
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-25-1996

Development of a security network (SECNET)
based on integrated services digital network
(ISDN)
Isidro Alvarez
Florida International University

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Alvarez, Isidro, "Development of a security network (SECNET) based on integrated services digital network (ISDN)" (1996). FIU
Electronic Theses and Dissertations. Paper 2064.
http://digitalcommons.fiu.edu/etd/2064

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fetd%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/2064?utm_source=digitalcommons.fiu.edu%2Fetd%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

DEVELOPMENT OF A SECURITY NETWORK (SECNET)
BASED ON INTEGRATED SERVICES DIGITAL

NETWORK (ISDN).

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

by

Isidro Alvarez

1996

Thesis Committee Approval Sheet

To: Dean Gordon R. Hopkins
College of Engineering and Design

This thesis, written by ISIDRO ALVAREZ, and entitled, DEVELOPMENT OF A
SECURITY NETWORK (SECNET) BASED ON INTEGRA TED SERVICES DIGITAL
NETWORK (ISDN), having been approved in respect to style and intellectual content, is
referred to you for judgment.

We have read this thesis and recommended that it be approved.

Date of Defense: March 25, 1996

The thesis of Isidro Alvarez is approved.

Gustavo Roi g

John C. Comfort /James R. Story

Subbarao V. Wunnava, Major Professor

Dean Gordon R. Hopkins
College of Engineering and Design

Dr. Richard L. Campbell
Dean of Graduate Studies

Florida International University, 1996

II

I dedicate this thesis to my to my mother Virginia Avalos Cabrera, to my father Isidro

Alvarez Lopez, and to my sister Nieves A. Rodriguez. Without their support and love, I

would not be what I am today.

Ill

ACKNOWLEDGMENTS

I would like to thank all my committee members: Dr. Subbarao V. Wunnava, Dr.

Gustavo Roig, and Dr. John C. Comfort for their helpful comments, encouragement, and

support. I also appreciate the support provided by Bellsouth, NORTEL, and Adtran

Corporation.

I would like to thank especially Dr. Gustavo Roig because without his help I

would not be doing the present presentation.

I would also like to thank the following persons that worked with me in the ISDN

Lab at FlU: Mark W. Williams, Tom Gilbar, Pablo Perez, Carol Levay-Reyes, Hamid

Ghassemi, Irma Becerra Fernandez, Margaret Dabdoub, Venkata K. Gandham, Miguel

Rosario, Alvio Barrios, and Rick Cabrera for their support in one way or the other. I also

wish to thank every one in the AU Electrical & Computer Engineering Department for

their support especially Dr. James R. Story, Mike Urucinitz, Pat Brammer, and Marbeth

Cochran.

iv

ABSTRACT OF THE THESIS

DEVELOPMENT OF A SECURITY NETWORK (SECNET) BASED
ON INTEGRA TED SERVICES DIGITAL NETWORK (ISDN)

by

Isidro Alvarez

Florida International University, 1996

Miami, Florida

Professor Subbarao V. Wunnava, Major Professor.

The progress in the computing and communication industries together with the

fast evolution of the semiconductor industry has made possible advances in the

communications field. These advances have been used by other related applications to

improve the services that they bring about. On the other hand, business crimes have

increased three digits orders of magnitude in one decade, making from 20% to 30% of

small businesses fail. These conditions demand new solutions to make security systems

more reliable and efficient.

The present work combines ISDN as a network with a security system to create a

security network (SECNET). It will create intelligent and distributed security devices that

communicate information from different places to a main security office by using the

ISDN lines available at the premises. This work also introduces a new idea of individual

equipment protection.

v

CRAnER I. INTR 0 D U CTI 0 N 1

1. 1 OBJECTIVES .. 2

1.2 ORGANIZATION ... 3

CHAPTER II. SECURITY SYSTEMS .. 4

2.1 SECURITY SYSTEM TRENDS FOR 1990'S ... 5

2.2 SECNET GENERAL CONCEPT .. 6

2.2 SECNET DESIGN CONSIDERATIONS .. 8

CHAPTER III. INTEGRATED SERVICES DIGITAL NETWORK (ISDN) 10

3.1 INTRODUCTION ... I 0

3.2 EVOLUTION OF ISDN .. II

3.3 INTEGRATED SERVICE DIGITAL NETWORK (ISDN) CONCEPT I3

3.4 ISDN TRANSMISSION STRUCTURE AND INTERFACE .. 20

3.5 ISDN COMMUNICATIONS AT FlU ... 34

CHAPTER IV .. SYSTEM HARDW ARE .. 39

4.1 INTRODUCTION ... 39

4.2 SERIAL COMMUNICATION: THE RS-232C INTERFACE41
4.3 THE UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) 48

4.4 SERIAL COMMUNICATION PORTS FOR SEC NET. .. 52

4.5 SECNET EQUIPMENT AND SECURITY FUNCTION ... 53

4.6 DEVICE USED TO SECURE THE EQUIPMENT , ... 58

CHAPTER V. SYSTEM SOFTW ARE .. 65

5.1. INTRODUCTION .. 65

5 .2. CONTROL UNn· SOFTWARE .. 66

5.3 CONTROL UNIT SOFT\\' ARE 0PERATION .. 68

5.3.1 INmALIZAnoN .. 68

5.3.2 FULL OPERATION ... 71

5.4 COMPUTER OPERATION .. 74

CHAPTER VI. SYSTEM INTEGRATION AND FUTURE SYSTEM
EN HAN CEMENTS . .. ,., ... 81

6.1 SYSTEM INTEGRATION .. 81

6.1.I SYSTEM OPERATION .. 81

6.1. 2. MAIN SECURITY OFFICE OPERATION .. 81

6.1 . 3. ROOM SECU IUTY OPERATION ... 82
6.1.3.1 CONTROL DEVICE ... 85
6.2 SYSTEM SIGNALING .. 88

6.3 FUTURE SYSTEM ENHANCEMENTS .. 90
6.3.I DATA COMMUNICATION .. 90
6.3.2 NETWORKJNG .. 9I

VI

6.3.3. WIRELESS TECHNOLOGY .. 93
6.3.4 SOFTWARE ... 93

CHAPTER VII. CONCLUSIONS ... 95

REFERENCES ... 97

APPENDIX A .. 98

APPENDIX B .. 123

\ II

TABLE OF FIGURES

Figure 2.1. Business crime cost projection up to year 2000. 4

Figure 2.2.1. General view of SECNET 7

Figure 3.3.1. Open System Interconnection (OSI) model. 15

Figure 3.3.2. User and control planes used in ISDN. 19

Figure 3 .4.1. ISDN reference points and functional groups. 22

Figure 3.4.2. Logarithmic compression laws. 24

Figure 3.4.3. ISDN channel structure in the S and T interface points. 26

Figure 3.4.4. BRI frame structure at references points S and T. 27

Figure 3.4.5. Modified AMI code for bit sequence 0 I I 00 II 0. 28

Figure 3.4.6. Layer 2 octet transmission. 29

Figure 3.4.7. Data link connection identifier octets. 30

Figure 3.4.8. The 2B I Q code representation for letters FlU. 31

Figure 3.4.9. Echo cancellation. 33

Figure 3.5.1. Point -to-multipoint configuration. 34

Figure 3.5.2. Physical arrangement for power feeding for twisted pair. 36

Figure 3.5.3. ISDN general line configuration at FlU. 37

Figure 4.2.1. Typical RS-232C connector. 41

Figure 4.2.2. RS-232C interface connection between DTE and DCE. 43

Figure 4.2.3. Handshaking process triggered by the DTE to start transmission. 43

VIII

Figure 4.2.4. Frame format for the ASCII code Ox36 hex (number 6) for serial

transmission. 46

Figure 4.5 .1. Block diagram for an expanded MCU used in the EVB from Motorola,

Inc.

Figure 4.6.1. System implementation to protect a printer.

Figure 4.6.2. Functional block for equipment protection.

Figure 4.6.3. Functional representation of a Central Office (CO).

Figure 4.6.4. General diagram for the external circuitry used to implement the

equipment protection.

55

59

60

61

62

Figure 4.6.5. Modular representation for the external circuitry connected to the control

unit.

Figure 6.1.3 .1. Main menu listing.

Figure 6.1.3.2. Equipment listing for the add equipment function.

Figure 6.1.3.3. Screen showing the position not taken.

Figure 6.1.3.4. Screen showing the enabled positions

64

83

84

84

85

Figure 6.1.3.1.1. Control device representation. a. 3-D view. b. Rear view. c. Top view.

d. Lateral view. 87

Figure 6.2.1. Screen at the Main Security Office (MSO) when an equipment was

disconnected from the control unit. 89

Figure 6.2.2. Screen at the Main Security Office (MSO) when a control unit was

disconnected from the computer. 89

Figure 6.3.2.1 Local Area Network (LAN) implementation of SECNET. 92

IX

TABLE OF TABLES

Table 3.3.1. ISDN protocol architecture (user-to-network interface control plane). 17

Table 3.5.1 SPID definition for AT&T and Nortel. 38

Table 4.2.1. The ffiM-A T nine pins connector for the RS-232C serial interface. 42

Table 4.2.2. Data format to setup the computer communication ports. 46

Table 4.3.1. Serial port base register addresses. 48

Table 4.3.2.a. Register for COMl when the eighth bit of LCR is 0, (DLAB = 0). 49

Table 4.3.2.b. Register for COMl when the eighth bit of LCR is I, (DLAB = I). 49

Table 4.3.3. Control byte for the IER register. 50

Table 4.3.4. Interrupt cause and priority. 50

Table 4.3.5. Modem status register bit set. 51

Table 4.3.6. Divisor values for each data bit rate. 52

Table 4.4.1. Register denomination. 53

Table 4.5.1. Functional port representations on the MC68HC 11. 56

Table 4.5.2. ACIA registers in the Motorola's EVB board. 58

Table 4.6.1. Control signals and their relationship with the transmission and reception

lines.

Table 5.2.1. Software functions for the control unit.

Table 5.3.1.1. Bit definition for port A and port B as address and control busses

respective! y.

Table 5.3.1.2. SCCA and SCCB programming mode.

Table 5.3.2.1. Character command correlation.

X

63

67

69

70

72

Table 5.3.2.2. Bit representation for each device in memory.

Table 5.4.1. Functions defined in DEVCOM class.

Table 5.4.2. Functions defined in SERCOM class.

Table 5.4.3. Functions defined in the MENU class.

XI

72

75

76

79

Chapter I. Introduction.

During the 1980's, business crime and its cost has grown very fast. The private

security industry experienced the greatest growth ever. It is expected that business crime

will increase 75.4 % from 1990 to 2000. Also, other studies indicated that economic

crime is the reason for 20 to 30 percent of small business failure [1).

Security systems commercially available nowadays are system based in the

detection of an intruder into a room. This is accomplished by detecting an unauthorized

opening of a door or window in a room under control. Also, there are more sophisticated

systems that use wired or wireless communication path to check the identity of the person

or persons accessing a room by checking certain form of identification. For example:

magnetic badges can hold information about the person to whom was it assigned; also,

smart cards can receive and transmit information about the holder. A different kind of

system uses closed-circuit TV (CCTV), where security personnel check every possible

entrance using TV cameras strategically distributed through the areas under surveillance.

For private use, commercial system available use phone lines to communicate with an

office that is in charge of notifying the police and the owner of the place of any intrusion.

Considering the above statistics and the basic principles of commercially available

systems, the idea of creating a security system that operates almost independently from

human interaction was developed. This security system uses computers, data

communication, and telecommunications.

This system was conceptualized as a network of multiple computers

interconnected using a communication medium. It has been christened: SECNET

(SECurity NETwork). The coi'Il:munication network that has been selected is the

Integrated Services Digital Network (ISDN). The selection was made because this is a

new technology that is changing the way in which the telephone communications are

made from the user loop (last link between the users to the Central Offices, CO). ISDN is

a fast, very reliable digital communication link that allows transmission of voice, data,

facsimile, and video at more than twice the speed of the fastest modems with error rates

many times smaller. Also, ISDN is an emerging technology that is able to naturally

incorporate new and future advances in telecommunications and it is replacing the old

analog lines at increasing rate in the present years. At the time when the study was done,

no security system was using ISDN as medium of communication, although there were

some articles that started discussing about the possible benefits of ISDN for commercially

security networks.

1.1 Objectives.

The objectives of the present work were then set. SECNET should be a system

that would be largely compatible with other security systems. However, it should

introduce new ideas to make the system unique with respect to the commercially

available security systems. It also will make use of the ISDN lines to accomplish

communication among the computers connected to the security network. A prototype has

been built to demonstrate that SECNET can be done.

2

SECNET is the backbone for future additions of new features, and new

technologies. These additions can be incorporated to the system by updating and

upgrading the software without requiring total changes in the hardware, making the

system more flexible.

1.2 Organization.

The present work consists of seven chapters. Each chapter explains different

topics discussed in this thesis. Chapter 2 introduces what a security system is and the way

in which SECNET is going to be implemented. Chapter 3 explains ISDN in detail.

Chapter 4 illustrates the hardware used in SECNET. Chapter 5 details SECNET's system

software. Chapter 6 illustrates the hardware and software integration in a system and

future enhancements that can be incorporated into SECNET. Chapter seven shows the

conclusion of this work.

3

Chapter II. Security Systems.

Economic or busine s crime continue to grow dramatically. As stated in Chapter

I, busine crime and it cost have experienced steady growth si nce the 1970' . Computer

related crime , tealing of valuable equipment, and other crimes are areas where the

bu ines crime have been increa ed .

Studie in the 1970' by the United tate hamber of ommerce, ongress, and

the American Management A sociation were in agreement that business crime costs $40

billion or more a year [1]. Following tho e tudie, , a projection of what bus iness crime

can cost up to year 2000 i hown in Figure 2. 1 [I] .

Bu ine Crime Cost Projection

1970 1980 1990 2000

Years

Figure 2 .1 Business crime cost projection up to year 2000.

4

The impact of these costs reduces profits and increases the cost of insurance,

security and internal control. The trend is to design proactive programs and controls to

prevent losses [I].

There will be more automated systems doing complicated security tasks better

than before. By decentralizing security, automating, and adding equipment where

possible, companies can reduce the expenditure on security by upgrading their equipment

and reducing security personnel [2].

Computers are used increasingly m security. They are used to help with

operations, recordkeeping and decision making. Their use grew 9% between 1988 and

1989 alone [3].

2.1 Security System Trends for 1990's.

Advances in microprocessors have made possible more powerful personal

computer (PC) operating systems (OS) and networking. These advances have set the pace

for new products in the 1990's leading to higher levels of integration.

There are two factors that push integration: users want the best products, no

matter who the manufacturer, and want to upgrade capability without discarding their

original investment.

The best approach is the development of large distributed networks that reduce

operating costs, then centralizing administration and security control for multiple sites,

and downsize of integration to run on PC-sized systems. The trend on the 1990's will be

5

systems that integrate card access, alarm monitoring, CCTV control, biometrics, and

administrative tasks [3].

Based on those predictions, SECNET should be a network system based on ISDN

that allows administrative tasks and alarm monitoring. Also, it should be able to be

upgrade without having to replace the hardware already in use.

2.2 SECNET General Concept.

SECNET is a network security system that connects a main security office (MSO)

to a number of offices that have to be protected. The main link between the MSO and the

offices is based on ISDN. ISDN lines installed in each of the offices and the MSO

perform normal everyday communication. They can also be used to link together all the

offices, including the MSO under security controL This is represented in Figure 2.2.1.

A number of offices under security control are connected to the MSO through

available ISDN lines in each of the offices. Computers which can be doing different tasks

are also running a software that allows them to interact with control units. The latter are

in charge of supervising the equipment under security control. Based on this general idea,

the SECNET concept was developed.

The MSO will collect all the information that each office will send to it. The

number of offices that can be connected does not depend on of physical cabling

limitations, nor is it required to have a certain number of dedicated lines to implement

security function. They will use ISDN lines in circuit switched mode (CSM). In this

mode, offices will use ISDN lines only on demand.

6

D_ Control Unit Server D_
-

~o: MSO

Office n ISDN

D_ D_ Plotter
"-----1- ~o•t-------iiiit-'

'-----===--'Control Unit
Control Unit Office 2

Office 1

Laser printer

Figure 2.2.1 General view of SECNET.

In fact only if the control units detect an equipment failure. ISDN will be studied

m much detail in the next chapter. However, it is important to point out that the

advantages of ISDN over normal plain old telephone (POT) lines, ISDN makes

connections in the order of milliseconds, it has more bandwidth and this bandwidth can

be incremented on demand using statistical inverse multiplexing which is the junction of

7

the B channels together to form a channel with higher bandwidth. These characteristics

make ISDN suitable to be used as a communication path in a security network. Also, a

system based on ISDN is prepared to handle future upgrades such as sending still pictures

full motion video, or audio.

SECNET, also, has to be designed to be as modular as possible to accommodate

future upgrades without having to change drastically the system. To accomplish this, the

hardware be used must be sufficiently flexible so that the upgrades can be made by

changing only the software, which is of course much easier to upgrade than the hardware.

The hardware should also be modular to facilitate incremental upgrades.

In addition to all of the above, a new direction in security systems will be taken:

basically all the commercially available security systems control access points, identify

the person who access the room by his identification card, and use cameras to monitor the

rooms under protection. They can also control a number of equipment connected to a

same point without any possible individual identification of them. SECNET will be

designed using a different approach: it will be able to identify the location, and what kind

of device is in that location. This approach makes SECNET a unique security network

system. To the author's knowledge, there is no similar system on the market, today.

2.2 SECNET Design Considerations.

SECNET has been designed as a composite system consisting of a PC and a

control unit. The former is in charge of administrative tasks such as maintaining the

equipment's database, which will keep track of the problem that each of the equipment

8

has. It will establish communication to the MSO using ISDN lines and a Terminal

Adapter (T A) connected to one of its serial ports. Also, it will communicate with the

control unit to send and receive commands to make the system operational. It will

perform the user/control unit interaction in a user friendly manner.

The control unit will be in charge of monitoring each unit of the equipment under

control. The computer and the control unit interchange commands to add, enable, disable,

and remove equipment. If something is wrong with one or more equipment the control

unit will send an indication to the computer indicating the different equipment locations

with problems.

These are the main specification for SECNET. In the following chapters its design

is explained in detail.

9

Chapter III. Integrated Services Digital Network (ISDN).

3.1 Introduction

The public telephone and the telecommunication networks have gone through

revolutionary changes in recent years. These changes have been driven by two

fundamental factors: the broadening nature of user requirements and the technological

changes that came about due to evolution in the microelectronics industry.

User requirements have increased from communications where only voice

transmission was desired to include communication of text, graphics, facsimile, audio,

and video. Commercial and residential users depend more and more on functions such as

document transmission, data storage and retrieval, electronic mail, teleconferencing, and

computer aided design. Along with these requirements, the use of all available

communication options must be very flexible, simple and efficient, allowing higher levels

of integration and standardization.

Advances in the microelectronics industry have made possible the digitization of

the telecommunications. Moreover, contemporary high speed digital circuits make

possible very high speed communications, very low noise in the transmission lines, less

equipment required to perform the communication, and more efficient use of the

bandwidth allocated for communications.

ISDN is a set of services provided by means of a limited set of standardized

interfaces [4][5]. It supports services such as voice and data transmissions, using

multipurpose user-to-network interfaces.

10

3.2 Evolution of ISDN.

A communication network has two main elements: transmission facilities and

switching facilities. The former allows the transmission of signals between two locations.

The latter links transmission facilities into a logical and well-structured network [5].

The telephone network was designed and developed based on analog devices.

Analog transmission technology has been constantly expanded since 1900 to 1980. Bell

Communication Laboratories (Bell core) developed technologies like the analog carrier

[5] to allow many different voice channels to be transmitted on the same pair of wires.

This is accomplished by modulating each channel onto different frequencies. This

technique is called Frequency Division Multiplexing (FDM). The simplest of these is a

group of 12 channels, providing 48 kHz of bandwidth each. These systems made long

distance telephony affordable and popular [5]. However, the big drawback in this

approach is that it tends to get noisier with increasing distance [5]. This is a problem very

difficult to solve, because of the own nature of analog signal transmission.

The analog signal has to be refreshed after traveling a fixed distance. Every

component involved in the communication link introduces noise into the connection,

which also proportionally increases with the distance because more equipment is needed

to form the link.

The last three decades have been very important in the evolution of

telecommunications and public telephone networks. The development of digital signal

processing and its introduction into the transmission technology took place in the

beginning of the 1960's. The first digital transmission system was born: the T 1 carrier.

II

This system originally was designed to carry voice by digitizing the voice in devices

known as digital channel banks (D) by using Pulse Code Modulation (PCM) technique.

The Tl digital transmission system (it is also called Digital System 1, DS1) split

the line into 24/8 bits channels sampling at a rate of 8000 times per second. The data bit

rate for the T1 carrier is 1544 kbps (including bits for framing), and the signaling and

control information is sent inband (data and control signal travel together). The

development of T1 initiates the process of converting traditional analog transmission into

digital transmission. The benefits of digital transmission are considerable: higher quality

and reliability. lower power consumption, and lower cost. These benefits make the

digital transmission system as the best transmission method in present days. The end of

the 1970's probably marks the end of the analog transmission era [5].

