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ABSTRACT OF THE DISSERTATION 

MECHANISMS OF DIATOM ASSEMBLY IN A HYDROLOGICALLY-MANAGED 

SUBTROPICAL WETLAND 

by 

Sylvia Seulbe Lee 

Florida International University, 2014 

Miami, Florida 

Professor Evelyn Gaiser, Major Professor 

Diatoms are useful indicators of ecological conditions but the mechanisms driving 

assemblage distribution are not clearly defined. Understanding the mechanisms 

underlying assemblage distribution is necessary to make accurate predictions about the 

effects of environmental change, such as hydrologic management, restoration, and 

climate change. The examination of diatom distribution and key drivers across a large 

wetland over several years can provide a resolved spatio-temporal framework for 

determining the relative importance of environmental and spatial factors influencing 

assemblage patterns. I examined a 6-year record of diatom distribution across the 

Everglades, a large hydrologically-managed subtropical wetland. Successful restoration 

of this ecosystem depends on using reliable ecological targets and bioassessment 

strategies based on a comprehensive understanding of the biotic responses to the 

variables being manipulated, especially hydrology. The components of my research are: 1) 

characterizing the relationship between diatom distribution and environmental factors; 2) 

investigating the taxonomy of species presumably with little or no limitation to dispersal 

by spatial factors; and 3) examining the relative importance of environmental and spatial 
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factors on diatom distribution patterns within a hydrologically-managed environment. 

Building upon the well-documented utility of Everglades diatom transfer functions for 

phosphorus based on species optima and tolerance ranges, I developed transfer functions 

for hydroperiod and biovolume of periphyton (consortium of algae, bacteria, and fungi) 

and evaluated the utility of resultant diatom-based inference models for bioassessment. 

Considering the importance of environmental factors, diatoms in the Everglades and 

Caribbean wetlands may have restricted distributions. My taxonomic investigation of two 

species with presumed continental distributions and the consequent description of two 

new species suggest spatial factors can restrict diatom dispersal. The importance of both 

environmental and spatial controls on Everglades diatom distribution may be related to 

the availability of calcareous (high mineral content) periphyton that diatoms inhabit 

because periphyton mineral content is correlated with environmental factors, which differ 

among compartments within the ecosystem because of hydrologic management. I found 

environmental factors were more important controls on the distribution of persistent 

inhabitants of calcareous periphyton, suggesting spatial factors are relatively less 

important when species are well-suited to the habitats made available by environmental 

conditions influenced by hydrologic management. 
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CHAPTER I: GENERAL INTRODUCTION 

 

Magnuson (1990) summarized the findings of key ecological studies that 

demonstrated the need to extend research efforts beyond the two or three year funding 

period to reveal the “invisible present,” defined as the time period encompassing our 

lifetimes when important changes are occurring but at rates that are too slow to detect 

obvious cause-and-effect relationships. One reason for the invisible present is that human 

activities produce landscape legacies (Foster et al. 2003) that persist and complicate 

environmental responses even after conditions change, such as little or no recovery in 

stream aquatic diversity despite decades of reforestation of past agricultural areas 

(Harding et al. 1998). Sufficient temporal context is required to fully understand the 

changes observed in a single sampling period, such as patterns of phytoplankton richness 

and community stability associated with climate warming over 30 years (Pomati et al. 

2011). In the same vein as the invisible present, Sparks and Swanson (1990) coined the 

term “invisible place” to illustrate the importance of spatial context to complement long-

term studies so that findings are applicable to the whole ecosystem. Understanding both 

the spatial and temporal context of environmental systems is necessary to make robust 

predictions of the results of management activities. Long-term datasets are needed to 

determine what mechanisms structure biotic assemblages, how assemblages are changing 

through time, and how to improve management targets (Magurran et al. 2010). Further, 

long-term datasets provide the necessary temporal context to understand systems with 

high interannual variability in environmental conditions. 
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The ability to predict how assemblages will change in response to human activity 

and other causes of environmental change depends on knowing the mechanisms 

underlying the structuring of the assemblages themselves. Mechanisms regulating 

assemblage distribution include 1) niche-based processes that occur in response to 

environmental factors; and 2) dispersal-limiting processes that occur in response to 

spatial factors (Soininen 2007). Niche-based processes refer to controls on species 

abundances by the environment resulting from differences in species traits that limit 

species’ environmental tolerance ranges (Hutchinson 1957). Dispersal-limiting processes 

refer to controls on species abundances resulting from the influence of space on 

immigration and emigration between assemblages (Hubbell 2001).  

For microorganisms, the early Dutch scientist Baas Becking (1934) supported 

niche-based control on assemblage distribution with the phrase ‘everything is 

everywhere, but, the environment selects.’ In other words, microorganisms should have 

unlimited dispersal ability made possible by their small size and large populations, but 

niche-based processes determine the species abundances we observe (de Wit and Bouvier 

2006). If both niche-based and dispersal-limiting processes control assemblage 

distribution, microorganisms should show limited long-distance dispersal and evidence of 

adaptations to their environment, such as endemism and species richness related to 

regional habitat availability (Martiny et al. 2006, Telford et al. 2006, Soininen 2007). If 

only dispersal-limiting processes control assemblage distribution, the small size and large 

populations of microorganisms should allow random distribution throughout the world 

proportional to global population size, regardless of species dispersal abilities or how 

well species are suited to local environments (Hubbell 2001, Finlay 2002, Finlay et al. 
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2002). Sufficient spatial and temporal context is needed to determine which hypothesis 

concerning the roles of niche-based and dispersal-limiting processes is the most well-

founded for microorganisms. 

The importance of environmental controls on the distribution of diatoms, a 

diverse group of unicellular algae, is illustrated by the utility of diatoms as indicators of 

environmental change because of their sensitivity to water quality and habitat conditions. 

Diatoms also have rapid reproduction rates relative to higher plants or animals, which 

allow populations to respond quickly to environmental alterations (Smol and Stoermer 

2010). Diatoms are sensitive to water quality parameters such as nutrients (Pan and 

Stevenson 1996, Cooper et al. 1999, Gaiser et al. 2006, Lane and Brown 2007, La Hée 

and Gaiser 2012), salinity (Taffs 2001, Hicks and Nichol 2007, Wachnicka et al. 2010, 

Wachnicka et al. 2011, Nodine and Gaiser 2013), dissolved oxygen (Zhang et al. 2011), 

and pH (Owen et al. 2004, Taffs et al. 2008). Diatoms are also sensitive to hydrologic 

parameters such as hydroperiod (Gaiser et al. 1998, Gottlieb et al. 2006, Mackay et al. 

2011) and water depth (Finné et al. 2010). In hydrologically-managed systems, 

understanding the interactions between climate drivers, biotic assemblages, and 

management operations is important, as suggested for example, by algal blooms that may 

have resulted in part from flood control efforts responding to hurricane activity (Rudnick 

et al. 2006, Briceño and Boyer 2010). Repeated surveys of diatom distribution relative to 

drivers of environmental change elucidate mechanisms underlying assemblage 

distribution that can be used to improve management operations. Spatial resolution is 

especially important to consider in study designs because the relative importance of 

environmental and spatial control of diatom communities could depend on scale, with 
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spatial factors becoming more important as study extent increases, because a larger study 

region captures a greater range in variability of biogeographical and environmental 

factors (Soininen 2007). 

Recent studies acknowledge that both local and regional factors can structure 

diatom assemblages (Soininen 2007, Soininen et al. 2007, Vanormelingen et al. 2008, 

Soininen and Weckström 2009, Verleyen et al. 2009, Heino et al. 2010). The relative 

importance of each mechanism, however, is yet unclear and likely varies across habitat 

types. Heino et al. (2010) concluded that in boreal streams, purely spatial factors 

explained more variation than environmental factors in diatom species richness and 

assemblage distribution. Other studies found spatial factors are less important than 

environmental factors in controlling assemblage distribution (Vanormelingen et al. 2008, 

Soininen and Weckström 2009, Veryleyen et al. 2009). The majority of the 

abovementioned studies were done in temperate stream and lake habitats. There are few 

studies of what mechanisms structure diatom assemblages in wetlands, which pose 

unique environmental challenges to diatoms, such as frequent drying and variable light 

availability that may influence species dispersal abilities. Furthermore, accurate 

assessment of wetland environmental conditions is extremely important because although 

wetlands provide essential ecosystem services including water supply for humans and 

habitat for thousands of plants and animals, wetlands are one of the fastest disappearing 

ecosystems in the world (Mitsch and Gosselink 2007). Understanding the mechanisms 

that structure diatoms can improve our predictions about environmental change in 

wetlands and guide our efforts to restore these fragile ecosystems. 
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The Florida Everglades is a model system that highlights the need for spatial and 

temporal context to guide hydrologic management. The Everglades is spatially large 

(about 9000 km2) even after drastic reductions in area were made to serve human needs 

(Davis et al. 1994, McVoy et al. 2011). A very long and complex history of interaction 

with humans has shaped the landscape into the compartmentalized and intensively-

managed system it is today (Light and Dineen 1994, McVoy et al. 2011). Everglades 

restoration efforts officially began in 1994 with the Everglades Forever Act, but the 

progression toward restoration targets in response to implemented projects needs 

assessment. A long-term dataset that could help evaluate restoration effectiveness is the 

system-wide diatom assemblage composition data collected as part of the Monitoring and 

Assessment Program (MAP) of the Comprehensive Everglades Restoration Plan 

(RECOVER 2004). Initiated in 2005, the MAP has generated over 6 years of continuous 

data at unusually large spatial scales. There are few studies using data that have the 

spatial and temporal resolution to completely address the mechanisms driving diatom 

assembly. The spatially-balanced design and long-term data collection of the MAP 

(Philippi 2005) includes monitoring Everglades diatom assemblages; the sampling 

captures a broad range of variability in environmental factors and biogeography and has 

the temporal resolution to capture interannual variability needed to adequately quantify 

the relative importance of environmental and spatial factors. 

Everglades diatoms are ideal for testing the importance of local and regional 

controls on assembly because their composition tracks a broad range of environmental 

conditions throughout the ecosystem.  However, the hydrologically-managed wetland 

environment can also exert regional-scale historical, biogeographical, and evolutionary 
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controls. In the Everglades and other wetlands with shallow and slow-moving water, 

diatoms associated with periphyton attached to surfaces are more abundant than 

planktonic forms. Periphyton is a matrix of algae, fungi, bacteria, and detritus (Browder 

et al. 1994) that contributes to Everglades ecosystem processes such as primary 

production (Ewe et al. 2006), mediation of trophic interactions in the food web (Chick et 

al. 2008), control of water chemistry by nutrient uptake (Thomas et al. 2006), and 

oxygenation of the water column (McCormick et al. 1997, Hagerthey et al. 2011). The 

local environment within the periphyton mat has a strong relationship with diatom 

assemblage composition. Measurements of periphyton phosphorus (P), rather than P in 

water or soil, have been used to indicate environmental conditions in the Everglades 

because of high correlation with and immediate response to P load by the periphyton 

itself (loss of biomass) and by assemblage composition (Gaiser et al. 2004). The strong 

relationship between diatom assemblage composition and periphyton P are well-known 

(Gaiser et al. 2004, 2006, Gaiser 2009, Gaiser et al. 2011). Compositional differences are 

also present in periphyton mats from long- (> 8 months) and short-hydroperiod (< 8 

months) environments (Gottlieb et al. 2006). In addition to hydrology, habitat 

characteristics like periphyton mat mass also have strong relationships with diatom 

assemblage composition (refer to Chapter II) and may reflect additional mechanisms 

controlling assemblage distribution outside of strictly physicochemical environmental 

controls.  

There is strong potential for spatial controls on assemblage distribution of diatoms 

in periphyton mats. While desiccation is the most significant hindrance to dispersal via 

air or waterbirds (Kristiansen 1996), Everglades diatoms may be adapted to survive 
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seasonal drying (Thomas et al. 2006, Gaiser, et al. 2006) and are often encased in or 

produce extracellular polymeric substances (EPS) which could act as antidesiccants 

(reviewed in Hoagland et al. 1993; Hostetter and Hoshaw 1970, Davis 1972, Gaiser et al. 

2010). However, potential dispersal limitation and control of species abundances by 

biogeographical and spatial factors are indicated by regional differences in species 

responses to environmental variables (Gaiser et al. 2006) and assemblages that are 

possibly endemic to tropical karstic wetlands (Slate 1998, La Hée and Gaiser 2012). The 

diatom flora of subtropical karstic wetlands, which is not well documented in comparison 

to the flora of temperate regions, may include taxa with dispersal limitations conferred by 

their preferred periphyton mat habitat. Notable floristic studies in the region include 

research on the diatoms of Jamaica (Podzorski 1985), Cuba (Foged 1984), the Everglades 

(Slate and Stevenson 2007), and Mexico (Novelo et al. 2007). La Hée and Gaiser (2012) 

determined the nutrient preferences of diatoms in the karstic wetlands of the Everglades, 

Jamaica, Belize, and the Yucatán and found regional differences in preferences, leading 

to more reliable estimates of P concentration from local rather than regional models. This 

finding supports the potential importance of biogeographical processes even within the 

relatively similar environments in the Everglades and Caribbean region.  

The presence of diatoms that may have specific adaptations to forming or 

inhabiting periphyton mats in the Everglades and the Caribbean regions shows that 

spatial factors and differences in species dispersal abilities could underlie diatom 

distribution in wetlands. A numerically abundant and ecologically important Everglades 

diatom species has been identified as Mastogloia smithii Thwaites ex W. Smith 1856 

(McCormick and O’Dell 1996, Gaiser et al. 2006, Slate and Stevenson 2007) and M. 
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smithii var. lacustris Grunow ex Schneider 1878 (Gaiser et al. 2010). However, M. 

smithii and M. smithii var. lacustris were originally described using specimens from 

Europe (Smith 1856, Grunow 1878, Van Heurck 1880, Van Heurck 1885) and were 

lacking in designated type material that could be used to resolve taxonomic 

discrepancies. Morphological comparison with newly designated type material 

demonstrated that the Everglades species is neither of the two designations, revealing 

evidence against the once presumed distributions of these species across continents (refer 

to Chapter III).  

Periphyton mats may provide a particular kind of habitat for diatoms that mediate 

the environmental and spatial processes driving species distributions, especially if some 

taxa have greater biological dependence on or adaptations to living within a particular 

form of periphyton. Periphyton is distributed across the Everglades landscape in diverse 

forms, varying with the history and current hydrologic management of the environment 

(Gaiser et al. 2011, Hagerthey et al. 2011). In unenriched environments of the 

Everglades, low nutrient availability, high abundance of carbonate from dissolution of 

limestone, and frequent desiccation encourage the growth of periphyton mats that are 

abundant in cyanobacteria (Gaiser et al. 2011, Hagerthey et al. 2011). The EPS that coat 

filaments or encase coccoid forms of cyanobacteria contribute to mat cohesion and 

provide the main structure of thick, sometimes laminated, periphyton mats (Stal 1995), 

although some EPS-secreting diatoms can also contribute to the mat matrix (Gaiser et al. 

2010). Thick, cyanobacteria-dominated periphyton mats in unenriched environments in 

the Everglades are often calcareous because calcium carbonate from the limestone 

bedrock can accumulate on the surfaces of cyanobacterial filaments by abiotic adsorption 
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mediated by the EPS or biotic reprecipitation after inorganic carbon acquisition from the 

water column (Browder et al. 1994, Hagerthey et al. 2011). In enriched environments of 

the Everglades, higher phosphorus concentrations promote disintegration of the mat 

structure and an assemblage dominated by diatoms and green algae that are not mat-

forming (Gaiser et al. 2006, Gottlieb et al. 2006). Enriched periphyton can be loosely 

attached to substrates or can form green, gelatinous clouds that are more typical of less 

alkaline and mesotrophic or eutrophic aquatic systems (Hagerthey et al. 2011). Regions 

of the Everglades with differing environmental histories and current hydrologic 

management have differing levels of environmental and spatial controls on diatom 

assemblage distribution that may be related to the suitability of habitats in enriched and 

unenriched periphyton (refer to Chapter IV). 

In the following chapters, I present three components of my research. In Chapter 

II, I characterized the niche-based relationship between diatoms and habitat 

characteristics (physicochemical environmental variables and biological features of 

periphyton) by building upon the well-documented utility of Everglades diatom transfer 

functions of phosphorus based on species optima and tolerance ranges. I hypothesized 

that if niche-based processes are important to Everglades diatoms, their assemblage 

composition should also have strong associations with hydrology and habitat 

characteristics such as periphyton abundance. In Chapter III, I investigated the original 

specimens of Mastogloia smithii and M. lacustris, collected from the United Kingdom 

and Belgium, respectively, and whether the morphology of the species reported with 

these names from the Everglades and the Caribbean were consistent with the original 

specimens. I hypothesized that if spatial factors are also important controls on diatom 
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distribution, morphological differences should indicate more restricted distributions and 

possibly regional endemism. In Chapter IV, I examined the relative importance of niche-

based and dispersal-limiting processes on distribution patterns within the hydrologically-

managed environment of the Everglades. I hypothesized that both niche-based and 

dispersal-limiting processes control diatom assemblage composition, but the relative 

importance of either process may differ for taxa that are persistent inhabitants of 

calcareous periphyton, as opposed to taxa with occasional spatial and temporal 

occurrence patterns, because persistent taxa may have biological, dispersal, and life 

history strategies that are advantageous for life in calcareous periphyton.  I also 

hypothesized that the abundance of persistent taxa will have a strong relationship with the 

presence of calcareous periphyton, which is related to the environmental conditions 

manipulated by hydrologic management in the Everglades.  
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CHAPTER II: DIATOM-BASED MODELS FOR INFERRING HYDROLOGY AND 

PERIPHYTON ABUNDANCE IN A SUBTROPICAL KARSTIC WETLAND: 

IMPLICATIONS FOR ECOSYSTEM-SCALE BIOASSESSMENT 

 

Abstract 

I developed diatom-based prediction models of hydrology and periphyton 

abundance to inform assessment tools for a hydrologically managed wetland. Because 

hydrology is an important driver of ecosystem change, hydrologic alterations by 

restoration efforts could modify biological responses, such as periphyton characteristics. 

In karstic wetlands, diatoms are particularly important components of mat-forming 

calcareous periphyton assemblages that both respond and contribute to the structural 

organization and function of the periphyton matrix. I examined the distribution of 

diatoms across the Florida Everglades landscape and found hydroperiod and periphyton 

biovolume were strongly correlated with assemblage composition. I present species 

optima and tolerances for hydroperiod and periphyton biovolume, for use in interpreting 

the directionality of change in these important variables. Predictions of these variables 

were mapped to visualize landscape-scale spatial patterns in a dominant driver of change 

in this ecosystem (hydroperiod) and an ecosystem-level response metric of hydrologic 

change (periphyton biovolume). Specific diatom assemblages inhabiting periphyton mats 

of differing abundance can be used to infer past conditions and inform management 

decisions based on how assemblages are changing. This study captures diatom responses 

to wide gradients of hydrology and periphyton characteristics to inform ecosystem-scale 

bioassessment efforts in a large wetland. 
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Introduction 

In wetlands, hydrology is an important driver of ecosystem change because it 

maintains both the abiotic and biotic components that contribute to the defining features 

and function of wetland habitats (Mitsch & Gosselink 2007). Many wetlands undergo 

ecosystem-scale changes as anthropogenic agents, including accelerating rates of land-

use and climate change (Batzer & Sharitz 2006), as well as restoration efforts, alter their 

hydrology. To predict the ecosystem effects of hydrologic changes and to direct adaptive 

assessment efforts, it is important to understand the complex relationships between 

hydrology and biotic assemblages. Because biotic assemblages can actively change 

wetland hydrology and physicochemistry through feedbacks (Mitsch & Gosselink 2007), 

hydrologic alterations by restoration efforts could modify these relationships if 

assemblage changes occur.  

Bioassessment tools permit interpretation of the direction of environmental 

change and are useful for developing management targets to inform and assess restoration 

efforts (EPA 2011a). Diatom assemblages are sensitive to environmental changes, 

including hydrologic changes, so they can be used to develop robust inference models for 

early detection of shifts because of habitat degradation or restoration projects (Davis et al. 

1996; Stevenson 1998). Sensitivity to hydrologic changes have been shown by the 

immediate recovery of diatom production in desiccated periphyton (benthic algae; 

Browder et al. 1994) upon rehydration (Thomas et al. 2006), and the influence of 

hydroperiod on the relative abundance of desiccation-resistant species inhabiting the 

periphyton matrix (Gottlieb et al. 2005). Periphyton is an important indicator of wetland 

degradation and restoration progress because it undergoes rapid and measurable 
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structural, functional, and compositional responses to environmental changes (especially 

hydrology and water quality; Browder et al. 1994) at a large range of spatial scales 

(McCormick and Stevenson 1998; Gaiser 2009).  

Diatom-based assessments conducted over long time periods should be used to 

inform wetland adaptive assessment tools about the rates, causes, and functional 

consequences of change to improve future management strategies (Gaiser & Rühland 

2010). Because diatoms persist in the fossil record, they provide quantitative measures of 

past conditions that give ecologically-based context for current and future management 

plans (Smol & Stoermer 2010). Along with long-term monitoring, reconstructing the 

hydrologic history of wetlands is important, as past settings can provide hydrologic 

targets for restoration (Marshall et al. 2009), particularly in the face of changes in rainfall 

and inundation because of climate change (Mulholland et al. 1997). In addition to 

assessment over time, the inherent spatial attribute of diatom-based models provide an 

opportunity to examine responses at multiple spatial scales. The degree of consistency of 

species responses to ecosystem properties and the distribution of environmental gradients 

among hydrologically connected wetland subbasins determine whether models should be 

basin-specific (e.g., Gaiser et al. 2006) or regional. 

Wetland assessment programs have lagged behind other aquatic systems, such as 

lakes and streams (EPA 2011b). Robust diatom-based inference models will provide a 

means for examining both the drivers and biological feedbacks of regulatory variables at 

a range of spatial scales. Most diatom-based assessments of wetlands have addressed 

water quality parameters such as nutrients (Pan & Stevenson 1996; Cooper et al. 1999; 

Gaiser et al. 2006; Lane & Brown 2007; Velinsky et al. 2011; La Hée & Gaiser 2012), 
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salinity (Taffs 2001; Hicks & Nichol 2007; Wachnicka et al. 2010; Wachnicka et al. 

2011), dissolved oxygen (Zhang et al. 2011), and pH (Owen et al. 2004; Taffs et al. 

2008). Some studies have employed diatoms to assess wetland vegetation (Huvane & 

Cooper 2001; Gaiser et al. 2005a), and several have employed diatom-based assessment 

of wetland hydrologic characteristics such as hydroperiod (Gaiser et al. 1998; Mackay et 

al. 2011). To date, inference models that reflect biological feedbacks, such as periphyton 

characteristics, to hydrologic conditions have not been developed. Reconstructions of 

ecosystem properties using regional inference models were successful for several 

wetlands (Gaiser et al. 1998; Taffs 2001; Owen et al. 2004), while other studies used or 

advocated basin-specific models (Cooper et al. 1999; Gaiser et al. 2006; La Hée & Gaiser 

2012).  

In the Florida Everglades, restoration goals, targets, and assessment tools are at 

the forefront of scientifically-sound adaptive management of the multi-billion dollar, 

landscape-scale Comprehensive Ecosystem Restoration Plan (C & SF Project 1999). 

Restoration efforts propose to redirect unused fresh water to areas that historically had 

greater periods of inundation, as well as to areas that would benefit cities and farmers. 

Without robust inference models, however, changes to hydrology could result in 

unintended consequences for wetland structure and function (e.g., Surratt et al. 2012). 

While development of diatom response models to water quality parameters such as 

periphyton total phosphorus (TP) concentrations (McCormick et al. 1996; Pan et al. 2000; 

Gaiser et al. 2006; La Hée & Gaiser 2012) have allowed paleoecological reconstructions 

of historical environments (e.g., Cooper et al. 1999; Slate & Stevenson 2000), hydrologic 

reconstructions have been impeded by the lack of robust diatom-based inference models 
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(but see Sanchez et al. 2012). Also, diatom responses to periphyton characteristics 

reflective of biological feedbacks and responses to hydrologic changes have not been 

defined. If specific diatom assemblages inhabit periphyton of differing characteristics 

(e.g., biovolume), diatoms could be used to infer past wetland conditions even though the 

characteristics of the periphyton itself are not conserved in monitoring or paleoecological 

records. The numerous biogeochemical processes attributed to periphyton make the 

maintenance of native periphyton structure an important aspect of Everglades restoration 

(Hagerthey et al. 2011). Examination of periphyton along hydroperiod gradients in a 

marl-based wetland area found little effect of hydroperiod on periphyton biomass 

(Wachnicka, unpublished data), but patterns across the long hydrologic gradients present 

in the larger Everglades landscape, including the hydrologically different (but connected) 

Water Conservation Areas (WCAs) and Everglades National Park (ENP) (Light & Dineen 

1994), are expected. Extensive studies have been conducted on the periphyton and 

paleoecological indicators of the historically P-enriched and hydrologically-managed 

WCA-2A (e.g., McCormick et al. 1996; McCormick et al. 1998; Cooper et al. 2008). 

