get reliable thermal averages. Since a single simulation of a long chain can 

take hours, 50 simulations at each of 10 different temperatures might take weeks to 

perform. At certain temperatures, the simulations may require frustratingly longer times 

to reach thermal equilibrium. This happens near phase transition points and the 

phenomenon is known as critical slowing down. Thus, it is computationally difficult to 

get a smooth temperature dependence curve, especially near the transition temperature. 

Fortunately, the canonical distribution of the conformations generated at a single 

temperature contains implicit information of the system’s behavior at other temperatures. 

The histogram technique [38, 39] takes advantage of this fact and allows us to obtain the



temperature dependence of thermal averages for a range of temperatures from the

trajectory simulated at a single temperature. The technique is very useful in lattice model

simulations [40]. A brief description of the technique is given below.

2.3 The Histogram Technique

If the energy of each possible configuration of a system is known, Eq. (2.14) can 

be used to calculate Cv at any temperature. The averages in Eq. (2.14) are calculated as

and E2 (2.15)
Z  i I

where the summations i is over every possible configuration of the system. Equivalently, 

these averages can be performed over the possible energy levels of the system, Er, if the 

degeneracy nr of each energy level is known, i.e. Eqs. (2.15) can be rewritten as

and = ^ nrEy m' (2.i6)
Z r Z r

These averages require knowledge of the energy of every possible configuration of the 

system. We investigate a peptide chain that is dozens of amino acids long, moving on a 

three dimensional lattice. The number of possible configurations is much too large to 

enumerate directly. Fortunately, the averages needed for Cv can be calculated at many 

different temperatures from sufficient data at a single temperature using the histogram 

technique. The histogram technique allows us to use a time series of data at one

temperature to determine all nr

Consider a simulation performed at simulation temperature T=TS, which generates 

a time; series of configurations which has a canonical probability distribution in which



each configuration i appears with a frequency proportional to the Boltzmann factor,

*~E / hTe~ ' J , and each energy Er appears with a frequency proportional to the product of the 

Boltzmann factor times the number of configurations nr with that energy, nre~Eri lkTs. In 

order for the data from the simulation to reflect the equilibrium canonical distribution, the 

simulation model must allow any configuration to be reached from any other 

configuration, the probability for making structural transitions must be given by the 

Boltzmann factor, and the simulation must be run long enough for the system to sample 

all of its possible structures. As we explain in the later chapter describing the computer 

model we used, all of these conditions are fulfilled. If the simulation generates 

configurations according to the Boltzmann equilibrium probability distribution, a 

histogram h(Er;TJ of the frequency of appearance of a given energy at a single 

temperature Ts provides an estimate for the probability of appearance of that energy when 

the system is in equilibrium at Ts

P { E  .T ) = h ( ^  = nr(Er)e-Ê  (2 17)
r’ 5 N Z(TS)

where h(Er;Ts) is the number of times in the time series that a configuration with E=Er

appears, N  is the total number of configurations sampled in the time series, nJ[Er) is the

degeneracy (density of states) of configurations for Er, and Z(TS) = ^  nr(Er)e ErlkTs is the

partition function at Ts.

Using Eq. (2.17), from the histogram h(Er;TJ, we can calculate the density of

states nJ[Er):

nr(Er) - ^ p -h (E / ,T J e E-'tT- (2.18)



At any other temperature, the equilibrium canonical probability for the system to be 

found with energy Er is given by the same expression

Pr (E ; T) = h{Er 'T) _ n' ( Er) e-BrltT (2 . 19)
N Z(T)

In comparing Eq. (2.17) at Ts with the general expression of Eq. (2.19), valid at any T, the 

Boltzmann factor and the partition functions will differ at different temperatures. 

However, if the volume of the system remains the same, then nJ(Er) will remain the same 

at all temperatures. This constancy of nj[Er) allows us to get Pj(Er;T) for any Er at any T 

from Pj(Er;Ts) obtained from the histogram h(Er;TJ at a single temperature Ts. This is 

shown as follows.

From Eq. (2.18), we have

. T \ = h(Er',T) = nr(Er) ^ _ E r ikT nr(Er)e'ErlkT
N  '  Z(D ~ 2 rnr(Er)e-E' n

Substituting Eq. (2.18) for n„ we get

? ^ - h ( E r\Ts)eE' lkr' e E' lkr

y  ^ - h ( E r\Ts)eE' lkT'e~E' lkT

^ Q h { E r\Ts)eE' lkr‘e E' lkT
N ___________

Z{TS)
N

^ rh(Er;Ts)eE' ,kT’e-E'- E r IkT

Thus,

k r. T

Pr(E,;T)- - h(E''T,)e ^  (2.20)

' 2 h ( E r - J l ) e l l T - T



Therefore, for any T, Pj[Er;T) can be calculated from the histogram generated at a 

single simulation temperature Ts. With Eq. (2.20) for P/Er;T), the histogram obtained at a 

single temperature Ts allows the calculation of the thermal average of any quantity Q at 

any temperature: Q(T) = ^ Q(Er)P(Er,T). In terms of h(Er;TJ, the thermal average can

be written as

Thus, knowledge of the energy of every configuration in order to calculate Z is not 

required for calculating q . The histogram method greatly reduces the computational time 

needed to determine the temperature dependence of quantities such as Cv and makes it 

easier to locate peaks. Also, simulations run very close to a transition temperature can

transition peak with simulations at many closely spaced temperatures. The histogram 

technique allows careful, high resolution mapping of the transition temperature region by 

running simulations at a single, nearby temperature and allows an opportunity for 

studying critical behavior.

This technique can be used for calculating the heat capacity as a function of 

temperature from a long Monte Carlo run at a single temperature using Eq. (2.16) and Eq. 

(2.21). This technique can also be used to calculate the fourth order cumulants that are 

useful in finite size scaling and phase transition studies (see Chapter V), which require

2 4the temperature dependence of E  and E .

(2 .2 1 )

take an extremely long time due to critical slowing, making it impractical to map out the



Ideally, it would be nice to have knowledge of the partition function Z(TS). The 

definition in Eq. (2.7) requires knowledge of the energy of every possible configuration, 

an impossible task for our model. Fortunately, Eq. (2.17) shows that Z can be calculated 

if the degeneracy riJEJ of at least one energy level E0, such as the native state energy 

level, is known:

Nn (E )e~EolkTl
z c q — i : ] T , (2 .22)

h(E0’T,)

With knowledge of the partition function, a complete density of states nJ[Er) for all 

energy levels r can be computed from Eq. (2.17). The model used in this research has 

enough structural degrees of freedom (3-d, sidechains) that the precise degeneracy of the 

native state energy level cannot be easily counted and this prevents the calculation of the 

partition function.

A serious limitation of the histogram technique is that it is valid only over a 

temperature range where the phase space can be properly sampled; i.e. fully covered, and 

with probabilities proportional to the Boltzmann factor. Getting the correct probability 

ratios requires multiple visits to many points in structural phase space, which requires 

long simulations. The simulation at any given temperature samples only a part of phase 

space and thus the density of states will be incorrect for regions not sampled properly. In 

order to get an appropriate sampling, the temperature should be chosen so that the 

trajectory visits all significant regions of the phase space. In this work, a simulation 

temperature is chosen that is close to the transition temperature so that it properly 

samples both the folded and unfolded regions.



CHAPTER in

COMPUTER MODEL FOR SIMULATING PROTEIN DYNAMICS

As explained in the previous chapter, a variety of important thermodynamic and 

statistical mechanical parameters can be calculated from a time series of data reflecting 

the dynamics of a protein. This data can be from experimental measurements or computer 

simulations, known as numerical experiments. The advantage of computer simulations is 

that numerical data can be obtained with high precision for a wide range of physical 

quantities. This allows the calculation of a variety of parameters that provide 

understanding of the underlying dynamics. However, in order for these calculated values 

to provide insight into the physics of actual proteins, the simulated data must be obtained 

from a computer model that realistically simulates protein behavior. There are 

fundamental considerations that must be fulfilled in simulating any system. The 

equilibrium results of the computer model must generate canonical ensembles in which 

the probability of finding the system in a specific configuration is given by the 

Boltzmann factor. I now describe the computer model used in the present work and 

explain the features that assure that his condition is fulfilled in a way that realistically 

simulates the folding dynamics of proteins.

3.1 Lattice Model and Interaction Hamiltonian

The large number of degrees of freedom and the competing free energy terms in a 

protein produce a complicated energy landscape. In order to investigate the effects of the 

large number of different peptide motions and interactions, I use a computer lattice model



to simulate the dynamics of proteins. The model used in the present study is based upon a 

lattice model developed by Skolnick and Kolinski [41]. The model has been shown to be 

effective at representing protein secondary and tertiary structure and associated structural 

transitions [41-45].

The model is a compromise between detailed treatments that include most atoms 

in a short chain [46-50] and models used to study longer chains, but with amino acid 

residues represented with very little detail [22, 51-54]. The models that have full 

representation of atoms are computationally limited and are useful only for the shorter 

chain length scales. Full atom simulation for longer peptide dynamics is still not feasible 

with present day computing power. Even though various interatomic forces are 

reasonably well known, the complicated dependencies on distance and details of multi­

body effects are not fully known. Small uncertainties in these details can build-up for 

long chains and long simulation times. On the other hand, the minimalist models 

represent residues as just a single lattice site with no internal structure. They afford the 

advantage of allowing the investigation of long chains and for long times. The 

disadvantage is that without any internal structure or degrees of freedom for amino acids, 

important physics may be missed, especially entropic considerations involving 

sidechains. The model that I use allows chains long enough to form the tertiary structure 

of a four-helix bundle but also includes some structure and degrees of freedom for the 

side chains.



3.1.1 Lattice Modeling of Protein Chain Structure

The underlying lattice is a simple cubic lattice. An amino acid residue occupies an 

active lattice site for its backbone (C-Ca-N) and another active lattice site for the 

sidechain that is diagonally across a cube (±1, ±1, ±1) from its backbone. The orientation 

of the sidechain with respect to its backbone can vary, but is always constrained so that it 

gives the Ca left handed chirality, as is true with real amino acids. Backbones that are 

adjacent in the protein’s primary sequence and connected by peptide bonds that are 

constrained to be connected on the lattice by a vector that is a permutation of (±2 , ±1, 0 ). 

This constraint in the adjacent backbone-to-backbone distance of V5 represents a 

characteristic a-carbon-to-a-carbon distance 3.785 A [55]. This connectivity has been 

found to allow actual secondary structures like a-helices and {3-strands and tertiary 

structures such as a four-helix bundle and an a-p bundle to be effectively represented on 

the lattice [41]. By clever choices of interactions, these two degrees of freedom 

(backbone and sidechain constraints) may be sufficient to simulate protein dynamics that 

are realistic enough for statistical dynamical investigations.

In addition to a central point as the active lattice site, the backbone of a residue 

“occupies” the six nearest neighbor lattice sites, for a total of seven lattice points. 

Interaction energies between backbones are determined by the distance between the 

central, active site of each backbone. The other six occupied lattice points for each 

backbone are non-active, “virtual” backbone sites that act only to give thickness to the 

backbone and define a minimal excluded volume for the backbone. Two different amino 

acids cannot both occupy the same lattice point with either active or virtual points. The 

side chain of a residue occupies a sidechain active site and an additional three virtual



lattice points, filling out a quadrant of the lattice with respect to the backbone. The 11 

points occupied by a residue are shown in Fig. 3.1(a), and the backbone active site and 

the sidechain active site are highlighted. Interactions between sidechains are determined 

by the distance between the active points of each sidechain. The other three sidechain 

points serve to exclude volume. If desired in the model, a residue can be chosen to be 

labeled as “ inert,” in which case it has no sidechain and occupies only the seven lattice 

points of the backbone. This topic will be discussed in more detail later in Chapter IV.

The shape (configuration) of the chain is determined by the way it bends 

(conforms) at each residue as shown in Fig. 3.1(b). The backbone conformation of the ith 

residue depends on both the distance between the i - l th and i+ 1th active sites, and their 

orientation with respect to i. In real proteins, the electronic orbitals of the C and N atoms 

result in bonds that do not permit the angle made by three consecutive residues to be 

either too sharp or completely straight. In order to simulate these constraints, we do not 

permit configurations that place residues i— 1 and i+ 1 with a separation distance r closer 

than r= ^ 6  or further apart than r=Vl8 .

The cubic lattice discretizes the allowed values of r. The (210) constraint along 

with the constraint of V6^r^V 18 restricts the possible squares of distance between i— 1 and 

i+1 to seven values: r2 = 6 , 8 , 10, 12, 14, 16, and 18. This gives a one-to-one mapping 

between squares of distances and i— 1, i, i+ 1 bond angles as shown in Fig. 3.2. We 

represent the various bond angles as R-states of the residues. For example, if residues i—1 

and i+ 1 are separated by a distance of r=V6 , residue i is considered to be in fl-state 6 , or 

more specifically, R6. As shown in Fig 3.2, for some values of r, there may be multiple 

ways (degeneracy) of arranging i—1 and i+l.  Though there are only seven possible r



values, the degeneracy of some of them along with the (210) connection constraint and 

cubic lattice allow a total of 18 possible configurations connecting residue i to i- 1 and 

i'+I. These 18 vectors are: /?6a,/?6b, /?6c, R6d, /?8a, RSb, /?10a, /?10b, R\2a, R \2b, /?14a, 

R \4 b , /?14c, R 14d, /?16a, /?18a, /?18b, /? 18c. With this scheme, a right-handed a-helix 

can be nicely formed with all the helical residues in R \2b  states, whereas a left-handed 

helix, not naturally occurring, would be composed of residues in /?12a states. The 

discreteness of the lattice requires each turn of a helix to consist of 4 (integer) residues as 

opposed to 3.6 per turn in real a-helices.

(a)

(b)

Fig. 3.1. (a) The lattice sites occupied by a residue. The dark circles represent the 

backbone occupied sites and the light circles represent the sidechain occupied sites. 

Circles for the active sites (interaction centers) are drawn bigger, (b) A peptide chain is 

laid out by combining backbone residues constrained with the (210) vector connectivity.



Fig. 3.2. Various bond angles (R-states) corresponding to r2-  6, 8, 10, 12, 14, 16, and 18 

respectively. The darker lines indicate the initial orientation of the pair of bonds, and the 

lighter lines are the possible single residue flips.