Switching systems were also designed based on analog technology, usmg the

inband signaling to carry control information to establish the calls. All telephone switches

were analog up to the 1960's, when they started to be replaced by digital units. Voice was

converted to digital streams for internal switching purposes. These systems are called

Digital Private Exchanges (PBX). They were followed by Central Office (CO) switches;

all were interconnected using T 1 transmission systems. The reasons for the changes are

that digital switching systems were cheaper to build, to install, and to maintain than

analog ones. Even though both main systems were digital, all the signaling was done in

analog fashion and inband.

ISDN is today's solution to a full and end-to-end digital network, from customer

premises to the network system. It will help to achieve a maximum operational potential

12

for both transmission and switching digital systems. At the same time ISDN brings the

potential and flexibility of the digital network to the user. ISDN integrates well circuit

switching and packet switching. Its success is the integration of voice and data into a

unique system. For many kinds of data transmission and voice applications, ISDN is the

most appropriate and economical technology [5].

3.3 Integrated Service Digital Network (ISDN) Concept.

ISDN is defined by standards. These standards allow equipment portability among

different fabricates and national Post, Telephone, and Telegraph (PTT) companies

worldwide. From the very beginning, the International Telephone and Telegraph

Consultative Committee (CCITT), more recently renamed as International

Telecommunication Union (ITU), took the important role of defining a set of

recommendations issued by different Study Groups (SG). These groups are specialized in

certain topics like architecture (SG-XVIII). signaling protocol (SG-XI), and proposed new

services (SG-1). Every four year, the ITU holds a plenary assembly where national

delegations officially approve the work done by different study groups. The ground basis

of the ITU is national standard committees. They allow many organizations, including

manufacturers and users, to have indirect access to ITU, and at the same time a direct

input to national standards [5].

ISDN basic structure is two channels with a data bit rate of 64 kbps (called Bearer

orB channels) and a single channel with a data bit rate of 16 kbps, (called the D channel).

They will be explained subsequently in this chapter.

13

ISDN integrates both circuit and packet switching. The most distinguishing

characteristic of circuit switching is that provides a fixed amount of bandwidth (either

analog or digital) for the full duration of the call. The main characteristics of data

communications is traffic bursts, which makes Circuit Switched Data (CSD) an

inefficient way to allocate bandwidth for this type of usage. On the other hand, Packet

Switched Data (PSD) offers a better solution allowing costly high speed transmission

facilities to be shared by multiple users using more bandwidth only when necessary.

Packet switching depends on the interaction of protocols. Some of the protocols

are performed by the users' applications and are known as end-to-end protocols. Other

protocols operate at between the user and the network as a whole, and require the

coordinate actions of the network nodes at both ends of the connection. They are called

edge-to-edge protocols. Still other protocols operate independently across individual links

between the users and networks, they are known as hop-by-hop protocols [5]. This

protocol architecture was developed using the Open System Interconnection (OSI) model

[6].

The OSI model was develop to coordinate the standard development of system

interconnection, while allowing existing standards to fit into the overall model. Figure

3.3.1 shows the OSI Reference Model and the name of each of its layers. These layers

perform a subset of the functions required to communicate with other systems. Each layer

provides services to the next higher layer~ at the same time, it relies on the next lower

layer to perform more elementary functions. Each layer should be independent of the

other layers in the sense that changes implemented in one layer do not require that

14

changes be made to adjacent layers. This allows a certain degree of freedom among the

different layers. This makes new models simple to operate, and at the same time, flexible

enough to accommodate existing protocols into this layered system.

Application 1·--····• Layer 7 •----··•1 Application

Presentation I· ... · Layer 6 •-- ·····I Presentation

Session I· Layer 5 • .. · · · ·•I Session

Transport I·--· Layer 4 • ·----··l Transport

Network J Layer 3 •------·1 Network

Data Link , Layer 2 , Data Link

Physical

Physical Interconnection

Logical Interconnection

Physical

...............

Figure 3.3.1 Open System Interconnection (OSI) model [6].

15

The layers as represented in Figure 3.3.1 are [7]:

• Layer 7: The Application Layer. Task to be performed (for example, file transfer,

airline booking, messaging handling).

• Layer 6: The Presentation Layer. It establishes the common format used between

terminals, using common rules to representing data.

• Layer 5: The Session Layer. This defines the way in which applications running at

the two ends of the link intercommunicate, including initiation and termination of

session and coordinating their activities during the session.

• Layer 4: The Transport Layer. It is the terminal-to-terminal layer. Data may be

carried across the networks using different forms of Layer I, 2 and 3 (i.e., via

Local Area Network, LAN, and ISDN).

• Layer 3: The Network Layer. This ensures that messages are routed to the

appropriate destinations, and provides a mechanism to ensure correct control and

acknowledgment of messages.

• Layer 2: The Link Layer. It provides the discipline for assembling digits, error

correction and detection by using frames. The format used in this layer is derived

from a standard known as the High Level Data Link Control (HDLC).

• Layer 1: The Physical Layer: This defines the characteristics of the signal to be

transferred over the physical media. It covers such things as pulse amplitude, line

coding, transmission rates, connectors and anything else needed to transfer digits

satisfactorily.

16

The lower three layers are called network service layers. These layers are defined

in two planes: the control plane and the user plane. The latter uses service-specific

protocols. The former is where ISDN signaling takes place [5]. As a network, ISDN is not

concerned with layers four to seven. Layer 1 (the Physical Layer) is defined in

recommendation 1.430 and 1.431. These recommendations specify the physical interface

for both basic and primary accesses, and, since the B and D channels are multiplexed over

the same interface, these standards apply to both types of channels. The protocol structure

differs for the two channels in layers 2 and 3. Table 3.3.1 shows the protocol structure

and its relationship with the OSI model. A new data link layer standard, Link Access

Protocol D channel (LAPD) has been defined. This protocol is based on an HDLC

modified protocol to meet the ISDN requirements.

Table 3.3.1 ISDN Protocol Architecture (User-Network Interface Control Plane) [5][6].

Transmission on channel D is as LAPD frames exchanged between subscriber

equipment and an ISDN switching element. These applications are supported (as shown

in Table 3.3.1): control-signaling, packet switching, and telemetry [6]. Moreover, new

standards have been defined to accommodate protocols used for Frame Relay (changing

its name to LAPF).

17

For control signaling, a call control protocol has been defined: the I.45l/Q.93l.

This protocol is used to establish, maintain, and terminate connections on the B channels.

This is an advance with respect to normal telephone lines communications. The call

control for the communication is not any longer inband; in ISDN is out of band. For

packet switching services, the X.25 level 3 protocol is used to establish virtual circuits on

the D channel to other users, and to exchange packetized data [6].

B channels can be used for circuit switching, semipermanent circuits and packet

switching. In the case of circuit switching, a circuit is set up on demand on a B channel

using the D channel to control the whole process. A semipermanent circuit is a B channel

circuit that is set up by prior agreement between connected users in the network; it is the

equivalent of dedicated lines in an analog environment. Both connections provide a

transparent data path between end systems.

A packet-switched connection is set up on a B-channel between the user and a

packet-switched node using also the call control protocol provided by the D channel. It

uses X.25 protocol (layers 2 and 3) to establish the virtual circuit. Also as an alternative,

ITU has recently defined frame relay services to be used on the B channels.

The usual diagram for describing these sets of protocols is shown in Figure 3.3.2.

The two layer stacks used in the figure are the user plane, which match with the OSI

model, and the control plane that is used for signaling. These two planes are the

difference that differentiates the ISDN network from the general OSI model, although

both planes follows the general objectives of the model. User information is carried

through each layer, only changing its physical form (Layer 1) at intermediate points such

18

as NTl or local exchanges. The signaling has only three defined layers 2 and 3, which are

terminated in the exchange. They carry on the signaling to establish the communication,

to make possible user-to-user applications.

TE

USER

7

6

5

4

3

2

1

NTI EXCHANGE NTl

- -

r-- - ,---

Figure 3.3.2 User and control planes used in ISDN [4][6].

19

TE

USER

7

6

5

4

3

2

1

3.4 ISDN Transmission Structure and Interface.

The selection of the rates at which the information is carried across the user

network interface is influenced by four important rate considerations [4]:

• Present and future end-user applications needs.

• Channel capacity and limitations imposed by the subscriber-access network and

the digital transmission systems.

• Available transmission rates on the interchange network circuits.

• Cost and complexity of the interface.

The existing infrastructure of twisted pairs in the local-access plant is the most

important communication access media that users have to access the network. Twisted

pairs would be the main access media for ISDN for some time. Modem digital

transmission technology allows twisted pairs to support data rates of up to several

hundred of kbps, over distances of I 0 miles, without repeating. Larger data rates usually

require repeating every I to 2 miles. Broadband can only be achieved over higher

bandwidth media such as fiber optic cables.

The main limitations on data rates in the interchange network are the result of a

standard developed by the European Conference of Posts and Telecommunications

Administrations (CEPT), ITU, and the American Telephone & Telegraph (AT&T) [4].

The basic rate is specified as multiples of 64 kbps; however, from this point up

there are big differences. In North America, the existing multiplex structure is based on

the primary multiplex format DS 1 (Tl). It combines 24 channels (at 64 kbps each)

together with certain control information into a first-level multiplex arrangement

20

operating at transmission rates of 1.544 Mbps. On the other hand~ CEPT standards are

based on a multiplex arrangement of 32 channels (at 64 kbps each) for the first level

transmission rate of 2.048 Mbps or multiplex format El.

The channel structure is the total information carrying capacity of the interface. It

is a constant value but depends on whether the interface supports basic, primary, or

broadband access.

These channel structures are divided into one or more component channels, each

with a specified data rate for independent portions of the total capacity. The entire

channel is then transmitted synchronously over a single physical medium across the S, T

or U references points. Figure 3.4.1 represents the ISDN user-to-network interface.

From figure 3.4.1, the reference points are defined as separate functional groups,

and each of the boxes represents an arrangement of physical. Network Termination I

(NT 1) is the equipment that includes functions related to OSI layer 1. Network

Termination 2 or NT2 is an intelligent device that includes OSI layers 2 and 3. It can

perform switching and concentration functions (among them a digital PBX), a terminal

controller or, Local Area Network (LAN) devices. The NT2/NT1 is equipment that can

perform OSI functions for layer 1, 2 and 3. Terminal Equipment (TEl) refers to

equipment that supports standard ISDN interface. The Terminal Adapter (T A) is a device

that interfaces with non-ISDN equipment with the ISDN interface. Terminal Equipment 2

(TE2) are equipment that can not interface directly with the ISDN interface[5].

International standard ISDN is based upon 64 kbps circuit-switched channels that

for a foreseeable future will be a standard for telephone purposes. Analogue signals are

21

band limited to 3.4 kHz and sampled at 8000 times per second. This sampling rate arises

from the process related to sideband frequencies. These frequencies are integer multiples

of 8 kHz. If the sampling rate is less than twice the bandwidth of the analogue signal, then

the sideband will overlap (known as "aliasing") and subsequent decoding is no longer

possible (Nyquist's Theorem). The amplitude samples are then measured and encoded

into a binary number. The precision of the encoding process depends on the number of

bits in that binary number. Empirically, it was found that to give an adequate speech

quality 12 bits were needed in this encoding process. That is ±2048 levels that could be

identified by 212 values or 12 bits. A non-linear compression function is introduced to

translate the 12-bits code into an 8-bit code. Figure 3.4.2 shows diagrammatically how

the uncompressed code could be mapped on to a compressed code for both polarities of

signal.

R s T

TEl • NT2 • NTI

TE2 ~1-.·--~~T_A __ ~--··--~ NT2 ~ I NTI
Rate System Terminal

TEl I F~--N_T_2_1N_T_l___,J
TE2 I -·-~~_T_A__.

srr
NTI: Network Termination I
NT2: Network Termination 2
TA: Terminal Adaptor

TEl: Terminal Equipment I
TE2: Terminal Equipment 2

u

•
User

Figure 3.4.1 ISDN reference points and functional groups [6].

22

Problems arise for very low level signals, as the logarithm of very small numbers

becomes negative. Somehow the compression law has to be forced to pass through the

coordinates origin. There are two solutions for these problems. In North America, the two

logarithmic curves were displaced towards the central vertical axis giving a transfer

function of the form y oc: (1+ f..L·x). This is known as "J..l-Law." In Europe, a line was

drawn tangentially to the two curves and hence, by symmetry, it passes through the origin.

This curve is of the form y oc: (1 + A · x) on the center part of the range, and y oc: A · x at

the extremes of the range. This is known as "A-Law." These two compression laws is one

of the main differences in the standard for ISDN.

By the above explained laws, Pulse Code Modulation (PCM) standards were

chosen so that the transmission system could be embedded anywhere in an analog

network. In ISDN, speech encoding and decoding are always performed at the user's TE,

and the only level of variation is because of speaker differences, not network differences.

Component channels are integrated into a synchronous channel structure. This is

accomplished using Synchronous Time Division Multiplexing (S-TDM). The channel

structure consists of a periodic and continuous sequence of frames separated by framing

channels and synchronously transmitted across the S, T and U interface points. A

component channel is the result of permanent assignment of one or more specific, not

necessary contiguous, time slots in every frame. The resulting capacity is then determined

by: duration of the frame and time slot, number of data bits carried in a time slot, and the

number of time slots [4].

23

Logarithmic curve

/
I I

I

I

J.l -Law A -Law

Figure 3.4.2. Logarithmic compression laws.

A typical frame has a duration of 125 J.LS divided into 32 times slots and carrying

256 bits of information. It yields a component channel capacity of m*64 kbps if m time

slots are assigned to the channel. Typical values of m are 1, 6, 24 and 32. If m = 1, the

channel is called a bearer channel, or B channel, that carries 64 kbps. It is also called

DSO.

When m = 6, the data rate is 384 kbps (or six B channels). This kind of channel is

used in specific applications, such as high resolution digital video and audio, for the

distribution of television, teleconferencing, and surveillance, high speed file transfer, high

resolution graphics and fast facsimile. This channel is also known as HO.

24

For m = 24, the channel is formed by 24 channels at 64 kbps plus 8 kbps of framing. That

gives a 1.544 Mbps, which is called a DS 1 or Tl. If m = 32, the data rate is then 2.048

Mbps, called El, which is the European standard. The latter two channels are considered

Primary Rate Interface (PRI) in ISDN.

There is one more channel to mention: the D channel. The D channel can be found

in the PRI frame where one of the 24 (DS 1) or the 32 (E 1) channels, is so designated.

This channel is dedicated to control and signaling, and its data bit rate is 64 kbps. Also, it

can be found in the Basic Rate Interface (BRI). It has a transfer rate of 16 kbps and is

dedicated to control and signaling as well as packet-switched data transfers [4]. PRI and

Broadband ISDN are beyond of the scope of this thesis.

The basic access channel structure is known as BRI. It consists of two 64 kbps B

channels and one 16 kbps D channel. The aggregate data rate is 144 kbps. However,

framing, synchronization, and other overhead brings the bit rate on the basic link to a total

of 192 kbps. The B channels can be used either simultaneously in the same connection or

independently on two connections. The former is achieved in two ways: Bonding or

Point-to-Point Protocol (PPP). Bonding synchronizes both channels when a called is

placed from the beginning of the call until the end. PPP uses the B channels on demand,

and it is becoming the most used nowadays. Call control for both B channels is

transmitted on the logically separate D channel. This creates an out-of-band signaling

arrangement that allows the entire capacity of the B channels to be used for transmission

of user information. Besides this, the D channel can be used to transmit low speed data

25

and control information between users. Figure 3.4.3 represents a BRI channel structure

showing the 2B + D channels.

When out-of-band signaling is supported by separate and independent protocols,

other protocols are implemented for connection control, network management, and user-

to-user signaling. They may be defined with the evolution of the ISDN capabilities. They

also can be designed to be highly flexible and sophisticated, to support and provide

detailed call progress information, and other specialized connection-related services. In

addition, they also support sophisticated network management capabilities during the life

of the connection without interrupting the user transfer process.

Information: { B
Voice and Data

8

Signaling; { D
Telemetry, Packets

Overhead
48 kbps

Sff Interface
\~---:~~ -

Basic Rate Interfac
(BRI)

192 kbps

2B+D

Figure 3.4.3 ISDN channel structure in the S and T interface points.

The BRI frame structure is represented in Figure 3.4.4. These are recurring frames

of 48 bits with each frame being transmitted synchronously in 250 Jl.S for an effective

transmission rate of 4000 frames per second or 192 kbps. As previously stated, there is

144 kbps that corresponds to the two B channels and the D channel, the remaining 48

kbps arc dedicated to layer 1 peer-to-peer protocol overhead and control information.

26

These frame structures are the same for point-to-point and for multipoint transmission.

However they differ depending on the direction of transmission.

These 10 groups are individually DC balanced by appending to each group an L

bit. Its logical value is chosen in such a way as to create a line signal with a zero average

voltage over the balanced group. This is required by the fact that the transmit and receive

circuits are transformer coupled to transmitters and receivers. F and FA are used to

provide frame synchronization, so that data contained in the frame may be properly

demultiplexed at the receiver end. The activation and deactivation sequences from the

network to the user are indicated by bit A.

NT toTE

~ TEtoNT

time

48 bits in 250 microseconds

F =Framing Bit B I =Eight Bits of Channel B I
L =D.C. Balancing B2 =Eight Bits of Channel B2
D = D-Channel Bit A= Bit Used for Activation
E = Echo D-Channel Bit S = Use of this Bit for Further Study
FK Auxiliary Framing Bit M = Multiframing Bit

N =Bit Set to Binary Value N =FA (NT toTE)

Figure 3.4.4 BRI frame structure at references points S and T [5][7].

1

Although the simplest way to transmit binary digits is to represent the "1" and "0"

by two voltage levels, for linear transmission this process is rarely used for two main

reasons:

27

• Maintenance Balance: By connecting a high-pass filter at the input and output of

the generators, it allows power feeding along the same pair and separated from the

signal. The high pass filter is a transformer, which also gives protection against

power surges. If long strings of signals of the same polarity are transmitted then

after passing through the high pass filter, they will be severely distorted. The

simplest way of balancing the signal is transmit the logic 0 as OV, and the logic

one as alternately a positive and a negative signal as shown in Figure 3.4.5. This is

known as bipolar pseudoternary or Alternate Mark Inversion (AMI). A modified

way to send it is reversing the signal voltage levels by making the logical one as

OV and the logical zero as alternately positive and negative signals known as

Modified AMI (MAMI). This technique is used mainly in the Sff reference points

interface.

0 0 0 0

+V

-V

Figure 3.4.5. Modified AMI code for bit sequence 01100110.

Timing extraction: The regeneration process always involves retiming the

signals and this is done by averaging the transitions over a considerable period,

then using the extracted clock to retime subsequent pulses. AMI line code does

not ensure this, in the case of a long string of zeros. In Europe, the modified code

28

is called High Density Bipolar 3 (HDB3). In North America, the modification of

the AMI is called Bipolar with 8 Zeros Substitution (B8ZS). Both techniques are

mainly used in PRI, although MAMI is also used in the Sff reference point for

BRI.

The general frame structure for Layer 2 is shown in Figure 3.4.6. The frame has an

integral number of octets. which are transmitted in an increasing order from top to

bottom. Within each octet the bits are labeled from l to 8. Every frame contains at least

I

Openning Flag

Address Octect I

Address Octect 2

Control Octect I

Control Octect 2

Information, Supervisory or Unnumbered

i
I

1
Frame Check Secuence Octect I

Frame Check Secuence Octect 2

Closing Flag

Figure 3.4.6 Layer 2 octets transmission.

29

T

R

A

N

s
M

s

s

0

N

five fields labeled: opening flag, address, control, frame check sequence (built in error

correction and detection) and closing flag.

The first and last octets are unique markers to delimit the beginning and the end of

the frame and they are symmetric bit patterns. They are the binary string 01111110

(Hexadecimal: Ox7F). The second and third octets are represented in Figure 3.4.7.

8 I 7 I 6 I s I 4 I 3 2 X
·-

§AJP>I CIR IEAO

TIETI lEAl

§AJPITI: §ervnce Access JPlom~ Iden~illfier
TIEl : TellllllllinmlllEqwpment Tidenttifieir
CIR : ColrllmW.lllld!Respoooe lblit
lEAO : lExte:nded Address 0
lEA X : Extended AddJress]

Figure 3.4.7 Data link connection identifier octets [5].

They are the address fields that contain the Data Link Connection Identifier

(DLCI). The DLCl is an identifier for a particular connection on which the frame is

transmitted. The format of this field is shown in figure 3.4.7.

The second octet is the Service Access Point Identifier (SAPI) and the third octet

contains the Terminal Equipment Identifier (TEl). The former refers to the peer data link

layer identities that processes the data link layer frames. The latter is associated with the

user's side of the network interface. It identifies a particular endpoint of connection

within the TE for a point-to-point connection, or a group of endpoints within the same TE

or different TE for a broadcast connection.

30

The U reference point is where the North American and European ISDN systems

differ. In Europe, this point is defined to be as part of the PTT, while in North America

this point is still part of the user interface. Its primary task for the BRI is the independent

full duplex transmission across the U interface. User information, control information,

and user-to-user signaling flow through this interface. All of this information is sent over

the 2B+D channel structure. The data bit rate at this reference point is reduced to 160

kbps over a metallic twisted pair of wires. Digital transmission requires modulation of the

information on to a suitable electrical signal. This is done to reduced crosstalk generated

by the corresponding line signal and, also to narrow the power spectral density. ISDN

uses 2 Binary 1 Quaternary (2B I Q) line code, which then reduces the data bit rate to 80

kbps. This code was initially proposed by the British Telecom Research Laboratories [8].

