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ABSTRACT OF THE DISSERTATION 

INFLUENCE OF SOIL BIOGEOCHEMICAL PROPERTIES ON THE 

INVASIVENESS OF OLD WORLD CLIMBING FERN (LYGODIUM 

MICROPHYLLUM) 

by 

Pushpa Gautam Soti 

Florida International University, 2013 

Miami, Florida 

Professor Krishnaswamy Jayachandran, Major Professor 

 The state of Florida has one of the most severe exotic species invasion problems 

in the United States, but little is known about their influence on soil biogeochemistry. My 

dissertation research includes a cross-continental field study in Australia, Florida, and 

greenhouse and growth chamber experiments, focused on the soil-plant interactions of 

one of the most problematic weeds introduced in south Florida, Lygodium microphyllum 

(Old World climbing fern). Analysis of field samples from the ferns introduced and their 

native range indicate that L microphyllum is highly dependent on arbuscular mycorrhizal 

fungi (AMF) for phosphorus uptake and biomass accumulation. Relationship with AMF 

is stronger in relatively dry conditions, which are commonly found in some Florida sites, 

compared to more common wet sites where the fern is found in its native Australia. In the 

field, L. microphyllum is found to thrive in a wide range of soil pH, texture, and nutrient 

conditions, with strongly acidic soils in Australia and slightly acidic soils in Florida.  

Soils with pH 5.5 - 6.5 provide the most optimal growth conditions for L. microphyllum, 

and the growth declines significantly at soil pH 8.0, indicating that further reduction 
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could happen in more alkaline soils. Comparison of invaded and uninvaded soil 

characteristics demonstrates that L. microphyllum can change the belowground soil 

environment, with more conspicuous impact on nutrient-poor sandy soils, to its own 

benefit by enhancing the soil nutrient status. Additionally, the nitrogen concentration in 

the leaves, which has a significant influence in the relative growth rate and 

photosynthesis, was significantly higher in Florida plants compared to Australian plants. 

Given that L. microphyllum allocates up to 40% of the total biomass to rhizomes, which 

aid in rapid regeneration after burning, cutting or chemical spray, hence management 

techniques targeting the rhizomes look promising. Over all, my results reveal for the first 

time that soil pH, texture, and AMF are major factors facilitating the invasive success of 

L. mcirophyllum. Finally, herbicide treatments targeting rhizomes will most likely 

become the widely used technique to control invasiveness of L. microphyllum in the 

future. However, a complete understanding of the soil ecosystem is necessary before 

adding any chemicals to the soil to achieve a successful long-term invasive species 

management strategy. 
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INTRODUCTION 
1.1 Background 

 Invasive species are among the major factors affecting the integrity and function 

of ecosystems worldwide (Reid and Miller 1989; Williamson 1996; Luken and Thieret 

1997). Invasive species are characterized by their adaptability to various habitats, 

increased competitiveness, higher reproductive potential and lack of natural predators to 

limit their extensive growth. Along with economic loss, invasive species cause significant 

loss of ecosystem stability, functional complexity and biodiversity (Gordon 1998; 

Williams and West 2000) because the biological interactions in the rhizosphere play a 

significant role in plant growth, ecosystem productivity and vegetation dynamics 

(Brussaard et al., 2001). Individual	
   species	
   have	
   been	
   shown	
   to	
   affect	
   a	
   variety	
   of	
  

components	
  of	
   the	
  carbon	
  (C)	
  and	
  nutrient	
  cycles,	
   including	
  pools	
  of	
  aboveground	
  

and	
  belowground	
  C,	
  nitrogen	
  (N),	
  and	
  other	
  elements;	
  net	
  primary	
  productivity	
  and	
  

plant	
   growth	
   rates;	
   chemical	
   quality	
   and	
   rates	
   of	
   litter	
   fall;	
   and	
   nutrient	
   and	
   C	
  

mineralization	
  rates	
  (Tilman	
  et	
  al.,	
  1997;	
  Hooper	
  and	
  Vitousek	
  1998;	
  van	
  Breeman	
  

1998;	
  Hector	
  et	
  al.,	
  others	
  1999;	
  Chapin	
  et	
  al.,	
  2000).	
  This	
  body	
  of	
  evidence	
  strongly	
  

suggests	
  that	
  when	
  the	
  species	
  composition	
  of	
  a	
  community	
  changes	
  because	
  of	
  the	
  

invasion	
  and	
  spread	
  of	
  an	
  exotic	
  species,	
  there	
  are	
  likely	
  to	
  be	
  consequent	
  changes	
  

in	
  nutrient	
  cycling	
  processes.	
  	
  

	
   The	
   state	
   of	
   Florida	
   has	
   one	
   of	
   the	
   most	
   severe	
   invasive	
   exotic	
   species	
  

problems	
  in	
  the	
  United	
  States.	
   	
  According	
  to	
  Wunderlin	
  (1998),	
  non-­‐native	
  species	
  

make	
  up	
  33%	
  of	
  all	
   the	
  plants	
   found	
  growing	
  out	
  of	
  cultivation	
  in	
  Florida,	
  and	
  the	
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Florida	
  Exotic	
  Pest	
  Plant	
  Council	
  (FLEPPC)	
  considers	
  152	
  of	
  these	
  naturalized	
  plants	
  

to	
   be	
   invasive	
   to	
   some	
   degree	
   as	
   they	
   are	
   altering	
   native	
   plant	
   communities	
   by	
  

displacing	
   native	
   plant	
   species,	
   changing	
   community	
   structures	
   or	
   ecological	
  

functions	
   or	
   hybridizing	
   with	
   native	
   plant	
   species	
   (Langeland	
   and	
   Hutchinson	
  

2013).	
  	
  

 

1.2 Study Species 

	
   Lygodium microphyllum (Cav.) R. Br., native to Asia and Australia (Fig. 1.1) 

invades many freshwater and moist habitats in Florida, and is common in cypress swamp, 

pine flatlands, wet prairies, sawgrass marshes, mangrove communities, and Everglades 

tree islands (Pemberton and Ferriter, 1998). Lygodium microphyllum with its ability to 

form dense mats, spreads very rapidly and dominates both understory and overstory 

native wetland habitats. It has the ability to grow in varying hydrological (Gandiaga et 

al., 2009) and light gradients (Pemberton et al., 2002). Fire, which is not a very effective 

method (Maithana et al., 1986), is the most commonly used technique to control L. 

microphyllum.  It is reported that has the ability to alter the fire ecology in the 

Everglades, prescribed burning which normally stop at the margins of flooded cypress 

sloughs, but in L. microphyllum infested areas enters the tree canopy through the mats of 

L. microphyllum (Ferriter et al., 2005) thus causing the loss of some canopy trees as well 

as a loss of native epiphytes and bromeliads residing on tree trunk (Roberts, 1996). 

Lygodium microphyllum spreads quickly in the South Florida’s landscape because of its 

ability to reproduce through the three mating systems possible in a fern: intra- and inter-

gametophytic selfing and out-crossing (Lott et al., 2003). Spores can germinate in six to 
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seven days (Brown, 1984). Lygodium microphyllum is now spreading rapidly throughout 

Southern Florida (Fig. 1.2). By 1997 it had covered 15,800 hectares and by 1999 it spread 

to more than 43,000 hectares (Pemberton and Ferriter, 1998; Ferriter et al., 2005). 