In the simulations, the chain is given an initial configuration by assigning an 

initial R-state to each residue. The program checks to be certain that the chain is non self- 

intersecting, i.e. that two residues do not attempt to occupy the same lattice site. If such 

an occupancy conflict occurs, the program rejects the initial layout and will not run, 

notifies the user to the two or more residues that are in conflict, and requires that a new 

initial layout be used as input. (This rejection of occupancy-conflicts can be disabled in 

the program in order to generate interesting, but non-physical shapes). When the program



is given a good initial sequence of /^-states with no occupancy conflicts, a Monte Carlo- 

Metropolis algorithm described later is used to simulate the protein dynamics. The Monte 

Carlo-Metropolis algorithm compares energies of different configurations. I now describe 

the potential energy function employed for calculating the energy of the chain 

configuration. The interactions in the energy function are a crucial aspect of adequately 

realistic simulations of protein folding dynamics.

3.1.2 Interaction Hamiltonian

In the folding process, the free energy, F=E-TS, is reduced compared to the 

random coil or random compact molten globule. The free energy is lowered by a 

combination of bonding forces that lower E , as well as changes in the flexibility of 

residues and solvent molecules which can raise or lower S. These interactions can be 

specific in that they prefer that approaching residues orient themselves in a specific 

fashion, or non-specific in which two residues need merely to be close in distance to 

interact. These interactions guide the folding process and act in a non-linear fashion to 

produce a complicated potential energy landscape. Typically, folding is initiated by short- 

range interactions forming independent secondary structures such as a-helices. While 

these secondary structures are forming, they may also approach each other as the protein 

collapses inward into a condensed configuration. Large numbers of non-covalent, weak 

tertiary bonds (e.g. hydrophobic interactions) between helices act together to add up to a 

large energy contribution that promotes protein folding. In order to produce a stable 

folded protein conformation, the contribution of various interactions must compensate for 

the loss of entropy of the chain as it folds. A careful interplay must occur so that the



specific interactions can form organized structure while the non-specific interactions 

stabilize the collapsed state. If the collapse occurs too quickly, the specific interactions 

will not have sufficient time to act and will result in a collapsed state with no organized 

structure. The specific and non-specific interactions involved in the protein folding 

process that have been incorporated in our model are discussed below. The strengths of 

these interactions can be varied so that the simulations can be run to investigate various 

effects.

Hydrogen bonding is a specific interaction and represents a combination of 

covalent and electrostatic interactions. The strength of a hydrogen bond comes mainly 

from the electrostatic attraction between hydrogen donor and acceptor and is orientation 

dependent. The secondary structures are locally stabilized by hydrogen bonds. In a- 

helices, a hydrogen bond forms between NH of the backbone of residue i and the C=0 of 

the backbone of residue i+4. In order to form the maximum number of hydrogen bonds 

along the length of the helix, the helix axis remains relatively straight. In both parallel 

and antiparallel p-sheets, all possible main chain hydrogen bonds are formed and 

stabilize the structure. In addition to hydrogen bonds, dipole moment interaction is also 

important for stabilizing secondary structure. The different polarity of NH and CO groups 

gives rise to a dipole moment (fi) on each residue. The dipole interaction energy has a 

dependence that is between r 4 and r-6, depending on alignment and local inductive 

effects. In an a-helix, these dipole moments orient along the helical axis and the length of 

the helix produces a stronger dipole moment and stabilizes the helix. In our model, for 

simplicity, the backbone hydrogen bonding and dipole interaction are combined into one 

term, HBDIP, and it takes effect only when two backbones have a lattice separation



smaller than or equal to 4, and are not connected by a peptide bond (not sequential in the 

primary sequence). When the interaction takes effect, it constitutes an energy 

contribution that is weak and attractive.

Another interaction that we incorporate in our model is the steric repulsion that is 

part of the van der Waals interaction. The van der Waals interaction consists of a 

repulsive term that falls off approximately as r~12 and an attractive term that falls off 

approximately as r-6. We do not explicitly model the attraction, due to induced dipoles, 

because it is weaker than other attractions that we do model. More important is the 

repulsive part of the van der Waals interaction. It can become especially strong if two 

residues approach too closely and the electron orbitals of the adjacent atoms begin to 

overlap and repel, owing to the quantum mechanical Pauli’s exclusion principle. Since 

the interior of proteins is packed densely, a large number of close contacts are made in 

the folded form of the proteins. Although attractive van der Waals interactions are the 

weakest of the non-covalent forces, the dense packing of the atoms in proteins causes the 

repulsive part to sum up to a significant effect. Steric repulsion between the atoms 

provides an excluded volume to the protein and is extremely important in the folding and 

stability of the protein. To simulate the van der Waals repulsion, a soft-core repulsion and 

a hard-core repulsion are included for the backbone-backbone interaction. This gives 

thickness to backbones in addition to the infinitely hard-core virtual occupation of nearest 

neighbor lattice points. The soft-core repulsion, SCREP, occurs if backbone active sites 

come to with in a distance of V5 or less. If this distance becomes V3, the smallest 

possible, then the hard-core repulsion takes effect and is 3 times as strong than SCREP. 

My work on this topic will be discussed in detail later in Chapter IV.



Another very important non-specific interaction in protein folding dynamics and 

native state stability is the hydrophobic interaction. It is believed to be the main driving 

force in the initial collapse of the random coil chain into a more compact molten globule. 

It is a non-specific interaction in that it only depends on the distance between two non­

polar sidechains and no special orientation is required. The strength of a hydrophobic 

interaction is not due to an intrinsic attraction between non-polar groups such as 

electrostatic or dipole. Instead, it lowers the free energy of the system by increasing the 

entropy of water molecules. A clathrate of highly ordered water molecules is formed 

around a non-polar molecule exposed in an aqueous solution. When two hydrophobic 

side chains come close, the solvent-exposed surface of each sidechain is reduced and 

some water molecules from each of the ordered clathrates are released to the bulk 

solvent. This is displayed in Fig. 3.3. The increase in entropy of the water is 

thermodynamically favorable because the free energy, F=E-TS, of the chain-water 

system is decreased. Thus, burial of hydrophobic sidechains, such as leucine and valine, 

in the folding process is free energy favorable. In contrast, sidechains of hydrophilic 

residues, such as arginine, do not cause formation of clathrates and will not lower the free 

energy of the system if they are buried. The polarity of hydrophilic sidechains allows 

them to make electrostatic bonds with water molecules and these sidechains prefer an 

aqueous environment and usually stick out from the surface into water. With larger 

sidechains, the hydrophilic interaction is slightly specific as opposed to the hydrophobic 

interaction. Though the hydrophilic interaction is explicitly included in our model, its 

small specificity is not included. In our model, a sidechain can be assigned a property to 

be either hydrophobic or hydrophilic, or neutral. During the simulation run, an interaction



between sidechains is triggered if the active sites of two side chains approach within a 

distance of V3. The strength of the interaction is given relative to the free energy the side

hydrophobic, they would much prefer to be near each other compared to being 

surrounded by water and this interaction is thought to be the driving force behind that 

large-scale collapse of an extended chain. Therefore, the hydrophobic-hydrophobic 

interaction is strongly attractive and lowers the free energy of the system. If both side 

chains are hydrophilic, the interaction is weakly repulsive (compared to each being 

surrounded by water). Finally, the hydrophobic-hydrophilic interaction between sidechain 

is more strongly repulsive. For simplicity, we do not explicitly model the charged 

sidechain interactions, such as in a salt bridge, in out model.

Fig. 3.3. Schematic representation of clathrate formation around hydrophobic (non-polar) 

sidechains in aqueous solution. When two hydrophobic sidechains approach each other, 

some water molecules forming the cage are freed. This increase in the entropy lowers the 

free energy.

chain would have if it were sticking out into water. If the two side chains are both

freed water 
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Analysis of known protein structures in protein data banks, reveal that some 

amino acids have a propensity to appear in a-helices, and others in p-strands [3]. This 

propensity for an individual amino acid to form a type of secondary structure is called a 

local propensity, and its underlying cause in terms of electronic orbitals is not well 

understood. In our model, each amino acid can be assigned a local propensity for forming 

an a-helix, or p-strand or neither. Besides the local propensity, a medium range, or 

cooperative propensity is included to represent the possibility that two or more adjacent 

amino acids that are in an a-helix configuration may act to encourage further growth of 

the helix by stabilizing its structure. If adjacent residues having the same local preference 

are both in the preferred state, then the medium range propensity is activated and lowers 

the free energy of the chain. The local and medium propensities can be assigned to create 

a target final configuration with secondary structure that is pre-chosen in the input file.

These interactions just discussed are included in a Hamiltonian that is used to 

calculate the energy of a configuration of the chain and is given below:
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where

i j  : amino acid residue number in the primary sequence.

a f  : tests if sidechains i and j  are close enough to interact; no=0, yes=l.

Ei*cp : sidechain-sidechain interaction energy (p= 1, 2, or 3 for hydrophobic-hydrophobic, 

hydrophilic-hydrophilic, or hydrophobic-hydrophilic, respectively). 

a™ : tests if backbones i and j  are close enough to interact; no=0, yes=l.

E?b : backbone-backbone interaction energy (hydrogen bond, dipole).



a jep : tests if backbones i and j  are too close so that steric repulsion takes effect; no=0, 

yes=l.

E ep : Steric repulsion energy due to soft-core and/or hard-core repulsion.

aI : tests if residues i - 1, i, and i+1 are arranged so that i is in the preferred local

configuration.

Et : local propensity energy.

a ™ : tests if residues i-1, i, i+1, and i+2 are arranged so that i and i+1 are in the same 

preferred local configurations.

Em : medium range (cooperative) propensity energy.

All information for the initial configuration of the peptide chain as well as the 

strengths of various interactions appearing in the Hamiltonian and other parameters are 

fed as an input file to the computer program PROFOLD. Unlike real amino acids with 20 

different side chains, in this model all side chains occupy the same volume. However, 

they are distinguishable in that the user chooses for each side chain whether it will 

interact as if it were either hydrophilic, hydrophobic, or neither. As explained earlier, 

each individual residue can be assigned a propensity for forming a-helices, p-strands, or 

neither. These three possibilities for each of these two independent characteristics gives 

nine possible amino acids, rather than the 20 found in nature.

After initialization of the protein’s conformation, the Monte Carlo-Metropolis 

simulation is started and different moves are attempted according to an instruction set 

discussed below.



3.2 Monte Carlo Metropolis Method For Simulating Dynamics

The most fundamental understanding of the dynamics of any system occurs when 

every force acting on every component of the system is known. Newton’s Second Law 

can then be used to predict the future behavior of the system. This is usually possible 

only for systems with few degrees of freedom and few forces contributing to the 

Hamiltonian. Multi-particle systems may have too many degrees of freedom and too 

many forces to be able to make deterministic predictions of the behavior of the various 

components. Even if all possible forces are known, the forces may act at random times, 

such as thermal fluctuations in the interactions with a solvent that acts as a heat reservoir. 

In this case, it is impossible to know precisely what forces act or what energy is 

transferred at each instant of time, and a completely deterministic prediction of the 

behavior is not possible. In these situations, a statistical mechanical and thermodynamic 

description of the behavior is the most insightful approach. This can be obtained by use 

of Monte Carlo techniques.

3.2.1 Monte Carlo Method

The Monte Carlo (MC) method is a technique that employs a sequence of random 

numbers to simulate the dynamics of a system and provide ensemble averages by 

performing statistical sampling. The name “Monte Carlo” was coined by Metropolis after 

the city in Monaco known for its gambling casinos. Although the use of random number 

sequences for statistical sampling dates back hundreds of years, it was not until the 

second half of the 20th Century that the Monte Carlo method gained widespread use in 

physics. This occurred as a result of the implementation of an additional constraint, called



the Metropolis test, which assures that the physical system will be distributed over its 

accessible states with a probability given by the canonical Boltzmann distribution. This 

method is particularly useful in multi-particle systems with a large number of degrees of 

freedom where exact computation of quantities of interest is impossible. The Monte 

Carlo method is applicable in simulating not only physical systems that are stochastic, or 

random, in nature, but also in highly deterministic systems with no apparent stochastic 

content, but with differential equations that are too complicated to solve analytically. 

There are a myriad of systems that have been investigated using the Monte Carlo 

Method.

As mentioned earlier, the deepest understanding of a system occurs when all the 

important interactions that control the dynamics of a system are known. It is usually 

difficult to measure these forces directly. Instead, measurements are made of the energies 

of the various states of the system and these energies give insight into the underlying 

forces. In complex systems with many degrees of freedom and many important 

interactions, there may be a huge number of conformational states of the system. These 

conformations may be too large in number and too closely spaced in energy for them to 

be measured individually. In this case, the best information available about the system 

may be thermal averages. If thermal averages can be obtained under a variety of different 

conditions, it may be possible to obtain information about the distribution of 

conformations and their energy, and ultimately the physical interactions and degrees of 

freedom that create the conformational space.



The statistical mechanical relationships between the individual states and the 

thermal averages are given as follows. The thermal average of a physical quantity <Q> is 

given as

For complex systems, enumerating all the states can be a daunting task. The complete 

enumeration of the conformation space of proteins is limited to smaller chains as the 

computing time increases exponentially with the system size in general. For larger system 

size, this problem can be overcome by employing an importance-sampling MC method. 

In such a method, only a tractable set of M  conformations is sampled as representative of 

the full conformation space so that an estimate of <Q> in Eq. (3.2) can be written as:

In order to get accurate averages, the sampling must be done properly so that 

small number of conformations accurately represents large conformational space. In 

particular, the sampling is biased towards the conformations that are significantly

M

(3.3)

populated at equilibrium. If the conformations are chosen with a probability F E‘lkT 

the estimate for the thermal average becomes:



The conformations with such a property can be sampled using a Metropolis algorithm 

[54, 55] which ensures the Boltzmann distribution. The Metropolis algorithm will be 

discussed later in this Chapter.

In this research, the dynamics of the protein chain is simulated using a Monte 

Carlo method consisting of a set of moves that realistically reflect the actual protein 

dynamics. The different types of moves employed in the model are discussed in the 

following section. With such a move set, random numbers are used to select a new 

configuration of the chain, and a Metropolis test, described later, is performed to decide if 

the chain is updated to the new configuration.

3.2.2 The Move Set

A Monte Carlo step consists of N  attempts of moving a single residue (singleton 

move), where N  is the number of residues in the chain, and two attempts at multi-residue 

moves. Each singleton starts with a random number that picks an amino acid i and 

attempts to move it to a new lattice site without moving the backbones of i - 1 or i+1. To 

maintain the correct chirality of the chain, the sidechains of i- 1 and i+l may be 

reoriented as part of the move. Since i-l and i+1 remain in the same location, the /?-value 

of i remains the same. Based upon the lattice restrictions, there are a limited number of 

new possible positions. The precise number and location of new positions depend on the 

present R-state and are listed in a table. The computer program checks the fl-state of the 

chosen residue, and uses a file to determine how many positions of i are possible. 

