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ABSTRACT OF THE DISSERTATION 

CONFORMATIONAL DYNAMICS ASSOCIATED WITH LIGAND BINDING TO 

VERTEBRATE HEXA-COORDINATE HEMOGLOBINS 

by 

Luisana Astudillo 

Florida International University, 2014 

Miami, Florida 

Professor Jaroslava Miksovska, Major Advisor 

Neuroglobin (Ngb) and cytoglobin (Cygb) are two new additions to the globin 

family, exhibiting heme iron hexa-coordination, a disulfide bond and large internal 

cavities. These proteins are implicated in cytoprotection under hypoxic-ischemic 

conditions, but the molecular basis of their cytoprotective function is unclear.  

Herein, a photothermal and spectroscopic study of the interactions of diatomic 

ligands with Ngb, Cygb, myoglobin and hemoglobin is presented. The impact of the 

disulfide bond in Ngb and Cygb and role of conserved residues in Ngb His64, Val68, 

Cys55, Cys120 and Tyr44 on conformational dynamics associated with ligand 

binding/dissociation were investigated. Transient absorption and photoacoustic 

calorimetry studies indicate that CO photo-dissociation from Ngb leads to a volume 

expansion (13.4±0.9 mL mol-1), whereas a smaller volume change was determined for 

Ngb with reduced Cys (ΔV=4.6±0.3 mL mol-1). Furthermore, Val68 side chain regulates 

ligand migration between the distal pocket and internal hydrophobic cavities since 

Val68Phe geminate quantum yield is ~2.7 times larger than that of WT Ngb. His64Gln 

and Tyr44Phe mutations alter the thermodynamic parameters associated with CO photo-
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release indicating that electrostatic/hydrogen binding network that includes heme 

propionate groups, Lys 67, His64, and Tyr 44 in Ngb modulates the energetics of CO 

photo-dissociation. In Cygb, CO escape from the protein matrix is fast (< 40 ns) with a 

ΔH of 18±2 kcal mol-1 in Cygbred, whereas disulfide bridge formation promotes a 

biphasic ligand escape associated with an overall enthalpy change of 9±4 kcal mol-1. 

Therefore, the disulfide bond modulates conformational dynamics in Ngb and Cygb. I 

propose that in Cygb with reduced Cys the photo-dissociated ligand escapes through the 

hydrophobic tunnel as occurs in Ngb, whereas the CO preferentially migrates through the 

His64 gate in Cygbox. 

To characterize Cygb surface 1,8-ANS interactions with Cygb were investigated 

employing fluorescence spectroscopy, ITC and docking simulations. Two 1,8-ANS 

binding sites were identified. One binding site is located close to the extended N-terminus 

of Cygb and was also identified as a binding site for oleate. Furthermore, guanidinium 

hydrochloride-induced unfolding studies of Cygb reveal that the disulfide bond does not 

impact Cygb stability, whereas binding of cyanide slightly increases the protein stability. 
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1. INTRODUCTION 

1.1. Heme proteins 

Heme proteins constitute one of the largest classes of metalloproteins found in 

nature and are characterized by the presence of a heme moiety as the prosthetic group 

that may be covalently or non-covalently bound to the apoprotein (Everse, 2004). These 

metalloproteins are remarkably versatile and perform a wide variety of functions, 

including respiratory functions such as oxygen storage and transport (myoglobin and 

hemoglobin), catalysis (catalases), electron transfer (cytochromes), substrate oxidation by 

peroxides (peroxidases), and oxygen sensors (FixL) (Everse, 2004; Larsen and 

Miksovska, 2007; Rodgers, 1999). 

The versatility displayed by heme proteins have been attributed to the type of 

heme prosthetic group and the amino acid residues surrounding the heme pocket 

(Anderson and Chapman, 2005). The heme group consists of a porphyrin ring bound to 

an iron ion via coordination bonds with the four pyrrole nitrogens from the porphyrin. 

Axial ligation to the iron, from one or two amino acid side chains, maintains the heme in 

position within the protein (Anderson and Chapman, 2005). Amino acid residues that 

bind to the heme iron typically contain lone pairs of electrons that allow them to form 

coordination bonds with the heme iron, such as histidine, methionine, tyrosine or cysteine 

(Larsen and Miksovska, 2007). In the case of histidine coordination, other types of 

interactions may be also involved including hydrogen bonding with other amino acid 

residues. In addition, heme orientation is influenced by interactions between propionate 

and vinyl side chains and the protein backbone (Anderson and Chapman, 2005). 
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Amino acid residues occupying the fifth axial position in heme proteins are called 

proximal ligands, which could be a histidine residue in globin, peroxidases and 

nitrophorins (Anderson and Chapman, 2005; Dunford, 1999; Lecomte et al., 2005), or a 

cysteine residue in cytochrome P450, nitric oxide synthase, and chloroperoxidase 

(Anderson and Chapman, 2005; Dunford, 1999). The sixth axial position, situated above 

the heme plane, can be either vacant or occupied by an amino acid residue. Those 

residues coordinating to the sixth axial position are called distal ligands and could be a 

methionine (i.e., cytochrome c) (Anderson and Chapman, 2005) or a histidine residue 

(i.e. cytochrome b, neuroglobin, cytoglobin and androglobin) (Al-Attar and de Vries, 

2013; Dewilde et al., 2001; Hoogewijs et al., 2012; Pesce et al., 2002).  

One of the most extensively studied families of heme proteins belongs to the 

globin family. Globins have been identified in many taxa, including bacteria, plants and 

animals (Hardison, 1998). According to Vinogradov et al. (2013) globins in all kingdoms 

of life are classified into three types: M (myoglobin-like), S (sensor), and T (truncated) 

globins. In this context, the bacterial globin family comprises three sub-families that have 

been further classified into two structural classes: the 3/3 (3-over-3) and 2/2 (2-over-2) -

fold globins. The 3/3 globin fold bacterial globins encompases the M family, comprising 

the flavohemoglobins (FHbs) and related single domain globins (SDgbs), the S family 

consisting of globin coupled sensors (GCS), protoglobins (Pgb) and sensor single domain 

globins (SSDgb). The third family (T family) consists of truncated globins (TrHbs) in 

which the 3/3 fold is reduced to a 2/2 fold resulting from a shorter or absent helix A and 

conversion of the F helix into a loop. The T family is further classified into three 

structurally distinct families, TrHb1 (T1), TrHb2 (T2) and TrHb3 (T3) (Vinogradov et 
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al., 2013). In plants, two structurally different types of hemoglobins have been identified: 

the 3/3 myoglobin-like hemoglobins and the truncated hemoglobins exhibiting the 2/2 

fold (Vazquez-Limon et al., 2012; Vinogradov et al., 2011). The 3/3 plant hemogloins 

comprise symbiotic hemoglobins (sHbs) and leghemoglobins (Lbs), which are 

synthesized in nodules of nitrogen-fixing plants, and non-symbiotic hemoglobins 

(nsHbs), which have been found in diverse organs of bryophytes and angiosperms 

(Vazquez-Limon et al., 2012). The nsHbs are further classified into two classes, namely 

nsHbs-1 and nsHbs-2, on the basis of their oxygen affinity and sequence homology 

(Vazquez-Limon et al., 2012). Some of the bacterial globin sub-families are also present 

in eukaryotes. For example, TrHb1 and TrHb2 are present in ciliates and algae, TrHb2 in 

plants, and FHHbs and SSDgbs are found in fungi (Vazquez-Limon et al., 2012).  

Structurally, members of the globin family are small proteins arranged into six to 

eight α-helices, named A to H on the basis of myoglobin (Mb) nomenclature (Figure 1.1) 

(Everse, 2004; Lecomte et al., 2005), connected by short coils. In case of 3/3 globins 

these α-helices display a characteristic 3-over-3-α-helical sandwich structure or the so-

called “globin fold” that contains a non-covalently bound iron protoporphyrin IX (heme 

b) as the prosthetic group that is axially ligated by the side chain of a conserved histidine 

residue at the 8th position of helix F (Lecomte et al., 2005). Iron protoporphyrin IX 

(FePPIX) (Figure 1.1) is a macrocycle constituted by four pyrrole rings that are linked by 

four methine bridges (α, β, γ, δ) and form coordination bonds with an iron ion in its 

ferrous or ferric state. In addition to the canonical 3/3 globin fold, a subfamily of proteins 

that display a characteristic fold denoted as 2/2 hemoglobin (Hb) fold conform the 

truncated hemoglobins (trHb) family (Lecomte et al., 2005). These proteins are 20-30 
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amino acid residues shorter than Mb and the 2/2 Hb fold only involves BC/E and G/H 

helices. In terms of physiological function, TrHbs have been proposed to act as small 

molecule sensors, oxygen carriers and pseudo-enzymes (Lecomte et al., 2005). 

 

 

Figure 1.1 Top panel: Structure of iron protoporphyrin IX (heme b). Bottom panel: 
Ribbon representation of three dimensional structure of myoglobin showing 
nomenclature of α helices adopted for globins. The heme prosthetic group and the distal 
and proximal His residues are depicted as sticks. 
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Until a decade ago, only two globins were thought to be expressed in vertebrates: 

myoglobin and hemoglobin. Burmester et al. (Burmester et al., 2002; Burmester et al., 

2000) discovered two new heme proteins through an extensive DNA database search, 

namely neuroglobin (Ngb) and cytoglobin (Cygb) in 2000 and 2002, respectively. The 

DNA database search then led to the discovery of additional globins in vertebrates 

including globin E (GbE), globin X (GbX), globin Y (GbY) and the more recently 

androglobin (Adgb) was discovered by Hoogewijs et al. (Brunori and Vallone, 2007; 

Hoogewijs et al., 2012). At present, only five globins have been discovered in humans: 

Hb, Mb, Ngb, Cygb, and Adgb. Interestingly, these globins have been shown to differ in 

structure and tissue distribution, suggesting different physiological functions.  

A representation of the phylogenetic distribution of globins in vertebrates is 

shown in Figure 1.2. Although Ngb and GbX have been recently discovered, 

phylogenetic and genetic analysis of vertebrate globins indicates that Ngb and GbX 

belong to a branch that diverged before the split of Protostomia and Deuterostomia (700 

million years ago) (Roesner et al., 2005). Molecular evolutionary analysis has also 

revealed that Adgb is phylogenetically more ancient than Ngb (Hoogewijs et al., 2012). 

On the other hand, Cygb, Mb and Hb branches separated at the time of protostomian-

deuterostomian divergence, indicating that these proteins diverged at a later stage 

(Roesner et al., 2005). The sequence alignment of vertebrate globins Hb (α and β chains), 

Mb, Ngb, Cygb and the globin domain of Adgb (Figure 1.3) shows the low sequence 

homology among these proteins. Interestingly, Cygb and Adgb contain a larger number 

of amino acid residues than Hb, Mb and Ngb. Consequently, Cygb exhibits extended N- 

and C-termini, whereas Adgb only displays an extended N-terminus. The role of these 
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extended termini in Cygb is not clear, but it has been proposed that they may be involved 

in association with lipids and/or protein-protein interactions (Oleksiewicz et al., 2011; 

Reeder et al., 2011).   

 

Figure 1.2. Representation of phylogenetic relationships in vertebrate globins. 
 

 

Figure 1.3 Sequence alignment of vertebrate globins Hb, Mb, Ngb, Cygb and Adgb. 
Conserved residues are represented by a star below the sequence, whereas residues that 
strongly share similar properties are represented by two dots and those exhibiting weak 
similarity are represented by one dot below the sequence. 

 



7 
 
 

 
1.1.1. Myoglobin and hemoglobin 

Among vertebrate globins, Mb and Hb have been the most widely studied 

members of this family and have been used as models to understand structure-function 

relationship in proteins. Myoglobin is a monomer mainly found in cardiac and striated 

muscle acting as an oxygen storage protein that facilitates oxygen diffusion to 

mitochondria (Brunori, 2000). Hemoglobin is found in red blood cells and serves to 

transport oxygen in the circulatory system (Hardison, 1998). The Hb protein is a 

heterotetramer composed of two α-chain subunits of 141 amino acid residues and two β-

chain subunits comprising 146 amino acid residues with each of the subunits containing a 

heme group (Figure 1.4). The interaction between α and β subunits results in 

cooperativity of oxygen binding, which is physiologically relevant because it allows fast 

and efficient oxygen release over a narrow range of blood oxygen tensions (Perutz et al., 

1998; Safo et al., 2011). In addition to cooperativity, the oxygen affinity of Hb is 

modulated by the binding of allosteric ligands at sites that are distant from the heme iron, 

including protons, chloride ions, and inorganic phosphates (Safo et al., 2011; Yonetani 

and Laberge, 2008). These ions preferentially bind and stabilize the low affinity deoxy 

conformation of Hb. In addition, heterotropic effectors including 2,3-diphosphoglycerate 

(2,3-BPG), inositol hexaphosphate (IHP), and bezafibrate (BZF) have been shown to bind 

to R (relaxed) and T (tense) states of Hb and induce global conformational changes 

influencing the stability of the tetramer  (Eaton et al., 2007; Schay et al., 2006). 
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Figure 1.4 Ribbon representation of the three dimensional structure of horse heart Hb 
(PDB entry: 2HHB) showing α subunits in orange and β subunits in blue. 

 
Both Mb and Hb contain a penta-coordinate heme iron that provides an open 

ligand binding site to accommodate exogenous ligands such as O2, CO and NO (Lecomte 

et al., 2005). For this reason, heme iron penta-coordination has been regarded as the 

common characteristic of vertebrate heme proteins. However, the discovery of Ngb 

displaying iron hexa-coordination led researchers to classify vertebrate globins into two 

classes: penta-coordinate hemoglobins (Mb and Hb) and hexa-coordinate hemoglobins 

(Ngb, Cygb, and Adgb). A representation of the heme binding site in vertebrate globins is 

shown in Figure 1.5.  
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Figure 1.5 Ribbon representation of the heme binding site in vertebrate globins Hb (PDB 
entry 1FDH), Mb (PDB entry 1WLA), Ngb (PDB entry 1OJ6), and Cygb (PDB entry 
1V5H) exhibiting penta-coordination and hexa-coordination of the heme iron. The distal 
and proximal histidine residues are shown as sticks.  

 
Although the discovery of hexa-coordinate globins in vertebrates was surprising, 

heme hexa-coordination has been previously observed in globins from plants and bacteria 

(Hargrove, 2000). For example, class 1 non-symbiotic hemoglobins (nsHbs) are six-

coordinated and exhibit low affinity for oxygen (Smagghe et al., 2009). It has been 

suggested that class 1 nsHbs are responsible for maintaining the redox and energy status 



10 
 
 

of plant cells during fermentative metabolism, which occurs during hypoxia 

(Igamberdiev et al., 2006). Class 1 nsHbs are characterized by their bishistidine hexa-

coordination in both the reduced and ferrous states. In addition, class 1 nsHbs form 

dimers consisting of two identical subunits of ~ 18 kDa and contain one or two Cys 

residues per molecule. In case of barley hemoglobin (class 1 nsHb), it was demonstrated 

that Cys 79 forms intermolecular disulfide bonds, which contribute to stabilize the 

quaternary structure of the protein (Bykova et al., 2006). The dimer interface of class 1 

non-symbiotic Hbs is formed by close contacts between the G helix and the region 

formed by the B and C helices of the partner subunit (Hargrove et al., 2000). Although 

many functions have been proposed for hexa-coordinate hemoglobins from diverse 

organisms, no clear role has been identified yet for these proteins (Kakar et al., 2010). 

1.1.2. Neuroglobin 

Neuroglobin (Ngb) is a small protein comprising 151 amino acid residues (~17 

kDa) that is mainly expressed in neurons of the peripheral and central nervous system, 

retina and some endocrine tissues (Brunori and Vallone, 2007; Burmester et al., 2000). 

Both in vitro and in vivo studies have suggested that Ngb over-expression protects the 

brain against hypoxic and ischemic insults (Khan et al., 2007; Sun et al., 2001). In 

particular, Ngb over-expression in human neuroblastoma cell lines (SH-SY5Y) increased 

cell survival under anoxia condition as well as in the case of glucose deprivation (Fordel 

et al., 2006). In addition, increased levels of Ngb in transgenic mice significantly 

protected the brain tissues from hypoxic insult, whilst decreased levels of Ngb resulted in 

increased tissue damage (Khan et al., 2007). The molecular basis of Ngb neuro-protection 

is still not well understood. However, several plausible mechanisms have been proposed, 
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including: i) oxygen storage and/or transport, ii) scavenger of reactive oxygen species 

(ROS) or reactive nitrogen species (RNS), iii) detoxification of harmful NO excess by 

conversion of NO to nitrate (dioxygenase activity), and iv) oxygen/redox sensor (Brunori 

and Vallone, 2007; Burmester and Hankeln, 2009; Hankeln et al., 2005). The current 

focus of identification of Ngb physiological function involves characterization of 

structural changes associated with Ngb interactions with diatomic ligands as well as a 

search for Ngb intracellular partners.   

Wakasugi et al. (2003) reported that ferric Ngb binds exclusively to the GDP 

bound form of the α-subunit of heterotrimeric G (Gαi) protein acting as a guanine 

nucleotide dissociation inhibitor (GDI) (i.e., inhibiting the rate of exchange of GDP to 

GTP). In addition, since Ngb in its ferrous ligand bound form did not exhibit GDI 

activity, human Ngb would function as a oxidative stress-responsive sensor for signal 

transduction in the brain (Wakasugi et al., 2003). Heterotrimeric G proteins belong to a 

superfamily of regulatory GTP hydrolyses that have crucial roles as molecular switches 

in the regulation of downstream effector molecules, which are involved in the signaling 

pathways of several G protein coupled receptor (Sprang, 1997). Heterotrimeric G 

proteins consist of an α subunit that contains a guanine nucleotide binding pocket and 

intrinsic GTPase activity, a β- and a γ-subunit that form a complex often refered to as the 

βγ subunit. Upon ligand binding to a G protein coupled receptor (GPCR) on the cell 

surface, the α-subunit of G protein (Gα) exchanges GTP for GDP and detaches from the 

Gβγ complex. These subunits become active and interact with diverse downstream 

effectors, including adenylate cyclase, G protein regulated kinases, ion channels and 

phospholipase C to initiate specific cellular responses (Hepler and Gilman, 1992; Katz et 
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al., 1992; Sprang, 1997). The activation/deactivation of G proteins can be regulated by 

three classes of protein modulators: guanine nucleotide exchange factors (GEFs) that 

stimulate GDP dissociation and GTP association, guanine nucleotide dissociation 

inhibitors (GDIs) that inhibit GDP dissociation, and GTPase-activating proteins (GAPs) 

that enhance GTP hydrolysis (Sprang, 1997).  

Site-directed mutagenesis in combination with mass spectrometry and 

measurement of GDI activity for Gα suggested that residues Glu 53 and Glu 60, located 

within the CD-D region in human Ngb, are crucial for the GDI activity in human Ngb 

(Kitatsuji et al., 2007; Takahashi et al., 2013; Wakasugi et al., 2005; Wakasugi and 

Morishima, 2005). At the molecular level, it was proposed that Glu 60 of Ngb interacts 

with Ser 206 of Gαi (located in the region that contacts Gβγ), and Glu 53 in Ngb wih Ser 

44 of Gαi (adjacent to the GDP-binding site), thereby binding of Ngb would facilitate the 

release of Gβγ from Gα and also inhibit the exchange of GDP for GTP (Kitatsuji et al., 

2007). Therefore, residues located within the CD loop in human Ngb are crucial for the 

binding of Ngb to Gαi protein emphasizing the importance of the CD-D region for 

protein-protein interactions (Wakasugi et al., 2003; Watanabe et al., 2012). The encounter 

of human Ngb with Gαi was proposed to be facilitated by flotillin-1, a lipid raft 

microdomain-associated protein that was identified as an interacting partner of Ngb 

(Wakasugi et al., 2004). Under oxidative stress conditions, flotillin-1 recruits human Ngb 

to lipid rafts, where human Ngb then binds to Gαi (also present in lipid rafts) and acts as a 

GDI for Gαi though prevention of decrease in cAMP concentration, thus leading to 

protection against cell death (Watanabe et al., 2012). Noteworthy, the interaction between 

Ngb and the heterotrimeric G protein appears to be species specific since zebrafish Ngb, 
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which shares ~50% sequence homology with human Ngb, does not exhibit GDI activity 

for Gα (Wakasugi and Morishima, 2005). The difference in GDI activity between human 

Ngb and zebrafish Ngb was proposed to be related to the presence of a Glu residue at 

position 53 in mammalian Ngbs that is occupied by a Pro residue in fish Ngbs, however 

the physiological relevance of the specificity observed in mammalian Ngbs toward GDI 

activity is unclear  (Kitatsuji et al., 2007).  

On the other hand, Brittain et al. and others (Brittain et al., 2010b; Fago et al., 

2008; Raychaudhuri et al., 2010) showed that Ngb inhibits apoptosis in vivo through the 

binding to cytochrome c, thereby preventing pro-caspase 9 activation. Surface plasmon 

resonance studies combined with docking simulations indicate that Ngb binds to Cyt c 

with moderate affinity with a Kd = 45 μM and the authors suggested that the interactions 

are mostly electrostatic because of the dependence of Kd on the solution ionic strength 

(Bonding et al., 2008). The authors showed that formation of the complex between Ngb 

and Cyt c is entropy driven, with a positive ΔH = 1.9 kcal mol-1 and ΔS=14.8 cal deg-1 

mol-1 at 37 °C.  The docking simulations suggest that Cyt c binds to Ngb at a site 

covering the area of the exposed heme so that the two heme groups are in close 

proximity, and the residues Lys 25 and Lys 72 were identified as crucial residues in the 

interaction between Ngb and Cyt c (Bonding et al., 2008; Brittain et al., 2010b). These 

amino acid residues have been previously identified as key residues in the interaction of 

Cyt c with Apaf-1, the major cytosolic protein involved in apoptosome assembly, 

suggesting competition of Ngb with Apaf-1 for Cyt c binding site (Brittain et al., 2010b).   
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An intramolecular disulfide bond is present in human Ngb (hNgb) that connects 

Cys 46 within the CD loop with Cys 55 from the E helix (Hamdane et al., 2003). There is 

another Cys residue (Cys 120) in the sequence of Ngb that does not participate in 

intramolecular disulfide bond formation since it is located too far from the other two Cys. 

Despite the high sequence homology between hNgb and rodent Ngbs (~94%), the 

internal disulfide bond is absent in rodent Ngbs (rat, mouse) because a Gly residue is 

found at position 46. Reduction of the internal disulfide bond decreases the rate of His64 

dissociation from heme iron by a factor of approximately 10 times resulting in decreased 

hNgb affinity for O2 (Hamdane et al., 2003). Therefore, Hamdane et al. (2003) proposed 

that the interaction between hNgb and O2 may be coupled to the intracellular redox state 

of the cell through the rupture and/or formation of the disulfide bond. 

The crystal structures of the CCCGSS mutated protein of ferric human Ngb 

(Figure 1.6), as well as the CCSS mutated protein of ferric, ferrous and CO bound 

adduct of mouse Ngb have been elucidated (Pesce et al., 2003, 2004b; Vallone et al., 

2004a; Vallone et al., 2004b). Superposition of the crystal structure of the ligand free and 

ligand bound forms of Ngb indicates that ligand binding leads to large structural changes, 

including a heme sliding mechanism that has been proposed to be species specific, and 

reorganization of internal cavities (Vallone et al., 2004b).  
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Figure 1.6 Ribbon representation of the crystal structure of human Ngb (PDB entry: 
1JO6). The heme prosthetic group is shown as red sticks, the distal His64 and proximal 
His96 are depicted in blue, and the Cys residues in purple. 

 
1.1.3. Cytoglobin 

Cytoglobin comprises 190 amino acid residues (~21 kDa) with extended N- and 

C-termini that is localized in the nucleus and cytoplasm of several tissues, specifically in 

fibroblasts and related cell types (Burmester et al., 2002; Makino et al., 2006; Nakatani et 

al., 2004). Cytoglobin is overexpressed in fibrosis and neurodegenerative disorders and 

down-regulated in some types of cancers, such as head and neck cancer (Fordel et al., 

2004; He et al., 2011; Xu et al., 2006). Moreover, Cygb has been shown to inhibit cancer 

cell growth in vitro, which indicates a tumor suppressor role (Kawada and Le, 2011; 

Shivapurkar et al., 2008). Recently, Reeder et al. (2011) reported that binding of lipids, 

such as oleate and cardiolipin, to Cygb enforces the protein’s transition from hexa- to 

penta-coordinate state, suggesting a role for Cygb in lipid transport. However, the 
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molecular mechanism of Cygb cytoprotection remains under investigation. Some studies 

point out diverse roles of Cygb, including oxygen storage, oxygen sensing, as 

decomposition of reactive oxygen species (ROS), nitric dioxygenase activity, and lipid 

transport (Fago et al., 2004c; Halligan et al., 2007; Mammen et al., 2004; Oleksiewicz et 

al., 2011; Pesce et al., 2002; Reeder et al., 2011).  

An interesting structural feature of Cygb, also found in human Ngb, is the 

presence of an internal disulfide bond. There are two cysteine residues in Cygb, Cys 38 

and Cys 83, forming a disulfide bond (Hamdane et al., 2003). The three-dimensional 

structure of ferric Cygb is shown in Figure 1.7. Two histidine residues are positioned in 

the fifth and sixth axial positions of the iron atom, His 113 as the proximal ligand and His 

81 as the distal ligand. Reduction of the disulfide bond in Cygb decreases the rate of 

distal His81 dissociation from heme iron, but to a lesser extent than observed for Ngb, by 

a factor of approximately two times indicating a weaker coupling between the disulfide 

bond and ligand binding in this protein (Hamdane et al., 2003).  

The crystal structure for both ferric and CO adduct of Cygb have been elucidated 

(de Sanctis et al., 2004a; Makino et al., 2011; Makino et al., 2006). Superposition of the 

CO bound structure of Cygb with its ferric form shows ligand induced conformational 

changes in CD-D corner and the E-helix of Cygb (Makino et al., 2011). Molecular 

dynamics simulations of deoxy and CO bound human Cygb indicate that ligand-induced 

structural changes are mainly modulated by rearrangement of loops and cavities instead 

of the heme sliding mechanism proposed for Ngb (Zhang et al., 2011a). The structural 

differences between Ngb and Cygb suggest different physiological functions and 

mechanism of interaction with ligands (Zhang et al., 2011a).  
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Figure 1.7 Ribbon representation of the crystal structure of human Cygb (PDB entry: 
1V5H). The heme prosthetic group is shown as red sticks, the distal His81 and proximal 
His113 are depicted in blue, and the Cys residues in purple. 

 
1.1.4. Androglobin 

The recently discovered androglobin (Adgb) is a multidomain protein containing 

an N-terminal calpain-like domain, an internal globin domain that has undergone internal 

shuffling of a-helices, and an IQ calmodulin binding motif (Hoogewijs et al., 2012). In 

mammals, Adgb is preferentially expressed in testis. The physiological role of Adgb is 

still not known, but it has been proposed to be involved in redox-signaling or oxygen 

sensing (Hoogewijs et al., 2012). The three dimensional structure of Adgb has not been 

elucidated yet. 

In addition to vertebrate Ngbs and Cygb that show structural similarities with Mb, 

other globins such as dehaloperoxidase (DHP) and the globin coupled sensor HemAT 

exhibit high structural similarities to Mb, but distinct functions. Dehaloperoxidase is non-



18 
 
 

vertebrate hemoglobin that is expressed by the terebellid polychaete Amphitrite ornate. 

Secretion of DHP by Amphitrite ornata enables this organism to live in coastal marine 

environments contaminated with haloaromatic compounds originated from human related 

activities or secreted by other organisms (Chen et al., 1996). Although DHP has different 

structural properties than other peroxidases, including horseradish peroxidase, it still has 

a peroxidase function that enables it to oxidize halogenated phenols into quinones in the 

presence of H2O2 (Figure 1.8). The active site of DHP consists of a protoporphyrin IX 

that is covalently attached to the apo-protein through the proximal His 89. In addition, the 

proximal His in DHP forms a hydrogen bond with Leu 83 that is weaker than that 

observed in other peroxidases and the distal pair of hydrophobic residues Arg-His, which 

is crucial for the enzymatic activity in other peroxidases, is missing in DHP (Franzen et 

al., 2006; LaCount et al., 2000; Osborne et al., 2004). 

 

Figure 1.8 Oxidation of halogenated phenols by dehalperoxidase (DHP) in the presence 
of H2O2. The X represents halogen atoms (X= I, Br, Cl, F).  

 

The HemAT proteins belong to the globin coupled sensors family, which 

represent a unique class of oxygen sensing heme proteins found in both Archaea and 

Bacteria. The first two members of the globin coupled sensors were HemAT-Hs from the 

archeae Halobacterium salinarum and HemAT-Bs from the gram positive prokaryote 
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Bacillus subtilis (Hou et al., 2000). These proteins contain an N-terminal heme sensor 

myoglobin-like domain and a C-terminal domain homologous to the cytoplasmic 

signaling domain of Tsr, a methyl-accepting chemotaxis protein from Escherichia coli   

(~ 30% sequence similarity) (Hou et al., 2000).  The myoglobin-like domain of HemAT 

proteins share conserved proximal residues His (F8), Pro (C2), and Phe (CD1) with Mb 

corresponding to amino acid residues Pro55, His123, Phe61 for HemAT-Hs and Pro56, 

His123, Phe69 for HemAT-Hs (Mokdad et al., 2007; Zhang and Phillips, 2003a, b). It has 

been proposed that HemAT function is related to the aerotaxic response exhibited by 

microorganisms (migratory response towards or away from oxygen), especifically 

HemAT-Hs is involved in an aerophilic response, whereas HemAT-Bs function is related 

to an aerophobic response (Hou et al., 2001; Hou et al., 2000; Yu et al., 2002).   

1.2. Electronic properties and absorption spectroscopy of heme proteins 

1.2.1. Electronic properties 

The presence of the heme prosthetic group in globins provides an excellent 

opportunity to study functional and structural properties of this class of proteins using 

steady state and time resolved spectroscopic techniques. The electronic configuration of 

iron atom is [Ar]3d64s2. Ions Fe2+ and Fe3+ tend to form octahedral complexes in which 

the splitting of the energy levels results in three degenerate eg orbitals (dxy, dxz, dyz) and 

two degenerate t2g orbitals (dz
2, dx

2
-y

2) (Figure 1.9) (Lippard and Berg, 1994). The energy 

levels corresponding to the electrons from the d-orbitals in heme proteins are altered from 

those found in the free metal ion as a consequence of a phenomenon called ligand-field 

splitting. Energy-level diagrams are used to show the position of the energy levels, which 

depend on the strength of the ligand field (Lippard and Berg, 1994). These diagrams have 
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been useful to correlate some of the physical properties of metal centers found in 

proteins, including their absorption spectra and magnetic properties, with their structures 

or reactivity (Lippard and Berg, 1994; Perry et al., 2002). The strength of the ligand field 

at the metal center is determined by the atoms from the ligand that coordinate to the metal 

center. In fact, the ability of ligands to split the d-orbitals varies according to the 

spectrochemical series (Lippard and Berg, 1994).  

 

Figure 1.9 Energy level diagrams showing the d-orbital electron occupancies of high and 
low-spin iron(II) and iron (III) complexes in an octahedral ligand field (Halcrow, 2008).  

 

1.2.2. Absorption spectroscopy 

There are three main sources of electronic spectra in metal complexes, namely 

internal ligand bands such as those found in porphyrins, transitions associated purely with 

metal orbitals such as d-d transitions, and charge transfer bands between metal and 
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ligand. These spectral properties have been used to assign oxidation state of the metal, 

follow reactions, and identify chemical species (Lippard and Berg, 1994).  

Heme proteins exhibit characteristic absorption spectra with absorption bands that 

result from the transition between two HOMO orbitals (a1u and a2u orbital) and two 

degenerate LUMO orbitals (eg orbitals) (Larsen and Miksovska, 2007). The Soret band is 

a high intensity band (also referred to as B band) that results from the a1u to eg transition 

and appears in the near ultraviolet region of the spectrum at approximately 400 nm. In 

addition, there is a number of low intensity bands referred to as Q bands that appear in 

the visible region of the spectrum, between 450 and 700 nm, arising from the a2u to eg 

transitions. Soret and Q bands maxima are influenced by the oxidation state of the metal 

center, interactions between the metal and the porphyrin ring, as well as the type of 

ligands coordinating to the metal (Perry et al., 2002). 

High spin complexes of Fe3+ porphyrins are characterized by a Soret band 

maximum located at approximately 400 nm, whereas low spin complexes increase the 

strength of the axial ligand field resulting in a red shifted Soret band at approximately 

410 nm (Perry et al., 2002). Reduction of the heme iron (Fe3+ to Fe2+) leads to a 

bathochromic shift of the Soret band and upon addition of diatomic ligands, including 

CO, NO and O2, subsequent formation of the adducts results in hypsochromic shift of the 

Soret band maximum with respect to the ferrous form (Nienhaus and Nienhaus, 2005b).  

1.3. Heme protein interactions with diatomic ligands 

The presence of the heme group allows heme proteins to bind reversibly to 

diatomic ligands, including O2, CO and NO at the distal coordination site (Anderson and 

Chapman, 2005). Ligand binding to heme proteins is strongly influenced by residues 
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within the distal heme pocket in terms of orientation of the ligand and ligand-Fe bond 

lability through non-covalent interactions including hydrogen bonding and 

hydrophobicity (Anderson and Chapman, 2005). Moreover, distal pocket residues also 

play a role in substrate binding and recognition serving as substrate binding sites for 

proteins like plant peroxidases and cytochromes P450, since they are designed to place 

the substrate in a specific orientation and at a specific distance from the heme active site 

(Larsen and Miksovska, 2007). 

The photo-cleavable nature of the Fe-ligand bond is advantageous for ligand 

migration studies in heme proteins, since it allows monitoring of transient deoxy 

intermediates using spectroscopic techniques, including time-resolved absorption 

spectroscopy (Carver et al., 1990; Esquerra et al., 2010; Gibson et al., 1986; Goldbeck et 

al., 2006; Rohlfs et al., 1990) and time-resolved X-ray crystallography (Schmidt et al., 

2005; Srajer et al., 1996). In particular, Mb and Hb have been extensively studied using 

these techniques as model systems to understand the mechanism of ligand migration in 

heme proteins, as well as ligand affinity and specificity (Brunori, 2000).  

Ligand migration in heme proteins was described by Henry et al. (1983) using the 

sequential three state model (Figure 1.10). Photo-dissociation of the Fe-ligand bond 

results in two global kinetic steps. The cleaved ligand can be temporarily trapped within 

the protein matrix and from there rebind back to the heme iron in the so called “geminate 

rebinding” or it can diffuse from the protein matrix into the surrounding solvent in the so 

called “bimolecular rebinding” (Henry et al., 1983). Geminate rebinding does not depend 

on the concentration of the ligand (e.g., NO, O2 and CO) and occurrs in the nanosecond 

time scale. On the other hand, bimolecular rebinding occurs on significantly longer time 
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scales in the range of microseconds to milliseconds (Henry et al., 1983; Jongeward et al., 

1988; Schaad et al., 1993).  

 

Figure 1.10 Schematic representation of ligand rebinding to heme proteins according to 
the sequential three state model. 
 
 The microscopic rate constants associated with ligand migration in heme proteins 

can be analyzed using the simple three-state model according to the following equation:  
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Where state 1 corresponds to the ligand bound protein, state 2 represents the 

penta-coordinate hemoglobin (Hb5c) with the ligand within the protein matrix in the so-

called geminate pair, and state 3 is the free Hb5c with the ligand into the surrounding 

solvent. Since the concentration of the ligand used for determination of ligand geminate 

and bimolecular rebinding to Hb5c is usually much larger than the concentration of the 

protein and in case of CO the concentration of the ligand is ~ 1 mM, the following 

approximations can be used: [L]= 10-3 M, k21>>k12, and k23>>k32[L] (Ciaccio et al., 

2004). 
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Where kgem is the rate constant for ligand geminate recombination, Atotal is the 

total absorbance change for ligand rebinding to Hb5c (geminate recombination and 

bimolecular rebinding), Agem is the absorbance change upon ligand geminate 

recombination, and kbim corresponds to the rate constant for ligand bimolecular rebinding. 

By combining equations 1.2 to 1.4, the individual kinetic rate constants associated 

to ligand dissociation and rebinding to Hb5c presented in equation 1.1 can be calculated 

using the following equations: 
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The quantum yield for each process, defined as the ratio between the amplitude of 

the kinetic step and the total amplitude, strongly depends on the character of the ligand 

and the protein (Henry et al., 1983). The NO molecule rebinds predominantly through 

geminate rebinding (Ye et al., 2002) with a quantum yield close to unity in most proteins. 

In Mb, CO rebinds predominantly through bimolecular rebinding with a quantum yield 

close to one (Φbim = 0.96) (Henry et al., 1983), whereas the quantum yield for 
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bimolecular O2 rebinding to heme proteins is significantly lower (Carver et al., 1990; 

Walda et al., 1994). 

The mechanism of oxygen entrance to Mb and some Hbs was proposed to occur 

though a so-called “histidine gate” by Perutz  (Perutz, 1989) upon elucidation of the 

crystal structure of Mb, in which the distal His swings out of the heme pocket allowing 

the ligand to escape from the protein matrix. Kinetic studies demonstrated that the 

observed rate of entrance of the ligand (kon) increased when the distal His64 in Mb was 

replaced with small hydrophobic residues such as Ala or Gly, whereas it decreased when 

His64 was replaced by bulky amino acid residues such as Trp (Olson et al., 2007; Rohlfs 

et al., 1990). Moreover, the crystal structure of Mb at low pH showed that the distal His 

is displaced towards the solvent in what was called the “open conformation” (Yang and 

Phillips, 1996), which was supported by kinetic results that provided evidence of 

increased kon at lower pH (Tian et al., 1993). 

The crystal structures of Mb also revealed another interesting feature of globins 

related to the presence of hydrophobic cavities within the protein matrix. These cavities 

are also denoted as xenon binding sites because they can bind Xe atoms (Brunori and 

Gibson, 2001). Therefore, the presence of these cavities in Mb suggested possible 

alternative routes for ligand entry and escape (Brunori and Gibson, 2001; Savino et al., 

2009).  

Although, the histidine gate mechanism has been considered as the main pathway 

for O2 entry to Hb and Mb, several other plausible pathways have been also proposed as a 

result of thermal fluctuations in proteins, which suggest that most likely the histidine gate 

mechanism is one of the many pathways in ligand migration from globins (Salter et al., 
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2012). Accesibility of the ligand to the active site of the protein may also occur through 

ligand channels that provide entry/exit pathways from the solvent to the distal heme 

pocket (Lecomte et al., 2005). These channels and/or pathways are modulated by protein 

conformational changes as a result of “gated” ligand access and protein motions that are 

regulated by protein dynamics.  

The different pathways observed in globins may have important physiological 

roles that are still not well understood. For instance, these pathways may have enzymatic 

functions as it has been proposed in the catalysis of NO to NO3
- reaction by some oxyHbs 

and oxyMbs, or serve as transient docking sites for ligand storage (Anderson and 

Chapman, 2005). Such pathways could also provide various routes for the ligand to enter 

and/or escape the protein, which would also increase the available surface for the capture 

and release rates of gas molecules (Savino et al., 2009).  

Overall, the affinity of heme proteins for ligands is affected by several factors, 

including the reactivity of the ligand for the heme which can be modulated by the type of 

residues occupying the proximal and distal axial positions. The proximal residues largely 

impact the heme electronic structure, whilst the distal residues may interact directly with 

the bound ligand through non-covalent interactions (Anderson and Chapman, 2005). In 

addition, the reactivity of the ligand also depends on the ligand accessibility to the distal 

site of the protein that is modulated by the presence of i) blocking residues coordinating 

to the heme iron, ii) tunnels connecting the distal site with the surrounding solvent, and 

iii) gates that affect proteins dynamics thus controlling ligand access and escape routes 

(Lecomte et al., 2005; Vetromile et al., 2011).  
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2. OBJECTIVES 

Conformational dynamics in proteins play a crucial role in their function, activity 

and association to interacting partners. Chemical changes and atomic motions in 

biological systems typically occur on time scales ranging from femtoseconds to seconds. 

Therefore, kinetics and thermodynamics associated with relevant protein dynamics, 

including local conformational changes, binding to ligands, and protein folding, have 

been usually investigated through the use of time-resolved spectroscopic methods 

(Braslavsky and Heibel, 1992; Brunori, 2000; Chekmarev et al., 2005; Chen et al., 1997; 

Gensch and Viappiani, 2003; Vetromile et al., 2011).  

Traditional techniques such as UV-vis spectroscopy have been extensively used to 

monitor time-resolved structural changes in the vicinity of the chromophore. The 

photolability of the ligand-iron bond in combination with the sensitivity of the absorption 

spectra of heme proteins to changes in the vicinity of the heme iron have proved to be 

advantageous to probe time-resolved local dynamics that provide critical information 

related to local chromophore/protein dynamics using transient absorption spectroscopy 

(Nienhaus and Nienhaus, 2005b). However, optical methods are limited in their ability to 

characterize the thermodynamic parameters, in terms of molar volume and enthalpy 

changes, associated with the ligand binding event on fast time scales. Photothermal 

methods, such as photoacoustic calorimetry, provide an opportunity to monitor dynamics 

and energetics of conformational changes in proteins that are otherwise “silent” with 

other time-resolved spectroscopic techniques, including time-resolved absorption 

spectroscopy and time-resolved fluorescence. The use of photoacoustic calorimetry 

allows characterization of volume and enthalpy changes associated with ligand binding to 
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proteins occurring on physiologically relevant time scales (ns to μs) (Larsen and 

Miksovska, 2007; Vetromile et al., 2011). The overall goal of these studies is to gain a 

deeper understanding of the relationship between dynamics and function in proteins. 

Besides being a subject of basic scientific interest, this information will be useful in the 

fields of protein science and medicine (Anderson and Chapman, 2005).  

In this work, conformational dynamics associated with ligand binding to four 

vertebrate globins, namely Hb, Mb, Ngb, and Cygb, were investigated using steady-state 

and time-resolved spectroscopic methods. The role of individual amino acid residues on 

conformational dynamics associated with CO binding to Ngb as well as the impact of the 

disulfide bond in Ngb and Cygb was probed by time-resolved photothermal and 

spectroscopic methods. In addition to understanding the interactions of vertebrate globins 

with CO, a part of this study was devoted to characterizing how distinct ligands, CO and 

O2, affect the thermodynamic parameters associated with ligand photodissociation in 

vertebrate globins.  The overall goal of this study is to provide molecular insight into the 

mechanism of ligand interactions with vertebrate hemoglobins. In particular, a thorough 

study of the kinetics and thermodynamics of ligand migration in hexacoordinate globins 

as well as their equilibrium dynamics is crucial to have a better understanding of their 

physiological functions in vertebrates. Since Ngb and Cygb have been proposed to 

protect cells under hypoxia/ischemia and oxidative stress conditions, the information 

obtained from this study will in the long term provide molecular bases for development 

of novel targets for therapeutic agents against hypoxia, neurodegenerative diseases, 

and/or cancer. 
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2.1. Objective 1  

Determine the role of His64, Val68 and Cys120 residues on the dynamics and 

energetics of structural changes associated with CO binding to Ngb using transient 

absorption spectroscopy and photoacoustic calorimetry 

Protein function is related to protein flexibility and the interaction between a 

protein and an exogenous molecule requires the protein to be able to change its 

conformation. Although, this variation in conformation may be small, solely involving 

the rearrangement of a few amino acid residues or side chains, it can also be large and 

involve long-range interactions within the protein. Dynamics and energetics associated 

with ligand migration have been extensively studies in model proteins such as Mb. 

Although O2 is considered the physiological ligand of globins, carbon monoxide has been 

widely used as a probe for ligand binding studies in heme proteins because of the high 

yield of CO photodissociation, which is close to unity in Mb, the stability of the CO 

adducts of these proteins, and the comparable size between CO and O2. The fact that 

most studies of ligand migration have used CO as a probe is helpful in comparing the 

results of this study to previously reported results. 

In this study, I took advantage of the sensitivity of photothermal methods to 

monitor the role of two conserved residues in globins located in the distal pocket, His64 

andVal68, as well as conserved Cys residue among Ngbs (Cys 55 and Cys120), on the 

thermodynamic profiles of exogenous binding to Ngb and ligand migration pathways. 

This study provided the first time-resolved thermodynamic profiles for ligand migration 

in Ngb with the concomitant conformational transitions, which contributes to the 
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understanding of the mechanism of ligand migration in this protein. The results of this 

objective are shown in chapter 4 and have been published in (Astudillo et al., 2012). 

2.2. Objective 2 

Determine the impact of the disulfide bond on the dynamics and energetics of 

structural changes associated with CO binding to Ngb and Cygb using transient 

absorption spectroscopy and photoacoustic calorimetry. 

Disulfide bonds in proteins have often been associated with enhacement of 

protein stability (Wedemeyer et al., 2000). Recently, it was shown that disulfide bonds in 

proteins can have additional functions including regulation of enzymatic activity and 

sensing, and acting as molecular switches in cells that regulate several processes such as 

transcription (Nagahara, 2011; Wouters et al., 2010). Ngb and Cygb are the only two 

heme proteins in vertebrates that carry a disulfide bond, although the precise contribution 

of the disulfide bond to Ngb and Cygb remains unclear.  

In this work, time-resolved absorption spectroscopy and photoacoustic 

calorimetry were used to monitor the impact of the disulfide bond on conformational 

dynamics associated with CO binding to Ngb and Cygb. The impact of the internal 

disulfide bond present in human Ngb and Cygb on the structural changes between the 

ligand free and the ligand bound form of the protein was evaluated by comparing the 

thermodynamic profiles for the wild type protein in the presence and absence of the 

disulfide bond. The disulfide bond was reduced by incubation of the protein with 

dithiothreitol or through replacement of Cys residues with Gly or Ser residues. In 

addition, since the internal disulfide bond is missing in wild type rat Ngb, a rat Ngb 

mutated protein with an engineered disulfide bond was also characterized. Moreover, the 
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role of the distal Tyr residue in transmitting structural information between the heme 

pocket and the disulfide bond in human Ngb was assessed by characterization of a 

Tyr44Phe mutated protein. The main hypothesis was that the presence of the disulfide 

bond affects the kinetic and thermodynamic profiles of hexa-coordinate hemoglobins in 

vertebrates. Characterization of global structural changes associated with ligand binding 

in these heme proteins is crucial for a detailed understanding of of role of the disulfide 

bond in hexa-coordinate hemoglobins. The results of this objective are described in 

chapters 5 and 6 and have been published in (Astudillo et al., 2013; Astudillo et al., 

2010). 

