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ABSTRACT OF THE THESIS

NONPARAMETRIC ASSESSMENT OF SAFETY LEVELS

IN ECOLOGICAL RISK ASSESSMENT (ERA)

by

Limei Chen

Florida International University, 2003

Miami, Florida

Professor Ling Chen, Major Professor

In ecological risk assessment (ERA), it is important to know whether the exposure that

animal species receive from a chemical concentration exceeds the desired safety level.

This study examined several statistical methods currently being used in ecological risk

assessment and reviewed several statistical procedures related to this subject in the

literature. Two large sample nonparametric tests were developed for this study. Monte

Carlo study showed that these tests performed well even when the sample size was

moderately large. A real data set was used to show that the new methodologies provide a

good method for assessing the potential risks of pesticides residues at an investigated site.
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CHAPTER I

INTRODUCTION

This study examines the question of what is the more effective way to determine if

the potentially affected fraction (PAF) of a species by a specific toxic substance exceeds

10% in an ecological risk assessment (ERA) study. In such a study, 10% is an

established threshold which represents a significant risk. The research develops two

nonparametric test procedures to assess if the 9 0 th percentile of an exposure distribution is

significantly less than the 10 th percentile of a species sensitivity distribution.

An ERA consists of three phases: problem formulation, risk analysis, and risk

characterization (U.S. EPA, 1998). The two main components of the risk analysis phase

for an ERA are the exposure analysis and the effects analysis. The former looks at the

magnitude and duration of an ecological entity or entities' exposure to a stressor while the

latter examines the range and extent of possible effects from the stressor. The effects

analysis portion for some modern ERAs have relied upon available toxicity data that can

be statistically analyzed using one of several statistical distributions such as: the logistic,

the normal, the lognormal or the triangular distributions. These "effect" distributions for

effects are termed species sensitivity distributions (SSDs) and interpretations of risk have

utilized benchmark values for exposure to extrapolate a PAF of species from a SSD. This

procedure gives a characterization of potential risks by integrating results from a
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distributional analysis of both the effects and exposure in an ERA.

A set of methods was developed for risk assessment of pesticides by a team of

scientists, the aquatic risk assessment and mitigation dialogue group (ARAMDG),

assembled by society of environmental toxicology and chemistry (SETAC) for the

national agricultural chemical association (NACA) and the U.S.EPA (Baker et al., 1994).

The ARAMDG showed that the quotient derived from the p,10 0 '" percentile of an

exposure distribution and the p 210 0 'h percentile of an effects distribution may be a

conservative tool for screening potential hazards, many published risk assessments in

North America have utilized this comparison as a portion of their risk characterization

(Campbell et al., 2000; Giesy et al., 1999; Hall, Jr. et al., 1998; Hall, Jr. et al., 1999; Hall,

Jr. et al., 2000; Klaine et al., 1996; Maund et al., 2001; Solomon et al., 1996).

As discussed by ARAMDG, an ERA that relies solely on the protection of a certain

percentage of species (e.g., 10%, 5%, etc.) may not be protective if species of

significance are below the specified percentile on a SSD. In choosing a percentile from a

distribution of acute or chronic effects, one makes the assumption that protecting a

certain amount of species will be protective of the structure and function of an ecosystem

and that the available single-species toxicity tests have relevance as representatives of an

ecosystem to be protected or the "universe" of species in the environment when deriving

quality criteria (Baker et al., 1994). Maund et al. (2001) gave supporting evidence for

using the tenth percentile of acute distributions based upon ecologically significant
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effects observed at higher concentrations in field-type studies.

Some researchers prefer to use log-logistic probability density functions (PDFs) to

model species sensitivity. The log-logistic PDFs may be preferred over log-normal PDFs

due to their simplicity in calculations, particularly in the risk characterization for

pesticide mixtures. The logistic distribution has a heavier tail than the lognormal

distribution; hence it may allow a more conservative estimator of hazard concentrations

for effects (Wagner & Lokke, 1991).

Data points in SSDs are taken from endpoints in acute or chronic toxicity tests. In

acute distributions, data points are normally taken from tests used to derive LC/EC50s.

For chronic toxicity distributions, no effect concentrations (NOECs) are commonly used

in deriving SSDs. In acute toxicity tests, exposures to a contaminant are generally of

short duration (e.g., 24 to 96 hours) while chronic toxicity tests are conducted over a full

life cycle or early life stage of an organism. Responses measured for each of these types

of tests that are included in SSDs are ones that can be extrapolated to the population level

(i.e., survival, growth and reproduction) (ECOFRAM, 1999). Useful criteria for selecting

proper test endpoints from ecotoxicity data are stated elsewhere.

Newman et al. (2000) have studied species sensitivity data for a large set of chemicals.

They concluded that not all of the usually assumed distributions were supported by the

data. Therefore, the use of nonparametric statistical methods in ERA study may be more

appropriate.
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CHAPTER II

LITERATURE REVIEW

2.1 Statistical Methodology for ERA

Risk estimates can be developed using one or more of the following techniques:

(i) the quotient approach (comparisons of single-point exposure and effects

estimates);

(ii) the potentially affected fraction (PAF) approach;

(iii) the probabilistic ecological risk assessment (PERA).

When sufficient data are available to quantify exposure and effects estimates, the

simplest and most widely used approach for comparing the estimates is a ratio called

hazard quotient (HQ) (Urban and Cook, 1986; Calabrese and Baldwin 1993):

Exposure concentration
Hazard ~ (2.1 )

Effect concentration

where exposure concentration can be an upper confidence limit of mean, an 9 0 th

percentile or the maximum concentration for conservatism based on different studies, and

effect concentration can be 5 th or 10 th percentile of a species sensitivity distribution (SSD)

depending on the regulation used in different countries(see Figure 1). If the HQ is less

than or equal to one, it implies there is a negligible risk. Otherwise, it implies there is a

potential risk.
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The reciprocal of HQ is defined as:

Effect Concentration
Margin of Safety ~ (2.2)

Exposure Concentration

Both exposure concentration and effect concentration have sampling distributions

(see Figure 2). Some uncertainty measures must be incorporated into the single-point

estimates to provide an evaluation of the likelihood that the effects point estimate exceeds

the exposure point estimate. However in many studies, the sample sizes are not large

enough to obtain good confidence intervals for the endpoints.