Another random number determines which of the new positions the active sites of the 

backbone and sidechain of residue i will attempt to move to. If any of the 11 new



positions are already occupied by any of the 11 points associated with another residue, 

there is an occupancy conflict and the move is rejected. Another move is then attempted. 

Occupancy conflicts are rare when the peptide chain is in a stretched out random coil 

configuration. As the chain collapses, residues are closer together and fewer moves are 

available that avoid occupancy conflicts. If an attempted move satisfies the occupancy 

test, a Metropolis test, which is described later in this Chapter, is performed. Once the 

Metropolis test is passed, the chain is updated to a new configuration due to the change in 

position of residue i and a possible change in orientation of the sidechains of i- 1 and f+1. 

Fig. 3.4(a) shows a representative single residue move (corresponding to R-state of R 10). 

All the possible singleton flips are displayed in Fig. 3.2.

Fig. 3.4. Three different types of moves employed in the computer model (a) single 

residue move (singleton flip) corresponding to state RIO. (b) hinge move with i as the 

anchor residue, (c) wave-like move.



In real proteins there is the possibility that several residues move simultaneously 

as a result of a concerted push from the solvent or a local concentration of enough 

internal energy in the chain. To emulate such large-scale fluctuations, we include two 

types of multi-residue attempts in each MC step: hinge and wave-like. For hinge moves, 

one end of the peptide chain moves as a rigid hinge as shown in Fig. 3.4(b). An anchor 

residue i is first selected randomly. Since moves are less likely to occur as the number of 

residues to be moved increases, the probability for attempting a hinge move is weighted 

against moving a large number of residues. The residues that will be moved are on the 

shorter end from i so that the number involved is always < N/2. This is done by selecting 

another random number from 2 to N/2 and comparing it with the number of residues 

effectively being moved in the hinge attempt. The attempt is accepted only if the number 

of residues being moved is smaller than the random number. The hinge move occurs by 

moving i+l (or i- 1 if it leads to the shorter end). Since there are 24 different vectors that 

can connect residue i to i+l (or i-1) and are consistent with the (210) connectivity 

constraint, a random number between 1 and 24 is used to determine the new position of 

i+l. The hinge causes all the affected residues to move as a rigid object without changing 

the relative positions (fl-states) of residues after i+l. Therefore, the remaining residue’s 

positions are easily determined by using the same R -states as they had before the 

attempted move. The attempt is successful only if it passes the occupancy test for all 

residues that are moved, and the Metropolis test, and then the chain configuration is 

updated.

In addition to the hinge move, another multi-residue wave-like move is 

incorporated in the simulation. Unlike the hinge move, the wave move usually involves a



segment of residues in the middle of the chain. A wave involving the entire chain is 

possible, but weighted to be highly unlikely. The wave move allows the propagation 

along the chain of multi-residue structural elements. Two residues, i and j, are chosen to 

act as the ends of the segment of residues that will move. As in the hinge move, a random 

number weighs the probability to attempt to move a segment of the chain. If the length of 

the segment is smaller than a random number chosen between 2 and N -\,  the move is 

attempted. In a wave-like move the /^-states are permuted in a cyclic fashion inside the 

segment as shown in Fig. 3.4(c). The (210) vector connecting residues i- l  and i is used to 

join i and i+1, the old vector between i and i+1 becomes the new vector connecting i+1 

and i+2, and so on until old vector j - 1 and j  becomes new vector j  and j+1. To complete 

the cyclic permutation, the old vector connecting i- l  and i is replaced by the old vector 

that connected j  and j+1. This wave propagation temporarily places the residues in new 

positions and if the move passes both the occupancy and Metropolis tests, the chain 

conformation is updated.

The equivalent real time for a MC step can be estimated as follows. Each 

singleton move involves approximately 10 atoms. Atomic vibrations in solids have 

periods of approximately 10-12 seconds. Therefore, a singleton move requires 

approximately between 10"11 and 10'10 seconds of real time, and a multi-residue move 

takes about 10 times as long. Therefore, in a chain of approximately 100 residues, a 

single Monte Carlo step is equivalent to approximately 10"9 seconds [56].



3.2.3 Metropolis Test

The central ingredient in the MC method is the idea of equilibrium, which is 

expressed as the condition of detailed balance. The condition of detailed balance states 

that for a system in equilibrium, the rates at which the system makes a transition into and 

out of any state must be equal. If the probability of these transitions between states is 

same, the idea of equilibrium is satisfied. If we write as the probability to be in a state 

p, and P(p~*v) for the probability of a transition from p to v, the restrictive form of 

detailed balance can be written as

pltP ( p - * v ) - p vP(v — p) (3.5)

_ E i k f
In thermal equilibrium, is the Boltzmann probability e 11 /Z and we can

write

where (E - E v) is the energy difference between the new and the old states. To assure 

thermal equilibrium, the move from one conformation to another is possible only if the 

inverse move is also possible. With appropriate choice of a move set, Metropolis 

algorithm is enough to ensure that any conformation can be arrived at from any other 

state for the lattice and thus ergodicity is satisfied. In our model, Metropolis algorithm in 

simulating the protein folding dynamics selects conformations with a rule of move set 

described earlier and such a choice of moves have been shown to assure ergodicity [41]. 

As long as the condition of detailed balance is satisfied, the order of moves carried out 

does not have an effect on the equilibrium canonical distribution reached after 

sufficiently long time.



A Metropolis algorithm that meets the above-mentioned criteria is used in 

simulating the protein folding dynamics in this study and is described as follows. When a 

move is attempted, if the new lattice sites are vacant, the program calculates the new 

energy of the system using the interaction Hamiltonian described above. If the new 

energy is lower than the current energy, the move is accepted and the configuration of the 

chain is updated. If the new energy is higher, the move is not automatically rejected but 

undergoes a Metropolis test to determine if the move will be accepted. There is a non­

zero probability that random interactions with the solvent will allow the protein to move 

to a state of higher energy. The relative probability of finding the system in the higher 

energy state v compared to the lower energy state fi is given by the Boltzmann factor

„  -Lvlkl I rj
Pv_ _  £  A  =  P- ^ - E>)lkT =  p-M 'kT -x

p ,  e E>lkT IZ  (3 7)

where AE is the energy difference. The relative probability of Eq. (3.7), which has the 

same exponential form as a Boltzmann factor, is compared to a random number. The 

move will be accepted and the conformation is updated only if the relative Boltzmann

factor e ~ ^ lkT is greater than the random number. Otherwise the move is rejected and the 

current conformation is kept until a move attempt is successful. In this method, attempted 

moves with larger increases in energy, AE, have exponentially decreasing probability for

success.

The criteria of acceptance of an attempted move can be summarized as

r-a EikT k  positive ^

accept I 1 otherwise



The combination of the Monte Carlo method for choosing moves and the Metropolis test 

for determining if they are accepted have been shown to assure that the simulations 

satisfy the important statistical mechanical and thermodynamic behavior of the real 

system.

To summarize, the computer model simulates the dynamics of a protein by 

following these steps:

1. The user supplies strengths for the various interaction terms used to calculate the 

free energy of a chain configuration.

2. The initial conformation of a chain is supplied by the user with a sequence of In­

states for each amino acid along the primary sequence.

3. The computer program checks to see if this initial sequence is non self- 

intersecting. If it is self intersecting, the simulation does not start, and a new 

initial sequence of R-states must be supplied. If it is not self-intersecting, the 

program continues.

4. The computer chooses random numbers in a Monte Carlo approach to attempt 

moves that change the position of single, or groups, of amino acids.

5. Random numbers are used in a Metropolis test to decide if a move will be 

accepted or rejected.

6. When a move is accepted, the program examines the new configuration and 

calculates a variety of quantities of interest such as energy of the chain (£), radius 

of gyration (Rg), end-to-end distance ( d j ,  fraction of helical content (q), fraction 

of native tertiary contacts (Q) etc. Along with the position of the active site of 

every backbone and sidechain, these quantities are written to output files that can



be used in statistical mechanical and thermodynamic analysis of the behavior of 

the program. The output file containing information of the locations of the 

residues can be fed to a graphics program, PROVIEW, that displays the chain 

configuration with a ball and stick model. This allows the configuration to be 

inspected frame by frame for easy identification of structural elements and 

changes of conformation during the simulation, and the time evolution of the 

quantities of interest.

7. The program continues running for a user-defined number of Monte Carlo steps.

In the following chapters, I discuss the statistical mechanical and thermodynamic 

analysis of the numerical data generated by the computer model and explain the insight 

into protein folding dynamics obtained from this analysis.



EXCLUDED VOLUME ENTROPIC EFFECTS ON PROTEIN UNFOLDING AND

STABILITY

Various intrachain interactions, as well as the interaction of the amino acid 

residues with the solvent, guide the folding to the native state structure. In addition to 

various other interactions such as hydrophobic and hydrogen bonding, another very 

fundamental non-specific interaction called steric repulsion contributes to the free energy 

of the peptide chain as discussed earlier. This entropic excluded volume effect is a very 

important factor in protein dynamics, as it is always present regardless of any other 

attractive or repulsive interaction. Recently, there has been a growing interest in the 

effect of macromolecular crowding and confinement on biochemical processes such as 

protein folding [59-63]. Such studies have shown that the volume exclusion due to the 

presence of macromolecules in the media has a significant effect on protein denaturation. 

The folding rates of many proteins may be different in the intracellular environment than 

in an ideal solvent [61, 64]. The effect of molecular shape and the size of the solute as 

well as the solvent have also been of considerable interest in polymer dynamics [65]. In 

this dissertation, I focus on volume exclusion effects on the protein stability and 

unfolding times due to the protein chain itself rather than macromolecules present in the 

medium. I will show that the excluded volume due to presence of sidechains has 

significant effects on stability and the unfolding dynamics of the native state of a model 

four-helix bundle protein.



4.1 Excluded Volume in Lattice Model

The only difference among the 20 different kinds of amino acids is in their 

sidechains. The 20 sidechains differ in terms of enthalpic interaction properties such as 

hydrophobicity and size, which causes different entropic excluded volume effects. I am 

interested here in how different amino acid volumes give rise to different folding and 

unfolding dynamics, regardless of similarities in other properties such as hydrophobicity 

or hydrophilicity. The strategic placement of an amino acid residue of a particular size at 

a particular place in the primary sequence might be crucial for the chain to correctly fold 

and for the stability of its native structure. To determine the importance of excluded 

volume, the effects of changing the size of sidechains on the unfolding dynamics of a 

model four-helix bundle protein have been investigated. In addition, the effects of 

changing the thickness of the chain’s backbone are investigated. These investigations 

have applicability for understanding the effects of side chain size differences, and also 

have relevance to the behavior of synthetic polymers where the size of the constituent 

units can be varied.

As discussed in Chapter III, in our model amino acid residues move on a cubic 

lattice. Each amino acid residue occupies lattice points representing the backbone and 

additional lattice points representing the sidechain. As shown in Fig. 4.1, the backbone of 

a residue occupies seven lattice points; a central point and the six nearest neighbors. The 

six occupied lattice points around the active lattice site for each backbone give thickness 

to the backbone and define a minimal excluded volume for the backbone.

The model has the capability to increase the excluded volume in addition to these 

seven lattice points. The sidechain of a residue occupies four additional lattice points- an



active site and three lattice points for an excluded volume of the sidechain. In the model, 

a residue can be chosen as either hydrophobic or hydrophilic or inert. A residue with 

hydrophobic or hydrophilic sidechain occupies a total of eleven lattice points. An inert 

residue, however, has no sidechain and occupies only the seven lattice points of the 

backbone. The lattice points occupied by a residue with both a backbone and a sidechain 

are displayed in Fig. 4.1. The interaction points, or active sites, for the backbone and the 

sidechain are displayed as darker circles. To reflect the excluded volume of the backbone 

and side chains, in the lattice model backbones are not allowed any closer than within V3 

lattice spacings of other backbones or any closer than within V2 lattice spacings of other 

residues’ sidechains.

Fig. 4.1. Lattice points and excluded volume occupied by amino acid residues and their 

sidechains. The large sphere on the left shows the excluded volume occupied by a residue 

with no sidechain.



In terms of excluded volume effects, the sidechain adds 4/7 (0.57) of the lattice sites 

of the backbone. This ratio can be further solidified if we use hemispherical volume 

sections to fill out the excluded volume that is occupied by lattice points, as displayed in

Therefore, an amino acid residue with backbone and sidechain excludes a volume of

This means that the sidechain adds an additional 0.52 of the excluded volume of the 

backbone contribution alone, very close to the 0.57 obtained by merely counting lattice 

sites that are occupied. In real amino acids, some sidechains are significantly bigger than 

the backbone. Furthermore, the difference in size between small and large sidechains can 

be greater than 0.52 of the size of the backbone. Therefore, the difference of 52% may 

actually underestimate the effects of differences in excluded volume due to differences in 

side chain sizes.

There is an energy term, E(SCREP), as part of the Erep in the interaction 

Hamiltonian of Eq. (3.1), representing the possibility that the backbone may have a

Fig. 4.1. The seven lattice sites of the backbone alone can be thought of as excluding a 

sphere with a radius equal to one lattice unit and a volume of yjr(l)3. The distance from 

the center of the backbone to the active site of the sidechain is V3. The sidechain can be

thought of as excluding a volume of . Therefore, the sidechain excludes a

volume that is |(->/3)3= 0.65 of that of a backbone alone. However, the seven lattice 

points occupied by just the backbone on the cubic lattice results in the backbone alone 

excluding a volume of -J* -f^(l)3 in the same region even if the sidechain is not present.



thickness greater than that determined by the excluded volume of the seven backbone 

lattice points. These seven lattice points are equivalent to an overlap energy of 00, and 

overlap will always be prevented by failure to pass the Metropolis test. With this absolute 

excluded volume, the active sites of two backbones can get as close as a distance of V3, 

but no closer. If an energy penalty is imposed when two backbones try to approach very 

closely, the effective excluded volume can be expanded. This energy penalty is 

equivalent to a soft-core repulsion, E(SCREP). In simulations with a larger value of 

E(SCREP), the soft-core repulsion becomes more important and the excluded volume of 

each residue is increased. The simulation is designed so that if two backbones try to 

approach to a separation distance of either V5 or 2, the soft-core repulsion is activated and 

the configuration energy is increased by Zs(SCREP). If two backbones try to approach to 

the minimum possible separation of V3, a much stronger physical repulsion is simulated 

by increasing the configuration energy by 3 times E(SCREP). The overall effect of the 

steric repulsion due to soft and hard-core repulsions is displayed schematically in Fig. 