2.3. Objective 3 

Determination of thermodynamic parameters associated with O2-

photodissociation from Mb and Ngb and CO photo-dissociation from Hb in the presence 

of heterotrophic effectors 

Photoacoustic calorimetry was utilized to characterize thermodynamic parameters 

associated with oxygen photodissociation from Mb and human Ngb to obtain a better 

description of how these proteins discriminate between different exogenous ligands, such 

as CO and O2.  Although O2 is considered the physiological ligand for these proteins, O2 

photodissociation from Mb and Ngb has not been previously investigated. In addition, 

thermodynamic profiles of CO photodissociation from Hb in the presence of 

heterotrophic allosteric effector bezafibrate and inositol hexakishexaphosphate were 

constructed and compared with that of Hb in the absence of allosteric effectors. The 

results of this part of the study are described in chapter 7 and partially published in 

(Miksovska and Astudillo, 2011). 
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2.4. Objective 4 

Characterization of cytoglobin interactions with the fluorescent probe 1-

anilinonaphthalene-8-sulfonate and sodium oleate. 

Crystallographic data and sequence homology indicates that cytoglobin contains 

extended N- and C-termini that may be involved in association of the protein with 

intracellular partners such as other proteins or small molecules. A recent study shows that 

Cygb associates with the lipids oleic acid and cardiolipin, which suggests a possible role 

of Cygb in lipid transport (Reeder et al., 2011). 

To provide insight into Cygb interactions with lipids, the fluorescence probe 1-

anilinonaphthalene-8-sulfonate (1,8-ANS) was used as a spectral tool to characterize the 

interactions of the protein with a hydrophobic molecule. In addition, replacement studies 

of ANS-protein complexes have been previously used to characterize binding of fatty 

acids with proteins. In this study, steady-state and time-resolved fluorescence 

spectroscopy were employed to characterize the association of Cygb with the dye 1,8-

ANS, as well as the interactions of the protein with fatty acids such as oleic acid through 

replacement studies of ANS-protein complexes. To determine the thermodynamic 

parameters associated with binding of the 1,8-ANS probe to Cygb, isothermal titration 

calorimetry was employed to characterize the interaction of 1,8-ANS with Cygb. The 

impact of the disulfide bond and exogenous ligands on Cygb was probed by 

characterizing the protein reduced with DTT and the cyanide adduct of Cygb. In addition, 

molecular docking simulations were used to complement the experimental data and 

obtain structural information about the sites where 1,8-ANS and oleate bind to Cygb.   

The results of this part of the study are described in chapter 8.   
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2.5. Objective 5 

Characterization of guanidine hydrochloride induced unfolding of hexa-

coordinate vertebrate globins 

To obtain insight into the stability of Cygb and Ngb, chemical unfolding of these 

proteins was studied using the chaotropic agent guanidine hydrochloride. The impact of 

the disulfide bond and the binding of exogenous ligands on the stability of the proteins 

were also investigated by characterizing the protein reduced with DTT and the cyanide 

adduct of the proteins. The spectral changes of the Soret band upon addition of GuHCl 

were monitored using steady-state absorption spectroscopy in the visible region of the 

spectrum, whereas the changes in the secondary structure of the proteins were monitored 

using far-UV circular dichorism spectroscopy. The results of this part of the study are 

described in chapter 9.  
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3. MATERIALS AND METHODS 

3.1. Materials 

The Fe3+tetrakis(4-sulfonatophenyl)phorphine [Fe(III)4SP] was purchased from 

Frontier Scientific Inc. Myoglobin, hemoglobin, inositol hexakisphosphate (IHP), 

bezafibrate (BZF), dithiothreitol (DTT), potassium cyanide (KCN), and 5-δ-

aminolevulenic acid were purchased from Sigma-Aldrich. All other reagents were 

purchased from Fisher Scientific. All reagents were used as received. 

3.2. Methods 

3.2.1. Protein expression and purification 

Transformed cells containing plasmids for wild type human Ngb, rat Ngb, human 

Cygb and mutants were kindly provided by Dr. Pierre Sebban (Paris Sud University, 

Orsay, France). The coding sequence of Ngb and Cygb with a six-His tag at the N-

terminus was cloned into a pET15b expression vector. The DNA sequence of the 

recombinant plasmid product was confirmed through DNA sequencing. The 

QuickChange site-directed mutagenesis method (Stratagene) was employed to introduce 

mutations into the Ngb and Cygb coding sequence. The expression vectors were then 

transformed into Escherichia coli strain BL21.  

3.2.1.1. Neuroglobin isolation and purification 

Transformed Ngb cells were grown in 50 mL of Luria-Bertani medium 

supplemented with 100 mg L-1 of ampicillin for 8 h at 37 °C. Subsequently, 10 mL of 

culture were transferred into 1 L of Terrific Broth medium supplemented with 100 mg L-1 

of ampicillin and 170 mg L-1 of 5-aminolevulenic acid. Cells were incubated at 37 °C and 

200 rpm until the absorbance at 600 nm (A600) reached 1.1. The culture was induced by 
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addition of isopropyl β-D-1-thiogalactopyranoside to a final concentration of 0.4 mM. 

Cells were then incubated overnight at 30 °C, collected by centrifugation for 10 min at 

5000 rpm (2700g) and 4 °C (Allegra 64R, Beckman Coulter), and homogenized in 50 

mM Tris buffer and 5 mM DTT (pH 8.0). The suspension was sonicated with a sonic 

dismembrator (model 100, Fisher Scientific) and centrifuged at 24000g to remove 

membrane debris. The supernatant was filtered through a 0.2 μm membrane and loaded 

into a Ni-NTA column (Qiagen) that was previously equilibrated with 10 mM Tris buffer 

(pH 8.0). The column was then washed with 10 mM Tris buffer (pH 8.0) containing 

increasing concentrations of imidazole (5, 10, 15 and 20 mM) until the absorbance at 280 

nm was less than 0.03. Neuroglobin was eluted with 10 mM Tris buffer (pH 8.0) 

containing 40 mM imidazole. Fractions with an ASoret/A280 ratio higher than 3.0 were 

collected, concentrated using Amicon Millipore concentrators, and dialyzed overnight 

against 50 mM Tris buffer (pH 7.0). The purity of the protein was assessed using sodium 

dodecyl sulfate electrophoresis.  

3.2.1.2. Cytoglobin isolation and purification 

Transformed human Cygb cells were grown in 50 mL of Luria-Bertani medium 

supplemented with 100 mg L-1 of ampicillin for 8 h at 37 °C. Subsequently, 5 mL of 

culture were transferred into 300 mL of Terrific Broth medium supplemented with 100 

mg L-1 of ampicillin and 170 mg L-1 of 5-aminolevulenic acid. Cells were incubated at  

37 °C and 250 rpm until the absorbance at 600 nm (A600) reached 1.1. The culture was 

induced by addition of isopropyl β-D-1-thiogalactopyranoside to a final concentration of 

0.4 mM. Cells were then incubated overnight at 30 °C, collected by centrifugation for 10 

min at 5000 rpm (2700g) and 4 °C (Allegra 64R, Beckman Coulter), and homogenized in 
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50 mM Tris buffer and 5 mM DTT (pH 8.0). The suspension was sonicated with a sonic 

dismembrator (model 100, Fisher Scientific) and centrifuged at 24000g to remove 

membrane debris. The supernatant was filtered through a 0.2 μm membrane and loaded 

into a Ni-NTA column (Qiagen) that was previously equilibrated with 10 mM Tris buffer 

(pH 8.0). The column was then washed with 10 mM Tris buffer (pH 8.0) containing 

increasing concentrations of imidazole (5, 10, 15 and 20 mM) until the absorbance at 280 

nm was less than 0.03. Cytoglobin was eluted with 10 mM Tris buffer (pH 8.0) 

containing 40 mM imidazole. Fractions with an ASoret/A280 ratio higher than 2.5 were 

collected, concentrated using Amicon Millipore concentrators, and dialyzed overnight 

against 50 mM Tris buffer (pH 7.0). The purity of the protein was assessed using sodium 

dodecyl sulfate electrophoresis.  

3.2.2. Sodium dodecyl sulfate electrophoresis 

Sodium dodecyl sulfate (SDS) electrophoresis was performed according to the 

procedure described by Gallagher (Gallagher, 2001). Electrophoresis gels were purchased 

from Lonza (PAGErTM Gold Precast gels). The composition of the running buffer is 

shown in Table 3.1. Protein samples for electrophoresis were prepared by mixing the 

protein solution with 20 μL of treatment buffer (Table 3.2). Subsequently, the protein 

samples were boiled in a water bath for 5 minutes.  
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Table 3.1 Composition of running buffer for electrophoresis 

Components Amount 

Tris-HCl buffer (pH 8.3) 0.025 M 

Glycine 0.192 M 

SDS 0.1% 

 

Table 3.2 Composition of sample treatment buffer 

Components Amount 

Tris-HCl buffer (pH 6.8) 0.125 M 

SDS 4% 

Glycerol 20% 

Bromophenol blue 0.02% 

DTT 0.2 M 

 

The gel was placed into the electrophoresis chamber. Subsequently, 5 μL of 

treatment buffer containing the sample were loaded into each lane of the electrophoresis 

gel. Electrophoresis was carried out using a constant voltage of 125 V with varying 

current using a power supply (Model FB300, Fisher Scientific) until the protein samples 

reached the bottom of the gel. The gel was removed from the glass plates and stained 

using a Coomassie blue staining solution overnight. The gels were then de-stained by 

placing the gel into a de-staining solution for approximately 2 hours. The composition of 

the staining and the de-staining solution are listed in Tables 3.3 and 3.4, respectively. 
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Table 3.3 Composition of Coomassie blue staining solution 

Components Amount 

Coomassie blue R-350 0.1% 

Acetic acid 10% 

Methanol 20% 

Water 69% 

 

Table 3.4 Composition of de-staining solution 

Components Amount 

Acetic acid 10% 

Methanol 50% 

Water 40% 

 

3.2.3. Transient absorption spectroscopy (TA) and photoacoustic 

calorimetry (PAC) 

3.2.3.1. Sample preparation for TA and PAC measurements 

3.2.3.1.1. Myoglobin 

Oxymyoglobin samples were prepared by dissolving the protein in 50 mM 

HEPES buffer pH 7.0. CO bound Mb samples were prepared by dissolving the protein in 

50 mM Tris or HEPES buffer pH 7.0. The protein samples were placed into 0.2 cm x 1.0 

cm or 0.5 cm x 1.0 cm quartz cuvettes, sealed with a septum cap, and purged with Ar for 

10 min. Then, the heme iron was reduced by addition of a freshly prepared solution of 
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sodium dithionite. The quality of deoxymyoglobin (deoxyMb) was verified by UV-

visible spectroscopy. Oxymyoglobin was obtained by bubbling air through the deoxyMb 

sample, whereas CO bound Mb was obtained by purging the deoxyMb sample with CO 

for approximately 5 min. Formation of oxyMb and CO bound Mb samples were 

monitored using UV-visible absorption spectroscopy (single-beam spectrophotometer 

Cary 50, Varian). The concentration of the samples were calculated using an extinction 

coefficient (ε408nm) of  188 mM-1cm-1 at 408 nm for the met form of Mb (Antonini and 

Brunori, 1971).  

3.2.3.1.2. Hemoglobin 

The CO bound hemoglobin sample was prepared by dissolving Hb in 100 mM 

HEPES buffer pH 7.0 into a 0.2 cm x 1.0 cm or 0.5 x 1.0 cm quartz cuvette. The 

concentration of allosteric effectors was 5 mM for bezafibrate (BZF) and 1 mM for 

inositol hexaphosphate (IHP).  The sample was then sealed with a septum cap and purged 

with Ar for 10  min,  reduced with a small amount of sodium dithionite to prepare 

deoxyhemoglobin (deoxyHb), and subsequently purged with CO for approximately 1 

min. Preparation of CO-Hb adducts was checked by UV-vis spectroscopy (Cary 50, 

Varian). The sample concentration was calculated using an extinction coefficient (ε405nm) 

of 179 mM-1cm-1 at 405 nm for the met form of Hb (Antonini and Brunori, 1971). 

3.2.3.1.3. Neuroglobin and cytoglobin 

Neuroglobin and cytoglobin were prepared in 50 mM Tris buffer (pH 7.0). The 

CO bound ferrous samples were prepared by placing the samples into 0.5 cm x 1.0 cm or 

0.2 cm x 1.0 cm quartz cuvettes sealed with a septum cap. Samples were then purged 

with Ar for approximately 10 min and reduced with a few microliters of freshly prepared 
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1 mM sodium dithionate. Subsequently, the sample was purged with CO, and the 

formation of the CO bound protein was verified by monitoring the UV-visible absorption 

spectra (single-beam spectrophotometer, Cary 50, Varian). Protein concentrations were 

calculated using an extinction coefficient at 532 nm (ε532) of 10.7 mM-1 cm-1 for the met 

form (Fago et al., 2004b). 

3.2.3.2. Transient absorption spectroscopy (TA) 

Transient absorption spectroscopy, also known as flash photolysis and time-

resolved absorption spectroscopy, is a technique that consists in using a short laser pulse 

to trigger photochemical reactions and the subsequent detection of transient or short-lived 

intermediates (Chen et al., 1997). Time-dependent changes in the absorption spectra of 

chromophores can provide kinetic information to obtain insight into biological 

mechanisms, including the number of transient intermediates involved in a photo-induced 

reaction and the lifetime of each species. Therefore, fast events in biological systems, 

occurring on the nanosecond to millisecond time scale, such as bond cleavage and 

formation or structural relaxations may be monitored optically by the use of suitable TA 

instruments (Chen et al., 1997). The TA technique has been widely used to study kinetics 

of photochemical reactions, including biologically relevant photochemical processes such 

as electron transfer reactions in metalloproteins, kinetics of electron-transfer initiated 

protein folding, and ligand binding to heme proteins (Rosell and Mauk, 2011). 

3.2.3.2.1. TA theory 

Transient absorption spectroscopy relies on the use of a probe beam to monitor 

the absorbance of the sample before and after excitation with a short laser pulse. The 

excitation light source is used to photo-trigger a reaction, including bond cleavage, 
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isomerization, or protein/peptide folding (Rosell and Mauk, 2011), which leads to 

changes in the absorption spectrum of the biomolecule under investigation. These proto-

induced changes in the absorption spectrum are monitored with the probe source, which 

generally consists of a continuous wave (cw) light source such as a Xe lamp (Abbruzzetti 

et al., 2008).  

In particular, TA has been extensively employed to study the kinetics of ligand 

binding to heme proteins because of the high sensitivity of their absorption spectra to the 

environment of the heme and the photo-lability of the Fe-ligand bond (Nienhaus and 

Nienhaus, 2005b). Transient absorption experiments performed on heme proteins consist 

in cleavage of the bond between the heme iron and the ligand with a short laser pulse and 

monitoring of ligand rebinding to the heme iron by measuring the light intensity (I(t)) at a 

particular wavelength as a function of time. The resulting changes in transmitted light 

from the probe beam, I (t<0), and after laser excitation, I(t), are related to the change in 

absorbance (ΔA) according to equation 3.1. 
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The wavelength of interest is usually located in the near-UV part of the spectrum 

since the Soret band of the heme, located in this region (400-450 nm), is sensitive to the 

ligation state of the heme iron and changes in its surroundings (Nienhaus and Nienhaus, 

2005b).  
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3.2.3.2.2. TA instrumentation 

Kinetics of ligand rebinding to heme proteins in this study (Mb, Hb, Ngb, and 

Cygb) on a micro- to millisecond time scale were observed using a home-built transient 

absorption instrument described previously (Belogortseva et al., 2007). A schematic 

representation of the TA instrumental set up is shown in Figure 3.1. 

 

Figure 3.1 Schematic representation of home-built TA instrumental set-up. 

 

The sample in an optical cell was placed into a temperature-controlled cell holder 

(Flash 300, Quantum Northwest), and the probe beam (output from a 200 W Xe arc lamp, 

Newport) was focused on the center of the cell. Ligand photo-dissociation was triggered 

using a 532 nm output from a Nd:YAG laser (500 μJ, 7 ns pulse width, Minilite II, 

Continuum) operating at 1 Hz repetition rate. The emerging light from the probe beam 

was passed through a monochromator (Jovin Yvon), and the change in absorbance was 

detected at 440 nm for Mb and 436 nm for Hb, Ngb and Cygb using an amplified 

photodiode (PDA 10A, Thornlabs) or a photodiode (model 818-BB-22, Newport) 

attached to an amplifier (C6438-01, Hamamatsu). The signals were subsequently stored 

in a 400 MHz digitizer (Wave Surfer 42Xs, LeCroy). The energy of the laser pulse was 
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kept below 30 μJ in the case of HbCO experiments to prevent photo-cleavage of more 

than one ligand at a time. 

Submicrosecond CO rebinding kinetics was probed using a broadband pump-

probe transient absorption spectrometer (EOS, Ultrafast Systems, LLC, Sarasota, FL). 

These experiments were performed in Ultrafast Systems, Sarasota, FL. Photodissociation 

of CO was triggered using a Ti-sapphire laser (~35 fs pulse, Legend Elite, Coherent) with 

an output wavelength of 400 nm. The change in absorbance was detected through a fiber 

optic cable coupled to a multichannel spectrometer with CMOS sensors (1.5 nm 

resolution). TA traces were analyzed using Origin, version 8.0 (OriginLab Corp). 

All transient absorption measurements were carried out on 20-40 µM samples in 

50 or 100 mM Tris or HEPES buffer, pH 7.0, placed into a 2mm path quartz cell.  

3.2.3.2.2.1. Quantum yield determination 

The quantum yield (Φ) for ligand binding to Mb and Hb was determined as 

described previously by Belogortseva et al. (2007). The quantum yield was determined 

by comparing the change in the sample absorbance at 440 nm with that of a reference of 

known quantum yield, according to equation 3.2. CO bound myoglobin was used as the 

reference since its quantum yield for bimolecular rebinding was previously reported by 

Henry et al. (Φref= 0.96) (Henry et al., 1983). 

samref

refrefsam
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=Φ           (3.2) 

where ΔAsam and ΔAref are the absorbance change of the sample and reference at 

440 nm, respectively, and Δεsam and Δεref are the change in extinction coefficient between 
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the CO bound and reduced form of the sample and the reference, respectively, 

determined from the UV-visible steady-state absorption spectra.  

In the case of ligand rebinding to Ngb and Cygb, the quantum yield was 

calculated from the ratio of the amplitude of the geminate and bimolecular rebinding. 

3.2.3.2.2.2. Ligand rebinding and data analysis 

Nanosecond kinetics associated with CO rebinding to Ngb and Cygb were 

determined by fitting the change in absorbance (ΔA) trace at 436 nm using a multi-

exponential decays model (Equation 3.3). 

=Δ
i

t
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ieAA τ            (3.3) 

where τi correspond to the lifetime and and Ai refers to the amplitude for each 

kinetic step, respectively. 

The best fit was obtained using a four exponential decay model. The quality of the 

fit was evaluated by comparing the residuals retrieved by the fit as well as visual 

inspection of how well the calculated trace fitted the experimental trace for each 

measurement. To obtain the error associated to rate constants, kinetic traces at different 

wavelengths were fitted to the same model and the average and standard deviation of 5 or 

more values were calculated.  

In addition to the exponential decay model, the maximum entropy method (MEM) 

was employed to fit the kinetic traces. The MEM is a mathematical inversion method that 

has been applied to analyze data in diverse fields, including radioastronomy, neutron 

scattering, fluorescence and ligand binding (Gull and Daniell, 1978; Lavalette et al., 

1991; Livesey and Brochon, 1987; Steinbach, 1996). The basic idea of MEM is that a rate 
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distribution f(λ) is represented by a discrete set of data, f(λj), and the uncertainty resulting 

from the specification of the function f(λj) is measured by the Shannon-Jaynes entropy, S. 

The entropy S is maximized subject to constraining the statistic parameter χ2 to 1 (Figure 

3.2). Therefore, the MEM is not based on a specific model and does not introduce any 

correlations into f(λ). Consequently the rate distribution is directly retrieved from the 

experimental data (Steinbach et al., 1992; Steinbach et al., 2002).   

 

Figure 3.2 Contour plots of the entropy S and the statistic parameter χ2 for a two 
dimensional f(λ). The maximum entropy solution corresponds to the point where the 
gradient of S is parallel to the gradient of χ2, where χ2 is close to 1. Modified from 
Steinbach et al. (Steinbach et al., 1992). 

 

The program MEMexp developed by Steinbach et al. (Steinbach et al., 2002) was 

employed to analyze the kinetics traces measured for CO rebinding to Ngb and Cygb 

with the MEM. The MemExp program uses the maximum entropy method (MEM) and 

either nonlinear least squares (NLS) or maximum likelihood (ML) fitting to analyze a 

general time-dependent signal in terms of distributed and discrete lifetimes (Steinbach, 

2012; Steinbach et al., 2002). The program analyses kinetics using one or two 

distributions of effective log-lifetimes, g(log τ) and h(log τ), according to equation 3.4. 
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where D0 corresponds to a normalization constant, the functions g(log τ) and 

h(log τ) correspond to the distributions describing decaying and rising kinetics, 

respectively, and the polynomial function describes the experimental baseline. 

Coefficients of the baseline are scaled using the constant parameter tmax in order to 

maintain them comparable in magnitude. The constant D0 can be estimated from the 

experimental data, assuming that the temporal window of the measurements includes all 

kinetic processes involved.  

The part of MEMexp program that uses the MEM is based on the Cornwell and 

Evans algorithm (Cornwell and Evans, 1985). Kinetic parameters are fitted to equation 

3.4 by iteration through second order optimization of the entropy S (equation 3.5), in 

which the statistic parameter χ2 is constrained to unity (Steinbach et al., 2002). 
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The χ2 statistic parameter measures the accuracy of the calculated data set (Fi) to 

the experimental data set (Di), according to equation 3.6. 
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Optimization of the fitting is then achieved by maximizing the function Q 

described by equation 3.7. 

ISQ αλχ −−= 2             (3.7) 
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The parameters λ and I represent two Lagrange multipliers. The iteration of the 

MEM calculation employs Newton-Raphson optimizations of the function Q by gradually 

adjusting the Lagrange multipliers λ and I until the change in Q is very small (Steinbach 

et al., 2002). Upon completion of the iteration process, also referred to as the MEM 

convergence, the software MEMexp recommends a distributed and discrete fits as 

optimal descriptions of the kinetic process.  

3.2.3.2.2.3. Analysis of microscopic rate constants 

The microscopic rate constants associated with CO rebinding to penta-coordinate 

wild type Cygb (Cygbox) and Cygb with reduced Cys (Cybgred) were analyzed according 

to the two models described in chapter 6 (scheme 6.1). The differential equations 

corresponding to ligand migration in Cygbox can be solved analytically as previously 

reported by Sottini et al. (2004) for hemoglobin and the microscopic rate constants can be 

calculated according to equations 3.8 to 3.13. The overall geminate rebinding rate (kgem) 

can be described as: 

BDBCBAgem kkkk ++=                                (3.8) 

Also, the geminate phase can be described in terms of the observed rates and 

amplitudes for each geminate step, according to equation 3.9. 

BA

gemgemgemgem
gem k

kAkA
k

2
22

2
11 +

=                     (3.9) 

Microscopic rate constant kBA, kCB, kBC, and kBD were calculated according to the 

following equations: 

2211 gemgemgemgemBA kAkAk +=                                (3.10) 
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BDBAgemBC kkkk −−=                       (3.12) 
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where Agem1 and Agem2 correspond to the amplitude of the geminate phase 1 and 2, 

respectively, whereas Abim represent the amplitude of the bimolecular phase with the 

major population in Cygb (Abim1). Parameters kgem1 and kgem2 are the observed rate 

constants for geminate phase 1 and 2, respectively, and kbim is the observed overall 

bimolecular rate constant. 

The CO rebinding rate can be determined using the steady-state approximation 

since the concentration of the protein in the intermediate state B can be considered 

constant. Then, the microscopic rate constant kDB can be calculated from equation 3.14. 
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The concentration of CO under our experimental conditions was 1 mM. 

In the sequential four state model (used for Cygbred), after completion of the first 

geminate phase, the fractional amount of absorbance change associated with escape of 

the ligand to the solvent, fgem2, can be described as shown below. 
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The microscopic rate constants kB’A’, kB’C’ and kC’B’ are given by: 
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The microscopic rate constants associated with ligand escape from state C’ to 

state D’ as well as ligand rebinding from state D’ and C’ were calculated for each 

conformation (“accessible” and “restricted”) as described in the following expressions: 
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In this sequential model the bimolecular rate constant can be described as the 

product of the geminate quantum yield and the microscopic bimolecular rebinding rate 

(Scott et al., 2001), according to equation 3.21. 

gemCDbim kk Φ= ''                      (3.21) 

where the overall geminate quantum yield can be described in terms of the 

microscopic rate constants as: 

''''''''''''

''''

CBABCBBCDCAB

DCAB
gem kkkkkk

kk

++
=Φ                   (3.22) 

Then, the microscopic rate constant associated with ligand rebinding from state 

D’ to state C’ for the “accessible conformation” (kacc
D’C’) and “restricted conformation” 

(krest
D’C’) can be calculated using equations 3.23 and 3.24, respectively. 
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3.2.3.3. Photoacoustic calorimetry (PAC) 

In order to fully understand the mechanism of a reaction it is not just necessary to 

determine the kinetics of the reaction but also the thermodynamic parameters associated 

with the reaction. Thermodynamic parameters reveal the energy levels of reactants and 

products, as well as the driving forces that are necessary for the reaction to occur. 

Investigation of conformational dynamics and energetics associated with 

biological processes that occur on physiologically relevant time scales is still a challenge 

in molecular biophysics (Vetromile et al., 2011). Although the high sensitivity of time-

resolved optical methods allow probing structural changes in the vicinity of 

chromophores, which provide information about local dynamics occurring in picosecond 

to millisecond time scales, these techniques have limited ability to probe directly 

thermodynamic events in proteins (molar volumes, enthalpy changes) occurring on these 

time scales (Larsen and Miksovska, 2007; Vetromile et al., 2011). Photothermal methods 

such as photoacoustic calorimetry (PAC) are powerful techniques that have been used to 

determine the magnitude of reaction volume and enthalpy changes as well as the time 

scale of conformational changes occurring on physiologically relevant time scales in 

proteins (Gensch and Viappiani, 2003; Larsen and Miksovska, 2007). PAC is used to 

monitor the magnitude and time profiles of overall reaction enthalpy and volume changes 

associated with global conformational changes in proteins that are “optically silent” (do 
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not affect directly the absorption spectrum of the chromophore) occurring between ~ 50 

ns - 10 μs (Miksovska et al., 2008). Some examples of the use of PAC are in the study of 

conformational changes associated with ligand photo-release from heme proteins (Mb, 

Hb, FixL, Cyt P450, etc) and heme protein model complexes, as well as to probe the 

catalytic cycle of rhodopsin, bacteriorhodopsin and photosynthetic reaction centers 

(Braslavsky, 1986; Braslavsky and Heibel, 1992; Larsen and Miksovska, 2007; Peters et 

al., 1991; Vetromile et al., 2011). 

3.2.3.3.1. PAC theory 

The physical principle behind photothermal methods is that upon photo-excitation 

of a molecule there is a concomitant dissipation of excess energy through vibrational 

relaxation to the ground state that is accompanied by thermal heating of the surrounding 

solvent (Gensch and Viappiani, 2003; Larsen and Miksovska, 2007).  

In the case of PAC, the rapid change in solution temperature results in changes in 

the solution volume of the illuminated cylinder (Gensch and Viappiani, 2003), as shown 

in Figure 3.3.  
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Figure 3.3 Schematic representation of the pressure change resulting from the heat 
release in photothermal methods. Modified from Gensch and Viappiani (Gensch & 
Viappiani, 2003). 

 

The mathematical expressions that describe the wave generation in PAC have 

been previously reviewed (Larsen and Miksovska, 2007). The change in pressure (ΔP) at 

some point due to changes in solution volume can be described by equation 3.25. 

ρνπ xfP aa Δ=Δ 2           (3.25) 

where fa is the frequency of the sound wave, va is the acoustic velocity, Δx 

corresponds to the volume displacement in one dimension, and ρ is the solvent density. 

The change in volume of a cylinder of radius R and length l that results from an adiabatic, 

isobaric expansion can be written as:  

TVlRRlR Δ=Δ+− βππ 22 )(          (3.26) 

where β corresponds to the volumetric expansion coefficient. The change in 

temperature in the illuminated area can be described as (Laman and Falvey, 1996; Larsen 

and Miksovska, 2007): 
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where α is the absorption coefficient, Ea is the total energy per pulse, Cp is the 

heat capacity of the solvent,  ω is the energy per photon in the pump pulse. Then, 

substitution of equation 3.26 into equation 3.27 and assuming a point source of heat 

results in the following expressions: 
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Since R>>ΔR for a point source, then equation 3.12 can be reorganized to obtain 

ΔR. 
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The ΔR term in equation 3.30 is directly proportional to Δx in equation 3.25, and 

then the equation for Δx can be described as shown below.  

RBx Δ=Δ            (3.31) 

where B represents a proportionality constant between Δx and ΔR. Substitution of 

equations 3.30 and 3.31 into equation 3.25 results in an expression for the change in 

pressure ΔP. 
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For a fixed excitation system, the terms fa and R can be included in the 

proportionality constant B’, which results in equation 3.33. 
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where Eo is the total energy of the excitation pulse normalized to the photon 

energy. The pressure change generates an acoustic wave in solution that is governed by 

the following wave equation: 
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where νs is the speed of sound in the medium, Ψ(r,t) is the wave amplitude at the 

observation coordinates r and t, and h(r’,t’) is a heat source function. The solution to this 

equation is of the form: 
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                   (3.35)  

where g(r,r’,t,t’) is a Green’s function that solves the wave equation for the given 

impulse heat function. At r’=0 (point source) the impulse function can be written in terms 

of a heat function as:  

)'()'()','( tfrtrh δ=                      (3.36) 

where δ denotes the Dirac delta function and f(t’) describes the temporal behavior 

of the heat source. The solution to equation 3.35 gives the acoustic wave amplitude as: 
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where r0/νs term is a propagation delay term and the 1/r0 is an energy conservation 

term associated with spherical emitters. For a single heat source transient with a lifetime 

τ, f(t’) can be written as:  
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=           (3.38) 

where ϑ(t’) is a Heaviside unit step function. The wave amplitude can now be 

written as: 
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The acoustic wave described by Ψ(r0,t) represents the wave amplitude observed at 

the transducer. The transducer response to the wave amplitude is that of an under-damped 

oscillator with an impulse response given by: 

0/)''())'(sin()'',( τν ttettAttG −−−=                    (3.40) 

with an amplitude A, a characteristic oscillation frequency ν and a relaxation time 

τ0. The transducer response (piezoelectric crystal) is found by the convolution of the 

impulse response G(t,t’’), with the acoustic amplitude, Ψ(r0,t’’) giving 
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Evaluation of equation 3.41 gives equation 3.42 for the transducer response. 
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where τ is the lifetime of the process in which the heat is evolved. Equation 3.42 

can be used to model the relationship between the lifetime of the heat evolving process 



56 
 
 

and the amplitude at the transducer. The maximum transducer amplitude can be 

determined for cases in which τ<<1/ν and for cases in which τ>>1/ν. 
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3.2.3.3.2. PAC instrumentation 

The PAC instrumental setup has been described previously (Miksovska et al., 

2008). A schematic representation of the PAC instrumental setup is shown in Figure 3.4. 

Samples were placed into a temperature controlled cuvette holder (Quantum Northwest). 

The 532 nm output from a Nd:YAG laser (50 μJ, 7 ns pulse width, Minilite II, 

Continuum) was passed through a narrow slit (100 μm) placed in front of the optical cell. 

A 1 MHz acoustic detector (model RV103, Panametrics) that consists of a piezoelectric 

transducer was attached to the side of the cell using a thin layer of honey to ensure a tight 

connection between the cell and the transducer. A schematic representation of the wave 

propagation in PAC is shown in Figure 3.5. The acoustic signal was amplified using an 

ultrasonic amplifier (model 5662, Parametrics) and stored in a 400 MHz digitizer (Wave 

Surfer 42Xs, LeCroy). In order to improve the signal-to-noise ratio, 25-50 traces were 

averaged. Photoacoustic traces were then analyzed using Origin, version 8.0 (OriginLab 

Corp.). 
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Figure 3.4 Schematic representation of home-built PAC instrumental set-up. 
 

 

Figure 3.5 Schematic representation of wave propagation from the sample to the detector 
in PAC measurements. 

 

3.2.3.3.3. PAC data analysis 

The data analysis used for PAC has been previously reviewed (Gensch and 

Viappiani, 2003; Larsen and Miksovska, 2007). The amplitude of the acoustic signals for 

the sample (S) and reference compound (R) correspond to the difference between the first 

maximum and minimum of the acoustic wave in each case, as shown in Figure 3.6.  
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Figure 3.6 Representative PAC acoustic traces for sample and reference compound. 

 

The amplitude of the sample acoustic signal can be described according to the 

following equation: 
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where the Q[β/(Cpρ)] term corresponds to the thermal volume change (ΔVthermal) 

and ΔVnonthermal represents the volume change resulting from the photochemical processes 

such as cleavage of the Fe-CO bond, structural changes, solvation, and/or electrostriction. 

The thermal expansion coefficient, β, of water is temperature dependent and has a value 

of zero at 3.9 °C (Peters et al., 1991). The terms Ea and K correspond to the number of 

Einsteins absorbed and the instrument response parameter, respectively. In order to 

calibrate the instrument and eliminate the instrument response parameter, the signal of a 

calorimetric reference was measured under identical conditions to those used for the 

sample. The reference compound, Fe(III)4SP, does not undergo any photochemistry and 
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releases absorbed energy into the surrounding solvent with a yield of unity (Abbruzzetti 

et al., 1999). The amplitude of the reference acoustic signal, R, can be then expressed as 

shown below. 
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where Ehν is the energy of the photon at the excitation wavelength.  

In order to separate the contributions from the thermal and non-thermal volume 

changes to the acoustic signal, the acoustic traces were measured as a function of 

temperature (usually in the temperature range from 5 °C to 35 °C). By taking the ratio of 

the amplitude of the sample and reference acoustic waves and plotting them as a function 

of the temperature dependent term [(Cpρ)/β], according to equation 3.47, the amount of 

heat released to the solution can be extrapolated from the intercept and the non-thermal 

volume change can be determined from the slope of the linear plot. 
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For processes with quantum yield, Φ, of less than 1, the reaction enthalpy (ΔH) 

and volume change (ΔV) are determined according to equations 3.48 and 3.49, 

respectively. 

  
Φ
−=Δ QE

H hν                            (3.48) 

Φ
Δ=Δ nonthermalV

V                                 (3.49) 

Since the piezoelectric transducer is not only sensitive to the amplitude of the 

acoustic wave but also to the temporal profile of the acoustic wave, reactions occurring 
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within the time resolution of the PAC instrumentation (typically from approximately 50 

ns to 10 μs) can be resolved. In this case, the acoustic trace is shifted in phase with 

respect to the reference traces as shown in Figure 3.7. 

 

Figure 3.7 Representative PAC acoustic traces for sample and reference compound in 
which the sample acoustic trace is shifted in phase with respect to the reference trace. 

 

The time-dependent voltage produced by the transducer, E(t), is the result of the 

convolution of a time-dependent heat source, H(t), with the instrument response function 

T(t). 

)()()( tTtHtE ⊗=            (3.50) 

For a kinetic process that involves an intermediate with sequential decays k1 and 

k2, as shown in equation 3.51, the time dependence of the concentration for A and B can 

be described by equations 3.52 and 3.53, respectively. 

CBA kk ⎯→⎯⎯→⎯ 21           (3.51) 
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Then, the time-dependent heat source can be expressed as described by equation 

3.54 (Schaberle et al., 2010). 
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where k = 1/τ. The values of ϕ1 and ϕ2, which relate to the enthalpy changes for 

kinetic processes 1 and 2, and the associated relaxation times τ1 and τ2 are obtained by a 

deconvolution procedure. The program SoundAnalysis (Quantum Northwest) was 

employed to fit the PAC traces. The τ1 parameter was fixed at 1 ns, indicating that the 

first kinetic process occurs within the laser pulse, while the remaining three parameters 

(τ2, ϕ1 and ϕ2) were varied. This set of values is used to calculate H(t), which is then 

convoluted with the instrument response function T(t), obtained from a calibration 

compound, to generate a calculated experimental wave, Eexp(t). The accuracy of the fit is 

evaluated by comparing the calculated wave to the experimental wave and visual 

inspection of the residuals. 

3.2.4. Fluorescence spectroscopy  

Fluorescence spectroscopy is a widely used technique to study the structure and 

dynamics of proteins since the high sensitivity of this technique and the response of 

fluorescent probes to their microenvironment provide information about local 

fluctuations in the vicinity of the fluorophore (Lakowicz, 2006). In general, the 
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characteristics of fluorescence, namely spectrum, quantum yield, and lifetime, are 

affected by any excited-state process involving interactions of the excited molecule with 

its close environment (Valeur, 2001).  

Fluorescence studies of proteins usually rely on either intrinsic or extrinsic 

fluorescence. Intrinsic fluorescence of proteins results from fluorescent amino acids in 

the protein sequence (i.e., phenylalanine, tyrosine and tryptophan residues), whereas the 

extrinsic fluorescence relies on the use of fluorophores that are non-covalently associated 

with the protein as probes, such as 8-anilino-1-naphthalenesulphonic acid (1,8-ANS), 

porphyrins, nicotinamide adenine dinucleotide (NADH) or flavin adenine dinucleotide 

(FAD) (Ross and Jameson, 2008).  

3.2.4.1. Steady-state fluorescence spectroscopy 

Steady-state fluorescence emission spectra and polarization data were recorded 

using a PC1 fluorometer (ISS, Illinois). The excitation wavelength used for fluorescence 

studies of intrinsic Trp residues in Ngb wild type and single Trp mutants was 295 nm. 

The Ngb samples were prepared by dissolving the protein stock solution in 50 mM Tris 

buffer, pH 7.0, to a final concentration of 7 μM. Cyanide bound Ngb samples were 

prepared by adding 10 mM KCN to the protein in 50 mM Tris buffer, pH 7.0, and 

formation of the cyanide complexes was monitored using UV-visible spectroscopy. 

In the study of binding of the extrinsic fluorescent probe 1,8-ANS to Cygb, the 

emission spectra was recorded using 20 μM protein dissolved in 50 mM Tris buffer, pH 

7.0, that was incubated with 40 μM probe (1,8-ANS) for 30 minutes at room temperature 

before the measurement. The wavelength used for excitation of 1,8-ANS was 350 nm and 

the emission was monitored in the range of 400 nm and 600 nm. The concentration of 



63 
 
 

1,8-ANS was determined using an extinction coefficient at 350 nm of 4950 mM-1cm-1 

(Weber and Joung, 1964). Replacement studies of the hydrophobic probe 1,8-ANS with 

sodium oleate were performed by titration of Cygb-ANS complexes dissolved in 1 or 5 

mM HEPES buffer, pH 7.0, with 1 mM sodium oleate solution. The Cygb-ANS 

complexes were incubated for 30 minutes at room temperature before titration with the 

sodium oleate solution. 

3.2.4.2. Time-resolved fluorescence spectroscopy 

3.2.4.2.1. Theory 

The fluorescence decay time or fluorescence lifetime is one of the most important 

characteristics of a fluorescent molecule because it defines the time window at which 

dynamic phenomena can be observed (Valeur, 2001). Fluorescence lifetime 

measurements can therefore provide information about structural fluctuations as well as 

conformational heterogeneity in proteins since changes in fluorescence lifetimes can 

result from structural perturbations in the vicinity of intrinsic or extrinsic fluorescent 

probes (Lakowicz, 2006; Valeur, 2001).  

In practice, fluorescence lifetimes are usually in the range of picoseconds to a few 

nanoseconds and can be measured using either the impulse or harmonic response method, 

also referred to as the time domain and frequency domain approach, respectively (Ross 

and Jameson, 2008). In the time domain approach the sample excited with a short laser 

pulse and the emission intensity is recorded as a function of time. In the frequency 

domain approach, a continuous light source is typically used to excite molecules, such as 

a CW laser or Xe lamp, and the intensity of this light is modulated sinusoidally at high 

frequencies (ω). As a consequence of the persistence of the excited state, fluorophores 
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that are subjected to the excitation light produce a modulated emission that is shifted in 

phase (ϕ) with respect to the excited light and the amplitude of the emitted light is 

modulated as shown in Figure 3.8 (Lakowicz, 2006; Ross and Jameson, 2008).  

 

Figure 3.8 Light modulation in the frequency domain approach. The solid line represents 
the modulated excitation light, whereas the dotted line represents the emitted light with a 
phase shift with respect to the excitation light. AC and DC denotes the amplitudes of the 
sinusoidal wave, and the subscripts E and F refer to the excited and emitted light, 
respectively. (From Ross & Jameson, 2008). 

 

The excitation intensity and the fluorescence intensity are described by equations 

3.55 and 3.56, respectively (Ross and Jameson, 2008). 

[ ])sin(1)( 0 tMEtE E ω+=                     (3.55)  

[ ]φω ++= tMFtF F sin(1)( 0                                (3.56) 

where E(t) and E0 are the excitation intensities, F(t) and F0 are the fluorescence 

intensities at time t and time zero, respectively, ϕ is the phase delay between the 

excitation and emission, ME is the modulation of the excitation, and MF is the modulation 
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of the fluorescence. The angular modulation frequency, ω, is proportional to the linear 

modulation frequency as described by equation 3.57. 

fπω 2=                  (3.57) 

In the case of fluorophores with a single lifetime, the lifetime can be directly 

calculated from the phase delay, ϕ, according to equation 3.58.  

ω
φτ tan=            (3.58) 

Alternatively, the lifetime can also be calculated from the relative values of the 

emission modulation (MF) and excitation modulation (ME) that depend on the AC to DC 

components of the excitation and the emission as shown in equations 3.59 to 3.62. 
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M =            (3.59) 
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1

ωτ+
=M           (3.62) 

The wave forms corresponding to the excitation and emission can also be 

described by the transforms of the impulse response function according to equations 3.63 

and 3.64.  
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          (3.63) 
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          (3.64) 

where I(t) is the impulse response function at any time t, N and D correspond to 

the sine and cosine transforms of the impulse response function, respectively, and ω is the 

frequency. 

In the case of a system with multiple lifetimes, the excited light has to be 

modulated over a wide range of frequencies and the corresponding phase shifts and 

modulation ratios have to be measured in order to characterize the multi-exponential 

decay. The sine and cosine transforms of the impulse response function for a multi-

exponential decay are described by equations 3.65 and 3.66 (Lakowicz et al., 1984). 


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          (3.65) 
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iiJD
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22τω

τα
          (3.66) 

where αi corresponds to the pre-exponential factors, τi represents the individual 

lifetimes and J is described as =
i

iiJ τα . The values for the phase delay and 

modulation ratios are calculated using equations 3.67 and 3.68, respectively. 

)/(tan 1 DN−=φ           (3.67) 

22 DNM +=           (3.68) 

The experimental data can be fitted using a suitable model, such as a sum of 

discrete exponential decays or Gaussian model, to determine the lifetimes and the 

corresponding pre-exponential factors. The parameters αi and τi are varied to obtain the 
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best fit between the experimental data and the calculated values, and the quality of the fit 

is then judged by the reduced chi-squared value (χ2), which is given by: 

[ ] [ ] −−
−+−=

12

/)(/)( 22
2

fn

MMPP MmcPmc σσχ                (3.69) 

where P and M correspond to the phase and modulation data, respectively, the 

subscripts c and m refer to the calculated and measured values, and σP and σM are the 

standard deviations of each phase and modulation measurement, respectively. The 

denominator in equation 3.69 describes the degrees of freedom, where n is the number of 

modulation frequencies and f corresponds to the number of free parameters. The best fit 

between the calculated values and the experimental values are typically characterized by 

χ2 values close to 1 (Lakowicz et al., 1984).   

In the frequency domain approach, the fluorescence data is typically described in 

terms of the contributions of various components to the emission or fractional intensities, 

fi, which correspond to the contribution of the ith component to the photocurrent. On the 

other hand, the pre-exponential factors are related to the actual number of fluorescing 

species being observed. The relationship between the pre-exponential terms, αi, and the 

fractional intensities is given by the expression shown in equation 3.70 (Lakowicz et al., 

1984; Ross and Jameson, 2008).   


=

j
jj

ii
if τα

τα
           (3.70) 

3.2.4.2.2. Sample preparation and measurements 

Frequency domain fluorescence measurements were performed using a Chronos 

FD fluorometer (ISS, Illinois). A 300 nm LED was used as the excitation light source for 
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Trp excitation, whereas a 378 nm LED was used for 1,8-ANS measurements. The light 

source was modulated in the frequency range of 20 to 200 MHz, which allows resolution 

of lifetimes up to tens of picoseconds. P-terphenyl and 2,5-diphenyl oxazole compounds 

were used as standards to calibrate the instrument. The lifetime of P-terphenyl and 2,5-

diphenyl oxazole in ethanol have been reported previously to be 1.05 and 1.45 ns, 

respectively (Boens et al., 2007). The concentration of the sample and the reference were 

adjusted to obtain identical integrated emission intensity at the detection wavelengths. 

Data analysis was performed using the Vinci software (ISS, Illinois), which allows to use 

single or multi-exponential decay models as well as lifetime distribution models 

(Gaussian, Lorentzian, etc.) to obtain appropriate fits. The quality of the fit was judged on 

the basis of the chi squared values and visual inspection of the fitting curve and 

corresponding residuals. Samples for lifetime measurements were prepared as previously 

described for the steady-state fluorescence measurements. 

3.2.5. Isothermal Titration Calorimetry (ITC) 

Dissociation constants and thermodynamic parameters associated with 1,8-ANS 

binding to Cygb were determined using ITC. Isothermal titration calorimetry 

measurements were performed by Mr. Khoa Pham (Chemistry and Biochemistry 

Department, Florida International University) on a VP-ITC titration calorimeter 

(MicroCal Inc., Northampton, MA). The stock Cygb solution used to prepare samples for 

ITC experiments was dialyzed against 50 mM Tris buffer, pH 7.0, overnight at 4 °C. 

Cygb and 1,8-ANS samples were prepared using the same batch of dialysis buffer to 

minimize artifacts resulting from minor differences in buffer composition. Injections 

were started after stability of the baseline was achieved. The sample cell (1.4 mL) was 
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loaded with 20 μM Cygb solution and the concentration of 1,8-ANS in the syringe (287 

µL) was 2 mM. Titration experiments consisted of 28 injections of 10 µL aliquots of 1,8-

ANS with 2 min intervals between injections. The temperature was kept constant at 25 

°C.  The data were subsequently corrected by subtracting a small heat of diffusion 

determined in control experiments from the binding heat. The isotherm curves were 

analyzed using Origin software, version 7.0 (OriginLab Corp.) employing a sequential 

binding model.  

3.2.6. Stability studies 

Denaturation curves of Ngb and Cygb with guanidine hydrochloride were 

determined by monitoring the change in absorbance of the Soret band or the change in 

the ellipticity at 222 nm in the far-UV region of the CD spectra of the proteins in the 

presence of increasing concentrations of GuHCl from 0 M to 6 M. Protein samples in the 

presence and absence of GuHCl were slowly mixed for 1 h at room temperature before 

measurements.  