According to a model developed by Volin et al., (2004), the landscape coverage of L. 

microphyllum infestations could exceed the current combined coverage of the top five 

invasive species by 2014. Volin et al., (2010) have suggested that the belowground 

microbial community can influence the establishment of L. microphyllum in south Florida 

and contribute to its invasiveness. Thus the role of belowground ecology in invasions by 

exotic plants cannot be overlooked and need to be addressed to achieve sustainable 

management of exotic invasive species in the Everglades.  

 

1.3 Significance of the Study 

 The current management techniques: fire, herbicides, and mechanical removal, 

are inadequate and the prospect of developing a method that targets the rhizomes of L. 

microphyllum is compelling; however, the soil biogeochemical characteristics of L. 

microphyllum infested sites remain unexplored.  Before we target the rhizomes, it is 

imperative to elucidate the soil characteristics of the sites (both infested and uninfested) 

to obtain baseline information. Additionally, it is also important to gain information of 

the soil characteristics of the native range where this plant has its origin and adapted 

habitat. Thus, I did a detailed cross continental study on the soil biogeochemical 

properties of the recipient habitat in Florida and native range in Australia.  The results 

from my study will assist in better understanding of the complex feedbacks between 

exotic invasive plants, soil microbial community and soil elements. It will further provide 
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opportunities to land managers and researchers to develop a successful integrated 

management technique.  
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Figure 0.1 Native, introduced, and predicted distribution of Lygodium microphyllum (Adapted from Volin et al., 2009, with 
permission from Springer). 
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Figure 0.2 Increase in the distribution of Lygodium microphyllum in Florida from 1993 to 
2010, data source: Florida Exotic Pest Plant Council (FLEPPC). 

1.4 Dissertation Outline 

My study combined two experimental approaches: i) cross continental field study 

to compare the growth environment faced by L. microphyllum in its native range in 

Australia and the recipient community in Florida;  ii) growth rate experiment conducted

in a greenhouse and a growth chamber to examine phenotypic plasticity and growth 

response of L. microphyllum with various soil treatments. The dissertation is organized in 

six chapters. The first chapter provides a basic introduction to the problem and focus of 

the study. Chapter 2, 3, 4 and 5 are independent chapters addressing the interaction of L. 

microphyllum with soil chemical, biological and physical parameters. Finally, chapter 6 

presents the major findings of the dissertation presented in the previous four chapters. 
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Additionally it includes the conclusion of the study, directions for future research, and 

recommendations towards a development of an integrated management technique to 

control L. microphyllum in the invaded regions of Florida.   

 In chapter two, analysis of field root and soil samples from the ferns introduced 

and native range as well as a seven-week growth chamber experiment were done to 

determine the level of mycorrhizal colonization in the roots of L. microphyllum and the 

dependency on mycorrhizal fungi for growth and phosphorus (P) uptake. The field root 

samples showed that L. microphyllum was heavily colonized by arbuscular mycorrhizal 

fungi (AMF) in relatively dry conditions, which are commonly found in some Florida 

sites compared to more common wet sites where the fern is found in its native Australia.  

The results from the growth chamber experiment showed that the mycorrhizal treatment 

plants had significantly higher relative growth rate and biomass compared to the non-

mycorrhizal plants. Similarly, L. microphyllum was highly dependent on the mycorrhizal 

fungi for growth and P uptake.  Chapter two highlights the role of AMF in the vegetative 

reproduction and enhanced invasive success of L. microphyllum in south Florida natural 

areas.  

 Chapter three investigates the effects of soil pH on the growth, nutrient uptake 

and degree of mycorrhizal colonization of L. microphyllum. I conducted a 60 day 

greenhouse experiment by growing this plant in pots filled with pH adjusted soils to a 

range of 4.8 to 8.0. Lygodium microphyllum was able to survive and grow at all soil pH 

levels; however, final biomass, relative growth rate, photosynthesis, and specific leaf area 

were all significantly greater in soil pH 5.5 - 6.5 compared to the other treatments. 

Correspondingly, leaf nitrogen concentration was also had a significant influence on 
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these four plant parameters. Root colonization by mycorrhizal fungi was significantly 

higher in soil pH 5.5-7.5 than in lower or higher pH soil, and was significantly correlated 

with plant growth parameters as well as elemental concentration in the leaves. In its 

native Australia, L. microphyllum responds robustly following fire. Fire is also known to 

commonly raise soil pH, and given the treatment response to soil pH in this study and the 

plant’s known fire tolerance in its home range, this management option should likely be 

reconsidered.   

 In chapter four, I compared the soil characteristics six invaded and adjacent 

uninvaded plots in three different locations. The results from this study show that the fern 

can grow and thrive in a wide range of soil types and the impact on the soil was site 

specific with effects being more prominent in sites with low nutrient status. Additionally, 

there was significant difference in the soil nutrient status in the invaded and uninvaded 

sites. Sites with Old World climbing fern had significantly higher nutrient concentration 

with the corresponding differences in the soil organic matter. Overall my study highlights 

that this exotic pest plant can alter its belowground environment to its own benefit by 

enhancing the soil nutrient status with the added soil organic matter. 

 In chapter five, I conducted a cross continent comparison of soil characteristics 

associated with L. microphyllum. Here, I present evidence that the invasion by L. 

microphyllum in south Florida is not only facilitated by the soil microbial community but 

also by the soil chemical characteristics.  My results indicate that aluminum, which is 

considered phytotoxic in acidic soil condition, was significantly higher in Australian soils 

compared to the Florida soils. I suggest that invasive plants not only escape from their 

natural herbivores but also the toxic soil environment in their native habitats and 
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conclude that a successful management technique and the future invasion prediction 

model should consider the soil elemental status.  

 Finally in chapter six, the major findings of the dissertation presented in the 

previous four chapters are presented. Along with discussion on the conclusions, 

recommendations are presented for the development of a successful integrated 

management technique for L. microphyllum in Florida and the restoration of the 

previously invaded habitats.  
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MYCORRHIZAL SYMBIOSIS AND LYGODIUM MICROPHYLLUM 
INVASION IN SOUTH FLORIDA – A BIOGEOGRAPHIC COMPARISON 

 
Soti PG, Jayachandran K, Purcell M, Volin JC, and Kitajima K , (2013) Mycorrhizal 
Symbiosis and Lygodium microphyllum Invasion in South Florida- a Biogeographic 
Comparison. (In Review) Symbiosis. 
 
 
 
Abstract 
 
 Lygodium microphyllum (Old World climbing fern) is one of the most 

problematic weeds in south Florida, invading numerous habitats from mangroves to pine 

flatwoods natural ecosystems. Much of the research efforts on L. microphyllum has been 

focused on reproductive potential, spore release, growth under different environmental 

conditions, belowground rhizome dormancy and survival strategies that describes its 

invasiveness. However, the role of an important mutualistic association with arbuscular 

mycorrhizal fungi (AMF) in the competitive ability and successful invasion of L. 

microphyllum by enhancing nutrient uptake has not been previously considered.  Analysis 

of field root and soil samples from the ferns introduced and native range as well as a 

seven-week growth chamber experiment were done to determine the level of mycorrhizal 

colonization in the roots of L. microphyllum and the dependency on mycorrhizal fungi for 

growth and phosphorus (P) uptake. The field root samples showed that L. microphyllum 

was heavily colonized by AMF in relatively dry conditions, which are commonly found 

on some Florida sites compared to wet sites where the fern is found in its native 

Australia.  The results from the growth chamber experiment showed that the mycorrhizal 

treatment plants had significantly higher relative growth rate and biomass compared to 

the non-mycorrhizal plants. Similarly, L. microphyllum was highly dependent on the 
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mycorrhizal fungi for growth and P uptake.  My results suggest that AMF play a 

significant role in vegetative reproduction and likely enhance the invasiveness of L. 

microphyllum in south Florida natural areas.  