Figure 1. Comparison of point estimates

Exposure Effects
Concentration e.g. Uncertainty around

e.g. Mean Concentration LCL of 10th percentile

0 100
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Although a certain ratio of environmental concentration to a target value gives a

rough guide concerning risk, this ratio gives little information on environmental impacts

other than a ratio <1 implies no or negligible damage. If two substances, however, have

the same ratio >1, their environmental impacts may be quite different, and the sum of

these ratio has no toxicological meaning.

An alternative method is to utilize benchmark values for the exposure and then

extrapolate a potentially affected fraction (PAF) of species from a SSD (Klepper et al.

1997, 1998, 1999). This method may be an improvement over the current quotient

methods, since it encompasses the often-observed nonlinearity of species sensitivity and,

especially, it allows for aggregating risks over compounds in a mixture. If the log toxicity

data from a SSD are fitted to a logistic model, the PAF of certain compound is given by

1
PAF(x) = , , (2.3)

x -,1+exp{- }

where p and 6 are estimates of the location and scale parameters in the log toxicity

distribution respectively, and x is an exposure concentration. For assessing acute effects,

one replaces x by the estimate of the 90th percentile of the exposure distribution, denoted

by y 90 , yielding

1
PAF(y.90 ) - 1e.{(2.4)

1+exp -Y'6
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Figure 2. Comparison of point estimation with associated uncertainty

Exposure Effects
o e.g. Uncertainty around e.g. Uncertainty around

Mean Concentration LCL of 10th percentile

-o0
0

0

0

Intensity of Stressor (e.g. Concentration)

The effects analyses of some modern ERAs require the availability of toxicity data

from SSDs. Equation (4) represents an integration of the results from an exposure

analysis and an effects analysis in an ERA. It gives a characterization of potential risks.

When compared to concentrations causing little or no effects in studies on communities

in microcosm under field conditions, the 10th percentile of the toxicity distribution has

proven to be a useful metric against which to compare exposure concentrations and is a

conservative indicator of the threshold for effects (Solomon et al., 1996; Giesy et al.,

1999; Versteeg et al., 1999). Thus, the PAF will be compared to the critical point, 10%.

Figure 3 shows how to find a PAF for Atrazine. The points on the graph are
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(xi, i /(n + 1)) and (y1 , j /(m + 1)), where x; is the it" ordered toxicity data and n is the size

of the toxicity data set, and y, is the jth ordered exposure data and m is the size of the

exposure data set. On the right hand side of the graph, the logistic model was used to fit

the log toxicity data. On the left hand side, the empirical distribution of the log exposure

data was used. The sample 9 0th percentile of the log exposure data was used to calculate

the PAF. In this case, the PAF at y90 is less than 10%. The species at the investigated

site are considered having no potential risk regarding to Atrazine.

The PERA approach (Baker et al. 1994; ECOFRAM, 1999a,b) requires one to assign

models to both the exposure distribution and toxicity distribution. The PAF is computed

for each percentile of exposure distribution, y,, which is denoted PAF(y,) and a plot of

(1-p) 100% (defined as percentage of exceedence) against PAF(yp) is made. Figure 4

illustrates such a plot. The curves shown on Figure 5 are called joint probability curves

(JPC). The interpretation of the JPC is central to the PERA method. Each point on the

curve represents both the probability that the chosen proportion of species will be

affected and also the relative frequency with which the level of the effect would be

exceeded. These probabilities are based on the current exposure data so at each point on

the line, one can say "under current conditions, x% of species will be effected and that

this proportion of species would be affected by y% of the current observations". (See

Solomon et al. (2000)). JPC describes the probability of a particular set of exposure

conditions occurring, relative to the number of taxa that would be expected to be affected.
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Figure 3. The PAF approach for risk assessment: the logistic model

was used to fit the log toxicity data
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In this type of representation, the closer the joint probability curve is to the axes, the less

is the probability of an adverse effect (Figure 5). The allowable exposure concentration

can be adjusted until the appropriate level of protection has been achieved. The major

advantage of PERA is that it uses all relevant single species toxicity data and, when

combined with exposure distributions, allows quantitative estimations of risks. In

addition, the data may be revisited, the decision criteria become more robust with

additional data, and the method is transparent, producing the same results with the same

data sets.
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Figure 4. The PERA approach: the logistic model was used to fit the

log toxicity data and the log exposure data
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Figure 5. Illustion of the use of the joint probability curve in decision making
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Both the PAF approach and the PERA approach are model related approaches. Most

commonly used models for SSDs are the log-normal distribution (Paustenbach, 1995;

Burmaster & Hull, 1997; Murphy, 1998), the log-logistic distribution (Kooijman, 1987;

Van Straalen, 1990) or the triangular distribution (U.S. EPA, 1985). Many people have

used the same models for the exposure concentration. However, Newman et al. (2000)

studied species sensitivity data for a large set of chemicals and found that a lot of the data

sets did not give reasonable fits to any of the usually assumed distributions. Especially

for specific working chemicals, the observed SSD were bimodal or even multi-modal. In

such cases a distribution free approach is needed.

Exposure and toxicity data are sample data. The uncertainty associated with the PAF

was not taken into account in the risk assessments previously mentioned. Comparison

made using the PAF of the 90th percentile of the exposure distribution with the critical

point of the toxicity distribution, say 10%, is equivalent to comparing the 9 0 th percentile

of the exposure distribution with the 1 0 th percentile of the toxicity distribution. Therefore,

large sample tests concerning percentiles were needed. In the next part, three kinds of

hypotheses tests are reviewed.

2.2 Comparisons of Percentiles

This section reviews the hypotheses tests regarding population percentiles. These

tests do not assume an underlying distribution (e.g., normal or log-normal). They are

11



often more useful for comparing two population percentiles than those that assume a

specific distribution because they make less stringent assumptions.