3.2.6.1. UV-VIS Absorption spectroscopy 

Protein samples (10 μM) were prepared by dissolving the protein in 50 mM Tris 

buffer (pH 7.0). Samples were placed into 2 mm optical path length quartz cuvettes and 

the absorption spectra were measured with a single beam UV-vis spectrometer (Cary 50, 

Varian) in the 200 nm to 800 nm range. All spectra were corrected for the buffer baseline 

used in each experiment. 

3.2.6.2. Circular dichroism spectroscopy 

Circular dichroism (CD) measures the difference in absorption of left and right 

circularly polarized light by an optically active sample. The CD technique is a useful tool 
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to examine the secondary structure of peptides and proteins because different types of 

polypeptide secondary structure have distinct type of CD spectra in the ultraviolet region 

corresponding to absorption by the peptide carbonyl groups: (i) far-UV CD spectra of 

random coils show a positive band at 212 nm that corresponds to the nπ* transition, 

and a negative band at 195 nm that is related to the ππ* transition; (ii) far-UV CD 

spectra of β sheets shows a characteristic negative band at 218 nm that corresponds to the 

ππ* transition; and (iii) far-UV CD spectra of α helices display two bands at 208 nm 

and 222 nm that correspond to the ππ* and nπ* transitions, respectively, as shown in 

Figure 3.8 (Ranjbar and Gill, 2009).Therefore, the amount of alpha helix, beta sheet, and 

other structures can be estimated from the CD spectrum of a protein, which is 

advantageous to monitor folding to unfolding transitions in proteins (Kelly and Price, 

1997).  

Circular dichroism spectra were measured with a J15 CD spectrometer (JASCO, 

USA). Protein samples (40 μM) were prepared in 10 mM Tris buffer (pH 7.0) and placed 

into 2 mm optical path length quartz cuvettes. The far-ultraviolet spectra were measured 

in the range of 190 nm to 300 nm and represent the average of at least 3 accumulations. 

Spectra were acquired at a scan speed of 100 nm min-1 with a response time of 1 s and the 

resolution of 1 nm. All spectra were corrected for the buffer baseline used in each 

experiment. 
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Figure 3.9 Far-UV Circular dichroism spectra associated with various types of secondary 
structure. The solid line represents α helices, the dashed line represents anti-parallel β 
sheets, the dotted line and short dashes represent random coils and irregular structures. 
(Kelly and Price, 1997). 
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4. CONFORMATIONAL DYNAMICS IN HUMAN NEUROGLOBIN: EFFECT 

OF HIS 64, VAL 68 AND CYS 120 ON LIGAND MIGRATION  

(The work described in this chapter was published in Astudillo,L., Bernad, S., Derrien, 

V., Sebban, P., Miksovska, J. (2012) Biochemistry, 51, 9984-9994) 

4.1. Introduction 

Neuroglobin (Ngb) is a small heme-containing globin, composed of 151 amino 

acid residues, that is mainly expressed in the brain and retina of vertebrates (Burmester et 

al., 2000). Over-expression of Ngb was observed in rat neurons exposed to hypoxia and 

focal ischemia conditions (Sun et al., 2001). An increased level of Ngb expression also 

promotes neuron survival after ischemic insults (Sun et al., 2001; Sun et al., 2003). The 

molecular basis of the neuroprotective function of Ngb remains unclear, but several 

plausible mechanisms have been proposed, including oxygen storage (Dewilde et al., 

2001; Sun et al., 2001), oxygen/redox sensing (Wakasugi et al., 2003), decomposition of 

reactive oxygen species (Herold et al., 2004; Van Doorslaer et al., 2003), and inhibition 

of apoptosis (Brittain et al., 2010a; Fago et al., 2006). In addition, Wakasugi et al. (2003) 

reported that ferric Ngb binds to the GDP-bound form of the α-subunit of the 

heterotrimeric G protein acting as a guanine nucleotide dissociation inhibitor and the 

interactions between hNgb and the G protein may promote cell survival (Wakasugi et al., 

2011). Alternatively, Brittain et al. (2010a; 2010b) showed that in vivo Ngb inhibits 

apoptosis through the binding to cytochrome c and preventing pro-caspase 9 activation. 

The three dimensional structure of Ngb can be nearly superimposed with that of 

myoglobin (Mb), despite the low degree of sequence homology (~30%) (Figure 4.1) 

(Arcovito et al., 2008; Pesce et al., 2003; Vallone et al., 2004a; Vallone et al., 2004b). 
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Neuroglobin displays the classical 3-over-3 α-helical globin fold with the heme iron 

being hexa-coordinated in both ferric and ferrous forms with residues His96 and His64 

serving as endogenous ligands. The distal His64 can be readily replaced by diatomic 

ligands, including O2, CO and NO that reversibly bind to the heme iron (Dewilde et al., 

2001; Trent et al., 2001; Van Doorslaer et al., 2003). The competition between the distal 

histidine and exogenous ligand leads to biphasic ligand binding kinetics, with His64 

dissociation being the rate-limiting step (Dewilde et al., 2001). 

In addition to hexa-coordination of the heme iron, other structural factors alter 

interactions of Ngb with diatomic ligands. An overlay of the crystal structure of the 

ligand free and CO-bound mouse Ngb (mNgb) reveals that the association of the ligand 

with the heme iron triggers reorganization of the heme distal pocket that is unique among 

vertebrate globins, including sliding of the heme group deeper into the distal cavity, 

reorganization of helix F, and alteration of C-D and E-F loop mobility (Vallone et al., 

2004b). However, such heme displacement may be species-dependent as shown in 

computational studies (Bocahut et al., 2009; Nadra et al., 2008). 
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Figure 4.1 Top: Sequence alignment of human Ngb and human Mb. Conserved residues 
are represented by a star below the sequence, whereas residues that strongly share similar 
properties are represented by two dots and those exhibiting weak similarity are 
represented by one dot below the sequence. Bottom: Ribbon representation of ferric 
hNgb (PDB entry 1JO6, molecule A) depicting the position of the heme group, proximal 
His 96, distal His 64, Val 68, Ser 120, and Ser 55. 

 
An intriguing structural feature of human Ngb (hNgb) is the presence of an 

internal disulfide bond between Cys46 and Cys55 that is missing in rat Ngb (rNgb) and 

mouse Ngb (mNgb). Hamdane et al. (2003) have demonstrated that the reduction of the 

internal disulfide bond or replacement of one of the Cys residues decreases the rate of 

dissociation of His64 from heme iron by a factor of 10, resulting in a decrease of the 
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affinity of hNgb for O2. On the basis of these results, it was proposed that the interaction 

between Ngb and O2 may be coupled to the intracellular redox state through the rupture 

and/or formation of the internal disulfide bond (Hamdane et al., 2003). It was recently 

shown that the structural volume change associated with photo-dissociation of CO from 

rNgb or hNgb lacking the disulfide bond is approximately 3 times larger than that 

measured for wild-type hNgb, suggesting that the internal disulfide bond also impacts the 

structural dynamics associated with binding of CO to the five-coordinate Fe2+Ngb (see 

chapter 5) (Astudillo et al., 2010). The molecular mechanism of how structural changes 

in the C-D loop are relayed to the heme distal pocket remains unclear, although Phe28 

was recently identified as a key residue in the communication between the C-D loop and 

the heme pocket (Ezhevskaya et al., 2011). 

The crystal structures of Fe2+mNgb and COmNgb also show an extensive network 

of hydrophobic cavities that partially overlay with the Xe cavities identified in Mb 

(Moschetti et al., 2009). The volume and the spatial organization of this hydrophobic 

network depend on the heme iron coordination. Furthermore, the transition from the six-

coordinate CO-bound Fe2+mNgb to six-coordinate bishistidyl Fe2+mNgb is associated 

with an increase in the cavity volume and opening of a direct pathway between the heme 

binding pocket and surrounding solvent (Vallone et al., 2004b).  

The physiological role of the hydrophobic cavities remains unclear; however, they 

may provide ligand migration pathways and/or temporary storage for diatomic gases. 

Indeed, experimental and theoretical studies have shown that ligand exchange between 

the heme binding pocket and surrounding solvent is significantly faster in Ngb than in 

Mb (Abbruzzetti et al., 2009; Anselmi et al., 2011; Astudillo et al., 2010). Anselmi et al. 
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(2011) have proposed that the photo-released ligand escapes from the distal pocket 

through two hydrophobic cavities that are analogous to the Xe2 and Xe4 sites in Mb and 

with an estimated time for the escape of CO from the protein matrix of 25 ns. These 

results are consistent with the results of previous transient absorption studies that report a 

rate constant for the release of the ligand from the protein matrix of 1.4 x 108 s-1 

(Abbruzzetti et al., 2009), which is approximately 20 times faster than in Fe2+Mb (k= 5.3 

x 106 s-1), and with results of photoacoustic calorimetry (PAC) studies indicating that the 

CO escapes into the surrounding solvent within 50 ns subsequent to photo-dissociation of 

the Fe-CO bond (Astudillo et al., 2010). 

To provide a detailed insight into the mechanism of interaction of diatomic 

ligands with Ngb and the role of conserved distal pocket residues His64 and Val68 in the 

binding of the ligand to hNgb, PAC and transient absorption (TA) spectroscopy were 

used to characterize the time-resolved thermodynamics and kinetics of CO photo-release 

and thermal binding to Ngb. Moreover, the impact of the two conserved cysteine 

residues, Cys120 and Cys55, on ligand binding properties is examined. The Cys120 

residue is located at the interface of helix G and the loop between helices A and B, 

whereas Cys55 is found within the flexible C-D loop and forms an internal disulfide bond 

with Cys46 in hNgb. 

4.2. Results 

4.2.1. Circular dichroism spectroscopy 

The far-UV CD spectra of wild type hNgb and mutants His64Gln, Val68Phe, 

His64Gln/Val68Phe, Cys120Ser, and Cys55Ser/Cys120Ser hNgb in 10 mM Tris buffer 

(pH 7.0) are shown in Figure 4.2. The CD spectrum of wild type hNgb exhibits two 
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negative peaks at 208 nm and 222 nm that are characteristic of α-helical structure, as 

previously reported for hNgb (Hamdane et al., 2005; Zhao et al., 2006). The α-helical 

content (fH) was calculated using equation 4.1, according to Chen et al. (1972). 

30300

)2340][ 222 +−= nm
Hf

θ
           (4.1) 

Where [θ]222nm represents the mean molar ellipticity at 222 nm. 

Analysis of the secondary structure of Ngb resulted in ~ 76% α-helical content 

and matches well previously reported values of 78% of α-helical content and 22% of 

other forms, which is comparable to those of other globins such as Mb (76%) (Hamdane 

et al., 2005). The data in the 190 nm to 240 nm range were also uploaded into the K2D3 

server (Louis-Jeune et al., 2012)  to determine the secondary structure content and the 

following results were retrieved for the wild type protein: ~ 66% of α-helix and ~3% of 

β-sheet.  The CD spectra of Val68Phe, Cys120Ser, and Cys55Ser/Cys120Ser hNgb are 

similar to the CD spectrum of wild type hNgb, hence these mutations do not affect t a 

large extent the secondary structure of the protein. On the other hand, a lower CD signal 

at 222 nm was observed for mutated proteins in which the distal His was replaced by Gln, 

hNgb His64Gln and hNgb His64Gln/Val68Phe, than the one observed for wild type 

hNgb. The calculated α-helical content of these mutated proteins was ~ 72% and ~ 74% 

for hNgb His64Gln and hNgb His64Gln/Val68Phe, respectively. These results indicate a 

small decrease of α-helical content in these mutated proteins, likely as a result of 

destabilization of hNgb secondary structure upon substitution of the distal His. 
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Figure 4.2 CD spectra of wild type hNgb and mutants His64Gln, Val68Phe, 
His64Gln/Val68Phe, Cys120Ser, and Cys55Ser/Cys120Ser in the far-UV region. The 
concentration of the protein was 40 μM in 10 mM Tris buffer (pH 7.0). Spectra were 
corrected for the baseline of the buffer. 

 

4.2.2. UV-visible spectroscopy  

The steady-state absorption spectra of ferric, deoxy, and CO bound wild type 

hNgb at pH 7.0 are displayed in Figure 4.3. The ferric form of hNgb exhibits a Soret band 

at 413 nm and two visible bands at 535 nm and 561 nm. Reduction of the heme iron 

results in a bathochromic shift of the Soret band to 424 nm and the two Q bands in the 

visible part of the spectrum shift to shorter wavelengths (529 and 559 nm). The CO 

adduct of hNgb exhibits a Soret band at 417 nm and α and β bands located at 560 and 537 

nm, respectively, consistent with the formation of low-spin six-coordinate heme iron. The 

absorbance maxima observed for hNgb are identical to those previously reported by 

Dewilde et al. (Dewilde et al., 2001) for the ferric, ferrous, and CO adduct of hNgb, and 
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these spectral features are characteristic of hexacoordinate hemoglobins, including 

cytochromes, indicating that Ngb is a hexa-coordinated globin in which the distal His 64 

is the endogenous ligand (Dewilde et al. 2001).  
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Figure 4.3 Absorption spectra of ferric (black line), ferrous (red line) and CO bound (blue 
line) hNgb wild type in 50 mM Tris buffer (pH 7.0). 
 

The absorption spectra of ferric, ferrous and CO adducts of hNgb strains 

Cys120Ser (Figure 4.4), Cys55Ser/Cys120Ser (Figure 4.5) and Val68Phe (Figure 4.6), 

are comparable to the spectra of wild type hNgb, whereas the absorption spectra of hNgb 

strains His64Gln and His64Gln/Val68Phe are distinct from that of hNgb wild type. 

The steady state absorption spectra of ferric, ferrous deoxy and CO bound 

His64Gln hNgb at pH 7 are displayed in Figure 4.7. The Fe3+His64Gln mutated protein 

exhibits a Soret band at 408 nm, a pronounced visible band near 539 nm, and two 

additional bands at 575 and 630 nm. These bands positions are identical to those 

observed for other Ngb His64 mutants (Nienhaus et al., 2004; Van Doorslaer et al., 2003) 
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and similar to those observed in the spectra of other globins with a hexa-coordinate high-

spin Fe3+ heme iron having a weakly bound water molecule in the position of the axial 

ligand (Quillin et al., 1993). Analogous absorption spectra were reported for African 

elephant Mb with naturally occurring Gln64 (Tada et al., 1998). Reduction of the heme 

iron produces a bathochromic shift of the Soret band to 420 nm with a shoulder near 432 

nm and an additional absorption band situated at 556 nm. This spectrum is similar to that 

reported for the His64Leu (Dewilde et al., 2001; Nienhaus et al., 2010) and His64Val 

(Tiso et al., 2011) mutants of Ngb.  

375 400 425 450 475 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
bs

or
b

an
ce

Wavelength (nm)

500 520 540 560 580 600
0.00

0.05

0.10

0.15

0.20
A

b
so

rb
a

nc
e

Wavelength (nm)

 

Figure 4.4 Absorption spectra of ferric (black line), ferrous (red line) and CO bound (blue 
line) hNgb Cys120Ser in 50 mM Tris buffer (pH 7.0). 
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Figure 4.5 Absorption spectra of ferric (black line), ferrous (red line) and CO bound (blue 
line) hNgb Cys55Ser/Cys120Ser in 50 mM Tris buffer (pH 7.0). 
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Figure 4.6 Absorption spectra of ferric (black line), ferrous (red line) and CO bound (blue 
line) hNgb Val68Phe in 50 mM Tris buffer (pH 7.0). 
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The shoulder at 432 nm and the visible band at 556 nm observed in the spectrum 

of Fe2+His64Gln mutated protein are consistent with a penta-coordinate high-spin heme 

iron, whereas the Soret band maximum at 420 nm indicates the presence of an Ngb 

fraction with a hexa-coordinate low-spin heme iron. Nienhaus et al. (2010) have proposed 

that a water molecule or OH- group may serve as a sixth axial ligand in the distal site of 

the His64Leu mutant in Fe2+mNgb, whereas Uno et al. (2004) have identified Lys67 as a 

possible sixth axial ligand at alkali pH. The CO bound form of the His64Gln mutant 

exhibits a Soret band at 417 nm and α and β bands located at 567 and 539 nm, 

respectively, that are consistent with the formation of low-spin six-coordinate heme iron.  
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Figure 4.7 Absorption spectra of ferric (black line), ferrous (red line) and CO bound (blue 
line) His64Gln hNgb in 50 mM Tris buffer (pH 7.0). 

 

The UV-visible absorption spectra recorded for the His64Gln/Val68Phe double 

mutant (Figure 4.8) is similar to those for His64Gln mutant. However, the shoulder at 
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432 nm and the visible band at 556 nm are more pronounced in the spectrum of 

Fe2+His64Gln/Val68Phe mutated protein than in the spectrum of Fe2+His64Gln, 

indicating a higher fraction of penta-coordinate high-spin heme iron in the double mutant 

than in the single mutant.  
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Figure 4.8 Absorption spectra of ferric (black line), ferrous (red line) and CO bound (blue 
line) His64Gln/Val68Phe hNgb in 50 mM Tris buffer (pH 7.0). 

 

4.2.3. Transient absorption spectroscopy 

The kinetics for rebinding of the ligand to Ngb are more complex than those of 

binding of the diatomic ligand to penta-coordinate globins because of the hexacoordinate 

nature of Ngb and the heterogeneity of the heme group (Kiger et al., 2004). Previous 

studies have shown that CO rebinding is multiphasic, with geminate CO rebinding taking 

place on a nanosecond time scale and bimolecular rebinding of CO to the five-coordinate 

heme on the microsecond time scale (Abbruzzetti et al., 2009; Kriegl et al., 2002). 

Subsequent rebinding of CO to the six-coordinate bis-histidine heme is observed on the 
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millisecond to second time scale, with the distal His dissociation representing the rate-

limiting step (Kiger et al., 2004). Because the penta-coordinate and hexa-coordinate Ngb 

species are in equilibrium, the ratio of the fast to slow phase of bimolecular CO rebinding 

can be modified by varying the ligand concentration and temperature. Under ligand 

saturation conditions and at ambient temperature, the fraction of the bis-histidine heme 

iron is negligible, and thus, only single phase bimolecular rebinding of CO to five-

coordinate heme iron is observed (Dewilde et al., 2001; Kriegl et al., 2002). 

Figure 4.9 shows TA traces on the nano- to microsecond time scale for rebinding 

of CO to five-coordinate Ngb wild type and mutated proteins studied at 20 °C under CO 

saturating conditions (~ 1 mM CO). The geminate quantum yield (Φgem) was determined 

by taking the ratio of the amplitude of the absorbance change corresponding to the 

geminate process (Agem) with respect to the total absorbance change (Atotal) (Table 4.1). 

The quantum yield for CO geminate rebinding is not affected by the His64Gln, 

Cys120Ser and Cys55Ser/Cys120Ser mutations (Φgem = 0.32). A large increase in Φgem 

was observed for Val68Phe Ngb (Φgem = 0.85) and for the double mutant 

His64Gln/Val68Phe (Φgem = 0.96). 

The TA traces were analyzed using a multi-exponential decay model: 

 







=Δ

i i
i

t
eAA

τ
           (4.2) 

Where τi and Ai corresponds to the lifetime and amplitude for each kinetic step, 

respectively.  
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Figure 4.9 Transient absorption traces measured for CO geminate recombination and 
bimolecular rebinding to Ngbs. The initial amplitudes following the photo-dissociation of 
CO were normalized to 1. The solid lines correspond to a fit of the experimental data 
using a four exponential decay model. Conditions: 20 μM protein in 50 mM Tris buffer 
(pH 7.0) at 20 °C and 1 mM CO. 

 

Table 4.1 Kinetic parameters associated with CO rebinding to wild type hNgb and 
mutants. Rate constants (kgem and kfast) for ligand binding to five-coordinate Ngb were 
determined at 20 ºC and 1 mM CO, whereas the slow phase was measured at 35 ºC and 
0.1 mM CO to increase the yield of bishistidyl Ngb 

Sample 
kgem1 

(108 s-1) 

Agem1 

(%) 

kgem2 

(107 s-1) 

Agem2 

(%) 

kfast1 

(μM-1s-1) 

Afast1 

(%) 

kfast2 

(μM-1s-1) 

Afast2 

(%) 

kslow 

(μM-1s-1) 
Φgem 

WT 2.3±0.8 32.0 3.4±0.5 15.4 61±7 35.0 9±2 17.6 0.10±0.01 0.32 

H64Q 3.8±0.6 13.3 7.2±0.9 29.2 312±24 27.5 95±3 30.0 - 0.32 

C120S 5.0±2.0 22.7 8.0±3.0 26.7 90±16 33.6 19±7 17.0 0.09±0.01 0.32 

C55S/C120S 3.2±0.5 37.6 4.7±0.5 13.8 153±31 12.3 29±4 36.2 0.08±0.01 0.32 

V68F 5.6±0.4 66.5 10.9±0.4 30.0 77±36 3.6 9±3 9.9 0.08±0.01 0.85 

H64Q/V68F 4.8±0.3 - - - - 0.96 

1E-3 0.01 0.1 1 10 100
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CO geminate rebinding is found to be biphasic with the following rate constants 

for the fast and slow phases in the wild type protein: kgem1 = (2.3 ± 0.8) x 108 s-1 and kgem2 

= (3.4 ± 0.5) x 107 s-1, respectively (Table 4.1). The observed rate constant for the slower 

geminate rebinding, kgem2, matches well with that reported by Abbruzzetti et al. (2009). 

Similar rate constants for CO geminate rebinding were resolved for other mutated 

proteins studies here except the His64Gln/Val68Phe double mutant for which only CO 

geminate rebinding with a single rate constant of (4.8 ± 0.3) x 107 s-1 was assessed. The 

observed heterogeneity reflects the fast ligand rebinding from the primary and secondary 

ligand docking sites that were identified by time-resolved IR spectroscopy (Nienhaus and 

Nienhaus, 2005a). The multiphasic CO geminate rebinding from alternative docking sites 

was also reported for CO geminate rebinding in hNgb encapsulated in silica gels 

(Abbruzzetti et al., 2009), although the fast rate constant reported here was not resolved. 

The bimolecular rebinding of CO to five-coordinate Ngb is also multiphasic for 

wild type Ngb, with the rate constants for the fast and slow phases being 61 ± 7 μM-1 s-1 

(~ 65%) and 9 ± 2 μM-1 s-1 (~ 35%), respectively.  The biphasic bimolecular rebinding of 

CO to five-coordinate Ngb was observed previously and associated with the 

heterogeneous orientation of the heme group in Ngb (Kiger et al., 2004). The presence of 

two heme isomers was confirmed in an NMR study showing that the isomers are rotated 

by 180° and populated with a ratio of 2:1 (Du et al., 2003), which matches the ratio of 

amplitudes for the fast and slow phases reported here.  

The replacement of Cys120 with Ser or Val68 with Phe does not alter the rate of 

CO bimolecular rebinding. On the other hand, significantly faster CO bimolecular 

rebinding was observed for the His64Gln mutant with rate constants of 312 ± 24 and 95 ± 
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3 μM-1 s-1 exhibiting equal amplitudes. Similar acceleration for the CO bimolecular 

rebinding was observed in the Cys120Ser/Cys55Ser double mutant with rate constants of 

153 ± 31 (~24%) and 29 ± 4 μM-1 s-1 (~76%) for the fast and slow phases of bimolecular 

association, respectively. 

The pseudo-first order rate constants for rebinding of CO to hexacoordinate bis-

histidyl Ngb (kslow) were determined under conditions that increase the population of bis-

histidyl hNgb (35 °C and ~ 0.1 mM CO) (Figure 4.10). TA traces were fitted using a 

single exponential decay and the rate constants are listed in table 4.1. Substitution of 

Val68 with Phe or Cys120 with Ser does not alter the rate constants for CO rebinding 

relative to that of the wild type protein. The rate constant for rebinding of CO to bis-

histidyl hNgb in the Cys55Ser/Cys120Ser double mutant (kslow = 0.08 ± 0.01 μM-1 s-1) is 

somewhat larger than the rate constant observed for the Cys55Ser single mutant (kslow = 

0.052 μM-1 s-1) (Astudillo et al., 2010), and described in chapter 5. Such an impact of the 

Cys120 mutation in the double mutant on the rate constant for rebinding of CO to bis-

histidyl Fe2+hNgb is surprising considering that this residue is located close to the protein 

surface, approximately 18 Å from the heme binding pocket. Because the rate-limiting 

step for rebinding of CO to bis-histidyl Fe2+hNgb is distal histidine dissociation, these 

data suggest that substitution of Cys120 with Ser leads to long-range structural changes 

that impact heme iron coordination.  
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Figure 4.10 Transient absorption traces measured for CO bimolecular rebinding to Ngbs. 
Traces were normalized to 1. The solid lines correspond to a fit of the experimental data 
using a single exponential decay model. Conditions: 20 μM protein in 50 mM Tris buffer 
(pH 7.0) at 35 °C and 0.1 mM CO to increase the yield of bishistidyl coordination. 
 

4.2.4. Photoacoustic calorimetry results 

An overlay of photoacoustic traces for photo-dissociation of CO from wild type 

hNgb and His64Gln hNgb mutated protein together with the reference compound, 4SP, 

are shown in Figures 4.11 and 4.11, respectively. The sample acoustic traces overlay in 

phase with the reference traces, indicating the absence of volume and/or enthalpy 

changes on the time scale between ~ 20 ns and ~ 5 μs. Similar photoacoustic time profiles 

have been observed for the other mutated proteins investigated. 
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Figure 4.11 Photoacoustic traces for wild type hNgb together with the reference 
compound 4SP. Conditions: 20 μM protein in 50 mM Tris buffer (pH 7.0). The 
absorbance of the sample matched that of the reference compound at 532 nm 
(A532nm=0.22). 
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Figure 4.12 Photoacoustic traces for hNgb H64Q together with the reference compound 
4SP. Conditions: 20 μM protein in 50 mM Tris buffer (pH 7.0). The absorbance of the 
sample matched that of the reference compound at 532 nm (A532nm=0.23). 
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Plots of the PAC amplitude ratios as a function of the thermal coefficient 

[(Cpρ)/β] over the temperature range of 16 - 35 °C are displayed in Figure 4.13. The 

reaction volume and enthalpy changes were determined from the slope and intercept of 

the linear plot, respectively, as described in the Materials and Methods section, and are 

listed in Table 4.2. From the reaction volume change, the structural volume change, 

ΔVstr, that describes the difference between the partial molar volume of the five-

coordinate Ngb and CO-bound Ngb can be determined according to the equation 4.3. 

  CONgbNgbCO VVVV −+=Δ           (4.3) 

Where VCO is the partial molar volume of CO (35 mL mol-1) (Hara et al., 1996) 

and VNgb is the partial molar volume of Ngb. 

The photo-dissociation of CO from WT hNgb is associated with a ΔVstr of -21.6 ± 

0.9 mL mol-1, and slightly more negative structural volume changes were observed for 

His64Gln and Cys120Ser proteins. Replacement of Val68 with Phe has a significant 

impact on the structural volume change (ΔVstr = -37 ± 2 mL mol-1) likely because of a 

larger structural reorganization of the distal pocket in this mutant. The overall enthalpy 

change for the photo-dissociation of CO from WT hNgb is 20 ± 4 kcal mol-1 and largely 

reflects the enthalpy of the Fe-CO bond energy (Astudillo et al., 2010). Interestingly, all 

mutated proteins studied here exhibit negative enthalpy changes for CO photolysis with a 

ΔH of -3 ± 4 kcal mol-1 for the Cys120Ser mutant and – 48 ± 7 kcal mol-1 for the 

Val68Phe mutant. We did not characterize volume and enthalpy changes associated with 

photo-dissociation of CO from the double mutant His64Gln/Val68Phe, because the 

quantum yield for geminate recombination is close to unity.  
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Figure 4.13 Plot of φEhv as a function of Cpρ/β for CO photo-release from wild type Ngb 
(solid squares), His64Gln (solid circles), Val68Phe (open triangles), Cys120Ser (open 
circles), Cys55Ser/Cys120Ser (open squares), and Cys55Ser (solid triangles). The 
corresponding volume and enthalpy changes were determined from the slope and 
intercept of the linear fits, respectively. The data for human Ngb and the Cys55Ser 
mutant were previously reported by Astudillo et al. (2010). 

 

Table 4.2 Thermodynamic parameters associated with CO photo-dissociation from Ngbs. 

 ΔH (kcal mol-1) ΔV (mL mol-1) ΔVstr (mL mol-1)b 

Wild typea 20 ± 4 13.4 ± 0.9 -21.6 ± 0.9 

His64Gln -6 ± 3 10.0 ± 0.5 -25.0 ± 0.5 

Val68Phe -48 ± 7 -2.4 ± 1.5 -37.4 ± 1.5 

Cys120Ser -3 ± 4 7.5 ± 0.6 -27.5 ± 0.6 

Cys55Ser/Cys120Ser -6 ± 4 12.2 ± 0.9 -22.5 ± 0.9 

a From Astudillo et al. (2010). 

b The structural volume change was determined using the equation °−Δ=Δ mstr VVV , 

where °
mV is the partial molar volume of CO (35 mL mol-1) (Hara et al., 1996). 
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4.3. Discussion 

4.3.1. Role of distal residues His64 and Val68 in controlling ligand 

migration in hNgb 

Conserved distal pocket residues His64 and Val68 play a crucial role in regulating 

the affinity for diatomic ligands in vertebrate globins. In Ngb, His64 modulates the 

affinity for CO and O2 (Dewilde et al., 2001; Pesce et al., 2003), it is responsible for the 

pH dependence of O2 binding (Fago et al., 2004b), and protects against formation of 

tyrosine-phenoxyl radicals in the presence of hydrogen peroxide (Lardinois et al., 2008). 

 In this work, it is shown that the replacement of His64 with a polar Gln residue of 

a comparable size moderately alters the rate for bimolecular rebinding of CO to the five-

coordinate hNgb with the rate constant being approximately 5 and 10 times larger than 

the rate constant for the fast and slow bimolecular rebinding in WT, respectively. A 

similar increase in the rate constant for the fast phase of bimolecular rebinding was 

reported previously for the His64Gln substitution by Hamdane et al. (2003) (kfast = 290 

μM-1 s-1) and by others for hNgb mutants with a Leu (kfast = 237 μM-1 s-1) (Nienhaus et 

al., 2004) or Val (kfast = 230 μM-1 s-1) (Dewilde et al., 2001) residue in position 64. In 

those studies, the heterogeneous rebinding of CO to the five-coordinate heme iron was 

also detected; however, the rate constant for the slow phase was not reported.  

The biphasic rebinding of CO to the His64Val mutant was observed at pH 9.5 

with rate constants similar to those reported here (kfast1 = 350 μM-1 s-1, and kfast2 = 45 μM-

1 s-1); however, the authors assigned the slower process to the partial coordination of 

Lys67 (Uno et al., 2004). On the basis of the mNgb crystal structure, it was proposed that 

binding of CO to the heme iron requires the distal histidine side chain swinging out of the 
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distal pocket and a concomitant breakage of the electrostatic/hydrogen bonding network 

among Lys67, heme 7-propionate, and Tyr44. Substitution of distal His with Gln opens 

the access to the distal pocket, resulting in a lowering of the activation barrier for 

exogenous ligand binding. 

The relatively moderate impact of the His64 side chain on the ligand migration 

within the protein matrix is evident from the quantum yield value for the CO geminate 

rebinding that is identical to that measured for WT hNgb (Φgem = 0.32). In comparison, 

an analogous replacement in swMb results in a substantial increase in the amplitude for 

CO geminate rebinding (Φgem ~ 0.04 in WT Mb, and Φgem = 0.67 in the His64Gln Mb 

mutant) (Lambright et al., 1994). These results show that in Ngb the residue occupying 

position 64 does not influence the migration of the ligand between the heme distal pocket 

and adjacent hydrophobic cavities and/or escape to the surrounding solvent. 

The replacement of Val68 with Phe, on the other hand, significantly increases the 

amplitude for geminate CO rebinding (Φgem = 0.85), indicating that the presence of the 

bulky benzyl side chain at position 68 introduces a steric block for CO migration between 

the distal pocket and the internal hydrophobic cavities. This hypothesis is further 

supported by the study of the His64Gln/Val68Phe double mutant in which the escape of 

the photo-dissociated ligand into the surrounding solvent is nearly completely hindered, 

which is evident from the geminate quantum yield approaching unity. Interestingly, the 

impact of the His64Gln and Val68Phe mutation on the CO geminate process is not 

additive, suggesting that the simultaneous mutation of both distal residues leads to a 

reorganization of the volume and/or dynamics of the heme distal pocket and/or nearby 

internal cavities.  



94 
 
 

In Ngb, Val68 and the other conserved hydrophobic residues, Leu27, Val109, and 

Leu113, surround the Xe4 cavity that is located in a position analogous to that in Mb 

(Moschetti et al., 2009) (Figure 4.14). Yin et al. (2008) have probed the structure of the 

heme binding site in the His64Gln/Val68Phe hNgb double mutant using solution 1H 

NMR. They reported that the Phe side chain adopts a spatial orientation similar to that 

found in the structure of the Mb triple mutant (His64Gln/Leu29Phe/Val68Phe) (Nguyen 

et al., 1998), with the side chain blocking the Xe4 cavity. The reduction of the volume in 

Xe4 cavity thus results in an efficient blockage of migration of CO between the distal 

pocket and adjacent hydrophobic cavities, confirming that the residue at position 68 

exhibits an analogous functional role in both Ngb and penta-coordinate vertebrate globins 

(Dantsker et al., 2005). To obtain further insight into the factors affecting ligand 

migration in Ngb upon replacement of Val68 by Phe, the Val68 residue was replaced by 

Phe in the structures of CO bound Fe2+mNgb and Fe2+mNgb, then these structures were 

minimized using Amber03 force field in YASARA structure software. In addition, 

internal hydrophobic cavities were calculated employing a 1.4 Å probe radius and the 

numerical algorithm. The modeled structures of  CO bound Fe2+mNgb Val68Phe and 

Fe2+mNgb Val68Phe (Figure 4.15) show repositioning of the side chain of Phe 68 residue 

and a different organization of the internal hydrophobic cavities in the ligand bound form 

and ligand free form of the mutated protein. In Fe2+mNgb Val68Phe, the side chain is 

blocking the hydrophobic tunnel previously reported for Fe2+mNgb that includes Xe4 

cavity.  
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Figure 4.14 Ribbon representation of ferric mNgb (left, PDB entry 3GK9) and sperm 
whale Mb (right, PDB entry 1J52) depicting the position of the heme group, proximal 
His96, and distal His64, Val68, Ser120, and Ser55 in Ngb and analogous residues in Mb. 
Xenon cavities Xe1, Xe2, Xe3 and Xe4 are depicted as green spheres. 

 

The mutation of distal residue His64 or Val68 significantly alters the 

thermodynamics of structural changes associated with ligand photo-release. The photo-

release of CO from WT hNgb is endothermic (ΔH = 20 ± 4 kcal mol-1) and associated 

with a negative structural volume change (ΔVstr = - 21.6 ± 0.9 mL mol-1) (Astudillo et al., 

2010). In the structure of WT Fe2+mNgb, a water molecule was resolved in the vicinity of 

the distal histidine that is missing in the structure of CO bound Fe2+mNgb. The internal 

water molecule (Wat9 in PDB entry 1Q1F) is surrounded by the side chains of three Phe 

residues (Phe28, Phe42, and Phe61) and stabilized within the protein matrix through a 

hydrogen bond with the His64 side chain, the carbonyl oxygen of Phe61, and weak 

hydrogen bonds to the hydroxyl group of Tyr44 and the carbonyl oxygen of Glu60.  
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Figure 4.15 Overlay of modeled structure of CO bound Fe2+mNgb Val68Phe (blue) and 
Fe2+mNgb Val68Phe depicting the position of the heme group, distal His 64 and Phe 68 
residue. Internal hydrophobic cavities are shown in light blue for CO bound Fe2+mNgb 
Val68Phe and in light orange for Fe2+mNgb Val68Phe. The modeled structures were 
obtained by minimization of CO bound Fe2+mNgb (PDB entry 1W92) and Fe2+mNgb 
(PDB entry 2VRY) in which Ser 55 and Ser 120 were replaced by Cys employing 
Amber03 force field in YASARA software. Internal cavities were analyzed using a 1.4 Å 
probe radius and the numerical algorithm in YASARA software and are shown as 
contour surfaces. 

 

The negative structural volume change determined for photo-dissociation of CO 

from WT hNgb is consistent with the fast uptake of a water molecule that is concomitant 

with the escape of CO from the protein matrix. This hypothesis is further supported by 

the absolute magnitude of the structural volume change that is similar to the partial molar 

volume of water (Vm° = 18 mL mol-1). Because the water molecule forms hydrogen 

bonds with nearby amino acid residues, the uptake into the protein matrix does not result 

in a significant enthalpy change, and the observed enthalpy of 20 kcal mol-1 corresponds 

to the photodissociation of the Fe-CO bond. Xu et al. (2011) have proposed that an 

electrostatic/hydrogen bonding network formed by Lys67, Tyr44, His64, and heme         
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7-propionate stabilizes the heme group within the heme binding pocket and CO 

association leads to the weakening of electrostatic interactions, including the breakage of 

the salt bridge between Lys67 and heme propionate. The enthalpy change associated with 

the destabilization of such polar network was estimated to be relatively small,                        

~ 1.7 kcal mol-1 (Horovitz et al., 1990; Takano et al., 2000), and does not significantly 

contribute to the observed enthalpy change (Vallone et al., 2004a). In addition to 

Fe2+hNgb hydration, other factors such as sliding of the heme group and reshaping of the 

internal hydrophobic cavities may contribute to the observed volume and/or enthalpy 

change. However, the impact of these perturbations on the structural volume change is 

likely to be small as these changes are localized within the protein matrix and thus do not 

impact the overall protein structure and/or charge distribution on the protein surface. 

The photodissociation of CO from the His64Gln mutant is exothermic              

(ΔH = - 6 ± 3 kcal mol-1) and accompanied by a negative structural volume change of      

-25.0 ± 0.5 mL mol-1. More negative volume and enthalpy changes are observed for 

photo-release of CO from the Val68Phe mutant (ΔH = - 48 ± 7 kcal mol-1, and           

ΔVstr = -37.4 ± 1.5 mL mol-1). The negative enthalpy change for photo-release of CO 

from hNgb mutants indicates that the corresponding rebinding of CO to five-coordinate 

hNgb is endothermic and entropically driven. A comparable positive enthalpy for binding 

of O2 to hNgb was observed by Fago et al. (2004b). These authors reported that the hNgb 

oxygenation is endothermic (ΔH = 12.7 kcal mol-1) below 18 °C and becomes exothermic 

at higher temperatures (ΔH = - 15.7 kcal mol-1). They attributed the exothermic ligand 

binding to the weakening of the electrostatic/hydrogen bonding interactions among 
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His64, Lys67, and heme 7-propionate at high temperatures. At low temperatures, stronger 

polar interactions contribute to the observed positive enthalpy for oxygen binding.  

The negative reaction enthalpy observed for photo-release of CO from His64Gln 

Fe2+hNgb suggests that substitution of His64 promotes a reorganization of the 

electrostatic/hydrogen bonding network in the vicinity of the heme 7-propionate group in 

a similar manner to that observed for binding of oxygen to hNgb below 18 °C. Indeed, 

this network of polar residues that also includes Tyr44 and a water molecule is not rigid, 

as evident from an overlay of mNgb and hNgb structures. For example, Lys67 forms a 

hydrogen bond with the heme 7-propionate in the structure of Fe3+mNgb (PDB entry 

1Q1F), whereas in the structure of CO bound mNgb and Fe2+mNgb (PDB entries 1W92 

and 2VRY, respectively), the Lys67 side chain is positioned within hydrogen bonding 

distance of both heme 6- and 7-propionate group. Tyr44 is located in the highly flexible 

CD region (residues 40 – 60), and its side chain was not resolved in two molecules of 

Fe3+hNgb (PDB entry 1OJ6), pointing toward an increased flexibility of this residue in 

hNgb. In addition, computational studies have revealed that the solvent accessible area of 

Tyr44 increases in the CO bound form of the His64Val mutant relative to that of the WT 

protein, confirming that the distal His mutation alters this electrostatic network (Xu et al., 

2011). These results suggest that the electrostatic/hydrogen bond network can be 

relatively easily reorganized either by changes in the temperature or by a single residue 

substitution. Xu et al. (2011) have proposed that the electrostatic/hydrogen bonding 

network between the heme propionate groups and the apo-protein stabilizes the position 

of the prosthetic group and modulates the heme sliding mechanism in Ngb. Therefore, the 

impact of the His64Gln substitution on the energetics of association of CO with five-
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coordinate hNgb may be the result of the altered heme sliding mechanism in this mutated 

protein. 

Other factors may also contribute to the observed negative enthalpy change for 

CO photo-release. The UV-vis spectra revealed a small fraction of six-coordinate heme 

iron in Fe2+Ngb mutants lacking His64 likely because of the presence of a water molecule 

in the sixth axial position (Kriegl et al., 2002). Although a water molecule associated 

with the reduced heme iron is unusual in globins, the ferrous aquo-Mb complex was 

detected only below 150 K (Lamb et al., 1998). Strickland and Harvey (2007) have 

reported that binding of a water molecule to the heme model complexes of Fe2+ heme 

involves a low energy barrier, and it is energetically favorable by ~ 10 kcal mol-1.  

In the His64Gln mutant, the association of a water molecule with the ferrous 

heme may be facilitated by the presence of a highly reactive heme iron, which is evident 

from the faster kinetics for rebinding of CO to the five-coordinate heme iron compared to 

that of WT hNgb and possibly by the increased accessibility to the sixth axial position of 

the heme ferrous iron because of the replacement of the His64 imidazole ring with Gln. 

More negative enthalpy and structural volume changes were determined for photo-

dissociation of CO from the Val68Phe mutant relative to the His64Gln mutant, which 

point toward a significant reorganization of the heme distal pocket and surrounding 

hydrophobic cavities and/or altered mechanism of interactions of diatomic ligands with 

heme iron in the Val68Phe mutant. In the absence of a crystal structure for the Val68Phe 

mutant, it is difficult to pinpoint structural factors that contribute to the observed 

thermodynamic parameters. The large negative structural volume change (ΔVstr = - 37.4 

± 1.5 mL mol-1) and the exothermic enthalpy change (ΔH = - 48 ± 7 kcal mol-1) observed 
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for photo-release of CO from the Val68Phe mutant are consistent with a reorganization of 

charges, including salt bridges associated with the transition between the CO bound hNgb 

and Fe2+hNgb that is not present in the WT protein. 

4.3.2. Role of the Cys residues in controlling ligand migration in hNgb 

The two cysteine residues examined here, Cys55 and Cys120, are well conserved 

among mammalian Ngbs. Replacement of Cys120 with Ser does not alter the kinetics of 

geminate rebinding or bimolecular rebinding of CO to penta-coordinate Fe2+hNgb, 

consistent with the position of Cys120 being near the protein surface and ~ 19 Å from the 

heme iron. On the other hand, bimolecular rebinding of CO to the five-coordinate iron in 

the Cys55Ser/Cys120Ser hNgb double mutant is faster than in the WT protein and 

displays acceleration similar to that observed for the His64Gln mutant. This result is 

somehow surprising because no acceleration for CO bimolecular rebinding was observed 

for the Cys55Ser hNgb single mutant, as described in chapter 5 (Astudillo et al., 2010), 

suggesting that simultaneous replacement of Cys120 and Cys55 leads to global structural 

changes that impact the rate of CO bimolecular rebinding. 

The reaction enthalpy changes determined for photo-dissociation of CO from the 

Cys120Ser mutant and Cys55Ser/Cys120Ser double mutant are comparable and close to 

0 kcal mol-1. On the other hand, the structural volume change measured for the 

Cys120Ser mutant is ~ 6 mL mol-1 more negative than that measured for the WT protein, 

whereas a similar structural volume change was observed for the Cys55Ser/Cys120Ser 

double mutant. Previously, we reported that the single Cys55Ser mutation in hNgb does 

not alter the enthalpy change associated with photo-release of CO from Ngb (Astudillo et 
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al., 2010), pointing out that the replacement of Cys120 with Ser leads to a decrease in the 

reaction enthalpy change of ~ 20 kcal mol-1.  

In the crystal structure of CO bound mNgb with both Cys55 and Cys120 replaced 

with Ser, the hydroxyl group of Ser120 is located at the end of helix G and forms a 

hydrogen bond with the carbonyl oxygen of Met116, whereas in the Fe2+mNgb structure, 

the Ser120 side chain populates two conformations. One conformation corresponds to 

that found in the CO bound Fe2+Ngb structure, whereas the second conformation shows 

the Ser120 side chain rotated by 124°, forming a hydrogen bond with His23 from helix B. 

In the Fe2+mNgb structure, the side chain of His23 is involved in a larger hydrogen 

bonding network that includes Glu22 and Ser19 that is part of the A-B loop, whereas the 

hydrogen bond between Glu22 and His23 is missing in CO bound mNgb (Figure 4.16). 

Thus, I propose that in the mutants carrying a Ser residue at position 120, escape of CO 

from the protein matrix is associated with the fast (τ < 50 ns) formation of a hydrogen 

bond network involving Ser120, His23, and Glu22 that leads to the negative enthalpy 

change observed for photo-dissociation of CO for the Cys120Ser mutant and the 

Cys55Ser/Cys120Ser double mutant. In WT hNgb that carries a Cys residue at position 

120, this hydrogen bonding network is missing and the observed positive enthalpy 

change of 20 kcal mol-1 represents the scission of the Fe-CO bond. These data also 

indicate that migration of CO between the protein matrix and the surrounding solvent 

results in reorganization of the interface between helix G and the A-B loop, and this 

interface may facilitate escape of the photo-dissociated ligand from the protein matrix. 
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Figure 4.16 Overlay of crystal structure of CO bound mNgb (shown in purple, PDB entry 
1W92) and Fe2+mNgb (shown in yellow, PDB entry 2VRY) showing the position of Ser 
120, His 23, Glu 22 and Ser 19. The H-bond network connecting the helix G and the loop 
between the A and B helices in the Fe2+mNgb form (shown as black lines) is missing in 
the structure of CO bound mNgb. 

 

The analysis of the ligand migration pathways in Ngb was addressed in several 

computational studies. Anselmi et al. (2011) have reported that a significant fraction of 

the photo-dissociated CO molecules cross the Xe4 cavity region and escape through a 

phantom 1 site between helix G and the A-B loop, in excellent agreement with our 

experimental data. The A-B loop was also identified as a ligand transition pathway for 

escape of CO from Ngb, named exit 3, by Bocahut et al. (2009), although they associated 

this pathway with escape of CO from hNgb with the reduced disulfide bond. 