 

Key words: arbuscular mycorrhizal fungi (AMF), inorganic phosphorus, relative growth 

rate (RGR), mycorrhizal dependency, exotic pest plant. 

 

2.1 Introduction 

 Lygodium microphyllum (Old World Climbing Fern) is one of the most 

problematic weeds in south Florida. It invades many freshwater and moist habitats and is 

common in cypress swamp, pine flatlands, wet prairies, sawgrass marshes, mangrove 

communities, and the Everglades tree islands (Pemberton and Ferriter, 1998). L. 

microphyllum, with its ability to form dense mats, spreads very rapidly and dominates 

both understory and overstory native wetland habitats. It has the ability to grow in 

varying hydrological (Gandiaga et al. 2009), nutrient (Volin et al. 2010) and light 

gradients (Volin et al. 2004). It is estimated to occupy 183,080 acres across the 

South/Central Florida region (Ferriter and Pernas 2006) and a model developed by Volin 

et al. (2004) shows that, in the absence of aggressive control measures, L. microphyllum’s 

infestations could exceed the current combined coverage of the top five most invasive 

species in Florida by 2014. Managing L. microphyllum has been a significant challenge 

for land resource managers and researchers because of its extensive rapid invasion in 

natural areas of south Florida. Much of the research work previously performed on L. 

microphyllum focuses on reproductive potential, spore release, belowground rhizome 
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dormancy and survival strategies investigating its invasiveness (Lott et al. 2003). Volin et 

al. (2010) have suggested that the belowground microbial community can influence the 

establishment of L. microphyllum in south Florida and contribute to its invasiveness. 

Thus the role of belowground biota in invasions by exotic plants cannot be overlooked, in 

particular, the role of arbuscular mycorrhizal fungi (AMF) deserves consideration. 

Most vascular plants form symbiotic associations with AMF, and many plants are 

highly dependent on this association for their growth and survival (Smith and Read 

1997). Arbuscular mycorrhizal fungi are obligate symbionts of plants; approximately 

95% of all vascular plants can form AMF associations (Fitter and Moyersoen 1996). 

Read (1991) stated that the mycorrhizal association is the most ubiquitous and abundant 

form of terrestrial symbiosis, and AMF are considered the most common type of 

mycorrhizae which dominates grasslands, croplands, tropical forests, and desert 

communities. They occur naturally in most soils and their important ecosystem function 

is to assist in the acquisition of soil mineral nutrients (Dighton 2003). Arbuscular 

mycorrhizal fungi are known to benefit plants by improving plant phosphorus (P) uptake 

(Fitter, 1990; Gao et al. 2007) and also potentially enhance defense against soil born 

pathogens (Azcón-Aguilar and Barea 1997). South Florida soils are poor in P because of 

the binding of P with Ca in alkaline soils and to certain extent Al or Fe in acidic soils. 

Arbuscular mycorrhizal fungi can facilitate P uptake by increasing 1) diffusion rate into 

plant roots; 2) P concentration at the root surface; and 3) the rate of P dissociation from 

the surface of soil particles (Bolan 1991). Elements other than P, such as N, Cu and Zn, 

also experience enhanced uptake through AMF (Gildon and Tinker 1983; Gao et al. 

2007). It has been estimated that external hyphae of AMF can contribute up to 80% of the 
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P, 10% of the N, 10% of the K, 25% of the Zn, and 60% of the Cu absorbed by plants (Li 

et al. 1991; Marschner and Dell 1994; DeLuca et al. 2002). Mycorrhizal fungi help 

overcome the nutrient deficiency by extending their external hyphae to areas of soil 

beyond the depletion zone and increasing the absorptive surface of the root.  However, 

Smith and Read (1997) have reported that host plant species do not equally benefit from 

AMF and some plants acquire more nutrients from AMF than others. Furthermore if the 

symbiotic relationship is non-host specific competing plant species could be 

interconnected by AMF hyphal networks (Grime et al. 1987; Newman 1988) thus 

creating an imbalance in the nutrient distribution in the soil. This imbalance in nutrient 

distribution could interfere the competitive interaction between native and exotic species 

by promoting growth of the invasive species and inhibiting growth of the native plant 

species (Fumanal et al. 2006; Callaway et al. 2008).  

  Populations of AMF are highly influenced by the various environmental factors 

including climatic conditions, soil physico-chemical properties, age of the host plant 

species etc. In southeastern Queensland, Australia, the native range of L. microphyllum is 

climatically similar to the L. microphyllum invaded areas of south Florida (Volin et al. 

2010) however the soil physico-chemical properties are significantly different in these 

two locations.   Thus in my study, I characterized the root colonization by AMF in L. 

microphyllum under field conditions in both its native Australia and its introduced 

environment in Florida. I further explored the influence of AMF on the growth and 

biomass allocation strategy of L. microphyllum in growth chambers. The objectives of 

this study were to: 1) evaluate the mycorrhizal status of natural populations of L. 

microphyllum in both Australia and Florida; 2) determine the effect of AMF on the 
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reproductive and biomass allocation strategy of L. microphyllum; and, 3) evaluate the 

dependency of L. microphyllum on AMF for growth and phosphorus uptake. 

Ihypothesized that the south Florida population of L. microphyllum would have a higher 

degree of mycorrhizal colonization compared to the Australian population because of the 

difference in soil characteristics. I also hypothesized that L. microphyllum is highly 

dependent on AMF for increased biomass accumulation and P uptake. 

 

2.2 Methods 

2.2.1 Experiment 1: Degree of mycorrhizal colonization in L. microphyllum  

Roots and rhizosphere soil samples (for nutrient analysis and spore extraction) of 

wild L. microphyllum were collected from different locations in south Florida and 

Australia to assess the mycorrhizal fungal root colonization and presence of AMF spores.  

To estimate the AMF colonization, root samples were collected from fully grown adult 

plants from populations that were known to be at least five years old in both Australia 

and south Florida. The locations, sampling date and the dominant vegetation in each of 

the sites are given in Table 1. Root tip samples were placed in 70% ethanol immediately 

until further processing following the method described in McGonigle et al. (1990). At 

least 10 cm of fine roots from multiple plants were collected at seven different locations. 

These roots were cut into 1.5 cm fragments, cleared in 15% KOH at 70oC for 4 hours, 

rinsed twice with water, bleached with ammoniated H2O2, and acidified with 1 N HCl. 

Once the roots were cleared, staining was done using 0.05% Trypan blue in acidic 

glycerol at 80oC for 20 minutes. The stained roots were examined with a dissecting 

microscope at 30–60 X magnification; the portions that showed the presence of 
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mycorrhizal fungi were mounted on slides in lactic acid and further examined at 100–400 

X magnification to analyze the presence of mycorrhizal structures (hyphae, vesicles, and 

arbuscules). At least 50 root fragments were selected randomly for each site and the 

percentage of colonization was estimated.  

  The wet sieving and decanting technique was used to enumerate the mycorrhizal 

spores in the soil (Gerdemann et al. 1963). The soil samples were mixed to homogeneity. 

Fifty grams of the soil sample were then mixed with water and passed through a series of 

sieves allowing heavy soil particles to settle for a few seconds. The sievate retained on 

the sieves was washed and centrifuged with water to remove floating organic debris and 

the supernatant was discarded. The pellet in the bottom was re-suspended in a 50% 

sucrose solution, and centrifuged for one minute at 2000 RPM to separate the spores from 

denser soil components. Immediately after centrifugation, spores in the sucrose 

supernatant were rinsed in a fine sieve to remove the sucrose. The spores were then 

washed into a filter paper for vacuum filtration. The spores on the filter paper were 

counted under a stereo microscope. 