However, a quantitative evaluation of diatom sensitivity to periphyton characteristics 

occurring across the broader hydrologic gradients represented in the Greater Everglades 

could elucidate landscape-scale responses to hydrologic change.  

In this study, I examined the diatom assemblages of periphyton samples that were 

gathered in 2006 as part of a landscape-scale monitoring program across the Everglades. 

My first objective was to quantify diatom assemblage patterns and associations with 

habitat characteristics. I used the term ‘habitat characteristics’ to include both the abiotic 

physicochemical factors of the environment and the biological features of the periphyton 
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mat that influence, and are influenced by, the diatoms embedded in the mat matrix. I 

hypothesized that hydroperiod, periphyton biovolume, and periphyton TP concentration 

would be associated with the differences in diatom assemblages across the Everglades. 

My second objective was to test whether the responses of diatom assemblages across the 

Everglades were consistent throughout the landscape. I hypothesized that a spatially 

extensive dataset would enable detection of basin-specific responses, if they exist, but 

also provide an opportunity to develop landscape-scale models. My final objective was to 

evaluate the predictive capacity of diatom-based inference models. In addition, I mapped 

inferences relative to actual patterns to illustrate the utility of visualizing landscape-scale 

patterns for application in restoration planning and management. 

 

Methods 

Site Description 

Located in Florida, USA, the Everglades is an expansive wetland (>6000 km2) 

encompassing a mosaic of environmental conditions resulting from natural gradients and 

differences in biogeochemistry, as well as anthropogenic compartmentalization and 

eutrophication (Davis & Ogden 1994). Owing to the limestone bedrock underlying much 

of the southern Everglades, periphyton assemblages can contain an abundance of calcium 

carbonate precipitates that allows the formation of thick, calcareous mats. However, areas 

of higher nutrient levels contain organic, filamentous films that are easily disrupted 

(McCormick & O’Dell 1996; McCormick et al. 2001; Gaiser et al. 2005b; Gaiser et al. 

2011). This study focuses on calcareous communities occurring throughout the spatially 

complex WCAs and ENP, exclusive of soft-water regions (the Arthur R. Marshall 
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Loxahatchee National Wildlife Refuge, also known as WCA-1) with a very different algal 

assemblage and suite of environmental stressors (Harvey & McCormick 2009; Gaiser et 

al. 2011; Hagerthey et al. 2011). The Everglades has a subtropical climate with a distinct 

wet and dry season, the duration of which are controlled by climate variability and water 

management and can have significant influences on variability in species abundances and 

ecosystem properties.  

 

Sample Collection and Processing 

Periphyton samples were collected during the 2006 wet season (September 

through December) as part of the Monitoring and Assessment Program of the 

Comprehensive Everglades Restoration Plan (RECOVER 2004). A total of 86 sites were 

included in this study (refer to Figure 2.5). Generalized random-tessellation stratification 

(Stevens & Olsen 2004) was used to choose a spatially balanced set of sampling 

locations. The landscape was divided into 800m x 800m grids and a representative 

sample of these was drawn as primary sampling units (PSU); three sampling sites were 

randomly selected from the samplable habitat in each PSU (Philippi 2005). Samplable 

habitat included all locations where vegetation was not too dense for the sampling device 

to enclose 1 m3 of the water column and less than 1 m deep; primarily wet prairies and 

sloughs met these conditions (Gunderson 1994).   

At each sampling location, water depth was measured, and water samples were 

taken for measurement of pH and conductivity (µS cm-1). Other hydrologic variables, 

including hydroperiod (days flooded) and days since dry (number of days since flooding 

of the marsh surface after the latest drying event when water levels were <5 cm), were 
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estimated by calibration to nearby continuous water level gauges using digital elevation 

models provided by the Everglades Depth Estimation Network (EDEN, 

http://sofia.usgs.gov/eden/stationlist.php). The sampling device used to delineate the 

sampling area was a 1 m3 enclosure with mesh sides and open on the top and bottom 

(Jordan et al. 1997). Visual assessment for aerial cover (percent of the surface of the 

enclosed area covered by periphyton) was conducted before all periphyton within the 

enclosure was collected and measured for biovolume using a perforated graduated 

cylinder. Extraneous plant matter, animals, and other debris were on average less than 

0.5% of the volume of the sample and did not affect biovolume measurements. If no 

benthic, epiphytic, or metaphytic periphyton was present, flocculent detritus from the 

benthos was collected (Troxler & Richards 2009; Pisani et al. 2011).  

Periphyton samples were taken back to the laboratory and frozen before further 

processing. Animals, plant matter, and other debris were removed, and subsamples were 

taken for the measurement of dry weight (g m-2) by drying at 80 °C to constant weight, 

ash-free dry mass (g m-2) by combustion at 500 °C for 1.5 hours, chlorophyll a mass (µg 

m-2) and chlorophyll a concentration (µg g-1 dry weight) by fluorometry (Welschmeyer 

1994), total periphyton P (µg g-1 dry weight) by colorimetry after dry combustion 

(Solorzano & Sharp 1980; EPA 1983), and diatom species composition analysis. Organic 

content was calculated as the ratio of ash-free dry mass to total dry mass expressed as a 

percent. Periphyton P concentrations were used as a metric of P availability because 

periphyton P has a strong correlation with P load (Gaiser et al. 2004; Gaiser et al. 2005b; 

Gaiser et al. 2006). Diatom samples were cleaned of calcite and organic matter using 

strong acids and chemical oxidizers (Hasle & Fryxell 1970), and then permanently 
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affixed to glass slides using Naphrax®. A minimum of 500 valves were counted and 

identified per slide (Weber 1973) using a compound light microscope at 1000x 

magnification. Identifications were made to the lowest taxonomic level possible (variety 

or forma) using a database of South Florida diatom taxa 

(http://fce.lternet.edu/data/database/diatom) and other references (e.g., Slate & Stevenson 

2007). 

 

Data analysis 

Species abundances were relativized by the maximum abundance achieved by 

each species over all samples to reduce the differential impact of common and 

uncommon species on inferences. All species were included in the analyses after 

checking for outliers more than two standard deviations from the mean Sørenson distance 

measure (McCune & Grace 2002). Three categories of habitat characteristics were 

analyzed: hydrology, periphyton abundance, and periphyton quality (Table 2.1). 

Hydrology included days since dry (DSD), hydroperiod (HYPER), and water depth 

(DEPTH). Periphyton abundance included periphyton biovolume (PBIOV), aerial cover 

(AERCO), chlorophyll a mass (CHLMA), dry weight (DRYWT), and ash-free dry mass 

(AFDM). Periphyton quality included periphyton organic content (ORGCO), periphyton 

total phosphorus (TP), chlorophyll a concentration (CHLCO), water column pH (pH), 

and water column conductivity (CONDU). I used the term ‘periphyton quality’ to include 

measurements of periphyton and water column attributes because of the intimate 

relationship between water quality (nutrient and ion concentrations) and the composition 

and function of periphyton mats, including both the influence of the water column on
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Table 2.1. Summary statistics of habitat characteristics (before transformations) and transformations used to bring skewness of 
values closest to zero. TP was transformed by taking the log of x+10 (the decimal constant) and then subtracting 1 (the order of 
magnitude constant) from the resulting value (refer to McCune and Grace 2002). Sample size = 86 sites. 
 

Category Habitat characteristics (units) Code Mean 
Standard 
deviation 

Minimum Maximum 
Trans-
formation 

Hydrology Days since dry (days) DSD 556 802 0 2523 Log(x+1) 
Hydroperiod (days) HYPER 239 61 39 333 none 
Water depth (cm) DEPTH 41.8 21.4 6.0 90.0 Square 

root 

Periphyton 
abundance 

Periphyton biovolume (mL m-2) PBIOV 3000 3200 0 14000 Square 
root 

Aerial cover (% of 1 m2 quadrat) AERCO 50 40 0 100 Arcsine 
square root 

Chlorophyll a mass (µg m-2) CHLMA 1.35x10-4 1.34x10-4 0 5.80x10-4 Square 
root 

Periphyton dry weight (g m-2) DRYWT 50.3 79.7 0 437 Log(x+1) 
Periphyton ash-free dry mass (g 
m-2) 

AFDM 17.4 23.2 0 121 Log(x+1) 

Periphyton  
quality 

Organic content of periphyton 
(%) 

ORGCO 51 18 23 84 Square 
root 

Total periphyton phosphorus (µg 
m-2) 

TP 190 140 20 660 (Log(x+10
))-1 

Chlorophyll a concentration  (µg 
g-1) 

CHLCO 927 1340 65.5 8260 Log(x+1) 

Water column pH pH 7.9 0.34 7.2 9.1 Tenth root
Conductivity of water (µS cm-1) CONDU 284 216 2.13 1170 Square 

root 
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mats and the influence of mats on the surrounding water column (Gottlieb et al. 2005; 

Thomas et al. 2006; Hagerthey et al. 2011). Each habitat characteristic was transformed 

to bring skewness (a metric to assess normality) closest to zero, including square root, 

arcsine square root, tenth root, and log transformations (McCune and Grace 2002) (Table 

2.1). Samples more than two standard deviations from the mean Euclidean distance 

measure were considered outliers and removed from the dataset; subsequent analysis of 

species confirmed the absence of outlier species. Samples were categorized a priori into 

three wetland subsets based on landscape pattern and management practices: Shark River 

Slough (SRS), Water Conservation Areas 2A and 2B (WCA-2), and Water Conservation 

Areas 3A and 3B (WCA-3). 

 To examine diatom assemblage patterns associated with gradients of habitat 

characteristics, I used non-metric multidimensional scaling (NMS) ordination (Kruskal & 

Wish 1978; Minchin 1987) with the Bray-Curtis dissimilarity measure (Bray & Curtis 

1957). Because the data are observational, I did not attempt to identify causal 

relationships between assemblages and habitat characteristics. The statistical program 

DECODA (Database for Ecological Community Data; Minchin 1990) was used to run 

ordinations and to fit vectors of maximum correlation of habitat characteristics with 

assemblage difference. To detect whether assemblages had consistent responses to habitat 

characteristics throughout the landscape or if there were distinct regional differences, 

analysis of similarity (ANOSIM) was conducted using Primer-E statistical software 

(version 6.0) to determine differences in diatom assemblages among and within the three 

wetland subsets (Clarke & Gorley 2006). Following the results of the ANOSIM, separate 

ordinations of wetland subsets were conducted to determine any subset-specific 
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assemblage patterns. To test the null hypothesis that species responses to habitat 

characteristics are not associated among subsets, I used Kendall’s coefficient of 

concordance with correction for tied ranks, Wc (Zar 1996). 

I used the Bio-Env (Biota-Environment) procedure in Primer to determine the 

habitat characteristics most correlated with differences in diatom assemblages (Clarke & 

Ainsworth 1993). Bio-Env determines the correlation (Spearman) between the ranked 

dissimilarities of all possible pairs of samples based on the assemblage matrix and the 

ranked dissimilarities based on subsets of the environmental (habitat characteristics) 

matrix (Clarke & Warwick 2001). Rank correlation ρ=1 indicates complete agreement, 

whereas ρ=-1 indicates complete opposition (Clarke & Warwick 2001; Clarke & Gorley 

2006). Because Bio-Env attempts to match all possible combinations of habitat 

characteristics to explain differences in the assemblage data, correlations could be found 

by chance. I tested the null hypothesis that the biota and the environment are not linked 

by using the BEST (Biota Environment STepwise) permutations test (999 permutations) 

in Primer to determine statistical significance (Clarke et al. 2008).  

For the selected habitat characteristics, weighted averaging calibration models 

were constructed using C2 software to obtain species optima and tolerance values 

(Juggins 2005). The weighted averaging models were tested by simulating prediction 

errors using the bootstrapping resampling method repeated 1000 times (Efron 1982; 

Birks et al. 1990). The resulting Root Mean Square Error of Prediction (RMSEP) and 

bootstrapped (boot) r2 were used as more conservative estimates of model fit compared to 

the apparent Root Mean Square Error (RMSE) and r2 (Efron 1983; Birks et al. 1990; ter 

Braak & Juggins 1993; Birks 1995). For variables that were previously transformed, I 
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present the upper and lower limits of tolerance values because of transformation-

generated scale changes. For the same reason, I present RMSE and RMSEP values in 

transformed units. Finally, observed, diatom-inferred, and the difference between the 

observed and diatom-inferred values were mapped using ArcGIS version 10 (ESRI 2011). 

Interpolation techniques were not applied because of the inaccuracies that could result 

from the use of a limited number of sampling points across a large area. 

 

Results 

Assemblage patterns and habitat characteristics 

I observed 59 species of diatoms representing 21 genera. The most abundant 

species among all samples were Mastogloia calcarea (refer to Chapter III), Encyonema 

evergladianum, Fragilaria synegrotesca, and Brachysira neoexilis, making up 36%, 24%, 

12%, and 9% of all diatom valves counted, respectively. Mastogloia calcarea was the 

most abundant species in WCA-3, SRS, and WCA-2 (38%, 35%, and 34% of all valves 

counted, respectively). There were 15 species common to all wetland subsets that 

contributed 95% of the total relative abundance, indicating high overlap of species among 

regions.  

Differences among sites in the relative abundance of species generally grouped 

samples by wetland subset in the NMS ordination, though overlap was also common 

(Figure 2.1 a). A three-dimensional solution resulted in the greatest decrease in minimum 

stress level (stress=0.183) and was rotated by degree increments until the relative 

distribution of the vectors of habitat characteristics could be clearly depicted (Figure 2.1 a 

and b). The total rotation was 260°, which also maximized the association between 
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Figure 2.1. Non-metric multidimensional scaling ordination plot (multivariate 
representation of dissimilarities between samples based on rank order differences in 
assemblage composition). Three-dimensional ordination shown in two-dimensional plots 
for easier visualization: Axis 2 vs. 1 (a) and Axis 3 vs. 1(b). Plots rotated 260° 
(maximizing association between hydroperiod and Axis 1) to show relative distribution of 
environmental vectors. Wetland subsets: Shark River Slough (SRS), Water Conservation 
Areas 2A and 2B (WCA-2), and Water Conservation Areas 3A and 3B (WCA-3). 
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hydroperiod and Axis 1. The percentages of variance represented by Axis 1, 2, and 3 for 

the rotated ordination were 23%, 29%, and 20%, respectively. Periphyton biovolume, dry 

weight, AFDM, and TP had the largest magnitude of association with the ordination axes, 

as indicated by the length of the vectors (refer to Table 2.4 for exact correlation values). 

The relative placement and angles of the vectors showed patterns in diatom assemblages 

were correlated with hydrology (hydroperiod, days since dry, and water depth), 

periphyton quantity (periphyton biovolume, AFDM, dry weight, aerial cover, and 

chlorophyll a mass), and periphyton quality (TP, organic content, chlorophyll a 

concentration, and pH).  

The habitats included in this study ranged from short (min=39 days) to very long 

(max=333 days) hydroperiod sites; periphyton biovolumes were as low as 0 mL m-2 (4 

WCA-3 sites and 1 SRS site) to as high as 14,000 mL m-2 (Table 2.1). Most habitat 

characteristics were positively skewed; hydroperiod, however, was negatively skewed, 

indicating a greater number of long hydroperiod sites relative to short hydroperiod sites 

in the samples (Table 2.1). Habitat characteristics within the same category (hydrology, 

periphyton abundance, and periphyton quality) were correlated (p<0.05), except for 

conductivity; conductivity was only correlated with pH (Table 2.2). Organic content and 

other metrics of periphyton quality were correlated with metrics of periphyton 

abundance. SRS sites exhibited a negative relationship between hydroperiod and 

periphyton biovolume, while longer hydroperiod sites in WCA-2 and WCA-3 tended to 

have mats of higher periphyton biovolume but less organic content (Table 2.3).  
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Table 2.2. Pearson’s correlation matrix of habitat characteristics (prior to transformations). Sample size = 86. 

Category Hydrology  Periphyton abundance  Periphyton quality 
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DSD                
HYPER  0.73a               
DEPTH  0.58a  0.47a              
PBIOV -0.32a -0.26 -0.50a             
AERCO -0.23 -0.16 -0.41a   0.82a           
CHLMA -0.30a -0.23 -0.47a   0.92a  0.79a          
DRYWT -0.32a -0.30a -0.54a   0.94a  0.82a  0.91a         
AFDM -0.31a -0.28a -0.52a   0.95a  0.80a  0.92a  0.99a        
ORGCO  0.24  0.27a  0.46a  -0.60a -0.65a -0.57a -0.76a -0.65a       
TP  0.11  0.01  0.40a  -0.62a -0.62a -0.54a -0.66a -0.60a   0.72a     
CHLCO  0.38a  0.42a  0.56a  -0.65a -0.57a -0.47a -0.73a -0.68a   0.71a  0.59a    
pH -0.21 -0.31a -0.38a   0.42a  0.37a  0.41a  0.49a  0.48a  -0.40a -0.25a -0.43a   
CONDU  0.06  0.04  0.07   0.02  0.05 -0.02  0.00 -0.01  -0.01 -0.06 -0.07 -0.31a  
aSignificant correlation at the 0.05 level 
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Table 2.3. Pairwise correlations between three habitat characteristics describing 
hydrology (HYPER), periphyton abundance (PBIOV), and periphyton quality (ORGCO) 
of wetland subsets: SRS (Shark River Slough) WCA-2 (Water Conservation Areas 2A 
and 2B), and WCA-3 (Water Conservation Areas 3A and 3B). Sample size = 86 sites. 
 

 SRS  WCA-2  WCA-3 
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PBIOV -0.32 a  PBIOV  0.20  PBIOV  0.24  

ORGCO  0.42 a -0.51 a ORGCO -0.21 -0.42 ORGCO -0.28 -0.53a 
aSignificant correlation at the 0.05 level 

  



35 
 

Landscape-scale patterns 

Relative abundances of diatom species varied consistently among the three 

wetland subsets according to ANOSIM (Global R=0.26; p<0.01). Pairwise tests showed 

that SRS and WCA-2 were the most different (R=0.52), while SRS and WCA-3 were 

most similar (R=0.17), but differences between all pairs were statistically significant 

(p<0.01). Ordinations performed for the subsets (stress=0.17, 0.03, and 0.16; SRS, WCA-

2, and WCA-3, respectively) showed that SRS assemblages had similar associations with 

habitat characteristics as the combined dataset (Figure 2.2a), except for responses to pH 

(Table 2.4). The WCA-3 assemblage also showed similar associations as those of the 

combined dataset (Figure 2.2b), except associations with days since dry, hydroperiod, 

chlorophyll a mass, conductivity and pH were not statistically significant. The WCA-2 

assemblage was only associated with TP but, more importantly, had similar placement of 

vectors relative to each other as in the combined dataset (Figure 2.2c). Kendall’s test of 

concordance between subset-specific species responses to habitat characteristics rejected 

the null hypothesis that species responses were not associated (Wc=0.76, χ2=27.4, p<0.01; 

Table 2.4). Therefore, concordant associations of assemblage patterns among subsets 

allowed development of landscape-scale metrics using the entire dataset. 

 

Weighted averaging models and maps 

Hydroperiod, days since dry, water depth, periphyton biovolume, TP, and 

chlorophyll a concentration were selected by the Bio-Env procedure as the subset of 

habitat characteristics that formed the most correlated (ρ=0.27) ranked set of 

dissimilarities with that of the assemblage matrix. The procedure was repeated with 
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Figure 2.2. Non-metric multidimensional scaling. Three-dimensional ordination of wetland subsets: SRS (a), WCA-2 (b), and 
WCA-3 (c). Plots rotated to show relative distribution of environmental vectors. 
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Table 2.4. Maximum correlation to vectors of habitat characteristics from non-metric 
multidimensional scaling of the entire dataset and each subset separately. 
 

  

Habitat 
characteristics 

All subsets 
(n=86) 

SRS (n=41) WCA-2 
(n=10) 

WCA-3 
(n=35) 

DSD        0.36a 0.37  0.52  0.37 
HYPER        0.35a 0.57 a 0.71  0.45 

DEPTH        0.44a 0.59 a 0.61  0.49 a 

PBIOV        0.61a 0.63 a 0.42  0.52 a 
AERCO        0.56a 0.60 a 0.50  0.52 a 

CHLMA        0.53a 0.48 a 0.33  0.46 

ORGCO        0.52a 0.67 a 0.81  0.71 a 
DRYWT        0.61a 0.70 a 0.42  0.55 a 

AFDM         0.59a 0.65 a 0.34  0.47 a 

TP           0.59a 0.68 a 0.80 a  0.65 a 
CHLCO        0.53a 0.77 a 0.76  0.57 a 

CONDU        0.27 0.36 0.48  0.27 

pH           0.32a 0.33 0.27  0.31 
aSignificant correlation at the 0.05 level. 
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forced exclusions because of high correlations between hydroperiod and days since dry, 

hydroperiod and water depth, and between TP and chlorophyll a concentration (refer to 

Table 2.2). In the second run, hydroperiod, periphyton biovolume, and TP were selected 

as the subset to reach the highest rank correlation (ρ=0.25), with no improvement with 

the addition of any number of the remaining variables. Because the observed rank 

correlation could not be obtained after 999 permutations using randomized environmental 

matrices, I rejected the null hypothesis that there is no link between the assemblages and 

the environment (p<0.001). The variance in assemblage composition explained by 

hydroperiod, periphyton biovolume, and TP was 12.4%, 13.6%, and 17.9%, respectively 

(p<0.005 for all). 

Because hydroperiod, periphyton biovolume, and TP best matched assemblage 

patterns, these three metrics best informed inference models for assessment applications. 

The TP weighted averaging models were comparable to previous models generated from 

Everglades diatom assemblages (Gaiser et al. 2006; La Hée & Gaiser 2012). Thus, I do 

not reiterate the results in this study. I evaluated the performance of weighted averaging 

models constructed for hydroperiod and periphyton biovolume by comparing diatom-

inferred values with observed values (Figure 2.3). Diatom-inferred hydroperiod was 

correlated with observed values with r2=0.63 (RMSE=35 days) and boot r2=0.19 

(RMSEP=55 days); diatom-inferred periphyton biovolume was correlated with observed 

values with r2=0.56 (RMSE=19 square root mL m-2) and boot r2=0.41 (RMSEP=23 

square root mL m-2) (Table 2.5).  

Hydroperiod optima of diatom species ranged from 99 to 303 days and tolerances 

ranged from 8 to 81 days above and below optima; periphyton biovolume optima ranged  
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Figure 2.3. Diatom-inferred vs. observed hydroperiod (a) and periphyton biovolume (b). 
Diatom-inferred values calculated using weighted averaging models with bootstrapping 
cross validation method. Weighted averaging method with the lowest RMSEP (Root 
Mean Square Error of Prediction) chosen. Strength of model prediction indicated by r2 of 
trendline (apparent and bootstrapped r2 values (boot r2) shown). Dashed line indicates 1:1 
line of 100% correlation. Axes scaled to back-transformed values for periphyton 
biovolume. 
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Table 2.5. Performance of weighted-averaging models by linear regression of diatom-
inferred values against observed values of entire dataset and each subset separately. Slope 
of regression line (r2) and Root Mean Square Error (RMSE) compared to slope of 
regression line of bootstrap cross-validated values (boot r2) and Root Mean Square Error 
of Prediction (RMSEP). 
 

  
All subsets 
(n=86) 

SRS 
(n=41) 

WCA-2 
(n=10) 

WCA-3 
(n=35) 

Hydroperiod r2 0.63 0.67 0.71 0.76 
RMSE 
(days) 

35 29 28 29 

boot r2 0.19 0.26 0.1 0.23 
RMSEP 
(days) 

55 48 54 54 

Periphyton 
biovolume 

r2 0.56 0.57 0.59 0.67 

RMSE 
(square root 
mL m-2) 

19 18 12 14 

boot r2 0.41 0.37 0.02 0.31 

RMSEP 
(square root 
mL m-2) 

23 23 23 22 
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from 0 to 6000 mL m-2 and tolerances ranged from as low as 0 mL m-2 (where flocculent 

matter from the benthos, rather than periphyton, was sampled) and as much as 11,000 mL 

m-2 (Table 2.6). Pinnularia microstauron was associated with shorter hydroperiod sites, 

while Encyonema sp. 02 was associated with longer hydroperiod sites; Eunotia naegelii 

was associated with low periphyton biovolume, while Nitzschia serpentiraphe was 

associated with high periphyton biovolume, though it had a wide tolerance range of 850 

to 8700 mL m-2 (Figure 2.4).  