4.2. The inclusion of soft and hard-core repulsion reduces the overall accessible space 

(water), which ultimately reduces the total number of possible configurations in the phase 

space. In the present research work, the size of the sidechains, the hydropathy of the 

sidechains, the thickness of the backbone, or a combination of all three are changed 

systematically, which makes it possible to distinguish entropic excluded volume effects 

from enthalpic effects.
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Fig. 4.2. (a) Schematic representation of the soft and hard-core repulsion in the lattice 

model, (b) With the inclusion of soft-core repulsion, the effective volume available for 

the particles (yellow area) is reduced. The dark circles represent the space occupied by 

particles and the envelopes represent the area where the soft and hard-core repulsions 

take effect.

Fig. 4.3. Model four-helix bundle. Backbones are shown as lightly colored spheres, 

hydrophobic sidechains are dark spheres located between helices, and hydrophilic 

sidechains are gray spheres extending outwards from helices.



4.2 Analysis of Native State Stability

In order to quantify the effects of excluded volume on protein unfolding times and 

the native state stability, computer simulations have been performed on a model four- 

helix bundle protein, as shown in Fig. 4.3. The four-helix bundle is used as a model as it 

contains both secondary and tertiary structure, and also has a well-defined hydrophobic 

core. Four-helix bundles can constitute an entire protein such as the 86 residue, single 

chain four helix bundle acyl-coenzyme A, or occur as domains in a variety of proteins [3] 

such as myohemerythrin, cytochrome c', cytochrome b562, ferritin and the coat protein of 

tobacco mosaic virus. The initial configuration is set as a four-helix bundle of 83 residues 

with 18 residues in each helix, and additional residues in the loops connecting the helices. 

The chain is constructed with amino acid residues that are either hydrophobic (//), 

hydrophilic (P) or inert (/). For each helix, we choose a repeating sequence of either 

-HH II-  or -HHPP-  for the helical elements, and - / / / / -  for the loops connecting the 

helices. For an I  residue, there is no associated sidechain and therefore only the backbone 

interactions in the Hamiltonian of Eq. (3.1) are possible.

In the present study, I am interested in determining the relative stability of a four- 

helix bundle compared to a molten globule or random coil. The four-helix bundle protein 

is considered to be completely unfolded if the fraction of the helical residues is reduced 

to 15% of the original helix content.

To get a good statistical sample of the dynamics, for each set of conditions, 50 

simulations of length lxlO6 MC steps each are run. The 50 different simulations have 

identical initial conditions but differ in their random number seed and this gives an 

ensemble of simulations. From these simulations, a wealth of statistical mechanical and



thermodynamic information is available for analysis. As explained in Chapter n, a free- 

energy function can be calculated as F{q)= —kT\n P(q), where P{q) is the probability of 

finding the chain with the particular value of helical content q. The ffee-energy function 

can quantify the relative stabilities of the native and unfolded states. The increased 

stability of any state is characterized by increased depth in its corresponding free energy 

minimum.

The relative stabilities of the native state and unfolded state can be investigated 

further by calculating the heat capacity, Cv, as a function of temperature T, using the 

fluctuations in the energy. The thermodynamic averages in the above expression were 

calculated using a Monte Carlo histogram technique as described earlier in Chapter n. 

The histogram technique can be used to calculate the ensemble average of 

thermodynamic quantities, such as energy, at various temperatures from a run performed 

at a single simulation temperature. Since the most accurate histogram for sampling the 

energy space is obtained when the simulation is run at the transition temperature, 

simulations were run at different temperatures in search of the transition temperature. At 

each simulation temperature, the heat capacity curve was obtained as a function of 

temperature using Eq. (2.14). Simulations were run at different temperatures until a 

simulation temperature was found at which the temperature of the peak position in the 

heat capacity curve matched closely to the simulation temperature that was used to 

generate the curve. This temperature is used as the simulation temperature Ts.

The histogram h(E) in Eq. (2.21) is the number of times a particular energy state 

appears in the canonical ensemble of 50 simulations. The histogram obtained by 

combining multiple runs has approximately 50 times as much data and therefore gives a



more reliable picture of the phase space than use of any single run. There are however, 

advantages to using 50 separate runs and then combining them, rather than running a 

single simulation that is as long as all 50 combined. A single long run may get trapped 

into a specific structure and never leave. This structure may in actuality, be improbable in 

the overall dynamics, yet it will appear to be the dominant structure because it occupies a 

large fraction of the MC steps. To avoid this mis-representation of any single structure, 

we carry out 50 different simulations. In addition, multiple runs allow the error in the 

histogram to be estimated by regrouping the 50 simulation mns. For example, several 

groups with 40 simulation mns can be obtained by excluding 10 mns each time. Then the 

average and standard deviation for various quantities can be directly calculated. The error 

estimates obtained this way in the present study were insignificant as compared to the 

average histogram.

43  Results of Varying the Excluded Volume

Different types of interactions help stabilize the four-helix bundle. Backbone 

interactions help stabilize individual helices, and interactions between hydrophobic 

sidechains on different helices help stabilize the bundle. The effects of excluded volume 

are investigated by changing the occupancy of sidechains and modifying other 

interactions.

43.1 Enhanced stability due to sidechain excluded volume

Two different sizes for the inert sidechains are used. In one case, the inert 

sidechains of the helices are the same size as the hydrophobic sidechains. As described in



Sec. 4.2 and displayed in Fig. 4.1, these sidechains occupy a volume of four lattice sites. 

In the other case, the inert residues do not have sidechains and only the backbone is 

represented so that the residues are effectively glycine-like. For the loop segments 

connecting helices, the inert residues always had no sidechains. Fig. 4.4 displays the 

crucial difference in the volume excluded by the native states of four-helix bundles with 

these two schemes of sidechain sizes of the inert residues. Later, the size of the large 

sidechains are maintained, but changed them from inert to hydrophilic. As will be shown, 

it is found that the enthalpic effect of the exposed hydrophilic sidechains is much less 

important than the entropic excluded volume effect due to the change in size.

Fig. 4.4. (a) Four-helix bundle with no sidechains for the inert residues. The backbones 

are shown in purple-blue shading and the hydrophobic sidechains in the buried core are 

green, (b) The exposed inert (or hydrophilic) residues have sidechains shown in yellow. 

The buried hydrophobic sidechains are still present in the core. (Sizes of sidechains and 

backbones are not drawn to scale).



A dramatic increase in the stability of the four-helix bundle is observed when the 

small, glycine-like inert residues are replaced by residues with the larger inert side chains 

that exclude more volume. In Fig. 4.5, I display the heat capacity as a function of 

temperature for three different sidechain conditions. The solid curve, with a heat capacity 

peak at 313 K, is for glycine-like residues with no sidechains. The dotted line, with a 

peak at 328 K, has full size sidechains that are inert. The dashed line, with a peak at 331 

K, also has full size sidechains, but the sidechains have been made hydrophilic, with a 

hydrophilic-hydrophilic interaction strength E(P-P)= 0.10 Kcal/mol, and hydrophilic- 

hydrophobic interaction strength E(P-H) = 0.50 Kcal/mol. For all three conditions, the 

hydrophobic-hydrophobic interaction E(H-H) strength is set at -1.10 Kcal/mol, 

£(SCREP)= 1.50 Kcal/mol, backbone-backbone interaction strength E(B-B)= -0.25 

Kcal/mol, and local propensity energy Eh — medium range energy EM = -0.50 Kcal/mol. 

All these interactions’ free energies are determined relative to the situation of a residue 

surrounded by only water. The hydrophilic interaction strengths between sidechains are 

not necessarily inherently weak, but are given small values because they are not much 

different than the effects of water.

The increased stability of the native state due to excluded volume is apparent. With 

inert sidechains included to exclude volume but HP- (0,0) [i.e. E(P-P) =E(P-H)= 0, the 

dotted curve], the transition temperature is increased by 15 K compared to no sidechain- 

excluded volume (solid curve). In order to compare the entropic effects of sidechain 

excluded volume to enthalpic effects, the dotted curve and the dashed curve are 

compared. Both simulations have full size sidechains that exclude volume. With the 

inclusion of hydrophilic sidechain interactions, the HP-  (0.1,0.5) curve [E(P-P)= 0.1



Kcal/mol, E(P-H)= 0.5 Kcal/mol], the transition temperature increases by only 3 K, a 

much smaller effect than the excluded volume.

The greater relative importance of sidechain excluded volume compared to 

sidechain hydrophilicty is also demonstrated when we examine the probability for the 

four-helix bundle to unfold at 7=312 K. With no sidechains, 74% of the 50 runs 

unfolded. With inert sidechains, this dropped dramatically and only 8% of the runs 

unfolded. When we made the sidechains hydrophilic, 10% of the runs unfolded, which is 

very similar to the large but inert sidechains.

280 300 320 340 360

T (K)
Fig. 4.5. Heat capacity curves for different types of sidechains. The presence or absence 

of the sidechains affects the transition temperature much greater than the hydrophilicty of 

the exposed sidechains.
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Fig. 4.6. Decreasing probability for a four helix bundle to unfold as the excluded volume 

is increased by increasing E(SCREP).
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Fig. 4.7. Free energy F(q) as a function of helicity q for different E(SCREP). All curves 

are plotted at the same temperature. Lower values of the soft-core repulsion (less 

backbone excluded volume) favor the unfolded state (low q) and higher values of 

Zs(SCREP) (greater backbone excluded volume) give rise to free energy landscapes with 

absolute minim near the native state configuration (high q).
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Fig. 4.8. Heat capacity curves as functions of temperature for various /i(SCREP).

4.3.2 Enhanced stability due to backbone excluded volume: chain thickness

Next, the effects of the backbone thickness on the stability of the four-helix bundle 

native state are investigated. As explained earlier, the effective thickness of the backbone 

can be increased by increasing the penalty when two backbones approach by increasing 

the value of E(SCREP).

Figure 4.6 displays the percentage of the runs that unfolded as a function of the 

strength of the soft-core repulsion. The temperature was set to 312 K and the interaction 

energies are the same as listed above. The only sidechains present were the //o n es  in the 

helices; the /  residues carried no sidechains. Again, we defined the protein to be 

completely unfolded if the helical content is 15% or less of the original helical content. 

From the figure it is evident that as E(SCREP) increases, the four-helix bundle becomes 

relatively more stable against thermal fluctuations to the denatured molten globule state.



Increased £(SCREP) entropically favors the ordered native state by decreasing the 

number of other, more random, compact shapes that can exist. Because all backbones in 

the four-helix bundle are greater than a distance of V5 from each other, the energy of the 

native state is not affected by changing £(SCREP).

This behavior is further elucidated in Fig. 4.7 where the free energy functions F(q) 

at a single temperature and for different strengths of £(SCREP) are plotted. The figure 

shows that for lower values of the soft-core repulsion and less backbone excluded 

volume, the unfolded state (low q) is highly favored, whereas higher values of Zs(SCREP) 

and greater backbone excluded volume give rise to free energy landscapes with absolute 

minima near the native state configuration (high q).

In order to further investigate the enhanced stability of the four-helix bundle due to 

the increase in soft-core repulsion excluded volume, the heat capacity, Cv, as a function of 

temperature T was calculated. As described above, the histogram technique was used, but 

first the best simulation temperature was determined for use with each value of 

Zs(SCREP). Heat capacity curves as functions of temperature are plotted in Fig. 4.8. 

While undergoing an unfolding transition from four-helix bundle to molten globule, the 

transition temperature shifts towards higher temperature as the soft-core repulsion is 

increased, showing increased stability of the native state four-helix bundle. In addition, 

the sharpness of the heat capacity curves increase as the soft-core repulsion increases. 

This implies that as the excluded volume of the backbone increases, the structural 

transition between the native state and the molten globule becomes more like a phase 

transition.



4.4 Effect on Protein Unfolding Times

It was shown in Sec. 4.3 that the four-helix bundle is thermodynamically more 

stable when the amino acid residues of the heteropolymer chain have a greater excluded 

volume, through either a larger backbone or sidechain. In addition to the thermal stability, 

the kinetics of the unfolding process is investigated and it is found that larger excluded 

volume also slows down the transition from the four-helix bundle to the molten globule.

Fig. 4.9 shows the median first passage time, MFPT defined as the number of 

Monte Carlo steps required for q to drop below 0.15. These results are all for 7=327 K. 

At lower T, most of the HP runs did not unfold. At 327 K, a majority of simulations 

unfolded for each condition and the choice of which simulation to use as the median was 

unambiguous. As Zs(SCREP) and therefore the excluded volume of the backbone 

increases, MFPT increases. The same trend of increasing MFPT occurs when the 

excluded volume is increased by changing the size of the sidechain. When the inert 

sidechains are not present, MFPT=1.0xl05 MC steps; when the inert sidechains are 

present, HP{0,0), there is an increase to MFPT=6.0xl05 MC steps, and with hydrophilic 

sidechains, HP(0.1,0.5), MFPT changes slightly to 6.4xl05 MC steps.

The kinetics is further examined by calculating the autocorrelation function [66] of 

the helicity q defined as

A g C Q A ^ r )  ( 4 5 )

q{ t f - qU)

where Aq(t) = q (t)-q (i) . In Fig. 4.10(a) shows the decay of C(r) for increasing 

values of E(SCREP). By fitting the average autocorrelation curve to a decaying 

exponential, we are able to quantify the trend by determining the autocorrelation



relaxation time xcor In Fig. 4.10(b), xCOT vs. £(SCREP) is plotted. It is clear that as the 

backbone excludes greater volume, xCOT increases, except for the largest value of 

£(SCREP)= 2.0 Kcal/mol. For this large value of E(SCREP) almost half of the 

simulation runs did not unfold. In averaging 50 runs in which approximately half are 

dominated by large scale motion, but the other half are not, the interplay between small 

scale and large scale structural motions may complicate the dynamics, making the 

autocorrelation function harder to interpret. The overall trend of increasing xcor with 

increasing E(SCREP) also implies a longer time for the unfolding transition to occur [67].
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Fig. 4.9. Median first passage time (MFPT) as a function of E(SCREP). All points were 

from simulations at 7=327 K
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Fig. 4.10. (a) Log-log plot of the decay of the autocorrelation function C(r) for increasing 

values of £(SCREP). (b) Autocorrelation relaxation time xcor as a function of E(SCREP).
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Fig. 4.11. Log-log plot o f the decay of the autocorrelation function C(r) for different 

types of sidechains. The presence or absence of the sidechains affects the autocorrelation 

function much more than the hydrophilicty o f the sidechains.

