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ABSTRACT OF THE DISSERTATION

INTEGRATING DEEP LEARNING WITH CORRELATION-BASED

MULTIMEDIA SEMANTIC CONCEPT DETECTION

by

Hsin-Yu Ha

Florida International University, 2015

Miami, Florida

Professor Shu-Ching Chen, Major Professor

The rapid advances in technologies make the explosive growth of multimedia data

possible and available to the public. Multimedia data can be defined as data collec-

tion, which is composed of various data types and different representations. Due to

the fact that multimedia data carries knowledgeable information, it has been widely

adopted to different genera, like surveillance event detection, medical abnormality

detection, and many others. To fulfill various requirements for different applica-

tions, it is important to effectively classify multimedia data into semantic concepts

across multiple domains. In this dissertation, a correlation-based multimedia se-

mantic concept detection framework is seamlessly integrated with the deep learning

technique. The framework aims to explore implicit and explicit correlations among

features and concepts while adopting different Convolutional Neural Network (CNN)

architectures accordingly. First, the Feature Correlation Maximum Spanning Tree

(FC-MST) is proposed to remove the redundant and irrelevant features based on

the correlations between the features and positive concepts. FC-MST identifies the

effective features and decides the initial layer’s dimension in CNNs. Second, the

Negative-based Sampling method is proposed to alleviate the data imbalance is-

sue by keeping only the representative negative instances in the training process.

To adjust different sizes of training data, the number of iterations for the CNN

vi



is determined adaptively and automatically. Finally, an Indirect Association Rule

Mining (IARM) approach and a correlation-based re-ranking method are proposed

to reveal the implicit relationships from the correlations among concepts, which

are further utilized together with the classification scores to enhance the re-ranking

process. The framework is evaluated using two benchmark multimedia data sets,

TRECVID and NUS-WIDE, which contain large amounts of multimedia data and

various semantic concepts.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

The rapidly advancing technology in smart devices equipped with high-quality-

image-capturing cameras allows people to share easily the multimedia content through

a variety of social networks and also makes the explosive growth of multimedia data

available. Multimedia data can be defined as a data collection that is composed

of a variety of data types and characterized by those multimedia types with differ-

ent representations, such as image, video, audio, text, and graphic object. Because

multimedia data carries knowledgeable information, it has been widely adopted to

different genera [210, 210, 211, 214, 217, 233, 241]. For example, multimedia data is

leveraged to combine education with entertainment and pass the knowledge to the

next generation in a very joyful way; medical science is always eager to identify the

abnormal cases from prolific multimedia content [136]; disaster management orga-

nization can provide the service on time if they can effectively analyze the incom-

ing multimedia information [22, 63, 126, 167, 182, 209, 214, 216]; and the engineering

research area also started the trend of mining multimedia content in building a

sustainable building [72,88].

A study presented by EMC Corporation, which is one of the largest cooperation

in US computer storage industry, stated that 1,800 EB (1 EB = 1,024 PB) of digital

information were produced in 2011, and the amount of information in- creased ten

times from 2005 to 2011 [61]. To manage the enormous volume of multimedia data,

i.e., image, videos, texts, and audio, how to effectively retrieve data from differ-

ent modalities and bridge the gap between low-level features and various semantic

concepts becomes more and more essential [21, 81]. The explosive dissemination of
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multimedia data raises the question that how an ample amount of information can

be extracted from multimedia content and can be further used to enhance human

life profoundly. It has been drawn researchers’ attention that the optimal fusion of

multimedia data from different modalities to effectively detect semantic concepts can

further benefit other research areas like semantic concept retrieval, surveillance event

detection, etc. To overcome the obstacles to multimedia research, some researchers

tried to make progress by utilizing highly discriminative and robust features [150]

such as Scale Invariable Feature Transformation (SIFT) [94, 163] and Histogram of

Oriented Gradients (HOG) [152,190]. The idea of considering only a single modality,

such as analyzing audio signals for the automatic transcription of speech, leveraging

color features for scene recognition, and using temporal features to detect different

actions, has also been greatly investigated. However, it has shown significant limita-

tions while coping with tasks, which have multiple modalities involved, for instance,

multimedia semantic concept retrieval, semantic concept detection, and multimedia

event detections.

Many researchers have been investigating multi-modal fusion for multimedia

analysis, e.g. video retrieval [130, 204], speech recognition [138, 153], event detec-

tion [91,137], object detection [154], semantic concept detection [119,234,239,240],

etc. However, because of the involved modalities, multi-modal fusion has many chal-

lenges: processing uni-modality independently or fusing multi-modality and coping

with different formats, capturing correlation and independence among modalities in

many levels, and detecting the confidence level of each model in achieving tasks.

2



1.1.1 Uni-modality or Multi-modality

The related work in the area of multimedia semantic retrieval can be roughly sum-

marized into (1) uni-modality based approaches and (2) multi-modality based ap-

proaches, from an information-fusion point of view. In the first category, single

modality features ( i.e. visual textual, etc.) are extracted for multimedia semantic

retrieval. However, due to the versatile characteristics of multimedia data, uni-

modality representation cannot properly convey the rich information embedded in

the multimedia content. In the multimedia research domain, multi-modal fusion has

attracted much attention, not only because uni-modal approaches have their limi-

tations to achieve complicated tasks, but also because multi-modal approaches pro-

vide resourceful information for various multimedia analysis tasks. Researchers who

have participated in significant image retrieval tasks, e.g., ImageCLEF [143], and

TRECVid [151], have witnessed how multi-modal fusion takes over the major role in

the multimedia analysis. The organizers of ImageCLEF have been providing multi-

media databases, including images with associated texts, since 2004 for participants

to investigate the effectiveness of multi-modal retrieval [83]. TRECVid, which has

involved over 1,200 researchers from hundreds of research groups around the world,

has been holding a benchmark annual activity to encourage researchers addressing

multimedia-related tasks, such as semantic indexing, interactive surveillance event

detection, instance search, multimedia event detection, multimedia event recount-

ing, etc. Specifically, semantic indexing, which automatically detects video segments

containing visual or multimodal concepts, is one of the major tasks involving mul-

tiple modalities. Therefore, many approaches have been presented for an effective

fusion of data in multi-modalities. One common way of multi-modality information

fusion is to apply statistical analysis methods to the direct concatenation of features

from multiple modalities at the feature level. For example, Smaragdis et al. [183]

3



adopt Principal Component Analysis (PCA) [95] and Independent Component Anal-

ysis (ICA) [86] to obtain the maximally independent audio-video subspaces from the

audio-visual concatenated features. HuanZhang et al. [56] apply both PCA and Ad-

aboost as feature selection methodologies to select useful region-based features in

object detection. Kusuma et al. [101] exploit the dependency between 2D and 3D

facial images and recombine the features from different modalities with the usage

of PCA in the first phase. In the second phase, Fishers Linear Discriminant (FLD)

is applied to perform another recombined transformation into more discriminating

data.

1.1.2 Early Fusion or Late Fusion

Based on a comprehensive survey article about multi-modal fusion, the fusion strate-

gies can be mainly categorized into early and late fusion methods [5]. Early fusion

can be referred to as an integration of features extracted from multiple modalities

as depicted in Figure 1.1. Features with various representations are pre-processed

to reduce feature dimensions, to convert the continuous value into discrete intervals

for possible usage, and to be later fed into one classification model. In the end, only

one classification result will be produced, and the performance of semantic concept

detection will be evaluated based on it. On the other hand, an integration of the

intermediate result is referred to as late fusion as shown in Figure 1.2, where each

modality is processed independently, and one classification model is built on each

modality without interfering or affecting other models. All the classification results

will be fused afterward to generate a final detection score.

With regards to early fusion, the basic approach simply concatenates features

from multiple modalities into one large feature set converts it into one large fea-
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ture set and converts it into one consistent representation [80, 97, 144]. Given one

complete feature set, several research work applied Canonical Correlation Analysis

(CCA) to model the correlations between features [124,169,202]. Sargin et al. [169]

apply CCA to fuse audio and lip texture features to achieve audiovisual synchro-

nization. Liu et al. [124] propose an audio-visual fusion framework, in which CCA

projects features into smaller subspaces. Hence, the correlation conveyed in the orig-

inal audio, and visual feature space can be preserved; meanwhile, model efficiency

can be improved in the more compact feature spaces. Different from these related

work, instead of leveraging correlation among features, the proposed framework in-

creases the granularity of correlation to explore the correlation within feature-value

pairs, and better builds the classification models on the finer captured correlations.

Late fusion, also called decision-level fusion, integrates the classification results

from different modalities and generates only one result [15, 66, 164]. Usually, each

modality is analyzed independently, so it has the flexibility to select the most suit-

able approach for different modalities, such as Latent Semantic Index (LSI) for

textual modality, and Hidden Markov Model (HMM) for audio or video modality.

Also, since the classification results collected from multiple modalities usually have

the same representation, it is easier to fuse the results. However, each modality usu-

ally generates its decision result independently, and the correlation among different

modalities is overlooked in many related work adopting late fusion strategy. For ex-

ample, Potemianos et al. [157] combine classification results from the audio modality

and visual modality and fuse two independent results with a linear weighted sum

method. Chen et al. [19] propose a fusion method called ARC and its goal is to

achieve a performance gained from all individual models.
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Figure 1.1: Early fusion

1.1.3 Feature Dimension Reduction

Exploiting information extracted from all the involved multiple modalities has been

proven to be advantageous to multimedia analysis. Nonetheless, several major is-

sues have not yet been adequately addressed. As a starter, handling data with

different representations such as visual, audio, and text, is an issue. Moreover, how

to fully employ all the given information, such as the correlation among different

modalities, is also quite challenging. To bridge the semantic gap between the low-

level features extracted from multimedia data and the high-level semantic meaning,

there are two major challenges researchers have to cope with. First, effectively an-

alyzing high-dimensional low-level features in different formats plays an important

role in building a good semantic detection framework, especially when it comes to

scalability issues. To address this issue, researchers usually adopt linear transfor-
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Figure 1.2: Late fusion

mations that project the low-level features into a low-dimensional space, reducing

the dimensionality of the data as well as the noise contained in the original feature

space. Specifically, statistical measures such as PCA and Singular Value Decompo-

sition (SVD) [183, 200] are widely integrated with genetic algorithms (GA) [3, 132]

in feature extraction and feature selection to carry out a dimensional reduction pro-

cess. However, outliers may easily affect projecting all the low-level features into a

relatively small universal feature space, and thus valuable information can be lost

during dimensionality reduction. Second, the correlation between various features

and the dependency between modalities should be thoroughly explored since the

implication among features would help semantic retrieval.
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1.1.4 Sampling Methods to Imbalanced Data

To resolve the data imbalance problem, two types of sampling methodologies are

usually utilized, i.e., oversampling and undersampling. As shown in Figure 1.3, over-

sampling methods [10,107,165] try to balance the data by adding more duplications

of positive instances. The major drawback is that the computation time for training

the classification model will greatly increase due to a larger training data set.

Figure 1.3: Two major types of sampling methods

On the other hand, undersampling methods [60,161,220] filter out the extra neg-

ative instances so that a more balanced data set can better represent both positive

and negative classes. The potential weakness of the undersampling method is that

the representative negative instances might be pruned, and the remaining negative

instances are not able to provide enough information for negative concepts. To sum

up, a good sampling method should be able to reduce the computation time while

having adequate information for both positive and negative concepts.
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1.1.5 Why Deep Learning?

Deep learning is a concept, which originally comes from the artificial neural net-

work, now is a popular branch of machine learning. The fundamental concepts were

illustrated from artificial intelligence research work, which aim to mimic the human

brain to capture the critical aspects of the received data for future use. The recent

neuroscience findings show that the neocortex learns through complex hierarchical

modules to represent the observations instead of directly generating sensory signals.

From an overview of the multimedia data analysis approaches and research di-

rections, Convolutional Neural Networks (CNNs) and Deep Belief Networks (DBNs)

are widely applied and improved in the deep learning field for each category. Many

of the newly proposed supervised learning approaches are using CNNs, including

Caffe, DeCAF, SINGA, etc. They are all general feed-forwarded models, which are

designed to cope with high-dimensional data, such as images and videos.

1.2 Proposed Solution

The dissertation proposes a correlation-based multimedia semantic concept detec-

tion framework, which seamlessly integrates with a convolutional neural network

and automatically adjusts networks architecture accordingly. The proposed frame-

work contains a general classification process on multimedia data including feature

selection, undersampling, and re-ranking. The motivation in all the components is

to explore the correlations among the features, concepts, and data to enhance the

performance. On the other hand, our proposed framework also adopts the deep

learning methods by adjusting the iterative process based on trainings results, con-

tinuously optimizing the classification performance.
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1.2.1 Correlation-based Feature Selection

Given a large multimedia data set, one of the major challenges would be how to

utilize useful information from high-dimensional data. The objective is removing all

the redundant and irrelevant features while selecting only the representative ones. A

well-designed feature selection process can not only reduce the computation time but

also enhance the classification precision without being affected by noise or outliers.

Moreover, independently selecting features from each modality or all modalities

becomes an interesting research topic when coping with multimedia data composed

of various sources.

To meet the aforementioned requirements, Feature Correlation Maximum Span-

ning Tree (FC-MST) method is proposed to filter correctly out the indifferent and

irrelevant features and select the representative features that are highly correlated

with the target concepts. FC-MST can visually reveal the implicit correlations of

features across multiple modalities and further select the suitable features based on

the discovered correlation. Here, suitable features mean those features whose values

are relatively different when an instance is identified as positive and negative. Also,

if the features have similar discretization results, only one of them is selected.

1.2.2 Negative-based Sampling

The imbalanced data problem has always posed a huge obstacle in multimedia se-

mantic detection. That is, the number of instances in the majority (negative) class is

relatively larger than tthe number of instances in the minority (positive) one. The

uneven class distribution results in the great challenge because the classification

model could produce a biased result, which favors the majority class.
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A undersampling method is proposed with a new thinking that keeping both

representative positive instances and negative ones can better train the classification

model. First, the proposed method selects two sets of features which are highly

correlated to the positive and negative classes. The selected features are later used

to generate the ranking scores for both classes. Given the scores, negative-based

sampling method can be performed.

1.2.3 Deep Learning in Semantic Concept Detection

Among all the deep learning methods, Convolutional Neural Networks (CNN) is

selected because of the following reasons. First, it is a biologically evolving ver-

sion of Multi-Layer Perceptron (MLP), which has the strength to learn from the

experience and optimize the final results. Second, it is originally implemented for

tasks like MNIST [105] digit classification or facial recognition, and it has been

first investigated on classifying more complicated instances [65,78], like images and

audios.

FC-MST is proposed here to obtain the effective features by removing both re-

dundant and irrelevant features. Meanwhile, the dimension of CNNs input layer is

automatically decided based on the features selected by FC-MST. Also, the negative-

based sampling method is proposed to resolve the imbalance batch sampling issues.

Throughout the entire pooling layer and convolutional layer, all the positive in-

stances are kept for each batch and the representative negative instances are selected

from the training data set.
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1.2.4 Correlation-based Re-ranking Framework

When identifying multiple semantic concepts from a large data set, many research

approaches utilize two types of semantic concept correlations to enhance further

the classification results, i.e., positive inter-concept relationship and negative ones.

Encouraged by the improvement of leveraging the direct concept correlation, indirect

association rules among the concepts are proposed to be explored.

The goal is to reveal the implicit correlation when two concepts are rarely iden-

tified in the same data instance, but they are indirectly correlated with a mediator

concept. IAR is firstly introduced to integrate with both positive and negative

concept correlation as a comprehensive correlation-based reranking framework.

1.3 Contribution

• A three-steps feature selection method called Feature Correlation Maximum

Spanning Tree (FC-MST) is proposed. It uses Multiple Correspondence Anal-

ysis (MCA) to explore correlation among features within and across modalities

and to capture correlation between features and the target semantic concepts.