It associates pairs of binary digits with a single pulse chosen from four voltage levels. The

pulses are known as quats, and they are symbolically represented by the alphabet: +3, +1,

-1, -3. Figure 3.4.8. shows an example of this line coding for a sequence of bits.

+3 n

-1 LJ·
+1

-3

~::ts 1 01 1 oo 1 01
1

10 1 01 1 oo 110 1 01 1 01 1 01 1 01 1 01 1 01 1

Figure 3 .4.8 The 2B 1 Q code representation for letters: FlU.

Direct Current (DC) balance is achieved through scrambling of he raw bits. It

requires the receivers to distinguish among four voltages. The line signaling rate of 160

31

kbps provides 16 kbps for timing and maintenance (28 + ID = 144 kbps), in addition to

multiplexing the 2B+D channel structure. Bell Communication Labs (Bell core) defined

this technique. It reflects the telephone company perspective. The Central Office (CO)

could poll the NT 1 for maintenance, put it into loopback mode, and perform testing

functions. This standard is defined in the ANSI standard T 1.601, and is used in the major

deployments in North America. After applying the 2B 1 Q line coding format to the 160

kbps, it is reduced to 80 kbps.

Full duplex operation is required in digital loop transmission systems over a

single twisted pair of wires. However, due to the complicated characteristic impedance of

the cable, the transmitted signal is heavily distorted. The locally transmitted signal

seriously interferes with the received signal. Methods are required to remove the local

echo (and any other form impedance mismatch induced distortion from the received

signal.

Three methods were developed. They are [7]:

• Frequency Division Duplex (FDD): The transmitter and the receiver operate at

two different frequencies. It provides good tolerance to Near End CrossTalking

(NECT); however, the tolerance to Far End CrossTalking (FECT), and noise in

general is degraded because upper frequency channel suffers more attenuation.

• Time Division Duplex (TDD) or Time-Compression Multiplexing (TCM), also

known as "burst-mode" or "ping-pong." Data are transmitted in one direction at

the time, with transmission alternating between the two directions. It is very

simple to realize; however, in order to accommodate full duplex transmission, the

32

bit rate during a burst is at least twice the required continuous rate; therefore,

tolerance to crosstalk and noise is degraded. On shorter connections this mode

offers a simple and effective means of duplex transmission.

Error
Signal

Figure 3.4.9. Echo cancellation [6].

• Echo Cancellation: This technique is known as adaptive hybrid technique and is

represented in Figure 3.4.9. It removes the disadvantages of the above techniques.

It involves adaptively forming a replica at the input of the receiver. The signals as

shown in Figure 3.4.9. They can occupy the same frequency band and are

continuous; therefore, the disadvantages of the previous techniques are avoided. It

requires a more complex hardware implementation. However, modem Very Large

Scale Integration (VLSI) technology enables this complexity to be realized at

acceptable cost. At present, this technique offers the best solution t subscriber

loops with longer reach (up to 18,000 feet). It is implemented in integrated circuits

that perform Layer 1 functions, plus added digital signal processors which take

care of the linear and non-linear echo cancellation.

33

3.5 ISDN Communications at FlU.

Basic rate access is intended to be the equivalent in ISDN terms, to simple

telephone access, in analog terms. The connection of a multiplicity of analogue terminals

(i.e., telephones, modems) is achieved by simply connecting them in parallel. The

requirement for the ISDN interface is also to be able to simply connect terminals in

parallel with the additional feature that terminals may be individually addressed by type

or other identifier.

The two-wire transmission line from the local network is terminated by NT l.

Although this NTI is located on the customer's premises, it is on the network side of the

ITU defined user-to-network interface and hence the responsibility of the network

operator. The exception to this rule is in North America, where the user-to-network

interface is the network side of the NTI. Figure 3.5.1 shows a representation of the

network point -to-multipoint configuration.

I ~+ ' --------------1 NTI ~-
'----- J~. 1~1. ~~ · 2-wire to Network

4-wires S!f Bus U Interface

TE

2
I TE

i

~ 9 J
! I l

I

...

8 TE

Figure 3.5.1 Point-to-multipoint configuration.

34

The NTl converts from a two wire network to a four wire bus consisting in a

transmit and receive pairs often known as Sff bus. This bus is designed to operate over a

normal twisted pair internal cable as it may be provided for analog purposes. The only

major difference is the type of connector used, which is an RJ-45 connector. This

connector is an 8-pin connector defined in ISO specification 8877.

The mode of operations are:

• Point-to-Point Mode: Only one TE is connected at the end of up to a maximum of

one km of cable. The actual limit is an attenuation of 96 dB at 96 kHz.

• Multipoint-to-Point: Up to eight terminals can be connected in parallel anywhere

along the bus; however, the bus length is now limited to about 200 m by timing

constraints. The terminal represents a high impedance (2500 Q) on both the

terminal and the NTI allowing that the bus not be loaded, and the bus is

terminated by 100 n resistors.

Over this bus passes the two transparent 64 kbps B channels and the 16 kbps D

channel. However, all terminals have access to the D channel by the use of an access

procedure. Each B channel is allocated to a particular terminal at the time of call set-up

and is not capable of being shared among the terminals.

The power feed is provided across the user-network interface, to provide a basic

telephone service, should there be a local mains failure. Figure 3.5.2. shows the physical

arrangement of the power feed. The basic four-wire bus consists of two twisted pairs. A

power source is available within the NTI which can supply, via the centered tapped

35

transformer (known as phantom feed) a nominal voltage of 40 V, with up to 1 W of

power.

The power under these nominal arrangements will probably be derived at the NTl

from a local main source. Under main failure condition, the power will be limited to 420

mW. To indicate this state to the terminals the polarity will be reversed. In this case, the

power will be derived from the network. It is only intended to power a single digital

telephone for emergency use. Two additional pairs are allocated for alternative power

feeding arrangements, but it is not clear the extent to which these will be used.

Power
Source

3

Power
Sink

1

Power
Sink

2

Connector

------J- ·> >·.................. ~-.
.. ----2 -) >·.................. ~- .

3 c

a+
b-_-
C-l

Tx Rx

d
e+

f-
g 7 -g

1--__;;h ~ ~ ~ ~ ~ ~ 8. ~;~·-·_·_·_·_·_·_·_·_·_·_·_·_·_~~~---_ -_-_·_·_·_· +h

Power
Source

1

Power
Source

2

Figure 3.5.2. Physical Arrangement for power feeding for twisted pair [7].

36

The Electrical and Computer Engineering Department at Florida International

University (FIU), together with Southern Bell and Northern Telecom, created a laboratory

which has 5 ISDN lines to perform research and development of ISDN applications. The

lines are configured as point-to-multipoint configuration. Figure 3.5.3. shows a

configuration that is implemented today in the Lab. This configuration could be a typical

configuration in either a commercial or a residential environment and it is the one that is

going to be used for SECNET.

D_
- I olo:

ISDN CO

Figure 3.5.3. ISDN general line configuration at FlU.

The B channels have the Service Profile IDentifier (SPID) numbers. These

numbers are assigned by the Telephone Company (TELCO). and the SPID is the one that

identify the user's equipment during reset or power up. It is essentially a primary

Directory Number (ON); however, it is also formed by the following sequence of

numbers: [Prefix] Area Code - Phone Number [Suffix Numbers]. These numbers are

explained in Table 3.5.1.

The computer is connected to the ADTRAN's Terminal Adapter through the

serial port, and the latter is connected directly to the U interface.

37

Table 3.5.1 SPID definition for AT&T and Nortel.

This T A i capable of perform bonding to increase the transmission data bit rate

up to 128 kbps. Using this configuration as a reference, each computer can simulate a

different room or building. With thi s configuration, the possibilities of SECNET can be

evaluated and tested .

38

Chapter IV. System Hardware.

4.1 Introduction

Computers manipulate information as commands and data. Both are represented as

binary numbers. When information flows inside the computer all the bits go in different

lines (depending on the data bus, 8, 16, 32, or more bits). The problem starts when it is

necessary for the process to access external peripherals. The same information has to go

through a physical medium, electrical wires to external peripherals and back to guarantee

full duplex communication.

If the transmission of bytes is performed along eight wires, it is referred as parallel

communication (e.g., printers use this mode). All eight bits are sent simultaneously, either

from or to a peripheral device and a computer. Data transfer is accomplished at very high

speeds. This method is a very efficient way to send information [8] to external peripherals.

Its main disadvantage is that eight wires have to be connected between the computer and the

peripherals, which is very impractical when the transmission process is between two

devices separated for a long distance.

A second kind of transmission is known as serial communication. For this type of

communication only two wires are needed to connect the computer and the peripheral. This

arrangement allows to transmit one bit (out of eight) at a time. Although this

communication method is neither fast nor efficient, it is much more cost effective for long

distances than the parallel communication. Thus, it is the preferred way to communicate

among computers.

39

To avoid overloading the computers • microprocessor with the serial communication

process, some specialized integrated circuits were developed. Among them is, the National

Semiconductor® INS8250, which is the standard universal asynchronous receiver

transmitter (UART) in modem microcomputers [8]. This Serial Communication Interface

(SCI) was created to transmit information at data bit rate up to 19200 bits per second (bps).

By the time computers grew more powerful and the necessity of transmitting megabytes of

information, this UART was made, more sophisticated. Nowadays it can handle up to 115.2

kbps, and has internal buffers for transmission and reception that allow the communication

process to be more effective.

The UART is in charge of all the serial communication processes usmg the

computer's serial ports. However, to make different computer models compatible with each

other when transmitting information through that port, an interface standard was developed.

The Electronic Industries Association (EIA) was in charge of the development of this

standard. Its title is .. Interface Between Data Terminal Equipment (DTE) and Data

Communication Equipment (DCE) Employing Serial Binary Data Interchange"; it is better

known as Recommended Standard Number 232 revision C, or RS-232C [9]. The ITU also

developed a similar standard and named V.24 and V.28 (electrical specifications)[9].

These standards define the mechanical, electrical and, and functional characteristics for the

serial communication interface for the DTE and DCE equipment. It also includes a small

subset of the functional characteristics for special equipment [9]. This allows users and

communication equipment manufacturers to interact to make a more general interface.

40

SECNET system bases its operation on serial communication between their units

using the RS-232C standard. Moreover, it also communicates with the Terminal Adapter

(T A) device using the same standard. This communication link makes it possible for the

computer accessing the ISDN lines to achieve connection to the main security office.

4.2 Serial Communication: The RS-232C Interface.

The RS-232C interface has been developed to define four main characteristics:

mechanical, electrical, functional, and procedural. They specify the accurate nature of the

interface between the Data Terminal Equipment (DTE, e.g., computers) and the Data

Communication Equipment (DCE, e.g., modems) [10].

14- Secondary Transmit Data
15 - Transmit Clock
16- Secondary Received Data
17- Receiver Clock
18- Unnasigned
19 - Secondary Request To Sen
20- Data Terminal Ready
21 - Signal Quality Detector
22 - Ring Indicator
23 - Data Rate Select
24 - External Clock
25- Unassigned

$-
oO
oo
oO
oo

_j oo u

oo
oO
oO
oo
oo
oo

~

1 -Protective Ground
2 - Transmitted Data
3 - Received Data
4- Request To Send
5 - Clear To Send
6 - Data Set Ready
7- Signal Ground
8- Data Carrier Detect
9- Reserved
10 - Reserved
11 -Unassigned
12 - Secondary Data Carrier Detect
13 - Secondary Clear To Send

Figure 4.2.1 Typical DB-25 RS-232C connector [10].

This standard defines a 25-pin connector with a specific arrangement of leads,

Figure 4.2. 1 shows the physical pin connection for the (DB-25). This is the original RS-232

standard. For microcomputers, this interface is more commonly implemented using a subset

of this standard in the IBM AT -class machines; it is a 9-pin connector that implements only

41

the most important functions of the interface. At first sight, this subset does not seem

appropriate; however, from the programmer's point of view, it is good enough to carry out

effective communications programming [8]. Table 4.2.1 represents the serial interface for

an ffiM AT microcomputer; it also shows the characteristics of the signal that each pin

represents. Six signals are used to control the communication process between the DCE and

the DTE. They are Data Carrier Detect (DCD), Data Terminal Ready (DTR), Data Set

Ready (DSR), Request to Send (RTS), Clear To Send (CTS), and Ring Indicator (RI). Some

of these signals are sent by the DTE and others by the DCE.

DCE asserts RI when ring is detected *
* Asserted to logic state 1.

Table 4.2.1 . The ffiM-AT, DB-9 nine-pin, connector for the RS-232C Serial Interface [10].

The standard line parameters are the impedance, the maximum length of the cable to

connect both DTE and DCE, the control procedure to send information, the bit transfer rate,

and other attributes. It does not specify either the format or the content of the data being

transferred [I 0]. Figure 4.2.2 shows the connection of the serial interface between the DTE

and the DCE. The transfer of information among them is done by what is called

"handshaking."

42

The DCE indicates to the DTE that certain operation has to be performed by

asserting a logic state 1 in the appropriate line. The same operation occurs from the DTE to

DCE. These signals will allow different equipment to determine when the other one is ready

to receive or transmit charter through the transmitter and receiver lines, creating what is

called hardware flow control..

DTE DCE

TD TD , ...

RD .. _.. RD , ...

RTS .. RTS ..
CTS L.. CTS

DSR ... DSR I""

SG SG
DCD ... DCD

DTR ... DTR ...
RI L.. RI I""

Figure 4.2.2 RS-232 C interface connection between DTE and DCE.

DTE DCE

time

Figure 4.2.3 Handshaking process triggered by the DTE to start transmission.

43

Handshaking between the DTE and the DCE may have the following sequence,

which is represented in Figure 4.2.3:

1. DTE asserts DTR to indicate that is active a ready to transmit.

2. DCE responds by asserting the DSR line, indicating that it also IS ready for

transmission.

3. DTE asserts the RTS line to indicate that is ready to start the transmission.

4. DCE answers by asserting the CTS line, indicating that it is ready to receive data.

5. Data transmission starts on the TD and RD lines.

6. DTE drops DTR to disconnect.

As it was previously stated, the format and content of the data being transmitted are

not specified by the standard; however, both must be defined in serial communications. In a

serial interface, data are transmitted one bit at a time. This transfer must have a way to be

synchronized between the DTE and the DCE [8], and both devices have to agree upon

them.

The first parameter to be defined is the bit transfer rate [11] expressed in bits per

second (bps); the rest of the parameters are start bit, data bits, parity bits and stop bits. All

parameters together specify the format of the data sent through the serial port [11], and the

data bits themselves specify the data content. They together form the serial frame that the

serial port sends for each character. The usage of each bit is explained below.

Start Bit: When a serial device is not transmitting, it asserts (sets the line to logic

"1 ") the transmission line (TO). To start the transmission of a character, the transmitting

serial device sends a start bit. This bit is a logical 0 and it last one fraction of the data

44

transfer rate time = (d b
1
.). The DCE is able to synchronize with the DTE by

ata 1t rate

simply waiting for a change in the TD line from logical 1 to logical 0. Then, it halts for half

a bit time, and then starts sampling the incoming data.

Data Bit: There are five to eight data bits. In the initial times of serial

communications, all the data transfer was performed using the upper case part of the

alphabet; also, cumulative timing error is smaller for Jesser number of bits than for larger.

However, since the computer equipment is byte-oriented, the natural way to handle data is

in an eight bit fashion. The American National Standard Institute (ANSO created the

American Standard Code for Information Interchange or ASCII (ANSI Standard X.3.4-

1977), intended to be primarily a "human readable code" [11], (Alphabet No.5 of the ITU).

ASCII is a seven-bit code, and the Extended ASCII is an eight bit code. The character code

used in this thesis is the extended ASCII code with eight bits per character.

Parity: Parity is a rather ineffective and coarse form of error detection. There are five

basic forms of parity: None, Even, Odd, Mark, and Space. A common setting is None (no-

parity bit) when eight-bit of data are transmitted. Moreover, there are other better forms of

error detection that improve the error detection and correction in serial communications.

Stop Bit: This bit signifies the end of the frame. It can be one, one and a half, and

two bits. The transmitting device always sends a logical "1" for the stop bit. It also asserts

the TD line.

All these bits together form the frame format for a data item that the serial port

sends to the RS-232C interface. This frame format is shown in figure 4.2.4. This figure

45

represents the actual frame for number 6 (ASCII code Ox36 Hex). It has the start bit, eight

data bits, and the stop bit, no parity bit.

Start Bit Data Bits Stop Bit
..

... Data Frame ..
~

Figure 4.2.4 Frame format for ASCll code Ox36 Hex (number 6) for serial
transmission.

Asynchronous transmission uses what is called character or word synchronization.

A character is sent one bit at the time. This transmission uses a start and a stop bit, making

it simple, cheap, and with modest time requirements. The receiver samples each bit at 50%

of its time. If the receiver rate is in error by 5% (either slower or faster than the transmitter),

the eighth bit of information will be displaced by a 45%; however, it is still correctly

recovered. It has a 22% of overhead because the addition of the extra bits: one start, and 1

stop bits. Table 4.2.2 shows Circuit Switched Data (CSD), and Packet Switched Data (PSD)

data bit rates.

Parit
None
None

Table 4.2.2. Data format to setup the computer's communication ports.

This format is selected for this work because it is simple, cheap, and has small

overhead, as it has at least one fewer bit than the other formats (the parity bit). The parity

bit, although important for error recovery, it is not necessary. In first place, other kinds of

46

error recovery methods are used; in second place, Integrated Services Digital Network

(ISDN) has a built in error correction and detection.

All of these parameters defined in the RS-232C standard are considered the physical

layer protocol, which is the first layer of the Open-System Interconnection (Osn reference

model. This model is a very important concept applied to data communication because it

serves as a framework for the development of each communication protocol standard in the

latest years [12]. All communication equipment manufacturers should build their equipment

following the recommendations of the OSI, which will guarantee that the equipment will be

able to communicate with equipment made by other manufacturers.

The serial communications may take place in four connections:

• Simplex: Communication in only one direction.

• Half-duplex: Communication is performed in both directions, one direction at a

time.

• Full-duplex: Communication is performed in both directions, at the same time.

• Multiplex: This connection allows multiple serial communication channels to occur

over the same serial communication line.

The serial communication parameters defined by the RS-232C standard are

implemented in a piece of hardware so that the DTE can communicate with the DCE using

the physical layer. This piece of hardware should free the microprocessor of all the burden

that the serial communication protocol represents to it. This is done (as stated before) by the

SCI's, especially the INS8250 family. It is the most commonly used communication

integrated circuit in DTE equipment. In, accord with the OSI model (Figure 3.3.1), this

47

device operates in Layer 1 or the Physical Layer. The way that the upper layers

communicate with this device is through software. The present thesis follows the OSI

model by defining the low level functions implemented in the software part as the layer I of

the cited model. These functions are in charge of the interaction between the software and

the hardware. These software functions are explained in Chapter 4. They should give the

information that is being received from the upper layers in the proper format to be used by

the UART. In order to follow the specification for the serial transmission, it is necessary to

know the functions of each of these registers.

4.3 The Universal Asynchronous Receiver Transmitter (UART).

All UART' s have different regi sters to control all their operations. These registers

can be accessed using input and output port operations. They can be read from and written

to using the microprocessor in the computer.

These connectors are known as serial ports, and named COM I, COM2, COM3, and

COM4. Each of them has an associated address that allows the microprocessor to

communicate independently with each of them. Table 4.3. 1 represents each port associated

with each particular address in a PC/ AT microcomputer.

COMl
3F8

COM3
3E8

Table 4.3. 1 Serial port base registers addresses .

The INS8250 has different registers that can be accessed using the input or output

port instructions using the parallel port . Each of these registers executes its function or

48

functions depending upon their bit functions. They can be read only (status registers), write

only (control registers), or read/write by the microprocessor.

Table 4.3.2 shows the names of the different registers, their function, and the bits

involved on each function. Also, their memory locations are addressed with respect to the

base address for COM 1, the same scheme is used for COM2. This makes easier for the

programmer to use a pointer and each register is addressed as an offset of that pointer.

Table 4.3.2.a Registers for COMl when the eighth bit of LCR register is 0, (DLAB = 0).

Each bit has associated with it a function, and its state indicates whether the function

was performed or not. From the above table, these are their meanings: int. : interrupt; i.p.:

interrupt pending; llbt: local loop-back test; f.e. : frame error; p.e.: parity error, o.e.: overrun

error, tbe: transmitters buffer empty, and rxrdy: receiver ready.

Table 4.3.2.b Registers for COM I when the eighth bit of LCR register is 1, (DLAB = 1).

49

Receiver Buffer Ready (RBR) and Transmitter Holding Register (THR): The RBR

and the THR have the same address, which is the base address of the serial ports. The RBR

registers holds the data that came through the serial port. It can be accessed by reading from

the base register. On the other hand, the THR holds the data to be sent through the serial

port. Characters to be sent are to be written to this register. To access this registers, the

Divisor Latch Access Bit (DLAB) bit 7 of the Line Control Register (LCR) must be set to 0.