The same analysis was carried out for the average autocorrelation function for 

simulations using different types of sidechains. In Fig. 4.11, it can be seen that when no 

hydrophilic sidechains are present to exclude volume, the autocorrelation function decays 

fastest. W hen sidechains are added, rcor increases dramatically. Furthermore, the 

autocorrelation curves for inert sidechains H P (0,0) and hydrophilic sidechains 

HP(0.1,0.5) are very close, showing that the excluded volume effect is more important 

than the hydroplilicity of these sidechains. Another interesting result relates to the fitting 

of the autocorrelation curves when sidechain are added. For the curve in Fig. 4.11 with no 

sidechains, a single exponential gave an excellent fit, as expected from the good single



exponential fits found in analyzing the data in Fig. 4.10(a) that also had no hydrophilic 

sidechains. However, the two curves in Fig. 4.11 with sidechains were fit much better 

with a double exponential function than with a single exponential.

C(t) = a,e~l/T' + ag~,IXl (4.6)

The increased importance of the second exponential term when sidechains are present can 

be seen by the fitting parameters a2 given in Table I.

It can be noted from Table I that the second exponential term used to fit the 

autocorrelation function has an especially short delay time, r2 Therefore, the presence of 

sidechains adds additional dynamics, and the autocorrelation function is exhibiting the 

ability to quantify this effect. Again, the excluded volume entropic effect, this time from 

the presence of sidechains in the water-exposed surface, appears more important than the 

hydrophilic enthalpic effect.

TABLE I. Double exponential fitting parameters from Eq. (4.6) for different types of 

sidechains. The autocorrelation times, r, and t2, are given in units of 100 MC steps.

Sidechain type fli 02 T2

None 0.932 527 0.075 2

HP(0,0) 0.796 1416 0.186 23

HP(0.1,0.5) 0.729 1514 0.230 38



It is found that excluded volume effects are crucially important for the stability of 

the ordered native state structure of the four-helix bundle. Increasing the volume 

excluded by sidechains or backbones of a protein significantly favor the native state. In 

addition, the heat capacity peak at the transition temperature becomes sharper implying 

that the unfolding structural transition becomes more like a first order phase transition. 

The increased favoring of the native state may have important significance for protein 

folding. Different amino acids with similar biochemical properties (hydropathy) have 

side chains of different sizes, (e.g. small valine vs. large methionine or phenylalanine). 

However, in some locations along the primary sequence it may be critical to have large 

sidechains to provide the excluded volume necessaiy to prevent the stabilization of the 

molten globule. If smaller sidechains with the same hydropathy are incorrectly located at 

these locations, folding may never occur because the peptide chain becomes trapped in a 

molten globule intermediary. If this strategic placement of large amino acids is not 

sterically possible, or has other evolutionarily unfavorable effects, then chaperones might 

be necessary to allow folding to occur by supplying the excluded volume to block the 

molten globule. Therefore, proteins that require chaperones for folding may be able to 

fold without chaperones if there are strategic replacements in the primary sequence of 

amino acids with smaller sidechains by replacing them with larger sidechains with similar 

hydropathy.



CHAPTER V

PHASE TRANSITION STUDIES IN PROTEIN STRUCTURAL TRANSITIONS

The denaturation (unfolding) of globular proteins is a structural transition from 

the highly organized biologically active native state of a protein to a less organized 

molten globule, which is not biologically active. The unfolding may also take the molten 

globule to a more extended random coil. Structural transitions between collapsed states 

and extended states have been studied in great detail using computer simulations for 

homopolymers [68, 69] as well as protein-like heteropolymers [70]. Several studies [71, 

72] have examined phase diagrams in simulations of proteins containing secondary and 

tertiary structure. These studies provide a great deal of insight on the thermodynamics of 

protein folding. Detailed statistical mechanical investigations have been carried out that 

have resulted in the calculation of critical exponents [68, 69] in protein simulations. 

These important calculations were done for a single a-helix, which is a common element 

of protein secondary structure. In this chapter, I briefly review phase transition and finite 

size scaling theory and present the results of their application in protein unfolding 

transition by examining thermodynamic properties of a four-helix bundle.

5.1 Phase Transition and Critical Phenomena

A phase transition is characterized by a discontinuity in derivatives of the free 

energy. In a phase transition, a significant change in a property of the system is observed. 

For example, transitions from liquid to gas or from paramagnet to ferromagnet show such 

behavior. If there is a finite discontinuity in one or more of the first derivatives of the free



energy, the transition is called a first order transition [72, 73]. For example, the Gibb’s 

free energy as a function of temperature in a liquid-gas transition at constant pressure has 

a discontinuity in the slope at the transition temperature as displayed in Fig. 5.1(a). In the 

diagram, the tangent is the first derivative of the free energy function with respect to 

temperature at constant pressure, which is the entropy of the system, S= ~{dG/dT)P. As 

displayed in the T-S isobar in Fig 5.1(b), the entropy changes abruptly at the temperature 

corresponding to the discontinuous tangent in the G-T  curve, a typical characteristic of a 

first order transition. Such a discontinuity corresponds to the absorption or release of 

heat, and is called the latent heat.



If the first derivatives are continuous but second (or higher) derivatives are 

discontinuous, the transition is called a second (or higher) order transition [72, 73]. Such 

transitions are also called continuous or critical transitions and are characterized by 

divergent susceptibility and a power law decay of correlations. Figures 5.1(c) and 5.1(d) 

display typical free energy and entropy curves of a system undergoing a continuous phase 

transition. Some systems display quite unusual behavior in the vicinity of a continuous 

phase transition and such phenomena are known as critical phenomena. For example, an 

optical effect known as critical opalescence causes large fluctuations in the refractive 

index of critical mixtures of liquids such as methanol and hexane and causes normally 

transparent liquids to appear milky.

Although protein molecules are composed of a finite number of constituent atoms, 

the folding dynamics of many proteins exhibits the characteristics of phase transitions. 

Two-state protein folding reactions involve first-order-like transitions with a sharp peak 

in the heat capacity. Obviously, the nature of the transition depends on the protein 

sequence, its corresponding native state configuration, and the folding pathways. In order 

to understand the detailed nature of the transition, it is necessary to analyze various 

quantities such as critical exponents that characterize the phase transition.

5.1.1 Critical exponents

Phase transitions are interesting in many ways. They reflect both the underlying 

interactions between constituents as well as the multi-particle dynamics of the system. 

Investigating the behavior of a system near the critical point where various physical 

quantities possess singularities can be especially enlightening. These singularities are



customarily expressed in terms of power laws characterized by a set of quantities called 

critical exponents, which describe the behavior of various quantities of interest near the 

transition point. A complete review of critical exponents is beyond the scope of the 

present work and the details can be found elsewhere [73-75]. A brief introduction to 

some of the critical exponents relevant to the present work is given below.

Consider an order parameter m whose value is determined by the corresponding 

ordering field h. In the limit h—*0, m->m0 with the property that m0= 0 for T&TC and m0*0 

for T<TC. For magnetic systems, the order parameter can be the magnetization M  and the 

magnetic field H  is the ordering field h. For a liquid-gas system, the density differential 

ll-p/pj can serve as m and the pressure differential (1 -P/Pc) as h.

The critical exponent a  is defined by the divergence of the specific heat:

C ~ r a (/>0) (5.1)

where t is the reduced temperature defined as t = (T -T c)/Tc and measures the difference 

in temperature from the critical temperature, Tc. In a liquid-gas transition, the heat 

capacity in Eq. (5.1) is taken at constant volume. The same type of relation holds true for 

the specific heat at constant magnetization in phase transitions in magnetic systems. The 

exponent P refers to the behavior of the order parameter in zero ordering field:

m 0 ~ ( ~ t y e (<<0, h-~0 ) (5.2)

Similarly, the manner in which the low-field susceptibility x  diverges, defines the 

exponent y:

X  -  t~r (t>0, h->0 ) (5.3)



The divergence of the correlation length £ defines the critical exponent v in the following 

way:

f  ~ t~v (oO, h-*0 ) (5.4)

Corresponding to each of the above exponents, there exist separate exponents, 

namely o', f t , / ,  and V, when the critical point is approached from temperatures below 

Tc, i.e. t<0. There are more critical exponents from similar power law behaviors of the 

system near the critical point. However, some critical exponents are not independent of 

others. For example, the critical exponents a , /?, and y are related by the relation 

a  + 2(3 + y = 2. The values of the exponents differ very little as we go from one system to 

another, implying universality. The values of the critical exponents as well as the equality 

and inequality relations provide insights into the singularities in thermodynamics 

functions near the transition and broader understanding, and characterization the nature of 

the phase transition in a system.

5.1.2 Finite Size Scaling

Phase transitions are well defined only in the thermodynamic limit of an infinite 

number of constituent particles. Protein molecules are finite in size. A typical protein of 

100 amino acids has on the order of 103 atoms, and / n  is not close to zero, showing 

that it is not near the thermodynamic limit. Fortunately, it is possible to calculate critical 

exponents and extrapolate to critical behavior in the limit of infinite size by analyzing 

phase-transition-like behavior in finite systems using finite size scaling. Finite size 

scaling investigations have been very valuable in investigations of Ising systems,



homopolymer transitions, and other systems composed of identical units. A brief 

discussion on finite size scaling pertinent to the dissertation is presented here. More 

detailed treatments can be found elsewhere [74].

Consider a d-dimensional system in the thermodynamic limit that undergoes a 

phase transition at a finite critical temperature Tc{<»). The critical exponents are d 

dependent and obey the hyperscaling relation vd = 2 -  a  = 2/3 + y . In the thermodynamic 

limit, a lattice of size L, x ... x Ld means that each Lj-*». In the case of finite system size, 

some Lj are allowed to stay finite. The main aim of finite size scaling is to determine the 

L dependence of various physical quantities when the system undergoes a phase 

transition. Near the critical point, it can be shown [74] that the susceptibility, heat 

capacity and the correlation length scale with system size L as follows:

For infinite systems, these parameters display singularities at T-Tc whereas for finite size 

systems, these parameters exhibit peaks at Tc The dependencies of these parameters on t 

exhibit universality if t is scaled as

This scaling will be used later in analyzing heat capacity calculations.

Thus, the critical exponents can be directly calculated from the size scaling of 

these thermodynamic quantities. In the present work, the dimension of a protein chain 

undergoing a structural transition is difficult to associate to a certain integer (or non­

integer) number and therefore the dimension is kept as d without assigning a value.

X ~ L r‘\  C ~ L a' \  % ~L (5.5a, b, c)

(5.6)



5.2 Effect of Hydrophobic Interaction in Protein Structural Transitions

Since the hydrophobic interaction plays a major role in the dynamics of the 

protein chain and the stability of the native state, it is important to understand how the 

nature of the transition depends on the strength of the hydrophobic interaction. 

Simulations have been performed for a model four-helix bundle protein [Fig. 5.2] in 

order to investigate the nature of the unfolding transition by calculating critical 

exponents. This model protein contains the secondary structural elements of the 

individual helices and the tertiary structure of the bundle. The helices are formed with 

repeating sequences of -HHPPHHPP- and the loops connecting the helices are -PPPP-. 

The free energy of the system is lowered and the structure is stabilized when hydrophobic 

sidechains are buried in the middle of the bundle so that they are in contact with each 

other in a solvent-excluded volume. Each helical turn is composed of four amino acids 

with the sequence -HHPP-. When the protein is in its native state four-helix bundle, each 

H  amino acid has its side chain pointing into the middle of the bundle where it makes a 

hydrophobic interaction with one hydrophobic sidechain from a neighboring helix [Fig. 

5.2(a)].

5.2.1 Finite Size Scaling in a Protein Heteropolymer

Recent studies using finite size scaling techniques to investigate structural 

transitions in a single helix [68, 69] used a homopolymer polypeptide in which the 

repeating unit was alanine and four different chains up to length 30 were investigated. In 

the present work, I use a heteropolymer chain composed of two distinct types of amino 

acids; hydrophobic and hydrophilic. The hydrophobic interactions between buried



sidechains stabilize the tertiary structure of the four-helix bundle. The identical repeating 

unit that is varied is not the individual monomers, but the number of helical turns, N. 

First, simulations are run for a four-helix bundle in which each helix had four turns plus 

an additional half turn that leads into a loop segment connecting two helices, giving 

N= 18. Then, one turn from each helix is removed, giving AT=14, and the simulations are 

re-run. This procedure of removing one turn from each helix is repeated. In this study I 

have used N= 10, 14, or 18, corresponding to chains of amino acid length of 51, 67, or 83 

as shown in Fig. 5.2(b-d). If the four-helix bundle was composed only of helical 

segments, then the ratio of the number of helical turns to the number of amino acids 

would be the same for all chain lengths, since each helical turn contains four amino acids. 

This is not true, due to the connecting loops that join the four helices into a bundle.

To study the effect of the hydrophobic interaction strength on the nature of the 

structural transition using finite size scaling, the number of turns in each of the four 

helices is progressively reduced. As explained below, critical exponents are determined 

from slopes of graphs that plot different properties as a function of N. If finite size scaling 

is applicable, then each plot will have a unique critical exponent and therefore each plot 

should be a straight line. If finite size scaling is not applicable, then there will not be a 

well-defined critical exponent and a plot will not be a straight line. It is found that when 

calculating slopes, the three points for N= 18, 14, 10 always fell nicely on a straight line 

for all of the plots. This consistency supports the usefulness of finite scaling for this 

system.



Fig. 5.2. (a) Ball and stick display of a four-helix bundle with the number of helical turns 

^=18, corresponding to a chain length of 83 amino acid residues (top view). Side view of 

the four-helix bundle (b) N=10, chain length of 51 amino acid residues, (c) N=\4, chain 

length of 67 amino acid resides (d) 7V=18, chain length of 83 amino acid residues.
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Fig. 5.3. Representative data from a single simulation showing the evolution o f the 

helicity and radius of gyration (Rg) of a four-helix bundle. Parameters used were E(H-H)= 

-1.10 Kcal/mol at 7=310 K.

Figure 5.3 displays representative data from a single simulation using a four-helix 

bundle with N=18, at a temperature of 310 K and a hydrophobic-hydrophobic interaction 

strength of E(H-H)= -1.10 Kcal/mol. The strengths of the other interactions were set at: 

hydrophilic-hydrophilic interaction E(P-P)= 0.10 Kcal/mol, hydrophobic-hydrophilic 

interaction E(H-P)= 0.50 Kcal/mol, local propensity EL= -0.50 Kcal/mol, cooperative 

interaction E^= -0.50 Kcal/mol, hydrogen bond and dipole interaction £(HBDIP)= -0.25 

Kcal/mol, £(SCREP)= 1.50 Kcal/mol. The relative strengths of the interaction parameters 

are chosen to be qualitatively similar to the experimental results and scaled so that the 

corresponding transition temperature is close to body temperature.