It also allows visual depicts of feature correlation using Maximum Spanning

Tree. Consequently, it enhances the classification performance on multime-

dia data by effectively removing redundant and irrelevant features from high-

dimensional data. FC-MST can outperform four other well-known feature

selection methods in all three perspectives: MAP, feature reduction rate, and

efficient rate. It proves that the proposed method can not only greatly reduce

computational cost owing to feature space reduction, but also lead to better

classification results.
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• A negative-based sampling method (NS) is proposed and present a new think-

ing when designing a sampling method. It consists of three major steps: neg-

ative feature selection, negative ranking score generation, and negative-based

sampling method. First, a negative feature selection method is derived from

aforementioned FC-MST to identify features, which are highly correlated with

negative concepts. With the selected features, MCA is adopted to generate

the transaction weight (a negative ranking score) for each instance accordingly.

Since the higher the ranking score is, the more likely the instances will be iden-

tified as negative instances. NS performs the sampling process by keeping all

the positive instances and selecting only the instances with higher negative

ranking scores.

• An integrated framework is proposed to adopt the two aforementioned correlation-

based methods, i.e., FC-MST and NS, in adjusting the architecture of CNN.

First, FC-MST is proposed to identify effective features and decide the di-

mension of CNNs input layer instead of using fixed pixel values of the original

images. The features are selected and removed based on their correlation to-

ward the positive target concept. Second, NS is specifically proposed to cope

with the imbalanced dataset, which usually results in poor classification due

to its uneven distribution. The problem is getting worse when the original

CNN randomly assign data instances into each batch. Thus, NS is adopted to

alleviate the problem.

• Indirect Association Rule (IAR) is first introduced into a semantic concept

detection framework for semantic multimedia retrieval. First, a novel algo-

rithm is proposed to retrieve significant IAR correlations based on the statis-

tic information of semantic concept labels. Two types of newly defined labels

are used to train the weight estimation models for generating the posterior
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probability between the IAR and the positive target concepts. Last, IAR

correlation model is incorporated with negative correlation to refine the final

ranking scores through the explicit normalization and regression-based model

designed for dual correlations. From the experiments, the proposed frame-

work performed the highest classification results against other related work

demonstrate the strength in two folds. First, thoroughly explore the indirect

semantic concept correlation can enhance the classification results for a large

amount of multimedia semantic concept retrieval. Second, discovering IAR

correlation is a good combination with the existing negative-based correla-

tion framework because of its capability of detecting the interesting negative

correlations.

1.4 Scope and Limitations

The proposed framework in this dissertation still has the following limitations that

need to be conquered or considered in the future work:

• The proposed framework specifically focused on improving the performance

of semantic concept detection on multimedia big data. Although semantic

concept detection involves many research interests and is separated into three

major components to be targeted by the proposed framework correspondingly,

it is necessary to further expand the proposing ideas to broader research topics,

such as semantic concept retrieval, event detection, etc.

• To evaluate the proposed framework on three coherently integrated compo-

nents, a huge Flickr image dataset collected by National University of Singa-

pore is considered as a popular benchmark dataset in most of our framework.

This is not only because it contains six types of well-known low-level features
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along with the corresponding tags for each image, but also because it is widely

adopted in many research publications to validate the performance of other

related work. Also, TRECVID 2011 data set are also used to validate the

proposed framework due to its sufficient amount of features, data instances,

and also the kindly provided ranking scores. We have proven to distinguish

the proposed work from other related work, but we are looking forward to

testifying the proposed ideas on the various multimedia data set.

• The optimal values of thresholds in the proposed framework are selected from

the best training performance. Whereas the training processes are all con-

ducted off-line in advance and then the three-fold cross validation are consec-

utively performed to obtain the testing results.

1.5 Outline

The organization of this dissertation proposal is as follows. Chapter 2 presents the

literature review on how the existing approaches resolved the major challenges in the

multimedia analysis, including multimodal fusion, the feature with high dimension-

ality, imbalanced data, etc. In chapter 3, an overview of the proposed correlation-

based deep learning framework is depicted, and the three major components are

discussed in details in the later chapters. Chapter 4 mainly demonstrates how a

correlation-based feature selection method called FC-MST can resolve the major

challenge while analyzing multimedia data: high feature dimensionality. Chapter 5

introduces the negative-based sampling method (NS), which is inspired and derived

from FC-MST, to conquer the well-known data imbalanced issue in the multime-

dia research. In chapter 6, an integrated semantic concept detection framework,

which applies both FC-MST and NS in automatically updating CNN’s architecture,
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is proposed. Chapter 7 introduces the implicit IAR rule to multimedia retrieval

framework to further refine the results. Finally, Chapter 8 summarizes the overall

framework and points out the future directions to be investigated.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Challenges in Multitimedia Analysis

2.1.1 Multiple Modality Fusion

To resolve the aforementioned challenges, Atrey et al. [5] point out several questions

for multimedia analysis; in particular, some of them are comprehensively thought

through for content-based multimedia retrieval.

At Which Level Should the Fusion be Performed?

There are mainly two fusion levels: feature level and decision level. For feature

level, features from multiple modalities may simply be concatenated and converted

into one common representation space for follow-up analysis [97,127,144,199]. This

is the most common type of audio-visual fusion [188]. PCA [194] and ICA [86] are

often used after combining the features to extract the discriminant features and thus

reduce the feature space [13, 16, 52, 170]. The correlation between multiple features

from different modalities may be leveraged at the begining to enhance the final re-

sults. The feature-level fusion has one major advantage that it requires only one

classifier after the fusion step [188,206]. Figure 2.1 depicts the general approach for

feature-level fusion, where F represents features from a single or multiple modalities,

FF represents the fusion step, AU represents a single analysis unit (e.g. learning

algorithms, feature extraction, feature selection, and feature transformation), and

D represents the decision made from an analysis unit. On the other hand, decision-

level fusion analyzes the classification results from different modalities and produces

only one result [15, 40, 164]. Figure 2.2 depicts such a fusion approach, where DF
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represents the fusion step. Since each modality is analyzed independently, there is

flexibility to select more appropriate methods for each specific modality, for exam-

ple, Latent semantic Index (LSI) [103] for textual modality, hidden Markov model

(HMM) [48] for audio or video modality, and support vector machine (SVM) [59]

for image modality. Also, it will also be easier to fuse the final classification re-

sults, which usually share the same representation. However, decision-level fusion

does not fully exploit the feature correlation among modalities when building the

classifiers. As shown in Figure 2.3, a hybrid fusion method is depicted, which ex-

ploits the advantages from both feature-level fusion and decision-level fusion. After

combining features from different modalities, only one analysis unit is applied to

capture the feature correlation across modalities and transform them into feature

clusters that obtain higher within-cluster correlation. In the end, the ranked clas-

sification results produced from each cluster are fused at the decision level. Other

works in the literature have also applied hybrid fusion approaches that are different

from ours [128, 129, 192, 222, 224]. Islam et al. [223] propose a three-phase fusion

process toward audio and visual modalities: fusion within a single modality, fusion

across modalities in the feature level, and fusion on the decision level according to

the reliability of each modality. Zhang [225] proposes to employ a manifold learning

method called spectral regression to deal with the problem of a large feature space

while performing feature fusion, and then fuzzy aggregation is applied to combine

the distance metrics for the decision fusion level.

How Should the Fusion be Carried Out?

Multimodal fusion methods can be mainly categorized into three types: rule-based

methods, classification methods, and estimation methods. Rule-based methods

mainly consist of linear-weighted approaches that statistically capture the corre-
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Figure 2.1: Feature-level fusion

Figure 2.2: Decision-level fusion

lation between features and semantic concepts and then assign normalized weights

per feature. Many researchers have been investigating how to obtain the optimal

weights for the features and modalities [27, 176]. Wei et al. propose an approach

named concept-driven multi-modality fusion (CDMF) to compute multi-modality

fusion weights from predefined semantic concepts. CDMF includes two components

to analyze the relationship between an executed query and a modality. In the first

component, a set of semantically and visually relevant semantic concepts is inferred

based on the text words and the visual examples provided from executed queries. To

capture the co-occurrence relations among these semantic concepts, a context graph
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Figure 2.3: Hybrid fusion

is designed in advance. Then, the random walk is applied to model the interaction

among concepts over the context graph and produce the relevance of these concepts

to the query. In the second component, a relation matrix, which is learned offline

to model the reliability of each modality based on its concept detection accuracy,

is integrated with the concept relevance to produce the final fusion weights, which

indicates the correlation between the executed query and the involved modalities

using fuzzy transformation [197]. Lan et al. propose a methodology called double

fusion that adopts both the average of kernel matrices and multiple kernels learn-

ing to automatically learn the weights for different kernel matrices after combining

features from multiple modalities [102]. Rashid et al. explore a variation of lin-

ear combination techniques, e.g. fuzzy logic techniques, sequential techniques, and

linear combination models, and investigate how to adjust the inter-modality and

intra-modality weights [162]. Classification-based fusion methods leverage the abil-

ity of classification methods in classifying features from different modalities into

either positive or negative class for each semantic concept. Classification models

such as support vector machine (SVM) and hidden Markov models have both been

applied for fusion purposes [7, 44, 109, 125, 226]. Adams et al. compare the results

between Bayesian networks and support vector machines in classifying scores from
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multiple modalities that are more related to semantic concepts [1]. Nicolaou et

al. propose to adopt decision-level fusion based on Coupled Hidden Markov Model

(CHMM) [148], which integrates both cross-time and cross-chain conditional prob-

abilities and it is parallely represented as a series of HMM chains to model the

intrinsic temporal correlation between the modalities [148]. Jiang et al. propose to

collectively classify low-level features and transform high-level features into graphs.

To generate the final prediction results, it is proposed to fuse the classification scores

along with the constructed graph [91]. Estimated methods, including Kalman filter,

extended Kalman filter, and particle filter, are usually adopted when the tasks in-

volve temporal motion, such as estimation of moving objects in real-time. Zhang et

al. propose to fuse inertial and magnetic sensor data using a particle filter to cope

better with the nonlinear human body segment motion [228]. To perform real-time

human tracking, Motai et al. propose to fuse the relative tracking data with an op-

tical flow Kalman filter (OFKF) [142]. In the proposed framework, due to its ability

to linearly capture the fusion weights and the fact that its effectiveness has been

proven in many studies, a rule-based method is selected to enhance the performance

at the decision level.

What Should be Fused?

Usually, either features or modalities will be fused based on their ability to re-

trieve semantic concepts [17, 38, 39, 43, 145]. For example, Li et al. propose to use

the resulting weights of the Ordered Weighted Average (OWA) operator to yield a

consensus fusion score from multi-modalities. Zhou et al. suggest combining the

normalized classification results of both images and documents to perform better

information retrieval [232]. Zou et al. propose to compare two approaches for de-

tecting human movement using video and audio sequences: one applied Time-Delay
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Neural Network (TDNN) to fuse audio and visual data at the feature level, and

the other employed Bayesian Network (BN) to collectively model video and audio

signals [243]. Besides fusing features and modalities specifically, Ye et al. propose a

joint audio-visual bi-modal representation, called bi-modal words. A bipartite graph

is built from visual and audio modalities, which is later partitioned into bi-modal

words that can be also considered as joint patterns across modalities. Consequently,

the joint patterns are transformed into bimodal Bag-of-Words representations and

considered as input to the classifiers [218]. Similarity scores between queries and the

database images are also proposed in [18] as fusing targets. Chandrakala et al. pro-

pose to use the Artificial Bee Colony Optimization algorithm to fuse the similarity

scores based on texture and color features of an image. In this dissertation, we pro-

pose to integrate and fuse the features from all the modalities at the feature-value

pair level. Feature-value pair clusters are formed based on the correlation among

feature-value pairs and later converted into highly correlated feature clusters. One

classifier is subsequently trained for each feature cluster to generate the scores that

are fused at the decision level.

2.1.2 Feature Selection towards High Feature Dimensional-

ity

Feature selection is the process of identifying the most appropriate features from the

original feature set based on certain evaluation criteria [123]. It has been intensively

explored in various research fields, including pattern recognition [58, 89], machine

learning [79,139], data mining [20,121,179,221] and statistics [67], to name a few. It

is usually applied to reduce a high-dimensional feature space by selecting only the

relevant and important features. Research shows that a well-designed feature selec-
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tion method can not only handle high-dimensional data sets but also successfully

enhance classification performance in coping with imbalanced data where one class

has way more data instances than the other class(es) [23,55,139,231]. Hence, feature

selection has been widely applied in applications with imbalanced data sets such as

medical decision making using MRI images [227] or EMG signals [156], biomedical

studies using gene microarray data sets [106], and text categorization [195,231].

Generally speaking, feature selection methods can be categorized into three

classes, supervised algorithms [191, 198], unsupervised algorithms [47, 82], or semi-

supervised algorithms [203, 229]. As supervised algorithms require a set of labeled

training data that involves expensive human labor, many researchers increasingly

focus on unsupervised or semi-supervised methods in selecting good features. On

the other hand, feature selection methods can also be classified into different types

of strategies including filter, wrapper, and embedded methods [67]. In filter meth-

ods [14], only the general characteristics of training data are considered to evaluate

the predefined relevance score of each feature. No learning algorithms or induction

algorithms are involved during the process. Therefore, it has a lower computational

cost compared to the other two. The wrapper methods [98] work closely with cer-

tain classification algorithms whose classification results are used as the evaluation

criteria to determine whether a subset of features captures relevant information.

The feature subset produces the least classification errors will be selected to build

the classification model. Usually, the wrapper methods can outperform the filter

methods concerning classification accuracy. However, the process requires a proper

integration of multiple components including a predefined classification algorithm,

a good feature relevance criterion, and an efficient searching method to identify fea-

ture subset. Also, it is computationally intensive and may lead to an over-fitting

problem. Lastly, the embedded methods [49, 159] incorporate learning methods by
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using objective functions to evaluate feature relevance and select a relevant feature

subset. Unlike wrapper methods, it does not search through the space of all possible

feature subsets but identify feature subsets via a selected learning strategy. Hence, it

is less computationally expensive. Also, it is also less prone to overfitting compared

to wrapper methods.

2.1.3 Sampling towards Imbalanced Data set

Among all these challenges, data imbalance problem, in particular, has drawn atten-

tion from researchers in both data mining and machine learning areas, specifically

to improve the results for classification and semantic concept detection. In a general

classification process, training data is given to train the classifier in understanding

the data characteristics for both positive and negative classes. At this stage, the

sampling size and the data distribution usually greatly influence the performance.

However, data imbalance problem commonly takes place, where the number of pos-

itive training instances is excessively smaller than the number of negative training

instances. Because of the insufficient number of positive instances, the classifier is

not able to obtain enough information and it will incline to classify instances into

negative instances.

To resolve the data imbalance problem, two types of sampling methodologies are

usually utilized, i.e., oversampling and undersampling. Oversampling methods [10,

107,165] try to balance the data by adding more duplications of positive instances.

The major drawback is that the computation time for training the classification

model will greatly increase due to a larger training data set.

On the other hand, undersampling methods [60,161,220] filter out the extra neg-

ative instances so that a more balanced data set can better represent both positive
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and negative classes. The potential weakness of the undersampling method is that

the representative negative instances might be pruned, and the remaining negative

instances are not able to provide enough information for negative concepts. To sum

up, a good sampling method should be able to reduce the computation time while

having adequate information for both positive and negative concepts.

2.1.4 Deep Learning Methods towards Multimedia Seman-

tic Retrieval

With the enormous growth of data such as audio, text, image, and video, multimedia

semantic concept detection has become a challenging topic in current digital age

[9, 135, 205]. Deep learning, a new and powerful branch of machine learning, plays

a significant role in multimedia analysis [140, 207, 242], especially for the big data

applications, due to its deep and complex structure utilizing a large number of

hidden layers and parameters to extract high-level semantic concepts in data.