  

Analysis of soil properties 

At each sampling site, six 1 m x 1 m plots were selected randomly and soil 

sample was collected from the 10-15 cm deep zone at all four corners  and the center of 

each plot with a soil corer (core diameter: 18 mm) and mixed homogeneously into one 

bulk sample for each plot.  The samples were collected to a depth of 10-15 cm. The soil 

samples from south Florida were transported to the laboratory in a cooler; the Australian 

samples were stored at 4oC and were shipped overnight. The soil samples for the 
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chemical and physical properties were air dried and passed through a 2 mm sieve. They 

were then ground to fine powder with a mortar and pestle, and stored at room temperature 

in air-tight containers for further analysis of nutrients. The soil pH was measured with a 

pH meter, (soil solution ratio 1:1 in water), texture was measured by the hydrometer 

method, percentage of carbon and nitrogen was measured with a TruSpec 

Carbon/Nitrogen Analyzer (Leco Corporation, USA),  total organic matter was measured 

based on the standard loss on ignition method (500oC, 5 hours; Storer 1984), for the 

measurement of total P, soil samples (0.25 grams, finely ground) were ashed (500 °C), 

digested in 2 ml HCL (6N) and 10 ml HNO3, and then analyzed with an UV 

spectrophotometer (Shimadzu Scientific Instruments, ) (total P and some other variables 

were not measured for samples collected in 2006).  

 

2.2.2 Experiment 2: Mycorrhizal dependency of L. microphyllum 

Plant Material 

Experimental plants were grown from spores collected from an infestation in 

Jonathan Dickinson State Park, Florida, following the method used by Lott et al. (2003). 

The spores of L. microphyllum were disinfected with 1% bleach and transferred to Petri 

dishes that contained Parker-Thomson Medium. The plates were placed in an incubator 

set at 25-27oC for ten weeks and were watered with sterile DI water every week. After 

ten weeks, individual gametophytes were transferred to fresh Petri dishes. When the 

sporelings’ roots and leaves developed, 50 plants were transplanted to small pots 

previously filled with sterile sand. These 50 plants were placed in a growth chamber for 

approximately four weeks. The plants were kept very moist, and were watered with half 
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strength Hoagland’s nutrient solution as needed. Plants were then transferred to 2.5 L 

pots filled with the top soil collected from a L. microphyllum infested site located in the 

Tree Tops County Park, Davie, Florida. The potting soil was sterilized in an autoclave to 

kill mycorrhizal fungal spores to ensure the experimental plants remained free of 

mycorrhizal fungi.  

 

Growth Chamber Experiment 

 A seven-week growth chamber (Percival Scientific, with irradiance = 500 µmol 

m-2 s-1, photoperiod = 12 h and temperature 27oC) experiment was done to determine the 

mycorrhizal dependency of L. microphyllum. The experiment consisted of two 

treatments: mycorrhizal treatment and non-mycorrhizal treatment with eight replicate 

pots per treatment. In the mycorrhizal treatment plants received mycorrhizal inoculum; 

the top soil collected from the field directly under L. microphyllum while a systemic 

fungicide was added every three weeks in the non-mycorrhizal treatment plants to 

prevent any kind of mycorrhizal contamination during the experiment.  The non-

mycorrhizal plants received 50 ml of microbial wash to provide similar microflora except 

the mycorrhizal fungi. The microbial wash was prepared by filtering the field soil slurry 

through a 25µm filter paper, which removed the mycorrhizal fungi spores in the soil but 

allowed the other soil microorganisms to pass through (Johnson 1993). Three hundred 

mg of the systemic fungicide Benomyl was applied in 100 ml of water per pot (50 mg/kg 

growth medium); this fungicide is reported to effectively reduce the mycorrhizal 

colonization in roots without significant impact on the plants (Fitter and Nichols 1988; 

Hetrick et al. 1992). Plants were watered to saturation once per week and received 250 ml 
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of half strength Hoagland's solution weekly, modified by the addition of phosphorus as 

inositol hexaphosphate (Marler et al. 1999). This form of phosphorus is not directly 

available to plants for uptake, and requires alteration in the soil by mycorrhizal fungi, soil 

microbes, or root exudates (DeLucia et al. 1997).  

 

Measurements  

Two harvests were conducted during this study: at time 0 (the transplanting day), 

and after 50 days. The allometric relationship between stem length and total mass (R2 = 

0.87) from the time 0 harvest was developed to estimate the initial plant mass of the 

experimental plants and to calculate the relative growth rate (RGR) (see Gandiaga et al. 

2009). The RGR (mg g-1 d-1) was calculated for individual plants used for the experiment, 

where RGR = [ln (final dry mass)-ln (initial dry mass)]/days (Evans, 1972). After each 

harvest, roots, stem, and leaves (pinnae) were separated from each plant and the leaf area 

was measured with the leaf area meter to calculate the specific leaf area (SLA). The 

separated plant parts were oven-dried (at 70oC) to constant mass and weighed to 

determine the leaf mass ratio (LMR), stem mass ratio (SMR), rhizome mass ratio 

(RhiMR), and root mass ratio (RMR); differences in the mean growth parameters 

between the treatments and relative growth rate (RGR).  The roots were washed with 

water. Twenty 1-cm root pieces were collected from each plant before drying to quantify 

the AMF colonization in the roots. Root and shoot dry mass were measured after oven-

drying for one week at 65°C. Leaf samples (0.25 grams, finely ground) were ashed 

(500°C), digested in 2 ml HCL (6N) and 10 ml HNO3, and then analyzed with an UV 

spectrophotometer (Shimadzu Scientific Instruments, US) for total phosphorus (P) 
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concentration. The percentage of carbon and nitrogen in the leaves was measured with a 

TruSpec Carbon/Nitrogen Analyzer (Leco Corporation, US) and the C/N ratio was 

calculated.  Dependency of shoot P uptake and growth of plants on AMF was calculated 

using the formulae from Plenchette et al. (1989), where +M represents inoculated plants 

and –M, fungicide treated plants: 

 
 
 

Dependency  of  P  uptake =
P  content   +M − P  content  (−M)

Pcontent  (+M)   ×100 

 

Dependency  of  growth =
Total  dry  mass   +M − Total  dry  mass  (−M)

Total  dry  mass  (+M)   ×100 
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2.2.3 Statistical Analyses 

Data for the soil and mycorrhizal colonization (Experiment 1) were analyzed with 

one-way analysis of variance (ANOVA) to compare the means of the pH, total P, total N 

and soil organic matter from different sites. Correlation analysis determined the 

association of soil pH and organic matter on the degree of mycorrhizal colonization.  

For the green house experiment (Experiment 2), after the harvest at 50 days, 

regression analysis examined the influence of initial plant mass on RGR and its 

morphological, allocational and physiological determinants as it has been reported 

frequently (e.g., Mcconnaughay and Coleman 1999; Volin et al. 2002; Kruger & Volin 

2006). Regression analysis indicated that RGR was negatively correlated to initial plant 

mass (p<0.001). Additionally, RhMR and SLA at final harvest were all significantly 

related (P < 0.05) to final plant mass. Therefore, each was normalized for variation in 

plant mass using analysis of covariance.  All of the variables in mycorrhizal and non-

mycorrhizal treatments were then compared with two-treatment t- test for significance at 

p ≤ 0.05. Regression analysis was also used to assess relationships between RGR and its 

principal determinants. All the parameters were analyzed with SAS Version 9.2 software. 