The molecular mechanism of ligand migration and the role of the internal 

hydrophobic cavities were intensively studied in Mb using time-resolved absorption/IR 

spectroscopy, time-resolved X-ray crystallography, and computational studies in 

combination with site-directed mutagenesis (Brunori and Gibson, 2001; Olson et al., 

2007; Ostermann et al., 2000; Scott et al., 2001; Srajer et al., 2001). A schematic 

description of the ligand migration pathways in Mb and Ngb is presented in Scheme 4.1. 
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Scheme 4.1 

The ligand migration in Mb can be described using a side path kinetic scheme 

(Olson et al., 2007). Upon photo-cleavage of the Fe-CO bond, the photo-released ligand 

rapidly translates into the primary docking site located above the heme iron plane (state 

B) where it remains for < 30 ns (Schotte et al., 2004). Subsequently, the CO molecule can 

either rebind to the heme iron through a geminate rebinding process, escape into the 

surrounding solvent (state D) through the so-called “histidine gate”, or migrate into one 

of the nearby hydrophobic cavities, Xe4 or Xe1 site (state C). To escape from the protein 

matrix, the photo-dissociated ligand transiently located within the hydrophobic cavities 

has to return to primary docking site B and then leave through the histidine gate. 

The internal ligand migration in Mb is directed by the conformational changes of 

amino acid side chains located at the solvent interface and in the proximity of site B, 

including Ile28, Leu29, Leu32, Phe43, Phe46, His64, Val68, and Ile107 (Scott et al., 

2001). For example, substitution of Leu29 with Trp blocks geminate rebinding as well as 

escape of the photo-dissociated ligand through the His gate and promotes ligand trapping 

in the Xe4 or Xe1 cavity. On the other hand, replacement of distal His64 with a nonpolar 
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residue such as Leu or Val increases the rate of CO bimolecular rebinding as well as the 

geminate rebinding yield (Φgem = 0.37 or 0.34, respectively), and a significantly larger 

increase in the rate of geminate rebinding was observed for the His64Gln mutant (Φgem = 

0.67) (Lambright et al., 1994).  

The effect of replacement of the Val68 side chain with aromatic side chains on the 

ligand migration pathway was probed by several groups demonstrating that the presence 

of a bulky side chain at position 68 results in a trapping of photo-dissociated ligands 

within docking site B and inhibition of the transition of the ligand into more remote sites, 

particularly the Xe4 cavity (Carver et al., 1990; Nienhaus et al., 2003; Quillin et al., 1995; 

Scott et al., 2001). Simultaneous alteration of both His64 and Val68 side chains 

effectively blocks escape of CO from the protein matrix, resulting in a large geminate 

quantum yield (Sugimoto et al., 1998). 

On the basis of the kinetic and photothermal data presented here and previous 

spectroscopic and computational results, I propose an alternative pathway for ligand 

migration in Ngb. After Fe-CO bond photo-cleavage, the ligand diffuses into the primary 

docking site (state B’) that was shown to consist of two sites: B1’ surrounded by Phe28, 

Leu31, and Phe32 and site B2’ surrounded by Phe28, His64, and Val68. The subsequent 

transition includes ligand migration into the Xe4 hydrophobic cavity (state C’) that is 

facilitated by a low energy barrier, ~ 1.1 kJ mol-1, between sites B’ and C’ (Nienhaus et 

al., 2010). As in Mb, the ligand migration between states B’ and C’ is gated by the side 

chain of Val68, which is evident from the increased rate of CO geminate rebinding in the 

Val68Phe mutant. The alteration of the His64 side chain has only a minor impact on the 

ligand transition between the distal pocket and site C’, suggesting that in Ngb the His64 
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side chain does not regulate diffusion of the ligand between internal cavities or blocks 

escape of the ligand from the protein matrix. 

The exact pathway for escape of the ligand from state C’ remains unclear. On the 

basis of the crystal structure of deoxy-mNgb and CO-bound mNgb, it was suggested that 

the wide hydrophobic tunnel connecting the distal pocket with the surrounding solvent in 

the deoxy protein provides an effective pathway for ligand migration (Vallone et al., 

2004b). Indeed, the Xe4 hydrophobic site is located in the vicinity of the hydrophobic 

tunnel entrance, indicating that the arrival of the ligand in the tunnel is regulated by the 

Val68 side chain. The results presented here demonstrate that the thermodynamic 

parameters associated with CO escape are altered by the hydrogen bond network 

connecting helix G and the loop between helices A and B, suggesting that this region may 

serve as a ligand migration pathway in hNgb as was previously proposed by Anselmi et 

al. (2011). Alternatively, the rearrangement of the region between helix G and the A-B 

loop can be a part of the larger conformational transition between the ligand bound and 

ligand free Ngb, including the reshaping of the internal hydrophobic tunnel that provides 

an effective ligand escape pathway. Finally, following escape of CO to the solvent (state 

D’), the Ngb structure undergoes a considerable reorganization that involves 

repositioning of the heme and the re-formation of the Fe-His64 coordination bond (state 

E’) occurring on a 100 ms time scale. 

4.4. Summary 

In summary, the PAC results in combination with transient absorption studies 

shown in this work reveal that escape of the ligand from the protein matrix in hNgb is 
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significantly faster than in Mb, suggesting that in hNgb the histidine gate mechanism 

does not regulate the ligand escape between the distal pocket and the surrounding solvent.  

On the other hand, the highly conserved Val68 residue appears to have an 

analogous role in hNgb and in vertebrate five-coordinate globins and regulates the 

internal movement of the photo-dissociated ligand between the heme distal pocket and 

surrounding hydrophobic cavities. The thermodynamic data for photo-dissociation of the 

ligand from mutated proteins with Cys120 replaced with Ser indicate that the interface 

between helix G and the A-B loop may provide a pathway for the migration of CO from 

internal hydrophobic cavities to the protein exterior. The electrostatic/hydrogen bond 

network between the heme propionate groups and the apo-protein not only stabilizes the 

prosthetic group, but also influences thermodynamics of binding of the diatomic ligand to 

heme iron and to some extent provides a barrier for rebinding of the diatomic ligand to 

the five-coordinate Ngb. Altogether, these data confirm a distinct mechanism of 

interaction of hNgb with diatomic ligands compared to other vertebrate globins such as 

myoglobin and hemoglobin. 
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5. THE ROLE OF THE DISULFIDE BOND AND TYROSINE 44 RESIDUE IN 

TRANSMISSION OF STRUCTURAL INFORMATION FROM THE CD 

LOOP TO THE HEME BINDING POCKET IN NEUROGLOBIN 

(The work described in this chapter was partially published in Astudillo, L., Bernad, S., 

Derrien, V., Sebban, P., Miksovska, J. Biophys. J. 99 (2), L16-L18) 

5.1. Introduction 

Neuroglobin is a small heme protein belonging to the family of vertebrate hexa-

coordinated globins, predominantly found in neuronal tissues (Burmester et al., 2000), 

that has been proposed to have a role in neuroprotection (Greenberg et al., 2008; Sun et 

al., 2003). In vitro and in vivo studies have established that Ngb plays a role in the 

neuronal response to hypoxia and ischemia (Greenberg et al., 2008; Sun et al., 2003), 

although the molecular mechanism of the protective function exerted by Ngb still remains 

unclear. In addition, Zhang et al. (2013b) have proposed a tumor suppressor role for Ngb 

in hepatocellular carcinoma (HCC) since Ngb expression was down-regulated in HCC 

tumor tissues, whereas over-expression of Ngb suppressed HCC cell growth in vitro and 

tumor growth in vivo.  Studies in which Ngb was knock-down in mice also support the 

tumor suppressor role of Ngb in HCC cells (Zhang et al., 2013b). The molecular 

mechanism through which Ngb protects cells is still not well understood, but some 

plausible mechanisms have been proposed including oxygen storage/transport  

(Burmester et al., 2000; Dewilde et al., 2001), oxygen/redox sensing (Hamdane et al., 

2003), reactive oxygen or nitrogen species scavenging (Fordel et al., 2006; Zhang et al., 

2013b), NO dioxygenase activity (Fago et al., 2004a; Van Doorslaer et al., 2003), and 

inhibition of apoptosis (Fago et al., 2008; Fago et al., 2006).  
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The three dimensional structure of Ngb displays the characteristic typical 3-over-

3-α helical structure (globin fold) with several unique features, including bishistidine 

hexa-coordination of the heme iron in its ferric and ferrous states (Dewilde et al., 2001), 

an internal disulfide bond (Hamdane et al., 2003), and large internal cavities (Pesce et al., 

2003). These structural features alter interactions of Ngb with diatomic ligands (Brunori 

and Vallone, 2007). For instance, the distal His residue (His 64) can be replaced by 

diatomic gaseous ligands (O2, NO and CO) that reversibly bind to the heme iron, hence 

competition between the distal histidine and exogenous ligands leads to biphasic ligand 

binding kinetics in which the His64 dissociation represents the rate-limiting step 

(Dewilde et al., 2001). 

The internal disulfide bond in human Ngb (hNgb) connects the CD loop with the 

D helix, located between Cys46 and Cys55. Interestingly, the internal disulfide bond in 

Ngb is conserved among different species with exception of rodent Ngbs that carry a Gly 

residue at position 46, instead of a Cys residue (Figure 5.1). The internal disulfide bond 

in Ngb has been proposed to modulate interactions with other proteins (Bonding et al., 

2008; Wakasugi et al., 2003). Wakasugi et al. (2003) reported that ferric Ngb binds to the 

α-subunit of the heterotrimeric G protein (Gαi) and inhibits the rate of GDP/GTP 

exchange, whereas the CO adduct does not show a significant affinity for Gαi suggesting 

for Ngb a role as an oxidative stress responsive sensor. Residues Glu 53 and Glu 60 were 

identified as possible interaction sites between Ngb and the Gαi subunit (Kitatsuji et al., 

2007) and are located within a region formed by the CD loop and the D helix that 

undergoes a ligand induced displacement in the crystal structure of the CO bound protein 

(Vallone et al., 2004b).  
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Figure 5.1 Sequence alignment of human, rat and mouse Ngb. The stars below the 
sequences represent identical amino acids shared by the three proteins, the two dots 
below the sequence indicates amino acid residues with significantly similar properties 
and the single dot indicates weak similarity between amino acid residues. The red arrows 
indicate the position of Cys residues in hNgb sequence. 

 
Hamdane et al. (2003) demonstrated that reduction of the internal disulfide bond 

or replacement of one of the Cys residues by Ser or Gly decreases the rate of dissociation 

of His64 from heme iron by a factor of 10, resulting in decrease of the affinity of hNgb 

for O2. This regulation has been proposed to occur via disulfide bond induced alterations 

of the distal histidine dissociation rate (Hamdane et al., 2003). The molecular mechanism 

through which structural transitions are relayed from the CD loop to the heme distal 

pocket remains unclear, although Phe 28 was recently identified as a key residue in the 

communication between the CD loop and the heme pocket (Ezhevskaya et al., 2011). 

Furthermore, comparison of the crystal structures of ligand free and the CO adduct of 

mouse Ngb reveals that the association of the ligand with the heme iron triggers 

reorganization of the heme distal pocket that is unique among vertebrate globins, 

including sliding of the heme group deeper into the distal cavity, reorganization of F-

helix, and alteration of the CD and EF loop mobility (Vallone et al., 2004b).  
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Inspection of the three dimensional structure of hNgb (PDB entry 1OJ6) indicates 

that the side chain of Tyr 44 is disordered (Figure 5.2), showing the side chain of Tyr 44 

in some structures whereas the side chain of this residue is not visible in the other 

structures. In one of the reported structures of hNgb, the hydroxyl group of Tyr 44 forms 

a hydrogen bond with the one of the heme propionate groups, which also interacts with 

nearby Lys 67 (Figure 5.3), suggesting that Tyr 44 may be one of the key residues that 

relay structural changes between the CD loop and the distal pocket. The interaction 

between Tyr 44 side chain and the heme group in hNgb could restrict the sliding motion 

that is coupled to association of exogenous ligands (Giuffre et al., 2008). Solution studies 

using NMR and molecular dynamic simulations indicate that inter-atomic distances 

increased in CO bound Ngb structure, suggesting a weaker hydrogen bond network in the 

structure of CO bound Ngb relative to the ligand free form (Xu et al., 2009). 

Here, I present a spectroscopic investigation of the dynamics and thermodynamics 

of structural changes associated with the migration of exogenous ligand between the 

solvent and the heme active site in Ngb. To investigate the role of the internal disulfide 

bond on structural changes associated with ligand dissociation/binding to Ngb, I 

employed photoacoustic calorimetry (PAC) and transient absorption spectroscopy (TA) 

to determine time-resolved volume and enthalpy changes coupled to the CO photo-

dissociation and the rate constants for CO rebinding to hNgb in the presence and absence 

of the disulfide bond. The following strains were investigated: hNgb wild type, hNgb 

reduced with DTT (hNgbred), Cys55Ser hNgb mutant, rat Ngb (rNgb), and rNgb 

Gly46Cys mutant containing an engineered disulfide bond. Indeed, in the absence of 

three dimensional structures for human Ngb with the disulfide bond, there is very little 
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information regarding the impact of the internal disulfide bond on the conformational 

state of this protein. Furthermore, the role of the hydrogen bonding network within the 

distal pocket in Ngb and the impact of the Tyr44 amino acid side chain on transmitting 

structural changes in terms of disulfide formation/disruption from the CD loop to the 

heme iron in neuroglobin was investigated by characterizing hNgb mutants in which 

Tyr44 was replaced by Phe residue and the distal His 64 was substituted by Gln.  

 

Figure 5.2 Three dimensional structure of molecule A (left) and molecule B (right) of 
hNgb (PDB entry 1OJ6) showing the heterogeneity of Tyr 44 in hNgb. Position of 
residues 46 and 55 are shown in purple. 
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Figure 5.3 Three dimensional structure of human Ngb (PDB entry 1OJ6, molecule B) 
depicting the electrostatic network including His 64, Tyr 44, Lys 67 and heme propionate 
groups. 
 

5.2. Results 

5.2.1. Steady-state absorption spectroscopy 

The steady-state absorption spectra of the ferric, ferrous and CO bound forms of 

hNgb, rNgb, rNgb Gly46Cys, and hNgb Cys55Ser mutated proteins are superimposable, 

indicating that replacement of residues in position 46 or 55 does not modify the electronic 

properties of the heme group (Table 5.1). On the other hand, replacement of the distal His 

64 residue by Gln or Tyr 44 by Phe residue alters the absorption spectra of hNgb.  
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Table 5.1 Absorption maxima of the Soret and Q bands of ferric, ferrous deoxy and CO 
adducts of wild type hNgb, wild type rNgb and mutants. 

Sample  Soret band (nm) Visible bands (nm) 

hNgb  Ferric 

Ferrous 

CO adduct 

413 

425 

417 

535, 561 

529, 559 

539, 565 

rNgb  Ferric 

Ferrous 

CO adduct 

413 

425 

417 

536, 561 

529, 559 

539, 565 

rNgb Gly46Cys Ferric 

Ferrous 

CO adduct 

413 

425 

417 

536, 561 

530, 559 

539, 565 

hNgb Cys55Ser Ferric 

Ferrous 

CO adduct 

413 

425 

417 

535, 561 

531, 559 

539, 565 

hNgb His64Gln Ferric 

Ferrous 

CO adduct 

408 

420 (432) a 

417 

539, 575, 630 

556 

539, 567 

hNgb Tyr44Phe Ferric 

Ferrous 

CO adduct 

414 

424 (432)a 

418 

536, 569 

529, 559, 583 

540,  568 

aThe numbers in brackets represent the position of a shoulder. 
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The steady state absorption spectra of ferric, ferrous and CO bound hNgb 

Tyr44Phe in 50 mM Tris (pH 7.0) are shown in Figure 5.4. The absorption spectrum of 

ferric Tyr44Phe mutated protein exhibits a broad Soret band centered at 414 nm, a 

pronounced visible band at 536 nm and a shoulder at 579 nm. The Soret band and Q 

bands of Fe3+Tyr44Phe are shifted to longer wavelengths with respect to Fe3+hNgb wild 

type (413 nm, 535 nm and 561 nm), indicating that replacement of this residue modifies 

the heme pocket. Reduction of the heme iron in Tyr44Phe hNgb leads to a bathochromic 

shift of the Soret band to 424 nm with a shoulder at ~ 432 nm, and three additional bands 

in the visible region centered at positions 529 nm, 559 nm, and 583 nm. The position of 

the Soret band of deoxy Fe2+Tyr44Phe hNgb is comparable to that of deoxy Fe2+hNgb 

wild type, whereas major differences are observed in the visible region between the wild 

type protein and the Tyr44Phe mutated protein. The shoulder at 432 nm and the visible 

band at 556 nm are consistent with a fraction of penta-coordinate high-spin heme iron of 

approximately 23%, obtained from deconvolution of the absorption spectrum, whereas 

the Soret band maximum at 420 nm indicates the presence of a fraction of Ngb with a 

hexa-coordinate low-spin heme iron. The absorption spectrum of the CO adduct of 

Tyr44Phe hNgb exhibits a Soret band centered at the same position as CO-Fe2+hNgb 

(418 nm), and two Q band at wavelengths 540 nm and 568 nm that are consistent with the 

formation of low-spin hexa-coordinate heme iron.  

The absorption spectrum of Fe2+His64Gln mutant (shown in chapter 4) also 

indicates heterogeneity of the sample, as evident from the shoulder at 432 nm and the 

visible band at 556 nm that are consistent with a penta-coordinate high-spin heme iron, 

whereas the Soret band maximum at 420 nm indicates the presence of a Ngb fraction 
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with a hexa-coordinate low-spin heme iron (Astudillo et al., 2012). Similar spectra have 

been previously reported for other His64 mutated proteins of hNgb, including His64Leu 

(Dewilde et al., 2001; Nienhaus et al., 2010) and His64Val (Tiso et al., 2011). The sixth 

axial ligand coordinating to the distal site that leads to the observed hexacoordinate 

fraction has been proposed to be a water molecule or hydroxyl group (Nienhaus et al., 

2010). Moreover, residue Lys67 was identified by Uno et al. (2004) as a plausible axial 

ligand at basic pH.  
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Figure 5.4 Absorption spectra of ferric (black line), ferrous (red line) and CO bound (blue 
line) hNgb Tyr44Phe. Conditions: 20 μM protein in 50 mM Tris buffer (pH 7.0). 
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5.2.2. CO rebinding to Ngb  

5.2.2.1. The impact of the disulfide bond and distal pocket residues 

His64 and Tyr44 on CO geminate and bimolecular recombination 

to Ngb 

Previous studies have shown that CO rebinding to neuroglobin is multiphasic, 

with geminate CO rebinding taking place on a nanosecond time scale and bimolecular 

association of CO to the pentacoordinate heme on the microsecond time scale 

(Abbruzzetti et al., 2009; Kriegl et al., 2002). Subsequent rebinding of CO to the six-

coordinate bis-histidine heme is observed on the millisecond to second time scale, with 

the distal His dissociation representing the rate limiting step (Kiger et al., 2004). Because 

the penta-coordinate and hexa-coordinate Ngb species are in equilibrium, the ratio of the 

fast to slow phase of bimolecular CO rebinding can be modified by varying the 

concentration of the ligand and the temperature. Under ligand saturation conditions and at 

ambient temperature, the fraction of the bis-histidine heme iron is negligible and 

consequently only bimolecular rebinding of CO to five-coordinate heme iron is observed 

(Dewilde et al., 2001; Kriegl et al., 2002). 

Transient absorption traces on the nanosecond to microsecond time scale for CO 

rebinding to five-coordinate wild type hNgb, Tyr44Phe and His64Gln mutated proteins 

studied at 20 °C under CO saturation conditions (~ 1 mM CO) and in the presence and 

absence of the internal disulfide bond are shown in Figure 5.5. The geminate quantum 

yield (Φgem) was determined by taking the ratio of the amplitude of the absorbance 

change corresponding to the geminate process (Agem) with respect to the total absorbance 

change (Atotal) and the calculated values are listed in Table 5.2. The quantum yield 
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determined for wild type hNgb (Φgem=0.32) is comparable to the values determined for 

hNgbred and His64Gln strains, indicating that the reduction of the disulfide bond in the 

wild type protein and replacement of the distal His by Gln residue does not impact the 

quantum yield of geminate rebinding to hNgb (Astudillo et al., 2010, 2012). An increase 

in the geminate quantum yield was observed for Tyr44Phe and Tyr44Phered mutated 

proteins (Φgem=0.45), indicating that disruption of the hydrogen bond between Tyr44 and 

one of the heme propionate groups alters the ligand migration pathways in Ngb in the 

presence and absence of the internal disulfide bond. A similar value for the geminate 

quantum yield was observed for His64Glnred strain (Φgem=0.46). In addition, the similar 

effect observed on the quantum yield for geminate rebinding observed for Tyr44Phered 

and His64Glnred suggests that in the absence of the disulfide bond, replacement of Tyr 44 

by Phe and His 64 by Gln decrease the barrier for ligand recombination in Ngb. 
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Figure 5.5 Transient absorption traces measured for CO rebinding to hNgb, hNgbred, 
hNgbTyr44Phe, hNgbTyr44Phered, hNgbHis64Gln and hNgbHis64Glnred mutated 
proteins. Conditions: 20 μM protein in 50 mM Tris buffer (pH 7.0), 20 °C and 1 mM CO. 



118 
 
 

The TA traces were analyzed using a multi-exponential decay model, according to 

equation 5.1. 

( )=Δ
i

t
i

ieAA τ/                       (5.1) 

where τi and Ai correspond to the lifetime and amplitude for each kinetic step, 

respectively.  

 

Table 5.2 Kinetic parameters associated with CO geminate and bimolecular rebinding to 
five-coordinate wild type hNgb, His64Gln hNgb, and Tyr44Phe hNgb in the presence and 
absence of the internal disulfide bond. 

Sample 
kgem1 

(x108 s-1) 

Agem1 

(%) 

kgem2 

(x107 s-1) 

Agem2 

(%) 

kbim1 

(μM-1s-1) 

Abim1 

(%) 

kbim2 

(μM-1s-1) 

Abim2 

(%) 
Φgem 

hNgb 2.3±0.8 32.0 3.4±0.5 15.4 61±7 35.0 9±2 17.6 0.32 

hNgbred 2.5±0.9 41.8 3.9±0.6 11.7 226±8 10.9 43±1 35.6 0.32 

His64Gln  3.8±0.6 13.3 7.2±0.9 29.2 312±24 27.5 95±3 30.0 0.32 

His64Glnred 3.0±0.6 47 6.8±0.8 16.3 360±16 19.9 177±2 16.4 0.46 

Tyr44Phe 2.3±0.5 49.6 4.2±0.5 12.6 241±6 11.3 30±3 26.5 0.45 

Tyr44Phered 2.4±0.6 51.4 3.2±0.5 9.4 238±8 10.5 30±4 28.7 0.45 

 

Geminate rebinding of CO to wild type hNgb, hNgbred, His64Gln, His64Glnred, 

Tyr44Phe and Tyr44Phered mutated proteins show biphasic kinetics and the determined 

rate constants are listed in Table 5.2. The rate constants determined for CO geminate 

rebinding to wild type hNgb (kgem1= 2.3 ± 0.8x108 s-1 and kgem2 = 3.4 ± 0.5x107 s-1) are 

comparable to the ones determined for hNgbred, His64Gln, His64Glnred, Tyr44Phe and 

Tyr44Phered mutated proteins.  
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The observed heterogeneity was attributed to CO rebinding from primary and 

secondary ligand docking sites, as previously described in chapter 4 (Astudillo et al., 

2012). Multiphasic kinetics has also been reported for CO geminate rebinding in Ngb and 

Cygb encapsulated in silica gels (Abbruzzetti et al., 2009; Gabba et al., 2013), but the fast 

rate constant reported here was not resolved in those studies. 

The multiphasic kinetics observed for CO bimolecular rebinding to five-

coordinate hNgb have been attributed to the heterogeneous orientation of the heme group 

in this protein, since the ratio between the amplitude of the fast (kbim1 = 61 ± 7 μM-1 s-1, 

~65%) and slow phase (kbim2 =  9 ± 2 μM-1 s-1, ~35%), matches well the ratio of 2:1 of the 

two heme isomers observed with NMR studies (Du et al., 2003). The two heme isomers 

differ by 180° rotation around the α-γ meso axis and the ratio between these two isomers 

depends on the composition of the heme binding pocket (Bocahut et al., 2013; Du et al., 

2003). 

Reduction of the disulfide bond in hNgb leads to acceleration of CO bimolecular 

rebinding to hNgb, as evident by the larger values determined for kbim1 and kbim2 of 226 ± 

8 M-1s-1 and 43 ± 1 M-1 s-1, respectively. Similar rate constants were determined for 

Tyr44Phe and Tyr44Phered proteins, indicating that reduction of the disulfide bond has a 

similar effect on the kinetics associated with CO bimolecular rebinding to Ngb as 

substitution of Tyr 44 by Phe. These results suggest that removal of the hydroxyl group in 

Tyr44 side chain increases accessibility of exogenous ligands to the heme iron. 

Interestingly, the amplitude of the fast and slow phase observed for hNgbred, Tyr44Phe 

and Tyr44Phered are ~ 70 % to ~30 %, which is comparable to the values determined for 

wild type hNgb.  
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Replacement of His 64 by Gln also accelerates both the rates for the fast and slow 

phase of CO bimolecular rebinding with rate constants of 312 ± 24 μM-1 s-1 and 95 ± 3 

μM-1 s-1, respectively, and exhibit similar amplitudes (Astudillo et al., 2012). Disruption 

of the disulfide bond in His64Gln hNgb does not largely impact the rates associated with 

CO bimolecular rebinding to the protein.  

5.2.2.2. Impact of the disulfide bond on CO bimolecular rebinding to 

Ngb 

To further investigate the impact of the internal disulfide bond on the 

conformational dynamics of ligand binding in Ngb, the rate constants associated with the 

fast and slow phases of CO bimolecular rebinding to the heme iron were also determined 

for wild type hNgb and rNgb, as well as hNgbCys55Ser and rNgbGly46Cys mutants 

using TA spectroscopy in the microsecond to second time scale (Figures 5.6 and 5.7). 

The pseudo-first order rate constants for CO rebinding to hexa-coordinate bis-histidine 

Ngb (kslow) were determined under conditions that increase the population of bis-histidyl 

Ngb (35 °C and ~ 0.1 mM CO). The rate constants determined for the fast and slow 

phases are summarized in Table 5.3.  

As shown in Table 5.3, the presence of the disulfide bond moderately impacts the 

observed rate constants for the fast process and the reported values match well those 

determined previously by Hamdane et al. (2003). The rate constant for CO rebinding to 

six-coordinate heme is two times smaller for samples missing the internal disulfide bond 

(rNgb and hNgb Cys55Ser mutant) compared to hNgb and rNgb Gly46Cys, which is also 

in agreement with previously published data (Hamdane et al., 2003). 
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Figure 5.6 Transient absorption traces measured for CO rebinding to penta-coordinate 
hNgb, rNgb, hNgb Cys55Ser, and rNgb Gly46Ser mutated proteins. Conditions: 20 μM 
protein in 50 mM Tris buffer (pH 7.0), 20 °C and 1 mM CO. 
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Figure 5.7 Transient absorption traces measured for CO rebinding to bis-histidyl hNgb, 
rNgb, hNgb Cys55Ser, and rNgb Gly46Ser mutated proteins. Conditions: 20 μM protein 
in 50 mM Tris buffer (pH 7.0), 35 °C and 0.1 mM CO. 
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Table 5.3 Kinetic parameters associated with CO bimolecular rebinding to wild type 
hNgb, rNgb and mutants hNgb Cys55Ser and rNgb Gly46Cys. 

Sample kbim1 

(μM-1s-1) 

Abim1 

(%) 

kbim2 

(μM-1s-1) 

Abim2 

(%) 

kslow 

(μM-1s-1) 

hNgb 62 ± 1 88 9 ± 1 12 0.10±0.01 

hNgb Cys55Ser 65 ± 1 96 5 ± 1 4 0.052±0.001

rNgb 70 ± 2 89 13 ± 2 11 0.051±0.001

rNgb Gly46Cys 45 ± 1 62 6 ± 1 38 0.105±0.002

 

5.2.3. Photoacoustic calorimetry results  

Volume and enthalpy changes associated with CO photo-release from ferrous Ngb 

were determined employing PAC. In order to probe the impact of the disulfide bond in 

hNgb on volume and enthalpy changes associated with exogenous ligand photo-release, 

PAC measurements were performed on the proteins samples containing the disulfide 

bond and in proteins in which the disulfide bond was absent. The disulfide bond in hNgb 

was either chemically removed by incubation of the protein sample in 10 mM DTT 

overnight to obtain hNgbred, as described in the Materials and Methods section, or 

removed by mutagenesis through replacement of the Cys 55 residue, which is involved in 

disulfide formation, by Ser residue. Since the disulfide bond is absent in rNgb, PAC 

measurements were also performed on rNgb wild type and a mutant of rNgb containing 

an engineered disulfide bond (rNgb Gly46Cys). To probe the impact of the replacement 

of Tyr 44 by Phe and His 64 by Gln, the following hNgb strains were also characterized 

using PAC: Tyr44Phe, Tyr44Phered, His64Gln and His64Glnred. 
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Representative PAC traces for CO photo-dissociation from hNgb Tyr44Phe 

together with the reference compound, Fe(III)tetraphenylsulfonato porphyrin (Fe4SP), 

are shown in Figure 5.8. The sample and reference acoustic traces overlay in phase 

indicating the absence of volume and enthalpy changes in hNgb sample on a time scale 

between ~ 50 ns and ~ 5 ms, suggesting that CO photo-release occurs within 50 ns (τ < 

50 ns). Similarly, no phase shift between the sample and the reference trace was detected 

for the ligand dissociation from all Ngb strains studied.  
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Figure 5.8 Photoacoustic traces for hNgb Tyr44Phe and the reference compound 4SP. 
Conditions: 20 μM protein in 50 mM Tris buffer (pH 7). The absorbance of the sample 
matched that of the reference compound at 532 nm. 

 

The volume and enthalpy changes taking place within 50 ns upon ligand photo-

release were determined from a plot of the [Ehv(1-ϕ)]/Φ term as a function of the 

temperature dependent factor (Cp ρ/β) measured in the temperature range between 16 °C 

and 35 °C (Figure 5.9), as described in the Materials and Methods section. The enthalpy 
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and volume changes associated with CO escape from Ngbs were calculated from the 

intercept and slope, respectively, and are listed in table 5.4. 
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Figure 5.9 Plot of [Ehv(φ-1)]/Φ as a function of Cpρ/β for CO photo-release from wild 
type hNgb, rNgb and mutated proteins in the presence and absence DTT.  
 

Similar values of enthalpy changes (~ 19 kcal mol-1) were observed for hNgb, 

rNgb, hNgbred, hNgb Cys55Ser and rNgb Gly46Cys. This value is close to the enthalpy 

change determined using PAC for CO photo-release from heme model complexes with 

imidazole as proximal ligand (ΔH = 17 kcal mol-1) (Miksovska et al., 2005), suggesting 

that the observed enthalpy change reflects the cleavage of the Fe-CO bond, whereas the 

concomitant structural changes are predominantly entropy driven. These results indicate 

that reduction of the internal disulfide bond in hNgb does not impact the enthalpy change 

associated with CO release from the protein.  
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Table 5.4 Thermodynamic parameters associated with CO escape from wild type Ngb 
and mutants. 

Sample ΔH (kcal mol-1) ΔV (mL mol-1) 

hNgb 20 ± 4 13.4 ± 0.9 

hNgbred 19 ± 2 4.4 ± 0.3 

rNgb 19 ± 2 4.6 ± 0.3 

hNgb Cys55Ser 19 ± 2 7.1 ± 0.7 

rNgb Gly46Cys 19 ± 4 10.3 ± 0.6 

hNgb Tyr44Phe 10 ± 3 13.3 ± 0.6 

hNgb Tyr44Phered 0 ± 4 11.7 ± 0.9 

hNgb His64Gln -6 ± 3 10.0 ± 0.5 

hNgb His64Glnred 18 ± 6 8.8 ± 1.2 

  

On the other hand, the enthalpy change determined for hNgb Tyr44Phe mutated 

protein (ΔH = 10 ± 4 kcal mol-1) is smaller than the one determined for wild type hNgb 

and this decrease corresponds to a decrease of approximately 10 kcal mol-1 with respect 

to wild type hNgb. This difference in enthalpy change between wild type hNgb and 

Tyr44Phe strain could be attributed to the missing hydrogen bond between the hydroxyl 

group of Tyr 44 side chain and one of the propionate groups from the heme group that 

leads to destabilization of the electrostatic network including Tyr 44, heme propionate 

group, His 64 an Lys 67. Reduction of the disulfide bond in hNgb Tyr44Phe leads to a 

larger decrease in enthalpy change associated with CO escape from the protein with a ΔH 

close to zero for hNgb Tyr44Phered. The enthalpy change associated with CO release 

from hNgb His64Gln mutated protein is exothermic (ΔH= -6 ± 3 kcal mol-1), whereas the 



126 
 
 

enthalpy change for hNgb His64Glnred is endothermic with a value of 18 ± 6 kcal mol-1 

that is comparable to the one observed for wild type hNgb.  

The reaction volume change, ΔV, corresponds to differences in the partial molar 

volumes of the products and reactants and can be expressed as:  

CONgbNgbCO VVVV −+=Δ           (5.2) 

where VCO corresponds to the partial molar volume of CO (35 mL mol-1 (Hara et 

al., 1996)), and VNgb and VCONgb refer to the partial molar volume of the ligand free, five-

coordinated Ngb, and CO bound Ngb, respectively. Therefore, CO photo-release from 

hNgb is associated with the overall structural volume change (ΔVstr = VNgb – VCONgb) of   

-21.6 mL mol-1. A more structural volume change was detected for rNgb (ΔVstr = -30.4 

mL mol-1) and hNgbred (ΔVstr = -30.6 mL mol-1). Engineering of the disulfide bond into 

rNgb structure in rNgb Gly46Cys mutated protein leads to a structural volume change 

approaching to that of hNgb (ΔVstr = -24.7 mL mol-1), whereas hNgb Cys55Ser mutant 

displays a more negative volume change than hNgb WT (ΔVstr = -27.9 mL mol-1). 

The structural volume change associated with CO photo-release from hNgb 

Tyr44Phe (ΔVstr = - 21.7 mL mol-1) and Tyr44Phered (ΔVstr = -23.3 mL mol-1) are similar 

to the one determined for wild type hNgb, indicating that replacement of Tyr44 by Phe in 

the presence and absence of the disulfide bond only impacts the overall reaction enthalpy 

change associated with CO photo-release from Ngb. 

Similarly, a small decrease in the overall structural volume change associated 

with CO photo-release was observed for hNgb His64Gln mutated protein in the presence 

of the disulfide bond (ΔVstr = -25.0 mL mol-1) and in the absence of the disulfide bond in 

hNgb His64Glnred (ΔVstr = -26.2 mL mol-1), compared to wild type hNgb. 
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5.2.4. Variation of CO concentration 

In order to determine the thermodynamic parameters associated with CO 

rebinding five-coordinate wild type Ngb and mutants in terms of dissociation constant, 

free energy change and entropy change, CO rebinding to Ngbs was measured at various 

CO concentrations. In the simplest case, which is usually satisfied by penta-coordinate 

hemoglobins, ligand binding is described by the ratio of the on and off rates and denoted 

by the equilibrium coefficient Kd(penta) as described by equation 5.3 (Uzan et al., 2004). 

offCO

onCO
pentad k

k
K

,

,
)( =           (5.3) 

where onCOk ,  corresponds to the CO association rate constant and offCOk , refers to 

the CO dissociation rate constant.  

The observed rate constants (kobs) associated with CO rebinding to five-coordinate 

Ngbs were plotted as a function of CO concentration (Figure 5.10) and the rate of CO 

association ( onCOk , ) corresponds to the slope of the linear plot, whereas the rate of CO 

dissociation ( offCOk , ) corresponds to the intercept of the plot. The CO association and 

dissociation rate constants are listed in table 5.5. At very low concentrations of CO, 

histidine rebinding becomes dominant and the observed rate tends to approach the on rate 

for histidine recombination (Uzan et al., 2004). The equilibrium dissociation constants 

were calculated as described in equation 5.3 and are listed in table 5.6. The change in free 

energy (ΔG) and the entropy change (ΔS) for CO dissociation from hNgb, hNgbred, 

Tyr44Phe and Tyr44Phered were calculated according to equations 5.4 and 5.5, 

respectively (Pierce et al., 1999), and the calculated values are listed in table 5.6.  
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dd KRTG ln−=Δ             (5.4) 

T

GH
S dd

d

Δ−Δ=Δ             (5.5) 

where R is the universal gas constant, T is the temperature in K, and ΔHd is the 

enthalpy change determined from PAC measurements. Since CO bimolecular rebinding 

to hNgb and hNgbred exhibits two phases, the ligand association and dissociation rate  

constants as well as the Kd were determined for the fast and slow phase as shown in 

tables 5.5 and 5.6. 
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Figure 5.10 Observed rate constants associated with CO rebinding to hNgb (closed 
squares), hNgbred (open squares), hNgbY44F (closed circles) and hNgbY44Fred (open 
circles) as a function of concentration of CO. Conditions: 20 μM protein in 50 mM Tris 
buffer (pH 7.0), 20 °C and CO concentrations from 10 μM to 300 μM.  
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Table 5.5 Rate constants for CO association and dissociation to Ngbs 

Sample  kCO,on (μM-1 s-1) kCO,off (s
-1) 

hNgb Fast 36 ± 1 862 ± 48 

 Slow 4.7 ± 0.2 834 ± 9 

hNgbred Fast 16.9 ± 0.6 1863 ± 26 

 Slow 2.4 ± 0.6 656 ± 23 

Tyr44Phe Fast+slow 23 ± 2 2246 ± 35 

Tyr44Phered Fast+slow 4.9 ± 0.9 1187 ± 40 

 

Table 5.6 Dissociation constants, ΔG and ΔS for CO dissociation from Ngbs 

Sample  Kd (μM) ΔGd (kcal mol-1) ΔHd (kcal mol-1) ΔSd (cal K-1 mol-1) 

hNgb Fast 23.9±0.6 6.2±0.2 20±4 47±4 

  Slow 177.5±0.9 5.0±0.3 20±4 51±4 

hNgbred Fast 273.6±0.8 4.8±0.2 19±2 49±2 

  Slow 119.4±0.7 5.3±0.2 19±2 47±2 

Tyr44Phe Fast+slow 99.8±0.6 5.4±0.3 10±3 16±4 

Tyr44Phered Fast+slow 238.9±0.9 4.9±0.4 0±4 -17±5 

 

The change in free energy calculated for CO dissociation from hNgb (ΔGd = 6.2 ± 

kcal mol-1) is comparable to the ones determined for hNgbred, Tyr44Phe and Tyr44Phered, 

indicating that reduction of the disulfide bond and disruption of the hydrogen bonding 

network between the hydroxyl group of Tyr 44 side chain and the propionate group of the 

heme does not impact the energy for CO dissociation from the heme group. A 

comparable ΔGd of ~ 9 kcal mol-1 was previously determined for wild type hNgb (Uno et 

al., 2004). On the other hand, replacement of Tyr 44 by Phe results in a lower entropy 
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change and an even larger decrease in entropy was observed in Tyr44Phered mutant    

(ΔSd = -17 ± 5 cal K-1 mol-1), which indicates a change in the degrees of freedom likely 

as a result of larger overall flexibility in Tyr44Phered. The thermodynamic parameters 

associated with CO photo-dissociation from wild type Ngb and mutated proteins suggest 

an entropy-enthalpy compensation effect. In ligand binding studies, the term entropy-

enthalpy compensation describes the effect observed when modification of a protein (or a 

ligand) results in a change in the enthalpic contribution to binding, which is partially or 

fully balanced by a comparable change in the entropic contribution to association, 

thereby resulting in no net gain in affinity (Chodera and Mobley, 2013). Several factors 

can contribute to observe entropy-enthalpy compensation in protein-ligand interactions, 

including modification of hydrogen bonding and other factors such as changes in pH and 

solvent composition (Chodera and Mobley, 2013; Meloun and Ferencikova, 2012). 

5.3. Discussion 

5.3.1. The disulfide bond affects kinetics and energetics of CO migration in 

Ngb 

The fast ligand photo-release thermodynamics observed in PAC indicates that the 

major fraction of CO escapes from the protein through a direct pathway, either permanent 

or transitory, that links the Ngb heme binding pocket with the surrounding solvent. 

Although Abbruzzetti et al. (2009) reported that kinetics for CO migration between Ngb 

internal cavities occur on 100 ns time scale, those kinetics were not resolved in PAC 

measurements because of the very low fraction (< 10%) of “CO trapped” intermediates. 

The PAC results clearly indicate that the presence of the internal disulfide bond modulate 

overall structural changes associated with the transition from six-coordinate CO bound 
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Ngb to five-coordinate deoxyNgb by approximately 8 mL mol-1. An overlay of the 

structure of ferrous and CO bound mouse Ngb reveals that ligand binding to the heme 

iron leads to the repositioning of the heme prosthetic group, reshaping of the internal 

cavity, and displacement of structural elements including the EF- and CD- loops (Vallone 

et al., 2004b). Molecular dynamics studies have suggested that the disulfide bridge 

restricts the flexibility of Ngb structure, including the CD loop region and A, C, and E 

helices and modulate the volume of internal cavities (Bocahut et al., 2009; Nadra et al., 

2008). In addition, the heme sliding mechanism proposed in rNgb structure was 

suggested to be protein dependent and thus absent in hNgb (Anselmi et al., 2007; 

Bocahut et al., 2009; Nadra et al., 2008). Such restricted structural dynamics as a result of 

the disulfide bridge may then translate into the smaller overall structural volume changes 

determined for hNgb relative to rNgb or hNgbred. The Ser residue at position 55 in hNgb 

may form a hydrogen bond with Cys46 and stabilize the CD loop resulting in smaller 

structural volume change determined for the hNgb Cys55Ser mutated protein compared 

to hNgbred. Considering the high sequence homology between hNgb and rNgb (94%), the 

fact that the structural volume change observed for the rNgb Gly46Cys mutant does not 

match that for hNgb is somewhat surprising. This result points out that other factors, in 

addition to the disulfide bond, may contribute to the difference between the overall 

volume changes measured for hNgb and rNgb.  

To further investigate the impact of the internal disulfide bond on the 

conformational dynamics of ligand binding in Ngb, the rate constants for CO binding to 

the heme iron were also determined using time-resolved absorption spectroscopy. The 

presence of the disulfide bond only moderately impacts the observed rate constants for 
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the fast process and the reported values match well those determined previously 

(Hamdane et al., 2003). Our data show that the rate constant for CO rebinding to six-

coordinate heme is two times smaller for samples missing the internal disulfide bond 

(rNgb and hNgb Cys55Ser mutant) compared to hNgb and rNgb Gly46Cys in agreement 

with the previously published data (Hamdane et al., 2003). 

5.3.2. The hydrogen bonding network that includes Tyr44 side chain affects 

the kinetics and thermodynamics associated with ligand migration in 

Ngb 

The disulfide bond in hNgb connects the CD loop with the D-helix though Cys 46 

and Cys 55, respectively (Hamdane et al., 2003). As previously described, cleavage of the 

disulfide bond affects the kinetics of ligand rebinding to the heme iron, but the 

mechanism through which structural information is transmitted from the solvent exposed 

disulfide bond to the heme binding pocket is still not known. Inspection of the crystal 

structure of hNgb indicates that the hydroxyl group from Tyr 44 side chain, located 

within the CD loop, forms a hydrogen bond with one of the propionate groups of the 

heme. In addition, the three dimensional structure of CO bound mNgb also indicates that 

the interaction between the distal His 64 and Tyr 44 is involved in the displacement of the 

CD-D region upon CO association to the heme iron (Vallone et al., 2004b). Therefore, 

structural changes occurring in the CD loop might be relayed to the heme pocket though 

the hydrogen bonding network that involves Tyr44 and His 64 residues. In addition, 

further examination of the crystal structure of ferric mNgb suggests that this hydrogen 

bonding network is even larger and include nearby residues Lys 67, Glu 60, a water 

molecule (Astudillo et al., 2012). To probe the impact of this hydrogen bonding network 
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in kinetics and energetics association with CO binding/dissociation from hNgb, Tyr44Phe 

and His64Gln mutated proteins were characterized in the presence and absence of the 

internal disulfide bond employing PAC and TA.  

The TA data show that replacement of Tyr 44 with a non-polar Phe residue, 

which has a similar size and lacks the hydroxyl group that interacts with the heme 

propionate group, affects the rate for CO bimolecular rebinding to five-coordinate hNgb. 

The rate constants determined for the fast and slow phase of CO bimolecular rebinding to 

Tyr44Phe exhibit ~ 4- and 3.3- fold increase, respectively, compared to the ones 

determined for wild type hNgb. Acceleration of the rate constant for ligand association to 

hNgb upon substitution of Tyr 44 has been previously observed. Giuffre et al. (2008) 

reported that the rate constant for O2 association to hexa-coordinate hNgb Tyr44Asp was 

larger than the one determined for wild type hNgb. The faster kinetics observed for 

bimolecular CO association to Tyr44Phe most likely result from increased accessibility 

of the ligand to the distal pocket, which decreases the activation barrier for exogenous 

ligand binding. Since similar rate constants were determined for CO bimolecular 

rebinding to hNgbred and Tyr44Phered, the increased accessibility upon disruption of the 

disulfide bond and replacement of Tyr by Phe is attributed to decreased restriction of the 

global motions upon removal of the disulfide bridge (Ishikawa et al., 2007).  Likewise, 

replacement of the conserved distal His 64 residue by Gln, which has a similar size and 

polarity as His, alters the rate for bimolecular rebinding to five-coordinate Ngb by 

increasing the rate constants for the fast and slow phase by ~ 5 and 10 times, respectively. 

Comparable rate constants were determined for His64Glnred. Acceleration of the rate 

constant associated with CO bimolecular rebinding to hNgb upon replacement of His 64 
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by Gln and other residues, such as Leu and Val, has been previously observed by other 

groups (Dewilde et al., 2001; Hamdane et al., 2003; Nienhaus et al., 2004). Although the 

slow phase for CO bimolecular rebinding (kbim2) was not reported in those studies, Uno et 

al. (2004) proposed that the slower process results from partial coordination of the 

hydroxyl group of nearby Lys 67 residue at pH 9.5.  

The faster kinetics observed for CO bimolecular rebinding to hNgbred, Tyr44Phe, 

Tyr44Phered, His64Gln and His64Glnred might result from a transient opening of a ligand 

migration pathway upon disruption of the disulfide bond as well as the hydrogen bonding 

network connecting Tyr 44, His 64 and the heme propionate group. In a molecular 

dynamics simulation study of hNgb, Bocahut et al. (2009) identified Tyr 44 as part of one 

of the pathways of ligand migration in the protein, namely exit 8, which also includes Phe 

28, Leu 41, Phe 42, Gln 43, Phe 61, His 64 and the heme group. Interestingly, Phe 28 was 

proposed to be a crucial residue in relaying structural changes from the CD loop to the 

heme pocket in hNgb (Ezhevskaya et al., 2011).  