To date, various deep learning frameworks have been applied in multimedia

analysis, including Caffe [90], Theano [11], Cuda-convnet [99], to name a few. Deep

convolutional networks proposed by Krizhevsky et al. [100] were inspired by the

traditional neural networks such as MLP. By applying a GPU implementation of a

convolutional neural network on the subsets of Imagenet dataset in the ILSVRC-

2010 and ILSVRC-2012 competitions [12], Krizhevsky et al. achieved the best results

and reduced the top-5 test error by 10.9% compared with the second winner. A

Deep Convolutional Activation Feature (Decaf) [45], the direct precursor of Caffe,

was used to extract the features from an unlabeled or inadequately labeled dataset

by improving the convolutional network proposed by Krizhevsky et al. Decaf learns

the features with high generalization and representation to extract the semantic
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information using simple linear classifiers such as Support Vector Machine (SVM)

and Logistic Regression (LR).

Although deep convolutional networks have attracted significant interests within

multimedia and machine learning applications, generating features from scratch

and the duplication of previous results are tedious tasks, which may take weeks

or months. For this purpose, Caffe, a Convolutional Architecture for Fast Feature

Embedding, was later proposed by Jia et al. [90], which not only includes modifi-

able deep learning algorithms, but also collects several pre-trained reference models.

One such reference model is Region with CNN features (R-CNN) [64], which ex-

tracts features from region proposals to detect semantic concepts from very large

data sets. R-CNN includes three main modules. The first module extracts category-

independent regions (instead of original images) used as the inputs of the second

module called feature extractor. For feature extraction and fine-tuning, a large CNN

is pre-trained using the Caffe library. Finally, in the third module, the linear SVM

is applied to classify the objects. Based on the evaluation results on one specific

task called PASCAL VOC, CNN features carry more information compared to the

conventional methods’ extracted simple HOG-based features [51].

Many researchers recently utilize a pre-trained reference model to improve the

results and to reduce the computational time. Snoek et al. [189] retrained a deep

network, which was trained on ImageNet data sets. The input of the deep network

is raw image pixels, and the outputs are scores for each concept. These scores are

later fused with those generated from another concept detection framework, which

uses a mixture of low-level features and a linear SVM for concept detection. The

overall combination framework achieves the best performance results for nine differ-

ent concepts in the Semantic Indexing (SIN) task of TRECVID 2014 [151]. Ngiam

et al. [147] developed a multimodal deep learning framework for feature learning
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using a Restricted Boltzmann Machines (RBMs). To combine information from raw

video frames with audio waveforms, a bimodal deep autoencoder is proposed, which

is greedily trained by separate pre-trained models for each modality. In this model,

there is a deeply hidden layer, which models the relationship between audio and

video modalities and learns the higher order correlation among them.

Based on the successful results acquired by deep learning techniques, an im-

portant question arises: whether deep networks are the solution for multimedia

feature analysis or not. Wan et al. [196] addressed this question for Content-Based

Image Retrieval (CBIR). In particular, CNN is investigated for the CBIR feature

representation under the following schemes: 1) Direct feature representation using

a pre-trained deep model; 2) Refining the features by similarity learning; and 3)

Refining the features by model retraining using reference models such as ImageNet,

which shows the promising results on the Caltec256 dataset. However, the extracted

features from deep networks may not capture better semantic information compared

with conventional low-level features.

More recent research in multimedia deep learning has addressed challenges such

as feature extraction/selection and dimension reduction, where the input is raw pixel

values. Specifically, CNN is widely used as a successful feature extractor in various

multimedia tasks. However, it is still unknown how it can perform as a classifier for

semantic detection tasks.
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CHAPTER 3

OVERVIEW OF THE FRAMEWORK

As a result of the rapid improvement of contemporary technology, people usually

have smartphones that easily allow capturing images, recording video, and instantly

sharing the multimedia content and corresponding descriptions with friends over

social networks, a trend that has resulted in multimedia data propagating expedi-

tiously around the world. However, multimedia data contain copious amounts of

information from different angles and perspectives, and dealing with multiple repre-

sentations and leveraging the correlation among the involved modalities can be one

of the major challenges in the discipline of multimedia data analysis [54,62,155,213,

235, 238]. Many aspects of research have been dedicated to fusing data at various

levels, e.g., decision and feature, not only to extract the distinguishable information

from each modality but also to exploit the correlations among modalities and fea-

tures. The limitations of fusing multimedia data are pointed out in Chapter 2. In

this dissertation, an integrated multimedia big data analysis framework is proposed

specifically for multimedia semantic concept detection as shown in Figure 4.1. It

is mainly composed of two major components: Data Representation and Concept

Correlation Re-ranking. The framework aims to improve the performance of se-

mantic concept detection from all possible perspectives, such as utilizing the feature

correlation across multiple modalities, performing the sampling method based on in-

stances correlation toward negative concepts, and leveraging the concept correlation

to enhance the re-ranking process. Also, one of the deep learning methods called

convolutional neural network is introduced to adopt cohesively as the classifier. It
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Figure 3.1: Overview framework

has been carefully adjusted to cope with the enormous volume of multimedia data

that is typically handled.

3.1 Framework Overview

To efficiently manage multimedia data, there is no doubt that the first challenge

would be obtaining useful information from different forms of modalities and sources.

The definition of multimedia data is not limited to images or videos only, but also

includes audio, text, and even maps, animation, and other sources. In the proposed
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framework, we specifically aim at analyzing images, videos, and texts. Therefore,

to begin, the representation for all three categories of data needs to be decided.

3.1.1 Data Representation

When handling multimedia data, selecting a stable and effective data representation

is the very first challenge and important process. Specifically, data from different

modalities usually do not share the same format. For example, they could be nu-

merical values, categorical values, or textual words with redundant and repeated

information. A general video processing analysis is depicted in Figure 3.2. Given

one video, shot boundary detection is adopted to separate the entire video into dif-

ferent shots, where a shot is defined as a series of frames that were taken when the

camera starts recording until it stops. Once each shot is clearly separated, the key

frame detection method will be performed to identify key frames per shot. The key

frame can be either considered as the starting or ending frame of each shot or the

representative frame of each shot. Lastly, there are three types of features that can

be extracted from a key frame, shot, or the metadata that come with the video. A

list containing most of the well-known features is presented in Table 3.3.

Processing image data sets can be considered as a sub-process of the video pro-

cess. Only visual features, meta-data information, and textual features can be

extracted from image data sets. Handling textual features, on the other hand, rep-

resents a completely different process. Given a textual file, a list of stop-words is

firstly referenced to remove all of the redundant and nonessential words from the

file. Secondly, stemming algorithms are adopted to focus only on the word stem

and root form, and to remove all of the other derived words. Lastly, each word is
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Figure 3.2: General process of video analysis

considered as a single text feature, and it is represented by either its frequency or

the value of term frequency- inverse document frequency (TF-IDF).

3.1.2 Correlation-based Feature Selection

Once the representation of each feature is decided, two consecutive processes are

proposed to automatically select features by first removing the redundant and irrel-

evant ones; and second, clustering the features with higher correlation, and choosing

only one feature to represent each feature cluster. With regard to the proposed fea-

ture selection method called Feature-Correlation-based Maximum Spanning Tree

method (FC-MST), feature correlations among multiple modalities are proposed to
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be fully explored and leveraged. Initially, early fusion takes place to concatenate

all types of features into one dataset. Then, Multiple Correspondence Analysis is

leveraged to obtain the correlation among features and the correlation between fea-

tures and the positive concept. Given the above information, a maximum spanning

tree can be built, where each node represents a feature, and the edge represents

the feature correlation. Two pruning rules are applied to remove the smaller cor-

relation edges and cluster features into feature cluster with higher inter-correlation.

Consecutively, breadth-first search is applied to identify the feature clusters, and

one feature with the highest correlation toward positive concept is selected to rep-

resent the corresponding feature cluster. How to deal with features extracted from

different modalities with varied representations has always been an interesting and

important topic in the multimedia research society. The methods can be mainly

categorized into two groups. First, one classification model trains the features from

a single modality and fuses the classification results from multiple models using its

corresponding weight.

3.1.3 Negative-based Sampling

In this section, a negative-based sampling method is proposed to cope with the

well-known data imbalance issue. The data imbalance problem usually happens in

the real world, which means that the number of interesting instances is usually far

less than the uninteresting ones. For example, fraud intrusion detection, medical

diagnosis, and abnormal weather activities can all be considered as real-world data

with difficult, imbalanced learning. This is because the positive class does not have

enough data instances to be represented and the whole data set is overwhelmed by
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either noise or negative instances. Thus, the classification models have difficulties

to accurately obtain the data characteristics for both positive and negative classes.

The proposed method suggests performing the under-sampling method by fil-

tering out the unrepresentative negative instances. The feature selection method

(FC-MST) mentioned in the previous section is leveraged to identify representative

negative instances. It starts with selecting features that are highly correlated with

negative concepts, and then uses the selected features to assign a ranking score for

each testing instance. The higher the ranking score is, the higher probability it has

to be identified as a negative instance. Ultimately, the testing instances with the

lower-ranking scores are removed.

3.1.4 Deep Learning in Semantic Concept Detection

Among all of the deep learning methods, Convolutional Neural Networks (CNN) are

selected for a twofold reason. First, they are a biologically-evolving version of the

Multiple-Layer Perception (MLP), which has the ability to learn from experience and

optimize the final results. Second, these networks were originally implemented for

tasks like MINIST digit classification or facial recognition, and were first investigated

for classifying more complicated instances, like images and texts.

The above-mentioned two methods are introduced to automatically change the

architecture of CNN and to overcome the two major challenges in the multimedia

research area. First, FC-MST is proposed here to obtain effective features by re-

moving both redundant and irrelevant features. Meanwhile, the dimension of CNNs

input layer can be automatically decided based on FC-MSTs output. Second, the

negative-based sampling method is proposed to resolve the imbalance in batch sam-

pling issues.
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3.1.5 Concept Correlation Reranking

In this section, we emphasize how concept correlation can be leveraged in enhancing

the re-ranking performance. Not only were the direct relationship between concepts,

i.e., positive and negative, adopted, but indirect association rules were also identified

to capture the implicit relations among concepts.

In the previous works, Multiple Correspondence Analysis (MCA) was proposed

to evaluate how features are correlated to a positive class. In this component, we

proposed to leverage MCA in evaluating the correlation among different semantic

concepts. Thus, instead of applying MCA on a feature and its feature value, a

concept and its ranking score are analyzed. We are aiming to capture the direct

positive relationship between concepts. For instance, the direct positive correlation

between a semantic concept cloud and semantic concept outdoor is the one we tried

to capture and utilize. This is because if a data instance is identified as a positive

instance for a concept cloud, it will most likely be classified as a positive instance

for concept outdoor, as well.

Besides the direct concept relationship, the indirect association rule (IAR) is

proposed to explore the implicit relations among semantic concepts. It is relatively

easy to discover positive or negative correlation among concepts if they are directly

related. Thus, IAR aims to reveal the hidden correlations that are easily ignored,

and further enhance the re-ranking results. A semantic concept label matrix is built

to perform the IAR mining process. Once the IAR relationship is revealed, it is

seamlessly integrated with the previous work involving AAN.
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3.2 Dataset

Two benchmark multimedia data sets are introduced to validate the performance

of our framework. One is NUS-WIDE, a real-world web images database from the

National University of Singapore. The other is the collection of Internet archive

videos used in TREC Video Retrieval Evaluation (TRECVID), an annual research

activity sponsored by the National Institute of Standards and Technology (NIST).

Further details about these two data sets are described in the following sections.

3.2.1 TRECVID

TRECVID is one of the TREC conference series; it is hosted annually by NIST. The

initial goal is to provide a well-organized platform with an adequate volume of multi-

media data, a general video collection, and a general evaluation procedure. Thus, re-

searchers around the world can have the opportunity to make another breakthrough.

It started in 2003, and in TRECVID 2014, 62 unique research teams participated in

multiple multimedia research tasks, e.g., Instance Search (INS), Multimedia Event

Detection (MED), Multimedia Event Recounting (MER), Surveillance Event Detec-

tion (SED), and Semantic Indexing (SIN).

The data set used in this dissertation is the same data set used in the TRECVID

2011 Se- mantic Indexing Task. It contains three different data collections listed as

follows:

• IACC.1.A This is a collection of 8,000 Internet Archive videos, where each

video has the duration range between 10 seconds and 3.5 minutes and the

corresponding metadata, such as keywords, captions, title, and description.

The overall data size is around 50 GB, and the total duration time is 200

hours.
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Table 3.1: TRECVID 2011 semantic indexing statistic information

Semantic Indexing Task
Data Set

IACC.1.B
IACC.1.tv10.training
IACC.1.A

TRECVID Year 2011
Number of Concepts 346

Number of Training Data Instances 262911
Number of Testing Data Instances 137327

Average P / N Ratio 0.0829
Average Positive No. Instances 408.42

• IACC.1.B This is the added testing data set for TRECVID 2011 with exactly

the same features as IACC.1.A. They share the same data size; the same range

of duration time for each video and extra metadata are also provided for most

videos. This is another set of 8,000 videos.

• IACC.1.tv.training This data set is a relatively small one, with 3,200 Internet

Archive videos with longer duration for each video, e.g., the range is between

3.6 and 4.1 minutes. The total size and total duration for this video collection

are also 50 GB and 200 hours, respectively.

The video data used in TRECVID 2011 were selected for a twofold reason. One,

part of the dissertations work, namely, the concept correlation re-ranking process, is

built upon the decent semantic concept detection score of each shot to validate the

re-ranking performance. Second, the Shinoda Lab in the Department of Computer

Science at the Tokyo Institute of Technology, which achieved the top performance in

the TRECVID 2011 SIN Task, kindly provided us this information. The statistical

information of all of the data sets used in TRECVID 2011 can be found in Table

3.1.

The labels of the 346 high-level semantic concepts are provided through a collab-

orative annotation activity hosted by NIST. There are a couple of concept definitions
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Table 3.2: Examples of semantic concepts and the definition

Semantic Concepts Definition
Actor One or more television or movie actors or actresses
Adult Shots showing a person over the age of 18
Airplane Shots of an airplane
Animal Shots depicting an animal (no humans)

Bridges

A structure carrying a pathway or roadway over a de-
pression or obstacle. label as positive any shots that con-
tain a structure containing a pathway or roadway over a
depression or obstacle and as negative those shots that
do not contain such a structure shots containing struc-
tures over non-water bodies such as an overpass or a
catwalk were also labelled as positive, includes model
bridges

listed in Table 3.2, and the full concept list can be found with the detailed definition

in [151].

3.2.2 NUS-WIDE

NUS-WIDE is web image data set collected by the Lab for Media Search at the

National University of Singapore. The full data set can be downloaded from Flickr

along with the corresponding tags. There are two types of datasets with different

sizes. One is called NUS-WIDE, a full data set containing 269,648 images and a total

number of 5,018 exclusive tags. The other versions of NUS-WIDE are NUS-LITE,

NUS-WIDE- OBJECT, and NUS-WIDE-SCENE, which are designed as a lighter

version of NUS-WIDE, for object detection, and for scene detection, respectively.

Six low-level features are also extracted for each image. A detailed description of

each low-level feature can be found in Table 3.3.

