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ABSTRACT OF THE DISSERTATION 

TUBULAR AND SECTOR HEAT PIPE WITH INTERCONNECTED BRANCHES 

FOR GAS TURBINE AND/OR COMPRESSOR COOLING 

by 

Brian D. Reding II 

Florida International University, 2013 

Miami, Florida 

Professor Yiding Cao, Co-Major Professor 

Professor Norman Munroe, Co-Major Professor 

Designing turbines for either aerospace or power production is a daunting task for any 

heat transfer scientist or engineer. Turbine designers are continuously pursuing better 

ways to convert the stored chemical energy in the fuel into useful work with maximum 

efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is 

to increase the turbine inlet pressure and temperature. Generally, the inlet temperature 

may exceed the capabilities of standard materials for safe and long-life operation of the 

turbine.  Next generation propulsion systems, whether for new supersonic transport or for 

improving existing aviation transport, will require more aggressive cooling system for 

many hot-gas-path components of the turbine. Heat pipe technology offers a possible 

cooling technique for the structures exposed to the high heat fluxes. Hence, the objective 

of this dissertation is to develop new radially rotating heat pipe systems that integrate 

multiple rotating miniature heat pipes with a common reservoir for a more effective and 

practical solution to turbine  or compressor cooling. 
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In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes 

are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along 

with experimental tests. Analytical solutions for the film thickness and the lengthwise 

vapor temperature distribution for a single heat pipe are derived. Experimental tests on 

single radially rotating miniature heat pipes and sector heat pipes are undertaken with 

different important parameters and the manner in which these parameters affect heat pipe 

operation. 

Analytical and experimental studies have proven that the radially rotating miniature heat 

pipes have an incredibly high effective thermal conductance and an enormous heat 

transfer capability. Concurrently, the heat pipe has an uncomplicated structure and 

relatively low manufacturing costs.  The heat pipe can also resist strong vibrations and is 

well suited for a high temperature environment. Hence, the heat pipes with a common 

reservoir make incorporation of heat pipes into turbo-machinery much more feasible and 

cost effective. 
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1. Introduction 

1.1 History of the Heat Pipe 

A heat pipe is a device of very high thermal conductance, which has the ability to raise 

the heat transfer capacity where it is utilized. The concept of a heat pipe, called a thermo-

siphon today, is first developed by A.M. Perkins and J. Perkins in the mid-1800s. The 

device was originally referred to as a Perkins tube, which utilized either a single or two 

phased process to transfer heat from the furnace section to the boiler section. Below is an 

illustration of their device: 

 

 

Figure 1.1 Perkins Tube [1] 
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A two phase closed thermo-siphon is a gravity assisted wickless heat pipe, as depicted in 

Figure 1.2. As can be seen in the figure, the condenser section is located above the 

evaporator section.  

 

 

Figure 1.2 Diagram of a Gravity Assisted Wickless Heat Pipe (Two Phase Closed Thermo-Siphon) [2] 
 

Heat is conducted through the evaporator container into the heat pipe, boiling the 

working fluid. The vapor ascends to the condenser section, where the vapor condenses 

and releases its latent heat. Gravity then draws the condensate back to the evaporator 

section to start the cycle over again. Because of their reliability, cost effectiveness, and 

high efficiency, thermo-siphons have been used in a wide variety of applications, such as 

intensive heat transfer in heat exchangers [3] and the de-icing of roadways [4]. 
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The next device leading towards a heat pipe was first developed by Gay in 1929, which 

consisted of a number of vertical tubes that were arranged with the evaporator section 

below the condenser section. But it is still, as well as the Perkins tube, considered as a 

thermo-siphon. Figure 1.3 illustrates Gay’s device. 

 

 

Figure 1.3 The Gay's Device [1] 

 
As can been seen from the two proceeding figures, these two devices laid down the basic 

concepts and paved the way towards modern day heat pipes.  
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The notion of the heat pipe was first introduced by R. S. Gaugler of the General Motors 

Corporation in 1942 [1]. George Grover at Los Alamos Laboratory also published an 

evaporation-condensation heat transfer device, which was, as well, named a heat pipe in 

1963 [1]. Grover’s heat pipe was fundamentally indistinguishable to that of the Gaugler 

heat pipe. However, Grover provided some degree of theoretical analysis and presented 

experimental results performed on stainless steel heat pipes that contained a wire mesh 

wick and sodium as the working fluid. Many studies have been performed and numerous 

types of heat pipes have been presented to the scientific community since these 

pioneering works were done. To date, heat pipes have been used and developed for 

almost all aspects of engineering and are acknowledged as an important advancement in 

the field of heat transfer. There are many heat pipe configurations for a wide range of 

applications [2]. Figure 1.4 illustrates a capillary driven heat pipe.  

 

 

Figure 1.4 Dipiction of a Conventional Capillary Driven Heat Pipe [2] 
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The capillary driven heat pipe is primarily comprised of a condenser section and an 

evaporator section. For traditional requirements, an adiabatic section can be incorporated 

to separate the condenser and evaporator sections.  

One of the main differences between thermo-siphons and most heat pipes can be seen in 

the adiabatic/isothermal section where a wick structure aids in the transport of the 

working fluid by means of introducing capillary forces along the walls of the heat pipe. 

Figure 1.5 further illustrates the basic regions of a heat pipe and the wick structure. 

 

 

Figure 1.5 Basic Heat Pipe Regions [1] 
 
 
 Typical heat pipes consist of three main components: the container, a wick structure, and 

a working fluid. The container can be constructed from a wide range of materials, such as 

ceramic, metal, glass, and composites. Secondly, the wick structure can also be fabricated 

from a wide range of materials but must have some type of porousness to it. Typical 

materials for the wick include woven fiberglass, sintered metal powders, screens, wire 
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meshes, grooves, etc. Lastly, the working fluid (which is chosen based on the working 

temperature) can vary from nitrogen and helium for low temperatures (mainly used in 

cryogenics) to sodium and lithium for high temperature heat pipes.  

Great care must be taken in choosing the proper combination of materials. For instance, 

one should not choose a working fluid that would be highly reactive and/or corrosive 

with the container material or the wick structure at the working or idle temperatures, 

because to do so would not only be dangerous, but would have adverse effects on the 

performance of the heat pipe. Also, the container material must be able to withstand the 

pressures associated with the saturation temperatures during startup and normal 

operations. Figure 1.6 is a chart with some basic working fluids and their associated 

working temperature ranges. 
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Figure 1.6 Working Fluids and Temperature Ranges [1] 
 

The wick structure has two main functions in the operation of the heat pipe:  

1. It is the transport mechanism through which the working fluid is returned to the 

evaporator from the condenser. 

2. It also insures that the working fluid is evenly distributed over the evaporator 

surface. 

Though the concept is simple enough, choosing a wick structure can prove to be rather 

difficult for two reasons: 



 

8 
 

1. An open porous structure with high permeability is desired in order to provide 

a low flow resistance through which the liquid can be returned to the 

evaporator 

2. To increase capillary pumping pressure, a small pore size is desired. 

This is obviously a dichotomous task, which may have an evident solution. Therefore, it 

is beneficial to have a wick structure that is non-homogeneous throughout; i.e., a wick 

structure made of several different materials or having a composite wick structure. Figure 

1.7 on the following page shows some wick configurations and structures. 
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Figure 1.7 Wick Structures [1] 
 

As is found in traditional heat pipes, a wick can be inserted into the heat pipe shell. The 

wick creates a capillary force which returns the condensate from the condenser section to 

the evaporator section of the heat pipe. When an external heat is applied, it is absorbed by 

the evaporator section and then the liquid in the evaporator section is concurrently heated 

and evaporated. The vapor travels lengthwise through the center of the heat pipe and 

releases its latent heat in the condenser section. The discharged latent heat is expelled to 
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the environment by means of convection and radiation from the outer surface of the 

condenser. The condensate then returns to the evaporator section through the wick 

structure, to complete the heat transfer cycle occurring within the heat pipe. 

The annular heat pipe [1] is comparable to the standard wicked capillary driven heat pipe 

with the exception that the cross section of the vapor space is annular in place of circular, 

as shown in Figure 1.8 and Figure 1.9 

 

 

Figure 1.8 Conventional Annular Heat Pipe [2] 
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Figure 1.9 Concentric Annular Heat Pipe [2] 
 

This design allows the engineer an area where wick material can be placed both on the 

inside of the outer pipe and on the outside of the inner pipe. Hence, the surface area for 

heat input and output can be increased significantly devoid of expanding the outer 

diameter of the heat pipe. The annular heat pipe has been employed as an isothermal 

furnace with exceptional results due to its temperature leveling abilities and fast reaction 

time to a cold charge [5]. 

The flat plate capillary driven heat pipe [1] has a rectangular shape with a minor aspect 

ratio, as can be seen in Figure 1.10. Additional wick blocks between the evaporator and 

condenser facilitate in the condensate’s return, particularly when the condenser is below 

the evaporator in a gravity field. If the condenser is above the evaporator, the wick in the 

condenser section can be abandoned since the condensate on the upper plate will trickle 

back to the evaporator. It is possible to simplify the configuration of the flat plate heat 
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pipe by substituting the wick structures in the heat pipe by grooves; the grooves can 

create the capillary force provided by the wick structure.  

 

 

Figure 1.10 Depiction of a Flat Plate Heat Pipe [2] 
 

The gas charged heat pipes are known as variable conductance heat pipes [1]. They are 

identical as the capillary driven heat pipe with the exception that a non-condensable gas 

is placed in the vapor space, as is shown in Figure 1.11.  
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Figure 1.11 Depiction of a Gas Loaded Variable Conductance Heat Pipe [2] 
 

Throughout operation, the gas is moved along the length of the heat pipe by the vapor of 

the working fluid in the condenser section [6]. Subsequently, condensation of the 

working fluid cannot be performed where the non-condensable gas is present, disabling a 

portion of the condenser and restricting it from transferring heat to the heat sink (Figure 

1.11a). However, if the heat flux to the evaporator section is increased, the vapor pressure 

of the working fluid will be increased, which accompanies the compression of the non-

condensable gas. It consecutively increases the condensing surface of condenser and 

allows for more heat to be transferred (Figure 1.11b). Gas loaded heat pipes can be 

utilized in an annular arrangement, for instance, for electric element cooling, or as an 

isothermal furnace. 
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With the advancement of miniature heat pipes, the wick structure in the heat pipe is often 

substituted by grooves to create the capillary force, which removes the condensate from 

the condenser and transports it to the evaporator. This is typically done due to the 

difficulties of manufacturing and installing a wick structure in a miniature heat pipe. 

Figure 1.12 depicts a basic diagram of capillary pumped loop heat pipe [7].  

 

 

Figure 1.12 Diagram of a Capillary Pumped Loop Heat Pipe [2] 
 

During operation, heat is applied to the evaporator section, which contains a hollowed 

rod of wick material crowned at one end and press fitted into an internally axially 

grooved tube. The heat applied to the exterior of the evaporator boils the working fluid, 

which then transverses the length of axially grooved channels and into the vapor header. 

The vapor of the working fluid traverses to the condenser, where it is initially condensed 

as a film on the inner wall of the pipe, and then into a liquid sludge flow. Before arriving 

at the evaporator, the working fluid passes through a sub-cooler, which collapses any 
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residual vapor bubbles and provides additional sub-cooling if necessary. The capillary 

pressure produced in the wick structure continuously pushes the working fluid throughout 

the cycle. 

Rotating heat pipes can be fabricated in two different configurations [8]. First, the heat 

pipe can be fabricated in the shape of a disk, where two parallel disks are united at the 

inner and outer radii to form the vapor space, as shown in Figure 1.13.  