 

2.3 Results  

2.3.1 Degree of mycorrhizal colonization and influence of soil factors 

 A wide variety of different fungal structures such as extraradical hyphae, vesicles, 

and arbuscules were visible in root samples from all sites. The total percentage of roots 

colonized by arbuscular mycorrhizal fungi in the south Florida plants in some cases were 

up to three times that of the Australian plants (Table 1.1). In Florida, the range was from 
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31-79%, while in Australia the range was much narrower, 27-29%. Mycorrhizal spores 

were present in the rhizosphere soil samples from all sites; spore abundance was highest 

in Tree Tops Park in south Florida, while the lowest abundance of spores at Nudgee in 

Australia.  

Tree Tops Park, the south Florida site had slightly higher total P in the soil but 

this difference was not significantly different (Fig. 1.1a). However there was a significant 

difference in the total C and N among the different sites (Fig. 1.1 a, b). Tree Tops Park in 

Florida and Logan in Australia had significantly higher percentage of C and N compared 

to the other sites. The south Florida soil samples were slightly acidic, ranging from 5.49 

at Tree Tops Park to 6.22 at Jonathan Dickinson Park.  However, the Australian soil 

samples were highly acidic ranging from 3.97 at Nudgee to 4.7 at Logan.  Soil organic 

matter was significantly higher in the Tree Tops and Logan than at Jonathan Dickinson, 

Nudgee and Daintree (Table 2.1).  
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Figure 0.1 Means (± SE) of soil nutrients: a) total soil phosphorus (mg g-1); b) total soil 
nitrogen %; c) total soil carbon (%). 
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Figure 0.2 Arbuscular mycorrhizal fungal structures (a), vesicles and fungal hyphae (b), 
in root cortex region of South Florida Plants, vesicles and fungal hyphae in the root 
cortex region of Australian plants (c). 



 
 

 Table 0.1 Sampling site information with the number of AMF spores and mycorrhizal colonization. 

Note: Mean values ± standard error, Soil organic matter (SOM), number of samples (N), * values not determined.

Site Coordinates 
Dominant 
vegetation 

Soil 
texture pH SOM  % 

No. of 
spores/10g dry 

soil 
Sampling 

Date 
Deg. of colonization 

(%) [min–max] 

Tree Tops Park, FL, US 
26° 4'0.04"N, 

80° 16' 5.88"W Royal fern 
Sandy 
loam 5.56 39.7±1.6 29±7 Dec, 2010 

79 ± 3.0 
[65 – 85] 

Jonathan Dickinson, FL, 
US 

27°0’37.33”N, 
80°7’20.28”W 

 Slush pine Sand 6.02 4.30±0.9 19±5 Dec, 2010 
74 ± 2.2 
[67 – 88] 

Big Cypress Seminole 
Indian Reservation, FL, 

US 

Approximately, 
26°17’N, 
80°54’W 

Bald 
cypress Sand 4.99 * * 

October, 
2006 

31 ± 7.8 
[16.0 – 49.5] 

Daintree Ferry, 
Queensland, AU 

16°15'25.57"S, 
145°24'3.94"E Drynaria Silt loam 4.43 8.07±1.2 12±6 June, 2011 

27 ± 1.4 
[24 – 33] 

 

Logan Reserve, 
Queensland, AU 

27°40'4.16"S, 
153°16'0.44"E 

Bungwall 
fern 

Sandy 
clay loam 4.55 35.5±2.9 15±3 June, 2011 

28 ±1.3 
[25 – 32] 

Nudgee, Queensland, AU 
27°22'31.12"S, 
153° 5'39.42"E Melaleuca Loam 4.01 11.45±1.9 10±5 June, 2011 

27 ± 0.6 
[25 – 29] 

SE Brisbane, Queensland, 
AU 

27°40.36'S, 
153°16.60'E Melaleuca 

Sandy 
loam 5.55 6.83 * 

February, 
2006 

24.0 ± 2.7 (3) 
[19.5 – 28.9] 

Near Amity Point, 
Stradbroke Island, 
Queensland, AU. 

Approximately, 
27.4°S, 153.4°E Melaleuca Sand * * * 

February, 
2006 

30.2 ± 6.5 (5) 
[7.4 – 44.7] 
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Correlation analysis shows that the degree of colonization was signifi  

positively correlated with soil pH (r = 0.86, p<0.001); N% (r= 0.45, p=0.026); and C   

= 0.43, p = 0.0177) while there was no significant correlation with soil organic ma   

= 0.02, p=0.35).  

 

2.3.2 Mycorrhizal dependency 

As expected, in the non-mycorrhizal treatment, benomyl application signifi  

suppressed the mycorrhizal colonization of L. microphyllum roots. After 50 days   

colonization rate was high in the mycorrhizal treatment (>75%), but low (<5%)   

non-mycorrhizal treatment (Fig. 2.2). Different fungal structures were observed in  

plant roots including hyphae, vesicles as well as arbuscules.  

Figure 2.3 High colonization of the roots by arbuscular mycorrhizal fungi in the 
mycorrhizal treatment plants (a), no colonization in the non-mycorrhzial treatment p  
(b), at the end of 50 days. 
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The mycorrhizal plants had greater total P uptake in shoots compared to the non-

mycorrhizal plants. The mycorrhizal dependency index for growth was 67%, and 64% for 

P uptake. Relative growth rate of mycorrhizal treated plants was 29% greater (P=0.01) 

than the RGR of the non-mycorrhizal plants (Table 2). Correspondingly, the mean 

biomass of the L. microphyllum plants inoculated with mycorrhizal fungi was also 

significantly greater (by 66%) (P=0.001) than the non-mycorrhizal plants (Table 2).  

There was no significant difference in SMR (P=0.15) or LMR (P=0.99) between 

the two treatments (Table 2.2). On the other hand, allocation to rhizomes (RhiMR) 

(P=0.001) was significantly different between treatments, resulting in greater rhizome 

allocation for mycorrhizal plants compared to untreated plants. In contrast, mycorrhizal 

plants tended to allocate less to roots than non-mycorrhizal plants (P=0.08).  

The mycorrhizal treatment increased the leaf area of the plants nearly four-fold 

(P=0.0001) and SLA was significantly greater (P=0.003) (24%) in the presence of 

mycorrhizal fungi compared to non-mycorrhizal plants. There was no significant 

difference (P=0.83) in the average P concentration in the leaves of the mycorrhizal and 

non-mycorrhizal plants. However, the total P per plant (3,291 µg) of the mycorrhizal 

plants was significantly higher (P=0.0001) than the non-mycorrhizal plants.  
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Table 0.2 Effect of arbuscular mycorrhizal fungi (AMF) inoculation on plant growth 
parameters and on leaf content of biolimiting elements (P and N). 

Variable Mycorrhizal Non-mycorrhizal  P value 

Final biomass(g) 1.99 ± 0.37 0.68  ± 0.17  0.0001 

RGR mg g-1 day-1 75.13  ±  0.01 53.88 ± 0.01  0.000 

SMR 0.17  ± 0.03 0.20 ± 0.05  0.15 

RMR 0.18  ± 0.05 0.24 ± 0.08  0.08 

RhiMR 0.24  ± 0.04 0.14 ± 0.04  0.001 

LMR 0.42  ± 0.02 0.42 ± 0.02  0.99 

SLA 505  ± 64 383.6 ± 85  0.003 

Leaf area (cm2) 414 ± 112 109.7 ± 40.7  0.0001 

Total P per plant (µg) 3,291 ± 615 1,129 ± 279  0.0001 

C/N ratio 1.7 ± 0.1 1.6 ± 0.1  0.21 

Note: mean values ( ± SD) of the study variables: relative growth rate (RGR), stem mass 
ratio (SMR), root mass ratio (RMR), rhizome mass ratio (RhiMR), leaf mass ratio 
(LMR), specific leaf area (SLA)  after growing 7 weeks in a growth chamber: analyzed 
by (two sample t test, p<0.05). 
 