To validate the performance of semantic concept detection using NUS-WIDE,

ground truth information is provided for 81 concepts, including airport, animal,

beach, bear, birds, etc. The whole list of 81 concepts can be found in [37].
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Figure 3.3: TRECVID random keyframe examples
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(a) Actor (b) Adult (c) Afican (d) Airplane

(e) Airport (f) Albatross (g) Animals (h) Costume

(i) Dock (j) Figures (k) Glacier (l) Ice Skating

(m) Lily (n) Millitary (o) Monument (p) Protesters

(q) Puppy (r) Pyramid (s) Statue (t) Volcano

Figure 3.4: NUSWIDE semantic concepts examples
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Table 3.3: Description of low-level features

Low-level Features Dimension Description

Color Histogram 64D
It is a representation of the
distribution of colors in an
image

Color Correlogram 144D
It is a representation of im-
age correlation in a statistic
fashion way

Edge Direction
Histogram

73D

It is a representation of his-
togram with the edges di-
rections ( borders or con-
tours)

Wavelet Texture 128D

It is a representation of
texture features extracted
based on the distribution of
wavelet coefficients

Block-Wise
Color Moments

225D

It is effective color represen-
tation which divides the im-
ages into n regions and com-
puted each channel using
three color moments (i.e.,
mean, standard deviation
and skewness)

SIFT descriptions 500D

SIFT stands for Scale-
invariant feature transform.
It is an algorithm proposed
in the computer vision to
detect and describe local
features in images
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CHAPTER 4

FC-MST: FEATURE CORRELATION MAXIMUM SPANNING

TREE FOR MULTIMEDIA CONCEPT CLASSIFICATION

4.1 Introduction

Feature selection is the process of identifying the most appropriate features from the

original feature set based on certain evaluation criteria [123]. It has been intensively

explored in various research fields, including pattern recognition [57, 89], machine

learning [79, 139], data mining [20, 120, 221] and statistics [67], to name a few. It is

usually applied to reduce high-dimensional feature space by selecting only the rele-

vant and important features. Research shows that a well-designed feature selection

method can not only handle high-dimensional data sets, but also successfully en-

hance classification performance in coping with imbalanced data where one class has

way more data instances than the other class(es) [23,36,55,139,231]. Hence, feature

selection has been widely applied in applications with imbalanced datasets such as

medical decision making using MRI images [227] or EMG signals [156], biomedical

studies using gene microarray data sets [106], and text categorization [195,231].

Generally speaking, feature selection methods can be categorized into three

classes, supervised algorithms [191, 198], unsupervised algorithms [47, 82], or semi-

supervised algorithms [203, 229]. As supervised algorithms require a set of labeled

training data that involves expensive human labor, many researchers are increasingly

focused on unsupervised or semi-supervised methods in selecting good features. On

the other hand, feature selection methods can also be classied into different types

of strategies including filter, wrapper, and embedded methods [67]. In filter meth-

ods [14], only the general characteristics of training data are considered to evaluate

the predefined relevance score of each feature. No learning algorithms or induction
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algorithms are involved during the process. Therefore, it has a lower computational

cost compared to the other two. The wrapper methods [98] work closely with certain

classification algorithm whose classification results are used as the evaluation crite-

ria to determine whether a subset of features captures relevant information. The

feature subset produces the least classification errors will be selected to build the

classification model. Usually, the wrapper methods can outperform the filter meth-

ods with regard to classification accuracy. However, the process requires a proper

integration of multiple components including a predefined classification algorithm, a

good feature relevance criterion, and an efficient searching method to identify feature

subset. In addition, it is computationally intensive and may lead to an over-fitting

problem. Lastly, the embedded methods [49, 160] incorporate learning methods by

using objective functions to evaluate feature relevance and select relevant feature

subset. Unlike wrapper methods, it does not search through the space of all possible

feature subsets but identify feature subsets via selected learning strategy. Hence,

it is less computationally expensive. In addition, it is also less prone to overfitting

compared to wrapper methods.

In this chapter, we propose a feature selection method called FC-MST to cope

with high-dimensionalities and imbalanced problem in multimedia concept detec-

tion. The proposed method first applied Multiple Correspondence Analysis (MCA)

to project original features into a two-dimensional feature space and obtain feature

correlations. Then, a Maximum Spanning Tree is built using the correlations and

eliminate irrelevant and redundant features by pruning the tree. The goal is to ex-

plore possible feature correlations within and among different modalities and further

utilize the correlation to identify the ones that are important and highly relevant to

the targeted semantic concepts.
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The rest of the chapter is organized as follows. We present the overview of the

proposed framework and the detail of each component in section 7.2. In section

7.3, we explain the design of the experiments and analyze the experimental results.

Finally, the paper is concluded in section 6.5.

4.2 Proposed Framework

For each semantic concept, the proposed FC-MST feature selection method aims to

identify a feature subset, containing the important and relevant features from the

original multi-modal feature set, to improve the performance of semantic concept

classification. It is a three-step supervised method as shown in Figure 4.1.

Figure 4.1: An overview of the proposed framework
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4.2.1 Step1: Features Eliminated from Discretization Pro-

cess

To handle both numeric and nominal features, a supervised method called Minimum

Description Length (MDL) [50] is used to discretize each feature into some intervals

based on its values associated with a target concept. For example, Table 5.1 shows

five instances with M features and two columns at the end indicates the label of

positive or negative concept. If an instance has value 1 in the positive concept

column, it means the concept can be observed from the instance, and vice versa.

Table 4.1: Example of the original features

Feature
1

Feature
2

...
Feature

M

Target
Concept
Positive

Target
Concept
Negative

Inst. 1 -0.49 1.08 ... -0.45 1 0
Inst. 2 -0.56 -0.85 ... -1.32 0 1
Inst. 3 -0.61 -2.21 ... 1.33 1 0
Inst. 4 -0.48 -0.97 ... -1.01 0 1
Inst. 5 -0.53 -1.54 ... 0.97 1 0

After discretization, all feature values are grouped into intervals and are denoted

as F i
j where i is the index of feature, and j is the index of the interval. For instance,

F 2
3 means the third interval of the second feature. Table 5.2 shows example dis-

cretization results of Table 5.1. As we can see, all instances share the same value in

the feature 1 column (i.e., F 1
1 ). This means feature 1 doesn’t have the distinguisha-

bility for the target concept, and such features will be removed in the first step of

our proposed method as shown in Algorithm 1.
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Table 4.2: Example of the discretized features

Feature
1

Feature
2

...
Feature

M

Target
Concept
Positive

Target
Concept
Negative

Inst. 1 F 1
1 F 2

3 ... FM
2 1 0

Inst. 2 F 1
1 F 2

2 ... FM
1 0 1

Inst. 3 F 1
1 F 2

1 ... FM
3 1 0

Inst. 4 F 1
1 F 2

3 ... FM
1 0 1

Inst. 5 F 1
1 F 2

1 ... FM
3 1 0

Algorithm 1: Feature eliminated from discretization process

input : The given training data set D with feature set as
TDF = F1, F2, ..., FM , along with the class label C

output: SF1: A set of selected features
1 SF1 ←− TDF ;
2 for i← 1 to M do
3 NumFIi = |MDL(Fi)|;

/* NumFIi represents the number of intervals in the ith
feature */

4 if NumFIi = 1 then
5 SF1 ←− SF1 − {Fi};
6 end

7 end
8 return SF1

4.2.2 Step2 : Features Eliminated from MCA

Multiple Correspondence Analysis (MCA) has been applied and proven effective to

the research areas ranging from feature selection [236], discretization [237], video

semantic concept detection [110–115,118,181], to data pruning [117]. In this paper,

our previous work [236] is integrated as a preprocessing step, which has been demon-

strated to outperforms other existing feature selection methods, such as information

gain (IG), Chi-Square measure (CHI), etc., in terms of classification accuracy.
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Algorithm 2: Features Eliminated from MCA

input : A given training data set D1 with selected feature set
SF1 = F1, F2, ..., FL , along with the class label C

output: SF2: A set of selected features
1 SF2 ←− SF1;
2 for i← 1 to L do
3 (FIC, FIR) = MCA(D1);

/* Correlation and reliability of feature interval toward

target concept */

4 for j ← 1 to NumFIi do
5 SumCorrelation+ = FICj;
6 SumReliability+ = FIRj;

7 end
8 FCi = (SumCorrelation− SumReliability)/NumFIi
9 end

10 if FCi < TH then
11 SF2 ←− SF1 − {Fi};
12 end
13 return SF2

After applying MCA to a data set as presented in Table 5.2, all the intervals of a

feature are projected on a two-dimensional space composed by two major principal

components, PC1 and PC2. Figure 4.2 depicts three intervals of feature 2 and two

red dots which represent positive and negative classes. The relation between an

interval of a particular feature and the positive class can be represented by two

factors. One is called Correlation αi
j (e.g., α2

1), which is the cosine value of the

angle between the feature interval F i
j (e.g., F 2

1 ) and the positive class. The other

is called Reliability βi
j (e.g., β2

1), which is the distance between a feature interval

F i
j (e.g., F 2

1 ) and the positive class. Together these two can be used as a relevance

score of a feature interval toward the semantic concept. Zhu et al. [236] go further

to obtain the average relevance score per feature to eliminate features whose score is

lower than a preset threshold as shown in Algorithm 2. This method is adopted here
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Figure 4.2: Feature correlation is calculated via MCA

as a preprocess step to obtain important features for building Maximum Spanning

Tree (MST) in step 3.

4.2.3 Step3 : Feature Eliminated from FC-MST

Building Feature Correlation Adjacency Matrix

Figure 4.3: Feature correlation between features is calculated via MCA
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Algorithm 3: Building Feature Correlation Adjacency Matrix

input : A given training data set D2 with selected feature set
SF2 = F1, F2, ..., FL , along with the class label C

output: Adjacency Matrix AM and the corresponding undirected weighted
graph G(F,E)

1 for i← 1 to L do
2 for j ← 1 to L do
3 (FIC, FIR)ij = MCA(D1);

/* Correlation and reliability of feature intervals of one

feature toward feature intervals of the other feature

*/

4 if i = j then
5 AM(i, j) = 0 ;
6 else
7 AM(i, j) = Max(FIC, FIR)ij;
8 end

9 end

10 end
11 return AM

In section 4.2.2, MCA is used to capture correlation between feature intervals

and the positive target concept as shown in Figure 4.2. To build the maximum

spanning tree, we apply MCA to the remaining features from section 4.2.2 to ex-

plore correlations between each pair of them. Take Figure 4.3 as an example, all

the intervals of the second feature F 2 and the third feature F 3 are projected onto

the two-dimensional symmetric map. The cosine value of each pair of intervals

from different features will be generated, and the maximum value is selected as the

correlation between this pair of features as shown in equation 4.1.

FCij =


argmaxCos(αF i

mF j
n
), if i 6= j

0, if i = j

(4.1)

Here, i and j are indexed from 1 to L, the total number of the remaining features.

The feature correlation between any feature and itself is set to be zero. Therefore,
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Algorithm 4: FC-MST
Feature Correlaion Maximum Spanning Tree

input : An undirected weighted graph G(F,E), comprising a set of features
SF2 = F1, F2, ..., FL together with a set of edges which have feature
correlation between each feature pairs as the value FCij where i and
j ∈ 1, 2, ...L, i < j. A set of Feature Correlation toward target
concept FCiC where i ∈ 1, 2, ...L

output: SF3: A set of selected features

1 SF3 ←− ∅; /* Selected features starts with an empty set */

2 MaxSpanTree = Prim(G); /* Applying Prim algorithm on undirected

weighted graph G */

3 for each Edge Eij ∈MaxSpanTree do
4 if FCij < FCiC and FCij < FCjC then
5 MaxSpanTree←−MaxSpanTree− Eij

6 end

7 end
8 C = BreadFirstSearch(MaxSpanTree);
/* Apply BFS algorithm and return a set of components */

9 for Each Component Cm ∈ C do
10 SF3 ←−MaxFC(Cm)
11 end
12 return SF3

an L ∗ L adjacent matrix can be obtained where each feature is a vertex, and the

correlation is the edge. Consecutively, an undirected weighted graph G(F,E) is built

upon the adjacent matrix where F is the set of remaining features and E indicates

the set of feature correlation {FCij}Li,j=1, i 6= j.

Building Feature Correlation Maximum Spanning Tree

There are three purposes of building a feature correlation maximum spanning tree

as listed below:

• Partition FC-MST into relevant feature clusters, which have high intra-cluster

correlation and low inter-cluster correlation

• Identify representative features from each feature clusters
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• Eliminate redundant and irrelevant features from FC-MST

As shown in Algorithm 4, given the undirected weighted graph from section

4.2.3, a maximum spanning tree is constructed using Prim’s method [158] which

spans over all the feature vertices based on the correlation values. In brief, the

proposed FC-MST is an acyclic subgraph that has the maximum sum of feature

correlation weights across all the features nodes. Once the maximum spanning tree

is built, the proposed algorithm (see statement 2 in Algorithm 4) loops through

all the edges and removes the ones whose weight FCij is smaller than the corre-

lation of features toward concept, e.g., FCiC and FCjC (see statements 3 to 7 in

Algorithm 4). Breadth-first search (BFS) [141] is applied to identify a set of dis-

connected components (i.e., clusters) C = C1, C2, ..., CN after such edges removal.

The feature with the largest correlation toward the target concept in one cluster

will be selected as its representative feature. Since every cluster is composed by

highly correlated features, all the other features besides the representative one are

considered redundant, and they are removed from the feature set (see statements 8

to 11 in Algorithm 4). At the end, a subset of representative features is selected to

build the classification model for each semantic concept.

4.3 Experiments

4.3.1 Dataset

NUS-WIDE [37], a large-scale image data set containing 269,648 images and the

associated tags, is introduced to evaluate the performance of the proposed feature

selection method. It has six types of low-level visual features extracted from the

images, e.g., color histogram, color correlogram, edge direction histogram, etc., and
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user tags from Flickr website represented as text features. There are 81 high-level

semantic concepts, most of them highly imbalanced with the PN ratio (i.e., the

number of positive instances vs. negative ones) lower than 1%.

4.3.2 Evaluation Criteria

As discussed earlier, a general use of the feature selection method is to identify a

subset of representative features that enable classifiers to build better classification

models more efficiently. Therefore, we can assess the performance of a feature

selection method by evaluating performance of the resulting classification model and

efficiency of the classification process. Consequently, the proposed feature selection

approach is evaluated and the comparative experiments are conducted against other

state-of-the-art methods using three criteria.

1. Classification Model Performance

Table 4.3: Confusion Matrix

Predicted Class
Positive Negative

Positive TruePos FalseNegActual
Class Negative FalsePos TrueNeg

Confusion matrix (see an example in Table 7.3) is widely used in machine

learning and data mining areas to visualize classification results in table-layout

fashion. Many performance metrics can be derived from it to analyze the

classification results from different perspectives.

• Precision

Based on Table 7.3, precision is calculated as

Precision =
TruePos

(TruePos+ FalsePos)
(4.2)
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In other words, precision shows the fraction of retrieved instances that

are relevant, where a high precision indicates a lower false positive rate.

• Average Precision and Mean Average Precision

Average precision (AP) and mean average precision (MAP) are two met-

rics extended from precision, as defined in equation 7.8 and equation 7.9,

respectively. In brief, Average Precision at K is used to evaluate top

K ranked results, where #(TopR) represents the number of instances

which are correctly classified as positive instances among top R retrieved

instances, R = 1...K. A high AP value means more relevant results are

ranked earlier than irrelevant ones.

AP (K) =
1

K

K∑
R=1

#(TopR)

R
(4.3)

Mean Average Precision is used to validate ranked results for more

than one concepts, where TC is the total number of concepts and APC(K)

is the average precision at K for concept C.

MAP (K) =

∑TC
C=1APC(K)

TC
(4.4)

2. Feature Reduction Rate The purpose of feature selection method is to

select the most relevant and important features while greatly reducing the

feature space. Hence, the proposed method is also evaluated in terms of feature

reduction rate, which is calculated in equation 4.5.

FRR =
(OF#− FS#)

OF#
(4.5)

where OF# represents the number of original features and FS# represents

the number of remaining features after applying feature selection method.
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3. Efficiency Rate Lastly, efficiency rate is defined by taking both MAP value

and processing time into account as shown in equation 4.6.

ER =
MAP (K)

ProcessingT ime
(4.6)

On one hand, a higher MAP value indicates more positive instances being

successfully given higher ranking scores. On the other hand, a reduced feature

space leads to shorter processing time. Therefore, given the equation 4.6,

a higher efficiency Rate (ER) represents a better overall performance for a

feature selection method.

4.3.3 Experimental results

In the experiments, our proposed method is compared with four well-known feature

selection methods, e.g., ChiSquare, Filter, InfoGain, and Wrapper. After feature

selection on the NUS-WIDE data, Support vector machine (SVM), a constructive

learning algorithm, is used to build classification models. SVM is chosen because of

its capability in classifying high-dimensional data [42]. Three-fold cross validation

scheme is adopted to avoid bias.

First, the experimental result demonstrates the comparison between the pro-

posed method and the other feature selection methods in terms of the MAP values.