 

 

Figure 1.13 Diagram of a Rotating Heat Pipe [2] 
 

The condensate from the condenser section is restored to the evaporator section by the 

centripetal force, with the aid of an interior taper. Disk-shaped heat pipes have been 

proposed to cool turbine disk and automobile brakes. Secondly, the heat pipe can be 

fabricated in the shape of a circular cylinder that can include an axial taper. The cylinder 

can rotate either about its own axis of symmetry or it can revolve off-axis. Consequently, 

capillary wicks are typically not used in rotating heat pipes. Cylindrical rotating heat 
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pipes can be used to cool electric motors and metal cutting tools, such as drills and end 

mills.  

The axially reciprocating heat pipe is an innovative heat pipe design [9]. This type of heat 

pipe is similar in structure to the wickless two phase thermo-siphon, which has a 

condenser section, an evaporator section, and an amount of working fluid inside the heat 

pipe, which is depicted in Figure 1.14.  

 

 

Figure 1.14 Diagram of an Axially Reciprocating Heat Pipe [9] 
 

Nevertheless, the operational principle of the axially reciprocating heat pipe is 

considerably different from other heat pipes. The condensate return is achieved by a 
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stirring up inertia force of the axially reciprocating heat pipe. The condensate splatter and 

impingement inside the reciprocating heat pipe guarantees the condensate supply to the 

evaporator section. As displayed in Figure 1.14, the lower section of the heat pipe 

functions as the condenser and the upper section acts as an evaporator. Heat is conducted 

through the heat pipe wall into the evaporator section, where the heat is absorbed by the 

working liquid through evaporation. The vapor then flows down to the condenser section, 

where the vapor condenses and discharges the latent heat onto the interior surface of the 

heat pipe. Concurrently, the impinging effect of the working fluid inside the heat pipe 

causes a portion of the heat input to be carried from the evaporator to condenser section 

by the liquid working fluid. The latent heat from the vapor and the heat carried by the 

working fluid are conducted through the heat pipe’s condenser wall to the exterior 

surface of the heat pipe, where the heat is removed from the surface by the cooling 

medium, such as air or cooling oil. The condensate is then returned by the stirring up 

inertia force caused by the axially reciprocating motion of the heat pipe. The axially 

reciprocating heat pipe can also be fabricated into different shapes, such as an annular 

shape. 

The varieties of the heat pipes are not limited to those pointed out above. With further 

research into heat pipes, many new heat pipes can be created. Initially heat pipes were 

mainly applied to satellites; the first use was the case of two heat pipes that were used to 

reduce the temperature differences between the various transponders in a satellite 

(GEOS-B). But heat pipes have branched out from the space field and are now being used 

in a wide range of applications, from electronics and engine cooling to air conditioning 

and heat exchangers.  
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1.2 Turbine Blade and Disk Cooling 

Designing turbines for either aerospace or power production is a daunting task for any 

heat transfer scientist or engineer. Turbine designers are continuously pursuing better 

ways to convert the stored chemical energy in the fuel into useful work with maximum 

efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is 

to increase the turbine inlet temperature and pressure, which results in turbines being 

designed to work with inlet temperatures of 1500-1700 K, making the operating 

environment of the turbine blades and disks very hostile. Generally, these temperatures 

are exceeding the capabilities of standard materials for safe and long-life operation of the 

turbine. 

Three techniques are typically considered by a turbine designer to overcome these 

difficulties. One approach is to develop more advanced and innovative surface coatings 

that have the ability to resist this adverse environment, while being as non-thermally 

conductive as possible in order to protect the blade and disk. This approach has been used 

for many years and is very convenient and advantageous. However, the advancement 

with new coatings is generally slow due to the fact that new surface coatings must be 

subjected to the impingement of high temperature gases and the vibration of turbines, 

thus making it challenging for the coating to adhere to the blade surface. Another method, 

which is primarily used on turbine blades, is the air cooling method. This technique is a 

conventional and effective method of cooling the turbine blade. The practice is seen in 

three varieties: 
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A. Transpiration or porous cooling 

Transpiration or porous cooling involves the use of porous materials; the cooling 

air is driven through the turbine blade surface to form an insulating film, as 

shown in Figure 1.15.  

 

 

Figure 1.15 Transpiration Cooling Turbine Blade [10] 
 

This technique, though effective, is easily neutralized due to pore blockage and 

material oxidation. 

B. Film Cooling  

Film cooling is accomplished by having the cooling air flow through the inner 

channels of the blade and out through passages in the blade surface and trailing 
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edge. The cooling air is inserted into the boundary layer of the high temperature 

gases on the blade surfaces, as shown in Figure 1.16.  

 

Figure 1.16 Turbine Blade Film Cooling [11] 
 

This provides a protective layer to the turbine blade surface, while the 

temperature gradient in the cross-sectional area of the blade decreases 

significantly. Conversely, film cooling requires a large amount of cooling air, and 

adversely influences the thermodynamic and aerodynamic performance of the 

turbine.  

C. Convection Cooling  

Convection cooling is one of the earlier techniques used to cool turbine blades 

and involves having cooling air from the compressor flow into inner channels in 
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the turbine blade from the blade root and flow out through the top of the turbine 

blade. The discharged cooling air is then mixed with the principal gas flow of the 

next stage. This has been proven to be an effective cooling technique since the 

cooling air can remove heat that is stored within the turbine blades through 

convection, as depicted in Figure 1.17.  

 

 

Figure 1.17 Turbine Blade Convection Cooling [12] 
 

However, the narrow air passages typically become obstructed over time and the 

flow rate of the cooling air becomes reduced, this is most prevalent at the blade 

trailing edge. Consequently, the cooling influence at the trailing edge will be 

reduced, and the temperature at the trailing edge will become considerably 

greater than that of other regions in the turbine blade. 

Another possible technique for turbine blade cooling is the use of heat pipes [13], which 

can possibly provide an effective means of cooling or redistributing the high heat fluxes. 

Since heat pipes have an operational characteristic of high thermal conductance, and the 
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ability to create an isothermal surface of low thermal impedance, they can be utilized in 

the turbine blades and disks as a cooling device, as depicted in Figure 1.18.  

 

Figure 1.18 Depiction of Radially Rotating Heat Pipes being Utilized in a Turbine Blade 
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1.3 Application of Radially Rotating Miniature Heat Pipes to the Turbine Blade 

and Disk 

To have better thermal efficiency and the ability to operate at higher combustion 

temperatures, turbine blade and disk cooling is vital. Although air cooling techniques are 

effective and convenient, the coolant flow in the turbine blades and disk affects the 

thermodynamic and aerodynamic performance of the turbine. Concurrently, air cooling is 

accompanied by other difficulties. 

A. Air cooling techniques requires approximately 2% of the total air flow from the 

compressor to cool the high temperature components, which results in a decrease 

in the over-all efficiency of the turbine. 

B. Due to the narrow space of the turbine blade trailing edge, flow resistance of the 

cooling air increases, and the flow rate of cooling air reduces in the blade trialing 

edge, causing the temperature gradient over the cross-sectional area of the blade 

to increase. 

C. Air cooling usefulness, in the turbine blade tip, is reduced as its temperature 

increases, creating a general temperature rise of the entire turbine blade and thus 

resulting in a significant temperature gradient between the turbine blade base and 

tip. 

A reduction of the temperature gradient in turbine blade and disk could be accomplished 

by combining the air cooling techniques stated previously with radially rotating miniature 

heat pipes. This could be done by installing a radially rotating miniature heat pipe in the 

blade trailing edge, as shown in Figure 1.19.  
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Figure 1.19 Depiction of Heat Pipe Utilization with Air Cooling in Turbine Blade [13] 
 

The radially rotating heat pipe is a wickless heat pipe that consists of a certain amount of 

working fluid vacuum-packed within the container, as depicted in Figure 1.20.  
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Figure 1.20 Depiction of a Radially Rotating Heat Pipe with a Tilt Angle [14] 
 

The liquid condensate from the condenser is returned to the evaporator by utilizing the 

centripetal force generated by the rotating motion of the heat pipe. The thermal energy in 

the turbine blades would be transferred from the evaporator section to the condenser 

section, where the energy would then be dissipated by the cooling air convection. Due to 

the high thermal conductance of the radially rotating miniature heat pipe, the temperature 

gradients over the cross-sectional areas of the blade and between the blade base and tip 

would be greatly reduced utilizing the cooling technique. 

In addition to the high-temperature working condition of a turbine blade, the upper 

portion of a turbine disk would operate at higher temperatures due to the turbine blades 
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being directly attached to the disk rim. Therefore, utilizing the radially rotating heat pipes 

in the disk would similarly enhance the cooling abilities of the turbine blades, as shown 

in Figure 1.21 [15]. 

 

Figure 1.21 Depiction of a Possible Configuration for the use of Radially Rotating Heat Pipes Cooling for a 
Turbine Disk 
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1.4 Objectives of this Study 

Radially rotating miniature heat pipes could become a significant part of the turbine blade 

and disk cooling techniques. In addition, the heat transfer phenomena and the two-phase 

flow in radially rotating miniature heat pipes is very complex. To date, in-depth studies 

regarding the heat transfer mechanisms in this new heat pipe are insufficient and the fluid 

flow situations inside the heat pipe, as well as the design criteria, are not entirely 

comprehended. Also, the use of discrete heat pipes may increase the cost of the turbine 

blade or disk because of the large number of heat pipes involved. 

Therefore, the objectives of this Ph.D. dissertation are as follows: 

I. Design and fabricate two sector heat pipes each with four interconnected heat pipe 

branches. 

II. Identify the performance characteristics of the heat pipe under low- and high-

temperature and rotating conditions, and validate the reliability of the heat pipe as 

well the compatibility of the working fluid with the heat pipe shell. 

III. Experimentally study the fabricated specimens of interconnected heat pipes to 

determine the feasibility of the interconnected rotating heat pipe sharing a 

common reservoir. 

IV. Investigate the liquid distribution among the four interconnected heat pipe 

branches.  
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2. Analysis of the Performance of a Single Radially Rotating Miniature Heat Pipe 

Derived from a Sector of the Turbine Disk 

 

 

Figure 2.1 Representation of a Typical Turbine Disk 
 

As can be seen from the figure above (Figure 2.1), a turbine disk with about 72 blades 

attached is rotationally symmetrical, which allows for a simplification of the sector heat 

pipe analysis. The simplification starts by dissecting the disk with two planes separated 

apart by 10  (or by 5  for a single dovetail), as shown in Figure 2.1, Figure 2.2, and 

Figure 2.3. 
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Figure 2.2 Hidden Line View of the Heat Pipes in a Turbine Disk 
 

 

Figure 2.3 Turbine Disk Enlarged View 
 

Once this is done, it can be seen from Figure 2.2 and Figure 2.3 that the sector heat pipe 

being studied is formed, with four lengthwise singular heat pipes connected with a 

common reservoir located in the dovetail section.  
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Further simplification can be accomplished with two perpendicular planes, cutting the 

sector heat pipe into quadrants. As shown in the figure below, Figure 2.4 

 

Figure 2.4 Dissected View of Sector Heat Pipe 
 

After this dissection of the sector heat pipe is done, what is left is a single heat pipe, 

which will be the focus of the following analysis. 
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2.1 Analytical Solution for the Liquid Film Distribution in the Condenser Section 

of a Single Heat Pipe 

As discussed in the previous chapter, a wickless radially rotating heat pipe operates by 

rotating about the axis of revolution and is comprised of an air-evacuated hollow 

container with an amount of working fluid sealed within the container. Before the sector 

heat pipe can be applied to the turbine disk the fundamental transport phenomena related 

to various heat transfer limitations must be fully understood. Figure 2.5 is a schematic 

that illustrates a single radially rotating heat pipe and its interior working conditions.  

 

 

Figure 2.5 Depiction of a Radially Rotating Heat Pipe 
 

Assumptions for the general thin-film condensation analysis are as follows: 

1. The condensate is film-wise. 

2. Liquid sub-cooling of the working fluid is negligible. 
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3. Convective effects of the working fluid are negligible. 