EPA (2000) indicated that any hypothesis about the pth percentile (4) can be

converted to an equivalent hypothesis about the proportion (p) of the site below a

threshold. Then the one sample test for percentile (H :the p1 0 0 th percentile (4 ) is o or

larger v.s. H, : The p100th percentile ( ,) is smaller than 4o) can be equivalently written

in terms of: Ho : p > po v.s. H : p < po. The only assumption required for the one-sample

proportion test is the assumption of a random sample. To verify this assumption, one need

only review the procedures and documentation used to select the sampling points and

ascertain that proper randomization has been used. The test statistic is defined as:

0.5
P---PO

z= n (2.5)

YPo(1-po)/ n

where p denote the proportion of X's that do not exceed 4; for given a random sample

X,, X2,..., X of measurements from the population. i.e. p = k/n , where the number (k)

of sample points that are less than or equal to ;o, and n is the sample size.

If z < za , D(za) = a, the null hypothesis may be rejected and one concludes that the

proportion is less than po , i.e. the p1 0 0th percentile is smaller thano .

Similarly, one might use the following test to compare two proportions or percentiles.

Let p, represent the true proportion for population 1, and p 2 represent the true proportion

of population 2. Let , be the p,10 0 'h percentile for population 1 and (, be the

12



p 2 10 0 'h percentile for population 2. The hypothesis Ho : , >2, v.s. Ha : , <P, can

be equivalently written in terms of Ho : p , p 2 v.s.Ha : p, < p 2 . The test statistic is defined

as:

z=(p,-p 2 )/ P(1-kP)(1/m+1/n) (2.6)

where p^ =(k, +k 2)/(m+n), m is the sample size of the sample X,, X 2 ,..., Xm from the

first population, k, is the number of points from the first sample which exceed some

threshold C. Likewise n is the sample size of the sample Y,, Y2,..., Y from the second

population, k2 is the number of points from the second sample which exceed the same

threshold C. The sample proportions are P, = k, / m and P2 = k2 / n.

If z < za , the null hypothesis may be rejected and one concludes that the p,10 0 '"

percentile for population one is smaller than the p21 0 0'h percentile for population two.

Rohatgi (1984) provided another one-sample test concerning the percentiles. A

quantile of order p of a random variable with distribution function F is a number , that

satisfies

P(X- P) p and P(X> ,) 1-p, 0<p<1 (2.7)

So that , is a solution of

p+P{X =x} F(x) p (2.8)

If P(X = x) = 0, as is the case, when X is a continuous random variable, then 4 is a

solution of the equation F (x) = p. Hence

13



Thus one uses a test of the hypothesis: H0 :,, ( 0,versus Ha : , <{o .

If the level of significance a is specified, then the largest r will be chosen such that

a P ( < o I H o n n (2.10)
l J .=r I .i=o J

where X(,) X(2) ...< X() are the order statistics for a random sample X,, X2,..., Xn .

Then H0 will be rejected if the observed value of X(r) is less thang0 .

Kosorok (1999) indicated that there are several promising nonparametric two-sample

median comparison procedures for censored survival data. The earliest of these, proposed

by Wang & Hettmansperger (1990), requires either a two-sample shift model be assumed

or requires the estimation of the involved densities. To avoid density estimation, Su &

Wei (1993) developed a minimum dispersion statistic based on the Kaplan-Meier

estimator; see also Basawa & Koul (1988). The fact that Su & Wei's statistic is easily

computed and asymptotically chi-squared is appealing, but their analytical approach

cannot be directly applied to group sequential clinical trials with staggered patient entry.

Keaney & Wei (1994) manage to solve this difficult problem by using an interesting

extension of the resampling procedure of Parzen, Wei & Ying (1994). So Kosorok(1999)

developed a multivariate two-sample quantile tests for equality of a given collection of

quantiles which can be applied to a variety of empirical distribution functions, including

both the Kaplan-Meier estimator, Turnbull's (1974) self-consistent survival estimator for

14



doubly-censored data and an estimator for repeated measured data.

Let F be the distribution function for the fist sample, and let G be the distribution

function for the second sample. Assume F and G are the usual empirical distribution

function estimators for independent and identically distributed observations. Let m be the

sample size associated with F , and let n be the sample size associated with G . If

F, F , G and G satisfy the following conditions:

(1) Distribution function F has a density f in a neighborhood of t such that f is

continuous at t and 0 < f(t) < oo.

(2) As n -> ooc, { (t)-F(t)} converges in distribution to a bounded random

variable with continuous distribution function.

(3) For every e > 0 ,

limlimsup pr sup c, I f(t)-F(t)-F(s)+F(s)I> c = 0
SJ O n--oo s:jt-sj<S

Then to test Ho :F-' (p)= G-1 (p)(j=1,2,..., J).

fj n, n1Q K r(j F( x) (2.11)

g. jfn /5 K (P } G(x) (2.12)

where QF and QG are twice the estimated interquartile ranges of F and G,

respectively and where the kernel is triangular:

15



x+1 if x e [-1,0],
K (x) = 1- x if x E (0, 1], (2.13)

0 ifIx > 1.

To estimate the densities, either O, (n-12) window estimators or optimal-order

estimators such as the O, (n-"5) window estimators can be used, then an asymptotically

chi-squared statistic with J degrees of freedom for testing Ho .

Although the above tests are for percentiles, the two involved percentiles are for the

same percentage. The ERA study needs the tests for the difference between 100p,

percentile of a species sensitivity distribution and the 10 0p 2 percentile of an exposure

distribution (p, : p 2 ).

16



CHAPTER III

LARGE SAMPLE TESTS FOR THE DIFFERENCE

BETWEEN TWO PERCENTILES:

In this section, the following two cases will be considered.