Shown in Fig. 5.3 is the time evolution in terms of MC steps of both the radius of 

gyration (Rg) and the helicity of the four-helix bundle. Our definition of helicity is the 

fraction of amino acids that are in a helical configuration. All simulations are run for 

lxlO6 MC steps in order to obtain sufficient data before and after the transition. The 

structural transition accompanying the denaturation can be clearly discerned. The radius 

of gyration (Rg) changes in two fashions. The average Rg becomes smaller as the system 

makes a denaturing transition from the native state to a compact molten globule, but the 

fluctuations in Rg become large due to fluctuations between the molten globule and the 

extended random coil. (At higher temperatures or weaker hydrophobic interaction 

strengths, the denatured state not only has larger Rg fluctuations than the native state, but 

spends more time in the extended random coil configuration and the average Rg of the 

denatured state becomes larger than the Rg of the four-helix bundle.) Figure 5.3 also 

shows that the fraction of amino acids in a helical configuration drops almost to zero 

when the protein denatures.

Using a Monte Carlo histogram method, the specific heat capacity per turn, CN, is 

calculated for different system sizes and different hydrophobic strengths as a function of 

temperature [68]:

C„ = (E * -E 2)/NT2 (5.7)

In Eq. (5.7), N  is the total number of turns in the four-helix bundle, T represents RT, 

where R is the universal gas constant and T is the temperature in Kelvin. The averaged 

quantities in the above expression are calculated with the histogram technique.



Fig. 5.4. Heat capacity per turn, CN, as a function of temperature at E(H-H)=  -1.10 

Kcal/mol for various chain lengths. As the system size increases, the transition 

temperature increases, the peak height increases, and the relative width decreases.

TABLE I. The transition temperature Tc from the peak of CN, the height C^(max), and T, 

the full width at half height of the peak of CN, as a function of both N  and the strength of 

the hydrophobic interaction, E(H-H), given in Kcal/mol.

E(H-H) N Tc Cyv(max) r

18 311 137 12.3
-1.00 14 301 120 14.3

10 286 95.2 17.6
18 312 113 14.3

-1.10 14 303 93.3 18.1
10 288 70.4 24.9

18 317 82.7 19.0
-1.20 14 307 69.5 23.9

10 289 43.2 47.6
18 321 72.7 21.6

-1.30 14 308 52.4 32.5
10 309 31.2 75.0



The reliability of this technique was first tested by comparing the results with 

direct calculation of the heat capacity from runs at different temperatures. It was found 

that the histogram technique yielded transition temperatures and relative peak heights that 

agree well with the peak position and height given by the runs performed over a range of 

temperatures. The results of the rest of the paper are derived using the faster histogram 

technique with simulations at 310 K.

To get a comprehensive histogram of the dynamics that thoroughly 

samples the energy space, 50 independent Monte-Carlo simulations were used for each 

hydrophobic interaction strength. Each simulation started with the same four-helix bundle 

configuration, but with a different random number seed. Figure 5.4, with E(H-H)= -1.10 

Kcal/mol, shows the temperature dependence of the heat capacity for four-helix bundles 

with /V=10, 14, and 18, corresponding to 2.5, 3.5, and 4.5 turns per helix, respectively. It 

is clear from the figure that the transition temperature increases as the system size 

increases, i.e. TC=TC{N). This is likely due to increased stability of the four-helix bundle 

due to an increase in the number of hydrophobic sidechains in the core. Also, the peak is 

higher and sharper for the largest and most stable four-helix bundle. The results are 

summarized in Table I for several different hydrophobic strengths.

In order to determine the order of the transition between the native state and the 

unfolded state, critical exponents are calculated using finite size scaling theory. In this 

analysis I follow the work of Alves [69] and equate the relevant linear length L to Nlld. As 

with Alves, no assumptions are made about relating d to a particular integer geometrical 

dimension and values for the combined quantity dv  are determined, where v is the 

correlation critical exponent. Equation. (5.6) discussed scaling of temperature



differences, t~ L ' v. An important choice of I is the width of the specific heat capacity 

curve Tc. Using Lr-N"* and t~L~'lv gives TC(N) ~ W IMv so that

In r c (N )    In N  + In r .  (5.8)
dv

where r o is independent of N. In Eq. (5.4), we use the customary definition of 

rc(A0 = T2(N) -  T^N) such that C^(7J) -C N(T2) = jC n(Tc) and the critical temperature 

TJN) is the temperature where C^T) has its maximum. Similarly, the size of the heat 

capacity peak scales as CjJ““ ~ N a,dv where a  is the specific heat critical exponent, so 

that

lnCJT1 lnAT + lnC0 (5.9)
dv

where Ca is independent of chain length N. Group theoretical arguments predict for a 

first order phase transition values of dv=ce=l [69,76, 77].

I now study the behavior of the critical exponents as the strength of the 

hydrophobic interaction changes. From the slopes of the plots in Fig. 5.5(a) and 5.5(b), it 

can be seen that the critical exponents change significantly as the strength of the 

hydrophobic interaction is increased. Table II gives the values of the critical exponents as 

determined from Figs. 5.5(a) and 5.5(b) and Eqs. (5.8) and (5.9). It can be that at the 

weaker hydrophobic strength, the critical exponents are near 1.0, implying a first order 

phase transition. As the hydrophobic interaction strengthens, the critical exponents 

deviate more and more from 1.0, showing that the transition is no longer first order. 

Another analysis discussed below is used to show that as E(H-H) increases, the transition 

shifts from first to second order.



(a)

In N
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In N

Fig. 5.5. (a) The width, Tc of the specific heat capacity curve versus the number of helical 

turns N  (b) The size of the peak of the specific heat, CV"", versus the number of helical 

turns N.



(T-Tc)N1/dv

Fig. 5.6. A scaling plot of the specific heat CN as a function of temperature for E(H-H) = 

-1.10 Kcal/mol showing that the different curves for/V=10, 14, and 18 all superimpose 

on top of each other.

TABLE II. Values of the critical exponents as determined from Figs. 5.5(a) and 5.5(b) 

and Eqs. (5.8) and (5.9).

E(H-H) d v  a
-1.00 L65 L03"
-1.10 1.07 0.871
-1.20 0.636 0.714
-1.30 0.468 0.677

5.3 Binder Cumulants and the order of transition

The above results on the order of the transition are tested using a different 

analysis by calculating the Binder’s reduced cumulant [75, 78], V(T,N), which is sensitive 

to the nature of a phase transition,



e 4(t ,n )
V(r,AQ = l — = .,V_ J 2 (10)

3E2(T,N)

For a second order phase transition, the minimum of this quantity, V^, is expected to 

approach 2/3 as 00. Binder cumulant curves are displayed in Fig. 5.7. Figure 5.7(a) 

shows the trend in the Binder cumulant as N  increases when E(H-H)= -1.10 Kcal/mol. 

We see in this figure that Vmin varies weakly with N, and that Vmin is approaching a 

limiting value that is well below 0.67. This is consistent with first-order dynamics. 

However, when E(H-H)= -1.40 Kcal/mol, as shown in Fig. 5.7(b), is a much 

stronger function of N  and appears to be approaching a limiting value close to 2/3. Thus, 

as E{H-H) increases, the transition shifts towards second-order behavior.

This trend towards second order behavior is also displayed in Fig. 5.8 which 

shows the Binder cumulant curves for N= 18 as E(H-H) is systematically changed. As the 

hydrophobic strength increases, the curves monotonically approach 2/3 and second order 

behavior. The validity of the various analyses is further strengthened if we note that 

T£N=00) can be approximated from the Binder cumulant curves as the temperature at 

which the curves for different N  cross. In Fig, 5.7(a), this temperature is at approximately 

320 K, which is very close to the limiting value of the position Tc of the heat capacity 

peak in Fig. 5.4, which also has E(H-H)= —1.10 Kcal/mol. In Fig. 5.7(b), where E(H-H)= 

-1.40 Kcal/mol, the curves cross at a higher temperature, showing, as expected, that Tc 

increases as E(H-H) increases.
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Fig. 5.7. Binder cumulant curves, (a) Binder cumulant as a function of N  for E(H-H)= 

-1.10 Kcal/mol showing a weak N  dependence, (b) Binder cumulant as a function of N  

for E(H-H)= -1.40 Kcal/mol, showing a much stronger dependence on N and approach to 

a limiting value close to 2/3.
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Fig. 5.8. Binder cumulant curves for /V=18 as E(H-H) (Kcal/mol) is systematically 

changed. The minimum approaches 2/3 as E(H-H) increases.

5.4 Summary

Monte Carlo simulations have been performed on a model four-helix bundle 

protein, which contains both secondary and tertiary structure. Multiple runs using 

different random number seeds were performed at each set o f conditions, i.e. 

hydrophobic interaction strength, temperature, and chain length, in order to have a good 

statistical sample of the systems’ behavior. Chains of different lengths allow us to apply 

finite size scaling theory to investigate the order of the structural transition from the 

native four-helix bundle state to a denatured configuration. The results from finite size 

scaling and the calculation of Binder cumulants on this particular system of four-helix 

bundle reveal that the order of the structural transition shifts from first order at weak



hydrophobic interaction strengths (e.g. weak hydrophobicity of the residues forming the 

hydrophobic core) towards second order as the hydrophobic interaction strength 

increases. In the case of weak hydrophobic interaction strength in the core, the unfolding 

transition is like a two-state system with a sudden jump in the energy time series from the 

native state to the random coil. However, for significantly stronger hydrophobic 

interactions in the core, the unfolding is more continuous in terms of energy change since 

the transition occurs from the native state to the molten globule (disorganized unfolded 

but compact state) that consists of many hydrophobic interactions.



FREE ENERGY LANDSCAPES AND KINETICS: PROTEIN ENGINEERING

A crucial aspect of protein folding and design is that the primary sequence of a 

protein must fold in a biologically relevant time of milliseconds or less [79, 80] to a 

stable native state [81]. The presence of non-native kinetic traps may significantly 

lengthen the overall protein folding time to the point of uselessness. I use a model a-tum- 

a  helical hairpin peptide to show how changing only a few amino acid residues along the 

sequence can greatly increase the speed and reliability of the folding process, as seen 

experimentally [82]. These results support the arguments of Zhou and Karplus [83] that 

removal of kinetic traps, obligatory or non-obligatory, is crucial for fast folding. The trap- 

free folding follows single exponential kinetics. The folding kinetics for the sequence 

with traps does not follow single exponential kinetics and reflects multiple distinct 

pathways for folding. Not only does the sequence with traps fold slower, but it is also 

less reliable because the traps can be almost as stable as the native state and prevent the 

sequence from fully folding. Both the kinetics and thermodynamics are quantified to 

show how protein engineering can be used to enhance protein folding.

6.1 Protein Engineering

The interplay between secondary and tertiary structure formation is of crucial 

consideration in protein engineering and the understanding of protein folding. When 

engineering a protein, it is worthwhile to look for principles that will make a design more 

effective. Detailed studies [84-86] have been carried out on the role of secondary



structure preference in sequence design and the effect of amino acid substitution on helix 

formation. [87]. In the case of helical hairpin designs, an important consideration for 

tertiary structure formation is getting the correct inter-helical contacts [88]. In my 

research, the primary sequence is engineered with a small number of amino acid 

substitutions. These substitutions are made in a way that does not affect the formation of 

helical secondary structure but does encourage the formation of native tertiary contacts 

between helices, which is the rate limiting transition step. The hydrophobic core of a 

protein is crucial for the folding process as well as stabilizing the protein once it has 

attained the native state. In this study, it is shown that the strategic placement of 

hydrophilic residues in the core can increase both the speed and reliability of the folding 

process, and still maintain the stability of the native state. This strategy is used by nature 

in the leucine zipper, and may be an important consideration in future human engineering 

of synthetic proteins.

6.2 Sequence Design: Strategic substitution of amino acids to remove kinetic traps

An amino acid sequence is designed which is similar to the de novo design of 

Fezoui et al. [89, 90] that forms a two-helix bundle in the native state. It has already been 

shown that this simple structure can be engineered in the laboratory [89-91], and has been 

proposed as a useful system for more detailed investigations. The two-helix bundle 

considered here in the model consists of 41 residues. Each helix contains 18 residues and 

a turn segment composed of five residues connects them. The amino acids in the helical 

regions are given a preference for forming helical secondary structures. The residues in 

the turn segment are not given any preference for forming specific structure.



The thermodynamics and kinetics of peptide chains are investigated with two 

slightly different primary sequences at the interface between the two helices. The native 

state of Seq A has all hydrophobic sidechains, H-H-H-H, along the interface of each helix 

as shown in Fig 6 .1(a). All four of the native state sidechain contacts in the core involve a 

hydrophobic sidechain from each helix. The folding dynamics gives rise to kinetic and 

thermodynamic structural traps which are configurations in which the protein spends 

significant time at an energy close to that of the native state. The deep traps occur when 

the helices are misaligned due to offset as shown in Fig. 6.1 (b).

Fig. 6.1. (a) Native state of two-helix bundle. All the side chains in the interface 

between two helices make hydrophobic contacts, (b) Three hydrophobic contacts in 

the interhelical interface stabilize the misaligned trap conformation. Two hydrophobic 

sidechains that are not making any contacts may lead to protein aggregation.



This sequence is compared to Seq B in which we slightly redesign the primary 

sequence in a way that removes the tertiary structural traps by strategically replacing a 

single hydrophobic residue of each helix with a hydrophilic residue. The misaligned 

structure that is quite stable for Seq A [Fig 6.1(b)] is not stable for Seq B [Fig. 6.2(b)]. 

The misaligned structure with Seq B still has three contacts between the two helices, but 

two of these contacts are repulsive because they involve H  from one helix and P from the 

other. Both sequences have the same turn segment composed of neutral residues that are 

neither hydrophobic (H) nor hydrophilic (P). In both sequences, the residues in the 

helices that are not at the interface are hydrophilic.

Fig 6.2. (a) Native state structure o f two-helix bundle for Seq B. Sidechains in the 

interface between two helices make three strongly attractive hydrophobic contacts a 

weakly repulsive hydrophilic contact in the native state, (b) Only one attractive 

hydrophobic contact and two repulsive hydrophobic-hydrophilic contacts make this 

misaligned trap conformation very unstable.