4. The vapor space radius is much larger than the liquid film thickness. 

5. Temperature gradients and circumferential velocity are negligible. 

6. The vapor pressure is uniform over the cross-sectional area of the heat pipe. 

7. In the presence of a large body force, the thermo-capillary flow effects are 

negligible.  

However, since the size of the heat pipe in this study is very small, the curvature 

effect of the wall on the liquid film distribution is required in the calculation, 

therefore a cylindrical coordinate system will be employed in this study. For the 

analysis a cylindrical differential control volume in the liquid condensate film of a 

single radially rotating heat pipe is schematically shown in Figure 2.6 [13] [16] [17]. 
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Figure 2.6 Depiction of a Differential Control Volume in the Condensate [16] [17] 
 

 In the schematic, the liquid centripetal force and gravitational force are [16] [17] 

Zdrdzf lc
22 ωπρ=  and θπρ cos2 grdrdzf lg = , respectively.  Equating all forces to 

zero in z direction results in the following differential equation: 

( )dzdr
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where θ is the rotating angle of the heat pipe and zzZ +≈ 0 , is the revolving radius of 

the control volume. 

Since drr >>  and rdrr ππ 22 ≈+ , Equation (2.1) can be simplified into 

( ) 0cos2,, =−−
∂

∂
+

∂

∂
θωρ

τ
gZ

z
p

r l
zlrl     (2.2) 

And when equating the force balance in r direction to zero, we have 

( ) 022 ,
,, =+⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
+− dzdrrdr

r
p

prdzp rl
rlrl ππ     (2.3) 

The equation can be simplified by neglecting higher order infinitesimals, 

0, =
∂

∂

r
p rl       (2.4) 

After simplifying Equation (2.4) it is shown that the pressure of the liquid film is a 

function of z only. By considering the momentum equations in both the z and r directions, 

the shear stress and pressure at the liquid film surface can be studied by using the 

interface control volume shown in Figure 2.7. 
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Figure 2.7 Depiction of a Control Volume at the Liquid-Vapor Interface [16] [17] 
 

Then the following equations are obtained 

( ) rdz
dz
dwwrdzrdz l

RlvRvRl ππτπτ δδδ 222 ,,,
Γ

+−−= −−−    (2.5) 

( ) ( ) 0222 ,,, =
Γ

+++− −−− rdz
dz
dwwdzdrrprdzp l

RlvRlRv πππ δδδ   (2.6) 

Where δτ −Rl ,  and δτ −Rv ,  are the shear stresses of the liquid film and the vapor at the 

liquid-vapor interface due to the counter-current liquid and vapor flows. vw  is the 

average vapor velocity and δ−Rlw ,  is the liquid velocity at the liquid film surface. lΓ  is the 

liquid mass flow rate per unit circumferential length and δ  is the thickness of the thin 

liquid film, as shown in Figure 2.7. 
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Realizing that 
dz
d lΓ  is very small and can be ignored, Equations (2.5) and (2.6) can be 

simplified as follows: 

δδ ττ −− −= RvRl ,,      (2.7) 

δδ −− = RvRl pp ,,       (2.8) 

Due to the very small cross-sectional area of the miniature heat pipe, it can be assumed 

that the vapor pressure over the cross section is uniformed. And with Equations (2.4) and 

(2.8) we get, 

( ) ( )zpzp vl =       (2.9) 

Equation (2.9) shows that the pressures of the vapor and liquid in the r direction, in the 

condenser section, are equal, and vary only in z direction. Therefore, Equation (2.2) can 

be simplified as: 

( ) 0cos2, =−−+
∂

∂
θωρ

τ
gZ

dz
dp

r l
vrl     (2.10) 

The boundary equations for Equation (2.10) are 

0=lw     at   Rr =    (2.11) 

δδ ττµ −− =−=
∂
∂

RvRl
l

l r
w

,,   at   δ−= Rr    (2.12) 

Integrating Equation (2.10) in the r direction yields the following equation: 

( ) ll
v

rl crgZr
dz
dp

+−−=− θωρτ cos2
,    (2.13) 

And for a Newtonian fluid, this equation becomes 

dr
dwl

lrl µτ −=,       (2.14) 
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Substituting Equation (2.14) into Equation (2.13) and integrating it in the r direction 

yields 

( ) 2

2
2

2
cos1 crcrgZ

dz
dpw
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After applying the boundary conditions (2.11) and (2.12), we have 
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Once the velocity distribution is determined, the liquid mass flow rate per unit 

circumferential length, lΓ , can be evaluated through the following integral: 

∫
−

==Γ
R

R
ll
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2
2
1     (2.17) 

For a radially rotating miniature heat pipe with a high rotational speed, the liquid film 

thickness, δ , is much smaller than the heat pipe radius, R. Therefore, r and R can be 

considered equal and can be negated in Equation (2.17). Then, by substituting Equation 

(2.16) into Equation (2.17) and integrating will yield 
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Based on the energy balance, and by neglecting the change in sensible heat, the following 

relation can be used to evaluate the mass flow rate. 
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Where cq  is the heat flux and cq ʹ′ʹ′  is the average heat flux in the condenser section. By 

substituting Equation (2.19) into Equation (2.18), a solution for the liquid film thickness 

is obtained  
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After using Equation (2.20) to evaluate the liquid film thickness, the temperature drop, 

lTΔ , across the liquid film can be calculated by 

l
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l

c

l k
q

k
R
RqR
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    (2.21) 

The local Nusselt number, zNu , and local heat transfer coefficient, zh , in the condenser 

section are defined, respectively by, 

δ
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zhNu
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z
z ≅=      (2.22) 

δ
l
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Δ
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Where lk , in Equations (2.22) and (2.23), is the heat conductivity of the liquid film. 
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2.2 General Solution of the Liquid Film Distribution in the Condenser Section 

with Consideration of the Tilt Angle 

The basic assumptions established in section 2.1 for the mathematical model continue to 

apply here [16] [17]. Typically, the tilt angle, φ , of a single heat pipe should be close to 

90°, as shown in Figure 2.8.  

 

Figure 2.8 Representation of a Differential Control Volume in the Condensate Film [16] [17] 
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Equating forces to zero in the z direction gives 
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Where, 0z  is the revolving radius of the coordinate origin and φsin0 zzZ +=  is the 

revolving radius of the control volume. 

Noting that drr >> , 

( ) rdzdrdzrdzdzdrr ππππ 2222 ≈+=+    (2.25) 

Inserting Equation (2.25) in Equation (2.24) yields 
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Simplifying Equation (2.26) and rearranging, gives 
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Equating forces to zero in the r direction would give 
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Equation (2.28) can be simplified and rearranged to give 
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Integrating Equation (2.29) from r to δ−R  gives 
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Hence 

( ) ( )δφθωρδ +−−+= − RrgZpp lRll coscos2
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Differentiating Equation (2.31) with respect to z yields 
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It can be assumed that the liquid pressure at the liquid-vapor interface is equal to the 

vapor pressure, which yields 

vRl pp =−δ,       (2.33) 

Substituting Equation (2.33) into Equation (2.32) provides 
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Inserting Equation (2.34) into Equation (2.27), we have 
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Considering that 
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dδ  is very small, 
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Substituting Equation (2.36) into Equation (2.35) and integrating gives 
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Noting that, 
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dwl

ll µτ −= , and replacing lτ  with this relation in Equation (2.37) and 

integrating, will yield 
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The constants of integration in the above equation can be determined by using the 

following boundary conditions: 
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Considering that 
dz
d lΓ  is very small and negligible, Equation (2.40) can be simplified to 

δδ ττ −− −= RvRl ,,     at   δ−= Rr    (2.41) 

Once the constants of integration in Equation (2.38) are determined by using the 

boundary conditions, the velocity of liquid in the z direction can be obtained 
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The liquid mass flow rate per unit circumferential length, lΓ , is given by 

∫
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This is expanded to give 
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By use of the energy balance lΓ  can also be evaluated by the following relation 
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Inserting Equation (2.45) into Equation (2.44) gives 
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Rearranging Equation (2.46) gives the general solution for the liquid film thickness 
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It can be assumed that R<<δ , then by substituting Rr ≅  into Equation (2.44), it can be 

simplified as 

∫
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Inserting Equation (2.45) into Equation (2.48) and reordering it, a simplified version of 

Equation (2.47) is obtained 
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Equation (2.49) is similar to the liquid film thickness over a plane geometry with a tilt 

angle [18], if δ>>R , then the cylindrical surface can be treated as a plane surface. 

Hence, Equation (2.49) as well can be used for the calculation of liquid film thickness for 

a plane geometry with a tilt angle. 

If the tilt angle, φ , is fixed to °90 , then the equation for the liquid film thickness can be 

simplified further to give 
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45 
 

Equation (2.50) and Equation (2.20) are identical because they are the equation of the 

liquid film thickness for a cylindrical heat pipe with 090=φ . 

When comparing Equations (2.49) and (2.47), it is evident that Equation (2.49) can be 

obtained from Equation (2.47) if the first, second and third terms on the left-hand side of 

Equation (2.47) are dropped. Similarly, Equation (2.50) is obtained from Equation (2.49) 

with 090=φ . These cases show that Equations (2.49), (2.20) and (2.50) are three special 

circumstances of Equation (2.47). By way of deduction, Equation (2.47) is the general 

relation for liquid film distributions in radially rotating heat pipes. 

After the liquid film thickness, δ , is determined from the equations for the liquid film 

thickness, the temperature drop across liquid film thickness is 

l

c

pl k
R
RqR

TTT δ
δ

−
ʹ′ʹ′
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ln

     (2.51) 

If the temperature distribution of the liquid film is linear, then the temperature drop 

across the liquid film can be expressed as 

l

c
pl k
qTTT δ

δ

ʹ′ʹ′
=−=Δ      (2.52) 

The local Nusselt number, zNu , and local heat transfer coefficient, zh , in the condenser 

section can be the same as Equations (2.22) and (2.23), respectively. 
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2.3 Axial Vapor Flow Analysis along the Single Heat Pipe Length 

In the preceding analytical solutions for the liquid film distributions on the single heat 

pipe wall, both the vapor pressure gradient along the heat pipe and the shear stress at the 

liquid vapor interface are present. To complete the analysis, solutions for the vapor flow 

within the cavity must be obtained [16] [17]. Additionally, the centripetal force may 

contribute to the vapor temperature drop along the heat pipe length and must be 

addressed. In some outlying circumstances, this temperature drop may present a heat 

transfer limitation for the performance of the single heat pipe and possibly the sector heat 

pipe. Consequently, it is necessary to obtain the temperature drop along the single heat 

pipe length. If a one-dimensional, laminar, and incompressible vapor flow along the heat 

pipe length under the steady-state operating condition is considered, as shown in Figure 

2.9,  
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Figure 2.9 Representation of a Vapor Thermal Balance in the Condenser Section [16] [17] 
 

where ( ) ( )dzRgf vvg θφπρ cossin2=  is the gravitational force of the vapor, and 

( )dzRZf vvc φπωρ sin22=  is the centripetal force of the vapor. Then the momentum 

equation for the vapor flow is 
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Equation (2.53) can be simplified to give 
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Noting that the shear stress of the vapor flow is 
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Where vm  is the vapor mass flow rate, vw  is the average vapor velocity over the heat 

pipe cross-sectional area, f  is the laminar vapor skin-friction coefficient, and δ−= RRv  

is the vapor space radius within the heat pipe.  

By performing an overall thermal balance in the condenser section, as shown in Figure 

2.10  
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Figure 2.10 Representation of the Overall Thermal Balance in the Condenser Section [16] [17] 
 

Will yield 
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After substituting Equations (2.57) and (2.58) into Equation (2.54), will yield 
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Generally, the above equations are valid when the following two conditions are satisfied, 

those being the vapor Mach number and Reynolds number: 
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    (2.61) 

Where  vγ  is the vapor specific heat ratio, gR  is the gas constant of the vapor, and vA  is 

the cross-sectional area of the vapor space [19]. These two conditions are typically 

satisfied for high-temperature single heat pipes having a small diameter and operating at 

steady-state. 