Interrupt Enable Register (IER): This register enables the UART's interrupts. The

address of this register is the base register address plus one) (Ox3F9). Bit 2 is used to detect

all error conditions that could happen when a character either is being received (break

condition) or when the character has been received, parity, framing, or overrun. Each bit is

explained in Table 4.3.3.

Table 4.3.3 Control byte for the IER register.

Interrupt Identification Register: The IIR register indicates why an interrupt has

Priority
None

4

Table 4.3.4 Interrupt cause and priority.

50

occurred. Bits 2 through 0 show what interrupt occurs and the order of priority that the

interrupt has.

The two most significant bits of this registers indicate that the First-In-First-Out

(FIFO) buffers are enabled.

Modem Status Registrar CMSR): The MSR provides the current state of the RS-232-

C control lines. Each bit represents one of the lines and if set, they will generate an interrupt

(if bit 3 of the IER is set). Table 4.3.5 shows the bit description for this register.

Table 4.3.5 Modem status register Bit Set.

Baud Rate LSB and MSB Divisor Latch Registers CDLL): This register can be

accessed by setting DLAB bit. Register 0 becomes then the LSB DLL, and register

becomes the MSB DLL; the function of these two registers is to hold the data bit rate

divisor for the UART.

Table 4 .3.6 shows three of the most used data bit rates and the divisor number that

thi s registers holds. To get the proper data bit rate , the main clock frequency given to the

UART is divided by the constants, which are programmed to the device.

The value used to communicate through the serial port is going to be fixed to 38.4

kbps to achieve maximum data bit rate (dbr).

5 1

Table 4.3.6 Divisor values for each data bit rates.

4.4 Serial Communication Ports for SECNET.

The communication ports are going to be set up at two data bit rates: 38.4 kbps for

CSD using COM2, and 9.6 kbps for the SECNET control device attached to COMl. AJso

the frame used for the asynchronou communication i going to be 1 start bit, 8 data bit , no

parity bit and 1 stop bit.

To use high data transfer rate , it i necessary that the microproce or be aware of

each data byte that i arriving to the serial port. By using interrupts, the processor can

perform other tasks without lo ing the information being received through the serial port.

This i accomplished by enabling the microprocessor's interrupt handler and

creating a function that ervice the interrupts. Table 4.4.1 shows the address for the UART

register in PC/ AT or compatible computer . These definitions are necessary to allow the

microprocessor and the UART to recognize each other and create the path to send and

receive information from the higher level of the communication process. Up to this point

the system is able to interface with the Terminal Adapter (T A), either internally or

externally. ISDN lines can now be acce ed and then remote DTE's can interchange

message . Layer 1 in the OSI model in the DTE side is implemented. The next step i to

create the physical interface, which is in charge of the security function for equipment and

52

facilities. The rest of this chapter is dedicated to this important part of the present project,

and it has the introduction to a new technique that will improve the service that the security

system performs to protect the facility where it is installed as well as the equipment in that

facility. This new system is considered a new way to protect facilities and equipment.

* Ox03 for 38.4 kbps or OxOC for 9.6 kbps

Table 4.4.1 Register denomination.

4.5 SECNET Equipment and Security Function.

The computer is the medium to communicate with the ISDN lines. It is the one that

is connected to a TA (internal or external) through the serial port. However, the computer is

used for other purposes also. In order to implement all the security functions, it is necessary

to have equipment that performs operations to secure the room, the equipment in the room,

and to detect intrusion . In the event of a detected threat, it communicates to a computer,

which is connected to a Terminal Adapter (TA) to send specific information to the main

security office through ISDN.

This equipment must have intelligence to perform the complex operation assigned

to it. A microcontroller is an advanced single-chip Microprocessor Control Unit (MCU),

53

which has on-chip memory Random Access Memory (RAM), and Erasable Programmable

Read Only Memory (EPROM). It also has different peripherals to implement a variety of

functions or to allow the expansion of the MCU. These peripherals are: parallel ports, serial

ports, timers, Analog-to-Digital (AID) and Digital-to-Analog (D/ A), and others. All of these

peripherals make the single chip MCU a very powerful device that can be used to

implement complex security applications at very low price.

The present work is based on the Motorola's MC68HCll microcontroller unit. It is

an advanced single-chip 8-bit MCU with on-chip memory and peripheral capabilities. The

microcontroller clock runs 8 MHz with at a nominal bus speed of 2 MHz. The major

peripheral functions are an eight-channel AID converter with 8 bit of resolution; a 16-bit

free running timer system with three input-capture lines; five output-compare lines, and a

real-time interrupt function. An 8-bit pulse accumulator subsystem that allows to count

external events or measure external periods of time~ also, it has an asynchronous and a

synchronous serial interface.

The instruction set consists of up to 110 base instructions~ almost all the main

instructions supports up to six addressing modes (increasing the number of instructions that

the MCU can execute). It has two 8-bit accumulators (A and B) and they can be used as a

single 16-bit accumulator by some instructions. This accumulator is called the D register.

The MCU itself can be expanded with additional ports that allow the connection of

more peripherals and memory to the rnicrocontroller in case of more powerful functions

were required. At the same time it keeps part of the internal capabilities that it has.

54

The MC68HC11 has five ports, referred as: A, B, C, D, and E. Some of the pins in

the ports have dual functions. Also, some ports themselves have more than one function to

PAO-PA7I-l=====P~D~l~===========::DI-I

ACTA

RS-232C
Drivers

and
Receiver

Figure 4.5.1 Block Diagram for an Expanded MCU as used in the EVB from Motorola,
Inc. [13].

perform. Figure 4.5.1 shows the block diagram for the MC68HC11 EVB from Motorola

Inc. [13]. Each bit of the different ports has an assigned function for ports A, D, and E.

Table 4.5.1. shows the function of each port, and what each bit represents.

To use the MCU, it has to be expanded to use external memory because the internal

memory the microcontroller has does not have enough space to handle the system code

software. In this case, two ports are used to make the expansion. Those two ports are going

to work as the external address and data bus (ports B and C). By doing the expansion,

external memory and peripherals are going to be added to recover the functions of the lost

ports. The external memory is going to be Random Access Memory (RAM) and Read Only

55

Mode (ROM). ROM memory holds the software code to make the system operational, and

RAM memory holds the parameters that dynamically vary, when the program is executed.

Table 4.5.1. Functional representation of ports in the MC68HC 11 .

From the table: 1: Input; 0: Output; P A: Pulse Accumulator; OC: Output Compare; IC:

Input Compare; A: Address; AD: Address/Data; SCI: Serial Communication Interface; SPI:

Serial Peripheral Interface; SCK: Serial Clock; !SS: Slave Select (active low); MOSI:

Master Out/Slave In ; MISO: Master In/Slave Out.

The final system is represented in Figure 4.5.1. The low address bus is latched to

obtain 16-bit of addressing space (65 kbytes bus space), 8-bit data bus, an expansion

Parallel Input Adapter port (PIA) and an Asynchronous Communication Interface Adapter

(ACIA) port. These additions make the system more versatile and able to perform more

effective communication tasks , because it has more serial ports to establish a link with other

devices. Also, it allows the MCU to be connected to other similar units in a token ring

56

fashion, making the system more attractive for future addition of more equipment to be

protected by the system.

This configuration allows the board to be connected to the computer using one of

the serial ports. A second UART has to be added to use it to control each of the devices

attached to the control unit.

The EVB connection to the PC is then accomplished through a serial port using RS-

232C standard. The board does not have any hardware or software handshaking, therefore, a

delay must be supplied to ensure the proper transmission/reception of bytes. The SCI allows

full duplex communication. The parameters are data bit rate, data bits, number of stop

characters, and parity. They can be programmed using the Serial Communication Control

Register 1 (address: 102C Hex), which controls the number of transmitted and received data

bits. Control Register 2 (address: 102D Hex), which enables and disables the interrupts; the

Baud Rate Register (BAUD, address: 102B), which sets the prescaler to get a specific data

bit rate.

The SPI is a synchronous interface that allows to several units to be connected in a

token ring environment, using a master-slave configuration with other same units. This

serial communication controller uses four basic signals MISO, MOSI, SCK and SS.

The last serial cornmunication facility is the ACIA. This port is going to be used as a

medium to communicate with the computer to create the link between the SECNET security

control device and the ISDN line. This port has to match the configuration settings for

COM 1 that the computer has, that is 9600 bps N 8 I. Table 4.5.2. shows the ACIA registers

and their functionality. The ACIA is a very simple communication port. It is very easy to

57

program and to use. Its only disadvantage is that the receiver and transmitter share the same

register making the communication process looks like a half-duplex device. There are not

two registers for the communication; this means that to send a character, the microprocessor

has to be aware if a received character is in the buffer otherwise it will lose it. The way that

this communication process is implemented is by making the reception of characters from

the computer interrupt driven.

Table 4.5.2 ACIA register in the Motorola's EVB board.

4.6 Device Used to Secure the Equipment.

As stated in Chapter I, the main objective of this thesis is to create a security system

that be able to communicate through ISDN to a main security office, and to have a

determined amount of equipment under very tight protection. The system hardware allows

the system to communicate to a computer where the interface to the ISDN line is

implemented.

To send and receive a message is one function that this piece of hardware has to be

able to perform. This operation allows the system to send a piece of information to a

specific protected device getting a proper answer back from that device. The MCU will be

aware of each of the devices connected to the system keeping a close control of each device.

58

To allow the MCU to perform this tasks in a low cost and an efficient way different

solutions where analyzed. Figure 4.6.1 shows the system implementation for the general

idea A device under protection (e.g .• a printer) is connected to the SECNET device, which

monitors whether the printer is connected to the protection system or has been disconnected.

The SECNET device will constantly send a signal to the device attached to the

equipment under protection to make sure that it is in place and nothing has been altered.

Printer under
protection

SEC NET
Device

Figure 4.6.1 System implementation to protect a printer.

A signal will be sent every time that the equipment is queried to check if it has any

problem. This is done by a serial port, which sends the signal to the device attached to the

equipment under protection. The serial port should receive the answer back. In case that the

signal is not received (or if it receives something different that the data sent), the circuit will

alert the MCU. The MCU will send an alert signal to the computer indicating the equipment

position.

The functional circuit is shown in figure 4.6.2. A serial port is in charge of sending a

code signal to the device that is attached to the equipment under protection. The device

should allow the serial port to receive this code sent for some data bit rates, and for other

59

should not allow to receive the code. This is passive device in order to simplify the design

and reduce the cost.

Serial Port

TxD

RxD
Security
Device

Figure 4.6.2 Functional Block for Equipment Protection.

The objective of allowing to pass some specified data bit rates and no others is to

detect if the line could be either short-circuited or opened. For example, the serial port

receives data bit rates of 0.6 kbps and less; on the other hand, it cannot receive data bit rates

of 9.6 kbps or higher. One code is sent to the device under protection using the former rate,

and a second code is sent at the latter data bit rate. The former is intended to be received and

the latter is not. If someone short-circuits the lines. the receiver will get both codes, which

means that the system is not performing under parameters and something happened to the

equipment under protection. On the other hand, if the lines are opened, the receiver will

receive neither the higher nor the lower data bite rates (bad operation). This also means that

something could be happening to the equipment under protection (bad operation.)

For ease of discussion let us refer to a protected piece of equipment as a component.

The above explanation is for the protection of only one component; however, the cost of

this design does not justify a very powerful device to protect only one or a few component.

60

To make the system work protecting more than one equipment, it is necessary to create a

method to send different codes to different components. It is not cost effective to have more

than one serial port for each device because the system will become too expensive and will

have serious space limitations.

Analyzing same kind of problems in real life, it was found that the same general

idea is accomplished in a telephone network. One Central Office (CO) is in charge of

supplying telephone communication to a very large number of users, by multiplexing

several lines into a high speed single line. Figure 4.6.3 shows a functional diagram of this

representation.

Data Bit Rate, Multiplexed Line: 5 *n

I 1----- User 1
1----- User 2
1----User 3
1----- User 4
1----- User 5

Data Bit Rate: n for each line

Figure 4.6.3 Functional representation of a Central Office (CO).

Considering the same principle, lets assume that the UART will be the CO by

connecting a demultiplexer to the transmission pin. Multiple devices can be attached to only

one transmission line. Each component will have a security device connected. The return

line that should be connected to the receiver pin of the UART is then multiplexed to a line,

which is connected to that pin. The main different between this system and the CO is that

61

the receiver in the UART does not have to be high speed. Only one component at a time

will be polled.

A functional diagram for this system is shown in figure 4.6.4. Up to eight devices

can be connected to the demultiplexer, and multiplexer. Both the multiplexer and

demultiplexer can be controlled by the same three control Jines, which simplifies the control

circuit for this scheme. This scheme is used for both DART's used in the project. The

operation of the system is as fo11ows: a control signal selects the path through the

multiplexer/demultiplexer to the Txl and Rxl lines. Then the component's status is

determined.

DemultiplexerBuffers and Drivers
Serial Port

/ TxD
'\

~ Txl Tx2 Tx3 Tx8

1 2 3 - - - 8

l/
Rxl Rx2 Rx3 Rx8

RxD

~ L________ --
r-----

Buffers and Drivers
A

Multiplexer

B
c

..... ontrol Lines

Figure 4.6.4. General diagram for the external circuitry used to implement the equipment

protection.

The UART that was selected for this process is the MC68861 DUART. As its name

indicates it ha'i two identical serial ports built-in. UARTl is then programmed with a low

62

data bit rate and UART2 with at a high data bit rate. A code is sent to UARTl. The code

received is checked by the MCU. All the devices are checked and verified. The next step is

to change the code and send it, using UART2, to each protected component to check all of

them; in this case the code should not be received. The way the system operates is

considered a unique aspect of the present work. Table 4.6.1. shows the control signal to

manage the transmission and reception lines of the system.

From the table 4.6.1, letter C means a connection and letter Z means a high

impedance state, which keeps the other devices disconnected when the selected one is

receiving code from the MCU.

Table 4.6.1 Control signals and their relation with the transmission and reception lines.

To create the circuit that performs all previously explained operation a external

circuitry was created in addition to the M68HC II EVB board. Figure 4.6.5 shows the block

diagram for this circuitry.

To make the system more flexible and at the same time more cost effective, the

design in figure 4.6.4 can be adapted to a system with a bus. A single integrated circuit with

multiple parallel ports can be connected along with the single serial port making all the

63

outputs lines buffered. Moreover, multiplexer-demultiplexer input and output can also be

buffered, and separated in cards that can be added on demand to the SECNET device. Users

with less equipment to protect can buy the system with minimum requirements. For user

who need more capabilities, they can be added by just plugging in cards to the SECNET

device and then program the MCU to start checking the added equipment. This modular

approach makes the system more cost effective and easy to upgrade.

PORT
c

Data
Bus

PORTB
Address

Bus

PORT
A

Control
Bus

r--

'----

Buffers
r---

H H
H H

-

~ -~

H 1-fl'

r
....---

1-

_! 1-

1-

r---v

'-----

r---

M -
u

- X

D
u T
A
R r---

T D
e

f.-- m

f.--
u
X

I

RS232C
~

r--- D D
e f.-- r

f.-~
1-- m f.-- l

u f.-- v
I-t- f.--

X e

'I r
.........£___

r-----i ,...---- D
r

M -
1

u f.---
1- v

X 1---

e t-f- -
r

r-

" I--

......--

.__ .__

~-

II -
L....-- '---

- -
f.-

L....-- '---

.....- -

L....-- '----

Figure 4.6.5. Modular representation of the external circuitry connected to the control unit.

64

Chapter V. System Software.

5.1. Introduction.

Software for SECNET is developed in two different parts: the one that operates in

the computer and the one that operates in the security control device. The former is

implemented using a high level language and the latter using assembly language. The

present chapter explains the way in which both software parts are implemented and how

the operate.

To implement the software, the OSI layered model explained in Chapter II was

used as a guide for its design. The layered model offers a way to isolate functions that are

related to the operations for which they are designed, and the results of those operations

will be used be the adjacent layers. This makes the software easy to write and to debug.

Also, it makes the software easy to upgrade by adding new functions that will improve

the overall functionality of the complete system. Although, the OSI model can be taken

exactly the way it is explained, an analogy is used to implement its functionality for the

software.

The functions that have direct access to the hardware such as dirvers to read and

write to the sees registers are considered as layer I functions. Functions that use the

former but perform other operations to the data are considered functions in layer 2. The

same definition process is used for the rest of the function. The result is a software highly

modular and very easy to update and work.

65

The second methodology specially used for the software developed for the

computer part is Object Oriented Design (OOD). The software is organized as a

collection of discrete objects that are an abstract representation of some real world item or

concept that incorporates both data structures and behavior [14]. This approach offers a

good way to organize data and related actions [15].

The language used to implement the OOD is C++. It has become an increasingly

popular programming language because of its data abstraction and object-oriented

features. Its major addition is the introduction of classes that are the equivalent of objects.

Classes allow the designer to define aggregated data types that include not only data

members but also functions. They are implemented as structures. The way to access their

members is either by value or by pointer. Classes inheritance extends data abstraction to

object -oriented programming [16].

The software, then, is divided in software for the control unit written in assembly

language and software for the computer written in C++ language. The rest of the chapter

explains both parts of the software.

5.2. Control Unit Software.

The control unit has the function of interacting with the main computer receiving

and sending commands and information. Also, it performs control operations over the

devices that have been activated. A control operation is performed by sending a control

byte at two different data bit rates (dbr). Then, detecting if the information in the unit

66

corresponds with the information that was sent. If something does not correspond a

command is sent to the computer indicating the faulty component position or positions.

Table 5.2.1 Software functions for the control unit.

The program is implemented in a structured manner. The use of independent

67

functions to implement the different tasks makes the software modular, easy to modify,

debug, and update. This program contains three parts: initialization, input/output

programming and operation.

The functions implemented in this part are described in Table 5.2.1. This table

shows the name of the function, its layer, and its operation. The functions that are

classified as layer I are the ones that perform operations directly on the Integrated

Circuits (IC). Functions classified as layer 2 prepare the information received from layer 3

to pass it in the appropriate way to layer I. The rest of the functions and layers operate

analogously. Layer 7 is the application running on the MC68HC11 board, which is the

main program running the initialization, the input/output programming, and the full

operation.

5.3 Control Unit Software Operation.

The control unit, following the startup, performs an endless loop polling the

components.

5.3.1 Initialization.

Initialization sets the variables to their starting values, and also sets the port

parameters to desired mode of operation. It disables interrupts. Then, each of the port is

setup to perform the operations it is assigned. Functions like init_port, aciasetup, iniq,

init_scc_ports, enable_scc, and set_control_tbl are executed. After this, interrupts are

enabled, and the microcontroller is ready to start the operation.

68

The ACIA is programmed to handle the communication with the computer. It is

set to communicate at: 9600 bps, with no parity, eight data bits, and 1 stop bit (9600 N 8

1). Its receiver will request the microcontroller, indicating the it has a character that needs

to be read. This method is used because characters arriving might be lost if the are not

read fast enough. The transmission is performed by polling the transmitter control register

to check if the transmitter is ready to send data.

The parallel ports A, B, and C are programmed in the following way: PORTC is

assigned to have the same functionality of the Data Bus in the microcontroller. PORTB

becomes the Address Bus, and PORT A becomes the Control Bus. After these ports are

initialized, the 110 subsystem is set up. Port A controls the operation of the external

circuitry. Port B addresses the DUART' s internal registers, and port C is used to input

and output the byte to be sent to each device attached to the MC68HC II board.

Tables 5.3.1.1 shows how ports A and B are set up to perform their functions as

control and address busses respectively.

F.unction
Control
Address

Table 5.3.1.1. Bit definition for Port A and Port Bas Address and Control Busses
respectively.

From Table 5.3.1 .1, for Port A: HDBR and LDBR are High and Low Data Bit

Rate respectively. They correspond with 19.2 kbps (bit 7), and 0 .6 kbps (bit 6). A and B

select the devices to be controlled 00 =device I, 01 =device 2, 10 =device 3, and 11 =

device 4 . CS controls the DUART's control line. DIR controls the direction for the

69

buffer used as data bus (input and output). EN enables the same buffer. For Port B: RB 1

through RB4 control the DUART's internal registers. R I W controls the read and write

process for the D U ART.

When all the ports are programmed to perform their functions, the external

DUART can be programmed. The DUART has two serial ports. One port runs at 600 bps

and the second at 19200 bps. Table 5.3.1.2 shows the way in which the two Serial

Communication Controllers A and B (SCCA and SCCB respectively) are programmed.

Table 5.3.1.2. SCCA and SCCB programming mode.

The way the DUART's programming is done is by calling the function

init_scc_ports (layer 2) . This function sets the accumulator A (Ace. A) and accumulator B

(Ace. B) of the MC68HC II with the DUART's internal register address and the value to

be programmed respectively. Then the function write_to_scc (layer I) is called. This

function lowers the DUART's Read I Write (R I W) line, then writes the value stored in

Ace. A into Port B (Address), and writes the content of Ace. B into Port C (Data). After

this, Port C is programmed as an output by writing an OxFF Hexadecimal (Hex) to

register DDRC. Then, the DUART's Chip Select (CS) is forced low by resetting bit 3

and sending that value to Port A (Control) . This sequence guarantees the proper timing to

write a byte to the DUART. CS is then disabled. The R I W line is set and Port C is

programmed as an input to guarantee a high impedance state in Port C . This process is

70

done for each of the DUART's registers for SCCA and SCCB. After this process is done,

the unit and the external circuitry are ready to start checking for the devices that are

connected to the control unit to be controlled. This is done in the following step, which is

the full operation process.