Although the rate constants associated with CO rebinding to His64Gln and 

His64Glnred hNgb are comparable, the geminate quantum yield determined for His64Gln 

(Φgem = 0.32) is lower than the one determined for His64Glnred protein (Φgem = 0.46). In 

addition, the geminate quantum yield determined for Tyr44Phe and Tyr44Phered hNgb are 

identical to the quantum yield determined for His64Glnred. These results indicate that the 

residue occupying position 64 in hNgb does not affect the migration of the ligand 

between the heme distal pocket and the adjacent hydrophobic cavities (Astudillo et al., 

2012), whereas disruption of the hydrogen bonding network connecting Tyr 44 with the 
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heme propionate group leads to a larger structural reorganization that facilitates CO 

geminate rebinding, likely by increasing the barrier for CO escape from the distal site.  

Substitution of Tyr 44 by Phe alters the thermodynamics associated with 

structural changes upon CO photo-release in hNgb. The photo-release of CO from 

Tyr44Phe hNgb is endothermic (ΔH = 10 ± 3 kcal mol-1) and associated with a negative 

structural volume change (ΔVstruct = – 21.7 ± 0.6 mL mol-1) that is comparable to the 

structural volume change determined for wild type hNgb (ΔVstruct = – 21.6 ± 0.9 mL mol-

1). The negative structural volume change determined for CO photo-release from wild 

type hNgb was attributed to the fast uptake of a water molecule as the CO molecule 

escapes from the protein matrix, as described in chapter 4. This hypothesis is further 

supported by the fact that the absolute magnitude of the structural volume change is 

similar to the partial molar volume of water of Vm° = 18 mL mol-1 (Astudillo et al., 

2012).  

The reaction enthalpy change determined for CO photo-release from hNgb 

Tyr44Phe is 10 ± 3  kcal mol-1; however, the enthalpy change determined for dissociation 

of Fe-CO bond is ~ 17 kcal mol-1 (Miksovska et al., 2005). Hence, substitution of Tyr 44 

by Phe residue decreases the reaction enthalpy by ~ 7 kcal mol-1. To obtain insight into 

the structural changes occurring upon CO photo-release from hNgb Tyr44Phe protein, the 

Tyr 44 residue in the structures of ferrous mNgb (PDB entry 2VRY) and CO bound 

mNgb (PDB entry 1W92) was replaced by Phe and both structures were minimized 

employing the Amber03 force field in YASARA molecular modeling software. In 

addition, residues Gly 46, Ser 55 and Ser 120 were replaced by Cys in both mNgb and 

COmNgb structures and the disulfide bridge was manually added prior minimization. 
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Inspection of the minimized structures of Tyr44Phe and CO bound Tyr44Phe indicates 

that the side chain of Lys 67 is highly flexible and occupies different positions in the 

ferrous and CO bound structures of Ngb (Figure 5.11). In the ferrous structure of 

Tyr44Phe, the amino group of Lys 67 side chain forms hydrogen bonds with the carboxy 

group from the heme propionate group and the side chain of Asp 63. These interactions 

are not observed in the CO bound structure of Tyr44Phe mutant. The interaction between 

Asp 63 and Lys 67 was not observed in the wild type protein containing a disulfide bond 

between Cys 46 and Cys 55. Therefore, I propose that CO escape from the protein matrix 

in hNgb Tyr44Phe is associated with formation of a hydrogen bonding network 

(occurring within 50 ns) that includes Lys 67, Asp 63 and the heme group, leading to an 

enthalpy change of 10 kcal mol-1.  

 

Figure 5.11 Overlay of minimized structures of ferrous mNgbTyr44Phe (left, shown in 
green) and CO bound mNgbTyr44Phe (right, shown in light blue) depicting residues in 
the vicinity of the heme binding pocket of Ngb. The dashed lines represent hydrogen 
bonds and the numbers the distance in Å between H-donor and H-acceptor groups. 
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The reaction enthalpy change determined for CO photo-release from hNgb 

Tyr44Phered is 0 ± 4  kcal mol-1, and a concomitant negative structural volume change 

that is comparable to the one determined for wild type hNgb. Therefore, reduction of the 

disulfide bond in Tyr44Phe strain leads to a decrease in the enthalpy change of ~ 20 kcal 

mol-1. This decrease in the enthalpy change is larger than the one determined for hNgb 

Tyr44, suggesting that reduction of the disulfide bond in hNgb Tyr44Phe may lead to 

disruption of a larger hydrogen bonding network in the ferrous state.  In order to 

understand the structural changes occurring upon CO photo-release from hNgb Tyr44Phe 

protein leading to a larger structural enthalpy change than CO photo-release from wild 

type hNgb, the Tyr 44 residue in the structures of ferrous mNgb (PDB entry 2VRY) and 

CO bound mNgb (PDB entry 1W92) was replaced by Phe and both structures were 

minimized employing the Amber03 force field in YASARA molecular modeling 

software. In addition, residues Gly 46, Ser 55 and Ser 120 were replaced by Cys in both 

mNgb and COmNgb structures prior minimization. Comparison of the minimized 

structures of ferrous Tyr44Phered and CO bound Tyr44Phered indicates that CO photo-

dissociation from Tyr44Phered mutant leads to reorientation of the side chain of residues 

Lys 67 and Asp 63, which are close to the heme binding pocket, as well as residues Arg 

47, Asn 45, Gln 42 that are far from the heme binding pocket but close to Cys 46 (Cys 46 

forms a disulfide bond with Cys 55). As observed in the ferrous structure of Tyr44Phe, 

the amino group of Lys 67 side chain forms hydrogen bonds with the carboxy group from 

the heme propionate group and the side chain of Asp 63 in the ferrous structure of 

Tyr44Phered mutant. Additionally, the amino group from the side chain of Gln 42 forms a 

hydrogen bond with the carboxy group from the backbone of Cys 46, and the amino 
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group from the side chain of Arg 47 forms a hydrogen bond with the carboxy group from 

the side chain of Asn 45 in the minimized structure of ferrous Tyr44Phered. These 

interactions are not observed in the CO bound structure of Tyr44Phe mutant. The 

disruption of the disulfide bond in Tyr44Phe mutant seems to impart greater flexibility to 

the CD loop, where residues Arg 47, Asn 45 and Gln 42 are located, which results in a 

larger reorganization upon photo-cleavage of the ligand.  

 

Figure 5.12 Overlay of minimized structures of ferrous mNgbTyr44Phered (left, shown in 
green) and CO bound mNgbTyr44Phered (right, shown in light blue) depicting residues in 
the vicinity of the heme binding pocket of Ngb. The dashed lines represent hydrogen 
bonds and the numbers the distance in Å between H-donor and H-acceptor groups. 
 

Photodissociation of CO from His64Gln hNgb mutated protein is exothermic (ΔH 

= -6 ± 3 kcal mol-1) and associated with a more negative structural volume change 

(ΔVstruct = – 25.0 ± 0.5 mL mol-1) than the one determined for wild type hNgb. This 

exothermic enthalpy change indicates that association of CO to five-coordinate His64Gln 

mutated protein is endothermic and entropically driven. Fago et al. (2004b) reported that 

association of O2 to hNgb is endothermic (ΔH = 12.7 kcal mol-1) at temperatures below 

18 °C, whereas oxygenation of hNgb becomes exothermic (ΔH = -15.7 kcal mol-1) at 
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temperatures above 18 °C. The exothermic ligand binding was attributed to weakening of 

the electrostatic/hydrogen bonding network formed among residues His 64, Lys 67 and 

the heme propionate group at high temperatures. Therefore, the negative enthalpy change 

determined for CO photo-release from His64Gln hNgb may result from reorganization of 

the electrostatic/hydrogen bonding network in the heme binding pocket, as previously 

proposed for O2 association to hNgb. Interestingly, the reaction enthalpy change 

determined for CO photo-release from hNgb His64Glnred (ΔH = 18 ± 6 kcal mol-1) is 

positive and the structural volume change is comparable to that observed for hNgb 

His64Gln mutant. The large difference in terms of enthalpy change between His64Gln 

and His64Glnred may be related to the flexibility of the side chain of Gln at position 64. 

To obtain insight into the conformational changes occurring upon replacement of His 64 

by Gln in the structure of human Ngb (PDB entry 1OJ6, molecule B), the visualization 

program Pymol was employed to substitute His 64 by Gln and the modeled structures are 

shown in Figure 5.13. Inspection of the modeled structures of His64Gln indicates that the 

side chain of Gln 64 samples 16 conformations within the heme pocket. In the major 

conformation (20.8%), the side chain of Gln 64 is solvent exposed and pointing toward 

the side chain of Tyr 44 and the side chain of Lys 67, whereas in the second most 

populate conformation (14.6%) the side chain of Gln 64 is more buried inside the protein 

matrix and pointing away from residues Tyr 44 and Lys 67.  

To obtain a better description of the effect of Tyr44Phe and His64Gln mutations 

on the thermodynamic parameters associated with CO photo-release from hNgb, 

thermodynamic cycles for Tyr44Phe and His64Gln mutations in hNgb were 
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constructed using the volume and enthalpy changes determined using PAC (Figures 5.14 

and 5.15). 

 

Figure 5.13 Modeled structures of His64Gln hNgb mutant showing the various 
conformations sampled by the side chain of Gln 64 (shown in gray). Residues in the 
vicinity of the heme binding pocket (Tyr 44, Lys 67 and Glu 60) are depicted as sticks. 
The population of each conformation is 20.8% (A), 14.6% (B), 11.8% (C) and 5.2% (D). 

 

Substitution of Tyr44 by Phe residue in hNgb leads to a decrease in the enthalpy 

change by 10 kcal mol-1 and a negligible volume change, likely as a result of the 

disruption of hydrogen bond between Tyr 44 side chain and the heme propionate group. 

Reduction of the disulfide bond in hNgb Tyr44Phe mutated protein leads to a larger 

decrease of the enthalpy change by additional 10 kcal mol-1 as well as a small volume 

contraction of 1.6 mL mol-1, suggesting that breakage of the disulfide bond leads to a 
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larger disruption of the hydrogen bonding network. The observed volume contraction 

could be attributed to the increased flexibility gained upon disruption of the disulfide 

bond and reorganization of internal cavities (Bocahut et al., 2009; Nadra et al., 2008). As 

previously described in this chapter, breakage of the disulfide bond in hNgb results in 

negligible ΔΔH and a volume contraction of ΔΔV = -9 mL mol-1.  The replacement of 

Tyr 44 by Phe in the reduced protein results in exothermic enthalpy change               

(ΔΔH = - 19 mL mol-1) and a concomitant volume expansion of 7.3 mL mol-1.  The 

magnitude of the sum of NgbY44F and Y44FY44Fred is similar to the sum of 

NgbNgbred and NgbredY44Fred, suggesting a synergistic effect between the 

replacement of Tyr 44 by Phe and disruption of the internal disulfide bond in hNgb. The 

overall enthalpy change associated with the replacement of Tyr 44 by Phe and reduction 

of the internal disulfide bond in hNgb is ΔH = - 20 kcal mol-1 and the overall volume 

change is -1.7 mL mol-1.  

 

Figure 5.14 Thermodynamic cycle determined for CO escape from hNgb Tyr44Phe 
mutated protein. 
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The displacement of the CD loop in CO bound Ngb has been proposed to be 

linked to the heme sliding mechanism through the contact of His 64 and Tyr 44 residues 

(Xu et al., 2011). The PAC data indicates that replacement of the distal His 64 by Gln in 

hNgb leads to a large ΔΔH of -26 kcal mol-1 and a small volume contraction of -3.4 mL 

mol-1 (Figure 5.13). The exothermic ΔΔH was attributed to the reorganization of the 

hydrogen/electrostatic interactions upon substitution of His 64 by Gln. Indeed, a 

molecular dynamics study of His64Val Ngb mutant shows that the solvent accessible area 

of Tyr 44 is larger in CO bound His64Val than in the wild type protein, hence 

replacement of His 64 by Val modifies the electrostatic and hydrogen bonding  network 

in Ngb (Xu et al., 2011). Furthermore, it was proposed that His64Val mutation induced 

an upward heme sliding movement, resulting in a significant decrease in the volume of 

the huge internal cavity of Ngb (Xu et al., 2011). Disruption of the disulfide bridge in 

His64Gln mutated protein leads an endothermic ΔΔH of 24 kcal mol-1 and a small 

volume contraction of -1.2 mL mol-1. Conversely, replacement of His 64 by Gln in the 

hNgbred protein results in a small ΔΔH and a moderate volume expansion of                  

4.4 mL mol-1. Therefore, the overall change in enthalpy associated with substitution of 

His 64 by Gln and reduction of the internal disulfide bond in hNgb is -2 kcal mol-1, 

whereas the change in volume change is -4.6 mL mol-1. The thermodynamic data shown 

here demonstrates that the distal His 64 forms part of the hydrogen/electrostatic network 

that includes Tyr 44, Lys 67 and the 7-propionate group from the heme.  
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Figure 5.15 Thermodynamic cycle determined for CO escape from hNgb His64Gln 
mutated protein. 
 

5.4. Summary 

In summary, the data presented here demonstrate that the internal disulfide bond 

in human neuroglobin modulates structural changes associated with ligand photo-

dissociation from the heme active site, as evident from time-resolved photothermal 

studies of CO photo-dissociation. The photoacoustic data reveal a 13.4±0.9 mL mol-1 

volume expansion upon ligand photo-release from hNgb, whereas the CO dissociation 

from rNgb leads to a significantly smaller volume change (ΔV = 4.6±0.3 mL mol-1). 

Reduction of the internal disulfide bond in hNgb leads to conformational changes nearly 

identical to those observed for rNgb, as evident from the observed volume changes. In 

addition, the kinetic data indicate that the presence of the disulfide bond fully contributes 

to the increased rate constant determined for distal His 64 dissociation in hNgb relative to 

rNgb.  

In addition, the PAC data reveal that replacement of Tyr 44 by Phe and His 64 by 

Gln affect the thermodynamic parameters associated with CO photo-dissociation from 

hNgb, suggesting global conformational changes upon ligand release linked to disruption 
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of the large hydrogen/electrostatic network that include His 64, Tyr 44, Lys 67 and heme 

propionate groups. This electrostatic network was proposed to be important for 

transmission of structural information from the disulfide bond in the CD loop to the 

heme. The faster kinetics associated with bimolecular rebinding to Ngb upon replacement 

of Tyr44 by Phe suggest an increased accessibility of the heme iron to the ligand, likely 

as a result of increased flexibility of the protein upon Tyr44Phe mutation. 
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6. REDUCTION OF THE INTERNAL DISULFIDE BOND BETWEEN CYS 38 

AND 83 SWITCHES THE LIGAND MIGRATION PATHWAY IN 

CYTOGLOBIN 

(The work described in this chapter was published in Astudillo, L., Bernad, S., Derrien, 

V., Sebban, P., Miksovska, J. (2013) J. Inorg. Biochem., 129, 23-29) 

6.1. Introduction 

Cytoglobin (Cygb) belongs to the family of vertebrate hexa-coordinated globins 

that were recently found in mammals and other vertebrates (Burmester et al., 2002; 

Burmester et al., 2000). Compared to other vertebrate globins, Cygb exhibits several 

unique structural properties that may strongly impact their intracellular function, 

including formation of a disulfide bond between Cys 38 and Cys 83 and extended N- and 

C-termini (Pesce et al., 2002; Trent and Hargrove, 2002). Cytoglobin is expressed in 

fibroblasts and fibroblast-related cell types, such as chondroblasts, osteoblasts, 

myofibroblasts and hepatic stellate cells, in a variety of human tissues including major 

organs (i.e., liver, heart, brain, retina, lungs, oesophagus and others) at low concentration 

(µM level) (Oleksiewicz et al., 2013; Schmidt et al., 2004). The physiological role of this 

protein has not been established. In vitro and in vivo studies have shown that Cygb is 

over-expressed in fibrosis and under conditions of neurodegenerative disorders, whereas 

its expression is down-regulated in some types of cancer, including head and neck cancer 

(Emara et al., 2009; Emara et al., 2010). Moreover, Cygb has been shown to inhibit 

cancer cell growth in vitro, which indicates its tumor suppressor role (Shivapurkar et al., 

2008). Numerous physiological roles including oxygen storage, oxygen sensing, nitric 

dioxygenase activity, protection against oxidative stress, and collagen synthesis were 
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proposed (Oleksiewicz et al., 2011). Recently, it was shown that Cygb binds sodium 

oleate with an increased affinity (Kd = 0.7 µM) and the formation of lipid-Cygb 

complexes promotes penta-coordinated heme iron, suggesting a possible Cygb role in 

lipid signaling (Reeder et al., 2011).  

Human Cygb shares 25% sequence homology with myoglobin (Mb) and ~15% 

homology with Ngb (Figure 6.1). Its core structure (residues 18 to 71) is similar to that of 

other globins with a typical 3-over-3-α-helical sandwich conformation (de Sanctis et al., 

2004a). The prosthetic group, protoporphyrin IX, is situated between the E and F α-

helices and bound to the polypeptide chain through the proximal and distal histidine 

residues, His 113 and His 81, respectively (de Sanctis et al., 2004a) (Figure 6.2). The 

distal histidine can be readily displaced by exogenous diatomic molecules such as O2 and 

CO, that reversibly bind to the deoxy heme iron with an affinity that is comparable to that 

of Mb, P50 = 0.55 Torr and 3.4 x 10-2 Torr, respectively (de Sanctis et al., 2004c). The N- 

and C-terminal regions are extended by 17 and 19 amino acid residues, respectively, and 

form an α-helical and ordered loop structure (de Sanctis et al., 2004a; Makino et al., 

2006). The functional role of the N- and C-terminal extensions remains unclear. Reeder 

et al. (2011) have proposed that these segments may be involved in the lipid binding or 

participate in cytoglobin association with other proteins. 

Crystallographic studies indicate that Cygb forms homodimers. The structure of 

human Cygb shows that the dimer is stabilized by two inter-protein disulfide bridges 

between Cys 38 and Cys 83 and through interactions between the center of the E-helix 

and the AB corner (Sugimoto et al., 2004), whereas the dimer interface is formed by 

hydrophobic contacts between Phe 53 and Ile 126 in the crystal structure of a Cygb 
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mutant with both Cys residues replaced by Ser (de Sanctis et al., 2004a). The presence of 

the inter-protein disulfide bridge in Cygb is not supported by solution studies (Hamdane 

et al., 2003; Lechauve et al., 2010). Lechauve et al. (2010) have shown that in the 

absence of a reducing agent, Cys 38 and Cys 83 form an intra-protein disulfide bridge 

connecting helices B and E. The intra-protein disulfide bond reduces the affinity of the 

distal histidine for the heme iron by approximately two-fold and consequently alters the 

affinity for O2 binding (Hamdane et al., 2003). Comparable modulation of the 

equilibrium constant for distal histidine was also observed in Ngb, even though the Cys 

residues involved in the formation of the disulfide bond are located in the flexible CD 

loop and a short D helix (Dewilde et al., 2001; Hamdane et al., 2003). It has been 

previously shown that disruption of the disulfide bond in Ngb does not have a large 

impact on the rate constant for CO escape from the protein matrix and the quantum yield 

for geminate ligand rebinding is not affected (Astudillo et al., 2010, 2012). Less is known 

about the impact of the internal disulfide bond on the structural properties of Cygb since 

the crystal structure of Cygb containing the internal disulfide bond has not been resolved.  
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Figure 6.1 Sequence alignment of human Cygb with human Ngb and human Mb. Amino 
acid residues occupying identical positions in more than one sequence are highlighted in 
red and rectangular boxes represent α-helices A to H. The stars correspond to the 
positions of the distal and proximal His residues. 

 

 

Figure 6.2 Three dimensional structure of human Cygb (PDB entry: 1V5H) displaying 
the heme group, distal His (His 81), proximal His (His 113), Cys 38 and Cys 83 as sticks. 

 

Taking into consideration that in the Cygb structure Cys 38 and Cys 83 residues 

are located ~ 6 Å apart (Figure 6.2), the formation of the internal disulfide bridge requires 

repositioning of helix B and/or E. Reorientation of the E helix may modulate the 

structural properties of the distal pocket and consequently alter the ligand migration 
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pathway(s) in Cygb. Here, I employed time-resolved absorption spectroscopy and time-

resolved photo-acoustic calorimetry (PAC) to characterize the kinetics and 

thermodynamics of ligand migration in wild type Cygb (Cygbox) and in wild type Cygb 

with reduced thiol groups (Cygbred). The data reported here show that the internal 

disulfide bond impacts both the rate of ligand escape from the protein matrix as well as 

the quantum yield for the geminate rebinding to the heme iron, suggesting that the 

reduction of the disulfide bridge connecting helices E and B increases the energy barrier 

for the ligand transitions between the distal pocket, internal hydrophobic sites and 

surrounding solvent.  

6.2. Results  

6.2.1. UV-visible absorption spectroscopy 

The UV-visible spectra of Cygbox strongly resemble absorption spectra of other 

hexa-coordinate globins, including Ngb and plant hemoglobins with bis-histidine iron 

coordination. The absorption spectrum of Fe3+Cygbox displays a Soret band at 416 nm, 

and two Q bands located at 532 nm and 563 nm, as previously reported by Sawai et al. 

(2003). The  Soret band of Fe2+Cygbox is centered at 428 nm and two additional Q bands 

are observed at 531 nm and 560 nm (Figure 6.3) (Sawai et al., 2003). Upon CO addition, 

the Soret band shifts to 420 nm and two additional bands appear at 541 and 570 nm that 

are characteristic of the low-spin hexa-coordinated heme iron with CO in the position of 

the sixth axial ligand. Reduction of the internal disulfide bond does not alter the 

electronic structure of the prosthetic group and the UV-visible spectra of Cygbred are 

identical to those measured for Cygbox.   
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Figure 6.3 Absorption spectra of ferric (black line), ferrous (red line) and CO bound (blue 
line) Cygbox. Conditions: 20 μM protein in 50 mM Tris buffer (pH 7.0). 

 

6.2.2. Photoacoustic spectroscopy  

PAC traces for CO dissociation from Cygbox and Cygbred at 20 °C are shown in 

Fig. 6.4 together with the reference traces. The absence of a phase shift between the trace 

for CO photo-release from Fe2+Cygbred and the reference trace indicates that the cleavage 

of the Fe-CO bond is followed by a rapid ligand escape from the protein matrix occurring 

within the time resolution of our instrument (~ 40 ns). On the other hand, the acoustic 

trace for CO photo-dissociation from Fe2+Cygbox is shifted to smaller frequencies 

compared to the reference trace, suggesting that CO escape from Fe2+Cygbox occurs as a 

multi-step process.  
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Figure 6.4 Overlay of photoacoustic traces for Cygbox (A) and Cygbred (C) with the 
reference compound 4SP. Normalized traces are shown on the right side for Cygbox (B) 
and Cygbred (D) to better demonstrate the shift between PAC traces for the sample and 
reference in Cygbox. Conditions: 20 μM protein in 50 mM Tris buffer (pH 7.0). The 
absorbance of the sample matched that of the reference compound at 532 nm (A532 nm = 
0.25). 

 

The SoundAnalysis software was used to analyze the PAC traces measured for 

Cygbox and the fit is shown in Figure 6.5 as well as the corresponding residuals. 

Deconvolution of the acoustic traces reveals two distinct phases: i) a prompt phase (τ1 < 

40 ns) that is associated with the photo-cleavage of the CO-Fe bond and ligand 

translocation within the distal pocket and possibly its migration into distant hydrophobic 

cavities, and ii) a kinetic step with a lifetime τ2 = 150 ns at 20 °C that I associate with CO 

escape into the surrounding solvent.  
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Figure 6.5 Acoustic traces for CO photodissociation from Cygbox (blue line) and the 
reference trace (Fe(III)4SP) (black line). The PAC trace for the CO photo-dissociation 
from Cygbox was deconvoluted as described in Materials and Methods section (Chapter 
3). Note that the calculated sample acoustic trace (red line) nearly overlays with the 
measured sample acoustic wave. The corresponding residuals are shown in the bottom 
panel. 
 

From the temperature dependence of τ2, the activation thermodynamic parameters 

(ΔH# and ΔS#) for CO release from Cygbox were determined using Eyring plot (Fig. 6.6), 

according to equation 6.1 (Larsen and Miksovska, 2007). The observed values (Table 

6.1) are very similar to the activation parameters for CO escape from horse heart Mb, 

suggesting a similar mechanism of ligand escape from the protein matrix in both proteins.  
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where kB and h corresponds the Boltzmann and Planck constants, respectively, T 

is the absolute temperature, R is the universal gas constant, and ΔH# and ΔS# are the 

activation enthalpy and entropy change, respectively. 
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Figure 6.6 Eyring plot for CO photo-release from Cygbox obtained from the temperature 
dependence of τ2 values determined from the deconvolution of PAC traces. 

 

The thermodynamic parameters for CO photo-release from Cygbox and Cygbred 

were determined by plotting Ehν(φ1-1)/Φ as a function of the temperature dependent 

parameter (Cpρ/β) for the fast phase and and φ1 Ehν /Φ versus (Cpρ/β) for the slow phase  

(Fig. 6.7), as described in the materials and methods section, and are listed in Tables 6.1 

and 6.2.  
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Figure 6.7 Plot of [(φ1-1)Ehν/Φ] as a function of the Cpρ/β term for the prompt phase 
(solid squares) and and plot of [φ2Ehν/Φ] versus Cpρ/β for the slow phase (open squares) 
for CO photo-dissociation from Cygbox and the prompt phase for ligand dissociation from 
Cygbred (circles). 

 
Table 6.1 Reaction (ΔH and ΔV) and activation (ΔH# and ΔS#) thermodynamic 
parameters associated with the photo-dissociation of Fe-CO bond and subsequent ligand 
escape from the protein matrix in Cygbox and Mb .  

 ΔH1 

(kcal mol-1) 

ΔV1 

(mL mol-1) 

ΔH2 

(kcal mol-1) 

ΔV2 

(mL mol-1) 

τ 

(ns) 

ΔH# 

(kcal mol-1) 

ΔS# 

(cal K-1mol-1) 

Cygbox 1.1 ± 3.6 1.7 ± 0.7 7.5 ± 2.5 8.6 ± 0.5 150 9.2 ± 0.4 4.1 ± 1.3 

Mba 7.4 ± 2.0 -1.7 ± 0.5 6.9 ± 2.9 12.1 ± 0.7 700 10.2 ± 0.7 4.0 ± 2.2 

Mbb   

(pH 3.5) 

-13.9 ± 1.4 2.2 ± 0.1 3.3 ± 0.2 2.1 ± 0.1 219 6.5 ± 0.5 5.7 ± 0.5 

aThermodynamic parameters for CO photo-release from horse heart Mb at pH 7.0 are 
from Westrick and Peters (1990).  
bThermodynamic parameters for CO photo-release from horse heart Mb at pH 3.5 are 
from Angeloni and Feis (2003). 
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Table 6.2 Total volume and enthalpy changes associated with the CO photo-release from 
Cygb, Ngb and horse heart Mb. 

 ΔHtotal (kcal mol-1) ΔVtotal (mL mol-1) 

Cygbox 9 ± 4 10.3 ± 1.2 

Mba 14 ± 3 10.4 ± 0.7 

Ngbb 20 ± 4 13.4 ± 0.9 

Cygbred 18 ± 2 4.7 ± 0.4 

Ngbred b 19 ± 2 4.4 ± 0.3 

aThermodynamic parameters for CO photo-release from Mb are from Westrick & Peters 
(1990). 
bThermodynamic parameters for CO photo-release from Ngb are from Astudillo et al. 
(2010). 

 

The photo-cleavage of the Fe-CO bond and subsequent ligand release from 

Cygbred are associated with an overall enthalpy change of ΔHtotal = 18 ± 2 kcal mol-1 and a 

small volume expansion of ΔVtotal = 5 ± 2 mL mol-1. In the case of Fe2+Cygbox, the photo-

cleavage of the Fe-CO bond is associated with a negligible enthalpy (ΔH1 = 1.1 ± 3.6 kcal 

mol-1) and volume change (ΔV1 = 1.7 ± 0.7 mL mol-1). The small volume change 

occurring within 40 ns upon Fe-CO bond cleavage is consistent with the photo-

dissociated ligand being trapped within the protein matrix. The accompanying enthalpy 

change is significantly smaller than the enthalpy of the Fe-CO bond (ΔHFe-CO = 17 kcal 

mol-1) (Larsen and Miksovska, 2007) pointing out that the transition between the low-

spin six-coordinate and high-spin five-coordinate heme iron triggers an exothermic 

structural reorganization that is confined within the protein matrix and does not 

contribute to the overall volume change. The subsequent ligand escape from the protein 
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matrix, with a time constant of ~150 ns, is endothermic (ΔH2 = 7.5 ± 2.5 kcal mol-1) and 

leads to a small volume increase (ΔV2 = 8.6 ± 0.5 mL mol-1). The 150 ns time constant 

determined for CO escape from Cygbox is similar to that reported for CO escape from Mb 

at acidic pH (τ ~ 219 ns, table 6.1) (Angeloni and Feis, 2003).   

The overall volume expansion (ΔVtotal = 10.3 ± 1.2 mL mol-1) and enthalpy 

change (ΔHtotal = 9 ± 4 kcal mol-1) observed for ligand dissociation from Fe2+Cygbox are 

distinct from those determined for Fe2+Cygbred, pointing out that the ligand escape 

mechanism and concomitant structural changes are modulated by the presence of the 

internal disulfide bond between Cys 38 and Cys 83.   

6.2.3. Transient absorption spectroscopy 

Transient absorption spectra of CO bound Cygbox at few pump-probe delay times 

(3 ns, 10 ns and 30 ns) are shown in Figure 6.8. The negative absorbance at 421 nm 

corresponds to the disappearance of the ground state six-coordinate ligand bound Cygb as 

a result of photodissociation of the ligand (Jongeward et al., 1988). The positive 

absorbance change at 440 nm corresponds to absorption by the five-coordinate ligand 

free Cygb. The two additional negative contributions to the spectra are observed at 539 

nm and 575 nm are attributed to the Q bands bleaching.  
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Figure 6.8 Transient absorption spectra of the CO adduct of Cygbox at 3 ns (black line), 
10 ns (gray line), and 30 ns (black dashed line). The excitation wavelength was 400 nm. 

 

The distinct ligand migration mechanism in Cygbox and Cygbred is also evident 

from the transient absorption traces for CO association to the five coordinate heme iron 

(Figure 6.9). Ligand binding to both Cygbox and Cygbred is a multiphasic process with 

fast geminate rebinding taking place on the nanosecond timescale and slower bimolecular 

rebinding occurring on microsecond to millisecond timescales. The transient absorption 

traces were analyzed using either a sum of four exponential decay model or using the 

maximum entropy method (MEM). Both approaches revealed two phases for the 

geminate CO association as well as for the bimolecular rebinding (Table 6.3 and Table 

6.4).  
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Figure 6.9 Top: Transient absorption traces for CO rebinding to Cygbox and Cygbred. 
Conditions: 20 µM protein in 50 mM Tris buffer, pH 7.0 and 1 mM CO, at 20 oC.  
Bottom: Lifetime distribution associated with the CO rebinding to Cygbox (red line) and 
Cygbred (blue line) as determined using MEM approach. The transient absorption traces 
were normalized to unity at the maximum of the TA curve. 
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Table 6.3 Rate constants for CO binding to Cygbox and Cygbred obtained using MEM 
analysis 

 Geminate phase Bimolecular phase 

kgem1 

(s-1) 

Agem1 

(%) 

kgem2 

(s-1) 

Agem2 

(%) 

kfast1 

(μM-1s-1) 

Afast1 

(%) 

kfast2 

(μM-1s-1) 

Afast2 

(%) 

Cygbox 1.2x108 29.7 1.5x107 11.3 325.0 0.8 7.5 58.2 

Cygbred 1.7x108 46.4 1.7x107 11.7 132.3 18.0 7.3 23.9 

 

Table 6.4 Rate constants for CO binding to Cygbox and Cygbred and quantum yield for 
bimolecular CO binding determined using a four exponential decay model. 

 Geminate phase Bimolecular phase 

kgem1 

(s-1) 

Agem1 

(%) 

kgem2

(s-1) 

Agem2

(%) 

kfast1

(μM-1s-1) 

Afast1

(%) 

kfast2 

(μM-1s-1) 

Afast2

(%) 

Φgem 

Cygbox 1.7x108 28.7 2.1x107 13.1 61.0 7.3 6.9 50.9 0.35

Cygbred 1.7x108 45.9 1.9x107 17.5 126.0 11.5 5.2 25.1 0.63

 

CO geminate rebinding occurs with a rate constant of 1.7x108 s-1 and ~ 2.0x107 s-1 

in both Cygb forms, although the faster phase is associated with larger amplitude for the 

CO association to Cygbred. The faster geminate rebinding corresponds to the ligand 

rebinding from the primary docking site, whereas the approximately ten times slower 

subsequent phase reflects the ligand binding from more distant sites in the protein matrix. 

The rate constants for CO geminate rebinding to Cygb are significantly faster than the 

geminate rebinding in Mb (kgem = 8.3x106 s-1) (Cao et al., 2004) and are comparable with 
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those determined previously for CO geminate rebinding to human Ngb (kgem1 = 2.3x108 s-

1 and kgem2 = 3.4x107 s-1) (Astudillo et al., 2012) and to truncated hemoglobin from 

Thermobifida fusca (kgem1 = 5x108 s-1 and kgem2 = 9x106 s-1) (Marcelli et al., 2012). In 

addition, the increase in the amplitude of the fast geminate kinetics and overall increase 

in the geminate quantum yield as a consequence of the reduction of the cysteine thiol 

groups from 0.35 in Cygbox to 0.63 in Cygbred points toward a lower barrier for the 

geminate ligand rebinding between the distal pocket and heme iron in Cygbred.   

Bimolecular CO rebinding is also biphasic in both forms of Cygb. However, in 

the case of Cygbox, the majority of the dissociated ligand rebinds with a rate constant of 

~7 µM-1s-1, whereas only a minor fraction (~ 12 %) recombines on a faster time-scale. 

The observed rate constant of 7 µM-1s-1 is consistent with a previously reported value of 5 

µM-1s-1 (Hamdane et al., 2003) and 5.6 µM-1s-1 (Trent and Hargrove, 2002) for CO 

binding to five coordinated Cygbred and Cygbox, respectively. The rate constant for the 

faster bimolecular rebinding could not be determined unambiguously because of its small 

amplitude (Afast = 0.8% using the four exponential decay model and Afast = 7.3% retrieved 

with the MEM approach). Multiple exponential decay analysis provided a rate constant of 

61 µM-1s-1, whereas a rate constant of 325 µM-1s-1 was recovered using the MEM 

approach. In the absence of the disulfide bridge, CO bimolecular rebinding to Cygbred 

was found to be  more heterogeneous with ~ 40% of the ligand rebinding with a rate 

constant of 126 µM-1s-1 and 60% rebinding with a rate constant of 5.2 µM-1s-1.  Biphasic 

bimolecular ligand rebinding was reported for Ngb and attributed to the presence of two 

protoporphyrin IX conformations in the heme binding pocket (Abbruzzetti et al., 2009; 

Astudillo et al., 2012). However, the orientation of the prosthetic group in Cygb is 
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significantly less heterogeneous. Bondarenko et al. (2006) have shown that the majority 

of the heme group in Cygb (~ 90 %) adopts an orientation that is analogous to that of 

protoporphyrin IX in Mb and a single heme orientation was also observed in the Cygb 

crystal structure (Makino et al., 2006). The access of exogenous ligands into the heme 

pocket was proposed to be controlled by the orientation of Arg 84 that is located in the E 

helix (Sawai et al., 2003).  

6.3. Discussion 

Photoacoustic calorimetry data indicates that the presence of the disulfide bond 

alters the thermodynamic parameters associated with CO photo-dissociation from Cygb, 

which suggests that the mechanism of ligand escape from Cygb is modulated by the 

presence of the internal disulfide bond. In Cygbred, CO escapes from the protein matrix to 

the surrounding solvent within 40 ns and the observed enthalpy change is consistent with 

cleavage of the Fe-CO bond, while the observed volume expansion is attributed to the 

photo-dissociated ligand being trapped within the protein matrix. On the other hand, CO 

photo-dissociation from Cygbox leads to a prompt phase occurring within 40 ns and a 

subsequent slow phase with a time constant of ~ 150 ns at 20 °C. The overall reaction 

enthalpy and volume change associated with CO photo-dissociation from Cygbox, as well 

as the activation enthalpy and entropy changes, are similar to the thermodynamic 

parameters previously reported for horse heart Mb at neutral pH by Westrick and Peters 

(1990), while the thermodynamic parameters determined for CO photo-dissociation from 

Cygbred are comparable to the ones reported for human Ngb (Astudillo et al., 2012).  

Interestingly, the 150 ns time constant determined for CO escape from Cygbox is 

similar to that reported for CO escape from Mb at acidic pH (τ ~ 200 ns) (Angeloni and 
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Feis, 2003). The fast CO escape at acidic pH (pH = 3.5) was associated with the 

stabilization of Mb in an open conformation with the side-chain of His 64 displaced out 

of the distal pocket, which pushes away Arg 45 leading to the disruption of the salt bridge 

between Arg 45 and the heme-6-propionate group (Yang and Phillips, 1996). The pH 

triggered structural transitions in Mb were investigated by several groups using 

spectroscopic and X-ray crystallographic techniques (Han et al., 1990; Morikis et al., 

1989; Sage et al., 1991; Yang and Phillips, 1996). These studies demonstrated that the 

protonation of the distal histidine promotes movement of the histidine side-chain out of 

the distal pocket and an opening of a direct channel that connects the distal pocket with 

the surrounding solvent. Residue Phe46 that is located in the CD loop was identified as a 

key residue in controlling the histidine side-chain dynamics in Mb (Yang and Phillips, 

1996). Interestingly, this residue is conserved in the Mb and Cygb sequence, whereas a 

Cys residue is found in the analogous position in human Ngb suggesting similar histidine 

side-chain dynamics in Cygb and Mb. The role of the distal histidine in modulating the 

kinetics of ligand escape from Mb was also confirmed in thermal grating studies. 

Terazima and collaborators have characterized the CO photo-dissociation from several 

His 64 mutants of sperm whale Mb (swMb) and showed that in mutants having His 64 

replaced by a non-polar amino acid residue, the CO escape occurs roughly twice as fast 

as in native Mb (τ ~ 400 ns) (Sakakura et al., 2002). 

The transient absorption spectroscopy data also evidentiate the distinct ligand 

migration mechanism in Cygbox and Cygbred as evident from the kinetics of CO rebinding 

to five-coordinate heme iron and the different bimolecular quantum yield observed for 

Cygbox and Cygbred. The hetereogenety observed in the kinetics associated with CO 
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bimolecular rebinding to Cygbred were attributed to the heterogeneity previously reported 

for Arg 84 residue in Cygb structure. In the structure of CO bound Cygb, the Arg 84 side-

chain adopts a single conformation that is stabilized by a hydrogen bond with the 

carboxyl group of Asp 40 and carbonyl oxygen of Glu 73 (Makino et al., 2011), whereas 

in the structure of ligand free Cygb, Arg 84 was reported to adopt two distinct 

orientations: a major conformation (~ 60 %) with the side-chain oriented towards the 

solvent and a minor conformation (~ 40 %) with the side-chain positioned towards the 

heme pocket (de Sanctis et al., 2004a) (Figure 6.10). I propose that the heterogeneity of 

the Arg 84 position promotes biphasic CO association to Cygbred whereas the 

repositioning of the E-helix in Cygbox stabilizes a single conformation of Arg 84 side-

chain resulting in a nearly single phase for ligand bimolecular rebinding.  

 

Figure 6.10 Three dimensional structure of ferric human Cygb in its ligand free form 
(PDB entry: 1VH5) displaying the major and minor conformations of Arg 84 side-chain. 
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6.3.1. Analysis of hydrophobic cavities in Cygbox and Cygbred  

In vertebrate globins, the extensive network of hydrophobic cavities and tunnels 

provides access pathways for the exogenous ligand to migrate to the active center and/or 

allows temporary ligand trapping. Two hydrophobic cavities in Mb (Xe4 and Xe1) serve 

as temporary trapping sites for the photo-dissociated ligand, whereas in hexa-coordinated 

Ngb, a long hydrophobic cavity connecting the heme binding site with the surrounding 

solvent may function as a ligand migration pathway (Vallone et al., 2004a). An analogous 

hydrophobic channel situated between AB and GH loops was found in the crystal 

structures of Cygb lacking the internal disulfide bridge or in the structure of Cygb with 

Cys 38 and Cys 83 replaced by Ser (de Sanctis et al., 2004a, b). To understand the 

molecular origin of the distinct ligand migration mechanism in Cygbox and Cygbred, I 

have employed YASARA molecular modeling software to determine the distribution of 

internal cavities in Cygbox. The model structures of the ligand free Cygbred and Cygbox 

are shown in Fig. 6.11. To compare the position of cavities observed in Cygb with the 

position of the Xe binding sites (de Sanctis et al., 2004b), the model structure of Cygbred 

was superimposed with that of the protein in the presence of Xe gas as shown in Figure 

6.12. 
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Figure 6.11 Representation of the internal cavities identified in the model structures of 
Cygbred (left) and Cygbox (right). 

 

 

Figure 6.12 Overlay of minimized structure of ferric Cygb (PDB file: 1V5H, shown in 
blue) using YASARA structure molecular software as described in materials and methods 
section (section 2.4) and ferric Cygb double mutant (Cys38Ser and Cys83Ser) crystalized 
in the presence of Xe (PDB file: 1UX9, shown in orange). Internal cavities were analyzed 
using a 1.4 Å probe radius and the numerical algorithm in YASARA software and are 
shown as mesh surfaces. Cys residues are shown as blue sticks and Xe atoms are depicted 
as yellow spheres. 
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The long hydrophobic tunnel present in Cygbred is missing in the model structure 

of Cygbox and is substituted by three separated hydrophobic cavities that correspond to 

the three Xe binding sites (Xe2, Xe3, and Xe4) previously found in the structure of Cygb 

crystallized in the presence of Xe gas (de Sanctis et al., 2004b).  

Detailed inspection of the model structures reveals that in the structure of Cygbox, 

the Leu 34 and Leu 89 side-chains are repositioned in such a way that they partially block 

the long hydrophobic tunnel found in the Cygbred structure. Such reorganization of the 

internal cavities as a result of the formation of the disulfide bridge may significantly 

affect the kinetics and quantum yield for the photo-dissociated ligand escape from the 

protein matrix by modulating the energy barriers for ligand transition between individual 

binding sites.  

On the basis of the PAC and TA results, I propose that the presence of the long 

hydrophobic tunnel in the structure of Cygbred promotes a fast escape of the photo-

dissociated ligand from the protein matrix (τ< 40 ns) in a similar way as observed 

previously for Ngb (Anselmi et al., 2011; Astudillo et al., 2012). The enthalpy change of 

18 ± 2 kcal mol-1 measured for CO photo-release matches well with the enthalpy of the 

Fe-CO bond (~ 17 kcal mol-1) (Miksovska et al., 2005) and the reaction enthalpy change 

measured for CO escape from Ngbred, suggesting a marginal enthalpy barrier for the 

structural transition between the CO bound six-coordinate and ligand free five-

coordinated heme iron. The passage of the photo-dissociated ligand through the 

hydrophobic channel may be facilitated by an increased flexibility of the GH loop in the 

free structure as observed in the computational studies (Zhang et al., 2011a). 
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 On the other hand, the reorganization of the internal cavities in Cygbox increases 

the activation barrier for ligand passage through the internal hydrophobic cavities. On the 

basis of the similarity of the reaction and activation parameters associated with CO 

escape from Cygbox and Mb, I hypothesize that oxidation of the Cys 38 and Cys 83 thiol 

groups promotes ligand escape through the so-called histidine gate. Interestingly, the 150 

ns time constant for CO release from Cygbox is similar to the ~ 200 ns time constant 

measured for the CO escape from Mb at low pH (Angeloni and Feis, 2003). These results 

are consistent with IR spectroscopy data on CO bound Cygb (Sawai et al., 2003) 

demonstrating that at neutral pH a significant fraction of Cygb (~ 40%) adopts an “open 

conformation” with the distal histidine side-chain oriented out of the heme pocket in a 

similar way as observed for the distal histidine in Mb at acidic pH.   

A schematic representation of the proposed mechanism of CO migration in 

Cygbox and Cygbred is shown in Figure 6.11. 

 

Figure 6.13 Schematic representation of the impact of the disulfide bond in Cygb.  

 

Reduction/oxidation of the Cys38 Cys83 modifies the ligand migration in Cygb. 

In the absence of the internal disulfide bond, the ligand escape from the protein is fast 
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and occurs through a hydrophobic channel, whereas formation of the internal disulfide 

bond promotes the CO escape through the “so-called” histidine gate. 

6.3.2. Proposed models for ligand migration in Cygbox and Cygbred and 

analysis of microscopic rate constants 

Considering the transient absorption data and thermodynamic parameters, I 

propose a distinct model for the ligand migration in Cygbox and Cygbred (Scheme 6.1). 

The presence of the multiphasic geminate kinetics requires a minimal four state 

sequential model to describe the ligand transitions between the individual hydrophobic 

cavities and solution. Since two phases are observed for the geminate CO rebinding to 

Cygbox and the amplitude of the faster phase for the bimolecular CO rebinding can be 

neglected because of its small amplitude, a branched four state model was adopted to 

analyze the kinetic data as proposed previously for CO photo-dissociation from R state 

hemoglobin encapsulated in silica gel (Sottini et al., 2004) (Scheme 6.1, top model). 

According to this model, the photo-dissociated ligand initially migrates into the primary 

docking site (state B) and then rapidly diffuses into one of the internal hydrophobic 

cavities (state C). To escape from the protein matrix, the ligand has to return into the 

distal pocket (state B) before it migrates into the surrounding solvent (state D) through 

the so called “histidine gate” with the time constant of ~ 100 ns.  
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Scheme 6.1 

The description of the transient absorption data analysis used to calculate the 

microscopic rate constants are shown in the materials and methods section (Chapter 3). 

Briefly, the differential equations corresponding to ligand migration in Cygbox shown in 

scheme 6.1 can be solved analytically as previously reported by Sottini et al. (2004) for 

hemoglobin and the microscopic rate constants were determined as described in the 

materials and methods section (Chapter 3).  