Presuming that the heat fluxes along the evaporator (input) and the condenser (removal) 

are constant, the axial mass flow rate of vapor can be found by a mass and energy balance 

during steady-state conditions [2]. 
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Where zq  is the axial heat transfer rate of the vapor within the cavity. 

Substituting Equation (2.62) into Equation (2.56) and reordering it gives, 
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Inserting Equation (2.63) into Equation (2.59) and integrating it along the heat pipe 

length (from 0 to L), the vapor pressure drop along the single heat pipe is given by 
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Subsequently, the vapor momentum is very small and can be negligible. Then the vapor 

pressure drop along the heat pipe can be simplified as 
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Where L is the single heat pipe length, ( )eaceff LLLL ++= 2
2
1  is the effective length of a 

single heat pipe, 
( )

fgvv
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v hR
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ρπ
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42
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=  is the vapor frictional coefficient, φsin
2
1

0 LzZa +=  is 

the average revolving radius of the heat pipe, and ccec qDLQQ ʹ′ʹ′== π  is the total heat 

transfer rate at the condenser or evaporator section at steady-state. 
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As discussed earlier, the vapor Reynolds number is generally less than 2300. However, 

with an increase in the total heat flux, Q , the Mach number could become greater than 

0.3 when the heat pipe operating temperature is relatively low. In this circumstance, the 

vapor compressibility should be taken into account. Fashioned upon the bulk fluid 

properties, the ratio of the drag coefficient for a compressible flow, cvf , , to that of an 

incompressible flow, ivf , , at the same vapor Reynolds number can be rectified by the 

following equation [19]: 
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By inserting Equation (2.65) into the relation for the vapor frictional coefficient, a 

modified vapor friction coefficient is attained: 

( ) 2
1

2
4 2

11
2
Re

−

⎟
⎠

⎞
⎜
⎝

⎛ +
+= v

v

fgvv

vv
v M

hR
fF γ

ρπ
µ     (2.67) 

It should be realized that the vapor pressure drop caused by gravity is very minor and can 

be neglected. Hence, the vapor pressure drop along a single heat pipe length becomes 
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The Clapeyron equation that establishes a relation between the saturated temperature to 

the saturated pressure is 
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Using this relation in Equation (2.68), the vapor temperature drop along the heat pipe 

length becomes 
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Then changing to a dimensionless form, the temperature drop of the vapor along a single 

heat pipe length is given by 
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Where vT  is the operating temperature of a single heat pipe, vTΔ  is the total vapor 

temperature drop along the heat pipe length, cTΔ  is the dimensionless temperature drop 

due to the vapor centripetal force , and fTΔ  is the dimensionless temperature drop due to 

friction at the liquid-vapor interface. 
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2.4 Analytical Results for the Heat Transfer Limitations and Temperature Drop 

in a Single Heat Pipe 

The temperature decline across the liquid film or along the heat pipe length is a crucial 

criterion for designing radially rotating miniature heat pipes with high operating 

temperatures and rotational speeds. In order to justify the feasibility of the turbine disk 

cooling application, analytical results are exhibited for a single radially rotating miniature 

heat pipe working under high heat flux and high rotational speed conditions. The limits of 

geometric dimensions, heat fluxes, dimensionless centripetal force, and rotational speed 

are given in the table below, Table 2-1. 

 
mmdmm i 31 ≤≤  mmL 80=  

WQW 20040 ≤≤  mmLL ec 40==  
5

2

1026.626.6 ×≤≤
g
Zaω  0=aL  

HzfHz 6010 ≤≤  090=φ  
 

Table 2-1 Parameters of Testing and Heat Pipes 
 

It should be noted that these limits are only approximations to the turbine disk cooling 

conditions, and not to be confused with real-world design values [20]. It is evident from 

Equations (2.47) through (2.71) that the liquid film thickness, the temperature drop across 

the liquid film, and the vapor temperature drop along the heat pipe length are chiefly a 

function of shear stress, heat flux, liquid and vapor centripetal forces, liquid and vapor 

thermo-physical properties, heat pipe size, and the heat pipe operating temperature. 

Consequently, the functioning of a heat pipe depends on the heat load in the evaporator 
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and the cooling conditions in the condenser. Typically, the operating temperature, vT , 

will increase if the flow rate of the cooling air is decreased or the heat input is increased. 

Figure 2.11 demonstrates the maximum temperature drops across the liquid film versus 

the dimensionless centripetal forces, 
g
Za
2ω , with sodium as the working fluid.  

 

Figure 2.11 Maximum Temperature Decreases across the Liquid Film for Sodium as the Working Fluid 
( KvT 1100= , )WQ 200=  

 

The total heat input, Q , and the working temperature, vT , are maintained constant at 200 

W and 1100 K, respectively. The dimensionless geometric parameter, 
L
di , is handled as a 

variable. For the results exhibited in Figure 2.12, 
L
di  is maintained constant, and the 

operating temperature is varied.  
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Figure 2.12 Maximum Temperature Decreases across the Liquid Film for Sodium as the Working Fluid
( 025.0=Lid , )WQ 200=   

 

It is perceived from Figure 2.11 and Figure 2.12 that at a relatively high rotational speed 

or a large revolving radius  150
2

>
g
Zaω  creates the maximum temperature drop across 

the liquid film to be negligible. Nonetheless, a low heat pipe operating temperature or a 

small heat pipe diameter may increase the temperature drop. However, under normal 

turbine working conditions, the maximum temperature drop is still much less than 1 K. 

This necessitates that the normally encountered condenser limitation for a low 

temperature heat pipe would never be a significant problem for a high temperature heat 

pipe studied in this dissertation. 

Calculations are then performed for the lengthwise vapor temperature drop of the heat 

pipe with sodium as the working fluid. Figure 2.13 depicts vapor temperature drop as a 

function of dimensionless centripetal forces at different operating temperatures.  
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Figure 2.13 Lengthwise Vapor Temperature Drop of the Heat Pipe at Different Rotating Speeds  
( 025.0=Lid , )WQ 200=  

 

The total heat input and the dimensionless heat pipe geometric parameter are maintained 

constant ( WQ 200= and 025.0=
L
di ). It is evident from the figure that the vapor 

temperature drop increases with an increase in the operating temperature or in the 

centripetal force. For the high temperature heat pipes studied in this dissertation, this 

temperature drop is comparatively minor compared to the average heat pipe operating 

temperature. 

The vapor temperature drop would increase slightly as the dimensionless heat pipe size is 

decreased, as shown in Figure 2.14.  
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Figure 2.14 Lengthwise Vapor Temperature Drop of the Heat Pipe at Different Heat Pipe Dimensionless 

Sizes ( WQ 200= , )41000.62 ×=gaZω  

 

When the heat pipe diameter is decreased, at a specified operating temperature, the vapor 

temperature drop is increased due to higher friction at the liquid-vapor interface. It has 

been observed that when the operating temperature of the heat pipe is less than 1100 K, 

the vapor temperature drop for the miniature heat pipe with 0125.0=
L
di  will increase 

abruptly. Though, for a single heat pipe with a 
L
di  greater than 0.02 or with id  greater 

than 1.5 mm, the influence of the heat pipe size on the vapor temperature drop is 

comparatively minor.  
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Figure 2.15 Vapor Temperature Decreases along the Heat Pipe Length at Different Heat Inputs 

( 025.0=Lid , )4702 =gaZω  

 

Figure 2.15 illustrates how the lengthwise vapor temperature drop of the heat pipe is 

influenced by the heat input. Generally, when the operating temperature of the heat pipe 

is relatively high, the influence of the heat input on the vapor temperature drop is 

comparatively minor. Nevertheless, the vapor temperature drop, for a relatively low 

operating temperature, is substantially increased when the heat input is high. 

Conferring to Equation (2.71), contributions from the friction at the liquid-vapor interface 

and the vapor centripetal force in the heat pipe cause the total vapor temperature drop in 

the heat pipe. Figure 2.16 illustrates the contribution of the centripetal force as the ratio 

of the vapor temperature drop caused by the vapor centripetal force to the total vapor 

temperature drop.  
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Figure 2.16 Ratio of the Vapor Temperature Decreases to the Total Temperature Decrease, due to the 
Centripetal Force ( KvT 1100= , )WQ 200=  

 

At low rotational speeds, the influence of the centripetal force is comparatively minor, 

but at high rotational speeds, the influence of the centripetal force becomes a dominant 

factor. This is particularly evident for single heat pipes having a comparatively large 

diameter. 

As demonstrated by the preceding analytical solutions, the vapor temperature drop along 

the heat pipe length may pose a heat transfer limitation when a single heat pipe has a very 

small diameter, with a relatively low operating temperature level and a high rotational 

speed. Conversely, for single miniature heat pipes having a diameter of approximately 

1.5 to 2 mm, the heat transfer limitation has not been observed at normal rotational 

speeds and normal operating temperatures. This denotes that radially rotating miniature 

heat pipes are viable for use in turbine disk cooling applications. 
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The entrainment limit is caused by the interaction between the counter-current vapor and 

liquid flows that takes place at the liquid-vapor interface. This limit can be of key 

concern when the heat flux is high and the heat pipe dimensionless sizes are minute. In 

this scenario, the shear stresses at the liquid-vapor interface hinder the return of liquid 

from the condenser to the evaporator section. When this occurs, the heat pipe is said to 

have reached the entrainment limit. An ample review of the entrainment limit for two-

phased closed thermo-siphons is given by Faghri [2] and Peterson [21]. An assortment of 

correlations for the evaluation of this limit is also included in the literature. For 

contemporaneous single wickless rotating heat pipes, the mechanism of the entrainment 

limit should be parallel to that of the thermo-siphons with the gravitational force being 

substituted with the rotational centripetal force. Figure 2.17 illustrates the entrainment 

limits for the same single heat pipe examined previously at different rotational speeds.  

 

 

Figure 2.17 Entrainment Limitations as a Function of Rotational Speeds  
( KTref 1073=  for sodium and KTref 937= for potassium) [2] 
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The calculation was created based on the Wallis’ correlation [2] 
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Along with the correlation from Faghri et al. [4] 
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The result applies to potassium and sodium as the working fluids. For the single rotating 

heat pipes with a miniature dimensionless size, 0125.0=L
di , the entrainment limit is 

exceedingly sensitive to the rotational speed and can be of concern when the rotational 

speed is significantly slow. Conversely, when the rotational speed is reasonably high, the 

entrainment limit is enlarged to more than 
2100

cm
W , which is suitable for turbo-

machinery applications. The values of the entrainment limit that have been calculated by 

the Wallis’ correlation are approximately those found in Faghri et al. [4], when the 

rotational speed is low. However, large deviations are observed with both working fluids 

at high rotational speeds. A comparable development was observed by Faghri [2] for 

thermo-siphons. 
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3. Experimental Testing Procedures 

3.1 High Speed Rotating Test Apparatus 

To verify the abovementioned analytical results, a high speed test apparatus and a data 

acquisition system were fabricated. The data acquisition system is depicted in Figure 3.1. 

 

Figure 3.1 Depiction of a High Speed Rotating Test Apparatus and Data Acquisition System  
 

The revolution range of the rotating test apparatus is adjustable from 0 to 3,600 rpm and 

is controlled by an AC inverter. The electric heater used to heat the heat pipes was 

adjusted by a transformer from 0 to 120 V, which was supplied by a two-channel slip 

ring. The lengthwise temperature distributions of the heat pipe were measured by five 

thermocouples and connected to a data acquisition system through a 5-channel slip ring. 

A numbered schematic of the high speed rotating test apparatus is shown in Figure 3.2. 