5.3.2 Full Operation.

A simple protocol was developed to handle the transfer of command between the

computer and the microcontroller and vice versa. The protocol works in the following

way: a small case 'c' opens the frame, then a second Jetter follows, and a third character

follows. The second letter is the command to be executed by the microcontroller. Table

5.3.2.1 shows each character and its relation with the command to be executed by the

control unit.

Each of these commands needs three bytes. For example to add a device to the

control unit, the computer sends a command like: 'c' 'a' 1. This will be interpreted by the

control unit as: a command is received~ this command will add a device to the devices to

be controlled in position 1. The control unit adds the device and sends to the computer an

"all right" (OK) response or "bad" response. The way that the microcontroller sends the

response back to the computer is: 'c' 'o' (for OK) or 'c' 'b' (for bad). These commands

and responses will be issued in lower case letters. Capital letters or other type of letters

that start a frame are echoed back from the control unit to the computer. This a way for

the computer to detect if the control unit is still connected to the serial port.

The devices attached to the control unit are represented in a position in the control

71

Table 5.3.2.1. Character-command correlation.

unit memory space. That position in memory holds a byte which bits have different

meaning. Table 5.3.2.2 shows what each bit represents for each device in memory.

Table 5.3.2.2. Bit representation for each device in memory.

From Table 5.3.2.2 each bit means:

• DAD:

• DAC:

Device Added, it is set when a command to add a device is received by the

control unit.

Device Active, thi s bit is set when a command to enable a device is

received by the control unit .

• HDBRP: High Data Bit Rate Problem. When a device that is active is detected with

a problem using the High DBR check method, this bit is set, otherwise it

remains 0 .

• LDBRP: Low Data Bit Rate Problem. When a device that is active is detected with

a problem using the Low DBR check method, this bit is set; otherwise, it

remains 0.

72

When an "add device" function is issued the byte for the device that is added is

cleared, and bit 7 is set. When the "enable device" is issued, bit 6 is set. The combination

of these two bits set indicates that a component is present and active; the control unit

must poll that component to detect any failure. On the other hand, if any of those bits is

not set, the control unit will not poll that component.

The enable and disable commands were created to allow the movement of the

devices from one position to another without having to deactivate the whole system.

After which command is in the buffer, program then goes to check for the devices.

It checks the devices by sending a byte, using a the low dbr form, to each of the active

devices in memory. If no device is present, it does not perform any further checking. If a

device is active, then it sends a byte to that device by setting the proper control and

address signals. Then, it waits until a byte is received. If the received byte does not

correspond with the one sent or it does not receive any byte at all, bit 4 in the byte of

memory reserved for that device is set. Otherwise it proceeds to check the next active

device.

The program then follows the same procedure for the high dbr. When both checks

are finished, then the status bytes for the devices are scanned. If any of bits 4 and 5 for

any device is set, a command containing the device position is sent to the computer to

alert it of a problem with that device.

This is the general way that the control unit operates. This operation does not

depend of the computer. If the computer is disconnected after assigning the devices to

each position, the unit is able to continuously operate protecting the devices in a stand

73

alone mode. Of course, another kind of operation should be developed to guarantee a

stand alone control unit. However, this operation is out of the objective of the present

work.

The second part of this system is the computer and the way it functions. This part

is the one that makes the interaction between the user and the system more friendly. Also,

it is the one that allows the control unit to complete its control operation by sending the

information over the ISDN lines. The ISDN lines are connected to the computer through

the Terminal Adapter (T A) attached to second serial port.

5.4 Computer Operation.

The software to run in the computer was designed to make the communication

between the control unit and the ISDN line, and to serve as an interface between the user

and the control unit.

It is structured in three main classes: DEVCOM, SERCOM, and MENU. The two

first classes handle all the functions related with the initialization, control and utilization

the serial ports in the computer; to receive and transmit information from, or to the T A

and the control unit. In this case COM 1 is used to communicate with the control unit and

COM2 is used to communicate with the T A.

To accomplish an effective serial communication operation, it is necessary to have

an intenupt driven operation for the receiving path; especially, when high dbr is needed

for transmission of a high volume of information such as found in images, pictures or

video. This is critical, because data can be lost if computer does not respond fast enough

74

to the reception. To accomplish this, the interrupt service routines for the serial ports are

changed to functions that place in memory the received characters and update pointers.

Then, the software can be able to check the buffers to detect any new characters. This

allows having the two serial ports receive information simultaneously without losing any

characters.

Table 5.4.1 Functions defined in DEVCOM class.

DEVCOM is the class that define the functions to communicate with the control

unit. Accordingly with the OSI model , the functions defined in thi s class are related with

layers 1, 2, and 3 of the model.

Table 5.4.1 shows the functions and their peer layer. The function rx_char_com 1

is in charge of managing aJJ the communication process between the computer and the

control device .

The function handles the commands sent by the control unit, and also send

commands to the latter. The function s in layer 2 receive the information, process it , and

call the functions in layer I , which interact directly with the computer's hardware to send

or receive the information from the control unit.

The second class SERCOM also defines functions in layers 1, 2, and 3 of the OSI

model. Thi s class is more complex than DEYCOM because the interaction with theTA is

75

more sophisticated than is that of the control unit. Moreover, the information to be sent to

the T A needs to be correctly formatted. That is why this class has functions that can be

placed at the same layer level as layers 4 and 5 of the OST model. Table 5.4.2 shows the

functions defined in this class and their peer layers

Table 5.4.2 Functions defined in SERCOM class.

The functions chat_mode and tx_rx_mode are called by the application layer (7).

These functions are in charge of the whole operation. chat_mode is designed to handle the

76

process when the computer is not communicating ISDN; it handles the interaction with

the user through the console, and the communication with the control unit. tx_rx_mode

handles the communication with the T A when the computer is transmitting information to

another computer using ISDN.

chat_mode operates in a loop, which is broken if Carrier Detect (CD) bit in the

status register of the COM2 port is set. This means that a connection has been stablished,

and immediately, it switches to tx_rx_mode. Before any connection is established, it

checks if any information has been received from a remote computer (connection is

established by an incoming call). If no information has been received, it checks to see if

any command has been received from the control unit. If none, it checks if any key has

been pressed. If not, it checks CD. If no connection, then it restarts the cycle. This

function has a built in counter that always is reset to zero when any character is received

from the control unit. If no character has been received from the control unit after it

reaches certain count, a flag is set and the function forces a connection to the main

security office. This will inform that the control unit is not longer connected to the

computer.

When a command is sent by the control unit, the third class MENU, which

handles the operations in the computer memory is invoked. Also, it forces a call to the

main security office. The information that it sends in this case is different from the

previous one sent when the control unit and the computer lose contact with each other.

tx_rx_mode handles the communication process when a connection through the

ISDN lines is active. It checks if any character is in the receiver buffer. If a character is

77

present, the function displays it in the console. If no character is present, then it checks if

the connection was forced for the computer. If this is true, then it selects the proper

operation (accordingly with the flag that was set). It also sends the information to the

main security office, and automatically ends the connection and returns to the chat_mode

function.

The third class MENU operates at higher levels than the previous two. This class

is in charge of the processing of adding, enabling, disabling, and removing devices from

the control unit. Moreover, if a command is received from the control unit, it indicates

that a device has a problem.

This class is in charge of counting the number of problems for that device and

preparing the information to be sent using the ISDN lines. The function members of this

class can be placed in layers 6, 5, and 4. Table 5.4.3 shows the function members of this

class and its relation with the OSI layer model. It works by placing a menu into the

computer screen in which the functions to be executed are listed. When the user selects

determined function, a process is performed to guarantee that the proper information is

kept in memory. Then, the right command is issued to the control unit to be executed by

this unit.

Function_menu is the function called when the user wants to send commands to

the control unit. It is called from the chat_mode function previously explained. This

function starts showing the main screen where the functions that can be performed by the

control unit are displayed.

78

Each of the functions will start a process that allows the user to send a command

function toward the control unit in a transparent mode (the users do not see this

interaction.) These functions are the same functions explained in Table 5.3.2.1, (add,

disable, enable, and remove). There also are two more functions: list and exit. For the

former functions , the processes of adding, disabling, enabling, and removing are very

similar to the ones executed in the control unit. Its only difference is that the computer

after processing the information sends the command to the control unit. The function li st

gives general information to the user based on the type of device that is attached to each

position, whether the device is active or not.

Table 5.4.3. Functions defined in the MENU class.

These functions operate based on a structure that keeps the information for each of

the devices attached to the control device. This structure has defined the following

members: type , position, pos_used , enabled, problem, had_problem, numb_of_problems.

79

Type indicates what kind of device is attached to the control unit, for example: computer,

monitor, printer, scanner, oscilloscope, etc. In this way each device is individually

characterized in this security network. Position indicates the position where the device is

going to be placed. Pos_used indicates if the position is already taken by other equipment.

Problem is a flag that indicates if the control unit detected a problem with that device.

Assuming that the problem was fixed, the unit still keeps a record of any previous

problem with that device, and also the last member, numb_of_problems indicates how

many problems that device had had before. In this way the computer keeps track of

everything that is happening to the devices attached to the security network.

80

Chapter VI. System Integration and Future System Enhancements.

6.1 System Integration.

SECNET is based on a control unit and a computer operating together. The

control monitors components connected to it. The computer runs the software that allows

to send information over ISDN lines to a main security office.

Their operation is combined into one system. Its function is to secure the

equipment in certain room and to communicate if something is not right with component

under protection.

6.1.1 System Operation.

The control unit starts its operation when powered up. It starts by checking if any

device is connected to the system, and if it is any active. Also, it starts sending

information back to the computer about the status of the equipment connected to the unit

if any. After the control unit starts, the software in the computer is started. When the

software starts, it requests to the user that identify what operation it is going to be

executing: a main security office or as part of the security of a room. This is necessary

because the software operates in a different way if used in either one positions.

6.1.2. Main Security Office Operation.

The operation as a main security office is a basic one. It will check COM 1 and

COM2 for any incoming information; however, it will not have enable the detection of an

active control unit for COM 1. Also, it does not have to call a main security office because

81

it is working as one. Its function is to display any incoming information from the ISDN

lines into the screen to alert the security personnel in the office of any problem in the

rooms connected to the system.

6.1.3. Room Security Operation.

The software always starts asking if it will run as a main security office or not. By

answering no, the steps that follow make it works as a room security system.

Immediately. the user is asked for the room number and for the phone number of the main

security office. These two steps guarantee that the correct communication is stablished

and the right information is sent.

After this point, it starts checking COM I and COM2. As previously stated, the

control unit is already running and it is connected to COM 1. The control unit is

continually sending information to the computer. This information is the status of the

devices connected to the system if any. The computer uses this information to reset a

counter that is incremented if no communication is received from the control unit. If this

counter is incremented up to certain value, this means that the control unit is no longer

connected to the computer. Then, an alert signal is sent to the main security office

indicating so. This signal is sent constantly until the problem is corrected.

In order to add equipment to be controlled by the system, the Fl key should be

pressed. This brings up to the screen a menu showing all the functions that can be

executed by the system. This menu is shown in Figure 6.1.3.1. It lists each function

82

associated with a number. By pressing the corresponding number the desired function can

be executed.

*****SECURITY CONTROL SYSTEM*****

1. Add device.
2. Disable device.
3. Enable device.
4. List device.
5. Remove device.
6. Exit

Enter desired function:

Figure 6.1.3.1. Main menu listing.

To add an equipment to the control unit, item one should be selected. This will

start a process by bringing a second menu. This menu shows a list of equipment that can

be added to the system. Again, each equipment is identified by a number. The user easily

selects a determined equipment just by pressing the proper number. By selecting the

component to be added, the equipment type is kept in memory and it is the one that will

be sent if a fault is detected. Figure 6.1.3.2 shows the equipment listing for this screen.

After an equipment is selected, a third menu is shown. This menu shows the

positions that have been taken, and it requests in what position the equipment being

added is going to be placed. This screen shows the four positions that this system has

available for the equipment. The screen is shown in Figure 6.1.3.3. It represents a

hypothetical situation where two component have already been added to the system in

83

*****Device Listing*****

1. Oscilloscope.
2. Power Supply.
3. Function Generator
4. Multimeter.
5. Computer.
6. Monitor.
7. Workstation.
8. Printer
9. Scanner.

Enter equipment to be added:

Figure 6.1.3.2. Component listing for the add component function.

positions 1 and 3, and position 2 and 4 are available.

After the position is entered the software sends a command to the control unit

indicating that a component was added to position (as an example) two. The screen

returns to the main menu represented in Figure 6.1.3.1 where it will wait for a new

command or to exit to the main program.

***** Device Positions *****

Position 1 Not Used
Position 2 Not Used
Position 4 Not Used

Enter Position:

Figure 6.1.3.3. Screen showing the positions not taken.

84

To enable a device, the number that corresponds with enable device should be

pressed.

***** Devices Enabled *****
Device in Position 3 Enabled

Enter Position:

Figure 6.1.3.4. Screen showing the enabled positions.

A screen showing the positions that are added but that are still disable, is shown.

This screen is shown in Figure 6.1.3.4. When the position to be enabled is selected, the

enable command is sent by the computer to the control unit indicating to make the

position selected active. This makes the control unit start checking the devices made

active. This procedure is repeated for each device that is added and activated.

At this point the component that is going to be controlled must be connected to

the control unit. Otherwise, the control unit will start sending commands to the computer

indicating that something happened to that component.

6.1.3.1 Control Device.

The control device attached to the component under control has an internal

connection for a j urn per that disconnects the internal circuitry from the signal send by the

85

control unit. This condition will be detected by the control unit and immediately will send

a signal to the computer indicating that the component in that position has failed the scan.

The control device is shown in figure 6.1.3.1.1. This figure shows a 3-D view of

the control device and the jumper, to show how they are connected. The control device

has the internal circuitry that allows signals no faster than 600 bps to pass through

without any attenuation. On the other hand, signals faster than 9600 bps are attenuated.

These characteristics match the specifications explained in Chapters 4 and 5 for the

operation of the system. As it can be seen from Figure 6.1.3.1.1, the control device's body

completely covers the jumper, avoiding the easy separation of the jumper from the control

device's body.

The jumper block is attached to any part of the equipment to be protected. This

part of the equipment selected should be one that is not easy to separate from the rest of

the equipment, or that can be easily broken. One advantage of this method is that the

component does not have to be opened or altered to attach the control device. Just by

gluing the control device with a very powerful glue to the position will allow the system

to operate.

If someone tries to separate the control device from the component, the full body

is separated from the jumper. This opens the path for the signals and the low dbr control

byte will not be received by the control unit. It will be the same if the line from the

control unit to the control device is disconnected. On the other hand, if someone tries to

tap into the line by short-circuiting the lines, (to externally emulate what the control

86

device is doing), a high dbr control byte will be received by the control unit yielding to a

faulty operation for that component.

Front

/
Rear

Front

Rear

.··

(a) Control Device, 3-D View

: .. : . .
! •• :

(c) Top View

(b) Rear View

FL:fJ I
8

Plug in Jumper

Re:u Front

............... :LJ:, ,
., .
;: :

Plug in Jumper

(d) Lateral View

Figure 6.1.3.1.1. Control device positions: (a). 3-D view, (b). Rear view, (c). Top view,
and (d). Lateral view.

The system is flexible enough to allow that the component be removed (e.g., to be

repaired) without removing the control device or only leaving the jumper attached to the

body of the component. This is done by the software by just disabling the position where

the component is placed.

The last function is list component. This function will list the component attached

to the control unit, their status, if they either have or had problems, and how many times

they had problems.

87

6.2 System Signaling.

When the system is completely functional, it will be constantly checking if there is

any information to be processed. If the control unit detects that a component has a ·

problem, it will send a command to the computer with the position of the component with

problem. The computer will receive this information, and immediately will send it to the

main security office adding more information. The information added is the room

number, number of times that problems have been detected in that room, date, time, type

of component with the problem, and position in the system. This information will help

the security personnel to exactly identify where the problem is located, when that problem

happened, what kind of component they have to look for, and the exactly position inside

the room where the component was placed. Figure 6.2.1 shows the screen at the main

security office when a computer located in position 1, was disconnected from the control

unit in room ECS258, at 11:15:02 AM Thursday, February 23, 1996.

A second condition is that the control unit is being disconnected from the

computer. In this case, the computer will send information indicating the room number,

the date and time, and a message indicating that the control unit has been disconnected

from the computer. As previously stated, this information will also help the security

personnel to know where the problem is located, when it happened at the cause of the

problem. Figure 6.2.2 shows the computer's screen at the main security office when a

control unit was disconnected from the computer.

88

Connect 38400

ECS258 Thursday, February 23,1996 11:15:02 AM Computer Position 1

No Carrier

Figure 6.2.1 Screen at the Main Security Office (MSO) when an component was

disconnected from the control unit.

Connect 38400

ECS258 Thursday, February 23. 1996 11:15:02 AM WARNING CONTROL
UN IT D iscon nee ted

No Carrier

Figure 6.2.2. Screen at the Main Security Office (MSO) when a Control Unit was

disconnected from the computer.

89

6.3· Future System Enhancements.

The SECNET system has great potential and wide scope for further development.

There are new applications developed to utilize the full capacity of ISDN. These

applications can be integrated to SECNET to obtain a more versatile system capable of

offering a wide variety of uses in the security field.

6.3.1 Data Communication.

New techniques in the data communication area like data compression techniques,

inverse multiplexing (bonding) and Point-to-Point Protocol (PPP) will increase the

throughput of the data transmission over the ISDN lines. This allows that high resolution

still images, full motion video and interactive video signal can be sent through ISDN

lines. The latter two, bonding and PPP, allow the merging of channels in the ISDN lines.

For example, for Basic Rate Interface (BRI), each B channel can go up to 64 kbps. By

using those techniques, the speed of the communication line can be doubled to up to 128

kbps. Bonding was developed years ago. The way it operates is by synchronizing both B

channels at the beginning of the connection, and keep it that way until the end of the

connection. On the other hand, PPP is able to utilize the second channel statistically based

on the demand for more bandwidth. The connection can be stablished with only one

channel and if during the connection the second channel is needed, the PPP protocol will

add that channel until it is no longer necessary. This will preserve a connection for other

uses where it can be needed. Nowadays, PPP protocol is being selected as the default

standard for obtain more speed from the communication lines.

90

PPP together with data compression, can increase the throughput of the data

transmitted over the ISDN lines, to the point that high quality still picture and images can

be sent in matter of seconds between two or more very remote places. Also, full motion

images can be sent with reasonable quality using ISDN lines.

SECNET can incorporate these advantages and allow the security personnel in the

main office to check by the usage of cameras each of the rooms under control. Also, by

adding new devices to the system, it can check the person's or persons' identity in a

matter of seconds allowing to exercise a more strict control over critical areas.

6.3.2 Networking.

The ability of interact in a complex system where different devices are connected

and able to share information among them is what is called networking. Example of

networking is the Local, Metropolitan and Wide Area Network. LAN, MAN and WAN

respectively. Each of them has its own distinguishable characteristics. SECNET can take

advantage of the three of them. However, because its characteristics of localize operation,

the most useful will be LANs.

Ethernet addresses can be built into the control devices. The control unit will

work as a server where a number of component under protection can be polled a higher

speed to detect a failure on them. This will increase the number of component that a

single control unit can control make the system more powerful, and at the same time,

more economical. Figure 6.3.2.1 shows an implementation of SECNET as a LAN.

91

By allowing SECNET to be connected to a LAN, new possibilities for

transmitting information, and control can be developed. For example, ISDN can be used

as a back up link in case that the LAN is not operational. This will allow SECNET to be a

fault tolerant system. If one of the communication links is broken the second can be used.

This also brings the possibility of using Transmission Control Protocols I Internet

Protocol (TCPIIP). This protocol is used to transfer data between two logically distinct

user processes, such as file transfer or electronic mail servers. TCPIIP allows a reliable

transmission of large files of data. These large files of data can be still pictures taken in a

room under surveillance to be analyzed in the main security office [17].

CQmputer

Fax Laser printer

SECNET Comp.Jier

D . D i 0 --- f ~J .
SECNETCon rol Un~ = 0 --- ~r

111110
SECNET Comp.J~er

SECNETCon rOI Unrt I
SECNET Computer

Main Security Offioe lf lTI
II(! «(

D u=
Ploner

Workstation

Figure 6.3.2.1. Local Area Network (LAN) implementation of SECNET.

92

6.3.3. Wireless Technology.

Wireless devices can be incorporated to SECNET in order to make the system

even more reliable. SECNET can use the advantages of wireless technology as a way to

backing up the main communication channels making the system less prone to fault ISDN

lines or LAN connection.

By having wireless capabilities, SECNET will be able to send information to

neighboring rooms attached to the system. Those rooms still have capacity of connecting

to the main security office. Also, by using cellular technology, SECNET will be able to

keep a secondary communication path with the main security office. Moreover, wireless

LAN can be used to control different control units to the same computer making the

system more efficient, flexible and economical.

6.3.4 Software.

Additional features can be added to the system software. These features can be

added as a form of software upgrades. Among those features are the addition of database

capabilities using encryption, the SQL programming language, database security,

Zmodem File transmission protocol, etc.