Maps of observed values, diatom-inferred values, and differences (observed 

minus inferred values) for hydroperiod (Figure 2.5 a, b and c) and periphyton biovolume 

(Figure 2.5 d, e and f) allowed visualization of the spatial distribution of these important 

habitat characteristics and the accuracy of diatom-based inferences. The highest predicted 

values of hydroperiod were in WCA-3, while the northern part of SRS had the lowest 

predicted values. In SRS, very long hydroperiod conditions (>280 days) were 

underestimated and shorter hydroperiod conditions (<190 days) were overestimated. 

Inferred periphyton biovolume estimates were very similar to observed values, with the 

highest predicted values in SRS, and lower values (<5000 mL m-2) in WCA-2 and WCA-

3. Differences between observed and diatom-inferred values were generally no more than 

one standard deviation of the observed variability in hydroperiod and periphyton 

biovolume (Figure 2.5 c and f, respectively). 

 

Discussion 

Hydroperiod, periphyton biovolume, and periphyton TP content were the habitat 

characteristics most strongly associated with diatom assemblage structure in the 
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Table 2.6. Frequency, maximum abundance, and weighted-average optima and tolerance ranges of diatom species for hydroperiod 
(HYPER) and periphyton biovolume (PBIOV). Species sorted from low to high hydroperiod optima. PBIOV tolerance lower and 
upper limits reported because of transformation-generated changes in scale. Sample size = 86 sites. 
 
       HYPER                PBIOV 

Taxon Name 
Freq. 
(%) 

Max. 
abund. 

(%) 

opt. 
(days) 

tol. 
(days) 

 
opt. 

(mL m-2) 

tol. 
lower 
lim. 

(mL m-2) 

tol. 
upper 
lim. 

(mL m-2) 

Caponea caribbea Podzorski  0.005 0.397 99 50 3500 1300 6900 

Nitzschia cf. obtusa W. Smith 0.005 0.395 145 50 1600 300 4000 

Nitzschia amphibia var. frauenfeldii Grunow 0.009 0.781 157 50 6000 2900 10200 

Pinnularia cf. gibba Ehrenberg  0.002 0.188 173 50 3700 1400 7100 

Stauroneis phoenicenteron (Nitzsch) Ehrenberg 0.005 0.302 178 50 400 0 1900 

Eunotia camelus Ehrenberg 0.151 13.200 181 50 0 0 600 

Gomphonema gracile Ehrenberg 0.014 1.200 181 50 0 0 600 

Frustulia rhomboides var. crassinervia (Brébisson) 
Ross 

0.023 1.208 192 44 700 100 1900 

Pinnularia microstauron (Ehrenberg) Cleve 0.071 2.000 192 57 1500 0 5400 

Frustulia sp. 01 0.005 0.378 196 50 0 0 600 

Stenopterobia curvula (W. Smith) Krammer 0.005 0.378 196 50 0 0 600 

Rhopalodia gibba (Ehrenberg) Muller 0.048 1.439 203 43 1400 200 3600 
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Table 2.6. Continued.   

Taxon Name 
Freq. 
(%) 

Max. 
abund. 

(%) 

opt. 
(days) 

tol. 
(days) 

 
opt. 

(mL m-2) 

tol. 
lower 
lim. 

(mL m-2) 

tol. 
upper 
lim. 

(mL m-2) 

Diploneis parma Cleve 0.503 7.273 205 53 1500 100 4400 

Gomphonema affine Kützing 0.050 1.186 208 62 1600 200 4700 

Diploneis oblongella (Naegeli ex Kuetzing) Ross 0.190 2.183 209 60 2200 600 4900 

Navicula subtilissima Cleve 0.343 7.031 216 64 2800 700 6300 

Nitzschia palea var. debilis (Kützing) Grunow 3.300 16.80 219 51 3100 800 6700 

Brachysira brebissonii Ross 0.114 3.021 227 77 1000 0 3300 

Encyonopsis microcephala (Grunow) Krammer 1.560 34.170 230 46 1600 100 5000 

Nitzschia serpentiraphe Lange-Bertalot 2.461 33.100 230 52 4400 1400 9300 

Cyclotella meneghiniana Kützing 0.263 1.188 233 50 1800 200 5000 

Nitzschia amphibia (Grunow) Lange-Bertalot 0.192 1.727 234 57 700 0 2100 

Brachysira neoexilis morph. 1 Lange-Bertalot & 
Moser 

0.149 4.626 234 43 4400 900 10700 

Navicula cryptotenella Lange-Bertalot 0.835 7.364 237 46 1000 100 3200 

Eunotia naegelii Migula 0.069 3.008 237 45 100 0 1100 

Eunotia monodon Ehrenberg 0.007 0.377 239 81 1100 500 2000 
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Table 2.6. Continued.   

Taxon Name 
Freq. 
(%) 

Max. 
abund. 

(%) 

opt. 
(days) 

tol. 
(days) 

 
opt. 

(mL m-2) 

tol. 
lower 
lim. 

(mL m-2) 

tol. 
upper 
lim. 

(mL m-2) 

Nitzschia palea (Kutzing) Smith 0.828 23.730 239 38 2000 500 4500 

Amphora sulcata (Brébisson) Cleve 1.630 43.380 241 46 2000 500 4500 

Eunotia flexuosa (Brébisson) Kützing 0.194 8.271 242 37 100 0 900 

Brachysira neoexilis morph. 2 Lange-Bertalot 9.106 50.850 242 61 2200 400 5700 

Brachysira pseudoexilis Lange-Bertalot & Moser  0.341 2.923 243 56 4100 1400 8300 

Mastogloia calcarea Lee, Gaiser, Van de Vijver, 
Edlund & Spaulding  

36.37 75.900 243 55 2100 300 5600 

Brachysirea vitrea (Grunow) Ross 0.023 1.547 244 47 5200 2300 9400 

Gomphonema intricatum var. vibrio (Ehrenberg) 
Cleve 

0.595 7.200 245 48 900 0 3400 

Sellaphora laevissima (Kützing) Krammer 0.133 0.985 245 54 1500 100 4600 

Mastogloia lanceolata Thwaites  0.091 2.603 248 42 2600 900 5100 

Navicula radiosa Kützing 0.464 4.494 251 47 1400 200 4000 

Encyonema evergladianum Krammer 23.30 60.790 252 53 2200 400 5600 

Achnanthes minutissima f. gracillima (Meister) 
Cleve-Euler 

0.078 1.912 253 53 1100 100 3100 

Fragilaria synegrotesca Lange-Bertalot 12.58 72.540 258 48 900 0 2900 
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Table 2.6. Continued.   

Taxon Name 
Freq. 
(%) 

Max. 
abund. 

(%) 

opt. 
(days) 

tol. 
(days) 

 
opt. 

(mL m-2) 

tol. 
lower 
lim. 

(mL m-2) 

tol. 
upper 
lim. 

(mL m-2) 

Enyconema silesiacum var. elegans Krammer  0.229 6.667 260 40 900 0 3100 

Gomphonema coronatum Ehrenberg 0.005 0.355 260 50 100 600 5000 

Amphora holsatica Hustedt  0.005 0.562 260 50 2300 0 900 

Encyonema sp. 01 2.387 31.670 261 51 1400 100 3900 

Eunotia incisa Gregory  0.018 0.388 262 10 300 0 1600 

Nitzschia nana Grunow 0.174 5.618 263 61 1400 200 3700 

Sellaphora pupula (Kützing) Mereschkowsky 0.027 1.509 265 8 100 0 1200 

Aulacoseira italica (Ehrenberg) Simonsen 0.002 0.192 265 50 4400 1800 8100 

Gomphonema vibriodes Reichardt & Lange-Bertalot 0.297 4.610 266 55 1000 0 3200 

Encyonema silesiacum (Bleisch) Mann 0.220 14.750 268 50 100 0 100 

Brachysira serians (Brébisson) Round & Mann 0.002 0.217 268 50 100 0 1100 

Fragilaria nanana Lange-Bertalot 0.153 2.000 272 52 100 100 3100 

Achnanthes caledonica Lange-Bertalot 0.300 11.260 280 62 1300 300 3100 

Fragilaria ulna var. ulna (Nitzsch) Lange-Bertalot 0.027 0.901 287 56 1200 200 3300 
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Table 2.6. Continued.   

Taxon Name 
Freq. 
(%) 

Max. 
abund. 

(%) 

opt. 
(days) 

tol. 
(days) 

 
opt. 

(mL m-2) 

tol. 
lower 
lim. 

(mL m-2) 

tol. 
upper 
lim. 

(mL m-2) 

Navicula radiosafallax Lange-Bertalot 0.014 0.538 291 41 200 0 500 

Stauroneis javanica (Grunow) Cleve 0.002 0.186 298 50 2500 1000 6100 

Achnanthes cf. minutissima v. gracillima (Meister) 
Lange-Bertalot 

0.005 0.407 298 50 3000 700 5400 

Encyonema sp. 02  0.018 0.377 303 28 1200 200 3000 

Fragilaria delicatissima (W. Smith) Lange-Bertalot 0.009 0.538 303 50 300 0 700 

 

 

 

  



47 
 

Figure 2.4. Relative abundances of diatom species indicating preferences (optima and 
tolerance ranges) for a range of hydroperiod (a-f) and periphyton biovolume (g-l). Second 
order polynomial trendlines. Note different y-axis scales for each taxon. 
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Figure 2.5. Observed, diatom-inferred, and difference (observed minus diatom-inferred 
values) maps of hydroperiod (a, b, c) and periphyton biovolume (d, e, f), respectively. 
Black values in difference maps (c and f) indicate values within one standard deviation of 
observed values. Standard deviations of hydroperiod and periphyton biovolume are 61 
days and 3200 mL m-2, respectively. Patterning in (a) delineates wetland subset 
boundaries. 
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Everglades. The underlying geology and geomorphology influence the natural 

hydropatterns of the Everglades (McVoy et al. 2011), while an extensive system of 

canals, levees and water control structures control the present flow of water (Sklar et al. 

2002). Alterations to the hydrology of the Everglades influence periphyton biovolume 

and nutrient content, especially when canal inputs increase delivery of minerals or P and 

encourage the development or disintegration of periphyton communities (Iwaniec et al. 

2006; Hagerthey et al. 2011; McCormick et al. 2011). Periphyton biovolume has been 

used as a metric of productivity (e.g., Ewe et al. 2006; Iwaniec et al. 2006), but has not 

been analyzed as a habitat characteristic for diatom assemblages. Because mats of high 

and low abundance appear to support distinct diatom assemblages, assemblage 

composition is useful for inferring the abundance of periphyton in given wetland 

locations in the past (before drainage and management) to inform restoration target-

setting. A known relationship between assemblage composition and periphyton 

biovolume would also aid restoration assessment because obtaining measurements of 

periphyton biovolume in the field is simple compared to the additional processing 

required to obtain measurements of chlorophyll a or nutrients in the laboratory. Because 

certain diatom species (e.g., Eunotia camelus, Gomphonema gracile, and Stenopterobia 

curvula) are associated with flocculent detrital material but absent or infrequent at sites 

with periphyton (zero minimum biovolume optimum and tolerance), their relative 

abundances can indicate the absence of periphyton. Thus, diatoms are comprehensive 

indicators of periphyton abundance that can provide inferences about a range of wetland 

environments that may or may not support periphyton. 

 



50 
 

While the relationship between phosphorus concentrations and diatom assemblage 

structure is well-documented (McCormick et al. 1996; McCormick et al. 1998; Pan et al. 

2000; Gaiser et al. 2006; Cooper et al. 2008; La Hée & Gaiser 2012), this study shows the 

important effects of hydroperiod and periphyton biovolume on diatom composition. The 

exact mechanisms driving diatom assemblage composition are undefined, but feedbacks 

among hydroperiod, periphyton biovolume, and composition likely shape wetland 

structure and function. The tendency to have high periphyton abundance in short 

hydroperiod areas (Gottlieb et al. 2006) indicates the periphyton mats in these areas could 

favor desiccation-resistant species capable of surviving annual drying. In turn, 

desiccation-resistant diatoms and other algal species produce biomass, including anti-

desiccative mucilage (Hoagland et al. 1993), that contribute to high biovolume 

periphyton mats, while also playing a role in controlling nutrient and mineral 

concentrations in the surrounding water column (Gottlieb et al. 2005; Thomas et al. 2006; 

Hagerthey et al. 2011). Further investigations are needed to understand how changes in 

hydrology affect these feedbacks. 

 The responses of individual diatom species, especially species with narrow 

tolerance ranges, had a key role in determining predictive relationships of diatom 

assemblages with hydroperiod and periphyton biovolume. For example, Fragilaria 

synegrotesca preferred long hydroperiod habitats; this agreed with previous findings by 

Gottlieb et al. (2005) and Gaiser et al. (2011). The diatom species with the longest 

hydroperiod optimum was Fragilaria delicatissima, a planktonic species (Patrick & 

Reimer 1966). Pinnularia microstauron was associated with shorter hydroperiod habitats; 

the type specimen of this species was found in soil on the roots of plants from Rio de 
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Janeiro, Brazil, indicating its ability to survive in drier conditions (Patrick & Reimer 

1966). The holotype of Caponea caribbea, which had the shortest hydroperiod optimum 

in this study, was collected by Podzorski (1985) from algal mats on the surface of a 

Jamaican peat swamp that had experienced a fire some months prior. Podzorski’s (1985) 

findings suggest that C. caribbea is adapted to surviving periodic desiccation and fire, 

which are frequent in short-hydroperiod wetlands; this species may even indicate time 

since fire. Species associated with habitats with very little periphyton, such as Eunotia 

camelus and Stenopterobia curvula, are acidophilic diatoms not usually found in calcium-

rich habitats like calcareous periphyton mats (Patrick & Reimer 1966; Krammer & 

Lange-Bertalot 1988; Furey 2010). Gomphonema gracile and G. coronatum have been 

reported to prefer high P habitats with pH<7 (Tobias & Gaiser 2006; Slate & Stevenson 

2007).  

Some of the more common diatom species in the flora of Everglades calcareous 

periphyton had broad tolerance ranges that were not useful for inferring habitat 

characteristics. Nitzschia serpentiraphe, a very common species in slough periphyton 

mats with a moderate (Slate & Stevenson 2007) to low TP optimum (Gaiser et al. 2006), 

reached its highest abundance in the thick, calcareous mats from SRS. Calcareous 

periphyton mats disintegrate because of a shift in community structure from a calcite-

precipitating filamentous flora (species of Utricularia and cyanobacteria that provide 

substrates for diatom growth) to dominance by green algae and eutrophic diatoms 

following P enrichment (McCormick & O'Dell 1996; McCormick et al. 2001; Gaiser et 

al. 2005b; Gaiser et al. 2006; Gaiser et al. 2011). This phenomenon supports the 

association of N. serpentiraphe with high periphyton biovolume and correspondingly low 
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to moderate TP habitats. However, N. serpentiraphe also had a wide tolerance range, 

which is expected because species in this genus are known to tolerate eutrophic 

conditions (Van Dam et al. 1994). The species with the highest periphyton biovolume 

optima (including N. amphibia var. frauenfeldii, N. serpentiraphe, Brachysira vitrea, and 

B. neoexilis) had an average tolerance range of greater than 8000 mL m-2. The wide 

tolerance ranges of these species restrict optima from reaching higher values, even 

though periphyton abundance can exceed 10,000 mL m-2. Inferences about periphyton 

abundance and enrichment based on diatoms with wide tolerance ranges should be made 

with caution because other factors may allow some species to thrive in both enriched and 

unenriched habitats. 

I found that although the wetland subsets in this study differed in species’ relative 

abundances, similar assemblage responses to habitat characteristics allowed development 

of a landscape-scale model encompassing gradients broader than those present in 

individual subsets. None of the NMS ordinations captured a response to conductivity, 

likely because of the shorter conductivity gradient encompassed by this study’s focus on 

alkaline freshwater habitats (where calcareous periphyton thrives) relative to gradients of 

other habitat characteristics. The lack of response by WCA-3 assemblages to metrics of 

inundation (days since dry and hydroperiod) may reflect how the impoundment of water 

for flood control in the WCAs limits the natural variability of inundation (Light & Dineen 

1994; Romanowicz & Richardson 2008). In contrast, historic P enrichment in WCA-2 

affected nutrient removal (Craft & Richardson 1993), peat accretion (Reddy et al. 1993), 

and vegetation (Urban et al. 1993). In this study, species assemblages in WCA-2 were not 

associated with any of the variables measured except TP. The lack of response to the 
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other habitat characteristics could be attributed to the low sample size of the subset 

(n=10). Despite these differences, hydroperiod and periphyton biovolume weighted 

averaging models made separately for each subset had lower boot r2 values (especially 

models for WCA-2) or only slightly improved boot r2 values (the hydroperiod models for 

SRS and WCA-3) (Refer to Table 2.5), probably because of the decrease in sample size 

(Birks et al. 1990; Reavie & Juggins 2011). The lack of improvement in correlation 

values of subset-specific models validated combining wetland subsets for landscape-scale 

assessment.  

The weighted averaging models for hydroperiod and periphyton biovolume 

showed the utility of diatom assemblages for wetland assessment. The Everglades model 

in this study was not as strong as the hydroperiod model by Gaiser et al. (1998) for 

diatoms from surface sediments of intermittent ponds on the Atlantic Coastal Plain 

(r2=0.81), because the Everglades model underestimates long hydroperiod conditions and 

overestimates short hydroperiod conditions. The limitations of the Everglades model 

could be a result of higher spatial and temporal variability within a wetland compared to 

ponds that are similar in geology, vegetation, and water source but range broadly in 

hydroperiod, permitting a more extreme gradient for developing inferences. Because 

unimodal-based calibration methods are prone to the ‘edge effect’ (ter Braak & Juggins 

1993; Birks 1998), which biases inferred values towards the mean of the observed values, 

I evaluated but did not employ weighted averaging models using partial least squares 

regression (ter Braak & Juggins 1993) to conserve parsimony and because improvements 

were not statistically significant. 
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 Visualizing the weighted averaging models showed that for both hydroperiod and 

periphyton biovolume, most of the differences between observed and diatom-inferred 

values were within the variability (one standard deviation) of the observed values. 

Because wetlands are spatially complex, maps are useful for summarizing biotic 

responses to the environment by visualization of biological patterns across a landscape in 

a way that integrates spatial and environmental heterogeneity. Maps can complement 

tools already developed for restoration assessment (Gaiser 2009), to visualize compliance 

or deviation of current conditions from reference or restoration targets. 

Analyzing diatom assemblage composition is a useful way to develop predictive 

models about the environment that coarser metrics may not always capture, especially in 

dynamic systems such as wetlands. Unlike one-time direct measurement of physical or 

chemical conditions such as periphyton biomass or water quality, assemblage 

composition is less prone to sampling variability because it integrates environmental 

conditions over larger spatial and temporal scales (Stevenson 1998). The relationship 

between diatom assemblages and hydrology is especially important in the Everglades 

because hydrologic manipulation is the basis of current restoration plans. As advances in 

diatom taxonomy continue to develop, it is imperative to make identifications to the 

species level in order to reconcile any current taxonomic discrepancies with future 

datasets (Julius & Theriot 2010). This effort would facilitate the combination of datasets 

for analyses at larger spatial and temporal scales. While assessment based on the presence 

or absence of a few indicator species can be less time consuming and costly, this method 

is prone to non-detection resulting from variable species detectability or inadequate 

sampling (MacKenzie 2005). Gottlieb (2003) found that long and short hydroperiod 
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assemblages differed in species relative abundances, rather than in the presence or 

absence of species. Likewise, I found that wetland subsets had differing species relative 

abundances, not species identities, which permitted development of inference models at 

the landscape scale. The laborious process involved in species identification and 

enumeration is worthwhile, considering the wealth of information it provides about how 

the species within assemblages respond, as a whole, to the environment and should be 

incorporated in assessments of other wetland systems.  

Sound ecologically-based assessment of change in wetlands requires an 

understanding of how assemblages respond to ecosystem parameters to make 

interpretations about past conditions, develop targets for the future, and aid assessment. 

This study found diatom assemblage composition has predictable relationships with two 

very important habitat characteristics of wetland ecosystem function: hydroperiod and 

periphyton biovolume. Wetland management programs should use this information to 

infer landscape-scale biological responses to hydrologic change and to inform restoration 

targets, especially in the Everglades where hydroperiod regimes no longer follow natural 

spatial and temporal patterns (Romanowicz & Richardson 2008). The hydroperiod and 

periphyton biovolume optima and tolerance ranges of Everglades diatom taxa defined by 

this study are important autecological information that should be used to further 

investigate the poorly described flora of tropical karstic wetlands (La Hée & Gaiser 

2012). Finally, this study found landscape-scale models are possible in the Everglades 

because diatom assemblage patterns were consistent across wetland subsets. Spatially-

explicit visualizations of these models are useful for assessing the performance of 

diatom-based inferences over a large area. Landscape-scale diatom-based models from 
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the Everglades should be used as an example for other large wetlands around the world 

with high hydrologic connectivity, such as boreal wetlands (Spence et al. 2011), the 

Pantanal (Alho et al. 1988), and the Okavango Delta (McCarthy et al. 2000). Although 

most tropical wetlands have received inadequate attention to date, advancements made by 

monitoring, restoration, and assessment efforts for the subtropical Everglades can guide 

newly developing wetland protection programs. 
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CHAPTER III: MORPHOLOGY AND TYPIFICATION OF MASTOGLOIA SMITHII 

AND M. LACUSTRIS, WITH DESCRIPTIONS OF TWO NEW SPECIES FROM THE 

FLORIDA EVERGLADES AND THE CARIBBEAN REGION 

 

Abstract 

The names Mastogloia smithii Thwaites ex Smith and M. smithii var. lacustris 

Grunow have been attributed to a variety of related diatom morphologies, partly because 

of poor availability of type material and complicated nomenclatural history. The history is 

detailed, clarifying the type morphologies of M. smithii and re-confirming a neglected 

elevation of M. smithii var. lacustris to M. lacustris (Grunow) Grunow. Populations 

reported as M. smithii and M. lacustris from the temperate zone (Ontario, Canada and 

Iowa and Michigan, USA), karstic wetlands of the subtropical Everglades (Florida, USA) 

and the tropics (Jamaica, Mexico, and Belize) are compared to each other. Based on 

morphological differences including density of partecta, striae, and areolae, M. calcarea 

sp. nov. and M. pseudosmithii sp. nov. are described from the Everglades and the 

Caribbean region, and a lectotype of M. smithii and a neotype of M. lacustris are 

designated. 
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Introduction 

Diatoms within the genus Mastogloia Thwaites ex W. Smith have naviculoid 

valves with rounded to capitate apices, areolate striae, and modified valvocopulae with 

chambers called partecta (Smith 1856, Stoermer et al. 1964, Ross et al. 1979, Round et al. 

1990, Paddock & Kemp 1990). Mastogloia is highly diverse, with an estimated 410 taxa 

(Novarino 1989) distinguished by various morphological features including the stria 

arrangement across the valve surface, the orientation, size, shape, and number of partecta, 

the shape of the raphe and raphe ends, and other internal and external ultrastructural 

characters (Hustedt 1933, Voigt 1942, Stephens & Gibson 1980, Novarino 1990, Paddock 

& Kemp 1990, Pennesi et al. 2011). Hustedt (1933) divided Mastogloia into 11 eco-

morphological groups, two of which are pertinent to the taxa studied in this investigation: 

Apiculatae and Lanceolatae. Mastogloia is a predominantly marine genus (e.g., Pennesi 

et al. 2011, 2012), but also has brackish and freshwater representatives (Round et al. 

1990). 

Mastogloia smithii Thwaites ex W. Smith is a common, presumably 

cosmopolitan, benthic diatom (Zafar 1964, Krammer & Lange-Bertalot 1986, Caljon & 

Cocquyt 1992, García-Rodríguez et al. 2002, Townsend & Gell 2005) that can attain high 

abundances in freshwaters with high conductivity and pH (Laird et al. 1996, Snoeijs 

2001, Townsend & Gell 2005). Along with M. lacustris (Grunow) Grunow, more 

commonly reported as M. smithii var. lacustris Grunow, M. smithii has been described as 

dominant in the karstic wetlands of the Florida Everglades (Slate & Stevenson 2007, 

Gaiser et al. 2010) and the Caribbean, including Jamaica, Belize, and Mexico (Novelo et 

al. 2007, Ibarra et al. 2009, Gaiser et al. 2010, La Hée 2010, La Hée & Gaiser 2012). 
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However, the identity of these karstic wetland specimens is questionable in some of these 

reports; the name M. smithii is sometimes erroneously used for specimens that show more 

resemblance to M. lacustris (Gaiser et al. 2010). Moreover, some morphological features 

of subtropical and tropical populations reported under these names vary from those 

reported in the literature, and further investigations into their differences have been 

suggested (Gaiser et al. 2010). Investigation of subtropical and tropical populations must 

include the assessment and validation of the original taxonomic concepts of M. smithii 

and M. lacustris by examination of the type material. This validation, as well as the 

resolution of any major taxonomic discrepancies within the literature, is necessary to 

accurately represent the true diversity of diatoms, especially in regions with poorly 

known floras such as the Caribbean (La Hée 2010, La Hée & Gaiser 2012). 