 



 

64 
 

 

Figure 3.2 Schematic of High Speed Rotating Test Apparatus 
 

The high speed rotating test apparatus consists of the following components: 

1. The motor, which rotates the shaft  

a. Has a capacity of 1 horsepower 

b. Motor speed can be varied from 0 to 3,600 rpm.  

2. Support Bars 
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a. Mounted to the frame (19) and transfers the weight of the motor (1) to the 

frame (19) 

3. Springs 

a. Used for vibration dampening and self-balancing 

b. Four Sets were used and they transfer the weight of the motor to the 

frame (19) 

4. Bearing House 

a. Houses the bearings (5) & (6) 

b. Transfers weight of the motor to the frame (19) 

5. Ball Bearing 

a. Two ball bearings were used to affix the position of the shaft (5) & (6) 

6. Ball Bearings  

7. Slip Rings 

a. Two slip ring assemblies were used and mounted to the shaft 

1. Used to supply electrical current from the power transformer to 

the heater of the heat pipe (15) 

2. Used to connect the thermocouples on the heat pipe (14) to the 

data acquisition device 

8. Safety Shell 

a. Used to protect the user in the event of heat pipe attachment failure  

9. Counter Weight 

a. Mounted opposite to heat pipe (14), for balancing 

10. Inner Cylinder 
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a. Mounted to the shaft and used to mount the outer cylinder (11) 

b. Used to connect the thermocouples and heater 

11. Outer Cylinder 

a. Mounted to the inner cylinder (10) with two attachment bolts 

b. Used to mount the heat pipe (14) and heat pipe cap (12) 

12. Heat Pipe Cap 

a. Used to control the flow rate of cooling air in the condenser section of the 

heat pipe 

b. Also used to protect the heater of the heat pipe 

13. Heater 

a. Used to heat the heat pipe 

14. Heat Pipe 

15. Electrical Wires 

a. Consists of the thermocouple wires and the heater wires 

16. Supporting Plate 

a. Supports bearing housing  

b. Dampens vibrations in the shaft 

17. Bearing Nut 

a. Locks the bearings in place 

18. Flexible Coupling 

a. Used to dampen the vibration of the rotor and to connect the shaft with 

the motor (1). 

19. Frame 
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Upgrades to the High Speed Rotating Test Apparatus were made to insure safety and 

reliability during operation and are as follows: 

1. Ballistic Shielding between the rotor housing and the user. 

2. All wires were wrapped with insulating material. 

3. A thermocouple was added to the rotor housing to measure the rotor housing air 

temperature. 

4. The AD Inverter was mounted to the Test Apparatus and grounded. 

5. Extra electrical grounding points were added to the Test Apparatus. 

6. The high voltage wires were wrapped in conduit and attached with stress 

relievers. 

7. Inline fuses were added to all electrical sources. 

8. Higher accuracy volt and current meters were implemented. 

9. All thermocouple and probe ends were tinned. 

The data acquisition system was also upgraded to a system that would support National 

Instruments LabView. Figures of the Labview block diagram and graphical user interface 

are given in Appendix B.   
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3.2 Single Radially Rotating Miniature Heat Pipes 

The single radially rotating miniature heat pipes were fabricated from 304W stainless 

steel and filled with sodium. A 304W stainless steel shell with sodium as the working 

fluid was chosen due to the well documented compatibility found in the literature. 

Two single radially rotating miniature heat pipes were designed to operate at a vapor 

temperature of approximately C°800  in the experiment. One consisted of an inner 

diameter of 1.5 mm and a length of 82 mm, as shown in Figure 3.3.  

 

Figure 3.3 Schematic of 1.5 mm Single Miniature Radially Rotating Heat Pipe1 
 

The other consisted of an inner diameter of 2 mm and a length of 80 mm, as shown in 

Figure 3.4. To assist in the sodium charging of these heat pipes, a reservoir of 4 mm in 

diameter and 3 mm in length for the 1.5 mm heat pipe and 5 mm in length for the 2 mm 

heat pipe was designed at the top of the evaporator section. An end cap was welded at the 

end of the reservoir of the evaporator section and a filling tube with an inner diameter of 

2.1 mm was welded into the end cap.  

                                                
1 Full manufacturing drawings are located in the appendix. 
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Figure 3.4 Schematic of 2 mm Single Miniature Radially Rotating Heat Pipe2 
 

The two single radially rotating miniature heat pipes had identical outer diameters of 6 

mm and the lengths of the evaporator and condenser sections were identical as well, at 40 

mm. Four fins were constructed on the outer exterior of the condenser section in order to 

enhance the convective heat transfer of the condenser section. The heat pipes, heater 

caps, and filling tube were all fabricated from Type 304W stainless steel. A screw 

threading was machined at the heat pipe root in order to attach the heat pipe onto the 

outer cylinder of the high speed rotating test apparatus. All of the heat pipe components 

were carefully fitted and cleaned according to standardized procedures. The heat pipes, 

end caps, and filling tube were all degreased with 1,1,1-trichloroethane, afterwards rinsed 

in tap water, subsequently rinsed in methanol and then allowed to air dry. The welding 

process of the heat pipes, end caps and filling tubes were conducted under argon gas in 

order to prohibit oxidation during welding. 

The sodium charging of the single radially rotating miniature heat pipes was administered 

by Thermacore Inc., PA. The filling method was as follows: 

1. The sodium was introduced into the heat pipes in an argon filled glovebox. 
                                                
2 Full manufacturing drawings are located in the appendix. 
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2. The unsealed ends of the heat pipes were attached to a vacuum pump. 

3. While pumped to a level of high vacuum, the heat pipes were heated to

C°− 200100 , in order to dissipate any absorbed water and atmospheric gases. 

4. The filling tubes of the heat pipes were pinched and welded while being 

maintained at a level of high vacuum. 

For the single radially rotating miniature heat pipe with an inner diameter of 1.5 mm, the 

sodium charge was approximately 0.06 g. And for the single radially rotating miniature 

heat pipe with an inner diameter of 2 mm, the sodium charge was approximately 0.08 g. 

Five type K thermocouples were used to measure the lengthwise heat pipe temperature 

distributions; the thermocouples were calibrated by Omega Engineering Inc. to an 

accuracy of C°± 5.0 . Two of the thermocouples were mounted at the evaporator section 

in order to measure the temperatures of the evaporator section; the other three 

thermocouples were installed at the condenser section in order to measure the 

temperatures of the condenser section. The five thermocouple heads were set into five 

small surface cavities, 0.8 mm in diameter, on the heat pipe shell along the heat pipe 

length. 

The heater for the heat pipes was constructed from the high temperature chemical set 

cement, OmegaBond “600”, and from a Nickel-Chromium alloy, resistance heating wire 

of NI80-010 or NI80-012, both purchased from Omega Engineering Inc. The method for 

the construction of the heater was as follows: 

1. The OmegaBond “600” high temperature chemical set cement requires mixing 

100 parts of the cement with 13 parts of water by weight. 
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2. A thin layer of the mixture was applied uniformly to the outer surface of the heat 

pipe. 

3. The cement cures after 18-24 hours at ambient temperature or 4 hours at C°104 . 

4. The Nickel-Chromium alloy resistance heating wire was wrapped around the 

surface of the cement, as tightly as possible without creating a short, as a heating 

element. 

5. Another thick layer of the cement is applied to the heating element and cured. 

The heater was mounted securely on the outer surface of the evaporator section of the 

heat pipe; layers of fiberglass insulation fabric, equating to approximately 16 mm thick, 

was placed between the heater and heater cap to ensure that the majority of the heat from 

the heater would be conveyed to the evaporator section of the heat pipe. Figure 3.5 shows 

a prepared single radially rotating miniature heat pipe that is ready to be tested. The same 

miniature heat pipes have been tested in 2000 and an importance objective of the present 

retest is to further validate the performance and operational life of these heat pipes. The 

tests here also provide the foundation for the study of the sector heat pipes. 
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Figure 3.5 Picture of a Prepared Single Radially Rotating Miniature Heat Pipe  
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3.3 Sector Heat Pipe with Interconnected Branches (Design 1) 

The sector heat pipe with interconnected branches (design 1) was fabricated from 304W 

stainless steel and filled with sodium. A 304W stainless steel shell with sodium as the 

working fluid was chosen due to the well documented compatibility found in the 

literature. 

The sector heat pipe was designed to operate at a vapor temperature of approximately 

800 C°  in the experiment. The sector consisted of four single heat pipes, each with a 

diameter of 3 mm and a length of 85 mm, as shown in Figure 3.6.  

 

Figure 3.6 Schematic of Sector Heat Pipe (Design 1)3 
 

                                                
3 Complete manufacturing drawing are located in the appendix. 
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The four single heat pipes were connected with a common reservoir, located at the 

bottom in the condenser section, as shown in Figure 3.7.  

 

Figure 3.7 Schematic of Sector Heat Pipe (Design 1) Resevoir Location 
 

An end cap was welded at the end of the reservoir, at the bottom of the condenser section 

and a filling tube with an outer diameter of 2.1 mm was welded into the side of the sector 

at the reservoir. The sector heat pipe, condenser cap, and filling tube were all fabricated 

from Type 304W stainless steel. A screw threading was machined as part of the end cap 

in order to attach the heat pipe onto the outer cylinder of the high speed rotating test 

apparatus. All of the heat pipe components were carefully fitted and cleaned according to 

standardized procedures. The heat pipe, end caps, and filling tube were all degreased with 

1,1,1-trichloroethane, afterwards rinsed in tap water, subsequently rinsed in methanol and 
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then allowed to air dry. The welding process of the heat pipes, end caps and filling tubes 

were conducted under argon gas in order to prohibit oxidation during welding. 

The sodium charging of the sector heat pipe was administered by Advanced Cooling Inc. 

The filling method was as follows: 

1. The sodium was introduced into the sector heat pipe in an argon filled glovebox. 

2. The unsealed end of the heat pipe was attached to a vacuum pump. 

3. While pumped to a level of high vacuum, the heat pipe was heated to 

C°− 200100 , in order to dissipate any absorbed water and atmospheric gases. 

4. The filling tube of the heat pipe was pinched and welded while being maintained 

at a level of high vacuum. 

For the sector heat pipe with interconnected branches (design 1), the sodium charge was 

approximately 0.26 g. Five type K thermocouples were used to measure the lengthwise 

heat pipe temperature distributions; the thermocouples were calibrated by Omega 

Engineering Inc. to an accuracy of C°± 5.0 . Two of the thermocouples were mounted at 

the evaporator section in order to measure the temperatures of the evaporator section; the 

other three thermocouples were installed at the condenser section in order to measure the 

temperatures of the condenser section. The five thermocouple heads were set on the 

surface of the heat pipe shell along the heat pipe length. 

The heater for the heat pipes was constructed from the high temperature chemical set 

cement, OmegaBond “600”, and from a Nickel-Chromium alloy, resistance heating wire 

of NI80-010 or NI80-012, both purchased from Omega Engineering Inc. The method for 

the construction of the heater was as follows: 
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1. The OmegaBond “600” high temperature chemical set cement requires mixing 

100 parts of the cement with 13 parts of water by weight. 

2. The entire surface of the heat pipe was roughened with a file. 

3. A thin layer of the mixture was applied uniformly to the entire surface of the heat 

pipe. 

4. The cement cures after 18-24 hours at ambient temperature or 4 hours at C°104 . 

5. The Nickel-Chromium alloy resistance heating wire was wrapped around the 

dovetail portion of the heat pipe, as tightly as possible without creating a short, as 

a heating element. 

6. Another thick layer of the cement is applied to the heating element and cured. 

The heater was mounted securely to the dovetail section of the heat pipe; layers of 

fiberglass insulation fabric, equating to approximately 16 mm thick, was wrapped around 

the heater4 to ensure that the majority of the heat from the heater would be conveyed to 

the evaporator section of the heat pipe. Figure 3.8 shows a prepared sector heat pipe 

(design 1) that is ready to be tested. 