Encryption is the process of transforming data into an intelligible sequence of

binary information. This information is very difficult (if not impossible) to decrypt if the

intruder does not have the key to transform those bits back to the original data. This is

necessary because there is a security concern of using ISDN for data communication as

well as any public network [18}.

93

The SQL programming language is a very powerful tool in adding query related

features to the system. Monitoring features as inventory schemes, room failure per day,

month or year and many more can be implemented [18].

Database security will implement any access violation to SECNET; usemame and

password to access the computers and the control units; logon and logoff records are

some of the features that can be added to SECNET [18].

Zmodem file transmission capabilities that enable SECNET to send data in a

continuous fashion, without waiting for acknowledgment of individual blocks. It also

works in conjunction with software handshaking such as X ON/X OFF [19]. This would

allow SECNET to be more reliable when sending data because the data is being checked

twice for transmission/reception errors.

These are the most important possible future enhancement for SECNET. These

enhancements will make SECNET a very powerful security system that can be able to

communicate with any other communication device because of its open system design

philosophy.

94

Chapter VII. Conclusions.

SECNET was developed to create a new way to utilize new technologies in the

security industry. These new technologies like Integrated Services Digital Networks

(ISDN) makes this system faster and more reliable than one that uses normal telephone

lines.

The task was divided into two parts. One port uses the Terminal Adapter (T A) to

stablish a link with the main security office using ISDN. This is a computer, which has

one of its serial port connected to the T A. The software can run under Windows™ as a

DOS application, or it can run directly from DOS. This software is a specialized software

communication package that is designed to continually check both serial communication

ports in the computer. It is able to interact with the T A, and also with a control unit

connected to the second serial port.

The second part is an intelligent control unit based on a microcontroller and a

special external circuitry that allows the constant supervision of the component connected

to it. A control device is attached to each component under control. If that control device

is removed from the component, the control unit sends a command to the computer

indicating the position where the problem was detected. The computer receives the

information and sends it to the main security office via ISDN.

The objectives of the present work were accomplished. A security system,

SECNET, was designed and a working prototype was created. This system has new

characteristics that make SECNET unique. These characteristics are: individual

95

identification of component under surveillance, the utilization of control bytes that

prevent the equipment to be either disconnected (opening the circuit), or make them

appear to be connected (short-circuiting the control device). Also, the system can not be

tapped to try to simulate the control process by transmitting the control bytes that are

being sent by the control unit, using another device connected to the system to tap the

communication with the equipment.

96

REFERENCES

[I] Zalud, Bill "What's Happening To Security?". Security, September 1990, pp 42-
48.

[2] Russell, Rebecca D. "Security Costs and The .. Bottom Line". Security, June 1990,
pp42-48.

[3] Zalud, Bill "Charting Security's Course". Security, January 1990, pp 29-34.
[4] Helgert, Hermann J., Integrated Services Digital Networks: Architectures.

Protocols. Standards, Addison-Wesley Publishing Company, Reading, Mass.
1991.

[5] Goldsten, Fred R .• ISDN in Perspective, Addison-Wesley Publishing Company,
Reading, Mass. 1992.

[6] Stalling, William, Data and Computer Communications, 4th Edition, Macmillan
Publishing Company, New York, 1994.

[7] Stalling, William, ISDN and Broadband ISDN, 2"d Edition, Macmillan Publishing
Company, New York. 1992.

[8] Goodwin, Mark, Serial Communications in C and C++, Management Information
Source (MIS) Inc., New York, 1992.

[9] Friend, George E.; Fike, John L.; and others, Understanding Data Communications,
Texas Instruments Information Publishing Center, Howard W. Sams & Company,
Indianapolis, 1988.

[10] Monk, Timothy S., Windows Programmer's Guide to Serial Communications,
Sam Publishing, Indiana, 1992.

[11] Campbell, Joe, C programmer's Guide to Serial Communications, Howard W. Sams
& Company, Indiana, 1988.

[12] The Engineering Staff of TI Inc. Semiconductor Group, The TIL Data Book for
Design Engineers, 2"d Edition, Texa~ Instrument Incorporated, 1976.

[13] Motorola Inc. M68HC11EVB Evaluation Board User's Manual, Motorola Inc.,
1986.

[14] Rumbaugh, Janus and Others, Object-Oriented Modeling and Design, Prentice-Hall,
Inc. Englewood Cliff, New Jersey 1991.

[15] Green, Curtis, "Hardware Modeling in C++". Embedded System Programming,
Vol. 8 No. 10, October 95, pp 24-54.

[16] Dewhurst, Stephen, Programming in C++, Prentice-Hall, Inc. Englewwod Cliff,
New Jersey 1989.

[17] Markley, Richard W., Data Communications and Interoperability, Prentice Hall,
Englewood Cliffs, New Jersey 1990.

[18] William, Mark, Development of a Retail Network Using ISDN. Florida
International University, Miami, Florida 1993.

[19] Nelson, Mark, Serial Communications: A C++ Developer's Guide, M&T Books,
San Mateo, California, 1992.

97

APPENDIX A

**
* * SECurity NETwork (SECNET) Software HCII * *
* * Author: Isidro Alvarez, BSEE * •
* * Department of Electrical and Computer Engineering • •
* * School of Engineering and Design * •
* * Aorida International University * *
* * Miami, Florida, USA * *
• • Spring 96 * *
••

•• Definitions ••
**

BASE_ADDR equ $1000
porta equ $00 Port A address offset
portb equ $04 Port 8 address offset
porte equ $03 Port C address offset
pact I equ $26 Port A control addr. offset
portcl equ $04 Port C Latched Reg. addr. offset
ddrc equ $07 Port C Data Dir. Control Reg. offset
oclm equ $0D Output Comp. Mask Reg. offset addr.
tent equ $0E Timer Count. addr. reg. offset
tocl equ $16 Timer Output Comp. addr. reg I offset
toc2 equ $18 Timer Output Comp. addr. reg2 offset
tctl2 equ $21 Timer Control 2 addr. reg. offset
tmskl equ $22 Timer Mask 1 addr. reg. offset
tflgl equ $23 Timer Flag I addr. reg. offset
tmsk2 equ $24 Timer Mask 2 addr. reg. offset
tflg2 equ $25 Timer Flag 2 addr. reg. offset
PORTA equ 8ASE_ADDR+porta Port A address
PORT8 equ 8ASE_ADDR+portb Port 8 address
PORTC equ 8ASE_ADDR+portc Port C address
PACTL equ 8ASE_ADDR+pactl Port A Control address
PORTCLequ 8ASE_ADDR+portcl Port C Latched Register address
DDRC equ 8ASE_ADDR+ddrc Port C Data Dir. Control Register
OC1M equ 8ASE_ADDR+<>e I m Output Compare Mask Reg. addr.
TCNT equ 8ASE_ADDR+tcnt Timer Countet address register
TOCI equ 8ASE_ADDR+toc I Timer Output Compare addr. reg!
TOC2 equ 8ASE_ADDR+toc2 Timer Output Compare addr. reg2
TCTL2 equ 8ASE_ADDR+tctl2 Timer Control 2 address register
TMSKI equ 8ASE_ADDR+tmsk I Timer Mask I address register
TFLGI equ 8ASE_ADDR+tflgl Timer Flag I address register
TMSK2 equ 8ASE_ADDR+tmsk2 Timer Mask 2 address register
TFLG2 equ BASE_ADDR+tflg2 Timer Flag 2 address register
A CIA equ $9800 ACIA control address register

* * Serial Communication Controller Degisters Definitions * *
* ** *

MRIA cqu
CSRA equ
SRA equ
CRA equ

$00
$01
$01
$02

Channel A Mode Register
Clock Select Register Chant. A
Status Register A
Command Register A

98

RxA equ $03 Receiver Register A
TxA equ $03 Transmit Register A
ACR equ $04 Au1tiliary Control Register
IMR equ $05 Interrupt Mask Register
MR18 equ $08 Channel 8 Mode Register
CSR8 equ $09 Clock Select Register Chan!. A
SR8 equ $09 Status Register 8
CR8 equ $0A Command Register 8
R1t8 equ $08 Receiver Register 8
T1t8 equ $08 Tmnsmit Register 8

** Constant Definitions **
**

CR equ $00 Carriage Return definition
LF equ $0A Line Feed definition
NUL equ $00 Null character definition
MS_600 equ $84CD msec. to get I char at 600bps
MS_19200 equ $412 msec. to get 1 char at 19200 bps
SCC_EN equ $F7 sec en. control bit (bit 3 =0)
SCC_DIS equ $08 SCC dis. control bit (bit 3 =I)
LOG_EN equ $7F Logic en. control bit (bit 7 =0)
LOG_DIS equ $80 Logic dis. control bit (bit 7 =I)
CHNL_A_DIS equ $10 chnl A (600 bps) dis. (bit 4 =I)
CHNL_8_DIS equ $20 chnl B (19200 bps) dis. (bit 5 = 1)
DBR_HI equ $40 DBR= 19200 bps bit sel. (bit 6 =I)
SCC_WR equ $OF sec write enable (bit 4 =0)
SCC_RD equ $10 SCC read enable (bit 4 =I)
IN equ $00 Port C direction cntrl byte
OUT equ $FF Port C direction cntrl byte
TRUE equ $01 Constant
FALSE equ $00 Constant

**
** Interrupt Vector Definition * *
* ***

IRQIV equ
org
jmp

$EE
IRQIV
irqisr

Interrupt ReQuest Vector address

int. request int. serv. routine

**

* * Main Program * *
* *******************•··••*****•••*****************

*void main(void)
*{

org
sei
Ids
jsr
jsr
jsr
jsr
jsr
jsr
jsr
clra

$COOO

#STACK
clr_mem
init_ports
aciasetup
Jmq
init_timer
init_scc_ports
crlf

program starts
disable all interrupts
load stack pointer

initialize ports A and C
ACIA setup
Q initialization
initialize timer
initialize the sec ports
start at column 0
clear Ace A and

99

clrb AccB
staa TEMP clear TEMP memory
staa TEMPI clearTEMPI memory
ldx #MSG load init message
jsr outstring output message
jsr crlf next line
jsr clear_q clearQ
clra clear Ace A and
clrb AccB
staa STATE clear STATE selector
jsr enable_scc
jsr set_cntrl_tbl
eli enable all interrupts

START_LOOP ldaa STATE get STATE value
cmpa #$01 if STATE is I
beq STATE I then execute first state
cmpa #$02 if STATE is 2
beq STATE2 then execute second state
cmpa #$03 if STATE is 3
beq STATE3 then execute third state
cmpa #$04 ifSTATEis4
beq STATE4 then execute fourth state
cmpa #$05 if STATE is 5
beq STATES then execute fifth state
cmpa #$06 ifSTATEis6
beq STATE6 then execute sixth state
cmpa #$07 if STATE is 7
beq STATE? then execute seventh state
cmpa #$08 if state is 8
beq STATE8 then execute eighth state
clr STATE otherwise, clear STATE value
inc STATE get I to start state machine
bra START_LOOP restart the state machine

STATE I jsr state l_func first state function call
inc STATE prepare for next state
bra START_LOOP return to the loop

STATE2 jsr satate2_func second state function call
inc STATE prepare for next state
bra START_LOOP return to the loop

STATE3 jsr state3_func third state function call
inc STATE prepare for next state
bra START_LOOP return to the loop

STATE4 jsr state4_func fourth state function call
inc STATE prepare for next step
bra START_LOOP return to the loop

STATES jsr state5 _func fifth state function call
inc STATE prepare for next state
bra START_LOOP return to the loop

STATE6 jsr state6_func sixth state function call
inc STATE prepare for next step
bra START_LOOP return to the loop

STATE? jsr state? _func seventh state function call
inc STATE prepare for next state
bra START_LOOP return to the loop

STATE8 jsr state8_func eighth state function call
clr STATE clear state to start state
inc STATE machine first state
bra START_LOOP return to the loop

*)

100

*void aciasetup(void)
*(
aciasetup equ •

ldx #ACIA
Ida a #$03
staa O,X
ldaa #$96
staa o,x
jsr delay
rts

*}

•void clr_mem(void)
•r
clr_mem equ *

ldx #CNTRL
ldaa #$00

do_again staa O,x
cpx #DEV_LAST
beq end_clr_mem
inx
bra do_again

end_clr_mem rts
*)

*void set_cntrl_table(void)
*{
set_cntrl_tbl equ *

ldx #CNTRL_ TABLE
ldaa #$4F
staa O,x
ldaa #$5F
staa l,x
Ida a #$6F
staa 2.x
Ida a #$7F
staa 3.x
rts

*}

*void init_timer(void)
*{
init_timer equ *

Ida a #$00
staa TMSK2
rts

*)

*void init_ports(void)
*{
init_ports equ *

ldaa #$80
staa PACfL
ldaa #IN
staa DDRC
Ida a #$F8
staa PORTA
ldaa #OUT

101

staa PORTB
rts

"')

*void iniq(void)
"'{
iniq equ "' ldaa #$00

staa HEAD
staa TAIL
sta COUNT
ldx #BUFF

LOOP I staa o,x
inx adresses
cpx #LAST
bne LOOP I
rts

*}

*void dis_all_cntrl(void)
"'(
dis_all_cntrl equ "'

pshx
ldaa #CHNL_A_DIS
ora #CHNL_B_DIS
ora #DBR_HI
ora #LOG_DIS
ora #SCC_DIS
staa CNTRL
pulx
rts

*}

*void init_scc_ports(void)
*{
init_scc_ports equ *

jsr dis_all_cntrl
Ida a #IMR
I dab #NUL
jsr write_to_scc

SCC_A Ida a #CRA
I dab #$10
jsr write_to_scc
Ida a #CRA
I dab #$22
jsr write_to - sec
Ida a #CRA
I dab #$38
jsr write_to - sec
ldaa #CRA
ldab #$50
jsr write_to_scc
Ida a #MRIA
I dab #$13
jsr write_to_scc
Ida a #MRIA
I dab #$07
jsr write_to_scc
Ida a #CRA

102

I dab #$10
jsr write_to_scc
ldaa #ACR
I dab #$80
jsr write_to_scc
ldaa #CSRA
I dab #$55
jsr write_to_scc
ldaa #CRA
I dab #$40
jsr write_to_scc
ldaa #CRA
I dab #$15
jsr write_to_scc

SCC_B Ida a #CRB
I dab #$10
jsr write_to_scc
Ida a #CRB
I dab #$22
jsr write_to_scc
ldaa #CRB
I dab #$38
jsr write_to_scc
ldaa #CRB
ldab #$50
jsr write_to_scc
ldaa #MRIB
I dab #$13
jsr write_to_scc
Ida a #MRIB
I dab #$07
jsr write_to_scc
Ida a #CRB
I dab #$10
jsr write_to - sec
Ida a #CSRB
I dab #$CC
jsr write_to_scc
ldaa #CRB
I dab #$40
jsr write_to_scc
ldaa #CRB
I dab #$15
jsr write_to_scc
rts .,

*void enable_scc(void)
*{
enable_scc equ *

ldaa #CRA
I dab #$05
jsr write_to_scc
Ida a #CRB
jsr write_to_scc
rts

*I

103

•void write_to_scc((register ->A), (command-> B))
*{
write_to_scc equ •

psha
and a #SCC_WR
staa PORTB
stab PORTC
Ida a #OUT
staa DDRC
ldaa CNTRL
and a #SCC_EN
staa PORTA
ora #SCC_DIS
staa PORTA
pula
ora #SCC_RD
staa PORTB
ldaa #IN
staa DDRC
rts

*}

*void read_from_scc(void)
*{
read_from_scc equ •

clrb
ora #SCC_RD
staa PORTB
ldaa CNTRL
anda #SCC_EN
staa PORTA
ldaa #IN
staa DDRC
I dab PORTC
ldaa CNTRL
ora #SCC_DIS
staa PORTA
ldaa #IN
staa DDRC
rts

*}

*void send_char_scca(void)
*{
send_ char _sec a equ •

psha
pshb
ldaa CNTRL
and a #SCC_EN
staa CNTRL

loop_char Ida a #SRA
jsr read_from_scc
an db #$04
cmpb #$04
bnc loop_char
pulb
pula
jsr write_to_scc
rts

104

••
*void send_char_sccb(void)
*{
send_char_sccb equ ...

psha
pshb
ldaa CNTRL
anda #SCC_EN
staa CNTRL

loop_chr ldaa #SRB
jsr read_from_scc
an db #$04
cmpb #$04
bne loop_chr
pulb
pula
jsr write_to_scc
rts

*}

* void statel_func(void)
*{
state I_ func equ *

jsr chk_command
jsr delay I
jsr delay I
rts

*)

*void state4_func(void)
*{
state4_func equ *

clr DEV_COUNT
clr DEV_PRBLM
jsr delay
jsr delay
rts

*I

*void state5_func(void)
*{
state5_func equ *

jsr detect_dev _act
ldaa DEV_ACTIVE
anda #TRUE
cmpa #FALSE
beq no_dev_act
clr DEV_ACTIVE
clr PNTR
clr PNTRI

chk_again_low jsr set_cntrl_byte
Ida a DEV_ACTIVE
anda #TRUE
cmpa #TRUE
bne cont_ste5

dev_active jsr chk_Iow _dbr
ldx #DEV_BUFF
I dab PNTR

105

abx.
Ida a DEY _PRBLM_LOW
cmpa #TRUE
beq dev _low _bad

dev_low_ok ldaa O,x
ora #$10
staa O,x.
jsr dev_msg_ok
bra cont_ste5

dev _low _bad ldaa O,x.
and a #$EF
staa O,x.
I dab PNTRl
ldx #OUT_BUFF
abx.
ldaa PNTR
staa O,x
inc DEV_COUNT
inc PNTRI
jsr dev _msg_bad

cont_ste5 inc PNTR
ldaa PNTR
and a #$OF
cmpa #$04
bne chk_again_Iow
bra end_ste5

no_dev_act ldx #MSGNODEV
jsr outstring
jsr crlf

end_ste5 rts
*}

*void state6_func(void)
*{
state6_func equ •

jsr detect_dev _act
ldaa DEV_ACTIYE
and a #TRUE
cmpa #FALSE
beq no_dev _act!
clr DEV_ACTIYE
clr PNTR

chk_again_high jsr set_cntrl_byte
ldaa DEV_ACTIYE
and a #TRUE
cmpa #TRUE
bne cont_ste6

dev _active I jsr chk_hi_dbr
Idx #DEV_BUFF
I dab PNTR
abx
ldaa DEV_PRBLM - HI

cmpa #TRUE
beq dev _high_ bad

dev _high_ok ldaa O,x
ora #$20
staa O,x
jsr dev_msg_ok
bra conl_ste6

106

dev _high_ bad ldaa O,x
and a #$DF
staa O,x
I dab PNTRI
ldx #OUT_BUFF
abx
ldaa PNTR
staa O,x
inc DEV_COUNT
inc PNTRI
jsr dev _msg_bad

cont_ste6 inc PNTR
ldaa PNTR
anda #$OF
cmpa #$04
bne chk_again_high
bra end_ste6

no_dev_actl ldx #MSGNODEV
jsr outstring
jsr crlf

end_ste6 rts
*)

*void state7_func(void)
*{
state7 _func equ •

jsr chk_dev_bad
jsr delay
jsr delay
jsr delay
jsr delay
rts

*}

*void chk_low_dbr(void)
*{
chk_low _dbr equ *

ldaa #TxA
I dab #$55
jsr send_char_scca
jsr delay
ldaa #$02
staa TEMPI

read_again I ldaa #SRA
jsr read_from - sec
andb #$01
cmpb #$01
beq rcad_scct

chk_templ dec TEMPI
\daa TEMPI
and a #$OF
cmpa #$00
bne read_ again I

read_sccl ldaa #RxA
jsr rcad_from_scc
cmpb #$55
beq dev_ok

dcv_prblm Ida a #TRUE
staa DEV _pRBLM_LOW

107

dev_ok

staa
bra
ldaa
staa

end_chk_low _dbr ldaa
ora
staa
rts

*}

*void chk_hi_dbr(void)
*(
chk_hi_dbr equ

ldaa
I dab
jsr
jsr

loop_rx ldaa
jsr
an db
cmpb
bne
bra

rd_scc2_again ldaa
jsr
bra

rd_scc2 ldaa
jsr
cmpb
bne

dev _prblmb ldaa
staa
staa
bra

dev _okb ldaa
staa

end_chk_hi_dbr ldaa
ora

DEV_PRBLM
end_chk_low _dbr
#FALSE
DEV _PRBLM_LOW
#CNTRL
#LOG_DIS
PORTA

*
#TxB
#$AA

delay2
#SRB
read_from_scc
#$03
#$01
rd_scc2_again
rd_scc2
#RxB
read_from_scc
loop_rx
#RxB
read_from_scc
#$AA
dev_okb
#TRUE
DEV _PRBLM_HI
DEV_PRBLM
end_chk_hi_dbr
#FALSE
DEV _PRBLM_HI
#CNTRL
#LOG_DIS

staa PORTA
rts

*)