As shown in Table 7.4, the proposed method FC-MST achieves the highest MAP

values and thus outperforms all other methods in all cases, where K is set to differ-

ent values in the range of 5 to 200. The proposed method is also the only feature

selection method that maintains over 0.7 MAP value across all cases. The trend can

also be seen in Figure 4.4.
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Table 4.4: The MAP values of 81 concepts in NUS-WIDE against other feature
selection methods

Method K = 10 K = 20 K = 30 K = 40 K = 50 K = 100 K = 200
FC-MST 0.8133 0.7940 0.7854 0.7786 0.7734 0.7481 0.7257
ChiSqure 0.7917 0.7604 0.7398 0.7246 0.7125 0.6744 0.6370

Filter 0.7961 0.7645 0.7439 0.7287 0.7166 0.6785 0.6412
InfoGain 0.7961 0.7645 0.7439 0.7287 0.7166 0.6785 0.6411
Wrapper 0.0617 0.0617 0.0617 0.0617 0.0617 0.0617 0.0617

Figure 4.4: The MAP values of 81 concepts in NUS-WIDE for different retrieved
levels against other feature selection methods

Secondly, Figure 4.5 depicts the feature reduction rate (FRR) over all 81 concepts

after applying the proposed feature selection method. Among them, we achieved

more than 90% FRRs on 40 concepts. The experiment indicates that the proposed

method can greatly reduce the original feature space and are especially helpful in

dealing with high-dimensional data sets.

Thirdly, the experiment is conducted to validate whether the proposed method is

able to reduce the processing time meanwhile producing a compatible classification

results against other methods in terms of MAP value. In Figure 4.6, the results are

projected on a two-dimensional chart, where the x-axis represents the computation

time for the classification process in seconds and the y-axis shows the MAP values

at K = 200. As shown in Figure 4.6, the proposed FC-MST method can achieve
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Figure 4.5: Feature Reduction Rate (FRR) for NUS-WIDE 81 concepts after
applying FC-MST

similar or better MAP value as compared to other methods while using significantly

shorter processing time.

Lastly, the efficiency rate is calculated as defined in equation 4.6 using MAP

value at K = 200. In Figure 4.7, it can be easily observed that FC-MST has the

highest efficiency rate across all the 81 concepts except for a few concepts where the

wrapper method produces better rates. This is because the wrapper method selects

only one feature, its processing time is the shortest. However, as can be seen in

Table IV, the wrapper method produces much worse MAP values (always the worst

among all methods).

4.4 Conclusion

In this chapter, we propose a three-steps feature selection method FC-MST. It uses

Multiple Correspondence Analysis to explore correlation among features within and

across modalities and to capture correlation between feature and targeted semantic

concepts. It also allows visual depict of feature correlation using Maximum Spanning
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Figure 4.6: Top200 Map Value v.s. Processing Time against other feature selection
methods

Tree. Consequently, it enhances the classification performance on multimedia data

by effectively removing redundant and irrelevant features from high-dimensional

data. As shown in the experiments, FC-MST outperforms four other well-known

feature selection methods in all three perspectives: MAP, feature reduction rate,

and efficient rate. It proves that the proposed method can not only greatly re-

duce computational cost owing to feature space reduction, but also lead to better

classification results.
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Figure 4.7: The efficiency rate of 81 concepts in NUS-WIDE against other feature
selection methods
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CHAPTER 5

NEGATIVE-BASED SAMPLING FOR MULTIMEDIA RETRIEVAL

5.1 Introduction

Efficiently manage multimedia big data becomes an important topic in both aca-

demic community [71, 75, 77, 175] and industry environment [28, 32, 201], since the

amount of multimedia data increases exponentially every day. YouTube official

website announced 300 hours of videos are uploaded to YouTube website every

minute [219]. Another well-known social media platform Flickr also announced that

the average number of photos shared on Flickr is 1 million per day [186]. To cope

with the enormous amount of multimedia data, many challenges need to be con-

quered, including integration among multiple modalities [34,73,74,85,177,180,230],

high dimensions of the features [26, 30, 31, 35, 68, 111, 179, 236], and data imbalance

problem [25,108,110,117,173,174], etc.

In this chapter, we propose a new thinking of performing sampling based on the

negative ranking scores. Instead of pruning the instances, which are unlikely to be

identified as positive instances, from the training data, our proposed method can

be formed by three components: feature selection for negative instances, producing

negative ranking scores based on the selected features, sampling the data by selecting

only instances with higher negative ranking scores.

The rest of the chapter can be organized as follows: In section 7.2, a detailed

description of the proposed method will be given. Experimental setup, the eval-

uation criteria, and the comparative experimental results are depicted in section

7.3. Finally, section 6.5 concludes the chapter by summarizing the contribution and

pointing out the discovery.
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5.2 Proposed Framework

In Figure 5.1, the proposed framework can be separated into three major components

that are all designed mainly considering the negative class. First, a negative-based

feature selection method is proposed to identify significant features for negative

classes. It is inspired and motivated by an existing work named FC-MST [68].

Originally, the work was proposed to choose an optimal feature subset by remov-

ing the redundant and irrelevant features, thus utilizing the selected features can

accurately detect the semantic concepts. In other words, the features are selected

to correctly identify positive instances. In this chapter, the focus is changed toward

the correlation between features and negative concepts. Second, given the selected

features, the negative ranking score can be calculated per instance, where the higher

the score is, the higher possibility it has to be classified as negative instances. Thus

different levels of negative concepts can be assigned to each instance. Third, the neg-

ative ranking scores generated from the second component are leveraged to perform

the sampling process. In this proposed sampling method, only the representative

negative instances are chosen and integrated with the positive instances to train the

classification model.

5.2.1 Negative-based Feature Selection Method

FC-MST (Feature Correlation Maximum Spanning Tree) was proposed in [68] to

select optimal feature subsets in enhancing semantic concept detection results. It

contains a three-stage process that aims to remove the redundant and irrelevant

features toward positive concepts. Because it has shown its ability in finding the

better feature subset to detect positive concepts, the proposed method is derived

and moved the shift toward detecting negative concepts. The original training data
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set is given as shown in Table 5.1. Later, it is discretized using MDL (Minimum De-

scription Length) [50] based on only the label of target concept negative. According

to the discretization results as shown in Table 5.2, features with only one interval

are removed at this stage.

Figure 5.1: The proposed negative-based sampling method for multimedia retrieval

Multiple Correspondence Analysis (MCA) is taking place after the discretization

process. It is adopted because its effectiveness has been shown in various research

areas, including video semantic concept detection [110, 112, 117, 118], feature selec-

tion [236], discretization [237], etc. It projects all feature intervals per feature onto

a two-dimensional space formed by two major principal components, PC1 and PC2,
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Table 5.1: Example of the original features

Feature
1

Feature
2

...
Feature

M

Target
Concept
Positive

Target
Concept
Negative

Inst. 1 -0.49 1.08 ... -0.45 1 0
Inst. 2 -0.56 -0.85 ... -1.32 0 1
Inst. 3 -0.61 -2.21 ... 1.33 1 0
Inst. 4 -0.48 -0.97 ... -1.01 0 1
Inst. 5 -0.53 -1.54 ... 0.97 1 0

Table 5.2: Example of the discretized features

Feature
1

Feature
2

...
Feature

M

Target
Concept
Negative

Inst. 1 F 1
1 F 2

3 ... FM
2 0

Inst. 2 F 1
1 F 2

2 ... FM
1 1

Inst. 3 F 1
1 F 2

1 ... FM
3 0

Inst. 4 F 1
1 F 2

3 ... FM
1 1

Inst. 5 F 1
1 F 2

1 ... FM
3 0

where Pos represents the positive concept and Neg represents the negative concept.

Following the similar process in [68], Correlation αi
j (e.g., α2

3) and Reliability βi
j

(e.g., β2
3) are considered when generating the feature correlation. However, the two

factors are generated using the cosine value and the absolute distance between the

feature interval and the negative concept instead of the positive one. As shown in

Equation (5.1), each feature correlation toward the negative concept FCi (i rep-

resents the feature index) is calculated by summing up the Correlation α and

Reliability β per interval with the corresponding weights, e.g., omega1 and omega2,

and then divided by the number of feature intervals j. The detailed description can

be found in [68,236].
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FCi =

∑j
n=1(ω1α

i
n + ω2(1− βi

n))

j
(5.1)

The negative feature correlations are used as the edge weight in forming FC-MST

proposed in [68]. Two feature pruning conditions are set to eliminate the irrelevant

and redundant features, which are listed as follows.

• If FCij < FCiN and FCij < FCjN , then Edge ij will be removed from the

formed FC-MST. i and j represents the index of the feature and N represents

the negative concept.

• After FC-MST is separated into different connected components, choose only

the representative feature from each component. In other words, the feature

with the maximum feature correlation toward the negative concept will be

selected into the final feature subsets.

Figure 5.2: Using MCA to obtain the correlations between the feature intervals
and the negative concept
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5.2.2 Negative-based Ranking Scores

In section 5.2.1, the process of selecting a feature subset to identify negative instances

is finalized. Therefore, based on the aforementioned feature subset, the transaction

weight learnt from MCA is introduced here to generate a negative ranking score per

training instance. In Equation (5.2), each feature interval will be assigned a weight

Weightij, where i represents feature’s index and j represents feature interval’s index.

It calculates the cosine value based on the angle between a feature interval and a

negative concept as previously shown in Figure 5.2.

Weightij = cos(θij) (5.2)

Once the weight for each feature interval is obtained, the transaction weight can

be calculated by looping through all the features within one instance and accumu-

lating the corresponding feature interval’s weight as shown in Equation (5.3). In this

equation, k represents the instance index, and M represents the number of features.

TransactionWeightk =
M∑
i=1

Weightij (5.3)

5.2.3 Negative-based Sampling Method

As shown in Figure 5.3, given two lists of ranking scores in descending order for both

positive and negative concepts, we propose to sample the instances with higher rank-

ing scores from both sides. It is natural to think that the sample subset containing

well-represented instances for both positive and negative concepts can enhance the

classification result, especially when dealing with an imbalanced dataset.
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Figure 5.3: Negative-based sampling method

5.3 Experiments

5.3.1 Dataset

TREC Video Retrieval Evaluation (TRECVID) is an annual worldwide competition

[184], which is held by National Institute of Standards and Technology (NIST). It

aims to improve the content-based analysis on a large collection of digital videos.

In TRECVID 2011 semantic indexing (SIN) task, the dataset, which is composed

of 200 hours videos with durations between 10 seconds and 3.5 minutes, is used to

validate the proposed framework. To utilize the data set, one or multiple keyframes

are extracted from each video shot, and each keyframe represents one instance in the

classification model. Each semantic concept, i.e., outdoor and person, has the label

information because of the collaboration efforts coordinated by Georges Quenot and
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team [6]. The data set is selected in this chapter because of two reasons. The first

reason is that the size of the data set is sufficient. The second reason is that it

contains severe data imbalance problem. The statistic information of the data set

is listed in Table 5.3 and Table 5.4. P/N ratio is calculated using the number of

positive instances divided by the number of negative instances.

Table 5.3: TRECVID 2011 semantic indexing IACC.1.B
statistic information

Semantic Indexing Task Data Set IACC.1.B
TRECVID Year 2011
Number of Concepts 8
Number of Training Data Instances 262911
Number of Testing Data Instances 137327
Average P / N Ratio 0.0829

Table 5.4: Semantic Concept and its ratio between the number of positive
instances and negative instances

No. Concept P / N Ratio
1 Adult 4.13%
2 Face 5.93%
3 Indoor 4.38%
4 Male Person 5.03%
5 Outdoor 13.82%
6 Overlaid Text 3.33%
7 Person 26.96%
8 Vegetation 3.73%

5.3.2 Experimental Setup

Mean Average Precision (MAP) is selected to evaluate the proposed framework,

in comparison to some other related work. It is a well-known evaluation method,

specifically when it is used to validate the classification ranking results for positive
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Table 5.5: Different retried levels of MAP values for all the semantic concepts

Framework Top10 Top50 Top80 Top100 Top150 Top200 Overall
Original 0.6029 0.5004 0.4636 0.4515 0.4208 0.4055 0.1328
RS 0.4766 0.3977 0.3793 0.3669 0.3572 0.3459 0.1074
MCA-based 0.5458 0.4445 0.4132 0.4032 0.3851 0.3726 0.1375
Proposed 0.6474 0.5629 0.5429 0.5268 0.4966 0.4753 0.1504

Table 5.6: Different retried levels of MAP values for Semantic Concept 7 (Person)

Framework Top10 Top50 Top80 Top100 Top150 Top200 Overall
Original 1 0.8267 0.7552 0.7166 0.6560 0.6260 0.2181
RS 0.5259 0.4818 0.4721 0.4684 0.4753 0.4776 0.2366
MCA-based 0.5238 0.4421 0.4369 0.4334 0.4357 0.4398 0.2354
Proposed 0.95 0.7866 0.7574 0.7363 0.6961 0.6673 0.2421

concept only. The higher the MAP value is, it means that it has higher possibility

to correctly detect positive concept from the Top N listed instances.

As listed in Table 5.4, eight concepts are selected to validate the performance

of the proposed framework and other related works. The semantic concept, such

as “Yasser Arafat” with the least number of positive instances, was not selected

because its extremely low P/N ratio, e.g., 0.000015 makes it hardly affected by any

sampling methods.

The experiment is designed to prove the assumption that when coping with

imbalanced data, it is important to sample the data by choosing the representative

instances for positive and negative concepts. Therefore, the proposed framework

is compared with three different results: Original, RS, MCA-based. Original is

the original training data without any sampling process. RS stands for Random

Sampling, and it means that negative instances were randomly filtered from the

training data. Lastly, MCA-based stands for MCA-based Data Pruning Method,

it has published in [117] and the method focuses on pruning the instances, which

are most likely identified as negative instances. Unlike other methods, the proposed
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Table 5.7: Different retried levels of MAP values for Semantic Concept 6
(Overlaid Text)

Framework Top10 Top50 Top80 Top100 Top150 Top200 Overall
Original 0.3333 0.1830 0.1458 0.1508 0.1576 0.1582 0.05551
RS 0.6666 0.3297 0.3143 0.3025 0.2871 0.2762 0.04054
MCA-based 0.7888 0.4783 0.4258 0.4078 0.3960 0.3795 0.07336
Proposed 0.8678 0.5573 0.5048 0.4868 0.4750 0.4585 0.15236

Figure 5.4: Comparison Results: MAP values in different retrieved levels

work aims to keep the instances in the classification model, which can well represent

both positive and negative concepts.

5.3.3 Experimental Results

The experiments are conducted on 8 semantic concepts with different P/N ratios.

In Table 5.5, MAP value based on different retrieved levels, such as Top 5, Top 10,

are presented for different sampling methods considering all the concepts. RS did

not make any improvement and it seems to trade the precision with using a smaller
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training set. MCA-based can demonstrate a higher MAP value compared to the

original data set, but the improvement is relatively minor. The proposed method can

produce the highest MAP values in every retrieved level and the improvement rate

ranges from 1.7% to 7.2%. In addition, it has average 9.92% higher MAP difference

and at least 14.68% higher MAP difference across all the retrieved levels against

MCA-based method and Random Sampling method, respectively. The results are

also presented in Figure 5.4.

To further investigate the effective of the proposed work on semantic concepts

with different P/N ratios, we break down the results into a single concept. In Table

5.6, these are the results for concept 7 “Person”, which has the P/N ratio up to

26.96%. As shown, the proposed framework is not able to gain much advantage

from retrieved level “Top 10” to “Top 50”, but it manages to produce better results

when considering more retrieved data instances. On the other hand, both RS and

MCA-based have lower MAP values for all the levels except for the last one when

comparing to original data.

The classification results of concept “Overlaid Text”, which has a relatively small

P/N ratio 3.33%, are depicted in Table 5.7. It clearly demonstrates that the pro-

posed work outperform all the other works in all the levels. Specifically, it improved

almost 10% compared to the original data when calculating MAP value based on

all the instances. Although, RS and MCA-based can produce better MAP values

compared to the original training data, which shows the importance of performing

sampling method on large data set. The difference between the proposed method

and other two methods pointed out the fact that it is crucial to considering rep-

resentative instances when designing a sampling method. Moreover, the proposed

method aims to keep the representative negative instances while performing sam-
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pling method. Thus, it is able to perform much better results against other sampling

methods when the P/N ratio of the concept is relatively high.