For Seq A, all four of the native state sidechain contacts in the core involve a 

hydrophobic sidechain from each helix. However, the non-native structure of Fig. 6.1(b) 

is a kinetic and thermodynamic trap in which the chain spends significant time at an 

energy close to that of the native state. This can be seen in Fig. 6.3(a), which is a time 

series of the behavior of Seq A. The difference in tertiary structure can be quantified by 

the parameter Q, which is the fraction of tertiary native contacts between the helices that 

exist at a given time. In the native state of Fig. 6.1(a) when all four interface contacts are 

properly made, Q= 1. The energy of the trap structure is almost as low as the native state 

because the misalignment still allows three hydrophobic interactions between the two 

helices. Due to the misalignment, none of these three hydrophobic interactions are native, 

and <2=0. During folding, the protein may spend a significant time in the deep traps and 

this increases the overall folding time. At lower temperatures, a chain that first falls into a 

trap may take so long to jump out that folding to the native state cannot occur in a 

biologically reasonable time. Thus, foldability is decreased by the presence of traps in 

two ways. Not only do the traps lengthen the average folding time, they also reduce the 

folding reliability (percentage of chains that fold to the native state). There is also the 

hazard that in the misfolded configuration, the unpaired hydrophobic sidechains may lead 

to unwanted and dangerous aggregation of misfolded proteins.

In spite of having one less hydrophobic interaction, the native state conformation 

with Q= 1 for Seq B is long lived and has an energy almost as low as the native state for 

Seq A. Though the native state is quite stable for both Seq A and Seq B, the non-native 

misaligned structure of Fig. 6.1(b) loses almost all of its stability if Seq A is converted 

into Seq B. The misaligned Q=Q structure has three hydrophobic contacts for Seq A and



is almost as stable as the native state, and acts as a long-lived kinetic trap. In contrast, the 

three sidechain interactions in the misaligned <2=0 structure for Seq B, Fig. 6.2(b), has 

only one hydrophobic contact. The other two sidechain-interactions are repulsive 

interactions between a hydrophilic sidechain of one helix and a hydrophobic sidechain 

from the other helix. The strategic substitution of one amino acid on each sidechain 

removes the kinetic trap for Seq B by destabilizing the misaligned structure and making it 

short lived.
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Fig. 6.3 Representative time series data for E  and Q for (a) Seq A in which a significant 

time is spent in the low E  conformations corresponding to misaligned structures where 

the value of <2 is still close to zero, (b) Seq B where the removal of the low energy non­

native structures is apparent.



Figure 6.3(a) contains a characteristic energy time series and Q time series for Seq 

A and Fig. 6.3(b) contains the same for Seq B. Figure 6.3(a) and Fig. 6.3(b) both display 

fluctuations in energy and Q due to folding and partial unfolding (0>O). However, Fig. 

6.3(a) has deep, long-lived traps where 0=0, which Fig. 6.3(b) does not have. The trap of 

Seq A slows down folding appreciably, as can be seen by the longer time scale of Fig. 

6.3(a) compared to Fig. 6.3(b).

63  Thermodynamics

In order to understand the connections between the thermodynamics and the 

folding kinetics, it is important to use structural parameters that reflect the crucial 

thermodynamic differences between Seq A and Seq B. I calculate the dependencies of the 

free energy on three different structural parameters: helicity q which is the fraction of 

residues in helical secondary structure, 0  which is the fraction of native tertiary contacts 

that have been formed, and dee which is the end to end distance. The free energy of a 

configuration with specific values of q and dee is calculated from F(q,dee)= -kT\nP(q,dee). 

The probability P(q,dee) is determined by counting the number of Monte Carlo steps 

during a simulation in which the chain is in a configuration with these values of q and dee. 

Figure 6.4(a) shows the contour plots of the free energy, F(q,dee), for Seq A and Seq B at 

different temperatures; below T \  near T \ and above T \ In the figure, the color represents 

the relative value of the free energy. The increasing darkness of the shades corresponds 

to the decreasing free energy. The native state free energy minimum is the basin around 

q~ 1 and de~l. The non-native minimum has low q and high dee.
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Fig. 6.4. Free energy contour plots for Seq A and Seq B. Darker shades correspond to 

lower free-energies (a) F(q,dee) as a function o f q and dee (b) F(Qrfee) as a function of Q 

and dee. As the temperature is lowered, the non-native minimum (darkest shade) of Seq A 

remains as a deep trap and shrinks in extent but the non-native minimum of Seq B 

remains broad, but becomes shallower.



The difference in amino acid sequence between Seq A and Seq B produces a 

major difference in energy in interhelical contacts formed by tertiary structure. Since the 

parameter q measures secondary, not tertiary, structure, it is not a good discriminator 

between Seq A and Seq B and this is manifested in the contour plots in Fig. 6.4(a) which 

are similar for both sequences. The thermodynamic difference between Seq A and Seq B 

is seen more prominently in Fig. 6.4(b), where I display the contour plots of free energy, 

FiQ’dee), as a function of Q and dee. Q is a measure of tertiary structure and can 

distinguish the misaligned structure from the native structure. Here, the non-native basin 

is the extended region of contours with 0 that are darker than the contours of the 

barrier separating the native minimum from the non-native minimum. As the temperature 

is lowered, the free energy landscapes of Seq A and Seq B change in different ways.

Free energy is a combination of enthalpy and entropy, F=E-TS. The non-native 

basin for Seq A is more localized than the non-native basin for Seq B. This is because the 

non-native minimum Fm  of Seq A is enthalpic and due to the low entropy, well- 

organized, but misaligned trap conformation of Fig. 6.1(b). The low free energy is due 

predominantly to three non-native hydrophobic contacts which lower E. High entropy 

unfolded molten globules and random coils with large dee contribute at outer portions, but 

do not contribute to the deepest part of the non-native minimum. In contrast, the non­

native minimum FNN of Seq B is due mostly to high entropy unfolded molten globules 

and random coils with a large range of dee. The enthalpy is not low because there are 

fewer enthalpy lowering interactions. As T is lowered, contributions to lowering the free 

energy from high S, unfolded configurations become less important. This decreasing 

entropic importance is displayed in Fig. 6.4(b) for Seq B. As the temperature is lowered,



the non-native basin continues to cover as much phase-space, but becomes less deep 

(lighter shading): FNN(322 K)-Fyvw(297 K)= -1.35 Kcal/mol. Seq A displays the 

decreasing importance of high entropy unfolded states in a different fashion. As the 

temperature is lowered, the depth of the non-native minimum remains as deep because it 

is mostly due to enthalpic contributions from hydrophobic interaction energies in the 

misaligned trap state: FAW(332 K)—FAW(307 K)= -0.01 Kcal/mol. Unlike Seq B, as the 

temperature is lowered and high S states lose importance, the extent of the basin 

decreases in size because only the outer regions of the basin are due to high entropy, high 

states. At 307 K, the non-native basin has significantly shrunk as compared to its size 

at 332 K.

The heat capacity as a function of temperature was calculated using the Monte 

Carlo histogram technique. I used a very long run near the transition temperature that 

undergoes large energy fluctuations so that it samples a large region of configuration 

space. To confirm that this heat capacity curve is correct, multiple simulations at seven 

different temperatures, which bracket the transition temperature, were performed. This 

assures that the configuration space is accurately sampled at high and low energies. As 

shown in Fig. 6.5, both sequences exhibit a distinct peak, implying that both fold through 

a first-order-like phase transition. The transition temperature T* for Seq A (324 K) with 

traps is ~15K higher than the transition temperature of trap-free Seq B (310 K). Seq A 

with the traps has a higher T ’ and is more stable because its native state has four 

hydrophobic contacts between inter-helical residues whereas, in order to remove the 

kinetic traps, Seq B has only three.
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Fig. 6.5. Heat capacity curves as functions of temperature. The sharp peaks imply a first- 

order-like transition.

6.4 Protein Folding Kinetics

The free energy surfaces and their temperature dependencies have a direct effect 

on the folding kinetics and fast folding requires the avoidance of traps in the free energy 

landscape. The importance o f traps is quantified by comparing folding times for trap- 

containing Seq A with Seq B which is designed to remove misfolded traps. Simulation 

time was converted to a reduced time with an estimate of each MC step as equivalent to 1 

ns of real time. Figure 6.6 shows the time evolution of the parameters Q (tertiary) and q 

(secondary) for both sequences A and B at temperatures 322 K and 307 K respectively, 

slightly below their respective transition temperatures.
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Fig. 6.6. Time evolution of the parameters q (helicity) and Q (fraction of native tertiary 

contacts) for Seq A and Seq B.

The parameter q measures the helical content of the chain but does not measure 

the relative positions of the two helices. Each of the trajectories are the ensemble 

averages o f 50 independent runs that consisted of several folding and unfolding time 

sequences as in Fig. 6.3. The formation of secondary structure, q, occurs at the same rate 

for both Seq A and Seq B, and occurs at time scales hundreds of times faster than 

formations of tertiary structure, Q. The high q, low Q structure is an extended, high dee 

configuration consisting of native secondary helical segments that are not yet in tertiary 

contact. Quick formation of secondary structure is important for fast folding [92], The 

secondary helical content begins to form extremely quickly, within a few nanoseconds, 

and reaches 50% for both sequences by 10 p,s. This preorganized secondary structure 

must then wait for the folding process to be completed by the formation of the tertiary 

contacts between the helices. This waiting time differs significantly for Seq A compared



to Seq B. The presence of kinetic traps lengthens the folding time for Seq A to greater 

than 0.01 s, consistent with the 0.5 s folding time of apomyoglobin described in ref. 93, 

which folds through an obligatory intermediate [83]. Seq B, engineered not to have 

kinetic traps, has only fast track [94] folding routes and undergoes tertiary folding on 

millisecond timescales, an order of magnitude faster than Seq A. The fast formation of a- 

helical secondary structure and the relative slowness of the rate-limiting formation of 

tertiary structure for both the sequences are consistent with the folding of helical proteins 

[83,95].

In Figs. 6.7,1 show how the folding and unfolding times of Seq A and Seq B vary 

with temperature. The times given in Figs. 6.7 are median first passage times, MFPT. The 

folding MFPT is the time at which half of the simulations starting in the same random 

coil configuration (with different random number seeds) have folded. The error bars give 

a measure of the uncertainty in the MFPT calculated from the simulations. To calculate 

the error bars, the following analysis was performed. First, the 200 folding times were 

arranged in a random order. The first 40 folding times are removed and the MFPT of the 

remaining 160 was calculated. Then the first 40 times were re-inserted back into the list 

and the second group of 40 (41-80) was removed, and the MFPT for this second group of 

160 times was calculated. The MFPT for each of the five groups of 160 runs were 

calculated. The average MFPT is then plotted with the standard deviation as the error 

bars.
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Fig. 6.7. Median first-passage times for folding and unfolding (a) Seq A and (b) Seq B.

Figure 6.7(a) for Seq A and Fig. 6.7(b) for Seq B display crucial differences in 

MFPT folding times that are the direct result of the differences in their free energy 

landscapes and their temperature dependencies discussed above. The extent of the non­

native minimum affects the probability for a folding route to enter that region. The deeper 

the minimum, the longer the time that is required to leave the region and fold towards the 

native state. The detailed nature o f the contours, such as gradients, affects both the



probabilities and times for the various folding routes. For our model, it is not possible to 

determine all the possible folding routes directly, which is why I use enough computer 

runs to obtain a good statistical sample.

Seq A with deep traps has an MFPT that is longer than Seq B at all temperatures. 

The MFPT for Seq A is longer because it is due to a combination of two qualitatively 

different types of folding routes. The fast-track quick folding routes avoid the region with 

the non-native minimum. The other type of routes enters the region of the non-native 

minimum and spends significant time in traps and has long folding times. The folding 

routes of Seq B also includes routes that are direct as well as routes that go through a 

region with non-native minima. In contrast with Seq A, the region of non-native free 

energy minima for Seq B is more diffuse and does not contain a deep, well-defined trap. 

Folding paths entering the non-native minima region escape more quickly than those 

entering the trap region of Seq A. The routes for Seq B may take a little longer to fold but 

are not qualitatively different than the fast-track direct routes.

The temperature dependencies of the free energy landscapes also have a direct 

effect on the temperature dependencies of the MFPT. As the temperature is lowered, the 

folding MFPT for Seq B decreases. That is because its non-native minimum becomes less 

deep and easier to leave. Table I shows that as the temperature is lowered from 327K 

down to 292 K, a temperature drop of approximately 10%, FNN drops by 40%. Thus, the 

ease and rate of escape from the non-native minimum, which depends on exp(~FNN/RT)y 

increases which lowers the escape time and decreases MFPT. For Seq A, as the 

temperature is lowered, the non-native free energy minimum remains at approximately 

the same depth, as can be seen in Table I. This causes longer delays in the traps at low



temperatures. However, the region of the non-native minimum also shrinks in extent, 

which decreases the probability for a folding route to fall into the trap. At mid- 

temperatures, these two effects tend to cancel and produce an MFPT that is independent 

°f T. As T is further lowered, the extent of the region of the minimum stops shrinking and 

the constant depth makes it harder to leave as T is lowered. This causes the MFPT to 

increase at the lower temperatures in Fig. 6.7(a).

TABLE I. Free energies calculated using F(Q,dee)= -kT  InP(Q,dee) for the non-native 

(NN) minimum, barrier (B), and native state minimum (N) for the contour plots for Seq 

A and SeqB.

T( K) 7T(Kcal/mol) Fnn Fb FN

Seq A

302 0.60 —1.88 0 -3.11
307 0.61 —1.87 0 -2.32
312 0.62 -1.85 0 -2.03
317 0.63 -1.71 0 -2.48
322 0.64 -2.00 0 -2.39
327 0.65 -1.42 0 -1.08
332 0.66 -1.88 0 -1.20

Seq B

292 0.58 -2.28 0 -3.84
297 0.59 -2.42 0 -3.35
302 0.60 -2.33 0 -3.10
307 0.61 -2.76 0 -3.26
312 0.62 -2.95 0 -2.77
317 0.63 -3.27 0 -2.60
322 0.64 -3.77 0 -2.23
327 0.65 -3.89 0 -2.04



6.4.1 Fast and slow folding routes

In order to more precisely relate the free energy landscapes to kinetic pathways 

and quantify the difference between trap-free fast folding pathways versus pathways with 

traps, characteristic folding times (r) were calculated by fitting survival probability 

curves S at each temperature

S(t,T) = l-n(ttT) (6.1)

where n(t,T) is the fraction of the runs that have “succeeded” by time step t at 

temperature T. For folding simulations that start in a random coil unfolded configuration, 

“succeeding” means that they have folded based upon the criteria that Q-0.75 or higher. 

For simulations investigating unfolding, the chain is initialized to be in the folded 

configuration and succeeding means unfolding to 0=0.25 or less. Fig. 6.8(a) and 6.8(b) 

show representative curves of survival probability of the folding runs (probability to 

remain in the unfolded state) for Seq A and Seq B respectively. The probability to remain 

in the unfolded state decreases from 1 when all the mns are in the unfolded state to zero 

when all the runs find their native states. For Seq A, the folding rate is fastest at T* and 

becomes slower for both T>T* and T<T’. For Seq B, there is a consistent order of faster 

to slower as the temperature is increased.