 

2.4 Discussion and Conclusion 

The results of this study suggest that L. micorphyllum likely has a strong 

symbiotic relationship with mycorrhizal fungi, and the degree of mycorrhizal 

colonization is generally higher in the invaded regions of south Florida than in the plant’s 

native range in Australia. Detailed information on the mycorrhizal status of the coexisting 

species is not available but the high degree of mycorrhizal colonization may assist in 
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absorption and competition for nutrients in the fern’s introduced environment, especially 

on sandy sites with low water holding capacity. This could in turn provide a competitive 

advantage over native Florida plants. However, others have found that that many invasive 

plants do not associate with mycorrhizal fungi (see Pringle et al. 2009). Plants such as 

Alliaria petiolata, Centaurea diffusa, etc. have been found to use alternative mechanisms 

to disrupt existing symbiotic relationships by secreting lethal biochemicals in the 

introduced range, resulting in the reduced growth and competitiveness of native plants 

(Callway and Aschehoug 2000; Callaway et al. 2008). 

 My results show that soil pH is positively correlated with mycorrhizal 

colonization, indicating that the low soil pH of the Australian soil may influence the 

degree of mycorrhizal colonization and the number of spores associated with L. 

microphyllum, other research have shown species-specific responses of AMF to soil pH 

(Wang et al. 1985; Porter et al. 1987; Gemma et al. 1989). It is widely reported that 

abundance of mycorrhizal fungi declines in response to N and P fertilization (see 

Treseder 2004). In contrast, My results indicate a positive correlation between 

mycorrhizal colonization and soil nitrogen. Similar results have also been reported by 

(Persson & Ahlstrom 1991; Heijne et al. 1992).  I did not determine the mycorrhizal 

fungal species in my study but there is substantial variation in the environmental effects 

on different mycorrhizal fungal species, this variation could explain in part the 

contradictory results seen in my study. Likewise, there was a significantly positive 

correlation between the root mycorrhizal status and soil C%, this result supports the 

existing assumption that mycorrhizal fungi have a significant contribution to soil carbon 

storage (Treseder and Allen 2000).   
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Interestingly, the two sites in Florida with high AMF colonization appear to be 

drier than the four Australian sites and one Florida Big Cypress Seminole Indian 

Reservation site. These latter sites are characterized by periodic inundation that may or 

may not occur on an annual basis, while the two dry Florida sites are not inundated for 

any appreciable amount of time. Relationship between flooding and AMF colonization 

seen in my study could explain in part the lowered growth rate of L. microphyllum in 

flooded conditions compared to the drought and field conditions seen by Gandiaga et al. 

(2009). Additionally, Rickerl et al. (1994); Stevens and Peterson (1996); and Miller 

(2000) have found a strong relationship between mychorrizal colonization and site 

hydrology, and this potential relationship for L. microphyllum needs to be explored 

further. 

We found that L. microphyllum can attain high RGR under suitable environmental 

conditions. A high RGR for invasive species has been reported for many different species 

(Burns 2004; James and Drenovsky 2007; Soti and Volin 2010). From an ecological 

perspective, high RGR can lead to the rapid occupation of a large space, which could be 

advantageous for exotic invasive plants (Grime and Hunt 1975).  In my study, RGR in L. 

microphyllum was highly enhanced by the presence of mycorrhizal fungi. Mycorrhizal 

plants produced almost three times more biomass than non-mycorrhizal plants. Increased 

growth and development in mycorrhizal plants compared to non-mycorrhizal plants has 

also been found in several different species (Gupta and Janardhanan 1991; Smith and 

Read 1997; Guadarrama et al. 2004; Liu et al. 2005; Pezzani et al. 2006). On the other 

hand, Philip et al. (2001) observed that colonization by AMF of Lythrum salicaria 

decreased plant biomass both aboveground and belowground. Likewise Botham et al. 
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(2009) observed that the AMF inoculated Fragaria virginiana plants showed no 

difference in biomass accumulation and growth rate compared to control plants.  

The mycorrhizal treatment plants had significantly higher SLA compared to the 

non-mycorrhizal plants. The difference in the SLA between the two treatments could lead 

to higher RGR in the mycorrhizal plants. Although we did not measure photosynthesis in 

our study, Gandiaga et al. (2009) found that SLA together with photosynthesis were the 

major determinants of growth in L. microphyllum plants grown under different 

hydrological conditions. Other studies, using different species, have also found that 

mycorrhizal plants had higher leaf area, leaf area ratio and SLA compared with control 

plants (Waschkies et al. 1994; Caglar and Bayram, 2006; Vega-Frutis et al. 2011).  

The enhanced ability of a plant to take up phosphorus from low P soils is 

considered to be the major contributing factor for mycorrhizal dependency (Hall 1975; 

Smith & Read 1997). Increased P uptake by the extraradical mycelia of mycorrhizal fungi 

in the roots may allow L. microphyllum to absorb more nutrients leading to larger shoots 

and more extensive roots, compared to non-mycorrhizal plants. This relationship would 

potentially convey a competitive growth advantage in the fern’s introduced range in 

Florida as this region is conspicuous for its P-limiting growth environment (McCormic et 

al. 1999). Previous research has shown that AMF increase plant uptake of phosphate 

(Bolan 1991), micronutrients (Burkert and Robson 1994), nitrogen (Barea et al. 1991), 

and act as antagonists against some plant pathogens (Duponnois et al. 2005). Moreover, it 

has been demonstrated that plants inoculated with AMF utilize more soluble phosphate 

from rock phosphate than non-inoculated plants (Antunes and Cardoso 1991). The  
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current study supports these results since the mean P uptake per plant was significantly 

greater in the mycorrhizal plants than in the non-mycorrhizal plants.  

In conclusion, it is clear that L. microphyllum can form a very strong symbiotic 

relationship with AMF in its introduced environment in Florida. It is likely that this 

relationship is strongly influenced by site hydrological conditions, but this hypothesis 

will need to be tested in future research, especially when the Florida Everglades is 

undergoing a major hydrological shift as an effort for restoration. The enhanced 

mycorrhizal fungi are also likely responsible for the greater P uptake and biomass 

accumulation in the control study. Symbiotic relationships such as found in my study, are 

highly beneficial, and likely enhance the aggressive growth characteristic of this exotic 

pest plant in its de novo environment. Further field experiments are necessary to better 

evaluate the potential role of mycorrhizal fungi in the growth of this highly invasive 

species in south Florida natural areas. 
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Abstract  

 Lygodium microphyllum is an invasive exotic plant species taking over many sites 

in freshwater and moist habitats in Florida. Managing it has been a significant challenge 

for land resource managers and researchers because of its extensive rapid invasion. To 

assess the effects of soil pH on growth, nutrient uptake and mycorrhizal colonization in 

the roots of L. microphyllum, we conducted a 60-day greenhouse experiment by growing 

the fern in pots filled with pH adjusted soils to a range from 4.5 to 8.0. Lygodium 

microphyllum was able to survive and grow at all soil pH levels; however, final biomass, 

relative growth rate, photosynthesis and specific leaf area were all significantly greater in 

soil pH 5.5 - 6.5 compared to other treatments. Correspondingly, nitrogen concentration 

was also significantly related to these four plant parameters. Root colonization by 

mycorrhizal fungi was significantly higher in soil pH 5.5-7.5 and lowest for plants 

growing in 4.5 or 8.0, and was significantly correlated with plant growth parameters as 

well as elemental concentration in the leaves. In its native Australia, L. microphyllum 

responds robustly following fire. Fire increases soil pH, and given the treatment response 

to soil pH in my study, increased pH may help partially explain L. microphyllum’s 

response to burning. Recently, fire has been used as a potential management control 

option in its introduced range in Florida, given the results of this study and the plants 
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known fire tolerance in its home range, this management option should be reconsidered.   