5.4 Conclusion

The chapter proposed a new thinking when designing a sampling method and it

consists of three major steps: negative feature selection, negative ranking score

generation, and negative-based sampling method. First, a negative feature selection

method is derived from an existing work called FC-MST [68] to identify features,

which are highly correlated with negative concept. With the selected features, MCA

is adopted to generate the transaction weight (a negative ranking score) for each

instance accordingly. Since the higher the ranking score is, the more likely the

instances will be identified as negative instances, the proposed sampling method

utilizes this information and selects only the instances with higher negative ranking

scores.

TRECVID 2011 data set is selected to testify the performance on different levels

of imbalanced data. The proposed method is compared with two methods and the

original training data without sampling method. Based on the results, it can con-

clude into threefold. First, the proposed method clearly demonstrates its strength

when coping with the imbalanced data set. Second, sampling method like “Random

Sample” does not always have better results since randomly filter out the negative

instances might result in poor classification performance. Lastly, the experimen-

tal results have validated the proposed assumption that it is important to select

the representative instances for both positive and negative instances when applying

sampling method.
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CHAPTER 6

DEEP LEARNING IN SEMANTIC CONCEPT DETECTION

6.1 Introduction

In recent decades, the number of multimedia data transferred via the Internet in-

creases rapidly in every minute. Multimedia data, which refers to data consisting

of various media types like text, audio, video, as well as animation, is rich in se-

mantics. To bridge the semantic gap between the low-level features and high-level

concepts, it introduces several interesting research topics like data representations,

model fusion, imbalanced data issue, reduction of feature dimensions, etc.

Because of the explosive growth of multimedia data, the complexity rises ex-

ponentially with linearly increasing dimensions of the data, which poses a great

challenge to multimedia data analysis, especially semantic concept detection. Due

to this fact, it draws multimedia society’s attention to identifying useful feature

subsets, reduce the feature dimensions, and utilize all the features extracted from

different modalities. Many researchers develop feature selection methods based on

different perspectives and methodologies. For example, whether the label informa-

tion is fully explored [173–175,180,215,236], whether a learning algorithm is included

in the method [30, 31, 34, 74, 85, 108], etc. However, most feature selection methods

are applied on data with one single modality. Recently, a Feature-Correlation Maxi-

mum Spanning Tree (FC-MST) [68] method has been proposed for exploring feature

correlations among multiple modalities to better identify the effective feature subset.

On the other hand, the imbalanced dataset is another major challenge while

dealing with real-world multimedia data. An imbalanced data set is defined by

two classes, i.e., positive class, and negative class, where the size of positive data

is way smaller than the size of negative one. When training a classification model
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with unevenly distributed data, the model tends to classify data instances into the

class with a larger data size. To resolve the issue, two types of sampling methods

are widely applied, i.e., oversampling and undersampling. Oversampling Methods

are proposed to duplicate the positive instances to balance the data distribution.

However, the computation time will increase accordingly. Undersampling methods

are also widely studied to remove the negative instances to make the data set be

evenly distributed. Unlike most undersampling methods, which remove the negative

instances without specific criteria, Negative-based Sampling (NS) [70] is proposed

to identify the negative representative instances and keeps them in the later training

process.

Recently, applying deep learning methods to analyze composite data, like videos

and images, has become an emerging research topic. Deep learning is a concept

originally derived from artificial neural networks, and it has been widely applied

to model high-level abstraction from complex data. Among different deep learning

methods, the Convolutional Neural Network (CNN) [104] is well established and

it demonstrates the strength in many difficult tasks like audio recognition, facial

expression recognition, content-based image retrieval, etc. The capability of CNN

in dealing with complex data motivates us to incorporate it for multimedia analysis.

Specifically, the advantages of CNN are two folds. First, CNN is composed of hier-

archical layers, where the features are thoroughly trained in a bottom-up manner.

Second, CNN is a biologically-derived Multi-Layer-Perceptron (MLP) [166], thus it

optimizes the classification results using the gradient of a loss function on all the

weights in the network.

In this chapter, an integrated framework is proposed to solve the semantic con-

cept detection problem by applying two correlation-based methods, e.g., FC-MST

and NS, on refining the CNN’s architecture. FC-MST aims to obtain the effective
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features by removing other irrelevant or redundant features, and it is further ap-

plied on deciding the dimension of the CNN’s input layer. NS is introduced to solve

the data imbalance problem and it is proposed to better refine the CNN’s batch

assigning process.

The rest of this chapter is organized as follows. A detailed description of the

proposed framework is presented in Section 7.2. The experiment dataset and the

experimental results are discussed in Section 7.3. Lastly, the chapter is concluded

in Section 6.5 with the summarization.

6.2 Related Work

We address the aforementioned challenges by bridging the gap between semantic

detection and a deep learning algorithm using general features including low-level

visual and audio features as well as textual information, instead of fixed pixel values

of the original images. FC-MST, a novel feature extraction method, is proposed

to remove irrelevant features and automatically decide the input layer dimension.

Furthermore, NS is utilized to handle the imbalanced datasets. Finally, by lever-

aging FC-MST and NS in the CNN structure, not only the important and relevant

features are fed to the network and the data imbalance issue is solved, but also the

computational time and memory usage are significantly reduced.

6.3 Proposed Framework

As shown in Fig. 6.1, the proposed framework starts from collecting the data derived

from different data types, such as images, videos, and texts. Each modality requires

the corresponding pre-processing step. For instance, shot boundary detection and
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Figure 6.1: Overview of the proposed framework
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key frame detection are applied to obtain the basic video elements, e.g., shots and

keyframes, respectively. Then, low-level visual features and audio features can be

extracted from them. For the image data, visual features can be directly extracted

from each instance and possibly combined with the corresponding textual informa-

tion including tags, title, description, etc. For the text data, it is usually represented

by its frequency or TF-IDF [168] values. Once all the features are extracted and

are integrated into one, the proposed FC-MST method is adopted to select useful

features and decide the dimension of the input layer. On the other hand, NS is

carried out to enhance the batch instance selection for every feature map in each

iteration process. Hence, the architecture of the original CNN is automatically ad-

justed based on the FC-MST’s feature selection and NS sampling scheme. At the

end, each testing instance is labeled as 1 or 0 as an indication of a positive instance

or a negative one, respectively.

6.3.1 Convolutional Neural Network

CNNs are hierarchical neural networks, which reduce learning complexity by shar-

ing the weights in different layers [104]. CNN is proposed with only minimal data

preprocessing requirements, and only a small portion of the original data are con-

sidered as the input of small neuron collections in the lowest layer. The obtained

salient features will be tiled with an overlap to the upper layer in order to get a

better representation of the observations. The realization of CNN may vary in the

layers. However, they always consist of three types of layers: convolutional layers,

pooling layers (or sub-sampling layers), and fully-connected layers. One example of

the relationships between different CNN layers is illustrated in Fig. 6.2.
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Figure 6.2: Convolutional Neural Network
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1. Convolutional layer

There are many feature maps (representation of neurons) in each convolutional

layer. Each map takes the inputs from the previous layer with the same weight

W and repeatedly applies the tensor function to the entire valid region. In

other words, the convolution of the previous layer's input x is fulfilled with a

linear filter, where the weight for the kth feature map is indicated as W k and

the corresponding bias is indicated as bk. Then, the filtered results are applied

to a non-linear activation function f . For example, if we denote the kth feature

map for the given layer as hk, the feature map is obtained as follows.

hk = f((W k ∗ x) + bk). (6.1)

The weights can be considered as the learnable kernels, which might be dif-

ferent in each feature map. To compute the pre-nonlinearity input to some

unit x, the contributions from the previous layer need to be summed up and

weighted by the filter components.

2. Pooling layer (Sub-sampling layer)

Pooling layers usually come after the convolutional layers to reduce the di-

mensionality of the intermediate representations as shown in Fig 6.2. It takes

feature maps from the convolutional layer into non-overlapping blocks and sub-

samples them to produce a single output from each sub-region. Max-pooling

is the most well-known pooling method, which takes the maximum value of

each block [104, 171], and it is used in the proposed framework. It is worth

nothing that this type of layer does not learn by itself. The main purpose

of such layer is to increase the spatial abstractness and to reduce both the
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time complexity and computation time for later layers. Thus, the process of

analyzing high-dimensional multimedia data can be efficiently managed.

3. Fully-connected MLP layer

The fully connected MLP layer is presented as the high-level representation

in the neural network. It takes all the feature maps at the previous layer as

the input to be processed by a traditional MLP,which includes the hidden

layer and the logistic regression process. At the end,one score is generated

per instance for the classification. For a binary classification CNN model as

depicted in Fig. 6.2, each instance is either classified as positive or negative

class based on the generated score.

Convolutional neural network processes ordered data in an architecturally dif-

ferent way, which transparently shares the weights. This model has been shown to

work well for a number of tasks, especially for object recognition [131] and it has

become popular recently on multimedia data analysis [90].

6.3.2 FC-MST Method in Deciding Input Layer Dimension

CNN is a biologically-evolving version of MLP, and it is originally implemented

for tasks like MNIST digit classification or facial recognition. Though different

implementations might have its own unique CNN's architecture, such as different

numbers of filtering masks, sizes of the pooling layers, etc., most of them take the

original image as the input and process the image as Height × Width pixel values.

Here, the low-level features are selected by the proposed FC-MST and are deployed

as the context of CNN's input layer.
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FC-MST is proposed in [68], which aims to obtain the effective features by re-

moving both redundant and irrelevant features. The methodology utilizes two cor-

relations listed as follows.

• The correlation among features across multiple modalities;

• The correlation between each feature towards the target positive concept.

Algorithm 5: How to decide the dimension of CNN's input Layer by FC-MST

input : The given training data set D with feature set as
TDF = F1, F2, ..., FM , along with the class label C

output: SF : A set of selected features, which indicates the dimension of
CNN's input layer sizeH and sizeW

1 ISF ←− FCMST (TDF );
2 if NumISF mod 6 = 0 then
3 sizeH = 6;
4 sizeW = NumISF/6;

5 end
6 else
7 NumISF = NumISF − (NumISF mod 6);

/* NumISF represents the number of features in ISF */

8 NumDF = NumISF mod 6 ;
/* NumDF represents the number of features which are going

to be removed from ISF */

9 sizeH = 6;
10 sizeW = NumISF/6;

11 end
12 SF ←− RemoveNumDF (ISF );
13 return SF, sizeH , sizeW

Given the revealed correlation, the proposed FC-MST can distinguish the effec-

tive features from others and greatly reduces the feature dimension. It motivates us

to apply FC-MST onto the input layer of the convolutional neural network. Hence,

only the important features are considered in the process and the computation time

can be greatly reduced. The process is depicted in Algorithm 5. All features from

multiple modalities are combined into one unified feature set indicated as TDF .
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ISF represents the initially selected features after applying FC-MST on the origi-

nal data set TDF (as described in Algorithm 5, line 1). Next, the number of selected

features is checked on two conditions: whether it is a prime number and whether

it can be divided by number 6. The checking process is described in Algorithm 5,

from line 2 yo line 9. The conditions are set because the dimension of the input

layer needs to be completely divided by the dimension of the feature map in every

convolutional layer, e.g., 2 × 2. NumDF is obtained by getting the remainder of

NumISF divided by 6. Then, NumDF features are removed based on their corre-

lation towards the positive concept and the deletion operation is performed on the

least correlated features (as described in Algorithm 5, line 10). At the end, the

selected feature set SF along with the decided dimension of the input layer, e.g.,

sizeH and sizeW , are returned.

6.3.3 Negative-based Sampling in Deciding Batch Sampling

Process

The data imbalance problem has been one of the major challenges when classifying

a multimedia data set. When the data size of the major class is way larger than that

of the minor's, it usually results in poor classification performance. The problem

becomes worse when applying the deep learning methods, such as CNN, on the

skewed data set. The reason is that most of the deep learning methods, including

CNN, start the training process by assigning instances into different batches, and

each batch might contain no positive instance but all negative instances due to this

uneven distribution. Assigning random instances into each batch is not able to

resolve the data imbalance problem and it could result in poor classification results.

79



Algorithm 6: Negative-based CNN batch sampling process

input : The given training data set D is composed of positive set P and
negative set N .

1 while Iterating in Pooling Layer or Convolutional Layer do
2 NumP ←− |P |;
3 NumN ←− |N |;
4 NumD ←− |D|;
5 BatchSize = NumD/100;
6 NF ←− FCMST (D);
7 for all training negative instances Ii, i = 1, ..., NumN do
8 NegRank(Ii) = MCANF (Ii);
9 end

10 for Each batch Bj, j = 1, ..., 100 do
11 Bj ←− ∅;
12 if NumP > 1/2BatchSize then
13 Bj ←− randomly pick 1/2BatchSize from P ;
14 end
15 else
16 Bj ←− P ;
17 end
18 BPj ←− |Bj|;
19 BNj ←− (BatchSize−BPj);
20 Bj ←− select BNj instances with higher Negative Ranking Score from

the first jthBatchSize of instances;

21 end
22 Continuing in training CNN model;

23 end

To tackle this challenge, “the NS method”, which is published in [70], is adopted

to improve the CNN batch sampling process as shown in Algorithm 6. As long as

the training process is still within either the pooling or convolutional layer, the same

negative-based CNN batch sampling process is applied (as described in Algorithm

6, line 1). At the beginning, the number of positive sets, negative set, and the

combined data set, are obtained and represented as NumP , NumN , and NumD,

respectively. The number of instances in each batch is set to be 1/100 of the to-

tal number of instances NumD. A set of features NF are selected based on the
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negative-based FC-MST method, which are highly correlated with the target nega-

tive concept (as described in Algorithm 6, line 2-6). All the negative instances are

looped through to generate the corresponding negative-based ranking score. The

negative ranking score is generated by the method called Multiple Correspondence

Analysis (MCA) [110, 212] using the above-selected features NF . The higher the

score is, the more negative-representative the instance is (as described in Algorithm

6, line 7-8). For each batch, it starts with an empty set and then is assigned with

either the whole positive set P or the half batch size of the positive instances (as

described in Algorithm 6, line 9-17). The last step in this batch sampling process

is to obtain the subtraction of BatchSize and the current numbers of the assigned

positive and negative instances are denoted as BPj and BNj, respectively. From

the jthBatchSize number of instances, the first BNj instances with higher negative

ranking scores are selected into batch Bj. The same process is applied and looped

through all the batches.

6.4 Experiment

6.4.1 NUS-WIDE Dataset

The proposed framework is validated using the well-known multimedia data set

called NUS-WIDE [37]. It is a web image data set downloaded from Flickr website

including six types of low-level features. The lite version, which contains 27,807

training images and 27,808 testing images, is conducted in this experiment. The

data set contains relatively low Positive to Negative Ratios for all 81 concepts,

which is depicted in Fig. 6.3.
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Figure 6.3: Positive and negative ratios of NUSWIDE lite 81 concepts

6.4.2 Experiment Setup and Evaluation

The proposed framework is compared with two well-known classifiers, e.g., K-Nearest

Neighbors (KNN) and SVM. It is also compared to MCA-TR-ARC [19], which is

applied on the NUSWIDE data set to remove the noisy tags and combine the rank-

ing scores from both tag-based and content-based models. In addition, a sensitivity

analysis is conducted to justify which component contributes the most in enhancing

the classification results.
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Table 6.1: Average Precision (AP) of the proposed method and other classifiers

Method Average Precision (AP)
KNN 9.87%
SVM 11.23%
CNN 10.41%
MCA-TR-ARC 33%
Proposed Method 35.61%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

KNN

SVM

CNN

MCA-TR-
ARC

Proposed
Framework

Average Precision (AP) 

Figure 6.4: Average Precision comparing with other methods
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6.4.3 Results

The Average Precision (AP) of NUS-WIDE’s 81 concepts for four different classifiers

and the proposed framework is shown in Table 6.1. KNN performs the worst with an

AP value of 9.87%, which shows that a huge amount of unselected features and the

data imbalance issue actually result in very poor classification performance. The

same issue affects both SVM and CNN. SVM produces an AP value of 11.24%,

which is 1.37% higher when compared to KNN, because it can better separate the

positive instances from the negative ones. With regard to CNN, it is not able

to reach a better performance because how it assigns instances into batches does

not resolve the data imbalanced issue. However, CNN has the ability to iterate

the training process until it reaches the optimal results, and thus it can obtain

slightly higher AP values against KNN. MCA-TR-ARC produces a relatively much

higher AP value compared to others because of two reasons. First, it applies MCA

to remove the noisy tag information. Second, it explores the correlation between

the tag-based model and the content-based model, and it fuses the ranking scores

into one. Finally, the proposed framework, which combines two correlation-based

methods, can outperform all the other classifiers in the NUS-WIDE dataset. Fig.