(1) The critical point is assumed for a risk assessment, that is, either one assumes that

the true SSD to a toxicant of interest is known or that the 10th percentile of the

distribution (or the 5th percentile used in most European countries) has been estimated

conservatively [for example, use of the lower confidence limit (LCL) proposed by Van

der Hoeven (2001) or the minimum risk estimator proposed by Chen (2003)]. In such a

case, the sample exposure data are taken from the investigated site. The test of interest

is Ho : the exposure concentration is greater than or equal to the critical point v.s. Ha : the

exposure concentration is less than the critical point. The exposure concentration is

defined as the p100th percentile of the exposure distribution, where 0 <p < 1. Commonly

used percentiles in an exposure distribution in risk assessment are the median or the 90th

percentile.

(2) It is assumed that for a certain compound both the true p, 100th percentile of the

exposure distribution and the p 2 100th percentile of the true SSD to the toxic

concentration (a critical point) are unknown, where 0 <p,< 1, i = 1, 2. The test of interest

is H0 : the p, 100th percentile of the exposure distribution is greater than or equal to the

17



p 2 100th percentile of the SSD to the toxic concentration v.s. Ha: the p, 100th percentile

of the exposure distribution is less than the p 2 100th percentile of the SSD to the toxic

concentration.

3.1 One Sample Test for Testing the Exposure Concentration is Less than the Desired

Safety Concentration Level

Ecological risk assessment requires estimation of the ambient concentration of a

compound at a contaminated site or the concentration predicted to result from a proposed

use. For the derivation of environmental quality criteria, a cutoffp100% is chosen, where

0 <p < 1 (to protect (1 -p) 100% of species), and desired "safe" concentration is defined

as HC,, the p100th percentile of the SSD. If a threshold for significant risk has been

identified by policy (e.g., effects on more than 5% or 10% of species are unacceptable),

any concentration higher than the desired "safe" concentration HCOos or HCI.,, can be

considered to pose a significant risk. If the variance or uncertainty is estimated, the risk

may be defined as the probability of harming more than 5% or 10% of the species based

on a specified application.

Van der Hoeven (2001) proposed a nonparametric method for estimating the 5th

percentile of a SSD. The article showed that this proved methodology performed better

than using the 95% LCL based on a log-logistic model or a lognormal model proposed by

Van Straalen and Denneman (1989) and Wagner and Ldkke (1991) respectively in the

18



sense of having the same confidence level but being less conservative.

Chen (2003) proposed a minimum risk estimator for the 5 th percentile of SSD based

on an asymmetric loss function. The parameters in the asymmetric loss function can vary

based on the degree of the conservatism.

Suppose a threshold for significant risk is defined by 0os (= HCoOs), and the critical

point of the risk assessment has been chosen by using either Van der Hoeven's LCL or

Chen's method for HCo as I (= .os) . To determine if a particular chemical

concentration at a site would affect more than 5% of a species, a test Ho :y, > { versus

Ha : , <4o is desired, where , is the p100th percentile of the exposure distribution.

The proposed test statistic is as follows:

'I,(p=O)(3.1)
p (1- p)/ f2(4

where , = X(k)+{p (n +1)-k}(X(k+) - X(k), (3.2)

where k = [p (n +1)], and [w] stands for the integral part of w, X(r) denotes the rth order

statistic, and f is a consistent estimator of the PDF of the exposure distribution.

According to following known result (Theorem 2.1 stated below, see example Rohatgi &

Saleh, 2001), asymptotically, the test statistic Z, has a standard normal distribution under

certain assumptions.

Theorem 3.1. Let 1(x) and F(x) be PDF and CDF of X respectively, and

X , , X 2 ,..., X be a simple random sample from F(x). Assume that
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2.f(x) is continuous at x = and f(,) >0 , then

In( p - p ) L > N (,u- | (3.3)

where 6- = p (1- p) f2 (g,) and

X + {p (n + 1) - [(n + 1) p]} (X([(n+1)P]+ 1) -X ,

where [w] stands for the integer part of w and Xr denotes the rth order statistic.

It is easy to see that under assumptions in Theorem 3.1 and H0 , we have

L -as n
p(1- p)/f 2 ()

where Z is the standard normal random variable.

Notice that

_ (3.5)

Vp(l1 (ep pl#f(P 2 

( P _.

Obviously, if one chooses a density estimator f (,) such that f (,) > f (n,), as

n -+ oo. then Z, L ) Z, as n -+ co. The choice of the density estimator will be discussed

in Section 3.3.
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3.2 Two Sample Test for Testing the Exposure Concentrate is Less than Desired Safety

Concentration Level

In practice, the true SSD is unknown. Toxicity data is based on a sample from the

SSD. Instead of using Van der Hoeven's method or Chen's method to find a critical point

for the one sample test proposed in Section 3.1, one can test Ho :P >;, v.s.

Ha :gy, < 4 P, , where , and (, are the p, 100th percentile of the exposure

distribution and the p2 100th percentile of the SSD, respectively. The proposed test

statistic is as follows:

Z2 = P (3.6)

where

s +P 2 (1-P 2 ). (3.7)
- of2 n2 ($ mfy(4 $)

where n and m are sample sizes, and f, and f, are the density estimators of an

exposure distribution and a SSD (or toxicity distribution), respectively. Since samples

from an exposure distribution and a SSD are independent, applying Theorem 3.1 and

assuming Ho is true,

gyp' -P (izL ) *Z, asn, m-->oo, (3.8)

where

6 /(1- p )p 2 (1-P 2 )
flfx + .c) m<( (3.9)

n21) mfy (
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Notice that

Z2 = i - . 641-42 . (3.10)
01 -42 s41-42

If s _ >-_ asn,m-+oo,Z 2 ' >Z,asn,m- oo.
- 42 Sr -t n

In fact, under certain condition, j (, ) and f, (;, ) are strongly consistent

estimators of f (gp,) and f, ('p2). Hence, s9 " - > S - _ as n, m -+ xo. It implies

s _ p )- _ as n, m -> oo.

3.3 Choice of the density estimators

Let k(u) be a kernel function defined on the real line R such that

(i)sup Ik(u) <oo,
ueR

(ii) lim Iuk(u)I= 0, and
u -+ oO

(iii) fk(u)du =1.

And let {hn} be a sequence of nonnegative constants satisfy hn = O(n-"), 0 <, < -. A
4

kernel estimator off(x) for a given x can be defined as

1 __

J(x)= I K xX. (3.11)
nhn iy hn

This estimator was proposed bye Rosenblatt (1956) and later studied by Parzen (1962)

and Nadaraya(1965), among others.