                                                
4 The heater cap was not used because it was not large enough to accommodate the sector heat pipe. 
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Figure 3.8 Picture of a Prepared Sector Heat Pipe (Design 1) 
  



 

78 
 

3.4  Sector Heat Pipe with Interconnected Branches (Design 2) 

The sector heat pipe with interconnected branches (design 2) was fabricated from 

Multipurpose Copper (Alloy 110) and filled with distilled water. A Multipurpose Copper 

(Alloy 110) shell with distilled water as the working fluid was chosen due to the well 

documented compatibility found in the literature. 

The sector heat pipe was designed to operate at a vapor temperature of approximately 

C°150  in the experiment. The sector consisted of four single heat pipes, each with a 

diameter of 3 mm and a length of 85 mm, as shown in Figure 3.9.  

 

Figure 3.9 Schematic of Sector Heat Pipe (Design 2)5 
 

The four single heat pipes were connected with a common reservoir, located at the top of 

the evaporator section, as shown in Figure 3.10. The sector had to be designed into two 

                                                
5 Complete manufacturing drawings are located in the appendix. 
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sections: the dovetail section, containing the reservoir, and a body section, containing the 

four heat pipes.  

 

Figure 3.10 Schematic of Sector Heat Pipe (Design 2), Resevoir Location 
 

The dovetail cap was welded at the end of the body of the evaporator section and a filling 

tube with an outer diameter of 2.1 mm was welded into the side of the sector at the top of 

the condenser. The heat pipe body, dovetail section, and filling tube were all fabricated 

from Multipurpose Copper (Alloy 110). A screw threading was machined as part of the 

heat pipe body root in order to attach the heat pipe onto the outer cylinder of the high 

speed rotating test apparatus. All of the heat pipe components were carefully fitted and 

cleaned according to standardized procedures. The heat pipe body, dovetail cap, and 

filling tube were all degreased with denatured alcohol and then allowed to air dry. The 

welding process of the heat pipe body, dovetail cap and filling tubes were conducted 

using rosin soldering flux in order to prohibit oxidation during welding. 
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The distilled water charging of the sector heat pipe was done in Florida International 

University’s Thermal Sciences Lab. The filling method was as follows: 

1. The unsealed end of the heat pipe was attached to a vacuum pump. 

2. While pumped to a level of high vacuum, the heat pipe was heated to 

C°− 200100 , in order to dissipate any absorbed water and atmospheric gases. 

3. When a level of high vacuum was obtained, the tube leading to the vacuum pump 

was pinched off 

4. Using a syringe, the distilled water was administered to the heat pipe. 

5. The filling tube of the heat pipe was pinched and welded while being maintained 

at a level of high vacuum. 

Figure 3.11 illustrates the filling of the heat pipe. 

 

Figure 3.11 Picture of Sector Heat Pipe (Design 2) being filled 
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For the sector heat pipe with interconnected branches (design 2), charged with distilled 

water; a few fill volumes were tested: approximately, 0.7 mL for “100%” filled, 0.6 mL 

for “90%” filled and, 0.4 mL for “50%” fill. 

Five type K thermocouples were used to measure the lengthwise heat pipe temperature 

distributions, the thermocouples were calibrated by Omega Engineering Inc. to an 

accuracy of C°± 5.0 . Two of the thermocouples were mounted at the dovetail section in 

order to measure the temperatures of the evaporator section; the other three 

thermocouples were installed at the condenser section in order to measure the 

temperatures of the condenser section. The five thermocouple heads were set on the 

cross-hatched surface of the heat pipe shell along the heat pipe length. 

The heater for the heat pipes was constructed from the high temperature chemical set 

cement, OmegaBond “600”, and from a Nickel-Chromium alloy, resistance heating wire 

of NI80-010 or NI80-012, both purchased from Omega Engineering Inc. The method for 

the construction of the heater was as follows: 

1. The OmegaBond “600” high temperature chemical set cement requires mixing 

100 parts of the cement with 13 parts of water by weight. 

2. A thin layer of the mixture was applied uniformly to the entire dovetail surface of 

the heat pipe. 

3. The cement cures after 18-24 hours at ambient temperature or 4 hours at C°104 . 

4. The Nickel-Chromium alloy resistance heating wire was wrapped around the 

dovetail portion of the heat pipe, as tightly as possible without creating a short, as 

a heating element. 

5. Another thick layer of the cement is applied to the heating element and cured. 
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The heater was mounted securely to the dovetail section of the heat pipe; layers of wet-

and-stick fiberglass insulation, equating to approximately 16 mm thick, was wrapped 

around the heater6 to ensure that the majority of the heat from the heater would be 

conveyed to the evaporator section of the heat pipe. Figure 3.12 shows a prepared sector 

heat pipe (design 2) that is ready to be tested. 

 

 

Figure 3.12 Picture of a Prepared Sector Heat Pipe (Design 2) 
  

                                                
6 The heater cap was not used because it was not large enough to accommodate the sector heat pipe. 
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4. Experimental Results and Analysis 

Corresponding to the preceding evaluation of the heat transfer and flow of the vapor and 

liquid film in the single radially rotating miniature heat pipe, it was discovered that the 

lengthwise temperature distribution and temperature drop for the heat pipe are functions 

of heat pipe length, heat pipe inner diameter, rotating speed, tilt angle, working fluid 

properties, cooling condition in the condenser section, and heat flux in the evaporator 

section. Simultaneously, other influences, such as the heat conductivity of the heat pipe 

container material and non-condensable gases existing in the heat pipe also have a 

distinct effect on the heat transfer and temperature distribution in the heat pipe. 

For the experiments conducted on the radially rotating miniature heat pipes, the tilt angle,

φ , of the heat pipes was fixed at °90 and the rate of cooling air was fixed at 100% of the 

allowable rate. The arrays of geometric dimensions, heat inputs, rotating frequencies, and 

configurations are as follows: 

1. Single Miniature Radially Rotating Heat Pipes 

WQW 32547 ≤≤ , mmdi 5.1=  and 2 mm, L = 80mm, mmLL ec 40== , 0=aL , 

1881470
2

≤≤ g
Zaω  , HzfHz 6030 ≤≤  

2. Sector Heat Pipe (Design 1) 

WQW 32547 ≤≤ , id = 3 mm (of each individual heat pipe), L = 85 mm,

mmLL ec 40== , 0=aL ,  1881470
2

≤≤ g
Zaω  , HzfHz 6030 ≤≤  

3. Sector Heat Pipe (Design 2) 
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WQW 9535 ≤≤ , id = 3 mm (of each individual heat pipe), L = 85 mm,

mmLL ec 40== , 0=aL ,  1072119
2

≤≤ g
Zaω  , HzfHz 4515 ≤≤  

The following sub-sections present the experimental data in relation to the preceding 

configurations. 
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4.1 Operating Characteristics of Radially Rotating Miniature Heat Pipes 

As stated previously, there are a number of parameters that influence the operation of 

radially rotating miniature heat pipes. The chief parameters are the heat pipe size, 

dimensionless centripetal forces, heat input in the evaporator section, and non-

condensable gases in the heat pipe. 

1. Single Radially Rotating Heat Pipe 

To prove the heat transfer capacity of the single heat pipe, Figure 4.1, Figure 4.2, 

Table 4-1, and Table 4-2 are comparisons of the lengthwise temperature distributions 

of the single heat pipe and the lengthwise temperature distributions of a heat pipe 

shell (a heat pipe shell is the same heat pipe without any working fluid) with the same 

dimensionless centripetal forces and geometrical dimensions. 
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Figure 4.1 Temperature Distributions of Single Heat Pipe and Heat Pipe Shell ( id = 1.5 mm and  

Hzf 30= ) 
 

 

Table 4-1 Comparison of Heat Pipe and Heat Pipe Shell ( id = 1.5 mm and Hzf 30= ) 

Dimensionless  
Heat Pipe Length 

( )Lx  

Temperature Distribution 
for Heat Pipe 

( )C°  

Temperature Distribution 
for Heat Pipe Shell 

( )C°  

0.0 785.1 802.3 

0.50 775.7 414.2 

0.75 765.6 92.4 

0.875 697.8 49.5 

1.0 353.6 36.7 
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Figure 4.2 Temperature Distributions of Single Heat Pipe and Heat Pipe Shell ( id = 2 mm and

Hzf 30= ) 
 

 

Table 4-2 Comparison of Heat Pipe and Heat Pipe Shell ( id = 2 mm and Hzf 30= ) 

Dimensionless  
Heat Pipe Length 

( )Lx  

Temperature Distribution 
for Heat Pipe 

( )C°  

Temperature Distribution 
for Heat Pipe Shell 

( )C°  

0.0 829.3 815.7 

0.50 820.5 383.3 

0.75 805.7 78.7 

0.875 741.3 41.7 

1.0 391.3 38.3 
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From Figure 4.1, Figure 4.2, Table 4-1, and Table 4-2, it is clear that the heat 

transfer capacity of the heat pipe shell is very low; which is 60 W for the heat 

pipe shell with an inner diameter of 1.5 mm, and 47 W for the heat pipe with an 

inner diameter of 2 mm. The lengthwise temperature distribution for the shell is 

approximately linear and the temperature at the condenser end is nearly that of the 

ambient temperature. For a single heat pipe with the same dimensionless 

centripetal force and geometrical dimensions, significantly more heat can be 

transferred; which was observed to be up to 250 W for the heat pipe with an inner 

diameter of 1.5 mm and 280 W for the 2 mm heat pipe. If the standardized 

thermal conductivity of copper is taken to be 
Cm

W
°⋅

386 , the effective thermal 

conductance of the single stainless steel heat pipes is 60 – 100 times higher than 

that of copper. These comparisons prove that the heat transfer characteristics of 

the heat pipe are much better than any standard metal. 

Lengthwise temperature distributions of the evaporator section and the majority of 

the condenser section are nearly uniform. It is apparent that the heat pipe works 

flawlessly in these sections; nonetheless, there occurs a large temperature gradient 

near the end of the condenser. This is due to the condenser end being affixed to 

the outer cylinder of the high speed rotating test apparatus with a screw thread, 

which creates a heat sink at the condenser end and allows for more heat from the 

condenser end to be transferred into the outer cylinder. Consequently, because of 

the heat transferred to the outer cylinder at the condenser end, the temperature 

distribution near the condenser end is lowered. 
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The steady-state operation of the two single radially rotating miniature high 

temperature heat pipes with inner diameters of 1.5 mm and 2 mm, with a 

dimensionless centripetal force of 470, is illustrated in Figure 4.3 and Figure 4.4.  

 

 

Figure 4.3 Lengthwise Temperature Distributions of the Single Radially Rotating Miniature Heat 
Pipe with Different Heat Inputs ( id = 1.5 mm , Hzf 30= ) 

 



90

Figure 4.4 Lengthwise Temperature Distributions of the Single Radially Rotating Miniature Heat 
Pipe with Different Heat Inputs ( id = 2.0 mm , Hzf 30= ) 

From Figure 4.3 and Figure 4.4, it is evident that the evaporator sections of the 

heat pipes begin working when the heat input reaches 100 W; it is also apparent 

from the lengthwise temperature distributions in the evaporator section that they 

are nearly uniform. Due to the working section in the condenser being relatively 

short, the temperatures along the condenser section drop sharply, this is seen 

because the temperatures near the condenser end are nearly that of the 

surrounding air temperature. By increasing the heat input, the operating 

temperature in the evaporator section will increase and the vapor flow rate will 

increase accordingly. Concurrently, the working section in the condenser will be 

prolonged to the condenser end, causing the lengthwise temperatures of the 

condenser section to increase rapidly. Once the heat input approaches 

approximately 250 W for the heat pipe with an inner diameter of 1.5 mm and 280 



 

91 
 

W for the heat pipe with an inner diameter of 2 mm, the lengthwise temperature 

distribution are nearly uniform. Nonetheless, the temperature gradient proximate 

to the end of the condenser section continues to remains large due to the diffuse 

effects of non-condensable gases and the heat sink formed from the outer 

cylinder. 