6.4 also visually depicts the aforementioned classification results.

A sensitivity analysis is further performed to better analyze the contribution for

each component. In Table 6.2, the first column is the AP values performed by the

proposed framework, which includes both FC-MST and NS, and it can reach 35.61%.

If FC-MST is removed from the proposed framework, then the AP value dropped

by 11.76%. On the other hand, if NS is removed from the proposed framework, the

performance dropped even more. The results indicate that identifying useful features

can efficiently increase the average precision, but better assigning the instances into

each training batch plays a much important role. Fig. 6.5 highlights the dropped
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Table 6.2: Sensitivity Analysis (SA) in evaluating contribution for each component

Method
Average
Precision

Dropped
Performance

The Proposed Work 35.61% —
Remove FC-MST 23.85% 11.76%
Remove NS 19.39% 16.22%
Remove Both 10.41% 25.20%

performance in the color red when removing different components. The rightmost

bar, which is indicated as “Remove Both”, represents the performance of the original

CNN.

6.5 Conclusion

In this chapter, an integrated framework is proposed to adopt two correlation-based

methods, e.g., FC-MST and NS, in adjusting the architecture of one well-known deep

learning method called CNN. First, FC-MST is proposed to identify effective features

and decide the dimension of CNN's input layer instead of using fixed pixel values of

the original images. The features are selected based on their correlation towards the

target positive class. Second, NS is proposed specifically to cope with the imbalanced

data sets, which usually results in poor classification performance due to its uneven

distribution. The problem is worse when the original CNN randomly assigns data

instances into each batch. Thus, NS is adopted to alleviate the problem. The

experiment shows this proposed integrated framework can outperform other well-

known classifiers and each correlation-based method can independently contribute

to enhance the results.
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Figure 6.5: Sensitivity analysis on the proposed work

86



CHAPTER 7

UTILIZING INDIRECT ASSOCIATIONS IN MULTIMEDIA

SEMANTIC RETRIEVAL

7.1 Introduction

With the increasing rate of digitization in industry, academia and among the general

public, efficient management of high-diversity multimedia data such as text, image,

audio, and video poses a great challenge. In [46], Dragland claims that 90 % of the

world’s data were generated in the past two years, which makes it a great challenge

to effectively retrieve the meaningful information from the large volume of data in

different representations. Many researchers were thrilled to investigate a sufficient

way to handle the huge amount of multimedia big data regarding searching, brows-

ing, indexing, etc. [23–25, 69, 87, 108, 173, 178, 208], but many challenges were still

standing in the way. For example, it did not take long for the researchers to realize

that due to non-existent or incomplete text annotations, the conventional keyword-

based search was inadequate in retrieving multimedia data. Hence, content-based

approaches were proposed [20, 29, 33, 53, 113, 172, 215] to better capture the seman-

tic information through different types of low-level features. Specifically, many of

these content-based approaches have been applied to improve multimedia seman-

tic concept retrieval, whose goal is to identify high-level semantic concepts such as

“dancing” and “forest” from data instances likes images, videos, or any complex

multimedia data.

When facing multiple semantic concept retrievals, instead of bridging the seman-

tic gap between low-level features and high-level semantic concept one at a time,

it can be treated as a multi-label classification problem, which is solved at once by

exploring the concept relations. Intuitively, most of the research work leveraged the
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positive inter-concept relationships [4,41,76,149,237], which means that if a concept

is detected in one data instance, then there is a higher chance to identify another

concept in the same data instance, such as the correlation between concept “sky”

and concept “outdoor”. On the other hand, negative correlations are also studied

in [84,92,93,133] to explore the opposite correlations between concepts in enhancing

the overall classification results. For example, the fact that a data instance contains

the concept “outdoor” usually implies zero possibility of detecting concept “indoor”

from the same data instance. Encouraged by the improvement of leveraging the di-

rect concept correlation, indirect association rules among the concepts are explored

in this chapter. The goal is to reveal the implicit correlation when two concepts

are rarely identified in the same data instance, but they are indirectly correlated

through a mediator concept. For instance, the concept “basketball” and the concept

“volleyball” might seldom co-occur in the same data instance, but they have a much

higher chance of appearing together with the concept “gym”. That is, we believe

that there exists an indirect association between concept “basketball” and concept

“volleyball”, which is worth discovering and analyzing.

In this chapter, a multimedia semantic retrieval framework that utilizes both

negative correlations and indirect associations is proposed to refine the performance.

An algorithm is developed to retrieve the indirect association rules (IAR) from the

statistics information of the concept occurrences. The Association Affinity Network

(AAN) mechanism [133] is extended in this chapter to encompass both negative

correlations and IARM correlations. In addition, two types of labels are defined

and generated to estimate the posterior probability of a positive IAR and a negative

IAR toward the detected concepts.

The chapter is organized as follows: In Section 7.2, the proposed framework is

depicted for both training and testing processes, followed by the presentation and
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the in-depth discussion of major components. The experiments setup, evaluation

criteria, the experimental results, and the corresponding discussion are all reported

in Section 7.3.

7.2 Proposed Framework

Figure 7.1 and Figure 7.2 depict the training process and testing process of the

proposed framework, respectively. As shown in Figure 7.1, the training process con-

sists of three major components, namely “Multimedia Semantic Concept Detection”,

“Concept Correlation Mining”, and “Dual Correlation Modeling”. The “Multimedia

Semantic Concept Detection” component mainly concerns the high-level process of

building the classification models to detect the semantic concepts on multimedia

data. From the beginning, the objective is to detect N high-level semantic concepts

such as “Beach” and “Dancing” from the training process of a training dataset with

M data instances. Low-level features are extracted to represent each training data

instance and N binary content-based classification models are built as the concept

detectors Di, where 1 < i < N . Finally, each detector outputs M ranking scores

to indicate the probabilities of detecting the concept in the M data instances. The

higher the ranking score, the better chance to identify the concept in the data in-

stance.

As shown on the right side of Figure 7.1, both Integrated Correlation Factor

(ICF) and conditional probability-based coarse filtering method are applied when

performing negative correlation selection. A detailed process is described in [133].

IARM is proposed to reveal the hidden concept correlations from the formatted label

matrix. After selecting only the conjunctive correlations between negative correla-

tions and IAR corrections, the features extracted from the original training dataset
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Figure 7.1: The proposed framework for adopting indirect association rules (IAR)
in AAN (Training Process)

are fed as the input to independently train two MCA-based weight estimation models

for negative correlations and IAR corrections. Lastly, the “Dual Correlation Model-

ing” component combines two sets of weights and the ranking scores produced from

the “Multimedia Semantic Concept Detection” component and normalizes them to

better train the regression-based score integration model. Please note that the se-

lected negative correlations, IAR correlations, two MCA-based weight estimation
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Figure 7.2: The proposed framework for adopting indirect association rules (IAR)
in AAN (Testing Process)

models, and the final regression models are all stored so that they can be applied to

the testing data instances.
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In Figure 7.2, the testing process starts with sending the testing dataset to each

of the concept detectors to produce the testing ranking scores. After that, the same

feature extraction method performed in the training process will be used to extract

the same feature set from the testing instance. Two trained MCA-based weight

estimation models take the extracted testing features to generate the weights for

negative correlations and IAR correlations. In the end, the testing scores from the

concept detectors and two different types of weights are normalized and sent to the

trained regression models to generate the final re-ranked testing scores.

7.2.1 Indirect Association Rules

Indirect association rules (IAR) were first proposed by Tan et al. [193] for identifying

a pair of items, x and y, which are rarely appeared together in the same transaction,

but they both highly depend on a set of mediator item Med. The formal definition

can be found at Definition 1.

Definition 1. Indirect Association Rules (IAR)

An itemset pair {X, Y } is indirectly associated through a mediator Med, if the fol-

lowing conditions hold:

1. sup({X, Y }) < itps

2. There exists a non-empty set Med such that:

• sup({X} ∪Med) ≥Meds, and sup({Y } ∪Med) ≥Meds

• dep({X},Med) ≥Medd, and dep({Y },Med) ≥ Medd

The threshold above are named itempair support threshold (itps), Mediator Sup-

port Threshold (Meds), and Mediator Dependency Threshold (Medd), respectively.

In practice, it is subject to have Meds > itps. When the rule is applied to discover
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Figure 7.3: Applying IARM in mining concept ontology

the correlations among semantic concepts, a brief illustration is depicted in Figure

7.3. As shown in this figure, two concepts, CX and CY , can rarely be identified in

the same data instance, but they both highly depend on the presence of a set of

mediator concepts CMeds.

Before describing how to incorporate the idea of IARM, it is necessary to intro-

duce several definitions used throughout the chapter.

Definition 2. Data Instance, Features, and Label

A data instance is referred to as an image, a keyframe, or a video shot,

depending on the content of the introduced dataset. In the experiment section,

the TRECVID 2010 dataset is adopted to validate the proposed framework, where

each data instance represents a keyframe of one video shot. Features are five well-

known low-level features extracted from both training and testing datasets, including

HAAR, CEDD, HOG, HSV, and YCBCR. Lastly, a label is the value of either 0

or 1 per instance to indicate whether the corresponding semantic concept exists in

that instance.

Definition 3. Support and Confidence

To calculate the support and confidence values, a combined label matrix must be

formed (as shown in Table 7.1), where each row represents a data instance and each
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column represents a concept label. In other words, each element in this matrix will

indicate whether one data instance contains one semantic concept or not. Therefore,

with the idea of association rule mining [2], each data instance can be considered

as one transaction; while each concept is considered as one itemset. Let C =

{C1, C2, ..., CN}, TI be a set of all transactions where each transaction I is a set of

items such that I ⊆ C, and Occ(CX) is the number of occurrences of CX . Thus,

for an association rule like CX ⇒ CY , the support and confidence values can be

calculated as shown in Equation 7.1 and Equation 7.2, respectively.

sup(CX ⇒ CY ) =
Occ(CX ∪ CY )

Number of TI
(7.1)

conf(CX ⇒ CY ) =
Occ(CX ∪ CY )

Occ(CX)
(7.2)

Definition 4. Itemset Pair and Mediator

IARM is introduced to discover the hidden correlation when concept X and

concept Y , seldom appear together in the same data instance, but they will usually

be identified along with the mediator concept Med. Therefore, Itemset Pair is

defined to include two concepts, e.g., X and Y , which rarely appear together and

concept Med is the mediator.

Definition 5. Dependence: Interesting Ratio (IR)

In addition to the confidence value, an interesting ratio is another perspective

to further verify the significance of the retrieved rules. For example, if there is an

indirect association rule, where the itemset pair is concept X and concept Y and the

mediator concept is Med, an interesting ratio is introduced to ensure the following

two conditions. First, concept X highly depends on the appearance of the mediator

concept Med. Second, this IAR rule is not retrieved because of the high frequency
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of concept Med. The same thoughts should be also applied for concept Y . The

interesting ratio between concept X and concept Med is calculated as shown in

Equation 7.3.

IR(CX ⇒ CMed) =
sup(CX ∪ CMed)

sup(CX)× sup(CMed)
(7.3)

The entire process of retrieving IAR correlations is described in Algorithm 7. In

the beginning, the combined label matrix is the input and the set of the indirect

association rules IAR, frequent 1-itemset FI, and frequent itemset pair FIP are

all initialized as empty sets. The support of each concept is calculated and com-

pared with the minimum support minsup to find all the frequent 1-itemsets FI.

The frequent itemset pair FIP is successively generated using all possible combi-

nations of FI (as described in Algorithm 7, lines 2 to 7). For each frequent itemset

pair, assuming it is represented as CX and CY , only the support ratio less than the

itempair support threshold itps will be selected since we are looking for the hidden

correlation for the infrequent itemsets. Later, the possible mediator concept CMed

will be collected based on its support ratio and interesting ratio toward the selected

infrequent itemset pair (as described in Algorithm 7, lines 8 to 16). The impor-

tant thresholds including minsup, itps, Meds, and Medd are decided from the best

performance run in the training process.

Table 7.1: Combined label matrix

C1 C2 ... CK ... CN

Instance 1 1 0 ... 0 ... 0
Instance 2 0 0 ... 0 ... 1

... ... ... ... 0 ... ...
Instance i 0 0 ... 0 ... 0

... ... ... ... ... ... ...
Instance M 0 1 ... 0 ... 0
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Algorithm 7: IARM Concept Correlation Retrieval

input : Combined Label Matrix M ×N , where M represents the number of
data instances and N represents the number of concepts

output: IAR - A set of indirect association rules
1 IAR←− ∅; FI ←− ∅; FIPair ←− ∅;
2 for Each Concept Ci, i← 1 to N do
3 if sup(Ci) > minsup then
4 FI ←− Ci

5 end

6 end
7 FIPair ←− Combine(FI)
8 for Each FIPair(CX , CY ) ∈ FIPair do
9 if sup(CX , CY ) < itps then

10 for Each Concept CMed, M ← 1 to Num(FI) do
11 if sup(CX ∪ CMed) ≥ Meds and sup(CY ∪ CMed) ≥ Meds and

IR(CX ⇒ CMed) ≥ Medd and IR(CY ⇒ CMed) ≥ Medd then
12 IAR←− (CX , CY , CMed)
13 end

14 end

15 end

16 end
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7.2.2 Integrate with Association Affinity Network (AAN)

The prototype of AAN was initially proposed in [135], called Concept Association

Network (CAN). It starts with applying association rule mining (ARM) to select

significant association links and capture the strong associations among different

concepts. Next, CAN gradually improved with essential factors such as negative

correlation selection, estimated weight represented the posterior probabilities of cor-

relations, and made it to what an AAN is. Inspired by the idea of AAN and other

research work related to association rule mining (ARM) [8, 96, 122, 146, 187], which

motivates us to introduce IAR in exploring the hidden concept correlations.

Figure 7.4: Two types of IAR label generation

MCA-based IAR Weight Estimation

In conjunction with the negative correlations introduced in [133], for a target concept

Ct, the same methodology of calculating the probability of detecting a positive target

concept is applied for IAR. Let IAR consist of concept CX , concept CY , and mediator
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concept CMed, and Fi indicate the observed features for data instance i. If either

CX or CY is the target concept Ct selected from the negative correlations, then

P (C1
t |Fi) can be used to represent the probability that i is negative, given Fi. With

the assumption of IAR mentioned earlier, it can be expanded as shown in Equation

7.4.

P (C1
t |Fi) = P (C1

t |C0
IAR, Fi)P (C0

IAR|Fi)

+P (C1
t |C1

IAR, Fi)P (C1
IAR|Fi)

= P (C1
t , C

0
IAR|Fi) + P (C1

t , C
1
IAR|Fi)

(7.4)

To statistically quantify the impact of the IAR toward the target concept with the

observed low-level feature values, two conditional probabilities, e.g., P (C1
t , C

0
IAR|Fi)

and P (C1
t , C

1
IAR|Fi), are produced and summed up as P (C1

t |Fi). Two types of

labels are redefined and generated based on the retrieved IAR correlations as shown

in Figure 7.4. Afterward, the new labels along with the observed features are used

to train the MCA-based weight estimation models for IAR. The upper side in Figure

7.4 describes the positive IAR impact toward target concept Ct, Given a positive

target concept, e.g., Ct = 1, the new label is assigned as value 1 if all the concepts

included in IAR are positive, and label is assigned as 0, otherwise. The lower side in

7.4 depicts the negative IAR impact toward target concept. With a negative target

concept, e.g., Ct = 0, the label is assigned as value 1, if all concepts in IAR are

negative, and the label is assigned as value 0 for other cases.