Mastogloia smithii has a complicated nomenclatural history because of variability 

in the descriptions and specimen sources used by diatomists, leading to confusion in the 

literature. Mastogloia smithii was originally described by Smith (1856, p. 65) from fresh 

and brackish water samples collected on 10 sampling dates from eight locations in 

England, including the “Little Sea” in Dorset: “Valve elliptical, extremities produced; 

loculi 6 to 24; striae 42 in .001′′. Breadth of valve .0003′′ to .0008′′ ” (16.5 striae in 10 

µm and 7.6–20.3 µm wide) (Tables 3.1–3.2). Smith (1856) also recognized an unnamed 

“β” form of M. smithii with capitate ends: “β. Extremities produced and inflated.” He 

(Smith 1856) distinguished M. smithii from M. danseii (Thwaites) W. Smith and M. 

lanceolata Thwaites by “its freshwater habitat, distinctly produced, and occasionally 

capitate extremities and variable breadth.” In this statement, Smith (1856) did not appear 

to consider the capitate “β” form a separate entity from the nominate variety. Smith’s 
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Table 3.1. Source material (samples) and slides examined for the study of Mastogloia 
species. 

Taxa 
examined 

Source 
information 

Collection location
Latitude 

(N) 
Longitude 

(W) 
Date 

M. smithii 
lectotype 

Material and 
slide VI-43-B5 
(BR) 

Dorset, UK nd nd Oct. 
1848 

M. lacustris 
neotype 

Material and 
slide III-24-A9 
(BR) 

Bergh, Brabant, 
Belgium 

nd nd nd 

M. lacustris 
isoneotype 

Slide Types du 
synopsis des 
diatomées de 
Belgique. no. 47. 
M. smithii var. 
lacustris Grun. 
Belgique (FH) 

Bergh, Brabant, 
Belgium 

nd nd nd 

M. lacustris 
confirmed 
distribution 
records 

Slide EEG 08-
24-10 Alvar rock 
pool periphyton 
(FIU) 

Misery Bay 
Provincial Nature 
Reserve, Ontario, 
Canada 

45°48.349 82°46.315 Aug. 
2010 

 Slide 2011-13 
Periphyton on 
buoy (ILH) 

Little Miller’s 
Bay, Milford, 
Iowa, USA 

43°22.693 95°10.844 May 
2011 

 Slide  JPK 5591-
5 (FIU) 

O’Neal Lake, 
Michigan, USA 

45°42.758 84°53.264 Mar. 
2011 

M. calcarea 
holotype 

Material GCM 
4841 and slide 
GC 58993 
(ANSP) 

Everglades 
National Park, 
Florida, USA 

25°41.883 80°39.249 Oct. 
2008 

M. calcarea 
isotype 

Slide 4298 (BR) Everglades 
National Park, 
Florida, USA 

25°41.883 80°39.249 Oct. 
2008 

M. calcarea 
paratypes  

Slides 4311 (BR) 
and GC 16009 
(ANSP) 

Broad River, 
Black River 
Morass, St. 
Elizabeth, Jamaica 

18°01.524 77°48.874 May 
2008 

 Slides 4312 (BR) 
and GC 30902 
(ANSP) 

New River 
Lagoon, Orange 
Walk, Belize 

17°45.527 88°38.456 Nov. 
2007 

 Slides 4313 (BR) 
and GC 30903 
(ANSP) 

Sian Ka’an 
Biosphere 
Reserve, Quintana 
Roo, Mexico 

19°49.619 87°30.585 Dec. 
2006 
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Table 3.1. Continued.     

Taxa 
examined 

Source 
information 

Collection location Latitude 
(N) 

Longitude 
(W) 

Date 

M. pseudo-
smithii 
holotype 

Material GCM 
4842 and slide 
GC 58994 
(ANSP) 

Everglades 
National Park, 
Florida, USA  

25°28.935 81°2.907 Nov. 
2011 

M. pseudo-
smithii 
isotype 

Slide 4314 (BR) Everglades 
National Park, 
Florida, USA  

25°28.935 81°2.907 Nov. 
2011 

M. pseudo-
smithii 

Material and 
slide CERP 034 
851 1 19 (FIU) 

Water 
Conservation Area 
2A, Florida, USA 

26°12.874 80°22.101 Oct. 
2011 

 Material and 
slide CERP 009 
884 1 19 (FIU) 

Water 
Conservation Area 
3A, Florida, USA 

26°14.275 80°38.956 Oct. 
2011 

M. aff. 
smithii 1 

Material JPK 
5591 (CU); 
slides JPK 5591-
1 to  JPK 5591-4 
(FIU) 

O’Neal Lake, 
Michigan, USA 

45°42.758 84°53.264 Mar. 
2011 

M. aff. 
smithii 2  

Material and 
slide III-24-A8 
(BR) 

South Africa nd nd nd 

 Slide Types du 
synopsis des 
diatomées de 
Belgique. no. 46. 
M. smithii 
Thwaites Afrique 
méridionale (FH) 

South Africa nd nd nd 

Note. BR: National Botanic Garden of Belgium; FH: Farlow Herbarium; ANSP: 
Academy of Natural Sciences, Philadelphia; FIU: Florida International University; 
ILH: Iowa Lakeside Laboratory Reimer Herbarium; CU: University of Colorado; nd: 
no data. 
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Table 3.2. Morphometric data and morphological features of Mastogloia smithii from relevant reference sources, with LM 
measurements of M. smithii lectotype and mean values in parentheses. Information from references obtained directly from the text.  
 

Reference 
source 

n 
Valve 
length 
(µm) 

Valve 
width 
(µm) 

Mean 
length:
width 
ratio 

Striae 
in 10 
µm 

Areolae 
in 

10 µm 

Partecta 
in 

10 µm 

Mean 
length: 

partectum 
ratio 

Shape and 
area of 

central area
(µm2) 

Angle of 
striae 

(°) 

Outline of 
medium-

sized 
valve 

Apices 

Smith 
(1856) 

nd nd 
7.6–
20.3 

nd 16.5 nd nd nd nd nd Elliptical 

Produced; 
“β” form: 

produced and 
inflated 

Van 
Heurck 
(1885) 

nd 30–45 nd nd 15–17 nd nd nd 
Slightly 
extended 
laterally 

Radiating 
to 

apices 
Elliptical 

Slightly 
reduced- 
rostrate, 

attenuated 

Patrick & 
Reimer 
(1966) 

nd 20–45 8–14 nd 18–19 14–17 6–8 nd 

Small, 
elliptical to 
quadrang-

ular 

Parallel 
or 

slightly 
radiate 

Elliptical to 
elliptical-
lanceolate 

Short, 
protracted, 

subrostrate to 
subcapitate 

Krammer 
& Lange-
Bertalot 
(1986) 

nd 20–60 8–14 nd 18–20 15–21 nd nd 

Small, 
round to 

elliptical or 
rectangular

nd 
Linear- 

elliptical 
Capitate 

Lectotype 
VI-43-
B5, 
Dorset, 
UK 

20 
25–50 
(35) 

11–15 
(13) 

2.7 20–21 23–26 6–8 3.9 
Elliptical 
6–12 (9) 

166–174 
(170) 

Elliptical-
lanceolate 

Rostrate to 
capitate 

Note. n: number of specimens measured; nd: no data.
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(1856) drawing of M. smithii (Figure 3.1) showed variability in valve width, but 

consistently featured a very narrow central area and longitudinal lines on either side of 

the raphe that could indicate axial costae (Ross et al. 1979, Stephens & Gibson 1980); 

however, the size of the central area and presence of axial costae were not mentioned in 

the written description.  

The taxonomic concept of M. smithii began shifting shortly after the taxon was 

described. According to VanLandingham (1971), the first published use of M. smithii 

after Smith (1856) was Grunow (1860), but Grunow (1860) was skeptical of the status of 

M. smithii sensu Smith as a distinct taxon from M. lanceolata sensu Smith. Nevertheless, 

M. smithii was subsequently reported from Ireland (O'Meara 1871), the Caspian Sea 

(Grunow 1878), France (Brun 1880), South Africa (Van Heurck & Grunow 1882–1885), 

Belgium (Van Heurck 1880, 1885), and North America (Wolle 1894), among other 

locations (VanLandingham 1971). Evidence of a major shift in the concept of M. smithii 

sensu Smith was found in Patrick & Reimer (1966), who reported M. smithii as widely 

distributed within the United States, especially in freshwater lakes. However, their figure 

of M. smithii, was based not on type nor even United States material, but on South 

African material used by Van Heurck (exact location not provided in Van Heurck & 

Grunow 1882–1885, Type no. 46; note that this publication and other exsiccatae in the 

Van Heurck and Grunow collection are not types as defined by the International Code of 

Nomenclature for algae, fungi, and plants). The taxonomic concept of M. smithii 

presented by Van Heurck (1885) and Patrick & Reimer (1966) did not include axial 

costae on either side of the raphe. Patrick & Reimer’s (1966) figure of M. smithii has a 

distinctly asymmetrical and panduriform central area not present in M. smithii sensu 
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Figure 3.1. Original line drawing of Mastogloia smithii, labeled 341 and 341β from Smith (1856). 



73 
 

Smith. Furthermore, Krammer & Lange-Bertalot (1986, pl. 201, figs 2–5, 7–9) showed 

micrographs of M. smithii specimens with varying valve widths and apices, all lacking 

evidence of axial costae, from three locations: Belgium, Northern Europe, and South 

Africa. Because subsequent researchers did not reconcile these discrepancies, problems 

arose when taxa identified as M. smithii in other collections were studied. For example, 

Novarino (1990) studied the morphology of specimens from the Rabenhorst collection 

(Cesati Herbarium in Rome, Italy) identified as M. smithii, but noted several differences 

from earlier descriptions: the undulate rather than straight raphe, the rectangular rather 

than circular central area, the presence of pseudopartecta (protuberances between the 

terminal partecta and the partectal ring apices), and the absence of axial costae.  

Misinterpretations also arose when M. smithii was reported from regions of the 

world with relatively poorly studied floras, such as subtropical and tropical wetlands in 

the western hemisphere. When Podzorski (1985) reported M. smithii from Jamaica, he 

referred to the description by Patrick & Reimer (1966), even though his micrographs 

show narrower valves (pl. 5, figs 21–22) than M. smithii sensu Patrick & Reimer, and 

only the partectal ring of a slightly wider valve (pl. 5, fig. 18). Difficulty with 

nomenclature and morphological diversity of M. smithii became further apparent when 

Slate & Stevenson (2007) reported two morphotypes of M. smithii from the Florida 

Everglades, USA; the morphotypes were distinguished by valve outline (linear-lanceolate 

in Morphotype I and almost elliptical in Morphotype II) and slightly larger lengths in 

Morphotype I. Slate & Stevenson (2007) noted that Morphotype I resembled M. lacustris, 

but with higher areola and stria density than that given in the literature. Gaiser et al. 

(2010) reviewed the ecology and morphology of subtropical and tropical populations, 
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distinguishing the dominant morphotype from M. smithii (to which it is often referred in 

Everglades literature) after reviewing type material, and aligning it more closely to M. 

lacustris (referred to as M. smithii var. lacustris Grunow).  

The nominate variety of M. smithii has been closely allied to, and often confused 

with, M. lacustris. Mastogloia lacustris was originally described as a variety of M. 

smithii by Grunow (1878, p. 111): “Eine ziemlich abweichende Form der M. Smithii, 

welche ich einstweilen als var. lacustris bezeichne, findet sich in Süsswasserseen. Sie hat 

einen viel grösseren und starker seitlich erweiterten freien Raum um den 

Mittelknoten,15–16 Querstreifen und nähert sich der M. Dansei” [A rather different form 

of M. smithii, that I call for the time being var. lacustris, is found in freshwater lakes. It 

has a much bigger and more strongly laterally extended free space around the central 

nodule, 15–16 striae and approaching M. dansei] (Table 3.3). Because Grunow (1878) 

did not clearly identify the locality of M. smithii var. lacustris, provide any figures of the 

taxon, or designate a holotype, it became difficult to establish its taxonomic identity, 

either as a variety of M. smithii as Grunow originally intended, or as a separate entity. 

However, Grunow (1878) gave three characteristics that distinguished this taxon from the 

nominate variety: found in freshwater lakes rather than brackish localities, a much larger 

and laterally expanded central area, and 15–16 rather than 15–17 striae in 10 µm.  

The evolution of the taxonomic concept of M. lacustris continued with a short 

description of M. smithii var. lacustris in Van Heurck (1885): “Diffère du type par sa 

forme plus étroite et par le nodule beaucoup plus élargi latéralement” [Differs from the 

type by its narrower shape and much more laterally expanded nodule]. Previously, 

however, Van Heurck (1880, pl. 4, fig. 14) had included a line drawing (Figure 3.2) that 
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Table 3.3. Morphometric data and morphological features of Mastogloia lacustris from relevant reference sources, with LM 
measurements of M. lacustris neotype specimens and confirmed distribution records with mean values in parentheses. Information 
from references obtained directly from text. 

 

Table 3.3. Continued. 

Reference 
source 

n 
Valve 
length 
(µm) 

Valve 
width 
(µm) 

Mean 
length:
width 
ratio 

Striae 
in 10 
µm 

Areolae 
in 

10 µm 

Partecta 
in 

10 µm 

Mean 
length: 

partectum 
ratio 

Shape and 
area of 

central area 
(µm2) 

Angle of 
striae 

(°) 

Outline of
medium-

sized 
valve 

Apices 

Grunow 
(1878) 

nd nd nd nd 15–16 nd nd nd 
More laterally 

extended 
nd nd nd 

Van 
Heurck 
(1885) 

nd 30–45 
Narrower 
than M. 
smithii 

nd 15–17 nd nd nd 
More laterally 

extended 
Radiating 
to apices

Elliptical 

Slightly 
reduced- 
rostrate, 

attenuated

Patrick & 
Reimer 
(1966)  

nd 20–45 8–11 nd 15–16 13–15 6–8 nd 

Larger, more 
rectangular, 
extending to 
outer border 

of loculi 

More 
radiate 
than M. 
smithii 

Linear- 
lanceolate

As in M. 
smithii 

Krammer 
& 
Lange-
Bertalot 
(1986) 

nd 20–60 8–14 nd 15–18 15–21 nd nd nd nd 
Linear- 

lanceolate

More or 
less 

stubby, 
projecting

Novarino 
(1990) 

nd 
28–41 
(33.5) 

7.5–10.0 
(8.5) 

nd 15–20 nd nd nd 
Circular, more 

frequently 
rectangular 

Radiate 
Narrowly 
lanceolate

Slightly 
produced, 

obtuse 



76 
 

Note. n: number of specimens measured; nd: no data. 

Reference 
source 

n 
Valve 
length 
(µm) 

Valve 
width 
(µm) 

Mean 
length:
width 
ratio 

Striae in 
10 µm 

Areolae 
in 

10 µm 

Partecta 
in 

10 µm

Mean 
length: 

partectum 
ratio 

Shape and  
area of 

central area 
(µm2) 

Angle of 
striae 

(°) 

Outline of
medium-

sized 
valve 

Apices 

Neotype III-
24-A9, 
Belgium 

20 
28–55 
(38) 

8–10 (9) 4.3 16–17 16–20 5–7 3.4 

Asymmetrical, 
elliptical to 
polygonal 
5–14 (8) 

147–164 
(156) 

Elliptical-
lanceolate

Rostrate 
(rounded 
in post-
initial 

valves) 

EEG 08-24-
10, Canada 

25 
27–51 
(35) 

7–9 (8) 4.3 16–17 16–20 5–6 4.4 

Asymmetrical, 
elliptical to 
polygonal 
5–13 (8) 

142–162 
(152) 

Elliptical-
lanceolate

Rostrate 
(rounded 
in post-
initial 

valves) 

2011-13, 
Iowa 

20 
20–49 
(35) 

7–10 (9) 4.0 17–18 16–20 5–6 4.2 

Asymmetrical, 
elliptical to 
polygonal 
3–11 (6) 

149–164 
(155) 

Elliptical-
lanceolate

Rostrate 
(rounded 
in post-
initial 

valves) 

JPK 5591-5, 
Michigan 

20 
29–49 
(36) 

8–10 (9) 4.0 16–18 18–20 5–7 4.3 

Asymmetrical, 
elliptical to 
polygonal 
4–10 (6) 

150–159 
(153) 

Elliptical-
lanceolate

Rostrate 
(rounded in 
post-initial 

valves) 
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Figure 3.2. Original line drawing of M. (Smithii var?) lacustris Grun. from Van Heurck 
(1880). 
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assigned the name, “M. (Smithii var?) lacustris Grun.” to the taxon. This status change to 

specific rank, M. lacustris (Grunow) Grunow, was apparently never followed by later 

researchers, even by Van Heurck (1896). In the literature, the name M. lacustris (e.g., 

Cox 2006) has rarely been used, unlike M. smithii var. lacustris (e.g., Patrick & Reimer 

1966, Krammer & Lange-Bertalot 1986, Novarino 1989, California Academy of Sciences 

2011). A slide containing the taxon was included in the Types du Synopsis des Diatomées 

de Belgique as exsiccatum Type no. 47, Mastogloia (Smithii var.) lacustris Grun. from 

Bergh, Brabant, Belgique (Van Heurck & Grunow 1882–1885). In addition to the 

laterally expanded central area originally mentioned by Grunow (1878), Van Heurck 

(1885) distinguished M. lacustris from the nominate variety by its narrower width, but 

not by geographical distribution or stria density. Later researchers were mostly faithful to 

the taxonomic concept of M. lacustris sensu Van Heurck & Grunow Type no. 47, 

especially because of the accessible exsiccatae (Edgar 2008), though Type no. 47 was 

never formally designated as type material of M. lacustris. Patrick & Reimer (1966) used 

exsiccatum Type no. 47 to further distinguish this taxon from M. smithii by its more 

radiate and coarser striae (15–16 in 10 µm for M. lacustris, 18–19 in 10 µm for M. smithii 

sensu Van Heurck & Grunow’s Type no. 46, 16.5 in 10 µm for M. smithii sensu W. 

Smith) and linear-lanceolate rather than elliptical-lanceolate (sensu Van Heurck & 

Grunow Type no. 46) or elliptical (sensu W. Smith) valve outline. Krammer & Lange-

Bertalot (1986) also used exsiccatum Type no. 47 when they extended the maximum 

valve length of M. lacustris from 45 µm sensu Van Heurck (1885) to 60 µm to include 

post-initial valves (pl. 201, fig. 1).   
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Inconsistent descriptions of stria density and other features that distinguish M. 

lacustris from M. smithii have led to inconsistent identifications. Features of subtropical 

(Slate & Stevenson 2007) and tropical populations (Novelo et al. 2007) reported under 

these names vary from those reported in the literature (Gaiser et al. 2010). Novelo et al. 

(2007) identified a taxon from Mexico with a stria density of 18–20 in 10 µm and a width 

of 7.6–9.5 µm as M. smithii; these measurements were consistent with Krammer & 

Lange-Bertalot (1986) although a maximum width of 14 µm was reported in the 

reference (Krammer & Lange-Bertalot 1986). Ecophenotypes (Stoermer 1967) and 

variation in valve morphology during size diminution among many species of 

Mastogloia, resulting in the normally rostrate apices becoming less so (Gaiser et al. 2010, 

fig. 4), add to the problem. Furthermore, initial valves of M. smithii (Stickle 1986) and M. 

grevillei W. Smith ex Gregory (Main 1995) have a strikingly different appearance with 

broadly rounded apices. However, this variability in valve morphology in relation to 

shape changes during size diminution was ignored (e.g., Krammer & Lange-Bertalot 

1986, pl. 201, fig. 1) or has only been briefly mentioned (e.g., Slate & Stevenson 2007, 

Gaiser et al. 2010). For example, Slate & Stevenson (2007) suspected that rounded apices 

could be characteristics of initial valves, and Gaiser et al. (2010) showed the size 

variation for subtropical and tropical populations, identifying specimens with rounded 

apices as initial valves. The present study characterizes and establishes a lectotype for M. 

smithii and a neotype for M. lacustris, then establishes the identity and morphology of 

subtropical (Florida, USA) and tropical (Jamaica, Belize, and Mexico) inland Mastogloia 

taxa by comparing these populations to the types and temperate populations (Ontario, 

Canada and Iowa and Michigan, USA) of M. smithii and M. lacustris. 
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Methods 

Material and slides containing specimens identified as M. smithii and M. lacustris 

(or M. smithii var. lacustris) were obtained from herbaria and modern collections (see 

Figure 3.3 and Table 3.1 for location details and accession numbers):  

– Smith reported 10 collections in the original description of M. smithii, one of 

which (the oldest material) was “Little Sea,” Dorset, United Kingdom, collected 

by Smith in October 1848, and likely shared with Thwaites [see Smith’s (1856, p. 

64) discussion of providing Thwaites with additional material of M. danseii in 

October 1848]. These collections can be considered syntypes. The Dorset material 

was obtained from the Van Heurck collection housed at the National Botanic 

Garden of Belgium (BR). The original slide (BR VI-43-B5) made from this 

material was also investigated.  

– Mastogloia smithii from material collected by Van Heurck from an unknown 

location in South Africa (Afrique méridionale) used to make exsiccatum slide 

Type no. 46 (Van Heurck & Grunow 1882–1885) and referenced by Patrick & 

Reimer (1966) for their figure of M. smithii was obtained from BR.  

– Mastogloia smithii from exsiccatum slide Type no. 46 (Van Heurck & Grunow 

1882–1885), presumably containing material identical to the BR material, was 

obtained from the Farlow Herbarium at Harvard University (FH).  

– Material related to M. lacustris from the Caspian Sea (Grunow 1878) in the 

Grunow collection could not be retrieved from the Naturhistorisches Museum in 

Vienna (A. Igersheim, pers. comm.). Mastogloia smithii var. lacustris from 
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material originating from Bergh, Brabant, Belgium used to make exsiccatum slide 

Type no. 47 (Van Heurck & Grunow 1882-1885) was obtained from BR.  

– Mastogloia smithii var. lacustris from exsiccatum slide Type no.47 (Van Heurck 

& Grunow 1882-1885), presumably containing material identical to the BR 

material, was obtained from FH. 

– Specimens identified as M. lacustris from modern periphyton samples were 

collected from northeast Everglades National Park, Florida, USA. 

– Specimens identified as M. smithii from modern periphyton samples were 

collected from southwest Everglades National Park, Water Conservation Area 2A, 

and Water Conservation Area 3A, Florida, USA.  

– Specimens identified as M. lacustris from modern periphyton samples were 

collected from Jamaica (Broad River in the Black River Morass, St. Elizabeth), 

Belize (New River Lagoon in Orange Walk), and Mexico (Sian Ka’an Biosphere 

Reserve in Quintana Roo).  

– Specimens identified as M. smithii and M. lacustris from modern periphyton 

samples were collected from O’Neal Lake, Bliss, Michigan, USA.  

– Specimens identified as M. lacustris from modern periphyton samples were 

collected from Canada (Misery Bay Provincial Nature Reserve, Burpee and Mills, 

Ontario) and Iowa, USA (Little Miller’s Bay in Milford).  

Material from Florida, the Caribbean, and Canada was archived at Florida 

International University (FIU), material from Iowa was archived at the Iowa Lakeside 

Laboratory Reimer Diatom Herbarium (ILH), material from Michigan was archived at 

the University of Colorado Diatom Herbarium (CU), and holotypes and some paratypes  
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Figure 3.3. Map of sample locations from herbarium (United Kingdom, Belgium, South 
Africa) and current (Canada, Michigan, Iowa, Florida, Jamaica, Mexico, Belize) 
Mastogloia collections. 
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of the newly described species were archived at the Academy of Natural Sciences, 

Philadelphia (ANSP). Original material from BR was cleaned following the method of 

Van der Werff (1955). Different cleaning methods were necessary to oxidize higher 

levels of organic matter in lake samples from Iowa and Michigan (Patrick & Reimer 

1966) and to remove very high levels of calcium carbonate in karstic wetland samples 

from Canada, Florida, and the Caribbean (Hasle & Fryxell 1970). For scanning electron 

microscopy (SEM), a portion of all samples except Michigan material were filtered 

through polycarbonate membrane filters with a pore diameter of 3 µm. After air drying, 

pieces of the filters were fixed on aluminium stubs, sputter-coated with 50 nm gold 

(Cressington 208HR, Watford, UK) and studied on a Zeiss ULTRA SEM microscope at 3 

kV at the Natural History Museum, London, UK. Samples from Michigan were sputter-

coated with 50 nm gold and examined on a FEI Quanta FEG 450 field emission SEM. 