*void set_cntrl_byte(void)
*{
set_cntrl_byte

dev_on

low_dbrl ldaa

equ
I dab
ldx
abx
ldaa
and a
cmpa
bne
ldy
a by
ldaa
and a
cmpa
bne
O,y

•
PNTR
#DEV_BUFF

O,x
#$CO
#$CO
dev_off
#CNTRL_TABLE

STATE
#$05
#$05
high_dbrl

108

anda #$BF
staa CNTRL
bra enable_flag

high_dbrl ldaa O,y
ora #$40
staa CNTRL

enable_flag Ida a #TRUE
staa DEV_ACTIVE
bra end_cntrl

dev_off ldaa #FALSE
staa DEV_ACTIVE

end_cntrl rts
*}

•void detect_dev _act(void)
*{
detect_dev _act equ •

ldaa #FALSE
staa PNTR
staa DEV_ACTIVE

chk_again_dev I dab PNTR
ldx #DEV_BUFF
abx
ldaa O,x
and a #$CO
cmpa #$CO
bne dev _not_act

dev_is_act ldaa #TRUE
staa DEV_ACTIVE
bra

dev _not_ act inc PNTR
ldaa PNTR
and a #$OF
cmpa #$04
bne

end_detect_dev rts
*}

*void chk_dev _bad(void)
*{
chk_dev_bad equ *

jsr detect_dev _act
ldaa DEV_ACTIVE
cmpa #FALSE
beq no _dev _active

dev_actl Ida a DEV_PRBLM
cmpa #TRUE
beq dev_prblml
bra no_dev_prblml

dev_prblml jsr send_bad_dev
bra dev_prblm2

no_dev _prblm 1 ldx #MSGDEVOK
bra send_info

no_dev _active ldx #MSGNODEV
bra send_info

dev_prblm2 ldx #MSGDEVBAD
send info jsr outstring

jsr crlf
rts

109

*}

*void send_bad_dev(void)
"'{
send_bad_dev equ •

I dab #FALSE
stab PNTRI
ldaa #'c'
jsr outacia

repeat I dab PNTRl
ldx #OUT_BUFF
abx
ldaa O,x
add a #$30
jsr outacia
inc PNTRJ
I dab PNTRI
cmpb DEV_COUNT
blo repeat
ldaa #'c'
jsr outacia
jsr crlf
rts

*)

*void show_char(void)
*{
show_char equ •
LOOP_l jsr isempty

beq LOOP_2
jsr remove_q
jsr outacia
bra LOOP_I

LOOP_2 jsr clear_q
rts

*)

•void insert_q(void)
"'{
insert_q equ ...

pshb
pshx
ldx #BUFF
I dab TAIL
abx
staa O,X
inc TAIL
inc COUNT
pulx
pulb
rts

... ,
*char remove_q(void)
"'{

remove_q equ
pshb
pshx
ldx #BUFF

110

I dab HEAD
abx
ldaa o,x
inc HEAD
dec COUNT
pulx
pulb
rts

*}

*void isempty(void)
*(
isempty equ *

tst COUNT
rts

*}

* void clear_q(void)
*(
clear_q equ *

clr HEAD
clr TAIL
clr COUNT
rts

*}

*void chk_command(void)
*{
chk_command equ *

jsr isempty
bne GET_CHAR
jsr clear_q
jmp END_CHK_CMD

GET_CHAR jsr remove_q
cmpa #'c'
beq CHK2_CMD
jmp RTN_CHR

CHK2_CMD jsr remove_q
cmpa #'a'
beq ADD_FUNC
cmpa #'c'
beq ENDCMD
cmpa #'d'
beq DIS_FUNC
cmpa #'e'
beq EN_FUNC
cmpa #'k'
beq CONT_FUNC
cmpa #T
beq LST_FUNC
cmpa #'r'
beq REMOY_FUNC
cmpa #'s'
beq STOP_FUNC
cmpa #NUL
jsr clear_q
bra END_CHK_CMD

RTN_CHR jsr return_char
bra END_CHK_CMD

Ill

ADD_FUNC jsr add_function
bra END_CHK_CMD

CONT_FUNC jsr cont_function
bra END_CHK_CMD

DIS_FUNC jsr dis_function
bra END_CHK_CMD

EN_FUNC jsr en_function
bra END_CHK_CMD

ENDCMD jsr endcmd_function
bra END_CHK_CMD

LST_FUNC jsr lst_function
bra END_CHK_CMD

REMOV_FUNC jsr remov _function
bra END_CHK_CMD

STOP_FUNC jsr stop_function
END_CHK_CMD rts
*}

*void retum_char(void)
*{
retum_char equ *

jsr outacia
jsr crlf
ldx #MSGRTN
jsr outstring
jsr crlf
jsr delay
rts

*}

*void add_function(void)
*(
add_function equ •

ldx #MSGADD
jsr outstring
jsr crlf
jsr remove_q
jsr add_dev _to_q
jsr chk_dev_added
cmpa #TRUE
bne dev_added_bad

dev_added_ok ldx #MSGDEV ADDOK
jsr outstring
jsr send_msg
jsr crlf
jsr send_ok
bra end_add_dev

dev_added_bad ldx #MSGDEV ADDBAD
jsr outstring
jsr send_msg
jsr crlf
jsr send_ bad

end_add_dev jsr crlf
rts

"'I

112

*void add_dev_to_q(void)
*{
add_dev _to_q equ ...

psha
pshb
pshx
ldx #DEV_BUFF
suba #'0'
staa OFFSET
tab
abx
ldaa O,x
anda #$80
cmpa #$80
beq no_count

count inc DEV_COUNT
no_count ldaa #$80

staa O,x
pulx
pulb
pula
rts

*}

*void chk_dev_added(void)
*{
chk_dev_added equ *

pshb
pshx
ldx #DEV_BUFF
I dab OFFSET
abx
ldaa O,x
and a #$80
cmpa #$80
beq deva_ok
bra deva_bad

deva_ok Ida a #TRUE
bra end_chk_dev

deva_bad ldaa #FALSE
end_chk_dcv pulx

pulb
rts

*I

*void cont_function(void)
*{
cont_function equ *

ldx #MSGCNT
jsr outstring
jsr crlf
jsr delay
rts

*I

113

*void dis_function(void)
*{
dis_function equ *

ldx #MSGDIS
jsr outstring
jsr crlf
jsr remove_q
jsr dis_dev
jsr chk_dev_dis
cmpa #TRUE
bne dev _dis_ bad

dev_dis_ok ldx #MSGDEVDISOK
jsr outstring
jsr send_msg
jsr crlf
jsr send_ok
bm end_dis_dev

dev_dis_bad ldx #MSGDEVDISBAD
jsr outstring
jsr send_msg
jsr crlf
jsr send_ bad

end_dis_dev jsr crlf
rts

*}

*void dis_dev(void)
*{
dis_dev equ *

psha
pshb
pshx
ldx #DEV_BUFF
suba #'0'
staa OFFSET
tab
abx
Ida a O.x
anda #$BF
staa O.x
pulb
pula
rts

*I

*void chk _dev _dis(void)
*{
chk_dev _dis equ *

pshb
pshx
ldx #DEV_BUFF
I dab OFFSET
abx
Ida a O,x
and a #$40
cmpa #FALSE
beq dev_disok
bra dev_disbad

dev_disok Ida a #TRUE

114

bra
dev_disbad ldaa #FALSE
end_chk_dev _dis pulx

pulb
rts

*}

*void en_function(void)
*{
en_function equ *

ldx #MSGEN
jsr outstring
jsr crlf
jsr remove_q
jsr en_dev
jsr chk_dev_en
cmpa #TRUE
bne dev_en_bad

dev_en_ok ldx #MSGDEVENOK
jsr outstring
jsr send_msg
jsr crlf
jsr send_ok
hra end_en_dev

dev_en_bad ldx #MSGDEVENBAD
jsr outstring
jsr send_msg
jsr crlf
jsr send_bad

end_en_dev jsr crlf
rts

*}

*void en_dev(void)
*{
en_dev equ *

psha
pshb
pshx
ldx #DEV_BUFF
suba #'0'
staa OFFSET
tab
abx
ldaa O,x
ora #$40
staa O,x
pulx
pulb
pula
rts

*I

*void chk_dev_en(void)
*{
chk_dev_cn equ *

pshb
pshx
ldx #DEV_BUFF

115

ldab OFFSET
abx
1daa O,x
anda #$40
cmpa #$40
beq dev_enok
bra dev_enbad

dev_enok Ida a #TRUE
bra end_chk_dev_en

dev_enbad ldaa #FALSE
end_chk_dev_en pulx

pulb
rts

*}

*void endcmd_function(void)
*{
endcmd_function equ *

1dx #MSGEND
jsr outstring
jsr crlf
jsr delay
rts

*}

*void lst_function(void)
*{
lst_function equ •

ldx. #MSGLST
jsr out string
jsr crlf
jsr delay
rts

*}

*void remov _function(void)
*{
remov _function equ *

psha
pshb
pshx
ldx #MSGREMOV
jsr outstring
jsr crlf
jsr remove_q
jsr remov_dev_q
jsr chk_dcv _rcmvd
cmpa #TRUE
bne dev _remvd_bad

dev _remvd_ok ldx #MSGDEVREMOK
jsr outstring
jsr send_msg
jsr crlf
jsr send_ok
bra end_rem_dev

dev _remvd_bad ldx #MSGDEVREMBAD
jsr outstring
jsr send_msg

116

jsr crlf
jsr send_bad

end_rem_dev jsr crlf
pulx
pulb
pula

*}

*void remov _dev _q(void)
*{
remov_dev_q equ *

psha
pshx
ldx #DEV_BUFF
suba #'0'
staa OFFSET
tab
abx
ldaa #$00
staa O,x
dec DEV_COUNT
pulx
pulb
pula
rts

*}

* void chk_dev _remvd{void)
*(
chk_dev _remvd equ ...

pshb
pshx
ldx #DEY_BUFF
I dab OFFSET
abx
ldaa O.x
and a #$FF
cmpa #$00
beq devr_ok
bra devr_bad

devr_ok ldaa #TRUE
bra end_chkr_dev

devr_had ldaa #FALSE
end_chkr_dev pulx

pulb
rts

*}

*void stop_function(void)
*(
stop_function equ ...

ldx #MSGSTP
jsr outstring
jsr crlf
jsr delay
rts

*}

117

•void send_ok(void)
*(
send_ok equ ...

psha
pshb
pshx
ldaa #'c'
jsr outacia
ldaa #'o'
jsr outacia
pulx
pulb
pula
rts

*)

*void send_bad(void)
*{
send_bad equ *

psha
pshb
pshx
Idaa #'c'
jsr outacia
ldaa #'b'
jsr outacia
pulx
pulb
pula
rts return

*}

* void readacia(void)
*(
readacia equ *

Ida a ACIA
bita #$01
beq readacia
ldaa ACIA+I
rts

*)

*void outacia(char accA)
*{
outacia equ *

stab TEMP3
!dab A CIA
bitb #$02
beq outacia
and a #$7F
staa ACIA+I
cmpa #CR
bne OUT_RTS
ldaa #LF
bra outacia

OUT_RTS I dab TEMP3
rts

*)

118

*void outstring(void)
*{
outstring equ •
STRING Ida a o.x

cmpa #'$'
beq DONE
jsr outacia
inx
bra STRING

DONE rts
*}

*void send_msg(void)
*{
send_msg equ *

psha
pshb
pshx
Idx #MSGDEV
jsr outstring
ldaa OFFSET
adda #$31
jsr outacia
pulx
pulb
pula
rts

*}

*void crlf(void)
*{
crlf equ "'

Ida a #CR
jsr outacia
rts

*}

"'void dev_msg(void)
*{
dev_msg equ *

pshx
ldx #MSGDEV
jsr outstring
ldaa PNTR
add a #$31
jsr outacia
pulx
rts

*}

*void dev_msg_ok(void)
*{
dev_msg_ok equ *

pshx
jsr dev_msg
ldx #MSGOK2
jsr outstring
jsr crlf

119

pulx
rts

"'}

*void dev_msg_bad(void)
"'{
dev _msg_bad equ "'

pshx
jsr dev_msg
ldx #MSGBAD2
jsr outstring
jsr crlf
pulx
rts

"'}

"'void delay(void)
"'{
delay equ *

ldy #$FFFF
DLY nop

nop
dey
bne DLY
rts

*I

*void delay 1 (void)
*{
delay I equ •

ldy #$000F
DLX nop

nop
dex
bne DLX
rts

*}

*void delay2(void)
*{
delay2 cqu •

ldy #$0008
DLX2 nop

nop
dex
bne DLX2
rts

*I

*void irqisr(void)
*{
lfQISf equ *

psha
pshb
pshx
I dab ACIA
bpi IRQEND
bitb #$01
beq IRQISRI

120

bne inA CIA
IRQISRI ldab ACIA

bitb #$02
beq IRQ END
bne outACIA

inA CIA jsr readacia
jsr insert_q
bm IRQ END

outACIA jsr outacia
bra IRQ END

IRQ END ldaa #$96
staa ACIA
pulx
pulb
pula
rti

*)

MSG equ *
FCC 'Starting ... $'

MSGDEV equ *
FCC 'DEVICE: $'

MSGNODEV equ *
FCC 'NO DEVICE ACTIVE $'

MSGRTN equ *
FCC 'RTNCHAR$'

MSGADD equ *
FCC 'ADDDEV $'

MSGDEVADDOK equ "'
FCC 'DEY ADD OK $'

MSGDEVADDBAD equ "'
FCC 'DEY ADD BAD$'

MSGCNT equ *
FCC 'CONT$'

MSGDIS equ "'
FCC 'DISBL DEY $'

MSGDEVDISOK equ *
FCC 'DEY DIS OK $'

MSGDEVDISBAD equ *
FCC 'DEY DIS BAD$'

MSGEN cqu *
FCC 'ENBL DEY$'

MSGDEVENOK equ *
FCC 'DEY ENOK $'

MSGDEVENBAD
FCC 'DEY EN BAD$'

MSGEND equ *
FCC 'ENDCMD$'

MSGLST equ *
FCC 'LSTDEV $'

MSGREMOV equ *
FCC 'REMV DEY$'

MSGDEVREMOK equ *
FCC 'RMVD DEY OK$'

MSGDEVREMBAD equ "'
FCC 'RMVD DEY BAD $'

MSGSTP equ *
FCC 'STOP$'

MSGEND2 equ *

121

FCC 'END LOW DBR $'
MSGOK equ •

FCC 'LOW DBR OK$'
MSGOKI equ •

FCC 'HIGH DBR OK$'
MSGOK2 equ •

FCC 'OK$'
MSGBAD equ *

FCC 'LOW DBR BAD$'
MSGBADl equ *

FCC 'HIGH DBR BAD $'
MSGBAD2 equ •

FCC 'BAD$'
MSGDEVOK equ *

FCC ' DEVICES OK $'
MSGDEVBAD equ *

FCC ' DEVICES BAD $'

CNTRL RMB control byte
OFFSET RMB device offset pointer
PNTR RMB device pointer
PNTRl RMB output offset pointer
DEV_ACTIVE RMB device active flag
DEY _PRBLM_LOW RMB device problem low flag
DEY _PRBLM_HI RMB device problem high flag
DEV_PRBLM RMB device problem flag
TEMP RMB temporary memory 0
TEMPI RMB temporary memory I
TEMP2 RMB temporary memory 2
TEMP3 RMB temporary memory 3
TEMP4 RMB temporary memory 4
STATE RMB state machine: state
HEAD RMB " Head
TAIL RMB "Tail
COUNT RMB I " Counter
BUFF RMB 64 addresses for Buffer
LAST RMB I last address of Buffer
OUT_BUFF RMB 16 output buffer
CNTRL_TABLE RMB 16 control bytes table
DEV_HEAD RMB device buffer head
DEV_TAIL RMB device buffer tail
DEV_COUNT RMB device buffer counter
DEV_BUFF RMB 64 device buffer
DEV_LAST RMB 1 last device buffer position

RMB 256 addresses for Stack Point
STACK RMB 1 initial add of Stack Point

122

APPENDIXB

I******"'"'**"'********** MAIN FILE FOR COMMUNICATION PROGRAM "'"'*******"'"'"'**"'*"'**I
I* "' Author: Isidro Alvarez, B.S.E.E. * *I
I* * Master of Science in Computer Engineering Thesis Project * *I
I* * School of Engineering and Design * *I
I* * Department of Electrical and Computer Engineering * *I
I*"' Florida International University "'*I
I* "' Miami, Florida "' *I
I* * Spring 1996 * *I
/***********"'***"'*****"'"'"'*"'***************"'***************I

#include "c:\isidro\msvc_ser4l.h"
#include "c:\isidro\msvc\sercl4l.h"

void room_numb(void);

void main(void)
{

COMPORT port;
char ch;

system(" cis"):
printf{"\n Is this the Main Security Office : "):
while(!_kbhit())

ch = _getche():
if ((ch = 'Y') II (ch = 'y'))

sec_office =TRUE;
else

sec_office =FALSE;
room_numb():

system("cls"):
port.setup_ports():
port.init_card();
for(int i=O: i < 5; i++)
{

)

device[i].pos_uscd =FALSE:
device[i].enabled =FALSE:
device[i].problem =FALSE:
device[i].had_problem =FALSE;
device[i].numb_of_problems = 0;

device_problem_flag =FALSE:
printf("Waiting for actions \n");
while(TRUE)
{

if(! port.chat_mode())
break:

port.tx_rx_mode();

123

I* *!
I**!
I* */

void room_numb(void)
{

int flag= TRUE;
char ch;

system(" cis");
while(flag)
{

system("cls");
printf("\n\n ");
printf("\n Enter room where the SECNET device is installed. \n");
printf("\n Please follow the following format: ecs258 or ECS258 \n");
printf("\n Enter room number : ");
scanf("%s", data_file_name);
printf("\n You entered Room#= %s", data_file_name);
printf("\n Is it correct (YIN) : ");
while(!_kbhit()) /"" ""I

ch = __getche();
if ((ch = 'Y') fl (ch = 'y'))

flag= FALSE:
l
flag=TRUE;
while(flag)
(

printf("\n\n");
printf("\n Enter phone number of the Main Security Office. \n"):
printf(''\n You can enter only the extension number. .. \n");
printf("\n Enter phone number : ");
scanf("%s", phone_number):
printf("\n You entered Phone#= %s", phone_number):
printf("\n Is it correct (YIN): ");

!"" ""!
!"" ""!

while(!_kbhit()) !"" ""I
!"" ""!

l

ch = __getchc();
if ((ch = 'Y') II (ch = 'y'))

flag = FALSE;

strcpy(dial, at_d);
strcat(dial, phonc_number):
system("cls");

I* *I

124

I"' **""**"'''"''* CLASS DEFINmON HEADER FOR COMMUNICATION PROGRAM *******"'*"' *I
I"' * Author: Isidro Alvarez, B.S.E.E. • *I
I"' • Master of Science in Computer Engineering Thesis Project * *I
I"' "' School of Engineering and Design * •1
I"'* Department of Electrical and Computer Engineering * *I
I* * Florida International University * *I
!"' • Miami, Florida * •1
I* * Spring 1996 * *I
I"'*********************************"'****"'*"'********************"'*********************************/

#ifndef _SERCL41H_
#define _SERCL41H_

#include "c:\isidro\msvc_ser41.h"
#include "c:\isidro\msvc\dv _com41.h"
#include "c:\isidro\msvc\menu41.h"

dev_MEMBERS *device2 = (dev_MEMBERS *)device;

void (interrupt _far *old_handlerl)(void);
void (interrupt _far *old_handler2)(void):

void interrupt _far receive_com I()
(

_disable():
ifUnp(PORT_ADDI I IIR) & RX_RDY);

whileUnp(PORT_ADDI I LSR) & DATA_RDY)

I
rx_bufferl [rx_buf_in l]=_inp(PORT _ADD I);
rx_buf_in 1 ++;
if(rx_buf_in I = BUF _MAX)

rx_buf_in 1 = 0;

I
_outp(ICR.EOI):
_enable();

void interrupt _far receive_com2()
(

disable();
lf(_inp(PORT _ADD2 I IIR) & RX_RDY);

while(_inp(PORT_ADD21 LSR) & DATA_RDY)
{

rx_buffer2[rx_buf_in2]= _inp(PORT _ADD2);

I

rx_buf_in2++:
if(rx_buf_in2 = BUF _MAX)

rx_buf_in2 = 0;

_outp{ICR,EOI);
_enable();

inline long int timing(void);
inline int timc_oul(int inc);

125

long int timing(void)
{

time_t It;
It = time(NULL);
return(lt);

int time_out(int inc)
{

long int newtime;

newtime=timing();
if ((newtime- start)< (inc+ 1))

return FALSE;
else

class COMPORT
(

return TRUE;

friend class MENU;
friend class PROTOCOL;

/'.,· **************"'****"'*****"'"'"'* Private Function Declaration "'"'"'****"'*"'**"'******"'***"'*I
~··***"'*************"'**"'*****"'******************"'**"'"'******************************"'*I
private:

int carrier(void):
unsigned char char_in(void):
unsigned char chamcter(void):
void close_port(void):
void day_selector(int i);
void disconnect(void);
void dial_up(void):
void header_block(void):
void init_port(int port);
int is_char_in(void);
void month_selector(int i):
void open_port(void):
void purge_buff(void):
void setup_port I (void):
void setup_port2(void):
int transmitter_ready(void);
void update_ptrs(void);

!"'check if link is made *I
I* get char in huf. & inc ptr *I
I* get char in buf. ! inc ptr *I
I* close port to terminate *I
I* day identificator *I
I* end Established Connection *I
I* automatic dial up *I
I* header block constructor *I
I* port I initialization *I
I* chk if a char is in buffer *I
I* month ldentificator *I
I* open ports to start *I
I* purge Input Buffer *I
I* parameters for port I *I
I* parameters for port 2 *I
I* check if Tx buffer is empty *I
I* if End of Buff->Begining *I