Lin & Wu (1980) proven i(g,) is a strongly consistent estimator for f (4,).
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Theorem 3.2. Let X, , X2,..., Xn be a simple random sample from F. Assume that

(A.1) F'( ,)= f ( ,)> 0, and

(A.2) F "exists and is bounded in a neighborhood NP of

Let k(u) be a kernel function of bounded variation and assume that for any c > 0,

exp (-enh,2)< oo . Then for any p, 0<p<1,

f{ " P > f ( , ) as n -> oo.

In practice, we recommend to use the following kernel density estimator:

f(x)K= K i}. (3.12)
nhn ;_, hn

where hn=O(n-8) and K(u)= 3 (5-u2),when u1<a,otherwiseK(u)=0
20

Another choice of a density estimator is the k-NN density estimator. Let kn be an

integer between 1 and n. Given any x, Let

an (x) = an (x; Xi, ... , xn )

= min{a I #kn of x,,...,xn e [x-a,x+a]}

then the k-NN density estimator is defined as

fn (x) = kn / (2nan (x)) . (3.13)

By using the strong consistency of k-NN density estimator proved by Wagner (1973),

we have

Theorem 3.3. Let X,,X 2 ,..., Xn be a simple random sample from F with density f

satisfying assumptions (A.1) and (A.2) in theorem 2, Assume kn satisfies
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(2) 1 e-k? < oo, for any c > 0

Then, for any p, 0<p<1,

f ( , ) ""s > f (g, p )as n -> oo.

Proof: It is clear that

|f($,)- f( P),|| 5|J( , - f ( ),I|+| J (P, )- f ( ,P|

<_sup|If(x)- f (X)|I+|I , - ,| I'sup |f'(x)|I
xeR XeNP

= A + B,say.

As n -> oo, A ".. >0, by Wagner (1973), and B " > 0, since , "s >p and

(A.2) is assumed.

Note that an important case for satisfying (2) in Theorem 3.3 is

limno log(n) /kn = 0. therefore, one can choose a k-NN density estimator with kn = v .

The theoretical background of these choices can be found in Chen (1984).

3.4 Power of the tests

Letf(x) be the pdfof an exposure distribution and d = , - 4. Then

-'d-f( P,
Powe 1 =PH (Z, <Za) =P Z<Za -(

P(1-P)
(3.14)

=P Z<Z df )f

po1- P) f ( ,)

where za satisfies (t(za) = a, and D(-) is cdf of the standard normal random variable.
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If one chooses one of the density estimators recommended in Section 3.3,

f (1, as n - oo. Hence, when n is large,
f ({,p)

Power, ~ (D za - " (3.15)
p(1-P)

It is easy to see that the power of the Z, test is not only related to p, the difference

between , and4 , and the sample size n but is also related to the value of the density

function at p,. The logistic distribution is a commonly used model in ecological risk

assessment.

Figure 6. The approximate power of the Z, test when the logistic

model is used (p=0.9, p = 2.0, o =1.5)

0
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Figure 6 is power curves for the Z, test with a = 0.05 for varying values of

d = 8- a4 and 4 different sample sizes. The curves are for a test of f O9 based on a

logistic model with p = 2.0 and a =1.5 . This graph yields the power property of the new

nonparametric test if samples are truly from a logistic distribution.

For the power of Z2 test, using the notation in Section 3.2, defined = - P .

Similar to the derivation of the power of the Z, test, when both n and m are large,

Power ~:IZ (3.16)

P,(1-P,)/[n-f2,2 )+P2(l-P2) I 1 [mf ;2 )

Assuming that p 2 =1- p, and fx (x)= f (-(x - d)), then f, (, )=jf (4 ) and

Z' - d -fx ( j1
Power ~ +1/rn)) (3.17)

Vp, (1- p,)(1/n+l/m)

Figure 7 shows the approximate power of the 5% level Z2 test for the difference

between the 90th percentile in a logistic exposure distribution with px = 2.0 and

6- =1.5 and the 1 0th percentile of a SSD using a logistic distribution with p, = 5.0

and o-, =1.5 . Both logistic models chosen satisfy fx (x)= f, (-(x - d)) , where
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Figure 7. The approximate power of the Z2 test when the logistic model

is used for F and F, (- =-, =.5)
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3.5 Sample Size Calculation

Under the assumptions for F and F, in Section 3.3, the approximate powers of

both the Z, and Z2 tests are related to the unknown density functions used to model

the exposure and the SSD.

When there are exposure data available from previous studies, one can use these data

to estimate f, '( in equation (10), then the sample size to yield a given power for the

Z, test of a specified a can be calculated as follows:
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d 2,2(^P

where 8 is the probability of making type II error.

Similarly, if both exposure and toxicity data are available, one can use these data to

estimate f (gp, ) and f, (iP ) in equation (11), and assuming m = n; then the sample

size of the Z2 test for a given power and a level can be calculated by

(Za +zf) 2 {p(1-p,)/ f2 (, )+p 2 (1- P2) ( 32
n _ (3.19)

d 2
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CHAPTER IV

RESULTS

4.1 Results of Monte Carlo Study:

The tests developed in section 3 are large sample tests. To ensure the test can also be

used for moderately large sample cases, a Monte Carlo study was conducted. The

log-normal and the log-logistic distributions were used, since they have been previous

used in ERA. For each simulation condition, random samples of sample size n=40, 60,

100 were generated via FORTRAN. To reduce the simulation error, the Monte Carlo

sample size of 100,000 was chosen in the simulation.

Based on the study of evaluating the potential risks of pesticides residues in the

C-111 canal, the means for the log toxicity data have about "2.00" (i.e. P2 = 2) and the

standard deviation was approximately "1.5" (i.e. a2 = 1.5). So in the simulations, the

random data were generated from distributions with P 2 = 2, 6, = 62 =1.5.