For all modern samples and exsiccatae slides no. 46 and 47, light microscopy (LM) was 

conducted using a Zeiss Axioskop 2 equipped with differential interference contrast 

(Nomarski) and a Leica DFC425 digital camera. For the syntype material of M. smithii, 

LM observations were made using an Olympus BX51 microscope, equipped with 

differential interference contrast (Nomarski) and the Colorview I Soft Imaging System.  

In each of the modern samples at least 500 valves were counted to determine the 

relative abundances of specimens resembling M. smithii and M. lacustris (Weber 1973). 

Digital images of at least 20 specimens from each population were captured by LM with 

effort to include the widest possible range in valve length, including post-initial valves 

(valves recently divided from initial valves). Morphometric data (length, width, stria 

density, areola density, partectum density, area of the central area, and angle of striae 
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from the apical axis) were obtained from LM images using ImageJ (Rasband 1997–2012) 

(Figure 3.4). Area of the central area was measured by drawing a polygon around the 

empty space in the center of the valve. Angle of striae was measured as the angle created 

by the striae on both sides of the raphe, so that an angle of 180° would be the 

measurement of parallel striae.  

Multivariate analyses were performed to compare all modern specimens to each 

other and to specimens from type material, based on differences in morphometric data 

(controlling for size-dependent metrics): angle of striae, area of the central area, stria, 

areola and partectum densities, length:width ratio, and length:partecta ratio (Novarino & 

Muftah 1992). All variables were standardized to zero mean and unit variance. DECODA 

version 3.01 beta 58 (Minchin 2005–2012) was used to perform non-metric 

multidimensional scaling (NMS) ordination based on a Euclidean distance dissimilarity 

matrix and to perform vector fitting (Kantvilas & Minchin 1989) (i.e., calculating the 

maximum Spearman rank correlation coefficient between each morphometric variable 

and the final ordination scores). NMS rather than principal components analysis was used 

because the assumption of linear relationships between all morphometric variables could 

not be made (Kruskal & Wish 1978). Analysis of similarity (ANOSIM) was performed 

using Primer-E version 6 (Clarke & Gorley 2006) to test the null hypothesis that there is 

no difference between specimens from different locations (by comparing the 

dissimilarities within and among groups).  

Terminology for Mastogloia ultrastructure followed that of Hustedt (1933), Voigt 

(1942), Ross et al. (1979), Stephens & Gibson (1980), Novarino (1990), Paddock & 

Kemp (1990), and Round et al. (1990). 
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Figure 3.4. Valve of Mastogloia lacustris in two different LM focal views with markings 
showing measurement methods of morphometric data: a) length, b) width, c) stria 
density, d) areola density, e) partectum density, f) area of central area, g) angle of striae. 
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Results 

Mastogloia smithii 

The valve morphology of M. smithii from Dorset, UK was consistent with Smith’s (1856) 

original description (Table 3.2) and line drawing (Figure 3.1) of the taxon. No other 

Mastogloia taxa that could be confused with Smith’s description were found on the slide. 

Thus, this single syntype reported by Smith (1856) provided the basis of the following 

description and was designated the lectotype of M. smithii. 

 

Mastogloia smithii Thwaites ex W. Smith (Figures 3.5–3.6) 

 

Description. Cells solitary. Valves elliptical-lanceolate with rostrate to subcapitate apices, 

25–50 µm length, 11–15 µm width, 20–21 striae per 10 µm, 23–26 areolae per 10 µm 

(Figure 3.5). Striae areolate, gently radiate, becoming parallel at the apices, stria 

arrangement on the valve face continues unchanged onto the mantle; central area 

elliptical (Figure 3.6a). Areolae rounded, some reduced around the central area (Figure 

3.6b), internally occluded by a cribrum (velum perforated by regularly arranged pores; 

Figures 3.6b–c). Raphe straight with a median kink (Figure 3.6a), proximal raphe ends 

slightly expanded and opening into a spathulate groove (Figure 3.6b), distal raphe ends 

slightly expanded, extending centrally over the mantle, hooked to the same side, with a 

small hyaline area where the curve occurs (Figure 3.6c). Internally, raphe more or less 

straight, within a thin raphe sternum, lying in an axial area with raised ‘axial costae’ that 

create a ‘gutter’ which widens slightly at the central nodule and does not extend to the 

distal raphe ends (Figures 3.6d–e). Internal proximal raphe ends slightly expanded and 
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Figure 3.5. Valves of Mastogloia smithii from lectotype slide VI-43-B5, Dorset, UK showing size reduction, LM. Note: axial 
costae (arrow). Figures b, d, g. Valves showing partectal ring. Figures c–d. Lectotype specimen. Scale bars =10 µm. 
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Figure 3.6. Mastogloia smithii from lectotype material, Dorset, UK, SEM external (a–c) 
and internal views (d–h): a) whole valve, b) detail of central area showing reduced 
areolae, c) detail of valve apex, d) whole valve with partectal ring showing axial costae 
(white arrow), broad cleft at apex (black arrow), and partectal pore (arrowhead), e) detail 
of central area and axial costae, f) detail of pseudoseptum (arrowhead) and helictoglossa, 
g) detail of pores between partecta, some appearing occluded (arrowheads), h) broken 
valve showing costa-like virgae. Scale bars =10 µm (a, d), 1 µm (e, f), 0.5 µm (b–c, g–h). 
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raphe sternum elevated toward the raised central nodule (Figures 3.6d–e). Internal distal 

raphe ends straight, slightly expanded, ending in simple helictoglossae (Figures 3.6f). 

Partectal ring ‘closed’ (forming a complete band around the cell), without a flange 

separating the ring from the valve margins, with a broad cleft at both apices exposing the 

pseudoseptum (Figures 3.6d, f), with pores between some pairs of partecta near the 

advalvar edge of the partectal ring arranged in no obvious pattern, some pores appearing 

occluded (Figures 3.6d, g). Partecta distributed along both sides of the partectal ring, 

except near the apices, partecta visibly distinguishable, slightly larger towards the apices 

(Figures 3.6d, g). Virgae (solid silica between striae) thickened to form costae, present 

throughout the valve interior (Figures 3.6d, h). Five partectal pores located near both 

sides of the apices (Figure 3.6d). 

 

Lectotype (here designated). Slide VI-43-B5 in the Van Heurck collection at the National 

Botanic Garden of Belgium (BR), Meise, Belgium based on the “Little Sea,” Dorset, 

United Kingdom material collected by W. Smith in October 1848. Lectotype specimen 

illustrated in Figures 3.6c–d. 

 

Mastogloia lacustris 

The status change for M. smithii var. lacustris to M. lacustris proposed by Grunow (Van 

Heurck 1880) is a valid publication of M. lacustris (P. Compère and M. Wynne, pers. 

comm.). The LM and SEM observations of the lectotype material of M. smithii (Figures 

3.5–3.6) and specimens in the Van Heurck type material of M. lacustris from Belgium 

(Figures 3.7–3.8) showed several important morphological differences (refer to 
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Figure 3.7. Valves of Mastogloia lacustris from neotype slide III-24-A9, Brabant, Belgium showing size reduction, LM. Figures b, 
d, g. Valves showing partectal ring. Figures c–d. Neotype specimen. Scale bars =10 µm.  
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Figure 3.8. Mastogloia lacustris from neotype material, Brabant, Belgium, SEM external 
(a–d) and internal views (e–h): a) whole valve, b) frustule in girdle view showing 
partectal pores (arrow), c) detail of central area, d) detail of valve apex, e) whole valve 
with partectal ring showing lacuna (white arrowhead), pseudopartectum (white arrow), 
areola between centermost pair of partecta (black arrow), and furrow near apices (black 
arrowhead), f) whole valve, g) broken valve showing thickened virgae and cribrum, h) 
detail of central area. Scale bars = 10 µm (a–b, e–f), 1 µm (c–d, g–h). 
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Discussion) that further support the recognition of M. lacustris at the species level. While 

Grunow (1878) originally described M. lacustris in a publication describing diatoms from 

the Caspian Sea, he noted that the taxon was found in freshwater lakes and did not 

provide any detailed provenance for his source material. Furthermore, Grunow material 

from the Caspian Sea or environs associated with M. lacustris could not be found. 

Therefore, my characterization of M. lacustris is based on Van Heurck's material from 

Belgium, on which he and Grunow based their observations for the Synopsis des 

diatomées de Belgique and from which they prepared the slides that were distributed as 

part of the Types du synopsis des diatomées de Belgique (Van Heurck & Grunow 1882–

1885). A neotype for M. lacustris was designated from this material obtained from BR, 

recognizing its significance as the source material for Van Heurck's Synopsis and 

numerous and widely distributed Types exsiccatae. Morphological and NMS analyses 

(Figure 3.9) confirmed the distribution of M. lacustris in Canada (Figure 3.10), Iowa 

(Figure 3.11), and Michigan (Figure 3.12). 

 

Mastogloia lacustris (Grunow) Grunow (Figures 3.7–3.8) 

 

Description. Cells solitary. Valves elliptical-lanceolate with rostrate apices (post-initial 

valves with rounded apices, small valves with subrostrate apices), 25–55 µm length, 7–10 

µm width, 16–18 striae in 10 µm, 16–20 areolae in 10 µm (Figure 3.7). Striae areolate, 

radiate, weakly curved at the central area, becoming parallel at the apices, stria 

arrangement on the valve face continues unchanged onto the mantle (Figures 3.8a–b). 

Central area rectangular to elliptical (Figure 3.8c). Areolae rounded, internally occluded 
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Figure 3.9. Two-dimensional non-metric multidimensional scaling ordination plot, with axes 1 and 2 representing 88% of the total 
variance, and vectors representing the magnitude and direction of the maximum Spearman rank correlation coefficient between 
morphometric data and the final ordination scores. Group 1 (green): Mastogloia smithii lectotype, UK; Group 2 (black): M. 
lacustris neotype, Belgium and specimens from Canada, Iowa, and Michigan; Group 3 (red): M. calcarea from Florida, Jamaica, 
Belize, and Mexico; Group 4 (blue): M. pseudosmithii from Florida, M. aff. smithii 1 from South Africa (M. smithii sensu Van 
Heurck), and M. aff. smithii 2 from Michigan. 
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Figure 3.10. Valves of Mastogloia lacustris from confirmed distribution in Canada showing size reduction, LM. Figures b, f. 
Valves showing partectal ring. Scale bars =10 µm. 
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Figure 3.11. Valves of Mastogloia lacustris from confirmed distribution in Iowa showing size reduction, LM. Figures b, f. Valves 
showing partectal ring. Scale bars =10 µm. 
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Figure 3.12. Valves of Mastogloia lacustris from confirmed distribution in Michigan showing size reduction, LM. Figures b, f. 
Valves showing partectal ring. Scale bars =10 µm. 
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by a cribrum (Figure 3.8g). Raphe straight with a kink near the central area (Figures 3.8a, 

c), proximal raphe ends slightly expanded, deflected in the same direction (Figures 3.8a, 

c), distal raphe ends slightly expanded, extending centrally over the mantle, hooked to the 

same side, with a small hyaline area where the curve occurs (Figure 3.8d). Internally, 

raphe straight, encased in a thickened sternum (Figures 3.8e–f). Internal proximal raphe 

ends slightly expanded, raphe sternum fused into the thickened central nodule (Figures 

3.8f, h). Internal distal raphe ends occluded by pseudosepta (Figure 3.8f). Partectal ring 

closed, lacking a flange separating the ring from the valve margin, apices with a narrow 

cleft which expands into a pyriform lacuna (pear-shaped gap), with a pseudopartectum 

and a furrow opening into a pore-like cavity on each side of both apices, and with one 

pore between the centermost pair of partecta on each side of the partectal ring (Figure 

3.8e). Partecta distributed along both sides of the partectal ring, except near the apices, 

partecta visibly distinguishable, evenly sized although slightly larger at the apices (Figure 

3.8e). Thickened virgae present throughout the valve interior (Figures 3.8f–h). Cribral 

pores become highly irregular near the raphe sternum and central nodule (Figure 3.8h). 

Four or five partectal pores located near both sides of the apices (Figures 3.8a–b). 

 

Neotype (here designated). Slide III-24-A9 in the Van Heurck collection at the National 

Botanic Garden of Belgium (BR), Meise, Belgium based on Bergh material from 

Brabant, Belgium used for the Types du synopsis des diatomées de Belgique, exsiccatum 

VH Type no. 47. Neotype specimen illustrated in Figures 3.7c–d. 
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Isoneotype (here designated). Slide labeled “Dr. Henri Van Heurck Types du Synopsis 

des Diatomées de Belgique. No. 47. Mastogloia smithii var. lacustris Grun. Belgique” in 

the Farlow Herbarium (FH) at Harvard University, Cambridge, USA based on Bergh 

material from Brabant, Belgium used for the Types du synopsis des diatomées de 

Belgique, exsiccatum VH Type no. 47.  

 

Confirmed distribution records. 

– Slide FIU EEG 08-24-10, Canada (45°48.349 N, 82°46.315 W), alvar rock pool 

periphyton, collected by E. Gaiser, August 2010 (Figure 3.10). 

– Slide ILH 2011-13, Iowa, USA (43°22.693 N, 95°10.844 W), periphyton on buoy, 

collected by the 2011 Ecology and Systematics of Diatoms class at Iowa Lakeside 

Laboratory, May 2011 (Figure 3.11). 

– Slide FIU JPK 5591-5, Michigan, USA (45°42.758 N, 84°53.264 W), periphyton, 

collected by J. P. Kociolek, March 2011 (Figure 3.12). 

 

Mastogloia calcarea sp. nov. and M. pseudosmithii sp. nov. 

Specimens identified as M. smithii were rare (<1% of total diatom abundance in 

Michigan, Florida and Jamaica) in modern samples. Specimens identified as M. lacustris 

were found in higher abundances in the samples from Canada (3%), Iowa (2%), 

Michigan (8%), Florida (67%), Belize (5%), Jamaica (4%), and Mexico (57%). The 

multivariate analyses were based on a two-dimensional NMS of morphometric data of the 

ten discrete populations because it had stress=0.16, which did not significantly decrease 

with additional dimensions. Four groups can be distinguished (Figure 3.9): Group 1 
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consisted of the M. smithii lectotype; Group 2 consisted of the M. lacustris neotype and 

specimens identified as M. lacustris from Canada (Figure 3.10), Iowa (Figure 3.11), and 

Michigan (Figure 3.12); Group 3 consisted of specimens identified as M. lacustris from 

Florida (Figures 3.13–3.15), Jamaica (Figure 3.16), Belize (Figure 3.17), and Mexico 

(Figure 3.18); and Group 4 was a heterogeneous group that consisted of specimens 

identified as M. smithii from Florida (Figures 3.19–3.20), M. aff. smithii 1 from South 

Africa (Figures 3.21–3.22), and M. aff. smithii 2 from Michigan (Figures 3.23–3.24). In 

Group 4, there was more overlap in ordination space among specimens from Florida and 

Michigan than with specimens from South Africa. Axis 1 and 2 represented 88% of the 

total variance in morphology. Partectum density was most correlated with the distribution 

of specimens in ordination space. Stria and areola densities also showed strong 

correlations with the distribution of specimens in ordination space (Table 3.4). ANOSIM 

pairwise comparisons showed that most populations were statistically different between 

and within groups, with the exception of M. lacustris from Michigan, Canada, and Iowa 

(Group 2, note that an exclusive comparison between Canada and Iowa was statistically 

significant), and all populations within Group 3 (Table 3.5). Therefore, based on 

ultrastructure, morphology, and ecological differences, two new species are proposed:  

– Mastogloia calcarea, the taxon from Florida and the Caribbean (Group 3) 

formerly reported as M. smithii (Podzorski 1985, pl. 5, figs 21–22), M. smithii 

Morphotype I (Slate & Stevenson 2007), and M. smithii var. lacustris (Gaiser et 

al. 2010). 
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– Mastogloia pseudosmithii, the Floridian taxon from Group 4 (also found in 

Jamaica but not included in this study) formerly reported as M. smithii (Podzorski 

1985, pl. 5, fig. 18) and M. smithii Morphotype II (Slate & Stevenson 2007). 

 

 Mastogloia calcarea sp. nov. Lee, Gaiser, Van de Vijver, Edlund & Spaulding 

(Figures 3.13–3.15; Table 3.6) 

 

Description. Cells solitary, live specimens producing mucilage strands near the 

apices, with 2 H-shaped plastids, one at each pole (Figures 3.13a–c). Valves linear-

lanceolate (post-initial and small valves elliptical-lanceolate) with rostrate apices 

(post-initial valves with rounded apices, small valves with subrostrate apices), 27–54 

µm length (up to 71 µm from Mexico), 7–9 µm width, 19–20 striae in 10 µm, 16–20 

areolae in 10 µm (Figure 3.14). Striae areolate, radiate, weakly curved at the central 

area, becoming parallel at the apices, stria arrangement on the valve face continues 

unchanged onto the mantle (Figures 3.15a, c). Central area elliptical to polygonal, 

usually asymmetrical (Figure 3.15b). Areolae rounded, internally occluded by a 

cribrum (Figures 3.15d–f). Raphe straight (weakly undulate) with a kink near the 

central area; proximal raphe ends slightly expanded, deflected in the same direction; 

distal raphe ends slightly expanded, extending centrally over the mantle, hooked to 

the same side, with a small hyaline area where the curve occurs (Figure 3.15a). 

Internally, raphe straight, encased in a thickened sternum (Figures 3.15d–h). Internal 

proximal raphe ends straight, raphe sternum fused into the thickened central nodule 

(Figures 3.15e–g). Internal distal raphe ends occluded by pseudosepta (Figure 3.15e). 
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Figure 3.13. Valves of Mastogloia calcarea from Florida, USA: a–b) LM of live 
specimen from Water Conservation Area 3A (26°7.1703 N, 80°46.089 W) collected by F. 
Tobias on 8 October 2012 showing mucilage strands exuding from partectal pores 
situated toward apices, two H-shaped plastids, and numerous oil droplets, and c) SEM of 
unprocessed Everglades periphyton material showing specimen with numerous strands of 
mucilage exuding from partectal pores. Scale bars =10 µm. 
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Figure 3.14. Valves of Mastogloia calcarea from holotype material ANSP GCM 4841 showing size reduction, LM. Figures b, e, g. 
Valves showing partectal ring. Figures d–e. Holotype specimen from ANSP GC 58993. Scale bars =10 µm. 
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Figure 3.15. Mastogloia calcarea from holotype material ANSP GCM 4841, Florida, 
USA, SEM external (a–c) and internal views (d–h): a) whole valve, b) detail of central 
area showing asymmetry, c) frustule in girdle view showing partectal pore (arrow) 
partially covered by valve edge, d) whole valve with partectal ring showing 
pseudopartectum (arrow), e) whole valve, f) detail of central area, g) detail of pores 
(arrowheads) between centermost pairs of partecta, h) detail of valve apex showing 
narrow cleft (arrowhead) and furrow with pore-like cavity (arrow) in partectal ring. Scale 
bars =10 µm (a, c–e), 1 µm (b, f–h). 
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Figure 3.16. Valves of Mastogloia calcarea from confirmed distribution in Jamaica showing size reduction, LM. Figures b, f. 
Valves showing partectal ring. Scale bars =10 µm. 
 

 

Figure 3.17. Valves of Mastogloia calcarea from confirmed distribution in Belize showing size reduction, LM. Figures b, f. Valves 
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showing partectal ring. Scale bars =10 µm. 
 

 

Figure 3.18. Valves of Mastogloia calcarea from confirmed distribution in Mexico showing size reduction, LM. Figures b, f. 
Valves showing partectal ring. Scale bars =10 µm. 
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Figure 3.19. Mastogloia pseudosmithii from holotype material ANSP GCM 4842, Florida, USA, showing size reduction, LM. 
Figures b, e, g. Valves showing partectal ring. Figures d–e. Holotype specimen from ANSP GC 58994. Scale bars =10 µm. 
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Figure 3.20. Mastogloia pseudosmithii from holotype material ANSP GCM 4842, Florida, USA, SEM, external (a) and internal 
views (b–c): a) whole valve, b) whole valve with partectal ring, c) detail of valve showing virgae and vimines of same thickness 
and irregular arrangement of pores between some partecta. Scale bars = 10 µm (a–b), 1 µm (c). 
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Figure 3.21. Mastogloia aff. smithii 1 from Van Heurck exsiccatum no. 46 material, South Africa showing size reduction, LM. 
Figures b, f. Valves showing partectal ring. Scale bars =10 µm. 
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Figure 3.22. Mastogloia aff. smithii 1 from Van Heurck exsiccatum no. 46 material, South Africa, SEM, external (a) and internal 
views (b–d): a) whole valve, b) whole valve with partectal ring, c) detail of central area (note panduriform shape) and cribrum, d) 
detail of valve apex without partectal ring. Scale bars =10 µm (a–b), 1 µm (c–d). 
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Figure 3.23. Mastogloia aff. smithii 2 from Michigan showing size reduction, LM. Figures b, f. Valves showing partectal ring. 
Scale bars =10 µm. 
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Figure 3.24. Mastogloia aff. smithii 2 from Michigan, SEM external (a) and internal views (b): a) whole valve, b) whole valve 
with partectal ring. Scale bars =10 µm. 



113 
 

Table 3.4. Maximum Spearman rank correlations between morphometric variables and 
final ordination scores. 
 

Morphometric data Spearman rank 
correlation coefficient 

Partectum density 0.91* 
Stria density 0.87* 
Areola density 0.82* 
Angle of striae 0.81* 
Length:partectum ratio 0.80* 
Length:width ratio 0.65* 
Area of central area 0.61* 
Note. *: significant correlation at p<0.001. 
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Table 3.5. ANOSIM R statistics from pairwise comparisons of Mastogloia populations based on morphometric data: angle of striae 
radiation, area of the central area, densities of striae, areolae and partecta, length:width and length:partectum ratios. 

 

 

Table 3.6. Morphometric data and morphological features of Mastogloia calcarea from relevant reference sources, with LM 

Taxon Location 

B
elgium

 

C
anada 

Iow
a 

M
ichigan 

F
lorida 

B
elize 

Jam
aica 

M
exico 

U
nited 

K
ingdom

 

F
lorida 

S
outh 

A
frica 

M. lacustris Belgium            
Canada 0.46*           
Iowa 0.51* 0.27*          
Michigan 
 

0.42* 0.06 0.13         

M. calcarea Florida 0.80* 0.77* 0.69* 0.62*        
Belize 0.80* 0.82* 0.70* 0.64*  0.07       
Jamaica 0.83* 0.75* 0.67* 0.59* -0.03 0.05      
Mexico 
 

0.73* 0.67* 0.55* 0.50*  0.01 0.13 0.01     

M. smithii United Kingdom 
 

1.00* 1.00* 1.00* 0.98*  0.97* 0.96* 0.99* 0.89*    

M. pseudosmithii 
 

Florida 0.75* 0.97* 0.97* 0.95*  0.98* 0.95* 0.99* 0.91* 1.00*   

M. aff. smithii 1 South Africa 
 

0.89* 0.98* 0.92* 0.95*  0.93* 0.90* 0.94* 0.91* 0.88* 0.60*  

M. aff. smithii 2 Michigan 0.83* 0.99* 1.00* 0.98*  1.00* 0.99* 1.00* 0.97* 1.00* 0.40* 0.71* 
Note. *: significant difference between populations at p<0.001. 
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measurements of M. calcarea holotype and paratype specimens and mean values in parentheses. Information from references 
obtained directly from the text. 
 