On the other hand, the presence of two kinetics of comparable amplitude for the 

CO bimolecular rebinding to Cygbred is consistent with CO binding to two distinct 

Cygbred populations. One population was associated with an “accessible conformation” in 

which Arg 84 side-chain is oriented towards the surrounding solvent facilitating a fast 

bimolecular CO rebinding (k =132.3 μM-1s-1). The second population corresponds to 

Cygbred  in a “restricted conformation” in which Arg 84 side-chain is oriented toward the 

heme group and increases the barrier for bimolecular CO rebinding (k = 7.3 μM-1s-1 ). In 

such case, the migration of the photo-dissociated ligand in the “accessible” and 
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“restricted” conformations of Cygb can be described using a four state sequential model 

as shown in Scheme 6.1 (bottom model). According to this model, upon photo-

dissociation, the CO molecule rapidly diffuses into the primary docking site B’, and from 

this site migrates to the nearby hydrophobic cavities (state C’), then to the solvent. The 

ligand escape from the hydrophobic channel is fast, with a time constant of less than 50 

ns. The individual microscopic rate constants were determined as described by Gibson et 

al. (1986) for n-propyl, n-butyl and tert-butyl isocyanide binding to sperm whale Mb (as 

described in the materials and methods section, chapter 3) and are listed in Table 6.6.  

The microscopic rate constants for the geminate ligand association to the heme 

iron are fast and comparable for both Cygbox and Cygbred (kBA = 4 x 107 s-1 and kB’A’ = 5 x 

107 s-1, respectively). Analogous geminate rebinding rates were reported previously for 

the CO association to Cygbred (Gabba et al., 2013) and Ngb (Abbruzzetti et al., 2009) and 

were attributed to the reactive heme iron in six-coordinate globins. CO migration 

between the docking sites B and C and B’ and C’ occurs on the nanosecond time scale in 

Cygb with the oxidized and reduced Cys residues, respectively, which is consistent with a 

low energy barrier separating the individual docking sites. On the other hand, the rate 

constant for the ligand escape from the protein matrix in Cygbox is approximately three 

times smaller than that for Cygbred suggesting that the changes in the Cygb structure due 

to the internal disulfide bond reduction modulate the geminate quantum yield 

predominantly by altering the rate of ligand escape from the protein matrix to the 

surrounding solvent.  
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Table 6.5 Microscopic rate constants associated with CO migration in Cygbox at 20 °C. 

kBA (s-1) 4x107 

kBC (s-1) 2x107 

kCB (s-1) 2x107 

kBD (s-1) 3x107 

kDB (M-1 s-1) 18x106 

 

Table 6.6 Microscopic rate constants associated with CO migration in Cygbred at 20 °C. 

kB’A’ (s
-1) 5x107 

kB’C’ (s
-1) 6x107 

kC’B’ (s
-1) 2x107 

kacc
C’D’ (s

-1) 9x107 

krest
C’D’ (s

-1) 6x107 

kacc
D’C’ (M

-1s-1) 228x106 

krest
D’C’ (M

-1s-1) 13x106 

 

6.4. Summary 

Despite the relatively modest impact of the internal disulfide bridge on the distal 

histidine affinity (Hamdane et al., 2003), the photoacoustic and transient absorption data 

suggest that the oxidation/reduction of the Cys thiol groups alters Cygb conformational 

dynamics including the flexibility of the amino acid side chains and accordingly the size, 

accessibility, and dynamics of internal hydrophobic cavities. These data point towards a 
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more flexible distal histidine side-chain in the structure of ligand free Cygbox that may 

facilitate CO escape from the Cygbox distal pocket through the so-called “histidine gate”. 

Since the internal hydrophobic cavities found in various heme proteins are believed to 

have physiological roles and either facilitate ligand migration or store gaseous ligands, 

these results suggest that Cygb may carry out multiple physiological functions which are 

regulated by intracellular redox properties. 
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7. TIME-RESOLVED THERMODYNAMICS ASSOCIATED WITH 

EXOGENOUS LIGAND BINDING TO VERTEBRATE HEMOGLOBINS 

(The work described in this chapter was partially published in Jaroslava 

Miksovska and Luisana Astudillo (2011). Time-resolved thermodynamics associated 

with diatomic ligand dissociation from globins, Thermodynamics-Interaction Studies-

Solids, Liquids and Gases, Dr. Juan Carlos Moreno Piraja (Ed.), InTech) 

7.1. Introduction 

Ligand-induced conformational transitions play an eminent role in the biological 

activity of proteins including recognition, signal transduction, and membrane trafficking. 

Conformational transitions occur over a broad time range starting from picosecond 

transitions that reflect reorientation of amino acid side chains to slower dynamics on the 

millisecond time-scale that correspond to larger domain reorganization (Henzler-

Wildman et al., 2007). Direct characterization of the dynamics and energetics associated 

with conformational changes over such a broad time range remains challenging due to 

limitations in experimental protocols and often due to the absence of a suitable molecular 

probe through which to detect structural reorganization. Photothermal methods such as 

photoacoustic calorimetry (PAC) and photothermal beam deflection provide a unique 

approach to characterize conformational transitions in terms of time resolved volume and 

enthalpy changes (Gensch and Viappiani, 2003; Miksovska and Larsen, 2003). Unlike 

traditional spectroscopic techniques that are sensitive to structural changes confined to 

the vicinity of a chromophore, photothermal methods monitor overall changes in volume 

and enthalpy allowing for the detection of structural transitions that are spectroscopically 
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silent (i.e. do not lead to optical perturbations of either intrinsic or extrinsic 

chromophores). 

Myoglobin (Mb) and hemoglobin (Hb) play a crucial role in the storage and 

transport of oxygen molecules in vertebrates and have served as model systems for 

understanding the mechanism through which protein dynamics regulate ligand  access to 

the active site, ligand affinity and specificity, and, in the case of hemoglobin, oxygen 

binding cooperativity. Myoglobin and individual α- and β- subunits of Hb exhibit 

significant structural similarities, i.e. the presence of a five coordinate heme iron with a 

His residue coordinated to the central iron (proximal ligand) and a characteristic “3-on-3” 

globin fold (Figure 1) (Park et al., 2006; Yang and Phillips, 1996). Both proteins 

reversibly bind small gaseous ligands such as O2, CO, and NO. The photo-cleavable Fe-

ligand bond allows for the monitoring of transient deoxy intermediates using time-

resolved absorption spectroscopy (Carver et al., 1990; Esquerra et al., 2010; Gibson et al., 

1986) and  time resolved X-ray  crystallography (Milani et al., 2008; Šrajer et al., 2001).  

On the basis of spectroscopic data and molecular dynamics approaches (Bossa et 

al., 2004; Mouawad et al., 2005), a comprehensive molecular mechanism for ligand 

migration in Mb was proposed including an initial diffusion of the photo-dissociated CO 

molecule into the internal network of hydrophobic cavities, followed by a return into the 

distal pocket and subsequent rebinding to heme iron or escape from the protein through a 

distal histidine gate. The ligand migration into internal cavities induces a structural 

deformation, which promotes a transient opening of a gate in the CO migration channel. 

Such transitional reorganization of the internal cavities is ultimately associated with a 

change in volume and/or enthalpy and thus can be probed using photothermal techniques. 
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Indeed, CO photo-dissociation from Mb has been intensively  investigated using PAC by 

several groups (Belogortseva et al., 2007; Peters et al., 1992; Vetromile et al., 2011; 

Westrick and Peters, 1990; Westrick et al., 1990) and these results lead to a 

thermodynamic description of the transient “deoxy intermediate” that is populated upon 

CO photo-dissociation.  

The mechanism of ligand migration in Hb is more complex, since it is determined 

by the tertiary structure of individual subunits as well as by the tetramer quaternary 

structure. Crystallographic data have shown that the structure of the fully unliganded 

tense (T) state of Hb and the fully ligated relaxed (R) states differ at both the tertiary and 

quaternary level (Park et al., 2006). Crystallographic and NMR studies suggest that the 

fully ligated relaxed state corresponds to the ensemble of conformations with distinct 

structures (Mueser et al., 2000; Silva et al., 1992). Moreover, Hb interactions with 

diatomic ligands is modulated by physiological effectors such as protons, chloride and 

phosphate ions, and non-physiological ligands including inositol hexakisphosphate (IHP) 

and bezafibrate (BZF) (Yonetani et al., 2002). Despite a structural homology between Hb 

and Mb, the network of internal hydrophobic cavities identified in Mb is not conserved in 

Hb suggesting distinct ligand migration pathways in this protein (Mouawad et al., 2005; 

Savino et al., 2009).  

Neuroglobin (Ngb) is a recently discovered heme protein that belongs to the 

family of vertebrate hexa-coordinate hemoglobins (Burmester et al., 2000). Although the 

physiological function of Ngb is unclear, a neuroprotective role against oxidative stress 

induced damage has been proposed for Ngb (Greenberg et al., 2008; Nienhaus and 

Nienhaus, 2007). In spite of the low sequence homology between Ngb and Mb, the three 
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dimensional structure of Ngb is almost superimposable to that of Mb exhibiting the 

characteristic 3-over-3 α helix globin fold (Figure 7.1). However, Ngb exhibits structural 

features not previously observed in Mb and Hb, including heme iron hexacoordination, 

the presence of an internal disulfide bond connecting the CD loop with the D-helix, large 

hydrophobic cavities, and heme sliding mechanism (Hamdane et al., 2003; Pesce et al., 

2003; Vallone et al., 2004b). Previous spectroscopic and computational studies propose 

that the molecular mechanism of CO migration in Ngb includes fast diffusion of the 

photo-dissociated CO molecule into the internal network of hydrophobic cavities, which 

then returns into the distal pocket (Abbruzzetti et al., 2009; Astudillo et al., 2012).  The 

subsequent rebinding to heme iron or escape from the protein through occurs through the 

wide hydrophic tunnel linking the heme binding site to the surrounding solvent, instead 

of the so-called “histidine gate” (Astudillo et al., 2012).  

Here, I present a photoacoustic calorimetry study of O2 photo-dissociation from 

Mb and Ngb that has not been previously investigated using photothermal methods, 

despite the fact that oxygen is the physiological ligand for Mb and some studies indicate 

that O2 may be the physiological ligand in Ngb. In addition, photoacoustic calorimetry 

was employed to determine the thermodynamic profiles of CO photo-dissociation from 

human Hb in the presence of heterotrophic allosteric effectors IHP and BZF.  
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Figure 7.1 Ribbon representation of the tetrameric human Hb structure (A, PBD entry 
1FDH), horse heart Mb structure (B, PDB entry 1WLA) and human Ngb structure (C, 
PDB entry 1JO6). The heme prosthetic groups are shown as sticks. In the case of Mb and 
Ngb, the distal and proximal histidines are visualized. 

 

 

Figure 7.2 Structure of bezafibrate (left) and inositol hexakisphosphate (right). 
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7.2. Results  

7.2.1.  Steady-state absorption spectroscopy 

The steady-state absorption spectra of ferric, deoxy, and oxygen bound wild type 

hNgb at pH 7.0 are displayed in Figure 7.3. The ferric form of hNgb exhibits a Soret band 

at 413 nm and two visible bands at 535 nm and 561 nm. Reduction of the heme iron 

results in a bathochromic shift of the Soret band to 424 nm and the two Q bands in the 

visible part of the spectrum shift to shorter wavelengths (529 and 559 nm). The 

absorption spectrum of oxygen bound hNgb exhibits a Soret band at the same position of 

the CO bound adduct (413 nm), but the two visible bands are shifted to longer 

wavelengths (539 nm and 571 nm). The absorbance maxima observed for hNgb are 

identical to those previously reported by Dewilde et al. (2001) for the ferric, ferrous, and 

O2 adducts of hNgb, and these spectral features are characteristic of hexacoordinate 

hemoglobins, including cytochromes, indicating that Ngb is a hexa-coordinated globin in 

which the distal His 64 is the endogenous ligand (Dewilde et al. 2001).  
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Figure 7.3 Absorption spectra of ferric (black line), ferrous (red line) and O2 bound (blue 
line) hNgb wild type in 50 mM Tris buffer (pH 7.0). 

 

7.2.2. Thermodynamic parameters determined for O2 photo-release from 

vertebrate hemoglobins 

Ligand migration in heme proteins is often described using the sequential three-

state model (Henry et al., 1983) shown in Figure 7.4. Upon cleavage of the coordination 

bond between the ligand and heme iron, the ligand is temporarily trapped within the 

protein matrix and then it either directly rebinds back to the heme iron in the so called 

“geminate rebinding” or diffuses from the protein matrix into the surrounding solvent. 

The subsequent bimolecular ligand binding to heme iron occurs on significantly longer 

time scales, hundreds of microseconds to milliseconds. The quantum yield for the 

geminate rebinding and for bimolecular association is strongly dependent on the 

character of the ligand and the protein. For example, CO rebinds to Mb predominantly 
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through a bimolecular reaction with quantum yield close to unity (Φbim = 0.96 ) (Henry et 

al., 1983) and to Ngb with a lower quantum yield of 0.68 (Astudillo et al., 2010, 2012), 

whereas the quantum yield for bimolecular O2 rebinding to heme proteins is usually 

significantly lower (Carver et al., 1990; Walda et al., 1994), and NO rebinds 

predominantly through geminate rebinding (Ye et al., 2002). To determine the 

thermodynamic parameters from acoustic data, the quantum yields for CO and O2 

bimolecular rebinding to the proteins under investigation have to be known. 

 

Figure 7.4 Schematic representation of ligand migration observed in heme proteins. 

 

7.2.2.1. Myoglobin 

The quantum yield for O2 bimolecular rebinding to Mb was measured in the 

temperature range from 5 °C to 20 °C using TA spectroscopy, as described in the 

Materials and Methods section. As shown in Figure 7.4, the values determined for the 

quantum yield show weak temperature dependence with the quantum yield decreasing 

with increasing temperature. At 20 °C the quantum yield is 0.09 ± 0.01 that is within the 

range of values reported previously (Φ = 0.057 (Walda et al., 1994) and (Φ = 0.12 

(Carver et al., 1990)). 
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Figure 7.5 Quantum yield for bimolecular O2 rebinding to Mb as a function of 
temperature. The solid line demonstrates the trend.  
 

Photo-acoustic traces for O2 dissociation from Fe2+Mb at pH 7.0 are displayed in 

Figure 7.5. At low temperatures (6 °C to 15 °C), the sample photo-acoustic traces show a 

phase shift with respect to the reference trace indicating the presence of thermodynamic 

process(es) that occurs between 50 ns and ~ 5 µs. The sample traces were deconvoluted 

as described in the Materials and Methods section and φi values were plotted as a 

function of the temperature dependent factor (Cpρ/β) (Figure 7.6). The extrapolated 

volume and enthalpy changes are listed in Table 7.1.   
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Figure 7.6 PAC traces for O2 photo-dissociation from O2-Mb at 9 °C. Conditions: 40 µM 
Mb dissolved in 50 mM Hepes buffer (pH 7.0). The absorbance of the reference 
compound, Fe(III)4SP, at the excitation wavelength of  532 nm  was identical to that of 
O2-Mb. 
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Figure 7.7 Plot of the ratio of the acoustic amplitude for O2 photo-release from Mb and 
the reference compound as a function of the Cpρ/β term. The values obtained for φ1 that 
correspond to the prompt phase are shown as solid circles and the φ2 values 
corresponding to the slow phase are shown as open triangles.  
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Table 7.1 Volume and enthalpy changes associated with O2 dissociation from Mb in the 
temperature range of 6 °C to 10 °C. 

 ΔV (mL mol-1) ΔH (kcal mol-1) 

Fast phase (τ < 20 ns) -3.0 ± 0.5 20.5 ± 8.5 

Slow phase (τ > 20 ns) 5.5 ± 0.4 -8.9 ± 8.0 

 

Photo-cleavage of the Fe-O2 bond is associated with a fast structural relaxation 

(τ< 20 ns) forming a transient “deoxy-Mb intermediate”. This initial transition is 

endothermic (ΔH = 21 ± 9 kcal mol-1) and leads to a small volume contraction of – 3.0 ± 

0.5 mL mol-1. This initial relaxation is followed by a ~ 250 ns kinetics that exhibit a 

volume increase of 5.5 ± 0.4 mL mol-1 and a very small enthalpy change of -8.9 ± 8.0 

kcal mol-1. The positive enthalpy change of the initial process is consistent with the 

photo-cleavage of Fe-O2 bond and a similar volume decrease of approximately -3 mL 

mol-1 has been observed previously for the photo-dissociation of Fe-CO bond in Mb 

(Westrick and Peters, 1990; Westrick et al., 1990). The subsequent 250 ns kinetics may 

reflect either the nanosecond geminate rebinding of the O2 molecule or the ligand 

diffusion from the protein matrix into the surrounding solvent.  

The reaction volume change observed for the slow phase includes several factors: 

i) volume change due to the O2 escape into the surrounding solvent, ii) volume change 

associated with heme hydration in deoxyMb, and iii) volume change resulting from 

structural changes. The reaction volume can be expressed as the difference between the 

partial molar volume of products and reactants according to:  

o
OH

o
MbO

o
deoxyMb

o
Oslow VVVVV

222
−−+=Δ           (7.1) 
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Where V°O2 is the partial molar volume of oxygen, V°H2O corresponds to the 

partial molar volume of water, V°deoxyMb refers to the partial molar volume of transient 

“deoxyMb” intermediate, and V°O2Mb is the partial molar volume of oxy-Mb. Using V°O2 

= 28 mL mol-1 (Projahn et al., 1990) and V°H2O = 15 mL mol-1 (the partial molar volume 

of water scaled to the occupancy of water molecule hydrogen bound to distal histidine) 

(Belogortseva et al., 2007), the structural volume change associated with O2 photo-

release from Mb (Vo
deoxyMb – Vo

O2Mb) was estimated to be -7.5 mL mol-1. This value is 

very similar to that reported previously for CO escape from Mb (ΔVstructural = Vo
deoxyMb – 

Vo
O2Mb =  -6 mL mol-1) (Vetromile et al., 2011) demonstrating that the overall structural 

changes accompanying the ligand bound to ligand free transition in Mb are comparable 

for both ligands.  

7.2.2.2. Neuroglobin 

The quantum yield for O2 bimolecular rebinding to human Ngb was measured in 

the temperature range from 7 °C to 25 °C using TA spectroscopy, as described in the 

Materials and Methods section. The values determined for the quantum yield show weak 

temperature dependence with the quantum yield increasing with increasing temperature 

(Figure 7.7). The value determined for the quantum yield is 0.15 ± 0.01 at 20 °C, which is 

~ 4.5 times lower than the quantum yield determined for CO bimolecular rebinding to 

human Ngb.  
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Figure 7.8 Quantum yield for bimolecular O2 rebinding to human Ngb as a function of 
temperature. The solid line demonstrates the trend.  
 

Representative PAC traces for O2 photo-release from hNgb together with the 

reference compound, Fe(III)tetraphenylsulfonato porphyrin (Fe4SP), are shown in Figure 

7.8. To probe the impact of electrostriction effects, hNgb sample was prepared in the 

presence of 500 mM NaCl and characterized using PAC. PAC traces determined for O2 

photo-release from hNgb + 500 mM NaCl together with the reference compound (Fe4SP) 

are displayed in Figure 7.9.  
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Figure 7.9 Photoacoustic traces for wild type hNgb and the reference compound 4SP. 
Conditions: 20 μM protein in 50 mM Tris buffer (pH 7). The absorbance of the sample 
matched that of the reference compound at 532 nm.  
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Figure 7.10 Photoacoustic traces for hNgb with 500 mM NaCl and the reference 
compound 4SP. Conditions: 20 μM protein in 50 mM Tris buffer, 500 mM NaCl (pH 7). 
The absorbance of the sample matched that of the reference compound at 532 nm.  
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As observed for CO photo-release from Ngbs, the sample and reference acoustic 

traces overlay in phase in both hNgb and hNgb + NaCl indicating the absence of volume 

and enthalpy changes on a time scale between ~ 50 ns and ~ 5 ms. The volume and 

enthalpy changes associated with O2 photo-release were determined from a plot of the 

[Ehv(1-ϕ)]/Φ term as a function of the temperature dependent factor (Cp ρ/β) measured in 

the temperature range between 7 °C and 35 °C (Figure 7.10), as described in the 

Materials and Methods section. The plot of [Ehv(1-ϕ)]/Φ as a function of (Cp ρ/β) for 

hNgb shows a “V-shape” indicating that the thermodynamic parameters vary at low and 

high temperatures with a turning point at ~ 16 °C.  
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Figure 7.11 Plot of [Ehv(φ-1)]/Φ as a function of Cpρ/β for O2 photo-release from hNgb 
(closed squares) and hNgb with 500 mM NaCl (open circles). 
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Table 7.2 Thermodynamic parameters associated with O2 photo-release from hNgb and 
hNgb witn 500 mM NaCl. 

Sample ΔH (kcal mol-1) ΔV (mL mol-1) 

hNgb (T = 16–35 °C) -23 ± 4 -9.0 ± 0.7  

hNgb (T = 7–16 °C) 198 ± 37 11.3 ± 2.4 

hNgb + 500 mM NaCl 90 ± 7 8.7 ± 0.8 

 

At low temperatures (7–16 °C), O2 photo-release from hNgb is associated with a 

large positive enthalpy change (ΔH = 198 ± 37 kcal mol-1) and leads to a volume 

expansion of 11.3 ± 2.4 mL mol-1. At high temperatures (16–35 °C), the enthalpy change 

associated with O2 photo-dissociation is negative (ΔH = -23 ± 4 kcal mol-1) and 

accompanied with a volume contraction of -9.0 ± 0.7 mL mol-1. In the presence of 500 

mM NaCl, the plot of [Ehv(1-ϕ)]/Φ as a function of (Cp ρ/β) is linear from 7 °C to 35 °C, 

indicating that temperature dependence observed for the thermodynamic parameters 

associated to O2 photo-release from hNgb results from electrostrictions effects upon 

ligand photo-dissociation. The observed reaction volume change at high ionic strength 

(500 mM NaCl) is comparable to the one observed at low temperatures, whereas the 

enthalpy change is ~ two times lower. 

The structural volume change (ΔVstr), which describes the difference between the 

partial molar volume of the five-coordinate Ngb and O2-bound Ngb, can be determined 

from the reaction volume change (ΔV), according to the equation 7.2. 

NgbO
o

Ngb
o

O
o VVVV 22 −+=Δ            (7.2) 
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where V°O2 is the partial molar volume of O2 (28 mL mol-1) (Projahn et al., 1990), 

V°O2Ngb is the partial molar volume of oxy-Ngb and V°Ngb is the partial molar volume of 

penta-coordinate deoxy Ngb.  

Similarly, the structural enthalpy change, ΔHstr, can be calculated from the 

reaction enthalpy change according to the following equation: 

2OFeStr HHH −Δ+Δ=Δ                       (7.3) 

Where ΔHFe-O2 is the enthalpy of Fe-O2 bond cleavage (17.8 kcal mol-1) (Radon 

and Pierloot, 2008). 

At high temperatures (T =16-35 °C) O2 photo-dissociation from hNgb is 

associated with a ΔVstr of -37.0 ± 0.7 mL mol-1 and a ΔHstr of -41 ± 4 kcal mol-1.  On the 

other hand, at low temperatures (T = 7-16 °C) O2 photo-release from hNgb leads to a 

ΔVstr of -16.7 ± 2.4 mL mol-1 and a ΔHstr of 180 ± 37 kcal mol-1. In the presence of 500 

mM NaCl, the structural volume change (ΔVstr = -19.3± 0.8 mL mol-1) comparable to the 

structural volume change observed at low temperatures and 0 mM NaCl, whereas the 

structural enthalpy change (ΔHstr = 72± 7 kcal mol-1) is ~ two times lower than the one 

observed in the absence of NaCl. Interestingly, CO photo-dissociation from hNgb results 

in a structural volume change (ΔVstr = -21.6 ± 0.9 mL mol-1) that is comparable to that 

observed upon O2 photo-dissociation at low temperatures and in the presence of 500 mM 

NaCl. The structural volume change determined for photo-dissociation of CO from hNgb 

was attributed to fast uptake of a water molecule, which is concomitant with CO escape 

from the protein matrix because of the absolute magnitude of the structural volume 

change that is similar to the partial molar volume of water (Vm° = 18 mL mol-1) 

(Astudillo et al., 2012).  
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The fact that the magnitude of the structural enthalpy change determined for O2 

photo-release from hNgb at high ionic strength conditions is large (ΔHstr = 72± 7 kcal 

mol-1) suggests that proton uptake/release might take place upon O2 photo-dissociation.  

7.2.2.3. Hemoglobin and hemoglobin with effectors 

The quantum yield for CO bimolecular rebinding to Hb, and to Hb in the presence 

of effector molecules were determined as a function of temperature (Fig. 7.10). The 

quantum yield increases linearly with temperature. At 20 °C, CO binds to Hb with 

quantum yield of 0.68 and in the presence of IHP and BZF 0.62 and 0.46, respectively. A 

similar quantum yield for CO bimolecular rebinding to Hb was reported previously by 

Unno et al. (Φbim =0.7 at 20 °C) (Unno et al., 1990) and by Saffran and Gibson  (Φ=0.7 

for CO binding to Hb  and Φ = 0.73 for CO association to Hb in the presence of IHP at 

40 °C) (Saffran and Gibson, 1977).  

The photo-acoustic traces for CO photo-dissociation from Hb are shown in Figure 

7.11. The sample and the reference acoustic waves overlay in phase indicating that the 

observed thermodynamic processes take place within 50 ns upon CO photo-dissociation 

from Hb, which is consistent with the fast CO diffusion from the heme matrix into the 

surrounding solvent. The fast ligand escape from the heme binding pocket was also 

observed in the presence of effectors.  
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Figure 7.12 Quantum yield for bimolecular CO rebinding to Hb and Hb with effectors as 
a function of temperature. The error of quantum yield is ± 0.05. The solid line 
demonstrates the trend.  
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Figure 7.13 Photoacoustic traces for CO photo-dissociation from CO-Hb complex and the 
reference compound Fe(III)4SP. Conditions: 40 µM Hb in 100 mM HEPES buffer pH 7.0 
and 20 °C. The absorbance of the reference compound matched the absorbance of the 
sample at 532 nm. 
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The volume and enthalpy changes associated with the diffusion of the photo-

dissociated ligand to the surrounding solvent were determined from the plot of the ratio 

of the amplitude of the acoustic trace for CO photo-dissociation from Hb and the 

reference as a function of temperature, as described in the materials and methods section 

(Figure 7.12). The extrapolated thermodynamic values are shown in Table 7.3.  
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Figure 7.14 Plot of the ratio of the acoustic amplitude for the CO photo-dissociation from 
the CO-Hb complex and the reference compound as a function of the temperature 
dependent factor (Cp ρ/β) term.  
 

Table 7.3 Volume and enthalpy changes associated with CO photo-dissociation from Hb.  
 ΔHprompt (kcal mol-1) ΔVprompt (mL mol-1) 

COHb 19.4 ± 1.2 21. 5 ± 0.9 

COHb + BZF 21.7 ± 7.9 22.3 ± 1.7 

COHb + IHP -9.9 ± 6.1 11.4 ± 1.3 
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The CO photo-release from Hb is associated with a positive volume change of 

21.5 ± 0.9 mL mol-1 and enthalpy change of 19.4 ± 1.2 kcal mol-1. These results are in 

agreement with the thermodynamic parameters reported previously by Peters et al: ΔV = 

23.4 ± 0.5 mL mol-1  and ΔH = 18.0 ± 2.9 kcal mol-1 (Peters et al., 1992). Since the laser 

power used in this study was kept below 50 µJ, the low level of photo-dissociation was 

achieved that corresponds to 1 CO molecule per hemoglobin photo-released. Thus, the 

observed thermodynamic parameters reflect the transition between fully ligated (CO)4Hb 

and triple ligated (CO)3Hb. Consequently, the observed reaction enthalpy corresponds to 

the enthalpy change due to the cleavage of the Fe-CO bond (ΔHFe-CO=17.5 kcal mol-1  

(Leung et al., 1987; Miksovska et al., 2005)), the enthalpy change due to the solvation of 

a CO molecule (ΔHsolv = 2.6 kcal mol-1 (Leung et al., 1987)), the enthalpy change of 

structural relaxation associated with the ligand release from the protein matrix, and 

enthalpy of the distal pocket hydration. The occupancy of water molecules in the distal 

pocket of deoxyHb was determined to be significantly  lower than that in Mb (~0.64 for 

the Hb α- chain and ~ 0.33 for the Hb β-chain (Esquerra et al., 2010)). Using an average 

occupancy of 0.48, it can be estimated that  the distal pocket hydration contributes to the 

overall enthalpy change by ~ -3 kcal mol-1 (Vetromile et al., 2011). Therefore, the 

structural relaxation coupled to the CO dissociation and diffusion into the surrounding 

solvent is accompanied by a small enthalpy change of 2 kcal mol-1. 

The observed reaction volume change for CO photo-release from Hb, ΔV = 21.5 

mL mol-1, can be expressed as:  

o
H

o
HbCO

o
HbCO

o
CO VVVVV 0)()( 243

−−+=Δ                      (7.4) 
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where V°CO is the partial molar volume of CO and V°(CO)3Hb and V°(CO)4 Hb are the 

partial molar volume of (CO)3Hb and (CO)4Hb, respectively. Using V°CO = 35 mL mol-1 

(Projahn et al., 1990) and V°H2O = 9 mL mol-1 (partial molar volume of water scaled by 

the average occupancy of the Hb chain), I estimate that upon release of one  CO molecule 

per Hb, the protein undergoes a small  contraction of -7 mL mol-1. The small volume 

change observed here is consistent with the minor structural changes due to deligation of 

Hb in the R-state as observed in the X-ray structure that are predominantly localized in 

the  the α-chain and include reposition of the F-helix and shift of the  EF and CD corner 

(Wilson et al., 1996).  

The volume and enthalpy changes associated with the CO photo-dissociation from 

Hb in the presence of heterogenous effectors BZT and IHP were also determined (Table 

7.3). The photoacoustic data presented here show that binding of BZF to CO-Hb complex 

does not impact the reaction volume and enthalpy changes associated with CO photo-

release. On the other hand, binding of IHP has a significant impact on the observed 

volume and enthalpy changes. The reaction volume decreases by 10 mL mol-1 and the 

enthalpy change is more exothermic by nearly 30 kcal mol-1, compared to the 

thermodynamic parameters determined in the absence of effector molecules. Such 

negative reaction volume and exothermic enthalpy change indicates that electrostriction 

of solvent molecules caused by reorganization of salt bridges or redistribution of charges 

on protein surface contributes to the overall reaction volume and enthalpy change 

associated with CO photo-release.  
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7.3. Discussion 

On the basis of the PAC data, O2 photo-release from Mb is biphasic with the fast 

phase, occurring within 50 ns, reflecting photo-cleavage of the Fe-O2 bond and the slow 

phase (τ ~ 250 ns at 20 °C) resulting from either O2 nanosecond geminate rebinding or 

ligand migration from the protein matrix to the solvent. The observed volume contraction 

determined for the fast phase reflects a fast relaxation of the heme binding pocket that 

includes: i) cleavage of the hydrogen bond between the distal histidine and oxygen 

molecule (Phillips and Schoenborn, 1981) ii) reorientation of distal residues within the 

heme binding pocket (Olson et al., 2007), and  iii) fast migration of the photo-released 

ligand into the primary docking site and then into the internal cavities (Xe4 or Xe1) 

(Hummer et al., 2004).  

The kinetics for the geminate O2 rebinding were studied on femtosecond 

timescale by Petrich et al. (1988), and on picosecond and nanosecond timescales (Carver 

et al., 1990; Miller et al., 1996). These studies identified two distinct sub-states of the 

“deoxyMb” intermediate: a “barrier-less” and a “photolyzable” sub-state. In the “barrier-

less” sub-state, oxygen rebinds to heme iron on sub-picosecond timescale, whereas 

oxygen association to the “photolyzable” sub-state occurs on nanosecond and 

microsecond timescales. Carver et al. (1990) have reported the time constant for O2 

nanosecond geminate rebinding to be 52 ± 14 ns at room temperature. This kinetic step 

has a lifetime that is comparable to the time resolution of the PAC instrument used in this 

study (τ ~ 50 ns), hence it was not resolved here. Therefore, the 250 ns step corresponds 

to O2 escape from the transient “deoxyMb” intermediate into the surrounding solvent and 

is approximately 3 times faster than the rate of CO escape (Westrick et al., 1990), which 
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suggests that O2 diffuses from the protein matrix through a transient channel with a lower 

activation barrier than CO. This result is consistent with the transient absorption studies 

that estimated the rate for O2 release to be approximately two times faster than that for 

CO (Carver et al., 1990). Interestingly, a similar time constant of 200 ns to 300 ns was 

determined for CO escape from Mb at pH 3.5 (Angeloni and Feis, 2003). At acidic pH, 

Mb adopts an open conformation with His 64 displaced toward the solvent giving a direct 

access to the distal cavity. These data suggest that reorientation of His 64 may not be a 

rate limiting step for O2 escape.  

The small enthalpy change measured for the 250 ns relaxation (ΔH =  -8.9 ± 8.0 

kcal mol-1) includes the enthalpy change for O2 solvation (ΔHsolv = -2.9 kcal mol-1 (Mills 

et al., 1979)) and  the enthalpy change associated with H2O binding to the heme binding 

pocket (ΔHsolv = -7 kcal mol-1 (Vetromile et al., 2011)) indicating that the structural 

relaxation coupled to the ligand escape from the protein is entropy driven. The similarity 

between the structural volume change determined for the slow phase of O2 photo-release 

from Mb (- 7.5 mL mol-1) and the volume change previously reported previously for CO 

escape from Mb (ΔVstructural= V°doxyMb- V°CO-Mb = - 6 mL mol-1) (Vetromile et al., 2011) 

demonstrates that the overall structural changes accompanying the ligand bound to ligand 

free transition in Mb are similar for both ligands. These results are in agreement with the 

close resemblance of the X-ray structure of both the CO-bound and O2-bound  Mb (Yang 

and Phillips, 1996).  

The overall enthalpy change for O2 dissociation from Mb was determined to be 

11.6 ± 8.5 kcal mol-1 and this value is in agreement with the value of 10 kcal mol-1 

reported previously (Projahn et al., 1990). The overall reaction volume change 
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determined here  (ΔVoverall = +2.5 mL mol-1) is somewhat larger than the reaction volume 

change determined from the measurement of the equilibrium constant as a function of 

pressure (ΔV= - 2.9 mL mol-1) (Hasinoff, 1974) and significantly smaller than the 

reaction volume change determined as a difference between the activation volume for 

oxygen binding and dissociation from Mb that was reported to be 18 mL mol-1 (Projahn 

et al., 1990). Unlike photoacoustic studies that allow for reaction volume determination at 

ambient pressure, the high pressure measurements of equilibrium constant and/or rate 

constants (to determine activation volumes) may cause a pressure induced protein 

denaturation and/or structural changes, which may influence the magnitude of reaction 

volume changes in high pressure studies.  

The photoacoustic data shows that O2 photo-release from hNgb is fast, occurring 

within 50 ns, indicating that O2 escapes from the protein matrix through a direct pathway 

connecting the heme binding pocket with the surrounding solvent. Similarly, CO photo-

release from hNgb is fast (τ < 50 ns) and it was proposed that an effective ligand 

migration pathway is provided through the wide hydrophobic tunnel that connects the 

distal pocket with the surrounding solvent in the deoxyNgb (Vallone et al., 2004b). The 

thermodynamic parameters associated with O2 photo-release from hNgb in 50 mM Tris 

buffer (pH 7.0) show temperature dependence in the range between 7 °C to 35 °C. At 

temperatures above 16 °C, the reaction enthalpy and volume change are negative with 

values of -23 ± 4 kcal mol-1 and -9.0 ± 0.7 mL mol-1, respectively. Conversively, the 

reaction enthalpy and volume change become positive at temperatures below 16 °C with 

an enthalpy change of 198 ± 34 kcal mol-1 and a volume change of 11.3 ± 2.4 mL mol-1. 

These results indicate that the enthalpy change associated with oxygenation of penta-
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coordinate hNgb is exothermic at temperatures below 16 °C and endothermic at 

temperatures below 16 °C. Temperature dependence of thermodynamic parameters 

associated with O2 binding to hNgb has been previously observed (Fago et al., 2004b), 

whereas CO association to hNgb does not show temperature dependence (Astudillo et al., 

2010; Fago et al., 2004b). Fago et al. (2004b) reported that O2 association to hexa-

coordinate bishisdine hNgb at pH 7.4 is exothermic at temperatures above ~ 18 °C with 

ΔH= -15.7 kcal mol-1, whereas endothermic enthalpy changes were observed at 

temperatures below ~18 °C with ΔH= 12.7 kcal mol-1. These authors attributed the 

exothermic O2 binding to weakening of the electrostatic/hydrogen bonding interactions 

among His64, Lys67, and heme 7-propionate at high temperatures, whereas stronger 

polar interactions were proposed to contribute to the observed positive enthalpy for 

oxygen binding at low temperatures. The discrepancy between the data presented here 

and the studies of Fago et al. (2004b) may arise from the fact that Fago et al. (2004b) 

measured O2 association to hexa-coordinate bishisdine hNgb, wheres the data shown here 

reflects O2 binding to penta-coordinate hNgb. Therefore, the structural transitions 

occurring upon O2 photo-dissociation from hexacoordinate O2 bound hNgb and ferrous 

pentacoordinate hNgb are different than the ones occurring from hexacoordinate O2 

bound hNgb to hexacoordinate bishistidine hNgb.  

To identify factors contributing to the temperature dependence observed for the 

enthalpy and volume changes associated with O2 photo-dissociation from hNgb, 

thermodynamic parameters were determined at high ionic strength conditions (500 mM 

NaCl). Interestingly, the thermodynamic parameters associated to O2 photo-release from 

hNgb do not show temperature dependence upon increase of the solution ionic strength in 
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the range of 7 °C to 35 °C, indicating that the temperature depencence of the 

thermodynamic parameters is suppressed in high ionic strength conditions. Both reaction 

enthalpy and volume changes are positive in the presence of 500 mM NaCl with ΔH = 90 

± 7 kcal mol-1 and ΔV= 8.7 ± 0.8 mL mol-1. The reaction volume change determined for 

hNgb with 500 mM NaCl is comparable to the one determined for hNgb at temperatures 

below 16 °C, whereas the enthalpy change in the presence of 500 mM NaCl is 

approximately 2 times lower than the one determined in the absence of NaCl. The results 

shown here indicate that the magnitude of the volume and enthalpy change associated 

with O2 photo-release show dependence on the ionic strength of the solution, which 

suggests that electriction effects contribute to the observed photoacoustic signal. 

Generally, exposure of charges to the solvent result in negative reaction volume changes 

and the solvation of charges is an exothermic process (Lockney and Miksovska, 2006). 

Since O2 photo-dissociation from hNgb leads to a negative contribution to the overall 

volume and enthalpy changes at high temperatures (T = 16 - 35 °C) that are suppressed 

upon increase of the ionic strength of the solution, the O2 dissociation from the protein 

leads to conformational changes that involve solvation of charges. Examination of the 

crystal structure of hNgb indicates that Lys 67 forms a salt bridge with one of the heme 

propionate groups. Lys 67 residue and the heme group in Ngb are quite solvent exposed, 

compared with other globins such as Mb, and it was previously proposed that Lys 67 side 

chain acts as a barrier separating the distal pocket from the solvent through its 

electrostatic interaction with the heme propionate group (Nienhaus et al., 2004). 

Additionally, Lys 67 and the heme propionate groups have been proposed to be involved 

in larger hydrogen/electrostatic interactions network that include the distal His 64, Glu 60 
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and Tyr 44 (Astudillo et al., 2012).The interaction between the distal His 64 and Tyr 44 is 

also involved in the displacement of the CD-D region upon CO association to the heme 

iron (Vallone et al., 2004b), hence structural changes may be relayed from the CD loop to 

the heme binding pocket. Therefore, at high temperatures O2 photo-dissociation from 

hNgb might result in disruption of the salt bridge between Lys 67 and the heme 

propionate group that is propagated to the protein surface through the larger electrostatic 

interaction discussed above. This alteration of electrostatic interactions may lead to 

exposure of charges on the protein surface that contributes to the observed electrostriction 

effects upon O2 photo-dissociation in hNgb.  

The magnitude of the structural enthalpy change upon O2 photo-release is large 

and positive in the presence of 500 mM NaCl, indicating that other factors contribute to 

the structural enthalpy change in addition to electrostriction effects. A possible 

explanation for the large structural enthalpy change is protonation or deprotonation of 

ionizable groups in the protein upon O2 photo-dissociation. Fago et al. (2004b) reported 

that hNgb displays alkaline and Bohr acid effects that depend on both the temperature 

and the pH of the solution, since the P50 value increases and decreases upon a pH 

decrease. These authors suggest that the Bohr effect in Ngb arises from stabilization of 

bound O2 by the distal His 64 in its unprotonated form and protonation of the His 64 side 

chain favors O2 dissociation. Futhermore, replacement of the distal His 64 by Gln and 

Val residues has been shown to suppress the Bohr effect observed in hNgb, whereas 

replacement of Lys 67 by Leu shows a reversed effect of the Bohr effect than the one 

observed for wild type hNgb in the pH range between 6.5 and 7.5 (i.e., O2 affinity 
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increases with a pH increase), supporting a role of the distal His 64 and Lys 67 residues 

in the pH dependence observed for O2 affinity in hNgb (Fago et al., 2004b).  

Protonation and deprotonation often accompany ligand binding reactions. In order 

to determine whether O2 photo-dissociation from hNgb leads to proton uptake or release, 

PAC studies could be perfomed in different buffers. Protonation of Tris buffer is 

associated with a small volume contraction of -1 mL mol-1 and an exothermic enthalpy 

change of -11.3 kcal mol-1, whereas protonation of phosphate buffer leads to a large 

volume expansion of 24 mL mol-1 and a small enthalpy change of -1.8 kcal mol-1                                     

. Therefore, if ligand photo-release is associated with a net change of protonation (proton 

release/uptake), a corresponding change in buffer protonation will contribute to the 

observed reaction enthalpy change thus different values for volume and enthalpy changes 

would be observed in different buffers (Lockney and Miksovska, 2006). 

In case of Hb, PAC data indicates that CO escapes from the protein matrix to the 

surrounding solvent within 50 ns. Previous transient absorption studies showed that the  

CO photo-release from the fully ligated R-state Hb is followed by three relaxations with 

lifetimes of 50 ns, 1 µs, and 20 µs that were assigned to the unimolecular geminate 

rebinding, the tertiary structural relaxation, and the R→T quaternary change, respectively 

(Goldbeck et al., 1996). The geminate rebinding occurs too fast to be resolved by the 

PAC detector used in this study, whereas the 20 µs R→T transition, which strongly 

depends on the extent of heme ligation, is too slow to be resolved in PAC measurements. 

The 1 µs relaxation is within the time-window accessible by the detection system, 

however I was unable to resolve this step. Since this relaxation was observed as a small 

perturbation of the deoxy-Soret band (Goldbeck et al., 1996), it may reflect  the structural 
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relaxation localized within the vicinity of the heme binding pocket, which  does not lead  

to measurable volume and enthalpy changes.  

The small volume change determined for CO photo-release from Hb was 

attributed to small structural changes resulting from deligation of Hb in the R-state. These 

results are in agreement with the reported crystal structure of Hb that shows that 

structural modifications occurring upon deligation are localized in the α-chain, which 

include repositioning of the F-helix as well as movement of the  EF and CD corner 

(Wilson et al., 1996).  

The photoacoustic data presented here show that binding of BZF to CO-Hb 

complex does not impact the reaction volume and enthalpy changes associated with CO 

photo-release. On the other hand, binding of IHP has a significant impact on the observed 

volume and enthalpy changes. The thermodynamic profiles for CO photo-dissociation 

from CO-Hb complex in the presence and absence of effectors are presented in Fig.7.X. 

Both effectors bind to Hb in the T-state and R-state and modulate the interaction of Hb 

with diatomic ligands (Coletta et al., 1999b; Marden et al., 1990). For example, the 

binding of BZF or IHP to CO-Hb complex decreases the CO association rate 

approximately four or eight times, respectively  (Marden et al., 1990), and decreases the 

affinity of R state deoxy-Hb  for oxygen (Tsuneshige et al., 2002). Coletta et al. (1999a) 

have reported that simultaneous  binding or IHP and BZF  effectors to Hb at ambient 

pressure leads to the Hb  intermediate  with tertiary T-like structure in  the quaternary R- 

conformation. Recently, using NMR spectroscopy Song et al. have shown that binding of 

IHP to the fully ligated Hb increase the conformational fluctuation of the R-state in both 

the α- and β-chain (Song et al., 2008).   
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The crystal structure of horse CO-Hb in complex with BZF indicates that the 

structural changes due to BZF association to fully ligated Hb are localized in the α-

subunits (Shibayama et al., 2002). BZF binds to the surface of each α-chain E-helix and 

decreases the distance between the heme iron and distal His and its binding site is 

surrounded by hydrophobic residues such as  Ala 65, Leu 68, Leu 80 and Leu 83 

(Shibayama et al., 2002). Such minor structural changes caused by BZF association are 

unlikely to alter the overall structural volume and enthalpy changes associated with the 

CO photo-release. However, due to the lower solubility of BZF, the effector 

concentration used is this study was 5 mM that results in a Hb fractional saturation of 

0.25 (using KD of 15 mM (Ascenzi et al., 1993)). Such lower fractional saturation may 

prevent detection of BZF induced changes in Hb conformational dynamics.  

The large decrease in the reaction volume and enthalpy changes observed for IHP 

in complex with Hb-CO compared to the thermodynamic parameters determined in the 

absence of the effector, indicates that electrostriction of solvent molecules caused by 

reorganization of salt bridges or redistribution of charges on protein surface contributes to 

the overall reaction volume and enthalpy change associated with CO photo-release. 

Indeed, IHP interacts with charged residues along the Hb central cavity. At the Hb T-

state, the IHP binding site is located at the interface of the β-chains involving Val 1, His2, 

Lys 82 and His 141 from each chain (Riccio et al., 2001); whereas at the R-state Hb, the 

IHP molecule interacts with the charged residues Lys 99 and Arg 141 from each  α-chain 

(Laberge et al., 2005). In the absence of the X-ray structure of IHP bound fully ligated 

and partially photolyzed CO-Hb, it is difficult to point out the factors that contribute to 

the observed volume and enthalpy changes on the molecular level. Arg 141 forms a salt 
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bridge with Asp 126 in the T-state deoxy Hb that is absent in the fully ligated R- state 

(Park et al., 2006). We speculate that the transition between the fully ligated (CO)4Hb 

and partially ligated (CO)3Hb may be associated with a repositioning of the Arg 141 side 

chain leading to a partial exposure of either the IHP molecule and/or the Arg 141 side 

chain to the surrounding solvent molecules. Also, the ligand photo-release may be 

associated with the repositioning of the IHP molecule within the Hb central cavity. On 

the basis of a molecular dynamics simulation of IHP binding sides in south polar skua 

deoxyHb, an IHP migration pathway connecting the binding site at the interface between 

the α-chains and the second binding site located between the β-chains was proposed  

suggesting that IHP interactions with Hb are dynamic and involve numerous positively 

charged residues situated along the central cavity (Riccio et al., 2001). Therefore, CO 

photo-release may trigger relocation of IHP within the central cavity resulting in  larger 

exposure of IHP phosphate groups and/or charged amino acid residues and concomitant 

electrostriction of solvent molecules.  
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Figure 7.15 The thermodynamic profile for CO photo-dissociation from Hb in the 
absence of effector and in the presence of BZF and IHP. The arrows indicate the 
respective scale. 
 