Multiple Correspondence Analysis (MCA)-based model is selected to estimate

these two probabilities. Originally, MCA was extended from the standard corre-

spondence analysis to analyze the correlation among variables. Later, it has demon-

strated its competence in enhancing multimedia retrieval research topics through
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capturing the correlations among high-level semantic concepts and low-level fea-

tures [74, 111,116], and modeling posterior probability [73,110,134].

Score Normalization and Regression-based Score Integration

Given the output generated from target concept detectors, related concept detectors,

and MCA-based weight estimation models, the effectiveness of using a negatively

correlated concept to detect a target concept was modeled in the [133].

In this chapter, the idea of revealing the indirect association rules among concept

correlation network is introduced. Hence, a detection matrix DM can be formed

where the first three vectors are target concept detector DMt, related concept detec-

tors DMr, the negative correlation, which is between target concept and related con-

cept, modeled by MCA-based weight estimationDMnw. Two more vectors are added

at the end to represent the indirect association rule detector DMiar and the cor-

responding weight estimated by MCA-based methodology DMiw. Therefore, each

row DM i can be represented by a row vector [1, DM i
t , DM

i
r, DM

i
nw, DM

i
iar, DM

i
iw].

A likehood function is formulated accordingly as shown in equation 7.5. θ is the

parameter vector composed by [θ0, θ1, θ2, θ3, θ4, θ5]
T .

L(DM ; θ) =
m∏
i=1

(g(DM iθ))C
i · (1− g(DM iθ))1−Ci

where g(x) =
1

1 + e−x

(7.5)

In equation 7.5, Ci = 1 indicates the label of a data instance is positive and

Ci = 0 means the data instance is labeled as negative. m is the total number of

data instances.

To optimize the results and minimize the classification error, a cost function is

also defined as shown in equation 7.6.
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J(DM ; θ) = −logL(DM ; θ) + λ||θ||2

subject to θ1 ≥ 0, θ2 ≤ 0, θ3 ≤ 0, θ4 ≥ 0, θ5 ≥ 0.

(7.6)

Given the variables, θ1 is the indicator of the positive target concept thus it is

subject to be greater than zero. θ2 and θ3 were introduced to better estimate the

negative correlation, so they are supposedly both less than zeros. Lastly, θ4 and θ5

considered the impact on positive target concept of having the indirect association

rules or not, therefore they are both set up to be greater than zeros. The variable

lambda is adopted in the cost function to avoid the possible overfitting problem.

7.3 Experiments

7.3.1 Dataset

The dataset “IACC.1.B” prepared for TRECVID 2011 semantic indexing task [185]

is adopted as a benchmark dataset to evaluate the classification results among dif-

ferent methods. The labels of the 346 high-level semantic concepts are provided

through a collaborative annotation activity hosted by NIST [6] and the concept list

can be found with the detailed definition in [185]. It is a collection of videos with

total duration of 200 hours and each video lasts between 10 seconds and 3.5 minutes.

The detection scores were generously provided by the Shinoda Lab at Department of

Computer Science at Tokyo Institute of Technology [87], which is the group achieved

the top performances at TRECVID 2011 Semantic Indexing Task.
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Table 7.2: Dataset statistics information

Dataset IACC.1.B
TRECVID Year 2011
No. Concepts 346
No. Training

Instances
144774

No. Testing
Instances

137327

Average Positive
No. Instances

408.42

Average P / N
Ratio

0.003

7.3.2 Evaluation Criteria

The well-known measurement method called Mean Average Precision (MAP) is

used. To calculate and understand the MAP value, a derivation process is described

as following,

First, Precision, which is an accuracy evaluation method, derived from the

confusion matrix as shown in Table 7.3. The confusion matrix is widely used in

machine learning and data mining areas to visualize classification results in table-

layout fashion and based on it, precision can be calculated as shown in equation 7.7.

It demonstrates the fraction of retrieved instances that are relevant, where a high

precision value indicates a lower false positive rate.

Table 7.3: Confusion Matrix

Predicted Class
Positive Negative

Positive
True

Positive
False

Negative
Actual
Class Negative

False
Positive

True
Negative

• Precision
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Precision =
TruePos

(TruePos+ FalsePos)
(7.7)

• Average Precision and Mean Average Precision

Average precision (AP) and mean average precision (MAP) are two metrics

extended from precision, as defined in equation 7.8 and equation 7.9, respec-

tively. Average Precision at K is used to evaluate top K ranked results,

where #(TopR) represents the number of instances, which are correctly clas-

sified as positive instances among top R retrieved instances, R = 1...K. A

higher AP value means more relevant results are ranked earlier than irrelevant

ones.

AP (K) =
1

K

K∑
R=1

#(TopR)

R
(7.8)

Mean Average Precision is used to validate ranked results for more than

one concept, where TC is the total number of concepts and APC(K) is the

average precision at K for concept C. It can also be used to represent the

overall performance for a three-fold cross-validation experiment.

MAP (K) =

∑TC
C=1APC(K)

TC
(7.9)

7.3.3 Experimental Results

To evaluate the proposed framework, it was compared with three different frame-

works. First, the original ranking scores without any modifications were indicated as

“RAW”. Second, the domain adaptive semantic diffusion “DASD” proposed in [93]

was applied. Third, the association affinity network with only the negative cor-
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relation proposed in [133] was indicated as “AAN”. The last one is the proposed

framework, which is indicated as “AAN + IAR”.

Table 7.4: MAP values at different number of instances retrieved for IACC.1.A

Frameworks Top10 Top20 Top40 Top60 Top80 Top100 Top500 Overall
RAW 0.4508 0.4084 0.3576 0.3137 0.2738 0.2441 0.1305 0.1910
DASD 0.4827 0.4020 0.3340 0.3113 0.2786 0.2431 0.1222 0.1778
AAN 0.8626 0.7355 0.6054 0.5588 0.5105 0.4729 0.3397 0.4478

AAN + IAR
( Proposed )

0.8820 0.7710 0.6343 0.5876 0.5451 0.4945 0.3757 0.5123

The MAP values at different number of retrieved instances are reported for each

framework as shown in Table 7.4. The last column represents the MAP values cal-

culated while considering all the testing instances. All the results are the average

MAP values of a three-fold cross validations. The comparisons between “RAW”

and “AAN” show the importance of mining negative concept correlation and Tao et

al., has explained two possible reasons why “AAN” has higher MAP values against

“DASD” in [133], one is the selection of significant negative concept correlation and

the other is the accuracy of posterior probability estimation. Most importantly, the

proposed framework produced the highest MAP in various retrieved levels among all

the frameworks, which can be explained in two-fold. First, using IAR correlations

is able to dig out the valuable correlations from infrequent concept itemsets, which

are concepts rarely be identified together in the same data instance. Second, ap-

plying IAR correlations is able to identify interesting negative correlation, because

P (C1
t , C

0
IAR|Fi) and P (C1

t , C
1
IAR|Fi) comprehensively consider the IAR’s positive

and negative impact toward selected negative correlation from AAN.

In Table 7.5, the steadiness of the proposed method can be reflected from the

MAP values generated for each fold. There are no major differences among the clas-

sification results for three folds which show the robustness of the proposed method.
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Table 7.5: MAP values at different number of instances retrieved for IACC.1.A
using three-fold cross validation

Fold Number Top10 Top20 Top40 Top60 Top80 Top100 Top500 Overall
Fold1 0.8723 0.7810 0.6188 0.5846 0.5541 0.5007 0.3719 0.5075
Fold2 0.8935 0.7533 0.6443 0.5907 0.5367 0.4867 0.3688 0.4935
Fold3 0.8801 0.7786 0.6397 0.5876 0.5444 0.4962 0.3864 0.5103

Overall 0.8820 0.7710 0.6343 0.5876 0.5451 0.4945 0.3757 0.5123

Also, all the folds can perform close to 50% MAP values when considering the whole

testing dataset.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusion

Over the last decade, the rapid growth of technology, many emerging social net-

work platforms, and mobile applications allow people to share their life on a daily

basis. The fact not only results in the explosive growth of multimedia data but

also increases the demand for better managing multimedia data. From our previous

work, it has been proven that the correlations among instances, features, and con-

cepts are worth exploring to enhance the classification results. In this dissertation,

a correlation-based framework is designed and integrated with the deep learning

method to enhance the classification accuracy. The focal points are listed and sum-

marized as follows:

• A three-steps feature selection method called Feature Correlation Maximum

Spanning Tree (FC-MST) is proposed. The general steps are

1. “Features eliminated from discretization process” step removes the fea-

tures with only one interval after the discretization process,

2. “Features eliminated from discretization MCA” step utilizes MCA to

obtain the feature correlation toward the positive concept and removes

the features with lower correlation,

3. “Features eliminated from discretization FC-MST” step starts by build-

ing the Maximum Spanning Tree using MCA-based feature correlation.

The feature correlations, which are lower than the predefined threshold,

will be removed and then the original features will be separated into
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several feature clusters. Within each cluster, only the feature with the

highest correlation toward the positive class is selected.

It uses MCA to explore the correlations among features within and across

modalities and to capture the correlations between the features and the target

semantic concepts. It also allows visual depicts of feature correlations using

the Maximum Spanning Tree. Consequently, it enhances the classification

performance on multimedia data by effectively removing redundant and irrel-

evant features from the high-dimensional data. FC-MST can not only greatly

reduce computational cost owing to feature space reduction, but also lead to

better classification results.

• A negative-based sampling method (NS) is proposed and presents a new think-

ing when designing a sampling method. It consists of three major steps: neg-

ative feature selection, negative ranking score generation, and negative-based

sampling method.

1. “Negative-based Feature Selection” is derived from the aforementioned

FC-MST to identify features, which are highly correlated with negative

concepts,

2. “Negative-based Ranking Scores” step uses the selected features from the

previous step to calculate the negative ranking score for each instance,

3. “Negative-based Sampling” step performs the sampling process by keep-

ing all the positive instances and selecting only the instances with higher

negative ranking scores.

• An integrated framework is proposed to adopt the two aforementioned correlation-

based methods, i.e., FC-MST and NS, in adjusting the architecture of CNN.
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1. FC-MST is proposed to identify effective features and decide the dimen-

sion of CNNs input layer instead of using fixed pixel values of the original

images. The features are selected and removed based on their correlation

toward the positive target concept.

2. NS is specifically proposed to cope with the imbalanced dataset, which

usually results in poor classification due to its uneven distribution. The

problem is getting worse when the original CNN randomly assign data

instances into each batch. Thus, NS is adopted to alleviate the problem.

• Indirect Association Rule (IAR) is firstly introduced into a semantic concept

detection framework for semantic multimedia retrieval. First, a novel algo-

rithm is proposed to retrieve significant IAR correlations based on the statis-

tic information of semantic concept labels. Two types of newly defined labels

are used to train the weight estimation models for generating the posterior

probability between the IAR and the positive target concepts. Lastly, IAR

correlation model is incorporated with negative correlation to refine the final

ranking scores through the explicit normalization and regression-based model

designed for dual correlations.

8.2 Future Work

Given the experience learned from the previous work, the foundation of the cur-

rent framework, and all the conducted experimental results, a couple of research

directions are presented in the following sections as the future work.
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8.2.1 Utilizing MCA in Generating the Weight For Feature

Maps in CNN

In the existing work [11], CNN obtains one feature map across sub-regions from

the given pixel values. To be more specific, it convolutes the image with three main

components as depicted in Figure 8.1, i.e., tanh non-linear function, a weight matrix

and a bias term. For example, to obtain k-th feature map, its filters are first decided

by the weights W k and bias bk. Consecutively, the tanh function is used to generate

the feature map FMk as shown in Equation 8.1.

FMk
ij = tanh((W k ∗X)ij + bk) (8.1)

where Xij indicates the pixel value from the original images. Usually, the weights

W and bias b are randomly decided at the beginning and then gradually updated

based on the classification accuracy of the validation data set.

Figure 8.1: CNN’s feature maps

Since many research studies already demonstrated that using low-level features

as CNN’s input can perform well in multimedia retrieval tasks, it is straightforward
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to enhance the results by obtaining an accurate weight per feature instead of starting

with a random number.

Figure 8.2: Projecting low-level features to obtain the weight for feature map

Each low-level feature is indicated as X ij which shows the location of that feature

in a map form. The discretization process will perform on all the features and

separate them into multiple intervals based the corresponding correlation to the

positive concept. As shown in Figure 8.2, MCA projects all the feature intervals per

feature on two major principal components and indicated as X ij
m where ij represents

the location and m represent the index of this feature interval. The weight W ij for

feature X ij can then be calculated as Equation 8.2. NumFI indicates the number of

feature intervals each feature has. The correlation per feature interval is calculated

by using the cosine value between the interval and the positive class to minus the

distance from the projecting interval and the positive class. The correlation per

feature is summing up all the feature intervals’ correlation and then divided by the

number of intervals NumFI.

W ij =

∑NumFIij
m=1 cosαij

m − βij
m

NumFIij
(8.2)
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8.2.2 Applying FC-MST in CNN’s Output Node Selection

In the general CNN process, the input data are processed through multiple layers

of convolutional and sampling steps. Although the weight and bias are adjusted

and optimized based on the validation performance, the effectiveness of each input

element is not modeled. Thus neither the outliers or noisy data can be detected,

nor the feature dimension can be carefully deducted.

Figure 8.3: Applying FC-MST in CNN’s feature map selection

Therefore, it is worth testifying that applying FC-MST on the last layer of CNN

to detect and keep only the useful elements from the feature maps. As shown

in Figure 8.3, given six feature maps with the dimension 4 × 4, it will end up

6× 4× 4 = 144 nodes, which might include nodes with wrongful information. The

proposed idea is to perform FC-MST on selecting the nodes from the last layer and

generate the final results using CNN’s iteratively trained weights and bias along

with the selected nodes.
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[4] Barbara André, Tom Vercauteren, Anna M Buchner, Michael B Wallace, and
Nicholas Ayache. Learning semantic and visual similarity for endomicroscopy
video retrieval. IEEE Transactions on Medical Imaging, 31(6):1276–1288,
2012.

[5] Pradeep K Atrey, M Anwar Hossain, Abdulmotaleb El Saddik, and Mohan S
Kankanhalli. Multimodal fusion for multimedia analysis: a survey. Multimedia
systems, 16(6):345–379, 2010.
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mantics of multimedia queries and concepts from a small number of examples.
In ACM International Conference on Multimedia, pages 598–607, 2005.

[146] Victoria Nebot and Rafael Berlanga. Finding association rules in semantic
web data. Knowledge-Based Systems, 25(1):51–62, 2012.

[147] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and
Andrew Y Ng. Multimodal deep learning. In International Conference on
Machine Learning (ICML), pages 689–696, 2011.

[148] Mihalis Nicolaou, Hatice Gunes, Maja Pantic, et al. Audio-visual classifica-
tion and fusion of spontaneous affective data in likelihood space. In Pattern
Recognition (ICPR), 2010 20th International Conference on, pages 3695–3699.
IEEE, 2010.

[149] Sonya Nikolova, Jordan Boyd-Graber, and Christiane Fellbaum. Collecting se-
mantic similarity ratings to connect concepts in assistive communication tools.

125



In Modeling, Learning, and Processing of Text Technological Data Structures,
pages 81–93. Springer, 2012.

[150] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holis-
tic representation of the spatial envelope. International journal of computer
vision, 42(3):145–175, 2001.

[151] Paul Over, George M Awad, Jon Fiscus, Brian Antonishek, Martial Michel,
Alan F Smeaton, Wessel Kraaij, and Georges Quénot. TRECVID 2010–an
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