Reference 
source 

n 
Valve 
length 
(µm) 

Valve 
width 
(µm) 

Mean 
length:
width 
ratio 

Striae 
in 10 
µm 

Areolae 
in 

10 µm

Partecta 
in 

10 µm 

Mean 
length: 

partectum 
ratio 

Shape and  
area of 

central area 
(µm2) 

Angle of 
striae 

(°) 

Outline of
medium-

sized 
valve 

Apices 

Podzorski 
(1985)1, 
Jamaica 

nd 20–45 8–14 nd 18–19 14–17 6–8 nd 
Small, elliptical 
to nearly quad-

rangular 

Parallel or 
slightly 
radiate 

Elliptical 
to 

elliptical-
lanceolate

Short, 
protracted, 
subrostrate 

to sub-
capitate 

Novelo et al. 
(2007)2, 
Mexico 

nd 28.5–56 7.6–9.5 nd 18–20 16–20 5–9 nd 
Small, 

elliptical 
to rectangular

Slightly 
radiate 

Elliptical-
lanceolate

Subrostrate 

Slate & 
Stevenson 
(2007)3, 
Florida 

nd 25–57 7–9 nd 18–20 20 5–6 nd nd nd 
Linear- 

lanceolate

nd (rounded 
in initial 
valves) 

Gaiser et al. 
(2010)4, 
Florida 

20 
28–55 
(42) 

9–10 
(9.6) 

4.3 16–20 nd nd nd nd nd nd nd 

Holotype 
ANSP GC 
58993, 
Florida 

20 
27–54 
(38) 

7–9 (8) 4.6 19–20 16–20 5–6 3.9 

Asymmetrical, 
elliptical to 
polygonal 

3–7 (5) 

157–168 
(163) 

Linear- 
lanceolate

Rostrate 
(rounded 
in post-
initial 

valves) 
             
Table 3.6. Continued. 
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Note. n: number of specimens measured; nd: no data. 
1 pl 5; figs 21–22 as M. smithii in Patrick & Reimer 1966. 
2 as M. smithii. 
3 as M. smithii morphotype I. 
4 as M. smithii var. lacustris. 
 

Reference 
source 

n 
Valve 
length 
(µm) 

Valve 
width 
(µm) 

Mean 
length:
width 
ratio 

Striae 
in 10 
µm 

Areolae 
in 

10 µm

Partecta 
in 

10 µm 

Mean 
length: 

partectum 
ratio 

Shape and area 
of 

central area 
(µm2) 

Angle of 
striae 

(°) 

Outline of
medium-

sized 
valve 

Apices 

Paratype 
ANSP GC 
30902, 
Belize 

21 
22–54 
(34) 

7–9 (8) 4.3 18–20 16–20 5–7 3.8 

Asymmetrical, 
elliptical to 
polygonal 

2–5 (3) 

157–172 
(163) 

Linear- 
lanceolate

Rostrate 
(rounded 
in post-
initial 

valves) 

Paratype 
ANSP GC 
16009, 
Jamaica 

20 
26–50 
(38) 

8–10 (9) 4.4 19–20 16–20 4.5–6 3.9 

Asymmetrical, 
elliptical to 
polygonal 

2–7 (4) 

152–167 
(162) 

Linear- 
lanceolate

Rostrate 
(rounded 
in post-
initial 

valves) 

Paratype 
ANSP GC 
30903, 
Mexico 

22 
19–53 
(38) 

7–10 (8) 4.7 19–20 16–20 4.25–6 4.4 

Asymmetrical, 
elliptical to 
polygonal 

1–7 (4) 

154–167 
(162) 

Linear- 
lanceolate

Rostrate 
(rounded 
in post-
initial 

valves) 
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Partectal ring closed, without a flange separating the ring from the valve margins, with a 

pseudopartectum (Figure 3.15d), apices with a narrow cleft which expands into a 

pyriform lacuna, with a furrow opening into a pore-like cavity on each side of both apices 

(Figure 3.15h), and with one pore between the centermost pair of partecta on each side of 

the partectal ring (Figure 3.15g). Partecta distributed along both sides of the partectal 

ring, except near the apices, partecta visibly distinguishable, evenly sized although 

slightly larger close to the apices (Figure 3.15d). Thickened virgae present throughout the 

valve interior (Figures 3.15e–f). Cribral pores becoming highly irregular near the raphe 

sternum and central nodule (Figure 3.15f). Five partectal pores located near both sides of 

the apices, increasingly occluded by the valve edge away from the apices (Figure 3.15c). 

 

Holotype (here designated). Marked specimen on slide ANSP GC 58993, Academy of 

Natural Sciences, Philadelphia, USA. Holotype specimen illustrated in Figures 3.14d–e.  

 

Isotype (here designated). Slide BR-4298, National Botanic Garden of Belgium, Meise, 

Belgium. 

 

Confirmed distribution records (paratypes here designated): 

– Slides BR-4311 and ANSP GC 16009, Jamaica (18°01.524 N, 77°48.874 W), 

periphyton, collected by E. Gaiser and J. La Hée, 3 May 2008 (Figure 3.16). 

– Slides BR-4312 and ANSP GC 30902, Belize (17°45.527 N, 88°38.456 W), 

periphyton, collected by E. Gaiser and J. La Hée, 13 November 2007 (Figure 

3.17). 
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– Slides BR-4313 and ANSP GC 30903, Mexico (19°49.619 N, 87°30.585 W), 

periphyton, collected by E. Gaiser and J. La Hée, 10 December 2006 (Figure 

3.18). 

 

Type locality. Periphyton on sawgrass (Cladium jamaicense), sample material ANSP 

GCM 4841, Everglades National Park (25°41.883 N, 80°39.249 W), Florida, USA. 

Collected by F. Tobias, 6 October 2008. 

  

Etymology. The specific epithet refers to the taxon’s dominance in calcareous periphyton 

mats, especially in subtropical and tropical wetlands with seasonal drying and flooding 

(Gaiser et al. 2010). 

 

Distribution. Subtropical and tropical karstic wetlands of Florida, USA, Mexico, Jamaica 

and Belize (Novelo et al. 2007, Slate & Stevenson 2007, Gaiser et al. 2010, La Hée 2010, 

La Hée & Gaiser 2012). 

 

Ecology. Lives embedded within microbial communities dominated by filamentous and 

coccoid cyanobacteria that form extensive mats upon the sediment or bedrock surface and 

around the submersed stems of aquatic plants in shallow water, limestone-based 

environments with seasonal desiccation (Gaiser et al. 2010). Weighted-averaging optima: 

water depth 52 cm, salinity 0.1, total phosphorus 225 μg g–1, and pH 7.6 (referred to as 

M. smithii in Gaiser et al. 2006, and M. smithii var. lacustris in Gaiser et al. 2010). 
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Mastogloia pseudosmithii sp. nov. Lee, Gaiser, Van de Vijver, Edlund & Spaulding 

(Figures 3.19–3.20; Table 3.7) 

 

Description. Cells solitary. Valves elliptical-lanceolate with rostrate apices (small valves 

with subrostrate to rounded apices), 28–51 µm length, 11–14 µm width, 16–17 striae in  

10 µm, 16 areolae in 10 µm (Figure 3.19). Striae areolate, gently radiate, becoming 

parallel at the apices, stria arrangement on the valve face continues unchanged onto the 

mantle (Figure 3.20a). Central area elliptical to polygonal, commonly asymmetrical 

(Figures 3.19–3.20a). Areolae rounded to elliptical, some reduced around the central area, 

internally occluded by a cribrum (Figures 3.20a–c). Raphe straight with a median kink 

(Figure 3.20a). Proximal raphe ends expanded and pore-like, opening into a spathulate 

groove (Figure 3.20a). Distal raphe ends extending centrally over the mantle, hooked to 

the same side, with a small hyaline area where the curve occurs (Figure 3.20a). Internally, 

raphe straight, encased in a thickened sternum (Figure 3.20b). Internal proximal raphe 

ends straight, raphe sternum fusing into the thickened central nodule (Figure 3.20b). 

Internal distal raphe ends occluded by pseudosepta (Figure 3.20b). Partectal ring closed, 

without a flange separating the ring from the valve margins, with a broad cleft at both 

apices, with pores between partecta near the advalvar edge of the partectal ring 

sometimes arranged in a pattern (Figures 3.20b–c). Partecta distributed along both sides 

of the partectal ring except near the apices, visibly distinguishable, evenly sized except 

slightly larger close to the apices (Figure 3.20c). Virgae and vimines (cross connections 
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between virgae) of the same thickness present throughout the valve interior (Figure 

3.20c). Cribral pores becoming irregular near the raphe sternum and central nodule 

(Figures 3.20b–c). 

 

Holotype (here designated). Marked specimen on slide ANSP GC 58994, Academy of 

Natural Sciences, Philadelphia, USA. Holotype specimen illustrated in Figures 3.19d–e. 

 

Isotype (here designated). Slide BR-4314, National Botanic Garden of Belgium, Meise, 

Belgium. 

  

Type locality. Floating periphyton mat in brackish marsh, sample material ANSP GCM 

4842, Everglades National Park (25°28.935 N, 81°2.907 W), Florida, USA. Collected by 

A. Scharnagl, 3 November 2011. 

 

Etymology. The specific epithet refers to the close resemblance of this new taxon to M. 

smithii, with which it was often confused. 

 

Distribution. At present, only reported from the coastal marshes of Florida (Trexler & 

Gaiser 2012) and Jamaica (Podzorski 1985), and some inland locations such as Water 

Conservation Areas 2A (Slate & Stevenson 2007) and 3A of Florida (referred to as M. 

smithii var. lacustris in Trexler & Gaiser 2012). 

 

 



121 
 

Ecology. Comprises <1% of total diatom abundance in non-calcareous periphyton 

assemblages in waters of high conductivity, such as brackish areas near the coastal marsh, 

slightly acidic pH, and slightly higher total phosphorus (referred to as M. smithii in 

Gaiser et al. 2006, Trexler & Gaiser 2012). Weighted-averaging optima: water depth 41 

cm, pH 6.7, conductivity 2500 µS cm–1, and total phosphorus 480 μg g–1 (Trexler & 

Gaiser 2012).  

 

Discussion 

There is growing evidence of unrecognized diversity among diatoms because of a lack of 

knowledge of types and/or original collections, a lack of resources for resolving 

taxonomic discrepancies, and assignment of names to taxa with morphologies that are not 

faithful to the original taxonomic concepts. The complicated nomenclatural histories 

highlighted in this paper show that M. smithii and M. lacustris exemplify all three 

problems: the original material of both taxa was either impossible or very difficult to 

locate, both taxa had inconsistent published morphological descriptions, and the names 

were assigned to taxa from many parts of the world with morphological variability 

beyond the range of the original descriptions. However, by clarifying species boundaries, 

discriminatory methods, including molecular sequence analyses (Behnke et al. 2004, 

Mann et al. 2004), mating experiments (Mann et al. 1999), and multivariate 

morphological analyses (Edlund & Soninkhishig 2009) are improving our understanding 

of diatom diversity.   
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Table 3.7. Morphometric data and morphological features of Mastogloia pseudosmithii and M. aff. smithii 1 from relevant 
reference sources and LM measurements of M. pseudosmithii holotype, M aff. smithii 1, and M. aff. smithii 2 with mean values in 
parentheses. Information from reference source obtained directly from the text. 

Taxon 
Reference 

source 
n 

Valve 
length
(µm) 

Valve 
width 
(µm) 

Mean 
length:
width 
ratio 

Striae 
in  

10 µm

Areolae 
in 

10 µm

Partecta 
in 

10 µm

Mean 
length: 

partectum 
ratio 

Shape and  
area of 

central area 
(µm2) 

Angle 
of striae

(°) 

Outline of
medium-

sized 
valve 

Apices 

M. 
pseudo-
smithii 

 

Slate & 
Stevenson 
(2007)1, 
Florida 

nd 22–45 10–13 nd 14–15 17–18 6–8 nd nd nd 
Almost 

elliptical
nd 

 Holotype 
ANSP GC 
58994, 
Florida 

20 
28–51 
(38) 

11–14 
(12) 

3.2 16–17 16 6–8 3.1 

Asymmetrical, 
rectangular to 

elliptical 
4–10 (7) 

170–
175 

(173) 

Elliptical-
lanceolate

Rostrate 
(blunt in 

small 
valves) 

M. aff. 
smithii 
1 

  

Patrick & 
Reimer 
(1966)2 

nd 20–45 8–14 nd 18–19 14–17 6–8 nd 

Small, 
elliptical to 

nearly 
quadrangular 

Parallel 
or 

slightly 
radiate

Elliptical 
to 

elliptical-
lanceolate

Short, 
protracted, 
subrostrate 

to 
subcapitate

 Van Heurck 
& Grunow 
(1882–
1885)3, 
South 
Africa 

 

20 
28–60 
(42) 

10–14 
(12) 

3.4 18–20 16–20 7–8 3.1 
Panduriform 

5–18 (11) 

170–
176 

(173) 

Elliptical-
lanceolate

Rostrate 

              
Table 3.7. Continued. 
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Taxon 
Reference 

source 
n 

Valve 
length
(µm) 

Valve 
width 
(µm) 

Mean 
length:
width 
ratio 

Striae 
in  

10 µm

Areolae 
in 

10 µm

Partecta 
in 

10 µm

Mean 
length: 

partectum 
ratio 

Shape and  
area of 

central area 
(µm2) 

Angle 
of striae

(°) 

Outline of
medium-

sized 
valve 

Apices 

M. aff. 
smithii 
2 

Michigan 
20 

35–51 
(43) 

11–14 
(13) 

3.3 15–16 12–16 6–8 3.0 
Elliptical 
7–13 (10) 

167–
173 

(171) 

Elliptical-
lanceolate

Capitate 

Note. n: number of specimens measured; nd: no data.  
1 as M. smithii morphotype II. 
2 as M. smithii. 
3 Type no. 46 M. smithii. 
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Diatoms assigned to M. smithii and M. smithii var. lacustris can now be attributed 

to at least four entities: M. smithii, M. lacustris, M. calcarea, and M. pseudosmithii.  

Smith (1856) did not formally recognize varieties of M. smithii, though he recognized an 

unnamed “β” form of M. smithii with capitate apices. As such, Smith’s (1856) concept of 

M. smithii was very broad, including a wide width range and both rostrate and capitate 

forms. The material collected by Smith from Little Sea, Dorset, UK, was designated as 

the M. smithii lectotype because it is the oldest material (1848) among the syntypes. 

While Smith (1856) reported a maximum valve width of 20.3 µm, no specimen with 

valve width >15 µm was found in the M. smithii lectotype slide. My observations showed 

that axial costae are an important distinguishing feature of the taxon. This is consistent 

with Hustedt (1933), who separated taxa into Apiculatae if axial costae were present and 

into Lanceolatae if not present; the otherwise shared features of the two groups are 

partecta situated close to the valve margins (i.e., no flange between the partectal ring and 

the valve margin) and a generally straight raphe. Smith’s (1856) drawing of M. smithii 

(Figure 3.1) suggests the presence of axial costae in all forms, including the “β” form. 

Because Grunow (1860), Van Heurck (1880, 1885), and Patrick & Reimer (1966) did not 

demonstrate the presence of axial costae in their text or figures of M. smithii, their 

descriptions could not be unequivocally determined as M. smithii sensu W. Smith. 

Moreover, there is no evidence that these researchers inspected the original specimens 

identified by Smith (1856) as M. smithii. Despite the broad taxonomic concept of M. 

smithii sensu W. Smith, morphological evidence clearly shows that it does not include 

taxa without axial costae such as M. lacustris, M. calcarea, and M. pseudosmithii. 
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Novarino (1990) was correct to note this difference between M. smithii and the taxon he 

obtained from the Rabenhorst collection, which is most probably M. lacustris, based on 

the description provided. Another variety of M. smithii that needs further investigation is 

M. smithii var. amphicephala Grunow (Van Heurck 1880, pl. 4, fig. 27), shown by a line 

drawing in the Atlas as a taxon with distinctly capitate apices. Following Van Heurck 

(1880), Patrick & Reimer (1966) described M. smithii var. amphicephala as resembling 

the nominate variety, except for the distinctly capitate apices, but included a caveat that 

only a small size range had been examined and that further observations could confirm 

that the taxon was part of the nominate variety. The morphology of M. smithii var. 

amphicephala needs further investigation to determine whether it is Smith’s (1856) “β” 

form, a variety of M. smithii distinct from the “β” form, or a completely separate entity, 

as shown for M. lacustris, M. calcarea, and M. pseudosmithii. 

SEM, LM, and multivariate analyses of morphometric data clearly differentiated 

M. lacustris and M. smithii as distinct species. Neotype specimens of M. lacustris 

possessed a very different valve structure from the lectotype specimens of M. smithii: (1) 

M. lacustris had much smaller external areolae, which are big enough in M. smithii to 

reveal the cribrum at certain angles (Figures 3.6b–c, Figures 3.8c–d); (2) M. lacustris 

lacked the internal axial costae and costa-like virgae exhibited by M. smithii (Figures 

3.6d–e, h) and instead, possessed simpler, thickened virgae and a raphe encased within a 

thickened raphe sternum (Figures 3.8f–h); (3) M. lacustris had a narrow cleft at each apex 

of the partectal ring that expands into a pyriform lacuna (Figure 3.8e), while M. smithii  

had a broad cleft without a lacuna (Figures 3.6d, f); (4) M. lacustris had pseudopartecta 
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and furrows on either side of the partectal ring apices (Figure 3.8e), while M. smithii 

lacked both (Figure 3.6d); and (5) M. lacustris had fewer pores between partecta than M. 

smithii (Figures 3.6d, g; Figure 3.8e). Moreover, the two taxa differed significantly in LM 

measurements of stria density, partectum density, length:width and length:partectum 

ratios (Tables 3.2–3.3; Figure 3.9). Krammer & Lange-Bertalot (1986) provided only two 

figures of M. lacustris: a post-initial valve (pl. 201, fig. 1) with rounded apices, and a 

very short specimen (pl. 201, fig. 6) with subrostrate to round apices (exact outline 

difficult to discern from photomicrograph cutout) as a result of variable valve 

morphology during size diminution. There has been no discussion of this variability in 

any of the previously mentioned descriptions of M. lacustris (except Slate & Stevenson 

2007 and Gaiser et al. 2010 for M. calcarea), partly because the taxonomic concept of M. 

lacustris was unclear until now. It is possible that since Krammer & Lange-Bertalot 

(1986), interpretations of M. lacustris were limited to valves with rounded apices while 

interpretations of M. smithii were limited to specimens with rostrate apices, especially in 

subtropical and tropical karstic wetlands where specimens (now allocated to M. calcarea) 

more closely matched the stria density of M. smithii (Gaiser et al. 2006, Novelo et al. 

2007, Ibarra et al. 2009, Gaiser & Rühland 2010, Gaiser et al. 2010, La Hée 2010, La Hée 

& Gaiser 2012). The rounded apices of M. calcarea post-initial valves were correctly 

pointed out by Slate & Stevenson (2007) and, more extensively, by Gaiser et al. (2010, 

fig. 4a, m, x). In the multivariate analyses, M. lacustris specimens from North America 

were statistically different from the Belgian neotype. The difference was mostly 

attributed to a lower length:partectum ratio in the Belgian population. All other attributes 
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overlapped in range or mean values with those of the North American populations, 

precluding taxonomic separation of the two groups.  

Mastogloia calcarea differed from the neotype and the North American 

populations of M. lacustris by its linear-lanceolate, rather than elliptical-lanceolate, valve 

outline (excluding post-initial and small valves) and all morphometric data examined by 

multivariate analyses. Gaiser et al. (2010) was the first to recommend a more thorough 

exploration of M. lacustris type material because of the consistent differences between M. 

calcarea and the morphological descriptions of M. lacustris given in references, 

particularly the higher stria density and narrower width range of M. calcarea. 

Morphometric data taken for M. calcarea did not concur with the large central area and 

coarse striae of the M. lacustris neotype. Gaiser et al. (2010) recognized M. calcarea as a 

structural engineer and keystone species (like cyanobacteria) in microbial mat 

assemblages because of its sensitivity to phosphorus enrichment and the strong positive 

relationship between its relative abundance and mat biomass. At present, the distribution 

of M. calcarea appears to be limited to karstic wetlands of subtropical and tropical 

regions in the western hemisphere. However, because of the limited number of studies on 

the diatom flora of tropical and other karstic wetlands where periphyton mats occur, M. 

calcarea may prove to be more widely distributed. 

It is clear that M. smithii sensu W. Smith, M. pseudosmithii, M. aff. smithii 1, and 

M. aff. smithii 2 are separate entities. Mastogloia pseudosmithii lacks internal axial costae 

and costa-like virgae, has lower stria and areola densities, a larger length:width ratio, and 

a smaller length:partectum ratio than M. smithii sensu W. Smith. Mastogloia 
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pseudosmithii is morphologically similar to M. aff. smithii 1, but M. pseudosmithii has 

lower stria density. Mastogloia pseudosmithii also has a rectangular to elliptical central 

area and cribral pores mostly arranged in groups of four or greater (Figure 3.20c), while 

M. aff. smithii 1 has a nearly panduriform central area (depicted in Patrick & Reimer 

1966) and cribral pores that are elongated and mostly arranged in groups of two forming 

a circular depression (Figure 3.22c). Mastogloia pseudosmithii is also similar to M. aff. 

smithii 2, but M. aff. smithii 2 has coarser striae and areolae, in addition to highly capitate 

apices without a cleft in the partectal ring (Figure 3.24b). Slate & Stevenson (2007) 

reported slightly different stria and areola densities for M. smithii Morphotype II, but 

their figures 37a–c concur with the morphological features of M. pseudosmithii, as does 

Podzorski’s (1985, pl. 5, fig. 18). The ecology of M. pseudosmithii differs from that of M. 

calcarea because it is a rare taxon that prefers brackish conditions where a combination 

of factors, including phosphorus input from seawater and pH lowered by peat 

accumulation, encourages algal assemblages that do not form the cohesive calcareous 

periphyton mats that dominate the Everglades landscape (Gaiser et al. 2006, 2010). 

This investigation of M. smithii, M. lacustris, and populations previously 

identified as these two taxa in the temperate, subtropical, and tropical regions clearly 

shows the importance of careful taxonomic analyses in uncovering the true diversity of 

diatoms. The results of careful examination of original material, and the designation of 

lecto- and neotypes of M. smithii and M. lacustris, respectively, allow justification of 

subsequent divergences from the original taxonomic concepts. In regions without focused 

taxonomic work, such as the type locality of M. calcarea and M. pseudosmithii, multiple 
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populations must be compared to develop a representative idea of a taxon’s 

morphological variability. Finally, in lieu of molecular or reproductive taxon 

discrimination, multivariate analyses of morphometric data provide quantitative evidence 

that supports taxonomic differences determined from analyzing ultrastructure and 

ecological preferences. Using a combination of these methods permitted the description 

of two new Mastogloia species from the Florida Everglades and the Caribbean region. 
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CHAPTER IV: BENTHIC DIATOM METACOMMUNITY SPATIAL AND 

TEMPORAL BETA DIVERSITY ARE RELATED TO HABITAT AVAILABILITY IN 

A HYDROLOGICALLY-MANAGED WETLAND 

 

Abstract 

While spatial and temporal turnover (beta diversity) are important ecological 

metacommunity attributes for understanding the relative contribution of local (niche-

based) and regional (dispersal-related) controls on assemblage composition, rarely are 

data sufficiently resolved to fully distinguish mechanisms of compositional change in 

both space and time. Further, mechanisms underlying compositional change may be 

misunderstood if all taxa are treated equally, as opposed to addressing differences 

between taxa with persistent or occasional spatial and temporal occurrence patterns. 

Here, I determined controls on spatial beta diversity of a benthic diatom metacommunity 

and made spatially-explicit comparisons of temporal beta diversity across 64 sites 

through 6 years. I also made comparisons of beta diversity between two regions with 

differing hydrologic management that encourage the development of either suitable or 

unsuitable habitats (high or low periphyton mineral content, respectively) for benthic 

diatoms that are persistent in calcareous wetlands. Both environmental and spatial factors 

were important components of beta diversity, suggesting dispersal limitation is an 

important assembly mechanism for benthic diatoms. However, the relative importance of 

environmental factors was greatest for persistent taxa in suitable habitats. Persistent taxa 

had higher temporal beta diversity in unsuitable habitats than suitable ones, while 
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occasional taxa had the opposite result. Differences between persistent and occasional 

taxa in the relative importance of local and regional controls, as well as their temporal 

turnover in suitable and unsuitable habitats, inform hypotheses related to life history 

differences that could be used to further investigate assembly mechanisms of benthic 

diatoms.  
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Introduction 

While human activities continue to alter ecosystem structure and function from 

global to local scales (Vitousek et al. 1997, Hillebrand and Matthiessen 2009), the 

mechanisms underlying biodiversity remain unresolved for many groups of organisms 

and landscapes. Reasons for this shortcoming include insufficient spatial and temporal 

context to capture the complexity of natural ecosystems (Hillebrand and Matthiessen 

2009) and treating all taxa in a system equivalently even though their spatial and 

temporal occurrence patterns may differ as a result of differing biological, dispersal, and 

life history strategies (Magurran and Henderson 2003, Coyle et al. 2013).  

Both spatial and temporal contexts are necessary to understand the mechanisms 

underlying biodiversity because assembly mechanisms operate at multiple spatial (e.g., 

local and regional) and temporal (e.g., seasonal, interannual, successional) scales. The 

concept of a metacommunity, a group of assemblages potentially linked by dispersal-

related processes such as immigration and emigration (Leibold et al. 2004), is useful for 

understanding the influence of local and regional controls on biodiversity at multiple 

spatial scales and over time. Local controls of community assembly include niche-based, 

local-scale environmental processes (Hutchinson 1957), while regional controls include 

dispersal-limiting, broad-scale biogeographical processes (Hubbell 2001).  