Silverman (1986) showed the ideal window width (ho,,) can be obtained by simple

calculus:

hop, = k2 2 5 { JK (t) 2 dt} { f f(x)2 dx} n" 5  (4.1)

For the normal distribution with a variance 62, using Epanechnikov kernel, the

window width obtained from (15) would be hop, ~1.05an"5 (4.2). For the logistic

distribution with shape parameter a , using Epanechnikov kernel, the window width

obtained from (15) would be hop, ~1.62a 2/5 n-1 5 (4.3).
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Table 1

Power of Two Samples' Test Based on Data from Log-Logistic Distributions using Kernel

Density Estimate (where K * indicates how many times of the standard deviations for

the test statistic)

alpha=0.05

K * 0 0.71 1.06 2.12 2.83

n=40 0.0597 0.1734 0.2591 0.5569 0.7322
n=60 0.0604 0.1766 0.2647 0.5824 0.7636

n=100 0.0595 0.1812 0.2734 0.6105 0.7959
alpha=0.10

K * 0 0.71 1.06 2.12 2.83

n=40 0.0949 0.2484 0.3493 0.6618 0.8174
n=60 0.098 0.2554 0.3623 0.6903 0.8461

n=100 0.0997 0.2662 0.3774 0.7212 0.8733

Table 2

Power of Two Samples' Test Based on Data from Log-Normal Distributions using Kernel

Density Estimate (where K * indicates how many times of the standard deviations for

the test statistic)

alpha=0.05

K* 0 0.71 1.06 2.12 2.83

n=40 0.0526 0.1617 0.2479 0.5716 0.766
n=60 0.055 0.1676 0.2577 0.5978 0.7924

n=100 0.0549 0.1733 0.2669 0.6216 0.8176

alpha=0.10

K-* 0 0.71 1.06 2.12 2.83

n=40 0.0896 0.2409 0.3478 0.6873 0.8519

n=60 0.0931 0.2516 0.3613 0.713 0.874

n=100 0.0966 0.2619 0.3775 0.7375 0.8936
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The results in this paper are only based on the data generated from log-normal

distributions and log-logistic distributions. Type I errors and power simulation results are

summarized in Table 1 and Table 2.

When a =0.10, the test appears to give good results. When the distance between two

percentiles is equal to 0, the simulation type I error is very close to the nominala , and

when the distance of the two true percentiles is equal to 2.83 standard deviations, the

power of the test is about 0.8~0.9. However, when a =0.05, there is slightly inflated type

I error. Also notice that the power changed little when the sample sizes increasing. The

deficiency might be due to the density estimator used in the test statistic. One way to

improve these tests is to find a better estimator for the variance for the sample percentile.

This is under further investigation.

4.2. An Example

In the study for evaluating the potential risks of pesticides residues in Biscayne Bay

and Florida Bay areas, Acute (LC/EC50) laboratory toxicity data for water exposures

from Atrazine were collected and analyzed. All acute endpoints were derived from the

AQUIRE database. As discussed by ARAMDG (Baker et al., 1994), an ERA that relies

solely on the protection of a certain percentage of species (e.g., 10%, 5%, etc.) may not

be protective if species of significance are below the specified percentile of a SSD. And

Maund et al. (2001) gave supporting evidence for using the 10th percentile of acute
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distributions based upon ecologically significant effects observed at higher concentrations

in field-type studies.

This laboratory Atrazine data had 72 observations from 0.97 ug/L to 76000 ug/L.

After taking a log10 transformation, the data ranged -0.0132 to 4.8808. Using a = 1:0 and

b = 1:5 in Chen's method (2003), the minimum risk estimate of the 10th percentile of the

SSD is 3.1163. Suppose this estimate is chosen as a critical point in this risk assessment.

Water exposure data for Atrazine were taken from one of the investigated sites. A sample

of size 62 was available and the estimated 90th percentile of log10 transformed data was

1.9481. Let 9O be the true 90th percentile of the exposure distribution. In order to

decide if there is Atrazine residue risk in the fresh water at this site, a test of

Ho : ,9 3.1163 versus H, :90 < 3.1163 ,at a = 0.05 was used. 90 in this case

equals 1.9481 and f (1.9481) = 0.1503. The observed test statistic is Z, = -4.6073. Since

the p-value of the test is less than 0.0001, we reject Ho and conclude there will be no

more than 10% species potentially affected by Atrazine residues at this site.

Using this information and the formula in equation (13), the sample size needed for a

5% level Z, test with an approximate power greater than 0.70 and d = 264 in a future

study should be at least 73.

Suppose there was no policy critical point available for the study. Then a 5% level

Z2 test would be performed on the same data sets. That is, using the data sets used in the

Z, test, test HO : 90 > o versus Ha : 90 < ,o: Based on the toxicity data, we have
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(, ,0= 3.2508 and f] (3.2508) = 0.0894. Hence, the observed test statistics is Z2 = -2.5736.

Since the p-value of the test is 0.0050, the same conclusion as that from the Z 1 test can be

made.

Using the above information and assuming n = m, the sample size needed for a 5%

level Z 2 test with an approximate power greater than 0.70 and d = 2 - in a future

study should be at least 81.
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CHAPTER V

DISCUSSION

5.1. Confidence Intervals Concerning Percentiles

The proposed test procedures can be easily extended to confidence interval

procedures. The (1-a) 100% confidence interval for , is

p(1-p)
9 ~pZa (5.1)

nf,2(e

and the (1-a)100% confidence interval for the difference between , and g, is

p1 (Z- p 1 ) + p
2
(l-P 2 ) (5.2)

These confidence intervals can be compared with the results of other researchers

summarized as follows:

Albers & Ldhnberg (1984) provided the confidence interval for the difference

between quantiles:

Id -( ) (mk-) | X X 2+(Y -Y . (5.3)

Where 4, = F' (p)is the sample pth quantile. Let Xi,..., X, be a sample from a CDF F.

, = G-' (p) is the second sample pth quantile. Let Y ,..., Y be a sample from a CDF G.

d = , -4,. Let , = F-' (p) is the pth quantile of F. (, = G-'(p)is the pth quantile of G.