Key words: element toxicity, invasive species management, plant-soil interactions, 

relative growth rate. 

 

3.1 Introduction 

Soil pH is an important factor for plant growth, as it affects nutrient availability, 

nutrient toxicity, and has a direct effect on the protoplasm of plant root cells (Rorison 

1980; Alam et al. 1999). It also affects the abundance and activity of the soil organisms 

(from microorganisms to arthropods) responsible for the transformations of nutrients (De 

Boer and Kowalchuk, 2001; Nicol et al. 2008). Since most mineral nutrients are readily 

available to plants when soil pH is near neutral (pH = 7.0), species richness is high in 

such neutral soils, declining in both acidic and alkaline soils (Grime 1973; Gould and 

Walker 1999; Pausas and Austin 2001). Soil pH further influences the fate of chemicals, 

nutrients, and pesticides/herbicides added to the soil (Liu et al. 2001). Past research has 

shown that the species diversity is low in most acidic soils (Dupre et al. 2002) as essential 

nutrients (such as calcium, magnesium, potassium, phosphorus, and molybdenum) exist 

in unavailable forms to plants causing nutrient deficiency (Larcher 1980). Likewise, 

because to the inhibition of nitrification processes, nitrite, which can be toxic to plant and 

microorganisms, accumulates in acidic soils (Black 1968; Shen et al. 2003). In strongly 

acidic soils, certain ions (Al3+, Cu2+, Fe3+, Mn2+) rise to levels toxic for the majority of 

plants (Foy 1984; Kinraide 1993). Additionally, acidic soils have high cation exchange 

capacity, and promote leaching of nutrients resulting in soil unfavorable for plant growth 

(Johnson 2002).  At the other extreme, alkaline soils tend to be deficient in iron, 
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manganese and phosphate (Marschner 1986; Tyler 1999). Marschner (1986) suggest that 

in alkaline soils, boron can rise to phytotoxic concentrations.  

Plants differ enormously in their degree of tolerance to changes in soil 

characteristics (pH, moisture content, etc.): some have a narrow tolerance for one 

variable but a wide tolerance for others (Hill & Ramsay 1977). Weedy species collected 

from different climate zones show large growth differences when planted in soils with pH 

ranging from 4.8 to 6.4 (Buchanan et al.1975).  Stephenson & Rechcigl (1991) found that 

many weedy species grew significantly better when soil pH increased from 4.5 to 5.4, 

with good growth maintained at pH of 5.5 and above.  Since invasive species have an 

affinity for disturbed areas, can reproduce sexually as well as asexually and yield a high 

number of seeds, they have a greater ability to adapt to changing conditions, potentially 

displacing native species through competitive exclusion (Baker 1974; Mooney and 

Cleland 2001; Prentis et al. 2008).  

 Lygodium microphyllum is an invasive exotic plant species taking over many sites 

in freshwater and moist habitats in Florida.  It has the ability to grow in varying 

hydrological (Gandiaga et al. 2009), nutrient (Volin et al. 2010), and light conditions 

(Volin et al. 2004). Analysis of soil samples from both its native range and invaded 

region have shown that although L. microphyllum grows in highly acidic soils in its 

native range in Australia, it has adapted to thriving in close-to-neutral soils in Florida 

(Chapter 2).  The roots of L. microphyllum are heavily colonized by mycorrhizal fungi 

that absorb nutrients, specifically P; biomass accumulation in mycorrhizal plants was 

almost three times that of non-mycorrhizal plants (Chapter 2). Furthermore, the level of 

mycorrhizal colonization was related with the soil pH: a higher degree of mycorrhizal 
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colonization is present in plants from the slightly acidic soils in the invaded regions 

compared with those from the highly acidic soil in the native regions (Chapter 2). Since 

mycorrhizal fungi have strong associations with L. microphyllum, supporting nutrient 

uptake in both its invaded regions as well as in the native regions (Chapter 2), the 

response of mycorrhizal fungi to variation in soil pH should be considered, especially if 

the manipulation of soil pH is integrated in the management plan for this invasive pest 

plant. 

 The aim of this study was to compare the degree of mycorrhizal colonization, 

nutrient uptake, biomass accumulation, and growth rate of L. microphyllum at different 

soil pH levels. Since the existing chemical control method is not very efficient in 

controlling L. microphyllum, this information may be useful in developing an integrated 

weed management technique. I hypothesized that plant growth and mycorrhizal 

colonization will be highest in slightly acidic soils with growth highly reduced (or the 

plants not surviving) in alkaline soils.  I predicted that changing the soil pH can reduce 

the competitive ability of L. microphyllum.  
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3.2 Methods 

 To test the hypothesis, I undertook a greenhouse experiment to investigate the 

effects of soil pH on various aspects of growth of L. microphyllum.    Plants were 

maintained in pots in the Florida International University greenhouses until they began to 

sporulate, at which time the experiment was concluded. 

 

3.2.1 Potting soil 

Soil from plots in Tree Tops County Park at Davie, Florida was collected for this 

study; this site was not yet invaded by L. microphyllum. Soil was then passed through a 2 

mm sieve and air dried in room temperature. Quartz sand was added to this soil to form a 

1:1 soil/sand ratio. A sub-sample of the soil was analyzed to determine the initial soil 

characteristics. The soil pH was measured with a pH meter, (soil solution ratio 1:2 in 

water), texture was measured by the hydrometer method, total organic matter was 

measured on the basis of standard loss on ignition method (500oC, 5 hours; Storer 1984). 

To generate a soil neutralization curve (Kellog et al. 1957), 150 g of air dried soil 

samples were placed in 120 ml plastic containers and mixed with Ca(OH)2  at rates 0, 1, 

2, 3, 4, 5, 6, 7, 8 Mg Ha-1, elemental S was added at rates 0.35, 0.40, 0.45 0.50, 0.55 and 

0.60 Mg Ha-1,  with 5 replicates for each treatment. These soil samples were watered with 

DI water and incubated for 28 days and the soil pH was measured (soil solution ratio 1:2 

in water). The amount of lime or sulfur required to raise the experimental soil pH to the 

desired level was determined based on the regression equation resulting from pH 

measurement of the incubated soils. The rate of Ca(OH)2 and S added is given in Table 

3.1.  
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 The soil was sandy loam with organic matter 37%, 1.10 mg/g total P, 1.2 % total 

N   and pH 5.5 ± 0.2. The soil was divided into 5 subsamples and elemental sulfur was 

added to lower the pH to 4.5 in one set; no treatment was done in the 5.5 pots; and 

Ca(OH)2 was added to increase the pH to 6.5, 7.5 and 8.0. The soil samples with 

elemental sodium or Ca(OH)2 were thoroughly mixed, added to the pots and watered with 

DI water. The soils were allowed to equilibrate for eight weeks with frequent mixing. 