Sine the kinetics are complicated due to the presence of traps in the case of Seq A, 

it was found that the curves could not be fit well with a single exponential function. For 

this sequence, the protein folding kinetics have two qualitatively different dominant 

pathways: one direct route which leads the unfolded chain into the native state without 

going through the traps (route 1) and the other that goes through the kinetic traps created 

by the relatively stable misaligned structures (route 2).
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Fig. 6.8. Survival curves for folding runs (probability of the chain to remain in the 

unfolded state) for (a) Seq A and (b) Seq B.



Simulations for Seq A that fold quickly by avoiding traps (route 1) were separated 

from those which first spend time in the trap (route 2) on the way o the native state, as 

shown in Fig. 6. 9. A simulation was categorized as route 2 if its energy fell and stayed 

below —70 Kcal/mol for at least 5% of the stability time of the native state but with Q—0. 

The energy of —70.0 Kcal/mol was chosen since all of the misaligned trap conformations 

are captured with such a criterion. The Q=0 criterion is necessary to distinguish traps 

because the native state has an average energy of -71.4 Kcal/mol at a temperature close 

to T* and can go as low as -77.8 Kcal/mol. The duration criterion is necessary because 

the chain can have an energy below -70 Kcal/mol and Q=0 but be in a configuration that 

is not a misaligned trap. These other configurations are very flexible and unstable and 

very quickly jump to higher energy configurations. The duration criterion was robust in 

its ability to pick out the runs that went through kinetic traps. Increasing the duration 

criteria from 5% to 10% did not significantly change the results and this supports the use 

of the criteria for correctly separating the runs. A run is considered to have followed a 

direct route to the native state if it does not fall below -70.0 Kcal/mol or in case it does, it 

does not last long enough. For each temperature, almost half of the runs followed the 

faster route 1 and the other half followed slower route 2. In retrospect, a more precise 

way to distinguish runs that went into a kinetic trap would be to have the computer model 

periodically print out if any of the non-native interhelical contacts of the misaligned 

configuration have been formed. Instead of Q, these could be called Q \ The chain will be 

in the misaligned configuration if Q’=3, or possibly even if (7-2.
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Fig. 6.9. Schematics of fast folding route 1 and the slow folding route 2. The formation of 

a-helical secondary structure is highlighted.

Once the folding routes for Seq A have been separated, the survival functions for 

route 1 and route 2 separately can each be well fit by single exponential functions (not 

shown). At a given temperature, the characteristic folding times, r, and r 2 determined 

from the separate fits to route 1 and route 2 were then used to fit the survival function 

from the set of all the runs, regardless of their paths, with a double exponential function,

S(t,T)= a1e~tlT' + a2e~l l r i . The survival function at each temperature is always well fit by 

a double exponential function which is used to get the prefactors a x and a2. As an 

example, the fit for the survival function at 307 K (below 7”) is displayed in Fig. 6.10. 

The survival functions from the unfolding runs fit well with single exponential functions. 

Table II summarizes the fit parameters. The shorter folding time scales are due to the runs 

following route 1 and the longer time scales are from the runs that followed route 2. The 

temperature dependence of both the folding and the unfolding characteristic times from 

the fits for Seq A are displayed in Fig. 6.11(a).



Fig. 6.10. Representative fits with single and double exponential functions to the survival 

function from the computer simulations for Seq A.

TABLE II. Fit parameters from the fitting of survival functions of Fig. 6.8(a) with a 

double exponential function S  = axe~t,Xx + a2e~t,Xl. x x and x 2 are first determined from 

the separate single exponential fits to route 1 and route 2, and then a x and a2 are 

determined from the double exponential fit to S of all the combined runs of Fig. 6.8(a). N x 

is the number of routes, out of a total of 200 runs, following route land N2 is the number 

of remaining runs following route 2. The characteristic times are given in MC steps.

r(K) Nt a. r, (MC) n 2 a2 t2 (MC)

297 96 0.99 6.08x10s 104 1.02 1.13xl07
302 106 1.02 8.85x10s 94 1.14 1.02xl07
307 93 1.01 8.86x10s 107 1.42 5.72xl06
312 95 1.01 9.49x10s 105 1.24 6.12x10s
317 95 0.99 1.09x10s 105 1.38 4.69xl06
322 99 1.04 1.41xl06 101 1.56 4.25xl06
327 108 1.01 1.91x10s 92 1.10 7.72xl06



For Seq B, it was found that at each temperature, the survival function can be fit 

nicely by a single exponential S(t,T)= a exp(-f/r) where r  is a characteristic folding time 

which is temperature dependent The results from the fits are summarized in Table III and 

the dependence of ron  T is displayed in Fig. 6.11(b).

The time scale of fast folding routes (route 1) for Seq A are similar to the folding 

times for trap-free Seq B at all temperatures. However, the slower folding time scales of 

route 2 for Seq A follow a U shaped dependence with the temperature due to the presence 

of the traps. When the temperature is lowered from above T \  route 1 and route 2 of Seq 

A, and Seq B display a decrease in folding time. Unlike route 1 and Seq B, at lower 

temperatures, route 2 has an increase in folding time because of increased difficulty in 

climbing out of the kinetic trap.

TABLE HI Characteristic folding and unfolding times from single exponential fits for the 

survival curves in Fig. 6.8(b) (Seq B)

T(  K) r - f o l d  (MC) t  - u n f o ld  (MC)

282 5.07x10s 8.32x10*
287 6.00x10s 5.72x10*
292 6.17x10s 3.67x10*
297 7.71x10s 2.84x10*
302 l.OOxlO6 1.85x10*
307 1.27x10s 1.48x10*
312 1.67x10* 9.24x10s
317 2.80x10* 5.64x10s
322 4.31x10* 3.82x10s
327 6.11x10* 2.54x10s
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Fig. 6.11. Characteristic folding and unfolding times for (a) Seq A and (b) Seq B as a 

function of temperature determined by fits to the survival function S(t,T). At each 

temperature Seq A folding is best described by the combination of two exponential 

processes whereas Seq B folding is best described by a single exponential function at 

each temperature. Unfolding is well described by a single exponential at all temperatures 

for both Seq A and Seq B.
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Fig. 6.12. Temperature dependencies of diffusion constants. Seq A fast folding route 1 

has a similar dependence to Seq B, implying that they both fold without spending time in 

traps. Seq A slow folding route 2 has a much different temperature dependence.

The characteristic times obtained from the survival functions can be used to 

determine a diffusion constant D from the relationship [96] D(T)=<AQ2> /r  and are 

displayed in Fig. 6.12. We see that D for the fast folding route 1 of Seq A is similar to 

Seq B in magnitude, and they have a similar temperature dependence with a temperature 

offset due to the difference in their T ’. DAI and DB both decrease as T  increases because 

the unfolded free energy minimum becomes deeper because it is due to high entropy 

configurations. Route 2 of Seq A has a significantly smaller D at all temperatures. Unlike 

Da/ and D b, D a2 increases with temperature because as the temperature increases, it 

becomes easier to get out o f the kinetic trap whose free energy minimum is 

predominantly enthalpic and remains constant.



Using a lattice model simulation that generates folding dynamics consistent with 

experimental and molecular dynamics simulations of helical bundle proteins [83, 95] I 

explained and quantified the connection between the structural free-energy landscape and 

folding kinetics for a peptide containing secondary and tertiary structure. I have shown 

how simple protein engineering, by changing the hydropathy of a small number of amino 

acids, can greatly affect the free energy landscape and increase folding speed and 

reliability by destabilizing kinetic traps and favoring fast tracks. These results have 

general applicability in protein engineering as well as for understanding the mechanisms 

of protein folding.



CHAPTER VII 

CONCLUSIONS AND FUTURE DIRECTIONS

The complexity of the Protein Folding Problem has attracted researchers from a 

variety of fields and it has been one of the most challenging problems in molecular 

biology for decades. Progress has been made during recent years, both experimentally 

and theoretically. Since the function of a protein is intimately related to its three 

dimensional structure, which is determined by its primary sequence, an insight into the 

sequence-structure relation will allow the design of novel proteins that are engineered to 

cany out specific molecular tasks. Thus, a deeper understanding of the Protein Folding 

Problem will have a tremendous impact on on biomedicine and nanotechnology. In this 

dissertation, I focused on quantifying how various changes in the primary sequence of 

amino acids can greatly affect the dynamics of folding. These substitutions changed 

either the size of the affected amino acid or its hydropathy. I also explored various 

statistical mechanical and thermodynamic theoretical techniques to quantify the effects of 

the amino acid substitutions on the folding process.

I investigated the excluded volume entropic effects on the native state stability of 

a simulated four-helix bundle protein. The lattice model I used allowed me to 

systematically change the chain thickness in two ways: by changing the size of the 

sidechain and by changing the soft-core repulsion part of the backbone interaction which 

is equivalent to changing the size of the backbone. The results show that increasing the 

size of the sidechains in the water-exposed surface significantly increases the relative 

stability of the native state compared to the biologically useless molten globule. In the



case of the four-helix bundle, the effect of the excluded volume is more important than 

the hydrophilicity of the water-exposed sidechains. This result suggests that a strategic 

placement of residues with sidechains of particular sizes may be an important 

consideration in protein engineering. Relevant to the synthetic polymers, the results also 

show that increasing backbone size increases the relative stability of the native state. 

Also, the unfolding transition changes its nature as a function of excluded volume. The 

greater the excluded volume, the sharper is the heat capacity peak at the transition 

temperature which implies that the structural unfolding transition becomes more like a 

first order thermodynamic phase transition in an infinite system.

Another investigation dealt with the effect of changing the strength of the 

hydrophobic interaction on the stability of the native state, and the nature of the structural 

transition. I showed that even in a protein, it is possible to choose a valid repeating unit 

that allows the finite size protein folding or unfolding structural transition to be analyzed 

as a phase transition. This allows the nature of the transition to be studied using finite size 

scaling theory. Finite size scaling on unfolding dynamics of a model four-helix bundle 

shows that the order of the phase transition depends on the hydrophobic interaction 

strength. For relatively weak (but strong enough to assure native state stability) 

hydrophobic strength in the core, unfolding is a first-order-like transition. Unfolding is 

shifted from first-order towards a higher-order, more continuous transition when the 

hydrophobic interaction strength is significantly increased. Once folded, the increase in 

the hydrophobic strength increases the stability of the native state and the unfolding 

transition temperature is raised. However, the relative stability of the molten globule 

compared to the native state is also increased due to non-native hydrophobic contacts.



During the folding process, a chain that collapses to the molten globule may not be able 

to leave to continue folding to the native state. This could make folding less reliable and 

therefore substituting amino acids in the core with other amino acids that are significantly 

more hydrophobic is not preferable. A small increase in the hydrophobicity of the core 

residues may be helpful to increase the stability of the native state.

The dissertation culminated in a chapter describing my research on the folding of 

a model a-helical hairpin peptide. The a-helical hairpin peptide forms a two-helix bundle 

in the native state and offers an important model system for studying the kinetics and 

thermodynamics of helical proteins. I showed how simple protein engineering, by 

selective substitution of a small number of amino acids, can enhance the folding process 

by making it faster and more stable. I investigated this on a fundamental level by 

showing how the enhanced folding can be explained in terms of the effect of the 

substitutions on the free energy landscape. I showed how the substitutions remove kinetic 

traps in the free energy landscape and how this increases the speed and reliability of the 

folding. The results from the analysis have general applicability in the design and 

engineering of helical proteins.

Having used a variety of statistical mechanical and thermodynamic techniques in 

the work presented in this dissertation, the direction for future work is clear. I showed 

that there are several ways that protein folding can be enhanced by strategic substitution 

of amino acids. I quantified these important effects in chapters IV and V by calculating 

heat capacities, correlation functions, critical exponents, and Binder Cumulants. In 

chapter VI, I investigated the dynamics on a deeper level by calculating the free energy 

landscape. At this level, I was able to explain and predict the changes in various



thermodynamic and statistical mechanical parameters that describe the dynamics of the 

folding process. The next step is to go to the deepest possible level of understanding. This 

is to enumerate the states of a protein as a function of energy and, equally important, to 

describe their structural connectivity, i.e. their relative ease of interchange. The structural 

connectivity of microscopic configurations is where the complexity of the system is 

manifested on the most fundamental level.

This research might be carried out as follows. The computer model can be used to 

determine how many different configurations (given by the model as R-state sequences) 

and their energies are visited at a given temperature. Changes of configuration in the 

computer model require specific structural moves that connect the configurations and 

prevent unphysical structural transitions. The allowed moves have attempt probabilities 

that are weighted by the number of amino acids that participate and therefore impose 

statistical mechanical constraints. The model also imposes thermodynamic constraints 

through the Metropolis test. These combine to provide the visitation probability with the 

ability to act as a measure of the connectivity, though other measures may be found that 

are more valuable. The visitation probability is the number of times a specific 

configuration is visited during a run. A configuration can be defined by its sequence of In­

states. It is also necessary to categorize each structure in terms of its secondary and 

tertiary structure and how close it is to the native state. Categorizing a configuration by 

its energy is important but not sufficient because of degeneracy; i.e. several 

configurations may have the same energy. Keeping track of the energies of the different 

states is important because it will allow the calculation of the average energy as a 

function of temperature. The counting of the microscopic states by their configuration



and their visitation probabilities are important because they will allow the calculation of 

the entropy as a function of temperature and average energy. The calculation of entropy 

and average energy as a function of temperature and structural organization will allow the 

calculation of free energy, and all other statistical and thermodynamic properties.

The amount of information to describe a single configuration is large, and 

quantifying the connectivity in a multi-dimensional hyperspace will also be large. 

Therefore, investigations will be theoretically and computationally limited initially to 

small chains. If the states and their connectivity can be enumerated, all aspects of the 

dynamics can be calculated, such as entropy, free energy, kinetic rates of folding, order of 

phase transitions, heat capacities, etc. The calculation of entropy and free energy will 

allow the determination of whether there is a preferred route through configuration space 

that the chain will always follow to a well-defined free energy minimum. This is a 

characteristic of folding to a native state. This will lead to the ability to predict if a 

primary sequence of amino acids has a native state and what it looks like. This will also 

give the ability to predict how a change in the amino acids of the primary sequence will 

change the free energy landscape, and the effect that it may have on the shape and 

stability of the native state. These predictive abilities, based upon the underlying physics 

of the amino acid chain, will then solve the Protein Folding Problem.
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