And {mk-} and {mkM } be sequences of integers such that
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Vp (1- p) 12 '
= p Ka +o m (5.4)

where Ka is the (1-a )th quantile of the standard normal distribution. Similarly,

{n1- } and {nl, } be sequences of integers such that

1 =*p { p(1 p) -2-- P Ka +O n 2 (5.5)
n n

where Ka is the (1- a)'th quantile of the standard normal distribution

Steinberg & Davis(1985) summarized several methods to construct the confidence

interval for quantile in small samples: First, Harrel & Davis (1982) propose A

100(1-a)% confidence interval for , is given by

#p+-' (1-a1/2)S( ,) (5.6)

where

n

=Z n,Xj, =I,n{p(n+l),(1-p)(n+l)}-I_, {p(n+1),(1-p)(n+1)}

ii1I

S' p Si - S) ,S =S ix,(sj) = I(1 wj)#(W),$(W)= Wh- _Iij

_ = n- S

j=1

Kaigh & Lagenbruch (1982) present:

t nka 2 S(K,,k) (5.7)

n+r-k

where, = I UnkX(i Unki = r - 1  k - r k , r =[(k +1)p], S2 (KPk)

is jackknife variance estimator. tn-k,,-a, is the 1- a /2 percentage point of the t

distribution with n-k degrees of freedom.
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Efron (1979) provided the bootstrap interval for the median is

X(m) i0' (1-a/2)(E2 (R)) 2 , (5.8)

X(m) is the sample median from a sample of size n=2m-1, and

E*(R*) = X)-X(n P (Bn I nB n m-1l-P B,n n,n m-1 (5.9)
1=1 LnK ) k

Greenberg & Sarhan (1962) provided a large sample approach produces a confidence

interval

#+ -'(1 - a / 2) S ( (5.10)

n (X - Xg ))n (1- p)
where ff = an appropriate parametric estimator for a quantile

n-1

of the one - parameter exp onential (A =1 / 0) distribution,

n(-X()) (ln (1- p))
2

(n -)
2

Steinberg & Davis (1985) also provided a large sample approach produces a

confidence interval

# ~0-' (1-a/2)S( ,), (5.11)

where4, = p n X (n) an appropriate parametric estimator for a quantile
n -1

of an underlying uniform distribution on i nterval (0,0 ),

n+1

_ p n (n)3
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5.2. Test for Difference between Exposure Mean Concentration and the Desired Safety

Concentration Level

In some studies, the exposure concentration is defined as the mean concentration. If

the analysis is based on the original data set, then by using the central limit theorem, a

similar Z test can be developed to test Ho :p P > versus Ha :u; < P; where , is

the mean exposure concentration and ;P is the HCP. However, the same procedure can

not be used for the log transformed data, since log (X) f log (X )/n .

5.3. Summary

This study has proposed two distribution free procedures. In these procedures the

standard error of a sample percentile is related to the PDF of the underlying distribution

and hence the powers of the proposed tests are related to the underlying distribution.

Since the percentiles of interest in this study are in the tail of the distribution, for

distributions that have similar tail behavior, the density at the percentile of interest should

not greatly affect the power of the test.

Censored data are often encountered in the effects analysis and exposure analysis of

an ERA for toxic compounds. ECOFRAM (1999) formalized guidelines for censored data

in exposure and effects distributions. According to ECOFRAM, chemical exposure data

that is below detection limit is assigned a dummy value of zero and used for the

calculation of rank preceding the lowest detected concentration. For effects distributions,
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point values or values preceded by a greater than (>) that exceed a compound's water

solubility for insensitive species or toxicological test response endpoints are used to

calculate rank after the highest effect concentration below a compound's. The tests

proposed in this study are interested in the right tail of the exposure distribution and the

left tail of the toxicity distribution, rather than the censoring sides. Therefore the large

tests are fine to censored data sets in ERA.
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APPENDICES

1. Proof Related to Simulation:

x,y-logistic

41 =PA +/, -L, where L, = log[p /(1- p,)]

(2 =u2 +12 *L 2 where L2 =1og[p2 /(l- p2 )]

P2 given,L 2 = P2 + 12 L 2

' 2 - = ( - " V a r Yi> = ' 2 - ,5 - " V a r ( Y 2 ) = p 1 P ) a ( , 1 1

n2f2(2) n 2 )

assume/# ,2 =-

;2 - 1 =P2 -#+6- (L2 -L,)->p = P2 -(;2 -)+6--(L2 - L,)

p,=p2 -(4;2--1)+ a-(L2- L,)

8 Var(Y) =42 - 1  1>A = = 2 - 8 -"Var(Y) --- L,

72 =P2 +-L 2

exp 
exp 2 -2

01+exp 1+exp ~2

; _ 2 - 5 Var(Y) _ S _
Var(Y2) + Var(X,) Var(Y2) + Var(X,) 1+ Var(X,) 1 +ratio2

Var(Y)

p1(l-p,)

ratio2 _ Var(X,) n, f(4) _ ((2) [assume p (1- p,)= p 2 (1-p 2 ) and n, = n2 ]
Var(Y2) p2(1-p2 ) f 2 (,)

n2f2 (;2 )

ratexp 6 e 26 2 o -L + exp exp 2 6 2 1+ exp

r a tio = = (-2 - 226

( .1+exp 2 -12 .exp< P1  1+exp <2 fI2 .eXp' / 9
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x , y -normal

S=u, +o-, - Z, where Z, = ( pr), (P ,.(z)= (1/ ) - exp(-w2 /2) dw

'2 =P2 + 6 2 -Z 2 where Z 2 = P2 )

P2 given, 2 = P2 + 62 - Z2

42 -, = ar(Y2) 1 = 2 -. -Var(Y2)

Var(Y)= P2(1- P2) Var(X)= 2 ()
2 n22 (;2) n f2({,)

assume 61 = -2 = 6

{2 - 1 =P2 -P1+c--(Z 2 -ZI)-=>A =P2 -(;2 -1)+6-(Z 2 -Z,)

A = P2 -(;2 - 1 +o--(Z2 -Z1)

- Var(Y )=_ 2 - 1 =A = 2 -- Var( ) -o-Z

{2 =P 2 +--Z 2

1 (fi - P)2 - (;2 - 2)
f (fit)=- ; exp 26.2 62z26.