Spatial beta diversity, the variability of assemblage composition in space, can be 

used to distinguish the importance of local and regional controls on a metacommunity, 

which is essential for understanding how and why communities change (Borcard et al. 

1992). The relative importance of local and regional controls on beta diversity may 
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depend on spatial scale (Soininen 2007, Bramburger et al. 2008, Sokol et al. 2013a). In 

addition, local diversity dynamics may not represent ecosystem-scale functioning and 

services (Loreau et al. 2003), so it is important to characterize beta diversity using 

adequate spatial resolution. 

In temporally heterogeneous systems (i.e., high interannual variability), the 

relative importance of local and regional controls on assemblage distribution may not be 

stationary, so a temporal component of diversity is critical for obtaining a general 

characterization of the metacommunity and for detecting long-term trends from this 

baseline. If the timescale of the dataset is too short, trends in beta diversity are probably 

sensitive to sampling effects, such as the interannual variability within the window of 

time captured by the dataset (Korhonen et al. 2010). At intermediate timescales (weeks to 

years), however, local colonization and extinction are effectively driven by temporal 

variation in environmental or dispersal patterns, especially for organisms at low trophic 

positions with large species pools and rapid generation times (Korhonen et al. 2010). For 

microorganisms, intermediate timescales can be used to compare temporal beta diversity 

in a spatial framework.  

Important aspects of assemblage distribution may be overlooked if there is no 

distinction made between taxa that differ in occurrence patterns over space and time 

(Magurran 2007). Persistent taxa are often called core species, although most studies use 

definitions of this term based on patterns of incidence or abundance distributions 

(Magurran and Henderson 2003, Ulrich and Zalewski 2006, Dolan et al. 2009, Coyle et 

al. 2013), rather than Hanski’s (1982) mechanistic definition (K-selected species with low 
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probability of local extinction). In contrast to core species, occasional taxa have been 

called satellite species if they are r-selected species with high probability of local 

extinction (Hanski 1982), or fugitive species if abundances are related to availability of 

patches lacking superior competitors (Hutchinson 1951, Horn and MacArthur 1972). 

Until life histories and biotic interactions between these groups are understood, I use the 

terms persistent and occasional taxa to categorize species based on incidence across space 

and time. Persistent taxa may dominate because of biological, dispersal, or life history 

strategies that are advantageous for survival in a particular habitat, such as estuarine fish 

associated with muddy substratum or anadromous/catadromous life histories (Magurran 

and Henderson 2003). Occasional taxa co-occur in lower abundances and inconsistently 

across space and time. The spatial and temporal patterns of persistent and occasional taxa 

may reflect biological, dispersal, and life history differences influencing abundances 

within a particular habitat if the patterns are correlated with habitat availability.  

The mechanisms underlying the biodiversity of microorganisms, such as benthic 

diatoms, remain unresolved. Microbial distributions may simply be a function of global 

population sizes because of large populations and small body sizes (Finlay et al. 2002). 

However, global dispersal of diatoms must be slow enough for regional metacommunity 

characteristics to develop (Telford et al. 2006). Recent studies acknowledge that both 

local and regional controls structure diatom assemblages (Soininen 2007; Vanormelingen 

et al. 2008; Soininen & Weckström 2009; Verleyen et al. 2009; Heino et al. 2010). Many 

of these studies were conducted in streams and lakes, while few studies have examined 

mechanisms structuring diatoms in wetlands. The shallow water depths in wetlands 
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promote development of benthic, rather than planktonic, assemblages. Unlike streams or 

lakes with high dispersal potential by water flow or seasonal mixing, there may be strong 

constraints against dispersal if diatoms are dependent on the protective structure and 

resource-rich environment of biofilms in wetlands. With sufficient spatial and temporal 

context, benthic diatoms in wetlands have high potential for challenging the idea that 

microorganisms are not dispersal limited.  

I examined the spatio-temporal turnover patterns in the benthic diatom 

metacommunity of the Everglades, consisting of persistent and occasional taxa, 

represented by 64 sites and 6 years of data. In addition to analyses of the whole study 

system, I examined two large basins within the Everglades with the same sample size but 

with differing hydrologic management that promotes the development of suitable or 

unsuitable habitats (high or low periphyton mineral content, respectively) for benthic 

diatoms. In the Everglades and other calcareous wetlands, diatoms are most abundant 

within the protective and resource-rich environment of periphyton with high mineral 

content; phosphorus-enrichment or prolonged periods of deep water, often consequences 

of hydrologic management, lead to dissolution of this type of periphyton (Browder et al. 

1994, Gaiser et al. 2011, 2013, Lee et al. 2013, Sokol et al. 2013b). I pose the following 

hypotheses concerning regulation of spatio-temporal turnover of this metacommunity:  

1. Spatial beta diversity will be regulated by both local (environmental) and 

regional (spatial) factors but environmental factors will be more important 

in sites with suitable habitats because species turnover will be less 

influenced by the ability to disperse to suitable habitats.  
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2. Environmental factors will be more important regulators of spatial 

turnover of persistent taxa because of adaptations to and dispersal 

limitation conferred by their preferred habitat (periphyton with high 

mineral content). 

3. If persistent taxa have biological, dispersal, or life history strategies 

specific to their preferred habitat, they will be superior competitors 

relative to occasional taxa and have the lowest temporal beta diversity in 

sites where suitable habitats occur consistently over time, whereas 

occasional taxa will have the highest temporal beta diversity in the same 

sites. 

 

Methods 

Site Description 

 My study was carried out in the Everglades, a large wetland (about 9,000 km2) 

located in south Florida, USA that encompasses several compartmentalized regions, 

including Water Conservation Areas (WCAs) and Everglades National Park (ENP) (Davis 

and Ogden 1994). Water Conservation Area 2A (2A) and WCA 3A (3A) are leveed 

compartments north of ENP, Shark River Slough (SRS) is the main drainage of ENP, and 

Taylor Slough is a smaller drainage in the southeastern corner of ENP (Appendix A). The 

two main basins compared in this study, SRS and 3A, have differing environmental 

histories and current hydrologic management that influence landscape structure and 

composition of the biota (Liston 2006, Wetzel et al. 2008). The Everglades has a distinct 
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wet and dry season controlled by the subtropical climate and hydrologic management. 

The seasonal drying and flooding of the marsh has been preserved in most areas within 

SRS, but management practices in 3A have overly drained the northern portion and 

prolonged flooding in the southern portion (Light and Dineen 1994, David 1996).  

 

Sampling and Processing for Diatom Assemblages 

 Periphyton was collected from 64 sites each year during 6 wet seasons 

(September to December) from 2006 to 2011 as part of the Monitoring and Assessment 

Program of the Comprehensive Everglades Restoration Plan (RECOVER 2004). Sites 

outside of SRS and 3A were included in whole-system analyses, but small sample sizes 

precluded region-specific analyses other than SRS and 3A (22 sites each). Generalized 

random-tessellation stratification was used to choose a spatially balanced set of sampling 

locations (Stevens and Olsen 2004). Field sampling, sample processing, and diatom 

identification and enumeration follow the methods described in Lee et al. 2013. 

 

Statistical Analyses 

 Proportional environmental variables (aerial cover and organic content) were 

arcsine squareroot transformed to improve asymmetry and peakiness of the distributions 

(McCune and Grace 2002). All other environmental variables were log (x + c) 

transformed, where c is a constant representing the first percentile value (following Sokol 

et al. 2013a). Subsequently, all environmental variables were standardized to zero mean  
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and unit variance. The pairwise.t.test function in R (R Development Core Team 2013) 

was used to compare environmental variables in SRS and 3A. 

Assemblage data were reduced to 30 taxa that were present in at least one site 

every year. To categorize taxa as persistent or occasional, I used each taxon’s mean 

incidence at a site over the 6 year study period; taxa with incidence >2 were categorized 

as persistent and the remaining taxa were categorized as occasional (i.e., occasional taxa, 

on average, were not observed at the same site more than once) (Appendix C). After 

relativization by sample totals in the three assemblage matrices, I made no further 

modifications because of inherent rescaling properties of the dissimilarity measure used 

in subsequent analyses (Jost 2007).  

To define suitable habitat, I related periphyton mineral content with abundance of 

persistent taxa. Periphyton mineral content (the ratio of periphyton ash-free dry mass to 

total dry mass expressed as a percent) is naturally high in regions of the Everglades with 

low water depths and low peat accretion because the limestone bedrock has a strong 

influence on water chemistry, but hydrologic management has negatively affected 

mineral content by P-enrichment near canal inflows and prolonged periods of deep water 

in the WCAs (Gaiser et al. 2011, Harvey and  McCormick 2009, Hagerthey et al. 2011). 

Previous investigations in the Everglades and Caribbean wetlands have provided 

abundant evidence of diatoms that prefer to inhabit periphyton with high mineral content 

(Browder et al. 1994, Slate and Stevenson 2007, Gaiser et al. 2011, La Heé and Gaiser 

2012, Lee et al. 2014). I defined a mineral content threshold that corresponds to a strong 
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positive relationship between the incidence of suitable habitat (periphyton with above-

threshold mineral content) and the abundance of persistent taxa. 

I performed diversity partitioning of all, persistent, and occasional taxa into alpha, 

beta, and gamma diversity components at the regional (SRS and 3A) and whole-study 

(including sites outside of SRS and 3A) levels for each year. Diversities are based on Hill 

numbers or species equivalents (Jost 2007). I used the order of q = 1, which weighs 

species exactly by their frequencies, does not favor common or rare species, and equals 

the exponential of Shannon entropy (Hill 1973, Jost 2007). The means of diversity 

components were averaged over time and compared using the pairwise.t.test function in 

R. 

To examine spatial beta diversity, I used variation partitioning to determine the 

relative contributions of environmental and spatial factors to beta diversity following the 

methods of Sokol et al. (2013a). To examine temporal beta diversity, I used the d function 

in the vegetarian package in R to calculate beta diversity of assemblages from a single 

site at each time step (Charney and Record 2013). Temporal beta diversity ranged from 1 

(equivalent assemblages within a time step) to 2 (distinct assemblages within a time step). 

Serial autocorrelation was detected using the Durbin-Watson test (following Angeler 

2013) in the car package in R (Fox and Weisberg 2011). Three sites with positive 

autocorrelation and 1 site with negative autocorrelation were removed from further 

analyses. Sites with complete absence of occasional taxa were removed from further 

analyses. Mean temporal beta diversities of each site were mapped using ArcMapTM 10.0 

(ESRI 2010). I used R 3.0.1 for all statistical analyses unless otherwise specified. 
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Results 

Suitable Habitat Availability in SRS and 3A 

I defined suitable habitat for persistent taxa as periphyton with >40% mineral 

content (Figure 4.1a) because at this threshold, the mean abundance of persistent taxa had 

the strongest correlation (R2 = 0.73) with suitable habitat availability (Figure 4.1b). 

Suitable habitats occurred more consistently in SRS than 3A (Figure 4.1b). Greater 

suitable habitat availability in SRS was related to >2 times lower water depth, 

hydroperiod, and P levels than in 3A (Figure B1 in Appendix B). Mean periphyton 

mineral content was >3 times greater, and periphyton biovolume, dry weight, ash-free dry 

mass, and chlorophyll a mass were >2 times greater in SRS than 3A. 

 

Diversity Partitioning 

 Diversity of the reduced 30-species metacommunity was about 7 taxa at the 

whole-study scale (mean gamma), 5 taxa at the local assemblage scale (mean alpha), and 

2 distinct assemblages (mean beta) within the metacommunity (Table 4.1). Regional 

diversity (mean gamma) of occasional taxa was greater than persistent taxa by up to 4 

taxa at the whole-study scale and within SRS (p<0.01), but no more than 2 taxa in 3A. 

Local assemblage diversity (mean alpha) of persistent taxa was greater than occasional 

taxa by about 2 taxa at the whole-study scale and within regions (p<0.001). The number 

of distinct assemblages (mean beta) of occasional taxa was about 3 times greater than 

persistent taxa at the whole-study scale and within regions (p<0.001). There were about 4 

distinct assemblages of occasional taxa and only 1 assemblage of persistent taxa. 
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Figure 4.1. (a) Relationship between mean mineral content and mean abundance of 
persistent taxa in SRS, 3A, and all sites. Dashed line indicates suitable habitat threshold. 
(b) Availability of suitable habitat (>40% inorganic content) in SRS and 3A and 
abundance of persistent taxa. 
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Table 4.1. Results of diversity partitioning performed for each year from 2006-2011 using 
N number of samples and order of q = 1 (species weighed by their frequencies without 
bias towards common or rare taxa). Mean values of each diversity partition are averages 
over 6 years ± 1 standard error: alpha (local diversity), beta (number of distinct 
assemblages over space), and gamma (regional diversity). 

Region and taxon 
category 

N Mean alpha Mean beta Mean gamma 

All 64 4.66 ± 0.12 1.57 ± 0.07 7.36 ± 0.49 
Persistent 64 4.21 ± 0.11 1.45 ± 0.05 6.13 ± 0.36 
Occasional 64 1.82 ± 0.05 5.29 ± 0.39 9.55 ± 0.55 
SRS 22 4.61 ± 0.18 1.28 ± 0.02 5.91 ± 0.28 
SRS Persistent 22 4.31 ± 0.17 1.24 ± 0.02 5.36 ± 0.25 

SRS Occasional 22 1.82 ± 0.05 4.26 ± 0.28 7.79 ± 0.65 
3A 22 4.48 ± 0.1 1.63 ± 0.08 7.32 ± 0.48 
3A Persistent 22 4.08 ± 0.07 1.53 ± 0.07 6.27 ± 0.36 

3A Occasional 22 1.82 ± 0.11 4.14 ± 0.68 7.23 ± 0.79 
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Spatial Beta Diversity 

At the whole-study scale, both environmental and spatial factors were important 

contributors to the beta diversity of all taxa, but environmental factors explained more 

variation of persistent taxa than occasional taxa (Figure 4.2a, see Appendix D for year-

specific results). Both hydrology and mineral content or hydrology and periphyton mass 

best explained variation of persistent taxa, but single environmental variables often best 

explained variation of occasional taxa. Generally, occasional taxa had broader-scale 

spatial filtering than persistent taxa. The unknown component of beta diversity was 

largest (about 80%) for occasional taxa. 

At the regional scale, SRS and 3A did not have distinct assemblages (mean beta 

diversity = 1.05). Within regions, however, environmental factors better explained 

variation in SRS than 3A. In SRS, mineral content or periphyton mass differences best 

explained variation of persistent taxa, but either mineral content or hydrology best 

explained variation of occasional taxa. Generally, there was finer-scale spatial filtering in 

SRS than 3A. Spatial and spatially structured environmental factors explained the most 

variation in 3A. Mineral content usually best explained variation in 3A. Unexplained 

variation was lowest (52%) for SRS persistent taxa. 

 

Temporal Beta Diversity 

Mean temporal beta diversity (averages across 5 time steps from 2006-2011) 

ranged from 1.04 (nearly identical assemblages) to 2.0 (distinct assemblages). At the 

whole-study scale, persistent taxa had lower turnover than occasional taxa (Figure 4.2b).  
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Figure 4.2. (a) Spatial beta diversity of Everglades diatoms (all, persistent, and occasional 
taxa). Beta diversities were partitioned into four components: pure environment (E|S), 
spatially structured environment (E∩S), pure space (S|E), and unexplained (Un).  Error 
bars represent 1 standard error. Number of sites = 64. (b) Mean temporal beta diversity of 
Everglades diatoms (all, persistent, and occasional taxa). Temporal beta diversities were 
calculated using assemblage dissimilarities between time steps (5 time steps from 2006-
2011) at each site. Values range from 1 (identical assemblages) to 2 (distinct 
assemblages). Error bars represent standard errors. Asterisks represent significant 
pairwise t-statistics (p<0.05) between SRS and 3A. Number of sites = 60 and 22 at the 
whole-study scale and in both SRS and 3A, respectively. 
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At the regional scale, persistent taxa had higher turnover in 3A, while occasional 

taxa had higher turnover in SRS (Figure 4.2b). For all and persistent taxa, sites with the 

highest turnover were in southern 3A, while the lowest turnover was in southern SRS and 

in Taylor Slough (Figure 4.3a-b). For occasional taxa, the lowest turnover was in 

southern 3A and in 2A, while the highest turnover was in SRS and northern 3A (Figure 

4.3c). Refer to Appendix A for locations of Taylor Slough and 2A. 

 

Discussion 

Spatial Beta Diversity 

 Spatial beta diversity showed strong control of the metacommunity by both local 

environmental factors and broad-scale spatial factors. The importance of spatial factors 

indicates dispersal limitation is an important assembly mechanism of benthic diatom 

despite their small size and large populations. Spatial diversity patterns in Everglades 

periphyton have been observed through region-specific P optima (Gaiser et al. 2006), 

characteristic periphyton mat types and algal assemblages in different parts of the 

Everglades (Browder et al. 1994, Slate and Stevenson 2007, Gaiser et al. 2011), and 

boundary effects in response to hydrologic restoration (Gaiser et al. 2013). Spatially 

structured environmental factors explained more variation across species components in 

3A than SRS because the natural north to south decrease in ground elevation of the 

Everglades, combined with hydrologic impediments at the southern end of 3A, produce 

an increasing surface water depth gradient from north to south (Light and Dineen 1994).  

  



151 
 

Figure 4.3. Mean temporal beta diversity of Everglades diatom assemblage types: (a) all taxa, (b) persistent taxa, and (c) 
occasional taxa. Beta diversities were averaged across all time steps (5 time steps from 2006-2011) at each site. Green circles 
represent 1 standard error above the mean. Absence of standard errors indicates near zero values. 
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Unexplained variation, which was highest for occasional taxa, could result from 

stochastic processes such as founder effects, or complex intra- or interspecific 

interactions within the periphyton mat. Söderström (1989) concluded that core bryophyte 

species have higher local growth rate and dispersal ability because they reproduce both 

sexually and asexually, unlike satellite species that reproduce sexually. While diatoms 

undergo both sexual and asexual reproduction, asexual reproduction is more common and 

sexual reproduction has been related to density-dependent nutrient limitation in later 

stages of periphyton development (Stevenson 1990). Persistent taxa may undergo more 

frequent sexual reproduction in their preferred habitat (periphyton with high mineral 

content and low P), while occasional taxa reproduce asexually and disperse to less 

nutrient-limited habitats. In contrast to occasional taxa, evidence of sexual reproduction 

was frequently observed for persistent taxa such as Mastogloia calcarea (Gaiser et al. 

2010, Lee et al. 2014) and Encyonema evergladianum (Lee pers. obs.). Thus, density 

dependence of reproduction is an example of intraspecific interactions within periphyton 

that may contribute to unexplained variation.  

 

Temporal Beta Diversity 

 With a moderately long and spatially-resolved dataset, I showed regional 

differences in the turnover of persistent and occasional taxa were related to differences in 

suitable habitat availability. Persistent taxa, which I hypothesized would have lower 

turnover in sites with suitable habitats, had the lowest turnover in southern SRS and 

Taylor Slough, and the highest turnover in southern 3A. Assessment of Taylor Slough in 

2006 found acceptable ranges of P and no hydrologic modifications that would affect 
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periphyton composition (Gaiser 2009). In 3A, however, prolonged flooding in the 

southern portion discourages development of periphyton with high mineral content 

(Gaiser et al. 2011).  

Occasional taxa, which I hypothesized would have the highest turnover in sites 

where persistent taxa have the lowest turnover, had the highest turnover in SRS, while the 

lowest turnover was in southern 3A and in 2A. My finding that persistent taxa have lower 

turnover (i.e., more stable assemblages) in SRS is consistent with less stable populations 

of occasional taxa in the same sites if persistent taxa have adaptations that make them 

superior competitors in their preferred habitat, which occur with greater regularity in sites 

within SRS than 3A.  Low turnover of occasional taxa in 2A is consistent with the 

region’s current and historical P-enrichment by inflows from agricultural areas that have 

altered periphyton to have consistently lower mineral content than what is suitable for 

persistent taxa (McCormick et al. 1996, Slate and Stevenson 2000).  

 

Persistent and Occasional Taxa 

 Although I objectively divided the assemblage into persistent and occasional taxa 

using spatial and temporal incidence, the differences in spatial and temporal beta 

diversity between these two species components were ecologically meaningful. My 

hypothesis that persistent taxa are biologically dependent on the availability of suitable 

habitat was supported by greater variation explained by environmental factors and lower 

turnover in SRS, where shorter hydroperiods and lower P are related to greater suitable 

habitat availability (refer to Fig. B1 in Appendix B). Lee et al. (2013) showed that the 

integrity of the periphyton mat is a critical biological factor associated with Everglades 
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diatom abundance. The distinction between persistent and occasional taxa may reveal 

finer-scale mechanisms controlling spatial and temporal distributions within regions with 

differing environmental histories and management. 

The persistent inhabitants of inorganic (calcareous) periphyton mats may be 

highly dispersal limited. Calcareous periphyton is abundant in karst wetlands, especially 

in the Everglades and the Caribbean (Rejmánková and Komárková 2000, Novelo et al. 

2007, Gaiser et al. 2011, La Heé and Gaiser 2012), but also in temperate fens and alvars 

(Gaiser, unpublished data). Calcareous periphyton includes diatoms that can directly 

contribute to mat structure by exuding extracellular polymeric substances (EPS), like 

Mastogloia calcarea (Gaiser et al. 2010, Lee et al. 2014), or are dependent on 

cyanobacterial EPS as substrates for colonization and protection from desiccation and 

excess UV (Rejmánková and Komárková 2000, Elasri and Miller 1999, Sirová et al. 

2006, Thomas et al. 2006), as well as the nitrogen fixed by cyanobacteria (Paerl et al. 

2000). In sites with abundant calcareous periphyton, environmental factors explain 

relatively more variation than spatial factors because dispersal from suitable habitat is not 

necessary. Given their strong dependence on the periphyton mat, persistent taxa are 

unlikely to have strong dispersal ability. In sites where calcareous periphyton is not 

abundant, dispersal limitation of persistent taxa may explain more turnover and relatively 

greater control by spatial factors. 

Taxa encountered only occasionally in the Everglades may be widely distributed 

elsewhere, but may not have adaptations to live in calcareous periphyton. Taxa that I 

defined as occasional, such as Nitzschia amphibia and N. palea, are not abundant in 

calcareous periphyton because they have high P optima (Gaiser et al. 2006). Occasional 
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taxa had the greatest amount of unexplained variation, indicating regulation by 

mechanisms other than local environmental control or dispersal limitation. Higher 

abundance and lower turnover of occasional taxa were observed in regions with P-

enrichment, such as 2A, or deep water, such as southern 3A, where calcareous periphyton 

is not abundant. Occasional taxa may prefer sites with less calcareous periphyton because 

of a decrease in the dominance of persistent taxa. If so, occasional taxa in this 

metacommunity may play the role of fugitives that opportunistically colonize patches 

lacking superior competitors (Hutchinson 1951, Horn and MacArthur 1972). Benthic 

assemblages are likely to support complex interspecific interactions because they have 

complex structures and temporally-dynamic successional patterns (Stevenson 1990, 

Passy 2002, 2007).  

Differences between persistent and occasional taxa in the relative importance of 

local and regional controls, as well as their temporal turnover in suitable and unsuitable 

habitats, can inform hypotheses related to life history strategies. Phytoplankton studies 

have considered diatoms as r-selected organisms because blooms occur with high light 

and nutrients during mixing events (Kilham and Hecky 1988), but this generalization 

does not account for the diverse morphology and life histories of diatoms. Reynolds 

(1988) proposed the CSR (colonial, stress tolerant, or ruderal) classification for 

phytoplankton based on morphology and function. Recently, Law et al. (2014) found the 

best method to explain variation in stream phytobenthic assemblages was a combination 

of Reynold’s (1988) CSR classification and life-forms (e.g., motile or stalked). Law et al. 

(2014) observed that R-type species were the most competitive in the benthos because 

their high surface area to volume ratio (s:v) allows greater nutrient and light assimilation 
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and their motility allows movement out of shaded areas. Persistent taxa in my study 

included highly motile species (e.g., Mastogloia, Nitzschia, and Navicula spp.) that can 

move within periphyton to find optimal microhabitats and mates, unlike the occasional 

taxa in my study with limited or no motility (e.g., Achnanthidium, Eunotia, and 

Fragilaria spp.). Law et al. (2014) also found C-type species, colonizers that track high 

light and nutrient levels (Reynolds 1988), were present in sites with disturbance by high 

flow velocity or grazers and appeared to colonize newly opened niches, similar to 

occasional taxa in my study. Both R and C-type species exhibit high growth rates because 

of their high s:v (Reynolds 1988), but R-type species may outcompete C-type species in 

benthic assemblages, leading to R-type species that are persistent and C-type species that 

are occasional. If so, R-type species should be under mostly local controls (i.e., 

environmental gradients) and have low turnover in their preferred habitat, while C-type 

species are controlled by competition and disturbances that open niches previously 

occupied by R-type species and have high turnover. 