7.4. Summary 

The photoacoustic data determined for the ligand photo-dissociation from Mb 

shows that the structural volume changes associated with O2 difussion from Mb active 

site are similar to those determined previously for CO in agreement with the 

crystallographic data. On the other hand, the time constant for O2 escape from the distal 

pocket to the surrounding solvent is two to three times faster than that for CO, suggesting 

a distinct migration pathway for diatomic ligands in Mb. In case of human Ngb, the PAC 

data indicates that O2 photo-release from Ngb occurs within 50 ns, as previously 
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observed for CO photo-release. However, the thermodynamic parameters associated with 

O2 photo-dissociation from Ngb are temperature dependent exhibiting negative reaction 

and volume changes at temperatures above 16 °C, whereas positive reaction volume and 

enthalpy changes are observed at temperatures below 16 °C. This temperature 

dependence is attributed to electrostriction effects upon solvation of charges since 

increase of the solution ionic strength suppresses the temperature dependence. The large 

structural enthalpy change observed upon O2 photo-dissociation at high solution ionic 

strength conditions suggests that proton uptake/release occurs upon photo-dissociation of 

the ligand.  

The PAC study shown here indicates that IHP binding to Hb-CO complex alters 

the volume and enthalpy changes associated with CO photo-dissociation from the heme 

iron indicating that the transition between the fully ligated (CO)4Hb and partially ligated 

(CO)3Hb complex is associated with the reorientation of IHP molecule within the central 

cavity and/ or charged amino acid residues interacting with IHP.  
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8. STUDY OF CYTOGLOBIN INTERACTIONS WITH FLUORESCENT 

PROBE 1-ANILINONAPHTHALENE-8-SULFONATE  

8.1. Introduction 

Cytoglobin (Cygb) is a heme protein expressed in humans and other vertebrates 

that belongs to the family of hexa-coordinate hemoglobins (Burmester et al., 2002). 

Cytoglobin is mainly localized in fibroblasts of connective tissue and cell lineages related 

to fibroblasts, such as hepatic stellate cells and myofibroblasts (Bosselut et al., 2010; 

Kawada et al., 2001). The localization of Cygb in connective tissue cells may explain its 

expression in several organs including brain, retina, lung, liver and heart at varying 

concentration levels, but the concentration of the protein is relatively low (usually in the 

micromolar range) (Oleksiewicz et al., 2011). At the subcellular level, Cygb can be found 

in both the cytoplasm and the nucleus upon over-expression of the protein, indicating that 

Cygb may translocate to the nucleus (Geuens et al., 2003; Kawada et al., 2001). The 

localization of Cygb within the nucleus suggests a possible role of the protein in 

regulation of gene transcription (Geuens et al., 2003).   

Although the physiological function of Cygb remains unknown, increasing 

evidence suggests that Cygb has a cyto-protective role against cell damage induced by 

ischemic and hypoxic conditions, oxidative stress, and fibrosis induced changes (He et 

al., 2011; Hodges et al., 2008; Lv et al., 2008; McRonald et al., 2012). Under hypoxic 

and ischemic conditions, Cygb is up-regulated in vitro and in vivo in several organs, 

including brain, heart, liver, eyes and skeletal muscle (Fordel et al., 2004; Fordel et al., 

2007). On the other hand, Cygb is down-regulated in some types of cancer (e.g., 

oesophageal, lung, head and neck cancer) and it was proposed to have a tumor suppressor 
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role (McRonald et al., 2006; Shaw et al., 2009; Shivapurkar et al., 2008; Xinarianos et al., 

2006).   

The crystal structures of native ferric Cygb at 1.68 Å (Makino et al., 2006) and 

2.4 Å (Sugimoto et al., 2004) resolution, CO bound ferrous Cygb (Makino et al., 2011), 

and ferric Cygb mutant in which Cys38 and Cys83 have been replaced by Ser (de Sanctis 

et al., 2004a) have been elucidated. The X-ray structures show that Cygb displays the 

classical 3-over-3-α-helical sandwich structure or “globin fold” (Figure 8.1). The 

presence of Fe-protoporphyrin IX as the heme prosthetic group enables Cygb to 

reversibly bind small gaseous ligands including O2, CO and NO (Smagghe et al., 2008; 

Trent and Hargrove, 2002). Interestingly, Cygb shares some peculiar structural features 

with other recently discovered hexa-coordinate hemoglobin, namely neuroglobin (Ngb), 

that have not been previously observed in vertebrates, such as hexa-coordination in its 

ferric and ferrous state with a histidine (His 81) residue in the sixth position as an 

endogenous ligand, presence of an internal disulfide bond and large internal cavities 

(Ascenzi et al., 2004; Pesce et al., 2004a). The disulfide bond in Cygb forms between Cys 

38 (B helix) and Cys 83 (E helix) and affects kinetics of ligand release and binding to the 

heme iron (Hamdane et al., 2003). Reduction of the disulfide bond in Cygb decreases the 

rate of His 81 dissociation from heme iron, but to a lesser extent than observed for Ngb, 

by a factor of ~ 2, indicating a weaker coupling between the disulfide bond and ligand 

binding (Hamdane et al., 2003). Therefore, the mechanism of Cygb cyto-protection 

against oxidative stress may be linked to the redox chemistry of the protein within the 

cell. Moreover, formation of the disulfide bond alters the ligand migration in Cygb as 

well as the thermodynamic parameters associated with ligand escape from the protein 



209 
 
 

matrix, suggesting a different mechanism of ligand migration that may vary in response 

to the redox conditions within the cell (Astudillo et al., 2013). Comparison of the 

thermodynamic profiles for photo-dissociation of CO as exogenous ligand suggests that 

in the presence of the disulfide bond the mechanism of ligand migration in Cygb is 

analogous to that of Mb, through the His gate, whereas under reducing conditions the 

ligand migration mechanism in Cygb resembles that of human Ngb which was proposed 

to occur through the long internal hydrophobic tunnel (Astudillo et al., 2013). 

 
 

Figure 8.1 Three dimensional structure of Cygb (PDB entry: 2DC3, molecule A in orange 
and molecule B in light blue) homodimer. The heme prosthetic groups are shown in red 
and Cys residues in blue. Distal His 81and proximal His 113 residues are shown as 
orange sticks in molecule A and as blue sticks in molecule B. Extended C- and N-termini 
are highlighted in green. 

 

One structural feature of Cygb that distinguishes it amongst other members of the 

globin family, including neuroglobin (Ngb), is that Cygb is composed of 190 amino acid 

residues making its sequence longer than other globins, which typically containing 140 to 

160 residues (Trent and Hargrove, 2002). The crystal structure of Cygb at 1.68 Å shows 
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that Cygb forms a homodimer with N-terminal residues (4-20) forming a short α-helix 

before the A helix and C-terminal residues (168-188) forming an ordered loop structure 

(Figure 8.1) (Makino et al., 2006). The crystal structure of Cygb mutant C38S/C83S (2.4 

Å) (Sugimoto et al., 2004) also shows the formation of a homodimer, however the 

dimerization modes in the two structures are different (Makino et al., 2006). The 

disruption of the disulfide bond by the mutation of Cys38 and Cys83 by Ser may result in 

different subunit orientations from the ones observed in the native protein (Makino et al., 

2006). Noteworthy, it was proposed that only a small fraction of dimer might be formed 

in near-physiological conditions in vitro (Lechauve et al., 2010).   

The function of the extended N- and C- termini regions in Cygb are not known, 

however they could be involved in lipid binding (Reeder et al., 2011) and/or protein-

protein interactions.  Reeder et al. (2011) reported that ferric Cygb binds to lipids 

(sodium oleate and cardiolipin) and undergoes a conformational transition from hexa-

coordinate to penta-coordinate heme iron upon binding, suggesting a role of Cygb in lipid 

transport. Moreover, Cygb has been reported to have considerable peroxidase activity, 

consuming both hydrogen peroxide and lipid peroxides (Kawada et al., 2001). On the 

other hand, there is no evidence to date supporting Cygb interactions with other proteins. 

Previous studies using yeast two-hybrid assay and immune-precipitation combined with 

mass spectrometry did not find any interacting partners for Cygb (Hodges et al., 2008). 

Although there is experimental evidence that supports Cygb association to lipids, 

the residues or regions involved in lipid binding have not yet been identified. Reeder et 

al. (2011) proposed that the extended N- and C-terminal may be responsible for the 

protein-lipid interactions, but this hypothesis has not been experimentally tested. Protein-
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ligand and protein-protein interactions are often facilitated by formation of hydrophobic 

patches or clefts on the protein’s surface, leading to association of the ligand or protein 

through hydrophobic interactions with the target protein (Efremov et al., 2007). 

Therefore, characterization of the hydrophobic regions on the surface of proteins is 

essential to obtain insight into the molecular recognition process. In this context, extrinsic 

hydrophobic probes have been extensively utilized to characterize binding sites on the 

surface of proteins, including anilinonaphthalene dyes (Gasymov and Glasgow, 2007; 

Hawe et al., 2008). Amongst anilinonaphthalene probes, 1-anilino-8-naphthalene 

sulfonate (1,8-ANS) is one of the best known and most often used fluorescent probes for 

protein characterization and study of protein folding (Figure 8.2) (Hawe et al., 2008). 1,8-

ANS is a small molecule that is essentially non-fluorescent in water, but its fluorescence 

quantum yield increases upon association to hydrophobic regions of proteins and the 

emission maximum of 1,8-ANS shifts to shorter wavelengths upon binding (Daniel and 

Weber, 1966; Stryer, 1965). Although 1,8-ANS is mostly recognized as a hydrophobic 

probe, 1,8-ANS molecules can interact with both hydrophobic and hydrophilic groups 

(Matulis and Lovrien, 1998). The sulfonate group of 1,8-ANS molecule forms a salt 

bridge with positively charged amino acids (i.e., Lys, Arg and His), whereas the aromatic 

rings stabilize the binding with apolar groups (Matulis and Lovrien, 1998). As a result of 

this complementary interaction between aromatic groups and sulfonate groups of 1,8-

ANS with the protein polar and apolar groups, 1,8-ANS has been shown to block binding 

sites in protein that associate with other substrates or partner proteins (Collini et al., 

2003). Therefore, fatty acid binding properties can be investigated by using competitive 

fluorescence binding assays in which the fluorescence emission of 1,8-ANS in complex 
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with the protein of interest is monitored upon addition of the lipid (Collini et al., 2003; 

Kane and Bernlohr, 1996; Li et al., 2012) 

 

Figure 8.2 Structure of 1-anilino-8-naphthalene sulfonate (1,8-ANS) (left) and sodium 
oleate (right). 

 

In this work, I characterize the interactions between 1,8-ANS and Cygb by 

employing fluorescence spectroscopy and isothermal titration calorimetry to obtain a 

better description of the surface of Cygb, which may be crucial for lipid and/or protein 

binding and obtain insight into the mechanism of Cygb interactions with lipids. 

Furthermore, the replacement of 1,8-ANS by oleate (Figure 8.2) in the 1,8-ANS:Cygb 

complex was monitored using steady-state fluorescence spectroscopy. The impact of the 

disulfide bond and exogenous ligand binding on 1,8-ANS-Cygb interactions was also 

probed by characterizing 1,8-ANS association to Cygb reduced with DTT (Cygbred) and 

cyanide bound Cygb (CNCygb). To identify the binding sites in Cygb, molecular docking 

was performed using Cygb as the receptor and 1,8-ANS and sodium oleate as ligands. 

Although 1,8-ANS probes have been usually employed in studies of globins in their apo 

forms, I believe that investigation of structural and dynamic properties of native Cygb is 

more physiologically relevant. I demonstrate that the extended termini in Cygb are 
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crucial for association to 1,8-ANS and sodium oleate competes with 1,8-ANS for Cygb 

binding site.  

8.2. Results  

8.2.1. Fluorescence properties of ANS binding to Cygb 

8.2.1.1. Steady state fluorescence spectroscopy 

The 1,8-ANS dye was employed as an extrinsic fluorescent probe to monitor 

changes in the surface of Cygb structure. In order to investigate the impact of the 

oxidation state of the iron atom, presence of the disulfide bond, and binding of exogenous 

ligands on association of Cygb to 1,8-ANS, the following forms of the protein were 

characterized: ferric Cygb (Cygb), ferric Cygb reduced with DTT (Cygbred), cyanide 

bound ferric Cygb in the presence (CNCygb) and absence of the disulfide bond 

(CNCygbred), ferrous Cygb (Fe2+Cygb) and CO bound ferrous Cygb (CO-Fe2+Cygb). In 

addition, to probe the impact of the oligomerization state of Cygb on its interaction with 

1,8-ANS, a high concentration of the protein (100 μM) was tested. Solution studies 

indicate that Cygb is a monomer at low concentration of the protein (~ 20 μM), whereas 

at higher concentrations forms homodimers (Lechauve et al., 2010).  

The emission intensity of free 1,8-ANS in solution is low, as a consequence of its 

small quantum yield of approximately 0.004, and has an emission maximum located at ~ 

520 nm (Stryer, 1965). Addition of 1,8-ANS to Cygb (20 μM) in 50 mM Tris buffer, pH 

7, leads to an increase in the emission intensity of ANS and a hypsochromic shift from ~ 

520 nm to ~ 470 nm (Figure 8.3). Similar results were observed for all the other forms of 

the proteins studied and the emission maximum observed upon addition of 1,8-ANS to 

Cygb in its different forms is listed in Table 8.1. Such enhancement of the emission 
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intensity of 1,8-ANS and the observed blue shift of the emission maximum in the 

presence of the protein are attributed to complexation of the fluorescent probe with Cygb 

in its different forms. These results are comparable to those reported for the association 

of 1,8-ANS to oxyhemoglobin in 50 mM phosphate buffer (pH 7.4), in which the 

emission maximum of 1,8-ANS shifted to ~ 486 nm upon addition of oxyhemoglobin 

(Syakhovich et al., 2004).  

To further confirm that Cygb associates with the dye, steady-state polarization 

was also employed to characterize binding of 1,8-ANS to Fe3+Cygb, Fe2+Cygb and CO-

Fe2+Cygb. The polarization value of free 1,8-ANS in solution was 0.21. Addition of 1,8-

ANS to Cygb does not seem to impact the polarization values of 1,8-ANS as evident by 

the similarity of polarization between the free 1,8-ANS molecule and in complex with 

Cygb: Fe3+Cygb (0.25), Fe2+Cygb (0.25) and CO-Fe2+Cygb (0.34). The fact that the 

difference in polarization between free 1,8-ANS and 1,8-ANS in complex with Cygb is 

very small is likely a result light scattering of the free 1,8-ANS solution, which would 

increase the polarization value for free 1,8-ANS. Alternatively, the small difference in 

polarization may be a consequence of the short lifetime of the fluorophore. The shorter 

the lifetime of the fluorophore, the less the fluorophore will rotate between the absorption 

and emission of a photon and thus the higher the polarization of the emitted light will be 

(Jameson and Ross, 2010).   
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Figure 8.3 Fluorescence emission of 40 μM of 1,8-ANS in buffer (black line) and in the 
presence of 20 μM ferric Cygb (blue line). The buffer used was 50 mM Tris, pH 7.0. The 
excitation wavelength was 350 nm. 

 

In order to determine the affinity of 1,8-ANS for Cygb in its different forms, a 

protein at constant concentration (20 μM) was titrated with the fluorescent probe. 

Representative fluorescence emission spectra of 1,8-ANS in the presence of ferric Cygb, 

Cygbred, CO-Fe2+Cygb, and CNCygbred are shown in Figure 8.4. The emission intensity 

of 1,8-ANS gradually increased upon addition of higher concentrations of the fluorescent 

probe.  
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Figure 8.4 Fluorescence emission of different concentrations of 1,8-ANS in the presence 
of Cygb (A), Cygbred (B), CO-Fe2+Cygb (C), and CNCygbred (D). Conditions: 20 μM 
protein in 50 mM Tris (pH 7.0) for Cygb and CO-Fe2+Cygb, containing 10 mM DTT for 
Cygbred, and containing 10 mM DTT and 10 mM KCN for CNCygbred. The excitation 
wavelength was 350 nm. 

 

The maximum emission intensity of each concentration of 1,8-ANS in the 

presence of Cygb was plotted as a function of the concentration of 1,8-ANS (Figure 8.5) 

and the dissociation constant for each complex was determined from the fit of the curve 

to a single binding site according to equation 8.1. The apparent dissociation constants for 

1,8-ANS in complex with Cygb, Fe2+Cygb, CO-Fe2+Cygb, CNCygb, Cygbred and CN-

Cygbred are listed in Table 8.1. 
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 where F represents the fluorescence intensity, Fmax is the maximum fluorescence 

intensity, [1,8-ANS] is the concentration of the fluorescent probe and Kd is the 

dissociation constant (Kane and Bernlohr, 1996). 
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Figure 8.5 Titration curves of 1,8-ANS binding to Cygb, Cygbred, CNCygb, CNCygbred, 
Fe2+Cygb and CO-Fe2+Cygb. Conditions: 20 μM protein in 50 mM Tris, pH 7.0. 

 

An apparent Kd value of 20 ± 2 μM was determined for binding of 1,8-ANS to 

Cygb, indicating moderate affinity of the dye to the protein. A comparable Kd value was 

obtained at higher Cygb concentration of the protein (Kd = 26 ± 3) indicating that Cygb 

binding to 1,8-ANS does not depend on Cygb concentration up to 100 μM. The fact that 

the Kd for Cygb association to 1,8-ANS does not depend on the concentration of the 

protein is somewhat surprising since it was proposed that Cygb forms homodimers at 

concentrations higher than ~ 30 μM (Lechauve et al., 2010). The Kd value for 1,8-ANS 
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binding to Cygbred, in which the disulfide bond was reduced by addition of DTT, was 

approximately two times higher than the Kd observed in the presence of the disulfide 

bond. On the other hand, the Kd value for 1,8-ANS binding to Cygb was not affected by 

the binding of exogenous ligands such as cyanide and CO or the oxidation state of the 

iron atom, as evident from the comparable affinity of the dye to the ferric (Cygb) and 

ferrous (Fe2+Cygb) forms of the protein in the absence and presence of exogenous ligand 

CO and CN-. These results suggest that disruption of the disulfide bond changes the 

properties of the protein surface in Cygb in a larger extent than binding of exogenous 

ligands. 

Table 8.1 Dissociation constants and emission maximum for 1,8-ANS association to 
Cygb in its different forms determined using steady-state fluorescence spectroscopy. 

Sample Kd (μM) λmax (nm) 

Cygb (100 μM) 26 ± 3 473 

Cygb  20 ± 2 470 

Cygbred 46 ± 8 468 

CNCygb 20 ± 5 470 

CNCygbred 19 ± 1 478 

Fe2+Cygb 21 ± 2 467 

CO- Fe2+Cygb 26 ± 2 467 

 

Since human Ngb presents structural similarities with human Cygb (e.g., heme 

hexa-coordination and presence of disulfide bond), I tested the interaction of 1,8-ANS 

with human Ngb. Interestingly, no hypsochromic shift in the 1,8-ANS emission 
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maximum occurred upon addition of the fluorescent probe 1,8-ANS to human Ngb even 

at high concentrations of the dye (150 μM), as shown in Figure 8.6. A small increase in 

the emission intensity that was observed upon addition of the dye to hNgb can be 

attributed to a non-specific 1,8-ANS binding to the protein surface. The different spectral 

properties observed for 1,8-ANS in the presence of Cygb and Ngb indicates that 1,8-ANS 

does not associate to Ngb, suggesting specific interactions between 1,8-ANS and Cygb, 

which is also confirmed by the fact that other fluorescent hydrophobic probes such as 

2,6-ANS and nile red do not bind to Cygb (data not shown).  
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Figure 8.6 Fluorescence emission of 40 μM of 1,8-ANS in buffer (black line) and in the 
presence of 20 μM Ngb. The buffer used was 50 mM Tris, pH 7.0. The excitation 
wavelength was 350 nm. The sharp peak with a maximum at 485 nm corresponds to light 
scattering. 

 

To obtain further insight into the structural features responsible for association of 

Cygb to 1,8-ANS, a truncated form of Cygb that does not contain the extended N- and C-

termini (ΔNΔC-Cygb) was prepared in collaboration with Ms. Antonija Tangar 
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(Chemistry and Biochemistry Department, FIU). Addition of 1,8-ANS to ΔNΔC-Cygb 

results in a shift in the emission maximum of 1,8-ANS from ~ 528 nm to ~ 488 nm and 

an increase in emission intensity that is approximately 4.3 times lower than the emission 

intensity observed for Cygb (Figure 8.7), indicating that the formation of 1,8-ANS:Cygb 

complex is strongly enhanced in the presence of the extended N- and C- termini.  
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Figure 8.7 Fluorescence emission of 40 μM of 1,8-ANS in buffer (black line), in the 
presence of 20 μM ferric Cygb (blue line) and 20 μM ferric ΔNΔC-Cygb (red line). 
Conditions: 50 mM Tris, pH 7.0. The excitation wavelength was 350 nm. 

 
8.2.2. Time-resolved fluorescence spectroscopy 

The fluorescence lifetime of a dye provides valuable information regarding the 

polarity/hydrophobicity and conformational heterogeneity of a microenvironment 

surrounding (Lakowicz, 2006). Here, time-resolved fluorescence spectroscopy in the 

frequency domain was employed to characterize hydrophobic surfaces of Cygb at 

different oxidation and ligation states. The frequency modulation data for 1,8-ANS:Cygb, 
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1,8-ANS:Cygbred, and 1,8-ANS:CNCygb complexes are displayed in Figure 8.8. The data 

were analyzed using a three discrete lifetime model that provided the best fits (as judged 

by residuals and χ2 values). The fluorescence decay parameters are summarized in Table 

8.2.  
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Figure 8.8 Time-resolved fluorescence in the frequency domain data determined for ANS 
in 1,8-ANS:Cygb (black squares), 1,8-ANS:Cygbred (blue circles) and 1,8-ANS:CNCygb 
(red triangles) complexes. Phase delay data are shown as closed symbol and modulation 
ratio data are displayed as open symbols. Solid lines represent the fit to the data using a 
three exponential decay model. The data were analyzed using Globals software. 
Conditions: 20 μM protein, 40 μM 1,8-ANS in 50 mM Tris (pH 7.0), containing 10 mM 
DTT for Cygbred, and 10 mM KCN for CNCygb. The reference compound used was 
POPOP solubilized in ethanol (τ =1.35 ns) (Lakowicz, 2006). 
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Table 8.2 Fluorescence decay parameters associated with 1,8-ANS in complex with 
Cygb, Cygbred and CNCygb.  

Sample τ1 

(ns) 

α1 

(%) 

τ2 

(ns) 

α2 

(%) 

τ3 

(ns) 

α3 

(%) 

χ2 

Cygb-ANS  0.26 ± 0.02 24 ± 1 2.4 ± 0.1 38± 1 7.7 ± 0.2 38 ± 2 1.01 

Cygbred-ANS  0.25 ± 0.02 4 ± 1 2.6 ± 0.1 30± 1 8.2 ± 0.1 67 ± 1 0.98 

CNCygb-ANS 0.29 ± 0.09 7 ± 2 2.6 ± 0.5 26± 3 7.6 ± 0.3 67 ± 1 1.50 

 

The lifetime of free 1,8-ANS in 50 mM Tris buffer (pH 7.0) was ~ 0.26 ns and 

matches well previously reported values (Kirk et al., 1996). In the presence of Cygb, two 

additional lifetimes were determined with the time constants of 2.4 ± 0.1 ns and 7.7 ± 0.2 

ns and were attributed to the probe association to two distinct binding sites with different 

polarity. The shorter lifetime can be associated to an 1,8-ANS molecule bound to a polar 

binding site, whereas the longer lifetime can be attributed to 1,8-ANS bound to a 

hydrophobic site on the protein surface. The presence of numerous ANS binding sites on 

protein surface is not uncommon as several binding sites have been previously reported 

for 1,8-ANS association to other proteins (Syakhovich et al., 2004; Uversky et al., 1996). 

In particular, three lifetimes were also reported for 1,8-ANS association with 

oxyhemoglobin with values of 0.85 ns, 3.78 ns, and 11.74 ns (Syakhovich et al., 2004). 

These values are much shorter than lifetimes of 1,8-ANS bound to non-heme proteins, for 

example, 1,8-ANS bound to apo-myoglobin exhibits a lifetime of 14 ns. Indeed, analysis 

of 1,8-ANS lifetimes in Cygb and in other heme proteins is more complex. The shorter 
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1,8-ANS lifetimes determined for Cygb can be attributed to the increase in polarity of the 

1,8-ANS binding site but may also reflect the efficient quenching of 1,8-ANS emission 

by the heme group. The quenching mechanism involves the resonance energy transfer 

between the 1,8-ANS donor and the heme acceptor since the emission spectrum of 1,8-

ANS overlays with the broad absorption spectrum of the heme group (data not shown). 

Since the energy transfer efficiency strongly depends on the distance between the donor 

and the acceptor as well as orientation of the transient dipole moments of the donor and 

acceptor (Lakowicz, 2006), the short lifetimes observed here may be associated to the 

close proximity of 1,8-ANS binding sites to the heme group.  

Comparable values for τ2 and τ3 were observed in Cygb, Cygbred and CNCygb 

suggesting that breakage of the disulfide bond and binding of an exogenous ligand does 

not largely impact the 1,8-ANS interactions with Cygb and the polarity of the two 

binding sites does not change upon disulfide bond reduction and cyanide association to 

Cygb. However, on the basis of the pre-exponential factors, the second binding site is 

more populated in Cygbred and CNCygb, as evident by the ratio of α3:α2 of ~2:1, than in 

Cygb where the ratio of α3:α2 is 1:1. In addition, the population of free 1,8-ANS in 

solution, represented by the value of α1, was ~ 24% when the probe was in the presence 

of Cygb, whereas a smaller population of the free dye was observed in the presence of 

Cygbred and CNCygb (~ 3% and ~ 7%, respectively). These results suggest that a larger 

fraction of 1,8-ANS molecules are bound to Cygb upon disruption of the disulfide bond 

and binding of exogenous ligands. The fact that the second binding site is more populated 

in Cygbred and CNCygb is likely a result of the conformational change of the protein in 

the reduced and ligand bound form leading to a higher accessibility of the probe to the 
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binding site. Since the crystal structure of native Cygb containing the disulfide bond has 

not been resolved, it becomes difficult to assess the exact differences between native 

Cygb and Cygbred or between Cygb and CNCygb. 

8.2.3. Thermodynamic parameters associated with ANS binding to Cygb 

Association of 1,8-ANS to Cygb, Cygbred, CNCygb and CNCygbred were 

characterized employing isothermal titration calorimetry (ITC) to obtain information 

about the driving forces involved in the binding process between 1,8-ANS and the protein 

in these different forms. In ITC, the binding of the dye to the protein is determined by 

measuring the heat released upon ligand association to protein, which is independent of 

the fluorescence properties of the dye or the dye-protein complexes (Pierce et al., 1999). 

As a result, even association of ligands that bind weakly or either binding does not lead to 

a measurable change in fluorescence intensity can be detected using ITC (Hawe et al., 

2011).  

A solution of the protein at a constant concentration (20 μM) was titrated with 

1,8-ANS and the released heat was measured. Binding isotherms corresponding to ANS 

binding to Cygb, Cygbred, CN-Cygb and CNCygbred in which the heat of dilution of 1,8-

ANS was previously subtracted are shown in Figure 8.9. Each peak shown in the binding 

isotherm corresponds to a single injection of ANS solution and the negative heat signals 

with respect to the baseline indicate that heat was released during the reaction (Banerjee 

and Kishore, 2006). In all cases, the best fit of the ITC data was obtained using a two-

binding sites model and the corresponding dissociation constants and thermodynamic 

parameters for the formation of 1,8-ANS:Cygb complexes are listed in Table 8.3. 



225 
 
 

The Kd values determined for the first binding site using ITC are in the range of 

50 to 76 μM and are somewhat larger than the ones determined by steady-state 

fluorescence spectroscopy, with the exception of CNCygbred in which the Kd value is 

approximately 103 μM suggesting a weaker binding of 1,8-ANS to the CN bound form of 

the reduced protein. The Gibbs free energy change, ΔG, is in the range of -5.50 to -5.85 

kcal mol-1, indicating that there are no significant differences in the association of 1,8-

ANS to Cygb in its different forms studied. At 25 °C the enthalpy change determined for 

the first binding site is small and negative with values ranging from -0.95 to -2.6 kcal 

mol-1, and the TΔS term is positive and in the order of 2.9 to 4.9 kcal mol-1, indicating 

that 1,8-ANS binding to the first binding site is both enthalpically and entropically driven 

(Kinsley et al., 2008). In particular, the positive entropy change determined for 

association of 1,8-ANS to the first binding site in Cygb and its different forms can be 

attributed to release of water molecules hydrating nonpolar surfaces in Cygb upon 1,8-

ANS complexation to the protein (Kinsley et al., 2008). 

The large Kd value determined for the second binding site is in the millimolar 

range and likely reflects non-specific interactions between 1,8-ANS and Cygb in its 

different forms. The larger and more negative enthalpy changes determined for the 

second binding site in the range of -16 to -77 kcal mol-1 as well as the negative and large 

values determined for TΔS are indicative of a reaction that is mainly enthalpically driven 

(Kinsley et al., 2008). A non-specific binding of 1,8-ANS to the protein surface may be 

stabilized by electrostatic interactions between a negative charge of the sulfonyl 1,8-ANS 

group and positively charged amino acid residues on the protein surface (Matulis and 

Lovrien, 1998). Such interactions will result in negative enthalpy changes as well as 
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negative entropy change because of the decrease in the number of molecules in the 

solution. 

 

Figure 8.9 Isothermal titration calorimetry of ANS binding to Cygb (A), CNCygb (B), 
Cygbred (C) and CNCygbred (D). Top: Raw data for the titration of the protein (20 μM) 
with 2 mM ANS in 50 mM Tris buffer (pH 7) at 25 °C. Bottom: Integrated heats of 
binding obtained from fitting the raw data shown in the top panel after subtracting the 
heat of dilution. The solid line represents the best fit to the experimental data using a two 
sites binding model. The buffer used for CN- bound Cygb samples contained 10 mM 
KCN and the buffer for Cygbred samples contained a final concentration of DTT of 1 
mM. 
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Table 8.3 Thermodynamic parameters determined for Cygb-ANS complexes using ITC. 

Sample 
Kd1 

(μM) 

ΔH1 

(kcal mol-1) 

TΔS1 

(kcal mol-1) 

ΔG1 

(kcal mol-1) 

Kd2 

(mM) 

ΔH2 

(kcal mol-1) 

TΔS2 

(kcal mol-1) 

ΔG2 

(kcal mol-1) 

Cygb 50±8 -1.0±0.1 4.9±0.1 -5.9±0.2 1.9±0.2 -16±1 -12±1 -3.7±0.9 

Cygbred 60±6 -2.4±0.2 3.4±0.2 -5.8±0.4 2.8±0.3 -45±4 -40±5 -4.8±0.9 

CNCygb 76±7 -1.8±0.1 3.8±0.1 -5.6±0.2 2.0±0.2 -17±2 -13±2 -3.5±0.8 

CNCygbred 103±18 -2.6±0.3 2.9±0.3 -5.5±0.6 5.7±0.8 -77±12 -75±13 -2.2±0.9 

 

8.2.4. Replacement of 1,8-ANS with sodium oleate  

The affinity of other ligands for 1,8-ANS binding site have been probed using 

fluorescence spectroscopy by observing the decrease in emission of 1,8-ANS -protein 

complexes in the presence of increasing concentrations of competitor ligand (Kane and 

Bernlohr, 1996). Reeder et al. (2011) recently reported that sodium oleate binds to Cygb 

and induces a transition from hexa- to penta-coordinated, indicating a possible role of 

Cygb in lipid transport. However, the molecular mechanism of Cygb interactions with 

lipids as well as the lipid binding site has not been reported. To obtain further insight into 

the interaction of sodium oleate with Cygb, complexes of 1,8-ANS with Cygb were 

titrated with various concentration of sodium oleate. To prevent formation of micelles, 

the concentration of the stock solution of sodium oleate used was 0.7 mM, which is 

below the lowest critical micelle concentration (cmc) and the buffer used was 1 mM 

Hepes (pH 7) to minimize the effect of ionic strength from the buffer. 

Addition of sodium oleate to the Cygb-ANS, Cygbred-ANS and CNCygb-ANS 

complexes results in a decrease of the emission intensity of 1,8-ANS with increasing 

concentrations of oleate, as shown in Figures 8.10 to 8.12, which indicates that 1,8-ANS 

is replaced by oleate. These results suggest that oleate competes with the fluorescent 
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probe 1,8-ANS for the same binding site or induces a conformational change that 

decreases 1,8-ANS binding to Cygb.  Similar results have been observed for the 

interaction of 1,8-ANS with intestinal fatty acid binding protein (Kane and Bernlohr, 

1996 and Kirk et al 1995). 

Replacement studies with sodium oleate were also performed on                        

1,8-ANS :CNCygbred complex, but the emission intensity of 1,8-ANS in this complex 

increased upon addition of sodium oleate. The emission increase of 1,8-ANS suggests 

formation of micelles even at low concentration of buffer (1 mM Hepes), likely as a 

result of the increased ionic strength of the solution since it contains 1 mM DTT and 10 

mM KCN to disrupt the disulfide bond and keep the protein in cyanide bound form, 

respectively. 

The decay in corrected fluorescence intensity of 1,8-ANS:Cygb complexes 

(Cygb-ANS, Cygbred-ANS and CNCygb-ANS) were plotted as a function of the 

concentration of sodium oleate (competitor ligand), as shown in Figure 8.13. The 

apparent inhibitor contants (Ki) were determined from the fit of the binding curves to 

equation 8.2 and are listed in Table 8.4. 

d

i

K

ANS
I

K
]8,1[

1

50

−+
=            (8.2) 

where [1,8-ANS] is the concentration of free ANS, and Kd is the apparent 

dissociation constant of 1,8-ANS (from steady-state fluorescence measurements). Ki 

refers to the apparent inhibitor constant, which corresponds to the concentration of 

sodium oleate that would bind to 50% of the protein molecules if no 1,8-ANS were 
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present. The midpoint of the competition curve corresponds to the I50 (Kane and 

Bernlohr, 1996).  

The inhibition constant, Ki, determined for oleate displacement of 1,8-ANS from 

Cygb-ANS complexes is not significantly affected by the association of the exogenous 

ligand CN-, however  a small effect was observed upon disruption of the disulfide bond in 

Cygb, suggesting a role of the disulfide bond in Cygb binding to lipids. The concentration 

of the protein does not affect the inhibition constant as evident by comparable values for 

Ki for Cygb-ANS complexes with ratios 1:1 and 1:2. 
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Figure 8.10 Fluorescence emission of 1,8-ANS in complex with Cygb (1:1) in the 
absence and presence of increasing concentration of sodium oleate. Conditions: 20 μM 
Cygb, 20 μM 1,8-ANS in 1 mM Hepes, pH 7.0. 
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Figure 8.11 Fluorescence emission of 1,8-ANS in complex with Cygbred (1:1) in the 
absence and presence of increasing concentration of sodium oleate. Conditions: 20 μM 
Cygbred, 20 μM 1,8-ANS in 1 mM Hepes, pH 7.0, containing 1 mM DTT. 
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Figure 8.12 Fluorescence emission of 1,8-ANS in complex with CNCygb (1:1) in the 
absence and presence of increasing concentration of sodium oleate. Conditions: 20 μM 
CNCygb, 20 μM 1,8-ANS in 1 mM Hepes, pH 7.0, containing 10 mM KCN. 
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Figure 8.13 Titration curves for addition of sodium oleate to Cygb-ANS, Cygbred-ANS, 
and CNCybg-ANS complexes. The concentration of the protein and 1,8-ANS were 20 
μM. The buffer used was 1 mM Hepes for Cygb-ANS, 1 mM Hepes containing 10 mM 
DTT for Cygbred-ANS, and 1 mM Hepes containing 10 mM KCN for CNCygb-ANS. 

 

Table 8.4 Inhibitor constants determined for displacement of 1,8-ANS with sodium oleate 
in Cygb-ANS complexes. 

Sample I50 (μM) Ki (μM) 

Cygb-ANS (1:1) 56 ± 3 26 ± 4 

Cygb-ANS (1:2) 69 ± 4 21 ± 4 

CygbDTT-ANS (1:1) 95 ± 7 66 ± 8 

CNCygb-ANS (1:1) 35 ± 6 19 ± 7 

 

8.2.5. Molecular docking studies  

Fluorescence and ITC data demonstrate that 1,8-ANS associates to Cygb, and the 

displacement studies with sodium oleate suggests that oleate binds to the same binding 
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site, or a region similar to that in which 1,8-ANS binds, thereby competing with 1,8-

ANS. To complement the experimental data and obtain structural information on the 

binding site of 1,8-ANS and oleate in Cygb, the molecular docking program AutoDock 

was employed using YASARA molecular modeling software for computational docking 

of 1,8-ANS and oleate on Cygb structure. The crystal structure of wild type Cygb (PDB: 

2DC3, molecule B) was employed as the rigid “receptor”, whereas 1,8-ANS and sodium 

oleate were used as the flexible ligands. The structures of 1,8-ANS and sodium oleate 

were minimized employing Hyperchem software prior docking simulations. The structure 

of the protein was minimized using Amber03 force field in YASARA molecular 

modeling software. 

The molecular model of the complex corresponding to the highest affinity binding 

site, predicted from the docking simulation of 1,8-ANS binding to Cygb, is shown in 

Figure 8.14, and is located at the interface of α-helices G and H. The 1,8-ANS anilino 

and naphthyl rings are stabilized by the side chains of Val 122, Ile 126 and Ala 152 as 

well as the backbone of Lys 125 through hydrophobic interactions, whereas the 

negatively charged sulfonate group seems to be stabilized by the side chain of Arg 155 

through electrostatic interactions. Comparison of the sequence of human Cygb with that 

of human Ngb and Mb shows that the residues occupying the positions mentioned above 

are different for the three proteins. In Ngb, these residues are Ser 122, Ser 125, Thr 126, 

Gly 128, Gly 129 and Ser 130. In case of Mb, the residues are Lys 122, Glu 125, Phe 

126, Ser 128, Glu 129 and Cys 130. Although the homology in this region is higher 

between Cygb and Mb than between Cygb and Ngb, these differences may explain the 

higher affinity of 1,8-ANS for Cygb than for Mb and Ngb. 
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Figure 8.14 Representation of binding site with highest affinity determined from the 
docking of 1,8-ANS to Cygb (PDB file: 2DC3, molecule B). 

 

The molecular docking model showing the highest affinity of oleate binding to 

Cygb is shown in Figure 8.15. Oleate binding site is located at the interface between the 

A-helix and the small α-helical structure formed by the extended N-terminus of Cygb. 

The long hydrophobic alkyl chain of oleate is highly flexible and covers the cavity on the 

surface on Cygb formed by the side chains of residues Pro 5 and Leu 19,  as well as the 

backbone of Glu 9, Arg 12, Arg 13, Ser 16, and Glu 18. The negatively charged carboxyl 

group of oleate points toward the side chain of Arg 24 and Glu 21, indicating that 

association of oleate to Cygb is also stabilized through electrostatic and/or hydrogen 

bonding with the side chain of Arg 24 and Glu 21.  

My results indicate that sodium oleate displaces 1,8-ANS from Cygb-ANS 

complex, as evidenced by the decrease in the emission intensity of 1,8-ANS in the 

presence of the protein upon addition of sodium oleate. Therefore, the molecular models 

obtained from the docking simulation of 1,8-ANS binding to Cygb were further inspected 
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to determine a binding site for 1,8-ANS occupying a position where oleate also binds to 

the protein. One of the clusters formed by 1,8-ANS molecules binding to Cygb is located 

close to the extended N-terminus of Cygb (Figure 8.16). The anilino and naphthalene 

rings are partially buried within the cavity formed by the side chains and backbone of Val 

4, Pro 5, Ile 10, Glu 9, Arg 13, Ser 16, Glu 18, Ser 20 and Glu 21 through hydrophobic 

interactions. On the other hand, the sulfonate group of 1,8-ANS is mostly solvent 

exposed and stabilized by interactions with Arg 24 side chain. It has been previously 

reported that 1,8-ANS binding to proteins is stabilized by both hydrophobic and 

hydrophilic interactions, in which the side chains of Arg, Lys and His residues stabilize 

the sulfonate group of 1,8-ANS (Matulis and Lovrien, 1998). Although this binding site 

for 1,8-ANS does not correspond to the highest affinity binding site, it would explain the 

decreased intensity emission of 1,8-ANS association to the truncated form of Cygb 

ΔNΔC-Cygb. Interestingly, residues Arg 24, Glu 21 and Ser 20 are also observed as 

residues involved in the association of oleate to Cygb (Figure 8.18), suggesting a 

competitive binding between 1,8-ANS and oleate.  
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Figure 8.15 Docking of oleate to Cygb (PDB file: 2DC3, molecule B). The solvent 
accessible surface of Cygb structure is shown in light blue color, whereas oleate structure 
is shown as sticks. 

 

 

Figure 8.16 Docking of 1,8-ANS to Cygb (PDB file: 2DC3, molecule B). The solvent 
accessible surface of Cygb structure is shown in light blue color, whereas 1,8-ANS 
structure is shown as sticks. 
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Figure 8.17 Representation of solvent accessible surface area of residues involved in the 
interaction of Cygb (PDB file: 2DC3, molecule B) with 1,8-ANS. 

 

 

Figure 8.18 Representation of solvent accessible surface area of residues involved in the 
interaction of Cygb (PDB file: 2DC3, molecule B) with oleate that are also involved in 
the interaction of Cygb with 1,8-ANS. 

 

8.3. Discussion 

The compound 1,8-ANS is a widely employed fluorescent probe that non-

covalently attaches to the hydrophobic cavities and/or clefts on protein surfaces and are 

commonly used to monitor solvent exposed hydrophobic patches as well as protein 

unfolding mechanism (Cardamone and Puri, 1992; Hawe et al., 2008; Pastukhov and 

Ropson, 2003; Uversky et al., 1996). Steady-state and time-resolved fluorescence 
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spectroscopy, as well as ITC were employed to characterize the interactions of 1,8-ANS 

with Cygb. Molecular docking simulations were performed to complement the 

experimental data and obtain structural information about ANS and oleate binding sites. 

The substantial enhancement of the fluorescence intensity of 1,8-ANS and the 

shift to shorter wavelengths of the emission maximum of the probe in the presence of 

Cygb indicates association of 1,8-ANS to the protein. Similar results were observed for 

the different forms of Cygb tested: Fe2+Cygb, CO-Fe2+Cygb, CNCygb, Cygbred and CN-

Cygbred. A single binding site was determined for 1,8-ANS association to Cygb in its 

different forms employing steady-state fluorescence and a Kd value of 20 ± 2 was 

determined for 1,8-ANS association to ferric Cygb, indicating that 1,8-ANS binds to the 

protein with moderate affinity. The oxidation state of the heme iron and binding of 

exogenous ligand does not impact the affinity of 1,8-ANS for the protein as evident by 

comparable Kd values determined for 1,8-ANS association to Fe2+Cygb, CO-Fe2+Cygb 

and CNCygb. Conversely, reduction of the disulfide bond in Cygb decreases the affinity 

of Cygb for 1,8-ANS as evident from the approximately two-fold increase of the Kd value 

of Cygbred.  

Since the extended N- and C- terminal were proposed to have a role in association 

of Cygb to lipids (Reeder et al., 2011), the impact of the extended N- and C-termini in 

Cygb was probed by characterizing 1,8-ANS association to a truncated form of Cygb in 

which the extended termini are missing (ΔNΔC-Cygb) by using steady-state fluorescence 

spectroscopy. Although addition of 1,8-ANS to ΔNΔC-Cygb results in a blue shift in the 

emission maximum of ANS and enhanced fluorescence intensity, the increment in 

emission intensity is approximately 4.3 times lower for ΔNΔC-Cygb than for native Cygb 
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under the same experimental conditions. In addition, the emission maximum of 1,8-ANS 

in the presence of ΔNΔC-Cygb is less blue shifted (488 nm) than observed for Cygb (470 

nm). These results suggest a role of the extended N- or C-terminus of Cygb in association 

with ANS, likely providing a binding pocket to accommodate an 1,8-ANS molecule. In 

the absence of these extended termini, the three dimensional structure of Cygb is almost 

superimposable with that of Mb and Ngb. Interestingly, 1,8-ANS does not associate to 

Ngb as evident by no blue shift of the emission maximum nor enhanced fluorescence 

intensity of 1,8-ANS in the presence of Ngb. Furthermore, the Kd value reported for 1,8-

ANS binding to native Mb is ~ 600 μM (Mukherjee et al., 2006), which indicates that 

1,8-ANS associates to Cygb with ~ 30 times higher affinity than Mb.  

The fact that different binding sites may not contribute equally to the fluorescence 

signal arising from the 1,8-ANS probe in complex with the protein, it may be difficult to 

evaluate the number of binding sites by only employing steady-state fluorescence. In 

particular, populations of weakly interacting dye molecules may result in a minor 

increase in the overall emission intensity (Hawe et al., 2011; Lakowicz, 2006). Therefore, 

time-resolved fluorescence spectroscopy was employed to evaluate those sites that may 

have a minor contribution to the overall fluorescence intensity. The time-resolved 

fluorescence data in the frequency domain was better fitted employing a three discrete 

decay model, indicating that 1,8-ANS is present in three microenvironments, one 

corresponding to the free molecule in the bulk solution and the other two correspond to 

two binding sites with different polarity.  
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The two additional lifetimes correspond to two distinct binding sites of the 1,8-

ANS to Cygb, reflecting heterogeneity of 1,8-ANS association to the protein. This 

heterogeneity has been previously observed in other systems, including oxyhemoglobin, 

bovine carbonic anhydrase, and human α-lactoglobulin (Syakhovich et al., 2004; Uversky 

et al., 1996).  

Two binding sites were identified with ITC for association of 1,8-ANS to Cygb. 

The Kd values determined for the first binding site are somewhat larger than the ones 

obtained employing fluorescence spectroscopy, with the exception of CNCygbred in 

which the Kd value is close to 100 μM suggesting a weaker binding of 1,8-ANS to the 

cyanide bound form of the reduced protein. The Kd values for the second binding site 

determined using ITC are in the order of 2 and 5.7 mM indicating a weaker non-specific 

binding of the probe to the protein. In ITC, dye binding to protein is measured by the heat 

released upon binding, independent of their fluorescence properties. Therefore, weakly 

binding fractions of 1,8-ANS that may contribute to a lower degree to the overall 

fluorescence intensity can also be detected (Hawe et al., 2011). However, ITC might be 

less sensitive to pick up small fractions of strongly binding and highly fluorescence dye 

molecules, which can be detected in steady-state, and more specifically in time-resolved 

fluorescence (Hawe et al., 2011).  