42-1 _ 3 Var(Y,) _ _

Var(Y)+ Var(X,) Var(Y 2) + Var(X,) 1 +Var(X,) 1+ ratio2

Var(Y2)

p1 (l-p 1)

ratio2 _ Var(X) _ n,f2 ( 22) [assume p, 1 (1-p)P 2 (1- p2 ) and n = n2 ]
Var(Y) P2( 1 P 2) I(

1 ex_42 - P2 )z e p _ (2 -P2 )2 exp (1 _P)

f2(72) _ - T 20.2 - 26.2 26
ratio = [ (42- ] ( -j2)2 -

f,( ) 1 exF @-A1)2 1~ ~-A l P_2_xp(;_-_2)
SS xp 2 .2 2 .2 2 -

44



2. FORTRAN Codes for Simulation:

Two Sample Simulation Using Kernel Density Estimate:

! using subroutine to simulate two normal case using kernel density estimate

INTEGER nmax,nmay,ln,lm,ly,ld,lp,ls
REAL px,py

Parameter(nmax=1000,nmay=1000,ln=3,1m=100000,ld=5,px=0.9,py=0.1, &

ly=1,lp=3,ls=1)

REAL x(nmax),y(nmay), fhatx,fhaty,mux,muy,orpecy,orpecx,pecx,pecy,op(lp), &

fm,p,fn, oosigma(ls),pxinv,pyinv,ratio,deltastar(ld),tsigma,ss,power(ld), &

delta(ld),ormuy(ly),osigma

EXTERNAL RNSET,RNUN,RNUNF,SVRGN,ANORIN,ANORDF,RNNOF

INTEGER iseed(lm),ip,im,inn,iy,id,an(ln),is

DATA op/0.01,0.05,0.1/

DATA an/40, 60, 100/

DATA delta/0.0, 1.0, 1.5, 3.0,4.0/

DATA ormuy/2.0/

DATA oosigma/1.5/

open (1, FILE='kerresl.dat', STATUS='unknown')

fm=lm+0.0

pi=2*ASIN(1.0)

pxinv=ANORIN(px)
pyinv=ANORIN(py)
do 999 ip=1,lp

p=op(ip)

crpoint=ANORIN(p)
write (1,*) 'p=',p

write (1,*) 'sd= 0.00 0.71 1.06 2.12 2.83'

call RNSET(13300345)

do im=1, lm
iseed(im)=RNUNF)*(10.0** 8.0)

end do

do 998 inn=1,ln

n=an(inn)
fn=n+0.0

write (1,*) 'n=',n

do 997 iy=1,ly
muy=ormuy(iy)
do 996 is=1,ls
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osigma=oosigma(is)
orpecy=muy+osigma*pyinv

do 995 id=1,ld
gy=(EXP(-(((orpecy-muy)* *2)/ &

(2*(osigma**2)))))/(osigma*(SQRT(2*pi)))

vary=(py*(1-py))/(fn*(gy**2))
dif=delta(id)* SQRT(vary)
mux=orpecy-dif-osigma*pxinv
orpecx=mux+osigma*pxinv

ratio=EXP((orpecx-mux)**2-(orpecy-muy)**2)
deltastar(id)=delta(id)/(SQRT(1 +ratio* *2))

ss=0.0
write (1,*)'delta=',delta(id), 'deltastar=',deltastar(id)

do 994 im=1,lm

call RNSET(iseed(im))

call RNORMN(n,x,mux,osigma)

call RNORMN(n,y,muy,osigma)

call PERC(n,x,px,pecx)

call PERC(n,y,py,pecy)

call FKERN(n,x,px,pecx,fhatx)

call FKERN(n,y,py,pecy,fhaty)

tsigma=SQRT((px*(1-px))/(fn*(fhatx**2)) &

+(py*(1-py))/(fh*(fhaty**2)))
ts=(pecx-pecy)/tsigma

if (ts .lt. crpoint) then

ss=ss+1.0

end if

994 continue

power(id)=ss/fim
write (1,*) power(id)

995 continue
write (1, 1000) (power(id), id=1, ld)

996 continue

997 continue

998 continue

999 continue

1000 FORMAT(1x, 5(f8.4))

close (1)
stop

end
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the following are subroutine

generate the normal variable

subroutine RNORMN(n,x,mu,sigma)

INTEGER n,i
REAL x(n),mu,sigma,temp

EXTERNAL RNNOF

do i=1,n

temp=RNNOF()
x(i)=mu+sigma*temp

end do
return

end subroutine

calculate the percentile

subroutine PERC(n,x,px,pecx)

INTEGER n

REAL x(n),px,pecx,fn,pix

EXTERNAL SVRGN

fn=n+0.0

call SVRGN(n, x, x)

pix-px*(fn+1.0)

pecx=x(INT(pix))+(pix-INT(pix))*(x(INT(pix)+1)-x(INT(pix)))

return

end subroutine

estimate the f function for normal distribution

subroutine FKERN(n,x,px,pecx,fhat)

INTEGER n,i

REAL x(n), pxfhat,sumx,sumx2,sdf,kn,pecx,xu(n),xk(n),sumxk

sumxk=0.0
fn=n+0.0

!* calculate standard deviation

sumx=0.0

sumx2=0.0

do i=1,n
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sumx=sumx+x(i)

sumx2=sumx2+(x(i))**2

end do
sdf=SQRT((sumx2-((sumx)* *2)/fn)/(n-1))

!* sd

kn=1.05*sdf*fn**(-(1.0/5.0))
do i=1,n

xu(i)=(pecx-x(i))/kn

if ( ABS(xu(i)) .le. SQRT(5.0) ) then
xk(i)=3 *(1-(xu(i))**2/5)/(4*SQRT(5.0))

else

xk(i)=0

end if
sumxk=sumxk+xk(i)

end do

fhat=sumxk/(fn*kn)

return

end subroutine
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