 

Conclusions 

 Spatial and temporal beta diversity are important attributes of ecological 

metacommunities for understanding the mechanisms of biodiversity, which requires 

adequate spatial and temporal resolution. Additionally, distinguishing persistent and 

occasional taxa in a metacommunity can aid detection of finer-scale patterns. I found 

both environmental and spatial factors were important components of beta diversity of 

benthic diatoms, which is not consistent with the idea of global distribution of 

microorganisms. I found local environmental control was greatest in sites with 
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environmental conditions that encourage development of suitable habitat for persistent 

taxa. My site-specific comparisons of temporal beta diversity showed greater overall 

turnover in hydrologically-managed localities. From the strong relationship between 

suitable habitat availability and the spatial and temporal turnover of persistent taxa, I can 

infer that persistent taxa have biological, dispersal, and life history strategies that are 

advantageous in their preferred habitats and are different from those of occasional taxa.  
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Appendices to Chapter IV 

Appendix A 

Figure A1. Map of sampling sites showing inset of Florida, USA. Lines represent canals. 
All sites were included in whole-study scale analyses but not in comparisons between 
SRS and 3A. Also shown are locations of Water Conservation Area 2A (2A) and Taylor 
Slough (TS). 
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Appendix B 

Table B1. Summary of environmental characteristics in the whole study area (All), Shark River Slough (SRS), and Water 
Conservation area 3A (3A). Means are averages across all sites and all years. Interannual standard deviation is the spread across 
sites of the within-site means across years. Inter-site standard deviation is the spread across years of the within-year means across 
sites. Number of sites in the whole study area, SRS, and 3A = 64, 22, and 22, respectively. Number of years = 6. 
 

Mean Interannual standard deviation Inter-site standard deviation 

Region All SRS 3A All SRS 3A All SRS 3A 

Water depth (cm) 48 38 62 18 10 17 9 11 12 

Days since dry (days) 691 265 1404 1010 258 1397 193 115 350 

Hydroperiod (days) 238 221 262 55 53 49 33 41 29 

Periphyton P (μg g-1) 170 128 249 89 56 85 37 47 50 

Chl a concentration (μg g-1) 3420 4564 1163 4021 4141 1082 7849 10839 2016 

Inorganic content (%) 48 53 34 16 15 13 3 4 5 

Periphyton biovolume (ml m-2) 3198 4158 1458 2231 1974 1164 580 894 361 

Aerial cover (%) 59 72 38 24 16 17 8 12 11 

Chl a mass (μg g-1) 10203 12734 5147 6469 5698 4185 5497 7437 2933 

Periphyton dry weight (g m-2) 151 211 33 179 165 34 72 114 13 

Periphyton AFDM (g m-2) 52 70 17 48 40 14 24 38 6 
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Figure B1. Comparison of environmental conditions and periphyton mass in 3A and SRS. 
Interannual sample means are within-site means across years that were averaged across 
sites within each region. Environmental data were standardized across the whole study 
system, including sites outside of 3A and SRS. Error bars represent 1 standard error from 
the mean. Asterisks indicate variables with significant pairwise t-statistics (p<0.001) in 
comparisons between 3A and SRS. 
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Appendix C 
 
Table C1. Names of taxa and abundance information: P is persistence (mean incidence at 
a site over 6 years), I is incidence (proportion of samples present out of 384 total 
samples), and A is abundance (mean relative abundance in a sample). Taxa 1-15 were 
categorized as persistent and taxa 16-30 were categorized as occasional. 
 

 Taxon P I A 

1 Encyonema evergladianum Krammer 1997 5.94 0.99 0.276 

2 
Mastogloia calcarea Lee, Gaiser, Van de Vijver, Edlund & 
Spaulding 2014 

5.88 0.98 0.339 

3 Brachysira microcephala (Grunow) P. Compère 1986 5.81 0.97 0.098 

4 Fragilaria synegrotesca Lange-Bert. 1993 5.80 0.97 0.091 

5 
Encyonema mesianum (Cholnoky) D.G. Mann in Round, 
R.M. Crawford & D.G. Mann 1990 

5.25 0.88 0.044 

6 
Nitzschia palea var. debilis (Kütz.) Grunow in Cleve & 
Grunow 

5.19 0.86 0.039 

7 Nitzschia serpentiraphe Lange-Bert. 1993 4.56 0.76 0.035 

8 
Gomphonema intricatum var. vibrio Ehrenb. sensu Fricke 
1902 

4.22 0.70 0.015 

9 
Navicula cryptotenella Lange-Bert. in Krammer & Lange-
Bert. 1985 

3.98 0.66 0.023 

10 Diploneis parma Cleve 1891 3.75 0.63 0.009 

11 Encyonopsis microcephala (Grunow) Krammer 1997 3.31 0.55 0.031 

12 
Stephanocyclus menegheniana (Kütz.) Skabitschevsky 
1975 

3.11 0.52 0.006 

13 Navicula radiosa Kütz. 1844 2.63 0.44 0.008 

14 
Kobayasiella cf. parasubtilissima (H. Kobayasi & T. 
Nagumo) Lange-Bert. 

2.52 0.42 0.008 

15 
Diploneis oblongella (Naegeli in Kütz.) Cleve-Euler in 
Cleve-Euler & Osvald 

2.39 0.40 0.006 

16 Encyonema silesiacum var. elegans Krammer 1997 1.73 0.29 0.065 

17 
Achnanthidium minutissimum var. gracillima (Meister) 
Lange-Bert. 1989 

1.55 0.26 0.019 

18 Nitzschia amphibia Grunow 1862 1.47 0.24 0.020 

19 Nitzschia palea (Kütz.) W. Sm. 1856 1.39 0.23 0.018 

20 Sellaphora laevissima (Kütz.) D.G. Mann 1989 1.39 0.23 0.005 
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Table C1. Continued. 

 Taxon P I A 

21 Encyonema sp. 1 1.22 0.20 0.014 

22 
Fragilaria nanana Lange-Bert. in Krammer & Lange-
Bert. 1991 

1.03 0.17 0.009 

23 Amphora sulcata (Bréb.) Cleve 1895 0.92 0.15 0.052 

24 Eunotia flexuosa (Bréb. in Kütz.) Kütz. 1849 0.91 0.15 0.012 

25 
Gomphonema cf. vibrioides Reichardt & Lange-Bert. 
1991 

0.84 0.14 0.010 

26 Eunotia naegelii Migula 1907 0.69 0.11 0.009 

27 Pinnularia microstauron (Ehrenb.) Cleve 1891 0.61 0.10 0.012 

28 
Frustulia crassinervia (Bréb.) Lange-Bert. et Krammer in 
Lange-Bert. & Metzeltin 1996 

0.25 0.04 0.004 

29 Eunotia monodon Ehrenb. 1843 0.20 0.03 0.004 

30 Rhopalodia gibba (Ehrenb.) O. Müller 1895 0.16 0.03 0.005 
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Appendix D 
 
Table D1. Results of spatial beta diversity variance partitioning performed for each year from 2006-2011 including number of sites 
(N), maximum and minimum distances between sites, and variance partitions of spatial beta diversity: pure environment (E|S), 
spatially structured environment (E∩S), pure space (S|E), and unexplained. Spatial (PCNM) and environmental variables list the 
spatial filters or variables explaining the most variance in assemblage dissimilarities across space. PCNM1 represents the broadest 
spatial filters and each successive PCNM represents finer-scale filtering. The E|S and S|E p values show significance of pure 
environment and pure space components of beta diversity. Note: components of spatial beta diversity with negative values indicate 
non-linear relationships or interactions that are difficult to interpret, but are negligible when values are near zero.  
 

Region and 
taxon 
category 

Year 2006 2007 2008 2009 2010 2011 

All N 64 64 64 64 64 64 

 
Distancemax 
(km) 

124.38 124.73 123.94 124.16 124.33 124.50 

 
Distancemin 
(km) 

1.97 1.74 1.93 1.30 2.19 1.48 

E|S 0.13 0.21 0.07 0.26 0.07 0.11 
E∩S 0.03 0.02 0.03 0.08 0.12 0.17 
S|E 0.28 0.22 0.23 0.05 0.35 0.34 
Unexplained 0.56 0.54 0.67 0.60 0.45 0.39 

 
Environmental 
variables 

Chl a 
concentratio
n + 
Hydroperiod 

Periphyton 
biovolume + 
Hydroperiod 

Inorganic 
content 

Periphyton P 
+ 
Hydroperiod 

Inorganic 
content + Chl 
a mass 

Periphyton 
dry weight + 
Days since 
dry + 
Periphyton 
biovolume 

Table D1. Continued. 
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Region and 
taxon 
category 

Year 2006 2007 2008 2009 2010 2011 

All 
Spatial 
variables 

PCNM5 + 
PCNM3 + 
PCNM6 + 
PCNM13 + 
PCNM26 

PCNM5 + 
PCNM3 + 
PCNM12 + 
PCNM22 

PCNM12 + 
PCNM1 + 
PCNM5 + 
PCNM7 

PCNM1 + 
PCNM14 

PCNM5 + 
PCNM9 + 
PCNM3 + 
PCNM1 + 
PCNM13 + 
PCNM11 

PCNM1 + 
PCNM4 + 
PCNM3 + 
PCNM5 + 
PCNM14 

E|S p value 0.005 0.005 0.005 0.005 0.017 0.005 
  S|E p value 0.005 0.005 0.005 0.048 0.005 0.005 
Persistent N 64 64 64 64 64 64 

 
Distancemax 
(km) 

124.38 124.73 123.94 124.16 124.33 124.50 

 
Distancemin 
(km) 

1.97 1.74 1.93 1.30 2.19 1.48 

E|S 0.18 0.23 0.08 0.28 0.12 0.09 
E∩S 0.01 0.01 0.03 0.09 0.14 0.17 
S|E 0.22 0.19 0.15 0.05 0.32 0.35 
Unexplained 0.58 0.57 0.75 0.58 0.43 0.39 

 
Environmental 
variables 

Chl a 
concentratio
n + 
Hydroperiod 

Periphyton 
dry weight + 
Hydroperiod 

Inorganic 
content 

Periphyton P 
+ 
Hydroperiod 

Inorganic 
content + 
Hydroperiod 
+ Chl a mass 

Periphyton 
dry weight + 
Days since 
dry 

        

Table D1. Continued. 
 
Region and 
taxon 

Year 2006 2007 2008 2009 2010 2011 
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category 

Persistent 
Spatial 
variables 

PCNM6 + 
PCNM13 + 
PCNM5 + 
PCNM26 

PCNM5 + 
PCNM12 + 
PCNM22 

PCNM12 + 
PCNM1 

PCNM1 + 
PCNM14 

PCNM5 + 
PCNM9 + 
PCNM13 + 
PCNM3 + 
PCNM1 + 
PCNM7 

PCNM1 + 
PCNM4 + 
PCNM3 + 
PCNM5 + 
PCNM14 

E|S p value 0.005 0.005 0.015 0.005 0.013 0.005 
  S|E p value 0.005 0.005 0.010 0.059 0.005 0.005 
Occasional N 60 50 61 55 60 57 

 
Distancemax 
(km) 

124.38 124.73 123.94 121.18 124.33 124.50 

 
Distancemin 
(km) 

1.97 2.69 1.93 1.30 2.19 1.48 

E|S 0.01 0.01 0.04 0.12 0.05 0.08 
E∩S 0.02 0.02 0.02 0.02 0.01 0.03 
S|E 0.16 0.08 0.17 0.05 0.16 0.14 
Unexplained 0.81 0.89 0.77 0.80 0.79 0.75 

 
Environmental 
variables 

Water depth 
Days since 
dry 

Water depth 

Periphyton P 
+ Chl a 
concentration 
+ 
Hydroperiod 

Periphyton 
biovolume 

Chl a 
concentration 

        

Table D1. Continued. 
 
Region and 
taxon 
category 

Year 2006 2007 2008 2009 2010 2011 

Occasional Spatial PCNM2 + PCNM3 + PCNM5 + PCNM4 + PCNM3 + PCNM3 + 
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variables PCNM4 + 
PCNM1 + 
PCNM9 

PCNM1 PCNM4 + 
PCNM9 + 
PCNM11 + 
PCNM1 

PCNM24 PCNM16 + 
PCNM32 

PCNM1 + 
PCNM7 

E|S p value 0.160 0.150 0.005 0.005 0.005 0.005 
  S|E p value 0.005 0.005 0.005 0.005 0.005 0.005 
SRS N 22 22 22 22 22 22 

 
Distancemax 
(km) 

37.44 37.13 37.74 37.00 37.22 36.80 

 
Distancemin 
(km) 

2.86 2.88 2.88 2.44 2.58 2.87 

E|S 0.17 0.56 0.27 0.18 0.24 0.40 
E∩S -0.05 0.07 0.06 0.13 -0.03 -0.02 
S|E 0.42 0.01 0.11 0.00 0.11 0.22 
Unexplained 0.46 0.36 0.56 0.69 0.68 0.40 

 
Environmental 
variables 

Chl a 
concentratio
n 

Periphyton 
biovolume 

Inorganic 
content 

Chl a 
concentration 

Inorganic 
content 

Chl a mass + 
Aerial cover 

 
Spatial 
variables 

PCNM14 PCNM1 PCNM12 PCNM5 PCNM9 PCNM2 

E|S p value 0.010 0.005 0.005 0.010 0.015 0.005 
  S|E p value 0.015 0.440 0.054 0.670 0.051 0.005 
        
Table D1. Continued. 
 
Region and 
taxon 
category 

Year 2006 2007 2008 2009 2010 2011 

SRS 
Persistent 

N 22 22 22 22 22 22 

Distancemax 37.44 37.13 37.74 37.00 37.22 36.80 
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(km) 

 
Distancemin 
(km) 

2.86 2.88 2.88 2.44 2.58 2.87 

E|S 0.19 0.57 0.27 0.18 0.16 0.37 
E∩S -0.05 0.07 0.07 0.14 0.09 -0.02 
S|E 0.44 0.01 0.12 0.01 0.00 0.26 
Unexplained 0.42 0.34 0.54 0.68 0.75 0.39 

 
Environmental 
variables 

Chl a 
concentratio
n 

Periphyton 
biovolume 

Inorganic 
content 

Chl a 
concentration 

Inorganic 
content 

Chl a mass + 
Aerial cover 

 
Spatial 
variables 

PCNM14 PCNM1 PCNM12 PCNM5 PCNM10 PCNM2 

E|S p value 0.015 0.005 0.005 0.010 0.036 0.010 
  S|E p value 0.010 0.640 0.067 0.660 0.540 0.010 
SRS 
Occasional 

N 18 17 19 18 20 18 

 
Distancemax 
(km) 

37.44 37.13 37.74 37.00 37.22 36.80 

 
Distancemin 
(km) 

2.86 2.88 2.97 2.44 2.58 2.87 

E|S 0.04 0.08 0.06 0.13 0.01 0.24 
Table D1. Continued. 
 
Region and 
taxon 
category 

Year 2006 2007 2008 2009 2010 2011 

SRS 
Occasional 

E∩S 0.12 -0.02 -0.02 -0.01 0.10 0.04 

S|E 0.12 0.12 0.13 0.07 0.02 0.05 
Unexplained 0.73 0.81 0.83 0.81 0.87 0.67 
Environmental Chl a Water depth Chl a Chl a Periphyton Periphyton P 
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variables concentratio
n 

concentration concentration AFDM + 
Hydroperiod 

 
Spatial 
variables 

PCNM5 + 
PCNM10 

PCNM2 PCNM3 PCNM9 PCNM12 PCNM6 

E|S p value 0.170 0.090 0.170 0.005 0.360 0.005 
  S|E p value 0.066 0.023 0.027 0.037 0.320 0.100 
3A N 22 22 22 22 22 22 

 
Distancemax 
(km) 

53.60 53.30 53.57 53.45 53.26 53.73 

 
Distancemin 
(km) 

2.94 3.17 3.10 2.97 2.97 3.12 

E|S 0.06 0.14 -0.02 0.29 0.04 0.16 
E∩S 0.05 0.02 0.12 0.01 0.30 0.11 
S|E 0.07 0.12 0.14 0.11 0.17 0.08 
Unexplained 0.83 0.72 0.76 0.59 0.49 0.65 

 
Environmental 
variables 

Chl a 
concentratio
n 

Chl a 
concentration 

Inorganic 
content 

Inorganic 
content + 
Periphyton 
biovolume 

Inorganic 
content 

Inorganic 
content + 
Water depth 

Table D1. Continued. 
 
Region and 
taxon 
category 

Year 2006 2007 2008 2009 2010 2011 

3A 
Spatial 
variables 

PCNM1 PCNM4 PCNM1 PCNM4 PCNM1 PCNM1 

E|S p value 0.130 0.023 0.940 0.005 0.190 0.030 
  S|E p value 0.200 0.025 0.026 0.033 0.013 0.066 
3A 
Persistent 

N 22 22 22 22 22 22 

Distancemax 53.60 53.30 53.57 53.45 53.26 53.73 
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(km) 

 
Distancemin 
(km) 

2.94 3.17 3.10 2.97 2.97 3.12 

E|S 0.10 0.14 -0.02 0.22 0.01 0.18 
E∩S 0.00 0.02 0.11 0.00 0.22 0.10 
S|E 0.17 0.13 0.16 0.13 0.20 0.03 
Unexplained 0.72 0.72 0.74 0.65 0.57 0.70 

 
Environmental 
variables 

Chl a 
concentratio
n 

Chl a 
concentration 

Inorganic 
content 

Inorganic 
content 

Inorganic 
content 

Inorganic 
content + 
Water depth 

 
Spatial 
variables 

PCNM12 PCNM4 PCNM1 PCNM4 PCNM1 PCNM1 

E|S p value 0.070 0.018 0.810 0.005 0.540 0.042 
  S|E p value 0.023 0.032 0.036 0.020 0.015 0.340 
3A 
Occasional 

N 22 16 22 20 20 19 

        
Table D1. Continued. 
 
Region and 
taxon 
category 

Year 2006 2007 2008 2009 2010 2011 

3A 
Occasional 

Distancemax 
(km) 

53.60 53.30 53.57 53.45 53.26 53.73 

 
Distancemin 
(km) 

2.94 3.17 3.10 2.97 2.97 3.12 

E|S 0.06 0.07 0.02 0.12 -0.02 0.00 
E∩S 0.04 -0.01 0.17 0.00 0.14 0.04 
S|E 0.03 0.05 0.13 0.08 0.19 0.15 
Unexplained 0.87 0.88 0.68 0.81 0.69 0.82 
Environmental Inorganic Periphyton P Inorganic Chl a mass Inorganic Aerial cover 
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variables content content content 

 
Spatial 
variables 

PCNM1 PCNM1 
PCNM1 + 
PCNM3 

PCNM8 PCNM1 PCNM1 

E|S p value 0.082 0.029 0.340 0.010 0.830 0.640 
  S|E p value 0.240 0.100 0.037 0.029 0.005 0.015 
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CHAPTER V: GENERAL CONCLUSIONS 

 

The availability of a 6-year record of diatom distribution with high spatial 

resolution across the Florida Everglades allowed me to investigate assembly mechanisms 

of diatoms in periphyton. I took a different approach from previous studies by relating 

diatom assemblage composition to non-physicochemical habitat characteristics, such as 

periphyton abundance and mineral content. Periphyton abundance and mineral content 

may be metrics that integrate the influence of environmental and spatial controls on the 

assemblage composition of its diatom inhabitants. If we consider the periphyton matrix as 

a micro-ecosystem that provides habitats for its constituents, the availability and quality 

of habitats should determine species abundances. The availability and quality of habitats 

in periphyton are strongly related to local environmental factors, evidenced by thick, 

calcareous mats in unenriched environments with seasonal desiccation and loose, organic 

aggregates in more enriched environments that may have extended hydroperiods. 

However, historical, biogeographical, and evolutionary processes also have potential 

regional-scale control on the availability and quality of habitats in periphyton.  

Environmental history and current hydrologic management have divided the 

Everglades into distinct, but connected, wetlands with differing hydrologic and nutrient 

histories that persistently encourage the growth of particular forms of periphyton each 

year. In regions of the Everglades with histories of drastic drainage, extended dry seasons 

have likely encouraged the dominance of thick periphyton mats inhabited by taxa adapted 

to periods of desiccation. Conversely, the growth of thick periphyton mats have not been 

encouraged in impounded regions with generally longer hydroperiod and deeper water. In 



177 
 

Chapter II, I found a strong relationship between assemblage composition and 

hydroperiod, but many taxa had tolerance ranges >50 days, indicating potential 

desiccation resistance. In addition, I found a strong relationship between assemblage 

composition and periphyton biovolume, indicating the dependence of diatoms on the 

availability and quality of habitats. Availability of habitat (periphyton mats) is important 

for diatoms, because the periphyton mat can provide protection from moisture extremes 

and other environmental fluctuations that can stress diatom inhabitants. 

 Consistent morphological differences may support dispersal limitation of diatoms 

by spatial factors and potential regional endemism, rather than distribution across 

continents. In Chapter III, I found the dominant taxon in Everglades and Caribbean 

periphyton assemblages has a more limited distribution than previously thought when the 

taxon was reported as Mastogloia smithii or M. (smithii var.) lacustris. The taxonomic 

confusion stemmed from lack of accessible type material for both taxa and relatively 

poorly studied diatom flora in tropical wetlands. In addition, within-taxon morphological 

variability from post-initial valves to increasingly smaller valves produced by asexual 

reproduction required quantitative analyses of valves across full size ranges from 

multiple populations to define the taxonomy of the newly described species, M. calcarea 

and M. pseudosmithii. The availability of an accessible lectotype of M. smithii newly 

designated by this study may allow researchers to find that, upon comparison with 

populations found in their own study systems, M. smithii is not cosmopolitan, after all. 

Diatoms like M. calcarea that are key contributors to their benthic habitats have 

potentially strong biogeographical constraints by spatial factors that can limit their 

dispersal. 
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 Strong niche-based control at the local assemblage scale did not exclude the 

contribution of spatial, dispersal-limiting processes to assemblage composition of 

Everglades diatoms. In Chapter IV, I found both environmental and spatial factors are 

important controls on the assemblage distribution of the overall Everglades diatom 

metacommunity, despite the small size and large populations of diatoms. I found the 

relative importance of environmental and spatial factors on assemblage distribution differ 

among compartments of the Everglades under differing hydrologic management. In Shark 

River Slough (SRS), where lower nutrients and shorter hydroperiods encourage 

development of calcareous periphyton mats, environmental controls are relatively more 

important than spatial controls. In Water Conservation Area 3A (3A), where higher 

nutrients and longer hydroperiods do not encourage development of calcareous 

periphyton mats, spatial controls are relatively more important than environmental 

controls. The differences I observed may be related to the influence of hydrologic 

management on the availability of habitat for taxa that have either persistent or 

occasional incidence in calcareous periphyton mats.  

 Differences between persistent and occasional taxa in the relative importance of 

environmental and spatial controls on assemblage distribution suggest large-scale 

biogeographical processes limit the dispersal of some diatom taxa; dispersal limitation 

then allows time for species to develop adaptations to local habitat characteristics. Even 

after determining the contributions of environmental and spatial factors to assemblage 

variability, however, unexplained variation remains, most notably for occasional taxa. 

Stochastic processes (e.g., founder effects, random genetic drift, or disturbances) and 

complex biotic interactions within the periphyton matrix (e.g., competition or density 
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dependence), may also contribute to unexplained variance in diatom biodiversity.  

Future studies should examine how traditional theories about life history strategies (e.g., 

r/K selection) and population dynamics (e.g., competition or density dependence) apply 

to diatoms, especially benthic diatom assemblages with complex spatial structuring and 

temporal dynamics. Investigation of successional changes in composition as periphyton 

development (and dissolution) occurs and biological traits and life history characteristics 

of each species could elucidate which taxa have truly evolved into superior competitors 

in periphyton mat habitats, which taxa occur in the same habitats but are inferior 

competitors, and which taxa are truly cosmopolitan. In the Everglades, continued 

monitoring and data collection are essential for future detection of long-term trends 

(outside of background interannual variability captured by 6 years), especially to fully 

understand the effects of restoration upon ecosystem-scale implementation. Finally, the 

taxonomy of many Everglades and Caribbean diatoms that remain unresolved needs 

further attention in anticipation of comparative studies aimed at understanding global-

scale processes. 
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