2. Sector Heat Pipe (Design 2) 

To prove the heat transfer capacity of the sector heat pipe, Figure 4.5 and Error! 

Reference source not found. are comparisons of the lengthwise temperature 

distributions of the sector heat pipe and the lengthwise distributions of a sector 

heat pipe shell (a heat pipe shell is the same heat pipe without any working fluid) 

with the same dimensionless centripetal forces and geometrical dimensions.  

 

 

Figure 4.5 Temperature Distributions of Sector Heat Pipe (Design 2) and Sector Heat Pipe Shell 
(Q = 75 W , f = 15 Hz) 
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Table 4-3 Comparison of Sector Heat Pipe and Sector Heat Pipe Shell (Q = 75 W , f = 15 Hz) 

Dimensionless  
Heat Pipe Length 

( )Lx  

Temperature Distribution 
for Heat Pipe 

( )C°  

Temperature Distribution 
for Heat Pipe Shell 

( )C°  

0.0 120.1 154.7 

0.30 103.1 113.4 

0.50 89.8 87.9 

0.90 87.8 80.3 
 

From Figure 4.5 and Table 4-3, it is clear that the heat transfer capacity of the heat 

pipe shell is very low, which is 65 W for the heat pipe shell. The lengthwise 

temperature distribution for the shell is approximately linear and the temperature 

at the condenser end is nearly that of the ambient temperature. For the sector heat 

pipe with the same dimensionless centripetal force and geometrical dimensions, 

significantly more heat can be transferred, which was observed to be up to 75 W 

for the sector heat pipe.  

Lengthwise temperature distributions of the evaporator section and the majority of 

the condenser section are nearly uniform. It is apparent that the heat pipe works 

flawlessly in these sections; nonetheless, there occurs a large temperature gradient 

near the end of the condenser. This is due to the condenser end being affixed to 

the outer cylinder of the high speed rotating test apparatus with a screw thread, 

which creates a heat sink at the condenser end and allows for more heat from the 

condenser end to be transferred into the outer cylinder. Consequently, because of 
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the heat transferred to the outer cylinder at the condenser end, the temperature 

distribution near the condenser end is lowered. 

The steady-state operation of the sector heat pipe, with a dimensionless centripetal 

force of 470, is illustrated in Figure 4.6.  

 

 

Figure 4.6 Lengthwise Temperature Distributions of the Sector Heat Pipe with Different Heat 
Inputs ( f = 30 Hz) 

 

From Figure 4.6, it is evident that the evaporator section of the sector heat pipe 

begins working when the heat input reaches 35 W; it is also apparent from the 

lengthwise temperature distributions in the evaporator section that they are nearly 

uniform. Due to the working section in the condenser being relatively short, the 

temperatures along the condenser section drop sharply; this is seen because the 

temperatures near the condenser end are nearly that of the surrounding air 

temperature. By increasing the heat input, the operating temperature in the 
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evaporator section will increase and the vapor flow rate will also increase 

accordingly. Concurrently, the working section in the condenser will be prolonged 

to the condenser end, causing the lengthwise temperatures of the condenser 

section to increase rapidly. Nonetheless, the temperature gradient proximate to the 

end of the condenser section continues to remains large due to the heat sink 

formed from the outer cylinder. Considering the high conductivity of the shell 

(copper), this lowered temperature near the condenser end is understandable.  
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4.2 Effects of Heat Input 

As stated previously, heat input has a significant effect on the heat transfer characteristics 

and temperature distribution of the heat pipe. Once the inner diameter of the heat pipe 

and dimensionless centripetal force are established, an increase in heat input will cause 

the lengthwise temperature distribution in the condenser section to be more uniform and 

the operating temperature in the evaporator section to rise rapidly.  

1. Single Radially Rotating Miniature Heat Pipe 

This is depicted for the single radially rotating miniature heat pipe in Figure 4.7 and 

Figure 4.8.  

 

 

Figure 4.7 Lengthwise Temperature Distribution for Different Heat Inputs ( id =1.5 mm , f = 30 Hz) 
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Figure 4.8 Lengthwise Temperature Distribution for Different Heat Inputs ( id =2 mm , f = 30 Hz) 

 

Hence, the effective thermal conductance and the heat transfer characteristics are 

enhanced considerably. If the dimensionless centripetal force is fixed and the heat 

input is approximately 285 W for the heat pipe with an inner diameter of 1.5 mm and 

300 W for the heat pipe with an inner diameter of 2 mm, the lengthwise temperature 

distribution of the heat pipe remains rather uniform, with the exception of the region 

near the end of the condenser. It is not uncommon to observe a temperature spike near 

the evaporator end; this is due to an increase in vapor production in the evaporator 

section caused by the increase in heat input in the same section of the heat pipe, 

resulting in additional vapor to flow towards the condenser section. In the condenser 

section, the velocity of the vapor is gradually diminished to zero and the vapor kinetic 
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energy may be transformed into thermal energy, which may cause a slight 

temperature rise in that section. Due to the heat sink at the end of the condenser and 

the effect of non-condensable gases, the observed temperature at the condenser end is 

still comparatively low.  

2. Sector Heat Pipe (Design 2) 

The effects of heat input are depicted for the sector heat pipe (design 2) in Figure 4.9 

and Figure 4.10.  

 

 

Figure 4.9 Sector Heat Pipe (Design 2) Lengthwise Temperature Distribution ( f = 30 Hz) 
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Figure 4.10 Sector Heat Pipe (Design 2) Lengthwise Temperature Distribution ( f = 45 Hz) 
 

Because of the convective cooling condition in the condenser of the heat pipe, it can 

be seen from Figure 4.9 and Figure 4.10 that as the heat input is increased, the heat 

pipe operational temperature is increased, as a higher temperature in the condenser is 

required to reject a higher heat load. The slope of the temperature gradient is also 

improved and therefore the effective thermal conductance and the heat transfer 

characteristics are enhanced accordingly.  
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4.3 Effects of the Dimensionless Centripetal Forces 

As stated previously during the analysis in Section 2, at higher rotational frequencies, the 

dimensionless centripetal force becomes a dominant factor for the lengthwise temperature 

gradient of the heat pipe. If geometrical dimensions of the heat pipe and the heat input are 

fixed, as the dimensionless centripetal force is increased, the lengthwise temperature 

gradient and pressure drop of the heat pipe will increase. This occurs because as the 

dimensionless centripetal force is increased, the film thickness of condensate will 

decrease. Accordingly, the heat transfer amongst the inner wall of the condenser will be 

improved. Additionally, as the rotating speed is increased, the heat transfer coefficient 

associated with the air cooling in the condenser section will increase, which reduces the 

condenser temperature and increases the temperature gradient along the hat pipe. Hence, 

the dimensionless centripetal force moderately governs the total lengthwise temperature 

drop of the heat pipe and the slope of the temperature distribution. 

Though the dimensionless centripetal force and the flow rate of cooling air have a similar 

trend for the total lengthwise temperature drop of the heat pipe, the mechanism creating 

the alteration of the temperature drop is different. The convection at the surface of the 

condenser section is increased as the cooling air flow rate is increased, causing the 

effective working section in the condenser to be reduced, which in turn causes the 

lengthwise temperature distribution in the condenser to become steeper if the heat flux is 

kept constant. However, the slope of the lengthwise temperature distribution in the 

evaporator section will remain constant. Accordingly, the total lengthwise temperature 

drop for the heat pipe is increased.  
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Therefore, the proceeding analysis is restricted to the slope of the lengthwise temperature 

distribution of the evaporator section, to demonstrate the influence of the dimensionless 

centripetal force. 

1. Sector Heat Pipe (Design 2) 

When the geometrical dimensions and heat inputs are fixed, and the dimensionless 

centripetal force, 
g
Za
2ω

, is increased from 119 to 1072, the observed lengthwise 

temperature distribution for the dimensionless heat pipe length are depicted by Figure 

4.11.  

 

 

Figure 4.11 Lengthwise Temperature Distributions for Sector Heat Pipe with Different Rotational 
Frequencies (Q = 75 W) 
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As can be observed in Figure 4.11, when the rotating frequency is low, Hzf 15= , 

which corresponds to a dimensionless centripetal force, 
g
Za
2ω

, of 119, the lengthwise 

slope of the temperature distribution for the evaporator section is comparatively 

minor, and the lengthwise temperature distribution for the evaporator section is nearly 

uniform (when the effects of convective heat transfer are taken into consideration). 

When the rotating frequency is increased, the lengthwise slope of temperature 

distribution for the evaporator section becomes steeper, with an increased temperature 

drop in the evaporator section of the heat pipe. At a higher rotating frequency of 

Hzf 45= , equivalent to 1072
2

=
g
Zaω

, the lengthwise temperature drop of the 

evaporator section and the slope of the temperature distribution are comparatively 

high. It can be assumed, that with additional increases in rotating frequencies the 

trend will become more apparent. However, the temperature in the evaporator section 

is also reduced due to a lower condenser temperature, which results in a better 

cooling condition for the evaporator. 
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4.4 Effects of Fill Volume on the Sector Heat Pipe 

Proper fill volume in heat pipes is essential to proper operation and effectiveness. When a 

heat pipe does not have the proper fill volume, two issues may occur; the dry-out 

limitation can be reached, for too little working fluid, or heat pipe flooding due to too 

much working fluid in the heat pipe.  

The dry-out limitation can be reached when the fill volume of the working fluid is very 

small that could only sustain a comparatively small radial evaporator heat flux. With this 

scenario, although the falling film of condensate could continue to return back to the 

evaporator section, the liquid film thickness may approach zero at the top of the 

evaporator section. Consequently, the entire amount of working fluid may be distributed 

throughout the heat pipe, either as vapor or as liquid film, causing the necessary pool at 

the top of the evaporator section without enough liquid. Increasing the heat input in the 

evaporator section will initiate dry-out in the top of the heat pipe. The size of the dry area 

will continue to enlarge with increasing heat input. Subsequently, the wall temperature 

increases progressively, due to evaporation not occurring in the dry area. This 

phenomenon is illustrated in Figure 4.12, Figure 4.13, and Figure 4.14 for a fill ratio less 

than 50%. Also, it can be seen from these figures that a 100 % fill volume (the reservoir 

is mostly filled with liquid) provides the best performance of the heat pipe sector. 
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Figure 4.12 Sector Heat Pipe with Heat Input of 75 W ( Hzf 15= ) 

Figure 4.13 Sector Heat Pipe with Heat Input of 75 W ( Hzf 30= ) 
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Figure 4.14 Sector Heat Pipe with Heat Input of 75 W ( Hzf 45= ) 
 

The flooding limitation in heat pipes is described as the dry-out of the evaporator section 

due to the vapor-liquid interfacial shear suspending the condensate in the condenser 

section. With heat pipe flooding, large transient vapor pressure and temperature 

fluctuations may occur. 
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4.5 Comparisons of the Theoretical Results with Experimental Data for the 

Lengthwise Temperature Distributions 

It was observed that non-condensable gases can be very influential on the lengthwise 

temperature distribution of the heat pipe. With the analytical solution of the single heat 

pipe, the lengthwise temperature distribution for the heat pipe, without the diffuse effects 

of non-condensable gases, can be calculated. Accordingly, by modifying the analytical 

solution of the single heat pipe, the closed form analytical solution of the lengthwise 

temperature distribution of the heat pipe, with the diffuse effects of non-condensable 

gases, can be calculated [16]. The computed solutions for these equations are compared 

with the experimental results under identical operating conditions and geometrical 

dimensions of the heat pipes. 

Table 4-4, Table 4-5, Figure 4.15, and Figure 4.16 illustrate the comparison between the 

experimental data and the calculated solutions with and without the diffuse effects of 

non-condensable gases.  