The thermodynamic parameters determined for the first binding site indicate that 

1,8-ANS binds to the protein through both enthalpic and entropic contributions, since the 

enthalpy change is small and negative and TΔS is small and positive. On the other hand, 

the second binding site is attributed to non-specific binding of ANS to the protein and is 

mainly entropy driven. 
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Since several studies employing fatty acid binding proteins indicate that fatty 

acids displace 1,8-ANS from these proteins in complex with 1,8-ANS (Kane and 

Bernlohr, 1996), a displacement fluorescence study was employed to characterize 

dissociation of 1,8-ANS from 1,8-ANS:Cygb complexes by sodium oleate. It was 

previously reported that Cygb associates with sodium oleate in a 1:1 ratio with a 

dissociation constant that ranges from 0.7 to 110 μM (Reeder et al., 2011). Fatty acids 

interactions with Cygb may be relevant for its physiological function since Cygb may 

have a role in fatty acid transport which could be related to its involvement in cancer 

(Oleksiewicz et al., 2011). In addition, the interaction of Cygb with fatty acids may be 

involved in a pathway that aids in translocation of the protein from the cytoplasm to the 

nucleus. Steady-state fluorescence results demonstrate that sodium oleate displaces 1,8-

ANS from the 1,8-ANS:Cygb complexes. The inhibition constants determined for Cygb, 

Cygbred and CNCygb are in the range of ~ 20 to ~ 61 μM, thereby reduction of the 

disulfide bind and association of exogenous ligands do not largely impact the association 

of the protein to oleate. Although there is no structural data available for 1,8-ANS:Cygb 

complexes, since oleate competes with 1,8-ANS binding, one can reasonably speculate 

that 1,8-ANS resides somewhere in the fatty acid binding site (Kane and Bernlohr, 1996). 

Docking of 1,8-ANS to Cygb indicates that the binding site with highest affinity is 

located on the interface between helices G and H, however, the second binding site 

identified in docking studies is located at the same position retrieved from the highest 

affinity binding site determined for oleate binding to Cygb using the same docking 

simulation method. Therefore, oleate may compete with 1,8-ANS for this binding site. 

Docking of oleate to Cygb indicates that the fatty acid interacts with the side chains of 
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residues located at the extended N-termini and some residues involved in Cygb-oleate 

interactions are also involved in 1,8-ANS-Cygb interactions, such as Arg 24, Glu 21 and 

Ser 20. 

Since the time-resolved fluorescence data indicates that 1,8-ANS binds to two 

sites of different polarity, the 1,8-ANS binding site with highest affinity retrieved from 

1,8-ANS docking to Cygb might correspond to the more solvent exposed binding site 

with shorter lifetime. Comparison of the sequence homology between Cygb and other 

globins, such as Mb and Ngb, suggests that this binding site is specific for Cygb since 

few residues involved in 1,8-ANS-Cygb interactions are also present in Mb and Ngb 

sequence. On the other hand, the ANS binding site located at the same position where 

oleate associates to Cygb might correspond to the more apolar binding site with longer 

lifetime because 1,8-ANS molecule seems to be more buried at the interface between the 

extended N-termini and the A α-helix in Cygb. 

Noteworthy, since the C-terminus of Cygb has not been resolved in the crystal 

structure of Cygb showing the extended termini; it is possible that the binding site in 

which oleate and ANS compete to associate with the protein could be located in the 

proximity of the extended C-terminus. Further investigation is needed using the truncated 

form of each extended terminus (i.e., ΔN-Cygb and ΔC-Cygb) to determine the effect of 

each mutation on association of the protein with ANS. 

8.4. Summary 

Steady-state and time-resolved fluorescence spectroscopy, as well as ITC were 

employed to characterize the interactions of 1,8-ANS with Cygb. A fluorescence 

displacement assay was used to characterize the association of oleate to Cygb by taking 
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advantage of the enhanced fluorescence emission of 1,8-ANS in the presence of Cygb. In 

addition, molecular docking simulations were performed to complement the experimental 

data and obtain structural information about 1,8-ANS and oleate binding sites. 

Spectroscopic and thermodynamic data demonstrates that 1,8-ANS associates to 

Cygb with a moderate affinity. A single binding site was retrieved from the steady-state 

fluorescence data, but the time-resolved fluorescence data indicates that 1,8-ANS in 

complex with Cygb is present in two environments with different polarity likely as a 

result of the presence of two binding sites. Similarly, the ITC data were best fitted with a 

set of two binding sites model with one site of moderate affinity, whereas the other set of 

binding sites was attributed to non-specific binding of the probe to the protein. The first 

binding site determined with ITC has both enthalpic and entropic contributions indicating 

hydrophobic and hydrophilic interactions between 1,8-ANS and Cygb for this binding 

site. Visual inspection of the molecular models retrieved from docking of 1,8-ANS and 

oleate to Cygb in combination with the experimental results suggest that 1,8-ANS might 

bind to two sites, one located at the interface between helices G and H and the other one 

located between the extended N-terminus and A-helix of Cygb. The binding site located 

close to the extended N-terminus of Cygb shares amino acid residues involved in the 

interaction between oleate and Cygb, indicating that this is the site where 1,8-ANS and 

oleate compete for Cygb binding site. The extended termini in Cygb may form a binding 

pocket for ANS and oleate interactions; therefore this structural feature not found in other 

globins has a crucial role in the interaction of Cygb with lipids that might be important 

for the physiological function of the protein. 



243 
 
 

9. GUANIDINIUM HYDROCHLORIDE INDUCED UNFOLDING STUDY OF 

HUMAN CYTOGLOBIN AND NEUROGLOBIN 

9.1. Introduction 

Protein folding and unfolding is one of the most studied areas of biochemistry and 

biophysics. For many proteins, polypeptide chains must typically fold into their three-

dimensional structure, once released from the ribosome in vivo or denatured in vitro, in 

order to function (Gregersen et al., 2006). Some pathological conditions have been linked 

to protein unfolding and accumulation of mis-folded proteins that lead to formation of 

aggregates, such as the so-called mis-folding diseases (e.g., Alzheimer’s, Parkinson’s, 

Huntington’s and Creutzfeldt-Jakob disease) (Gregersen et al., 2006), ), and cancer 

(Hinton et al., 2013). Therefore, investigation of the mechanism by which proteins fold 

from a disordered denatured state to a more ordered native state is important to 

understand the factors that promote folding (Nolting, 2006).  

Unfolding transitions can be described using a two-state, three-state or more 

complex models. The two-state model assumes that only the native (N) and unfolded (U) 

states are present at equilibrium ( UN ↔ ), whereas the three-state model assumes a 

multistep process that includes the formation of an intermediate species (I) described by 

the following reaction: UIN ↔↔  (Nolting, 2006). 

The unfolding process in proteins can be induced by adding chemical denaturants, 

or by changing the pH or temperature of the solution (Kelly and Price, 1997; Mu et al., 

2010; Santoro and Bolen, 1988). Hence, a method used to determine the stability of a 

protein and investigate unfolding transitions consists in titration of the protein with 

denaturants and the spectroscopic signal is measured as a function of denaturant 
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concentration. The most commonly used chemical denaturants to study protein unfolding 

are guanidinium hydrochloride (GuHCl) and urea (Monera et al., 1994). Urea and GuHCl 

denaturation curves are generally used to obtain an estimate of the conformational 

stability of proteins by measuring the differences in conformational stabilities between 

the folded (native) and the unfolded (denatured) states. The free energy change in the 

absence of denaturant (ΔGH
2

O) is calculated from analysis of denaturation curves to 

determine the stability of proteins (Pace, 1975). Urea and GuHCl molecules are presumed 

to bind to peptide bonds and, as a protein unfolds, more peptide groups are exposed to 

denaturant molecules (Monera et al., 1994; Pace, 1975). However, the mechanism though 

which these denaturants destabilize protein structure is still controversial. Lim et al.  

(2009) have proposed that only urea destabilizes protein structure through hydrogen 

bonding interactions with the peptide groups, whereas guanidinium stacks with other 

planar groups found in aromatic residues and with itself.     

 

Figure 9.1 Structure of guanidinium hydrochloride (GuHCl). 
 

Several studies have focused on understanding the mechanism of protein folding 

and unfolding in globins, especially myoglobin (Mb) and hemoglobin (Hb), since the 

synthesis of these proteins involves expression of the apo-form of the protein (without the 

heme group) and incorporation of the heme cofactor. A better understanding of how these 

proteins fold and incorporate the heme group into their structure is of interest in the field 
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of biotechnology to express stable proteins that could be used as blood substitutes 

(Culbertson and Olson, 2010).  Despite the fact that most studies focused and folding of 

heme proteins has been performed on their apo-forms (without the heme group), it has 

been demonstrated that heme affinity is important for stability of Mb (Hargrove and 

Olson, 1996; Hargrove et al., 1996). Unfolding of Mb has been described using a two-

state model and it was proposed that the heme group maintains its interaction with the 

unfolded polypeptide chain through the proximal His (Moczygemba et al., 2000).  

Although there are several studies focusing on unfolding of vertebrate globins, 

there are only few studies that focus on folding/unfolding of the two new members of the 

vertebrate globin family, namely neuroglobin (Ngb) and cytoglobin (Cygb). Thermally 

induced denaturation of Ngb and Cygb was investigated by Hamdane et al. (2005) and 

their results show that these proteins present enhanced thermal stability with a melting 

temperature (Tm) of 100 °C for human Ngb (hNgb) and 95 °C for Cygb. In addition, this 

group observed a single transition between the folded state to the unfolded state in Ngb 

and Cygb. A recent study by Guca et al. (2013) describes the GuHCl-induced 

denaturation of hNgb with a two-state model. However, the acid-induced and GuHCl-

induced denaturation of apoNgb was proposed to occur through a three-state mechanism 

in which the transition from the folded state to the unfolding state occurs through the 

formation of a molten globule intermediate, whereas urea-induced denaturation occurs 

through a two-state transition (Mu et al., 2010; Zhang et al., 2013a).  

In this work, I studied the GuHCl-induced unfolding of hNgb and human Cygb 

employing UV-visible absorption spectroscopy and circular dichroism spectroscopy. To 

determine the impact of the disulfide bond and association of exogenous ligands on the 
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stability of Cygb, the protein in the presence and absence of the disulfide bond (Cygbred) 

as well as the cyanide adduct of Cygb (CNCygb) were also characterized. Far-UV 

circular dichroism (CD) spectroscopy provides information about the secondary structure 

of a protein and is extensively used as a tool to monitor protein folding/unfolding (Kelly 

and Price, 1997). In case of heme proteins, the sensitivity of the Soret band to changes in 

the environment (e.g., chemical changes, pH, temperature) allows the use of absorption 

spectroscopy to characterize unfolding transitions (Guca et al., 2013; Hamdane et al., 

2005; Hargrove and Olson, 1996). 

To obtain insight about ligand-induced global transitions in hNgb, time-resolved 

fluorescence in the frequency domain was employed to characterize bishistidyl Fe3+hNgb 

and cyanide bound Fe3+hNgb. Since the sequence of hNgb contains three Trp residues 

(W13, W133 and W148), three hNgb mutants were constructed to obtain hNgb constructs 

carrying a single Trp residue (W13Y/ W133Y, W13Y/W148Y, and W133Y/W148Y) and 

also characterized in the absence and presence of cyanide using time-resolved 

fluorescence spectroscopy. As shown in Figure 9.2, residues Trp 13 is located in the A 

helix at ~ 7 Å from the heme group, Trp 133 is located in the H helix at ~ 20 Å from the 

heme iron, whereas Trp 148 is located at the end of α-helix H in the C-terminus at ~ 20 Å 

from the heme iron. The impact of the substitution of two Trp residues with Tyr on the 

stability of hNgb was determined by monitoring GuHCl-induced unfolding of the protein.  
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Figure 9.2 Top: Three dimensional structure of hNgb (PDB entry 1OJ6, molecule A) 
depicting the heme prosthetic group, distal His 64, proximal His 96, and residues Trp 13, 
Trp 133 and Trp 148 as sticks. Botton: Distance between the heme iron and Trp residues 
in hNgb. 
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9.2. Results 

9.2.1. Cytoglobin 

The GuHCl-induced structural changes of Cygb were investigated by using UV-visible 

absorption spectroscopy and CD spectroscopy. To assess the impact of the disulfide bond 

and binding of exogenous ligand on the stability of Cygb, the protein was studied in the 

presence (Cygb) and absence of the disulfide bond by reducing the disulfide bond with 10 

mM DTT (Cygbred), as well as the cyanide bound adduct (CNCygb). 

9.2.1.1. UV-Visible absorption spectroscopy 

The Soret band in heme proteins is characterized by a large extinction coefficient 

and is sensitive to changes in the environment such as chemical changes, hence the 

changes in absorbance of the Soret band upon addition of chaotropic agents (e.g., urea 

and guanidinium hydrochloride) or changes in pH has been extensively used in unfolding 

studies of heme proteins (Guca et al., 2013; Hargrove and Olson, 1996). Therefore, the 

GuHCl-induced unfolding of Cygb was monitored by the change in intensity of the Soret 

band upon addition of the caotropic agent GuHCl in 50 mM Tris buffer (pH 7.0). 

Addition of GuHCl to Cygb results in a decreased intensity and a hypsochromic 

shift in the maximum wavelength of the Soret band (Figure 9.3), which is consistent with 

exposure of the heme group to the solvent as previously observed in Mb (Hargrove and 

Olson, 1996). Similar results were observed for Cygbred and CNCygb, as shown in 

Figures 9.4 and 9.5, respectively.  
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Figure 9.3 UV-visible absorption spectra of Cygb in the presence of increasing 
concentrations of GuHCl from 0 to 6 M. The concentration of the proteins was 
approximately 10 μM in 10 mM Tris buffer (pH 7.0). 
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Figure 9.4 UV-visible absorption spectra of Cygbred in the presence of increasing 
concentrations of GuHCl from 0 to 6 M. The concentration of the proteins was 
approximately 10 μM. The buffer used was 10 mM Tris buffer (pH 7.0) containing 10 
mM DTT. 
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Figure 9.5 UV-visible absorption spectra of CNCygb in the presence of increasing 
concentrations of GuHCl from 0 to 6 M. The concentration of the proteins was 
approximately 10 μM. The buffer used for Cygb was 10 mM Tris buffer (pH 7.0) 
containing 10 mM KCN. 

 

The fraction of unfolded protein was plotted as a function of the concentration of 

denaturant and the resulting denaturation curves are shown in Figure 9.6. A single 

transition, from folded to unfolded, is observed from the denaturation curves. Therefore, 

the equilibrium unfolding data determined for wild type Cygb, Cygbred and CNCygb were 

analyzed using a two-state model, according to the method reported by Santoro & Bolen 

(1988) as described below. 

 The variation of the signal, Y, with respect to the concentration of GuHCl is 

described by: 
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where OHNY
2, and Nβ are the intercept and slope of the pre-transition baseline, 

OHDY
2,  and Dβ are the intercept and slope of the post-transition baseline, ][GuHCl is the 

concentration of GuHCl, OH
oG 2Δ  corresponds to the the free energy of unfolding in the 

absence of denaturant, and m represents the dependence on the denaturant concentration 

(Santoro and Bolen, 1988). Origin software was employed to fit the denaturation curves. 

Noteworthy, the absence of a single isosbestic point in the denaturation curves in 

Cygb, Cygbred and CNCygb suggests that an intermediate may be formed during the 

unfolding process; however it could not be resolved using UV-visible spectroscopy likely 

as a result of a low fraction of the intermediate. 

The determined values for free energy of unfolding ( OH
oG 2Δ ) and the degree of 

hydrophobic exposure upon unfolding (m) are listed in Table 9.1. 
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Figure 9.6 Unfolding curves of Cygb, Cygbred and CNCygb monitored using UV-visible 
absorption spectroscopy as a function of GuHCl concentration. The concentration of the 
protein was ~ 10 μM in 10 mM Tris buffer, pH 7.0. The buffer used for Cygbred samples 
contained 10 mM DTT and for CNCygb samples contained 10 mM KCN. 
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Table 9.1 Free energy of unfolding ( OH
oG 2Δ ) and degree of hydrophobic exposure upon 

GuHCl-induced unfolding (m) determined for Cygb, Cygbred and CNCygb employing 
UV-visible absorption spectroscopy. 

 OH
oG 2Δ  (kcal mol-1) m (kcal mol-1 M-1) 

Cygb 4.8 ± 0.4 1.5 ± 0.1 

Cygbred 3.6 ± 0.9 1.4 ± 0.3 

CNCygb 6.7 ± 0.7 2.0 ± 0.2 

 

The change in free energy ( OH
oG 2Δ ) determined for the transition of Cygb is 4.8 ± 

0.4 kcal mol-1 with an m value of 1.5 ± 0.1 kcal mol-1 M-1.  The value of OH
oG 2Δ  

determined for Cygb is similar to the one reported for horse heart Mb at pH 8 of 4.95 ± 

0.13 kcal mol-1 (Roncone et al., 2005). However, the m value determined by Roncone et 

al. (2005) for Mb of 3.45 ±0.09 kcal mol-1 M-1 is ~ 2 times higher than the value 

determined for Cygb, suggesting a higher solvent-exposed surface area of Mb than in 

Cygb.. Alternatively, larger m values have been attributed to the existence of some 

intermediate state during the unfolding process (Roncone et al., 2005). 

Reduction of the disulfide bond in Cygb does not impact the stability of the 

protein as evidenced by the comparable values of OH
oG 2Δ , within the error, determined 

for Cygb and Cygbred. This result is somewhat surprising and points out that the disulfide 

bond in Cygb does not have a role in protein stabilization. Protein folding studies have 

pointed out that disruption of disulfide bonds usually destabilize the native structure of 

proteins (Li et al., 2013; Vinther et al., 2013; Zhang et al., 2011b). The value of the m 

parameter, which is related to the exposure of the protein surface area to the solvent, was 
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comparable for Cygb and Cygbred, whereas a slightly larger value was determined for 

CNCygb, suggesting an increase in the solvent-exposed surface area for the CN- bound 

form of Cygb.  

On the other hand, binding of CN- to Cygb leads to a small increase in stability by 

~ 1.9 kcal mol-1. The cyanide adduct of Mb also showed a higher stability than Mb, 

which was attributed to a greater ability of cyanide to accept π electrons from the heme 

iron, which results in stabilization through the so-called “trans effect” of the bond 

between the heme iron and the proximal His residue (Fe3+-His 93) (Hargrove and Olson, 

1996).  

9.2.1.2. Far-UV CD spectroscopy 

The structural changes induced by addition of GuHCl to Cygb, Cygbred and 

CNCygb were also monitored using far-UV CD spectroscopy.  Far-UV CD spectroscopy 

has been extensively used in protein unfolding/folding studies because this technique 

provides information about changes in the secondary structure upon denaturation (Kelly 

and Price, 1997).   

The far-UV CD spectrum of human Cygb exhibits two negative bands at 209 nm 

and 222 nm that are characteristic of α-helical proteins (Figure 9.13). The α-helical 

content of Cygb was calculated to be ~ 70% from the mean ellipticity at 222 nm, as 

described in chapter 4, and this value matches well the α-helical content estimated by 

Sawai et al. (2003) of 72% as expected for globins. However, the CD spectrum for Cygb 

showed slightly less α-helical content than Ngb, which was attributed to a less α-helical 

nature of the extra residues at the –N and –C termini (~20 amino acid residues at each 

termini) (Hamdane et al., 2005). As described in chapter 4, the α-helical content 
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calculated for hNgb is 76%, which is comparable to the reported value of 78% (Hamdane 

et al., 2005). 
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Figure 9.7 Far-UV Circular dichroism spectra of Cygb in the presence of increasing 
concentrations of GuHCl. The concentration of the proteins was 40 μM in 10 mM Tris 
buffer (pH 7.0). 
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Figure 9.8 Far-UV Circular dichroism spectra of Cygbred in the presence of increasing 
concentrations of GuHCl. The concentration of the proteins was 40 μM. The buffer used 
was 10 mM Tris buffer (pH 7.0) containing 10 mM DTT. 
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Figure 9.9 Far-UV Circular dichroism spectra of CNCygb in the presence of increasing 
concentrations of GuHCl. The concentration of the proteins was 40 μM. The buffer used 
for Cygb was 10 mM Tris buffer (pH 7.0) containing 10 mM KCN. 
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Figure 9.10 Unfolding curves of Cygb, Cygbred and CNCygb monitored using CD 
spectroscopy as a function of GuHCl concentration. The concentration of the protein was 
40 μM in 10 mM Tris buffer, pH 7.0. The buffer used for Cygbred samples contained 10 
mM DTT and for CNCygb samples contained 10 mM KCN. 
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The GuHCl-induced denaturation curves determined for Cygb, Cygbred and 

CNCygb determined employing Far-UV CD spectroscopy indicate a single transition 

from the folded state to unfolded state. The free energy of unfolding and m parameter 

determined using a two-state model are listed in table 9.2.  

Table 9.2 Free energy of unfolding ( OH
oG 2Δ ) and degree of hydrophobic exposure upon 

GuHCl-induced unfolding (m) determined for Cygb, Cygbred and CNCygb employing CD 
spectroscopy. 

 OH
oG 2Δ  (kcal mol-1) m (kcal mol-1 M-1) 

Cygb 5.0 ± 0.4 1.7 ± 0.3 

Cygbred 4.6 ± 0.9 1.7 ± 0.4 

CNCygb 5.3 ± 0.4 1.6 ± 0.1 

  

The change in free energy ( OH
oG 2Δ ) determined using CD spectroscopy for Cygb 

is 5.0 ± 0.4 kcal mol-1, is comparable to the value determined employing absorption 

spectroscopy of 4.8 ± 0.4 kcal mol-1. The CD data indicates that reduction of the disulfide 

bond in Cygb and binding of cyanide does not seem to impact the stability of the proteins 

as evident by the comparable values determined for OH
oG 2Δ for Cygb, Cygbred and 

CNCygb. The difference observed in the OH
oG 2Δ  values determined using CD 

spectroscopy and UV-visible absorption spectroscopy, suggest that an intermediate may 

be formed during Cygb unfolding exhibiting a low fraction and thus were not resolved in 

these measurements. Indeed, overlay of the denaturation curves determined using UV-

visible absorption spectroscopy and CD spectroscopy show a large shift for Cygb and 

Cygbred, whereas a small difference was observed in case of CNCygb unfolding curves 

(Figure 9.11), suggesting the presence of an intermediate in the transition from folded to 
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unfolded in Cygb, Cygbred and CNCygb that could not be resolved here, likely because 

there is a low fraction of the intermediate. Each technique reflects different 

conformational changes in the protein structure. For instance, the changes in absorption 

monitored in the Soret band upon denaturation reflect the release of the heme from Cygb, 

whereas changes in the CD signal at 222 nm measure modifications in the secondary 

structure of Cygb (Hargrove and Olson, 1996; Hargrove et al., 1996).  
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Figure 9.11 Overlay of unfolding curves of Cygb, Cygbred and CNCygb determined using 
UV-visible spectroscopy (open symbols) and CD spectroscopy (closed symbols) as a 
function of GuHCl concentration. 

 

9.2.2. Neuroglobin 

9.2.2.1. UV-visible absorption spectroscopy 

The GuHCl-induced structural changes of Ngb were determined recording the 

change in the intensity of the Soret band as a function of the denaturant concentration. To 
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determine the impact of substitution of two Trp residues with Tyr on hNgb stability, the 

following hNgb double Trp mutants were also characterized: W13Y/W133Y, 

W13Y/W148Y and W133Y/W148Y.  The overlay of absorption spectra of wild type 

hNgb and double Trp mutants, shown in Figure 9.7, indicates that there are no significant 

differences between the absorption spectrum of wild type hNgb and all Trp mutants 

studied. Therefore, the replacement of W13, W133 and W148 by Tyr residue does not 

modify the heme pocket in hNgb.   
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Figure 9.12 Overlay of UV-visible absorption spectra of wild type hNgb and Trp mutants 
W13Y/W133Y, W13Y/W148Y, and W133Y/W148Y. The concentration of the protein 
was 10 μM in 50 mM Tris buffer (pH 7.0). 

 

As observed for Cygb, addition of GuHCl to hNgb and the double Trp mutants 

investigated results in a decreased intensity as well as a hypsochromic shift in the 

maximum wavelength of the Soret band (Figures 9.8 to 9.11), indicating exposure of the 

heme group to the solvent upon denaturation of the protein (Hargrove and Olson, 1996) 
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Figure 9.13 UV-visible absorption spectra of wild type hNgb in the presence of 
increasing concentrations of GuHCl from 0 to 6 M. The concentration of the proteins was 
approximately 10 μM in 10 mM Tris buffer (pH 7.0). 

 

The fraction of unfolded protein was plotted as a function of the concentration of 

denaturant and the resulting unfolding curves are shown in Figure 9.12. The equilibrium 

unfolding data obtained using UV-visible absorption spectroscopy for wild type hNgb 

and all Trp mutants studied indicate a single transition from the folded to unfolded state 

upon addition of GuHCl. Therefore, the unfolding data was analyzed according to a two-

state model as previously described for Cygb and the free energy of unfolding and m 

values are listed in table 9.3. 

The free energy of unfolding and m value determined for hNgb are comparable to 

the values determined for all Trp mutants studied: W13Y/W133Y, W13Y/W148Y and 

W133Y/W148Y. These results indicate that the replacement of W13, W133 and W148 

with Tyr does not have a large impact on the stability of the protein.    
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The GuHCl-induced unfolding of hNgb was recently reported by Guca et al. 

(2013). The denaturing curves reported by this group also show a single transition 

between the folded and unfolded state and the determined free energy of unfolding was 

9.8 ± 0.4 kcal mol-1 with an m value of 3.0 ± 0.1 kcal mol-1 M-1. These values are higher 

than the ones determined in this work, which could be attributed to the fact that the 

method used by Guca et al. (2013) to fit their denaturation curves does not take into 

consideration the dependence of unfolding on the denaturant concentration (especially at 

low and high concentration of denaturant), thereby they might obtain a higher value for 

OH
oG 2Δ . 

Comparison of the free energy of unfolding between hNgb ( OH
oG 2Δ  = 7.3 ± 1.1 

kcal mol-1) and Cygb ( OH
oG 2Δ  = 4.8 ± 0.4 kcal mol-1) provides evidence that hNgb is 

more stable towards GuHCl-induced denaturation than Cygb by ~ 2.5 kcal mol-1. 

Although the unfolding study of Hamdane et al. (2005) used thermal denaturation of Ngb 

and Cygb, this group demonstrated that hNgb has a higher thermal stability  (Tm = 100 

°C) than Cygb (Tm = 95 °C). Hamdane et al. (2005) did not report the free energy of 

unfolding for Cygb and Ngb.  
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Figure 9.14 UV-visible absorption spectra of hNgb W13Y/W133Y in the presence of 
increasing concentrations of GuHCl from 0 to 6 M. The concentration of the proteins was 
approximately 10 μM in 10 mM Tris buffer (pH 7.0). 
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Figure 9.15 UV-visible absorption spectra of hNgb W13Y/W148Y in the presence of 
increasing concentrations of GuHCl from 0 to 6 M. The concentration of the proteins was 
approximately 10 μM in 10 mM Tris buffer (pH 7.0). 
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Figure 9.16 UV-visible absorption spectra of hNgb W133Y/W148Y in the presence of 
increasing concentrations of GuHCl from 0 to 6 M. The concentration of the proteins was 
approximately 10 μM in 10 mM Tris buffer (pH 7.0). 
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Figure 9.17 Unfolding curves of wild type hNgb and Trp mutants monitored using UV-
visible absorption spectroscopy as a function of GuHCl concentration. The concentration 
of the protein was ~ 10 μM in 10 mM Tris buffer, pH 7.0. 
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Table 9.3 Free energy of unfolding ( OH
oG 2Δ ) and degree of hydrophobic exposure upon 

GuHCl-induced unfolding (m) determined for wild type hNgb and Trp mutants 
employing UV-visible absorption spectroscopy. 

 OH
oG 2Δ  (kcal mol-1) m (kcal mol-1 M-1) 

hNgb 7.3 ± 1.1 1.9 ± 0.2 

hNgb W13Y/W133Y 7.2 ± 1.6 1.8 ± 0.4 

hNgb W13Y/W148Y 7.7 ± 3.1 2.1 ± 0.8 

hNgb W133Y/W148Y 7.0 ± 1.2 1.7 ± 0.3 

 

9.2.2.2. Far-UV CD spectroscopy 

The far-UV CD spectra of wild type hNgb and mutants W13Y/W133Y, 

W13Y/W148Y and W133Y/W148Y in 10 mM Tris buffer (pH 7.0) are shown in Figure 

9.17. The CD spectrum of wild type hNgb exhibits two negative peaks at 208 nm and 222 

nm that are characteristic of α-helical structure, as previously reported for hNgb 

(Hamdane et al., 2005; Zhao et al., 2006). 

The α-helical content was calculated from the mean ellipticity value at 222 nm for 

wild type hNgb and double Trp mutants as previously described in Chapter 4. The 

calculate α-helical content of wild type hNgb was ~ 76% that matches well previously 

reported value of ~78% (Hamdane et al., 2005). The α-helical content of the double Trp 

mutants is lower than the one determined for the wild type protein with values of ~ 69% 

for W13Y/W133Y, ~ 74% for W13Y/W148Y and ~ 73% for W133Y/W148Y. Therefore, 

the largest effect on the secondary structure of hNgb was observed when W13 and W133 

were replaced by Tyr. Since W13 and W133 are part of α-helices A and H, respectively, 

whereas W148 does not form part of one the α-helices in the structure of hNgb (Figure 
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9.2) is not surprising that substation of both W13 and W133 would affect the protein’s α-

helical content. 
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Figure 9.18 Far-UV CD spectra of wild type hNgb and mutants W13Y/W133Y, 
W13Y/W148Y and W133Y/W148Y. The concentration of the protein was 40 μM in 10 
mM Tris buffer (pH 7.0). Spectra were corrected for the baseline of the buffer. 

 

9.2.2.3. Fluorescence spectroscopy 

There are three Trp residues in the amino acid sequence of hNgb (W13, W133 

and W148). Since Trp fluorescence properties are strongly dependent on the distance 

between Trp and the heme group, monitoring of Trp lifetimes allows characterization 

occurring close to the heme group.  

Data analysis of fluorescence data for Ngb may be complex because of the 

presence of the three Trp residues. Therefore, single Trp hNgb constructs were prepared 

by collaboration with Dr. Pierre Sebban’s group from University of Paris IX (Orsay, 

France). Characterization of the single Trp hNgb constructs allows monitoring of global 

structural changes in hNgb upon binding of exogenous ligands.  
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The time-resolved data in the frequency domain were measured for bishistidine 

Fe3+hNgb and double Trp mutants W13Y/W133Y, W13Y/W148Y and W133Y/W148Y  

are displayed in Figure 9.18, whereas the data measured for the cyanide adducts of the 

proteins are shown in Figure 9.19. The data was analyzed employing a sum of discrete 

exponential decays and the quality of the fit was inspected by the chi square (χ2) value 

and the randomness of the resulting residuals. The lifetimes and pre-exponential factors 

retrieved from the fit are listed in table 9.4. 
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Figure 9.19 Time-resolved fluorescence in the frequency domain data determined for 
wild type hNgb (black squares) and double Trp mutants W13Y/W133Y (blue triangles), 
W13Y/W148Y (red circles) and W133Y/W148Y (green diamonds). Phase delay data are 
shown as open symbol and modulation ratio data are displayed as closed symbols. Solid 
lines represent the fit to the data using a sum of three exponential decay model retrieved 
using Vinci software. The concentration of the protein was 7 μM in 50 mM Tris (pH 7). 
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Figure 9.20 Time-resolved fluorescence in the frequency domain data determined for 
CN- adducts of wild type hNgb (black squares) and double Trp mutants W13Y/W133Y 
(blue triangles), W13Y/W148Y (red circles) and W133Y/W148Y (green diamonds). 
Phase delay data are shown as open symbol and modulation ratio data are displayed as 
closed symbols. Solid lines represent the fit to the data using a sum of three exponential 
decay model retrieved using Globals software. The concentration of the protein was 7 μM 
in 50 mM Tris (pH 7) containing 10 mM KCN. 

 

Table 9.4 Fluorescence lifetime of hNgb and Trp mutants as a function of CN- binding. 

Sample τ1 (ns) α1 (%) τ2 (ns) α2 (%) τ3 (ns) α3 (%) χ2

Wild type 0.21±0.02 82.0 1.1±0.1 12.7 4.0±0.1 5.3 1.02 

W13Y/W148Y 0.16±0.02 87.0 0.8±0.1 11.1 3.9±0.2 1.9 0.50 

W13Y/W133Y 0.31±0.03 71.5 1.4±0.1 21.3 4.2±0.3 7.2 0.98 

W133Y/W148Y 0.18±0.04 71.8 0.8±0.1 25.4 3.8±0.2 2.9 0.80 

Wild type + KCN 0.06±0.03 79.3 0.61±0.04 18.1 3.6±0.1 2.6 1.28 

W13Y/W148Y + KCN 0.03±0.01 92.4 0.60±0.03 6.6 3.5±0.1 1.0 1.17 

W13Y/W133Y + KCN 0.24±0.04 61.7 1.3±0.1 28.7 4.8±0.2 9.6 1.08 

W133Y/W148Y + KCN 0.19±0.06 58.6 0.80±0.07 34.1 3.6±0.1 7.2 1.05 
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The time-resolved fluorescence data indicates multiphasic Trp lifetime in wild 

type hNgb as well as in individual mutants, which suggests conformational heterogeneity 

of the protein. The shorter lifetime τ1 is in the range of 0.16 to 0.31 ns for the bishistidyl 

ferric form of hNgb and Trp mutants. Cyanide binding to the wild type hNgb and Trp 

mutant W13Y/W148Y results in decrease of τ1, however there was no effect on τ2 and τ3.  

The longer lifetime τ3 was approximately 4 ns and is comparable to the value determined 

for horse heart Mb at pH 7.2 of 4.89 ns, which was attributed to the presence of a small 

fraction of the apo-protein (Gryczynski et al., 1995). The fact that τ1 and τ2 are in the 

order of sub-nanosecond to nanosecond range are a consequence of quenching of Trp 

fluorescence by the heme group. For instance, a mean  lifetime as short as ~ 0.1 ns has 

been reported for cases where there is a strong intramolecular quenching reaction, such as 

the case of energy transfer to a heme (Hirsch, 2000).  

The heterogeneity observed for each single Trp construct studied here has been 

observed in other proteins. It is well known that a single Trp residue in proteins can 

display bi-exponential decay. Similarly, the fluorescence decay of the free Trp in water is 

bi-exponential, which has been attributed to the presence of two rotamers of the side 

chain of Trp molecule (Hirsch, 2000). However, the heterogeneity in Trp emission in 

proteins is associated with the heterogeneity of the protein structure and not to the two 

rotamers of the Trp residue (Hirsch, 2000). 

9.3. Discussion  

The GuHCl-induced unfolding curves determined for Cygb, Cygbred and CNCygb 

using UV-visible absorption and CD spectroscopy  exhibit a single transition between the 

folded state and unfolded state, suggesting that GuHCl-induced denaturation of Cygb can 
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be described using a two-state model. Comparison of the free energy of unfolding for 

Cygb, Cygbred and CNCygb indicate that reduction of the disulfide does not impact the 

stability of the protein, whereas cyanide binding slightly increases the Cygb. These 

results suggest that in Cygb the role of the disulfide bond is not to provide structural 

stability to the protein. In general, disruption of disulfide bonds in proteins decrease the 

resistance of the protein towards denaturation, likely as a result of destabilization of the 

unfolded state by reducing its entropy. Furthermore, hydrophobic residues are generally 

buried inside the folded proteins containing disulfide bonds and are less accessible to 

denaturants (Wedemeyer et al., 2000). It was previously reported that the disruption of 

the disulfide bond in Ngb upon reduction with DTT or replacement of Cys residues by 

Ser resulted in higher melting temperature than the melting temperature determined for 

wild type Ngb containing the internal disulfide bond (Hamdane et al., 2005). The authors 

proposed that the protein stability in Ngb may be directly related to hexa-coordination of 

the heme iron rather than the presence of the disulfide bond. Therefore, these results 

shown here do not support a role of the disulfide bond in Cygb stability. 

On the other hand, ligand binding has been previously shown to enhance the 

stability of heme proteins towards denaturation (Hargrove and Olson, 1996). Although 

the denaturation curves shown in this study for Cygb, Cygbred and CNCygb exhibit a 

single transition and were analyzed according to a two-state model, the lack of a clear 

isosbestic point in the titration curves monitored using UV-visible absorption 

spectroscopy suggest the presence of a low fraction of an intermediate between the folded 

and unfolded state. Further evidence of the presence of an intermediate during Cygb 

unfolding process is provided by the fact that the denaturation curves determined using 
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UV-visible absorption spectroscopy are not superimposable with those determined 

employing CD spectroscopy. Since absorption spectroscopy and CD spectroscopy reflect 

different conformational changes in the protein structure, each technique may detect to a 

larger extent the presence of an intermediate during the unfolding process than the other. 

The changes in absorption monitored in the Soret band as a result of denaturation reflect 

the release of the heme from the protein, whereas changes in the CD signal at 222 nm 

measure modifications in the secondary structure of the protein (Hargrove and Olson, 

1996; Hargrove et al., 1996).  

  The CD changes determined by Hargrove & Olson (1996) for denaturation of 

Mb indicate the presence of an intermediate, as previously observed for denaturation of 

the apo form of Mb (apoMb), suggesting that unfolding of Mb occurs through a three-

step process. Hargrove & Olson (1996) proposed a mechanism for the unfolding of Mb 

that involves heme loss as the first transition, followed by formation of a partially folded 

intermediate state of apoMb and a subsequent transition to the unfolded state at high 

concentration of GuHCl.  

The free energy of unfolding determined for Cygb is comparable to the value 

previously reported for Mb by Roncone et al. (2005), but it is lower than the one 

determined for Ngb by approximately 2.3 kcal mol-1 indicating that Ngb structure is more 

stable towards denaturation than Cygb and Mb. These results are consistent with the 

results obtained using thermal denaturation of Cygb and Ngb, in which a Tm of 100 °C 

was reported to Ngb compared to a Tm of 95 °C for Cygb (Hamdane et al., 2005). 

Previous spectroscopic studies on the unfolding of the apoform of Mb have proposed that 

Mb unfolds through a three-state mechanism in which a molten globule intermediate is 
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formed. The molten globule intermediate has been characterized by CD and NMR 

spectroscopy in combination with site-directed mutagenesis studies, indicating that 

helices A, G and H remain folded forming the molten globule hydrophobic core, while 

the other helices of the protein exhibit high flexibility and are mostly disordered (Eliezer 

and Wright, 1996; Eliezer et al., 1998; Hughson and Baldwin, 1989; Hughson et al., 

1991; Hughson et al., 1990). In order to understand the factors leading to a higher 

stability in Ngb than Cygb and Mb towards GuHCl-induced unfolding, the position of 

hydrophobic residues from helices A, G and H in the three dimensional structure of Ngb, 

Cygb and Mb were visualized using Pymol software (Figure 9.21). Inspection of Ngb 

structure suggests that that the heme group in this protein is stabilized by hydrophobic 

interactions Phe 106 (G-helix) and Trp 148 (H-helix) on the proximal site because of 

their proximity to the heme group, whereas in Cygb and Mb structures a single residue 

hydrophobic residue is found in the vicinity of the proximal site (Val 161 in Cygb and 

Phe 137 in Mb). However, replacement of Trp 148 by Tyr in hNgb does not affect the 

stability of the protein. In addition, the packing of helices A, G and H in Ngb seems to be 

more compact than in Cygb.  

The denaturation curves determined for hNgb and double Trp mutants indicate 

that GuHCl-induced unfolding of Ngb and the Trp mutants can be described using a two-

state model. The UV-visible spectra of Ngb at various concentrations of GuHCl show one 

isosbestic point. The change in free energy upon unfolding with GuHCl determined for 

hNgb and Trp mutants using UV-visible absorption spectroscopy are similar, indicating 

that replacement of the Trp W13, W133 and W148 residues by Tyr do not destabilize the 

protein structure. Although the denaturation curves recorded in this study show a single 
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transition from folded state to unfolded state in Ngb, these results do not guarantee that 

denaturation follows a two-state mechanism. It is important to complement the stability 

studies with kinetics studies to determine the steps involved in the unfolding mechanism.  

 

 

Figure 9.21 Ribbon representation of the dimensional structure of human Ngb (PDB 
entry 1OJ6), Cygb (PDB entry 2DC3) and Mb (PDB entry 1WLA) depicting 
hydrophobic residues in helices A, G and H as sticks. 

 

The time-resolved data in the frequency domain measured for bishistidine 

Fe3+hNgb and double Trp mutants W13Y/W133Y, W13Y/W148Y and W133Y/W148Y 

indicate multiphasic Trp lifetime in the wild type protein as well as in double Trp 



272 
 
 

mutants. The fact that three lifetimes were retrieved even for the single Trp constructs of 

hNgb suggests that Trp samples two conformations, one that is in a more polar 

environment and exhibits a shorter lifetime and one that is located in more hydrophobic 

environment and results in a longer lifetime. The fact that cyanide binding to single Trp 

construct W13Y/W148Y results in a decrease in the shorter Trp lifetime suggests that Trp  

133 is more efficiently quenched by the heme group upon formation of the cyanide 

adduct, likely as a result of a conformational change upon ligand binding.  

9.4. Summary 

GuHCl-induced denaturation of hNgb and Cygb can be described with a two-state 

model and hNgb is more stable towards GuHCl-induced denaturation than Cygb by 

approximately 2.3 kcal mol-1. In addition, the presence of the disulfide bond do not affect 

stability of Cygb, and whereas a small stabilization was observed upon cyanide binding. 

The stability of hNgb is not largely affected by the replacement of Trp 13, Trp 

133 and Trp 148 by Tyr and the single Trp constructs. The time-resolved fluorescence 

data indicates multiphasic Trp lifetime in the wild type hNgb protein as well as in double 

Trp mutants, suggesting conformational heterogeneity of hNgb.  
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10. CONCLUSIONS 

Ligand escape from the protein matrix in human Ngb is significantly faster than in 

Mb, suggesting that in human Ngb the so-called “histidine gate” mechanism does not 

regulate the ligand escape from the distal pocket to the surrounding solvent. Investigation 

of the role of conserved amino acid residues His 64 and Val 68 on ligand migration in 

Ngb indicates that Val 68 residue appears to have an analogous role in human Ngb as 

previously observed in other penta-coordinate hemoglobins by regulating the internal 

movement of the photo-released ligand between the heme distal pocket and the 

surrounding hydrophobic cavities. On the other hand, the distal His 64 has a moderate 

effect on the kinetics of ligand rebinding to human Ngb and no effect on the CO geminate 

quantum yield, suggesting that the distal His does not modulate ligand association to 

penta-coordinate Ngb. Replacement of Cys 120 by Ser residue may modify the ligand 

migration pathway in hNgb through the interface between helix G and the AB loop. In 

addition, disruption of the electrostatic network formed by the heme propionate groups, 

Lys 67, His 64 and Tyr 44 modifies the thermodynamic profiles for CO association to the 

protein.  

The internal disulfide bond in Ngb modulates the magnitude of the overall 

structural changes upon ligand binding/release and the presence of the disulfide bond 

increases the rate constant for distal histidine dissociation in hNgb relative to rNgb. On 

the other hand, the disulfide bond in Cygb modulates the rate for diatomic ligand escape 

from the protein matrix and the quantum yield for CO geminate rebinding. The volume 

and enthalpy changes associated with CO photo-release from Cygbred are comparable to 

those measured for Ngbred, suggesting a similar mechanism of ligand migration that 
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occurs through an intraprotein hydrophobic channel. The thermodynamic parameters 

determined for CO escape from Cygbox resemble those observed for ligand photo-

dissociation from Mb, suggesting that the photo-dissociated ligand may escape through 

the so-called “histidine gate”. Therefore, the presence of the disulfide bond in Cygb fine-

tunes cytoglobin interactions with diatomic ligands through modulation of the structural 

dynamics and accessibility of the internal hydrophobic cavities which may define the 

Cygb intracellular function under physiological and pathological conditions.  

Photodissociation of O2 in Mb leads to a volume change associated with O2 

difussion from Mb active site that is comparable to that previously determined for CO, 

however O2 escape from the distal pocket to the surrounding solvent is ~2-3 times faster 

than that observed for CO, suggesting a distinct migration pathway for both diatomic 

ligands in Mb. As previously observed for CO photo-release from Ngb, photo-

dissociation of O2 occurs within 50 ns, suggesting that migration of O2 and CO occurs 

through the wide hydrophobic tunnel linking the heme pocket with the surrounding 

solvent. The thermodynamic parameters associated with ligand photo-dissociation from 

human Ngb exhibit temperature-dependence in the temperature range between 7 and 35 

°C with a turning point at ~ 16 ° C.  This temperature dependence is attributed to 

electrostriction effects upon solvation of charges since increase of the solution ionic 

strength suppresses the temperature dependence. The large structural enthalpy change 

observed upon O2 photo-dissociation at high solution ionic strength conditions suggests 

that proton uptake/release occurs upon photo-dissociation of the ligand.  

The thermodynamic profiles determined for Hb-CO in the presence and absence 

of allosteric effectors indicates that BZF does not impact the thermodynamic parametes 
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associated with ligand photo-release, whereas IHP association to Hb-CO complex alters 

the volume and enthalpy changes associated with CO photo-dissociation from the heme 

iron indicating that the transition between the fully ligated (CO)4Hb and partially ligated 

(CO)3Hb complex leads to reorientation of IHP molecule within the central cavity and/ or 

charged amino acid residues interacting with IHP.  

The hydrophobic probe 1,8-ANS binds to Cygb with moderate affinity, but it does 

not associate to Ngb, suggesting different properties of the protein surface between Ngb 

and Cygb. Interestingly, truncation of the N- and C-termini in Cygb leads to decreased 

binding to 1,8-ANS and competitive binding was observed between sodium oleate and 

1,8-ANS. Two binding sites were identified using ITC and time-resolved fluorescence 

spectroscopy and to obtain further insight into the binding sites docking simulation of 

1,8-ANS to Cygb were performed. Docking simulation of 1,8-ANS with Cygb indicate 

that one of 1,8-ANS binding sites is located close to the extended N-termini in Cygb and 

a similar binding site was identified for oleate by docking oleate to the protein. These 

results suggest that the extended N-terminus in Cygb facilitates a binding pocket for 1,8-

ANS and oleate. 

Guanidine hydrochloride induced unfolding of Ngb and Cygb indicates that Ngb 

is more stable towards GuHCl-induced unfolding than Cygb, likely as a result of a larger 

degree of buried amino acid residues within the Ngb core than in Cygb. Interestingly, the 

presence of the disulfide bond in Cygb does not have an impact on the stability of the 

protein, whereas association of cyanide increases the stability of Cygb towards GuHCl-

induced unfolding.  
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