I* ****************"'"'"'"'********* Public Function Declaration ************************ *I
I** *I

public:

I***************************** Class Constructor Function Definition**********************/
I** *I

COMPORT(void){ void open_port(void): }; I* constructor Declaration *I

I* ******,..*'"*'"***************** Class Destructor Function Definition ********************* *I
I* **'"***I

126

public: -COMPORT(void){void close_port(void);};

};

int chat_mode(void);
void csd_setup(void);
void delay(clock_t wait);
void get_time(void);
void init_card(void);

void load_def(void);

void proc_char(unsigned char ch);
void rx_char_chat(void);
void rx_char_rxtx(void);
void setup_ports(void);
void select_mode(unsigned char ch);
void selection(unsigned char ch);
void send_ char(unsigned char ch);
void send_atcom(char *ch);
void send_string(char *ch);
void send_numb(char *ch);
void room_number(void);
void tx_rx_mode(void);
void room_numberl(void);
void header_block I (void);

int COMPORT: :carrier(void)
{

return _inp(PORT_ADD21 MSR) & DCD? TRUE: FALSE;

inline unsigned char COMPORT::char_in(void)
{

return rx_buffer2[rx_buf_out2++];

inline unsigned char COMPORT::character(void)
{

return rx_buffer2[rx_buf_out2]:

int COMPORT::chat_mode(void)

I
long int k;

unsigned char c;

MENU menu_list;
DEYCOM device_com;

hc_counter = 0;
while(TRUE)
I

rx_char _chat();
device_com.rx_char_com I();
if(!sec_office)

I
for(int j:;Q; i<3000; i++)

127

I* destructor Declaration *I

I* chat. with remote terminal *I
I"' circuit Switched Data SetUp*/
I"' function for delay •I
I* function to get date/time "'I
I"' hayes AT Commands CSD *I
!"' PSD "'/
I* parameter Definition COM I*/
I* COM2 *I
I* display character typed */
!"' rx char. from rem. terminal*/
I* rx either Files or char. "'/
I"' function that setups ports */
/*select remote term. operat. */
/* enter type of operation *I
I* function to Send a Charact. *I
I* function to Send AT Comd *I
I* send a string to port *I
I* send numhcr string to port *I
I* transmission file function */
I* mode used to file Tx *I

)

}

hc_counter++;
if(hc_counter > 8000)
{

device_problem_flag =TRUE;
hc_flag = FALSE;

if (device_problem_flag)
{

_putch(CR);
_putch(LF);
send_atcom(dial);
send_char(CR);
for (k=O; k<=IOOOOO; k++)
(

if(carrier())
k;::: 200000;

I
rx_char_chat();
device_problem_f1ag =TRUE;

I
if(_kbhit())
{

c = _getche();
if(c !=ESC)
{

else

}
if(carrier())
I

switch(c)
{

break;

link= TRUE;
break;

case NULL:
case Ext_Key:

c=_getch();

default:

if((c = 'l')ll(c == 'Q'))
di al_up(); */

if(c = Fl_Key)
menu_list. function_mcnu();

break;

proc_char(c);

if(link =TRUE)
return TRUE;

else
return FALSE;

128

void COMPORT::close_port(void)
{

disconnect();
_disable();
p_add=PORT _ADD I
_outp(p_add I LCR, portl_state);
_outp(p_add I LCR, _inp(p_add I LCR I DLAB));
_outp(p_add, portl_dll);
_outp(p_add I OxOI, portl_dhl);
_outp(p_add I LCR, _inp(p_add I LCR I -DLAB));
_outp(p_add I IER, OxOO);
_outp(IMR, _inp(IMR) I IRQ_ADD I);
_outp(p_add I MCR, _inp(p_add I MCR) I OxOO);
_dos_setvect(IRQ_ADDI, old_handlerl);
p_add=PORT _ADD2;
_outp(p_add I LCR, port2_state);
_outp(p_add I LCR, _inp(p_add I LCR I DLAB));
_outp(p_add, port2_dll);
_outp(p_add I OxOt, port2_dhl);
_outp(p_add I LCR, _inp(p_add I LCR I -DLAB));
_outp(p_add I IER, OxOO);
_outp(IMR, _inp(IMR) I IRQ_ADD2):
_outp(p_add I MCR, _inp(p_add I MCR) I OxOO);
_dos_setvect(IRQ_ADD2, old_handler2);
p_add=O;
_enable();
cout<<"Program Terminated ... "<<endl;
exit(ABORD;

void COMPORT::csd_setup(void)
{

send_char(CR);
_putch(SP);
delay(DL Y _TIME);

void COMPORT::day_selector(int i)
{

switch(i)
{

case 0:

case I:

case 2:

case 3:

case 4:

case 5:

strcpy(date_wday,"Sun");
break:

strcpy(date_wday,"Mon");
break;

strcpy(date_ wday ,"Tue");
break;

strcpy(date_wday,"Wed");
break;

strcpy(date_wday,"Thu");
break;

strcpy(date_wday,"Fri");

129

break;
case 6:

strcpy(date_wday,"Sat");

}

void COMPORT::dial_up(void)
{

for(int i=O; k8; i++)
(

}

send_char(dial[i]);
rx_char_chatO;
delay(DL Y _TIME);

rx_char_chat();
send_char(CR);
__putch(LF);
delay(DL Y _TIME);

void COMPORT::delay(clock_t wait)
{

clock_t goal;
goal=wait + clock();
while(goal > clock())

void COMPORT::disconnect(void)
{

inti, j;
link =FALSE:

cout<<"\nDisconnecting Now\n":
start=timing():
_outp(PORT_ADD21 MCR. GP02);
while (!carrier())
{

if(time_out(3))

I
for(i=O;i<3;i++)
{

send_char(hang_up[i]);
_putch(hang_up[i)):
delay(DL Y _TIME);

for(i=O;i<3:i++)
{

I

send_char{hang__upl [i]);
delay(DLY _TIME);

while(!time_out(S))
{ l

send_char(CR):
for(i=4;i<7;i++)
{

send_char(hang_up[i]);
printf("o/oc",hang_up[i]);
delay(DLY _TIME);

130

}
send_char(CR);
_putch(CR);
_putch(LF);
for(i= 1; j<4; j++)
{

send_char(at_atU]);
printf("%c" ,at_at[i]);
delay(DL Y _TIME);

}
break;

void COMPORT: :get_time(void)
{

int date_y;
char am_pm[]="AM";
struct tm *newtime:
time_t long_time;
time(&long_time);
newtime=loca1time(&long_time):

if(newtime->tm_hour > 12)
strcpy(am_pm, "PM"):

if(newtime->tm_hour > 12)
newtime->tm_hour -= 12:

if(newtime->tm_hour == 0)
newtime->tm_hour = 12:

_itoa(newtime->tm_sec,time_s.1 0);
_itoa(newtime->tm_min,time_m.1 0
_itoa(newtime->tm_hour,time_h,1 0);
_itoa(newtime->tm_mday .date_md.1 0);
date_y = newtime->tm_year;
if(date_y == 0)

end_ century = 1;
if(end_century = I)
r

else

I

date_y += 2000;
_itoa(date_y. date_yr. 10);

date_y += 1900;
_itoa(date_y. date_yr. 10);

strcpy(date_year,date_yr);
strcpy(time_hour, time_h);
strcpy(time_min. time_m);
strcpy(time_sec, time_s);
strcat(time_sec,'\0');
strcpy(date_mday. date_md);
strcat(date_mday.'\0');
strcpy(pm_am, am_pm);
day _selector(newti me->tm_ wday);
month_selector(newtime->tm_mon);

131

COMPORT: :header_block(void)
r

int i=O;

send_string(comp_path);
send_char(CR);
_putch(CR);
_putch(LF);
send_string(date_ wday);
send_char(CR);
_putch(SP);
send_string(date_month);
send_char(CR);
_putch(SP);
i=O;
send_numb(date_mday);
send_char(CR);
_putch(SP);
send_string(date_year);
send_char(CR);
_putch(SP);
send_string(time_hour);
send_char(CL);
_putch(CL);
send_string(time_min);
send_char(CL);
_putch(CL);
send_numb(time_sec);
send_char(SP);
send_string(pm_am);

void COMPORT::header_block I (void)
{

char Pos[]="Position ";
char hc[]="WARNING SECNET Device disconnected ";
char pos[S]:
int i=O;

room_numberl ():
get_ time():

delay(DLY _TIME I);
delay(DLY _TIME I);
delay(DL Y _TIME I);
send_string(comp_path);
send_char(SP);
_putch(SP);
send_string(date_ wday);
send_char(SP);
_putch(SP);
send_string(date_month);
send_char(SP);
_putch(SP);
send_char(SP);
_putch(SP);
i=O;

132

send_numb(date_mday);
send_char(SP);
_putch(SP);
send_string(date_year);
send_char(SP);
_putch(SP);
send_string(time_hour);
send_char(SP);
_putch(SP);
send_string(time_min);
send_char(SP);
_putch(SP);
send_numb(time_sec);
send_char(SP);
_putch(SP);
send_string(pm_am);
send_char(SP);
_putch(SP);

if (!hc_flag)
{

else
{

send_char(SP);
_putch(SP);
send_string(hc);
send_char(SP);
_putch(SP);
send_char(CR);
_putch(CR);
_putch(LF);

for (i = 1: i < 5; i++)
{

I
send_char(NULL):

if (device2[i].problem && device2[i).pos_used)

I
int j = 0:
while (device2[i).type[j] !=NULL)
{

send_char(device2[i]. type[j]);
_putch(device2[i].type[j]);
j++:

)
send_char(SP):
_putch(SP);
send_string(Pos);
_itoa(i. pos. 10):
send_string(pos);
send_char(SP):
_putch(SP):
send_char(CR);

133

void COMPORT: :init_card(void)
(

printf("\n Circuit Switched Data (CSD) Configuration at 38.4 kbps \n\n");
for(int i=O; i<lOO; i++)

csd_setup();

void COMPORT::init_port(int port)
{

p_add = port;
_outp(p_add I LCR, _inp(p_add I LCR) I state);
_outp(p_add I LCR, _inp(p_add I LCR) I DLAB);
_outp(p_add, dll);
_outp(p_add I Ox.Ot, dhl);
_outp(p_add I LCR, _inp(p_add I LCR) & Ox7f);
_outp(p_add I MCR, _inp(p_add I MCR) I GP021DTRIRTS);
_outp(p_add I IER, OxOI);
_outp(IMR, _inp(IMR) & port_mask);

in line int COMPORT: :is_char_in(void)
{

return !(rx_buf_in2 = rx_buf_out2);

void COMPORT::month_selector(int i)
(

switch(i)
{

case 0:

case I:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

case 8:

case 9:

strcpy(date_monlh. "Jan"):
break;

strcpy(date_month."Feb");
break;

strcpy(date_month."Mar"):
break:

strcpy(date_month." Apr"):
break:

strcpy(date_month,"May");
break:

strcpy(date_month, "Jun");
break;

strcpy(date_month, "Ju I");
break:

strcpy(datc_month, "Aug");

break;

strcpy(date_month, "Sep");
break;

134

case 10:

case 11:

strcpy(date_month, "Oct");
break;

strcpy(date_month,"Nov");
break;

strcpy(date _month," Dec");

void COMPORT::open_port(void)
{

_disable();
p_add=PORT_ADDI;
portl_state=_inp(p_add I LCR);
_outp(p_add I LCR, _inp(p_add I LCR I DLAB));
portl_dll::: _inp(p_add);
portl_dhl:::_inp(p_add I OxOI);
_outp(p_add I LCR, _inp(p_add I LCR I -DLAB));
p_add:::PORT _ADD2;
port2_state=_inp(p_add I LCR);
_outp(p_add I LCR, _inp(p_add I LCR I DLAB));
port2_dll::: _inp(p_add);
port2_dhl=_inp(p_add I OxOl);
_outp(p_add I LCR, _inp(p_add I LCR I -DLAB)); I
p_add=O;
_enable();

void COMPORT::proc_char(unsigned char ch)
(

send_char(ch);
if(ch =CR)

_putch(LF):

void COMPORT: :purge_buff(void)
{

_disable();
rx_buf_in2 = rx_buf_out2 = 0:
_enable();

void COMPORT::rx_char_chat(void)
{

while{is_char _in())
{

if(_isascii(rx_buffer2[rx_buf_out2)))

I
_putch(rx_buffer2[rx_buf_out2++]);
update_ptrs():

135

void COMPORT: :rx_char_rxtx(void)
{

unsigned char c;

while(is_char_in())
{

c=character();
if(!tx_rx)
(

if((c = CntrlR) II (c = CntrlT))
(

com_ char I = c;
cout<<c;
tx_rx =TRUE;

}
if(_isascii(c))
(

_putch(c);
if(char_in() == CR)

_putch(LF);
update_ptrs();

void COMPORT::select_mode(unsigned char ch)
{

switch(ch)
(

case CntriT:
break:

case CntriR:
break;

void COMPORT::selection(unsigned char ch)
{

switch(ch)
{

case CntrJQ:
disconnect():
break:

case CntriR:
send_char{ch);
break:

case CntriT:
if (device_problem_flag =TRUE)
{

send_char(ch);
room_numberl();
get_time();
header_block I();
for (int i=O: i < 5; i++)
{

if(device[i].problem)
device[i).problem = FALSE;

136

}
device_problem_flag = FALSB;

else
(

break;
default:

proc_char(ch);

send_char(ch);
room_number();
get_time();
header_block();

void COMPORT::send_atcom(char *ch)
{

int i=O;

while(ch[i] !=NULL)
{

send_char(ch[i]);
_putch(ch[i]);
delay(DLY _TIME);
i++;

void COMPORT::send_char(unsigned char ch)
{

int status

_outp(PORT_ADD21 MCR. GP021DTRIRTS);
while(!transmitter _ready())
{

do
status= _inp(PORT _ADD2 I MSR):

while(status & (CTS I DSR) '= I);

_disable();
_outp(PORT _ADD2. ch);
_enable():

void COMPORT::send_string(char "'ch)
{

int j=O;

while(ch[j] !=NULL)
I

send_char(ch[j]);
_putch(ch[j]);
j++;

137

void COMPORT::send_numb(char *ch)
{

for(int i=O; i<=2; i++)
{

send_ char(ch[i]);
_putch(ch[i]);

void COMPORT::setup_ports(void)
{

_disable();
setu p_port 1 ();
init_port(PORT _ADDI);
old_hand ler 1 = _dos_getvect(int_irq);
_dos_setvect(int_irq,receive_com 1);
setup_port2();
init_port(PORT _ADD2);
old_handler2=_dos_getvect(int_irq);
_dos_setvect(int_irq,reccive_com2);
_enable();

void COMPORT: :setup_port 1 (void)
{

p_add=PORT_ADDl;
port_mask=IRQ_NOI;
int_irq=IRQ_ADD1;
state=OxOO;
dii=OxOc;
dhi=OxOO;

void COMPORT: :setup_port2(void)
(

p_add=PORT _ADD2:
port_mask=IRQ_N02;
int_irq=IRQ_ADD2:
state=OxOO:
dii=Ox03;
dhi=OxOO;

int COMPORT: :transmitter _ready(void)
{

return _inp(PORT _ADD2 I LSR) & TX_RDY ? TRUE: FALSE;

void COMPORT::tx_rx_mode(void)
{

unsigned char c;
int key_hit:
int end_of _tx = 0;
int counter= 0;

tx_rx = FALSE;

138

while(TRUE)
(

count=O;
rx_char_rxtx();
key_hit =FALSE;
if(device_problem_flag)
{

}

c = CntrlT;
selection(c);
end_of_tx = 1;

else if(end_of_tx)
{

c =CntrlQ;
selection(c);
end_of_tx = 0;

}
if(_kbhit())
(

c = _getche();
selection(c);

else if(tx_rx)
{

select_mode(com_charl);

tx_rx=F ALSE;
if(!carrier())
{

link = FALSE;
break;

void COMPORT: :room_number(void)
{

char num[4];
char mumb[I 0];
char full_path[25];

printf("\nEnter Room Number: ");
scanf("%s". mumb):
strcpy(full_path.path);
strcat(full_path.mumb);
fi le_counter++;
_itoa(file_counter.num.l 0);
strcat(full_path.num);
strcal(f u ll_path.ex t);
strcpy(comp_path.full_path);

void COMPORT::room_numberl (void)

I

char num[4];
char full_path[25];
char space[]= " ";

139

strcpy(full_path,data_file_name);
strcat(full_path,space);
file_counter++;
_itoa(file_counter ,num,l 0);
strcat(full_path,num);
strcpy(comp_path,full_path);

void COMPORT::update_ptrs(void)
{

#end if

if (rx_buf_out2 == BUF _MAX)
rx_buf_out2 = 0;

140

	Florida International University
	FIU Digital Commons
	3-25-1996

	Development of a security network (SECNET) based on integrated services digital network (ISDN)
	Isidro Alvarez
	Recommended Citation

	FI1403605_0005_L
	FI1403605_0007_L
	FI1403605_0009_L
	FI1403605_0011_L
	FI1403605_0013_L
	FI1403605_0015_L
	FI1403605_0017_L
	FI1403605_0019_L
	FI1403605_0021_L
	FI1403605_0023_L
	FI1403605_0025_L
	FI1403605_0027_L
	FI1403605_0029_L
	FI1403605_0031_L
	FI1403605_0033_L
	FI1403605_0035_L
	FI1403605_0037_L
	FI1403605_0039_L
	FI1403605_0041_L
	FI1403605_0043_L
	FI1403605_0045_L
	FI1403605_0047_L
	FI1403605_0049_L
	FI1403605_0051_L
	FI1403605_0053_L
	FI1403605_0055_L
	FI1403605_0057_L
	FI1403605_0059_L
	FI1403605_0061_L
	FI1403605_0063_L
	FI1403605_0065_L
	FI1403605_0067_L
	FI1403605_0069_L
	FI1403605_0071_L
	FI1403605_0073_L
	FI1403605_0075_L
	FI1403605_0077_L
	FI1403605_0079_L
	FI1403605_0081_L
	FI1403605_0083_L
	FI1403605_0085_L
	FI1403605_0087_L
	FI1403605_0089_L
	FI1403605_0091_L
	FI1403605_0093_L
	FI1403605_0097_L
	FI1403605_0099_L
	FI1403605_0101_L
	FI1403605_0103_L
	FI1403605_0105_L
	FI1403605_0107_L
	FI1403605_0109_L
	FI1403605_0111_L
	FI1403605_0113_L
	FI1403605_0115_L
	FI1403605_0117_L
	FI1403605_0119_L
	FI1403605_0121_L
	FI1403605_0123_L
	FI1403605_0125_L
	FI1403605_0127_L
	FI1403605_0129_L
	FI1403605_0131_L
	FI1403605_0133_L
	FI1403605_0135_L
	FI1403605_0137_L
	FI1403605_0139_L
	FI1403605_0141_L
	FI1403605_0143_L
	FI1403605_0145_L
	FI1403605_0147_L
	FI1403605_0149_L
	FI1403605_0151_L
	FI1403605_0153_L
	FI1403605_0155_L
	FI1403605_0157_L
	FI1403605_0159_L
	FI1403605_0161_L
	FI1403605_0163_L
	FI1403605_0165_L
	FI1403605_0167_L
	FI1403605_0169_L
	FI1403605_0171_L
	FI1403605_0173_L
	FI1403605_0175_L
	FI1403605_0177_L
	FI1403605_0179_L
	FI1403605_0181_L
	FI1403605_0183_L
	FI1403605_0185_L
	FI1403605_0187_L
	FI1403605_0189_L
	FI1403605_0191_L
	FI1403605_0193_L
	FI1403605_0195_L
	FI1403605_0197_L
	FI1403605_0199_L
	FI1403605_0201_L
	FI1403605_0203_L
	FI1403605_0205_L
	FI1403605_0207_L
	FI1403605_0209_L
	FI1403605_0211_L
	FI1403605_0213_L
	FI1403605_0215_L
	FI1403605_0217_L
	FI1403605_0219_L
	FI1403605_0221_L
	FI1403605_0223_L
	FI1403605_0225_L
	FI1403605_0227_L
	FI1403605_0229_L
	FI1403605_0231_L
	FI1403605_0233_L
	FI1403605_0235_L
	FI1403605_0237_L
	FI1403605_0239_L
	FI1403605_0241_L
	FI1403605_0243_L
	FI1403605_0245_L
	FI1403605_0247_L
	FI1403605_0249_L
	FI1403605_0251_L
	FI1403605_0253_L
	FI1403605_0255_L
	FI1403605_0257_L
	FI1403605_0259_L
	FI1403605_0261_L
	FI1403605_0265_L
	FI1403605_0267_L
	FI1403605_0269_L
	FI1403605_0271_L
	FI1403605_0273_L
	FI1403605_0275_L
	FI1403605_0277_L
	FI1403605_0279_L
	FI1403605_0281_L
	FI1403605_0283_L
	FI1403605_0285_L
	FI1403605_0287_L
	FI1403605_0289_L
	FI1403605_0291_L
	FI1403605_0293_L
	FI1403605_0295_L
	FI1403605_0297_L
	FI1403605_0299_L
	FI1403605_0301_L
	FI1403605_0303_L
	FI1403605_0305_L
	FI1403605_0307_L