Table 4-4 Comparisons of Calculated and Experimental Lengthwise Temperature Distributions of a Single 

Heat Pipe ( mmdi 5.1= , WQ 250= , 1881
2

=
g
Zaω

) 

Dimensionless Single 
Heat Pipe Length 

 

L
z  

Analytical Solution 
 
 

( )C  

Analytical Solution with 
Non-Condensable Gases 

 
( )C  

Experimental Results 
 
 

( )C  

0.000 754.5 754.5 754.5 

0.500 745.5 745.5 730.0 

0.750 739.5 680.3 720.0 

0.875 737.8 642.2 520.0 

1.000 737.2 433.8 235.7 
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Figure 4.15 Comparisons of Calculated and Experimental Lengthwise Temperature Distributions of a 
Single Heat Pipe ( mmdi 5.1= ) 

 

 

Table 4-5 Comparisons of Calculated and Experimental Lengthwise Temperature Distributions of a Single 

Heat Pipe ( mmdi 0.2= , WQ 280= , 1881
2

=
g
Zaω

) 

Dimensionless Single 
Heat Pipe Length 

 

L
z  

Analytical Solution 
 
 

( )C  

Analytical Solution with 
Non-Condensable Gases 

 
( )C  

Experimental Results 
 
 

( )C  

0.000 680.0 680.0 680.0 

0.500 665.3 665.3 661.2 

0.750 654.4 598.3 608.0 

0.875 651.6 545.0 577.5 

1.000 650.7 362.2 248.9 
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Figure 4.16 Comparisons of Calculated and Experimental Lengthwise Temperature Distributions of a 
Single Heat Pipe ( mmdi 0.2= ) 

 

It is evident that when using the analytical solution to calculate the temperature 

distribution, what is given is an ideal prediction neglecting the effects of the non-

condensable gases. When using the analytical solution to calculate the lengthwise 

temperature distribution for the heat pipe, only the friction of the liquid-vapor interface 

and the centripetal force effect on the vapor are taken into account. Consequently, at 

higher operating temperatures, the lengthwise temperature drops for the heat pipe are 

very minor, making the slope of the temperature distribution approximately zero, as 

illustrated with Figure 4.15.  
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When coordinating the experimental values with the analytical ones, large discrepancies 

are observed between the experimental results and those calculated from the analytical 

equations, particularly with the area closest to the condenser end. 

For the lengthwise temperature distribution of the heat pipe, with a flat front for the 

vapor-gas interface, the length dominated by non-condensable gases in the condenser 

section, ncL , , is 4 mm; as calculated by modifying Equations (2.69), (2.70) and (2.71) to 

account for non-condensable gases. When comparing the experimental results to the 

closed form calculations shown in Table 4-4 and Figure 4.15, it is apparent that the 

calculated values that take into account non-condensable gases are in better agreement 

with the general analytical solution. This is apparent with the results for the entire 

evaporator section and the majority of the condenser section. The main discrepancy 

comes from a large deviation occurring at the condenser end, due to the condenser end 

cap of the heat pipe forming a large heat sink with the outer cylinder of the rotating 

experimental apparatus. Accordingly, the experimental data at the end of the condenser is 

caused to be lower than the calculated values from the closed form solution. 
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4.6 Determination of the Effective Thermal Conductivity 

Because of the thick shell and high-conductivity of the copper shell material associated 

with sector heat pipe design 2, the true performance of the sector heat pipe, which is 

largely associated with the vapor space of the sector, has been significantly blurred. To 

determine the effective thermal conductance of the sector heat pipe, a simulation was 

performed using SolidWorks Simulation. This was accomplished by constructing two 

three-dimensional models using SolidWorks. The first was a representation of the empty 

sector heat pipe, a sectional view of the model is depicted in Figure 4.17. 

 

 

Figure 4.17 Sectional View of Empty Sector Heat Pipe 
 

The second three-dimensional model was constructed in the exact same manner as the 

empty sector heat pipe, with the addition of a conductive solid material inserted into the 
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cavity of the sector heat pipe. Figure 4.18 depicts a sectional view of the second three-

dimensional model. 

 

Figure 4.18 Sectional View of Sector Heat Pipe with a Conductive Solid within the Cavity 
 

The performance of the empty model was then simulated in SolidWorks Simulation and a 

75 Watt heat load was applied to the dovetail section of the sector. Many iterations were 

conducted until the probe points on the sector heat pipe matched the experimental results. 

The same parameters and heat load were then applied to the sector heat pipe with the 

conductive material filled cavity. 

To determine the effective thermal conductivity of the sector heat pipe, the thermal 

conductivity of the conductive solid was varied until the probe points matched the 

experimental results for the 100% reservoir filled volume. The effective thermal 
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conductivity of the sector heat pipe was then determined to be 
Km
W
⋅

≅ 3500κ , which is 

almost 10 times as high as that of standard copper. 

Figure 4.19 and Figure 4.20 depict the resulting three-dimensional thermal plots of the 

simulation. As can be seen with the thermal plots, the empty sector heat pipe gives an 

expected linear temperature profile. While the filled sector heat pipe gives an almost flat 

temperature profile, which is similar to that of single miniature rotating heat pipes. 
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Figure 4.19 Three-dimensional Temperature Plot of Empty Sector Heat Pipe 
 

 

 

Figure 4.20 Three-dimensional Temperature Plot of Filled Sector Heat Pipe 
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4.7 Error Analysis for Experimental Measurements 

The experimental and calculated lengthwise temperature distributions of the heat pipe are 

in reasonable agreement; however, considerable deviations exist in the condenser section. 

These deviations could be due to many influential factors. An error analysis is postulated 

in this section, and the discrepancy amongst the experimental results and calculated 

values could be credited to the following influences: 

1. The errors in the calculated values could be attributed to the one-dimensional heat 

transfer and flow modeling. The calculated values are established entirely on one-

dimensional heat transfer and flow generalizations, whereas the heat transfer and 

flow characteristics in actual heat pipes have three-dimensional characteristics. 

Observing that the flow passages in radially rotating miniature heat pipes is very 

small, one-dimensional heat transfer and flow modeling would be adequate to 

portray the major characteristics of the flow and heat transfer. Nevertheless, the 

one-dimensional simplification will create particular deviations amongst the 

experimental and calculated results. 

2. Errors can also arise by the experimental apparatus, specifically, the interference 

created by the vibrations of experimental apparatus. Ideally, because the flow 

passages in a single radially rotating miniature heat pipe are very small, the heat 

transfer and flow characteristics can be described by a one-dimensional model. 

However, during actual testing, as the frequency of rotation is increased, 

relatively large vibrations in the experimental apparatus are produced. This 

creates interruptions in the flow and heat transfer characteristics. Consequently, 

three-dimensional characteristics for the flow and heat transfer may have been 
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created during testing, which amplifies the deviations between the experimental 

and calculated results. 

3. Errors can also arise from the uncertainties in the heat input and temperature 

measurements.  

The following devices and their uncertainties were used for all experiments. 

i. Type K thermocouples, which have an uncertainty of 0.5% 

ii. Slip Ring, used to connect to the thermocouples, has an uncertainty of 

0.5% 

iii. High Temperature Cement, used to attach the thermocouples. Errors could 

arise from the contact thermal resistance and can be assumed to be 1%. 

Devices particular to the Single and Sector (Design 1) Heat Pipe Experiments 

i. HP34970 Data Acquisition Device, used to record the thermocouple 

readings, has an uncertainty of 0.2% 

ii. Radio Shack Multi-meter, for measuring voltage and current, has an 

uncertainty of 0.5% 

Devices particular to the Sector (Design 2) Heat Pipe Experiments 

i. National Instruments NI-9213 module, used to measure the thermocouple 

readings, has an uncertainty of 0.03% 

ii.  National Instruments NI-9219 module, used to measure the voltage 

readings from the current meter and the power supply of the heater, has an 

uncertainty of 0.3% 

iii. Fluke 80i-110s, used to measure the current of the heater, has an 

uncertainty of less than 3% of reading + 50 mA 



 

115 
 

iv. Milwaukee 2277-20 Laser Temperature gun, used to measure the surface 

temperature of the evaporator insulation, has an uncertainty of 1.5% 

The total maximum uncertainty for the temperature measurement for the single 

and sector heat pipe (design 1) is approximately 2.2% and 2.03% for the sector 

heat pipe (design 2).  
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5. Conclusions and Recommendations 

5.1 Conclusions 

In this dissertation, extensive studies of radially rotating miniature heat pipes have been 

conducted both experimentally and analytically. The analytical solutions for the film 

thickness, condensate film and vapor flows, and lengthwise temperature distribution for 

the heat pipe were calculated, including the diffuse effects of non-condensable gases on 

the temperature distribution. Extensive experimental tests on both single radially rotating 

miniature heat pipes and a new sector heat pipe were conducted, with distinctive 

instrumental parameters varied. Conferring to the experimental and analytical studies 

reported in this dissertation, the following conclusions can be made: 

1. Multiple radially rotating miniature heat pipes can be integrated into a device, 

such as a disk, and connected with a common reservoir. With its simple structure, 

lower manufacturing costs, ability to withstand strong vibrations, high effective 

thermal conductance, and high heat transfer capacity, the radially rotating 

miniature heat pipe is feasible for integration into large and complex structures.  

2. The effective thermal conductance of the sector heat pipe is nearly 10 times that 

of the copper, indicating that the configuration of the interconnected heat pipe 

sharing a common reservoir is feasible. If the working fluid of the sector heat pipe 

is replaced by a liquid metal working fluid at a high temperature, the effective 

thermal conductance of the sector heat pipe should be even much higher. 

3. With a large revolving radius or a moderately high rotational speed, the maximum 

temperature drop across the liquid film is negligible. Conversely, a lower heat 

pipe operating temperature may increase the liquid film temperature drop.  
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4. The cross-sectional area of the vapor flow is determined by the heat pipe inner 

diameter. Accordingly, for a larger heat pipe the friction of the vapor flow causes 

a lower temperature drop. Conversely, the friction of the vapor flow will be larger 

for smaller inner diameter heat pipes, causing a larger lengthwise temperature 

drop.  

5. The heat transfer characteristics and lengthwise temperature distribution of the 

heat pipe are significantly influenced by the heat input. When the dimensionless 

centripetal force and inner diameter of the heat pipe are fixed, an increase in heat 

input will cause the operating temperature in the evaporator section to rise, 

increasing the length of the working section in the condenser, and increase the 

temperature in the condenser section. Thus, the effective thermal conductance and 

heat transfer characteristic can be improved significantly. Nonetheless, if a heat 

pipe is subjected to an excessively high heat input its heat transfer limitation will 

be reached. 

6. The dimensionless centripetal force is very influential in the lengthwise 

temperature drop of the heat pipe. The pressure and lengthwise temperature drop 

of the heat pipe will increase as the rotational speed (concurrently the 

dimensionless centripetal force) is increased. At high rotational speeds, the 

centripetal forces become a dominant factor, becoming particularly evident in 

comparatively large diameter heat pipes.  

 

  



 

118 
 

5.2 Recommendations 

1. The sector heat pipe should be investigated with larger individual heat pipe inner 

diameters. 

2. Investigation of the sector heat pipe should be made with the container material 

being 304 Stainless Steel and sodium as the working fluid. 

3. The body to cavity ratio of the sector heat pipe should be further examined. In 

order to determine the limit where the effectiveness of the heat pipe in a body is 

zero. 

4. The testing apparatus should be upgraded to allow for more thermocouples, the 

housing enlarged to allow for larger test specimens, and the motor upgraded to 

allow for higher rotational speeds. 

5. Some detailed analyses on the sector heat pipe should be undertaken. The 

experimental results from this dissertation could be employed to verify the 

analytical model. Once the model analysis is successful, it could provide a very 

useful tool for sector heat pipe design. 
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