Soil pH was measured weekly and after eight weeks all the pH measurements were 

within ± 0.3 of the targeted pH value and remained constant throughout the experiment 

time (measured every week in 1:2 water).  

 

Table 0.1 Rates of application of Ca(OH)2 and elemental S for pH adjustment of the 
experimental soils 

Soil original pH Final pH 
Rates of S  or Ca(OH)2 
Application (Mg Ha-1) 

5.5 

4.5 0.522 

5.5 0.000 

6.5 2.215 

7.5 4.255 

8.0 5.275 

 

 

3.2.2 Plant material 

Experimental plants were grown from spores following the method used by Lott 

et al. (2003). Spores of L. microphyllum were disinfected with 1% bleach and transferred 
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to Petri dishes that contained Parker-Thomson Medium. The plates were placed in an 

incubator set at 25-27oC for ten weeks and were watered with sterile DI water every 

week. After ten weeks, individual gametophytes were transferred to fresh Petri dishes. 

When the sporelings’ roots and leaves developed, 60 plants were transplanted to small 

pots previously filled with sterile sand. These 60 plants were placed in a growth chamber 

for approximately four weeks. The plants were kept moist, and were watered with half 

strength Hoagland’s nutrient solution as needed. Plants were then transferred to 2.5 L 

pots filled pH modified soil. The plants were grown in the green house for 60 days. Plants 

were watered to saturation biweekly and received 250 ml of half strength Hoagland's 

solution weekly. Before the plants were harvested, photosynthesis was measured using a 

Li-Cor 6400 Portable Photosynthesis System (Li-Cor Biosciences) on two fully grown 

leaves per plant in all the treatments. Measurements were taken at leaf temperatures 

ranging from 34oC to 38oC, CO2 concentration of 400µmol mol-1 and photosynthetic 

photon flux was at 600 µmol m-2 s-1.  

 

3.3.3 Harvest and plant nutrient analysis 

 Two harvests were conducted during this study: at time 0 (the beginning of the 

treatment/transplant date), and after 60 days. The allometric relationship between stem 

length and total mass (R2 = 0.92) from the initial harvest was developed to estimate the 

initial plant mass of the experimental plants and to calculate the relative growth rate 

(RGR) (see Gandiaga et al. 2009). The RGR (mg g-1 d-1) was calculated for each 

individual plant used for the experiment, where RGR = [ln (final dry mass)-ln (initial dry 

mass)]/days (Evans 1972). After each harvest, individual plants’ roots, stem, and leaves 
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(pinnae) were separated and leaf area was measured with a leaf area meter to calculate 

the specific leaf area (SLA). The separated plant parts were oven-dried (one week at 

65oC) to constant mass and weighed to determine the leaf mass ratio (LMR), stem 

(rachis) mass ratio (SMR), rhizome mass ratio (RhiMR), and root mass ratio (RMR); and 

relative growth rate (RGR).  

 The aboveground parts of the plants (shoot tissue) were analyzed for nutrient 

content.  The oven dried tissues were carefully ground by hand using a mortar and a 

pestle. Samples underwent acid digestion using Method 3050B (USEPA 1996), 

summarized here: One gram of finely ground plant tissue sample was transferred to a 

large glass tube and mixed with 10 ml of 30% HNO3. The tubes were covered with a 

vapor recovery system and heated to 95±5oC and refluxed for 10 minutes without boiling 

under the hood in a heating block maintained with a Partlow Mic 6000 Profile Process 

Controller. After cooling to 40oC, 5 ml of concentrated HNO3 was added and the sample 

was heated again until no brown fumes were emitted. After cooling to 40oC, 2 ml of DI 

water and 3 ml of 30% H2O2 was added and heated until the effervescence subsided. The 

samples were cooled and diluted to 100 ml with DI water, centrifuged at 2000 rpm for 10 

minutes and filtered with Whatman No. 41 filter paper and analyzed with an ICP-MS at 

USDA ARS, Homestead, Florida.  

  



46 
 

3.3.4 Mycorrhizal colonization 

 Before drying, forty-five 1.5 cm root fragments were collected from each plant, 

and the colonization of AMF was quantified following a modified method described by 

McGoingle et al. (1990). Roots were cleared in 15% KOH at 70oC for 4 hours, rinsed 

twice with water, bleached with ammoniated H2O2, and acidified with 1 N HCl. Staining 

was done using Trypan blue in acidic glycerol at 80oC for 20 minutes. The stained roots 

were examined with a dissecting microscope at 30–60 X magnification; the portions that 

showed the presence of mycorrhizal fungi were mounted on slides in lactic acid and 

examined at 100–400 X magnification.  

 

3.3.5 Experimental design and data analysis 

The experimental design was a randomized complete block with five pH 

treatments and six replicates. It was a single factor experiment investigating the effects of 

pH on plant growth, nutrient accumulation and level of mycorrhizal colonization. After 

the harvest at 60 days, regression analysis examined the influence of initial plant mass on 

RGR and its morphological, allocational and physiological determinants (e.g., 

Mcconnaughay and Coleman 1999; Volin et al. 2002; Kruger and Volin 2006). 

Regression analysis indicated that RGR was negatively correlated to the natural log (ln) 

of initial plant mass (p<0.001). Additionally, RMR final harvest was significantly related 

(P < 0.05) to final plant mass. Therefore, variation in plant mass was normalized using 

analysis of covariance.  All of the variables in the four pH treatments were then compared 

with one-way ANOVA for significance at p ≤ 0.05. Correlation analysis between total 

biomass, RGR SLA, and leaf concentration of Al, Ca, P, N, and Fe were conducted to 
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determine the effects of leaf elemental status on plant growth.  Regression analysis 

analyzed the relationship between the plant growth parameters and N concentration in the 

leaves. Regression analysis examined the relationship between RGR and its determinants. 

All analyses were performed with SAS Version 9.2 software (SAS Institute 2009). 

 

3.3 Results 

 A significant effect of soil pH was visible on L. microphyllum growth, nutrient 

uptake, and degree of mycorrhizal colonization in its roots, despite the small sample size 

(n=6) and short duration (60 days) of this experiment (Fig. 3.1a & b, Table 3.2, Fig. 3.2).  

Relative growth rate and biomass allocation patterns were significantly different among 

the pH treatments (Fig. 3.1b). The growth of L. microphyllum was significantly greater in 

pH 5.5 and 6.5 compared to the strongly acidic and alkaline soils (Fig. 3.3). Total final 

plant mass was greatest in plants grown in soil with pH 5.5 and 6.5 and these were more 

than twice the biomass of plants grown in pH 8.0 (Fig. 3.1a). Correspondingly, this 

significant pattern was found for RGR, which increased with increasing soil pH from 4.5 

to 5.5,  remained unchanged at 6.5,  and gradually declined with increasing soil pH, with 

lowest RGR at soil pH 8.0 (Fig. 3.1b).  

 Surprisingly, biomass allocation to the above ground parts was not influenced by 

soil pH (data not shown).  There was, however, significant difference in biomass 

allocation to the belowground parts. Plants growing in soil pH 4.5 had significantly  
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Figure 0.1 Mean (±SE) final biomass (a); mean (±SE) relative growth rate (RGR) (b); 
mean (±SE) root mass ratio (RMR) (c) and mean (±SE) rhizome mass ratio (RhiMR) (d), 
measured at the end of 60 days in four different soil pH levels. Similar letters represent 
no significant difference at P < 0.05. 

a b 
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higher biomass allocation to the roots compared to the other plants (Fig. 3.1c), while 

plants grown in soil pH 4.5 had significantly lower biomass allocation to the rhizomes 

compared the plants grown in soil pH 5.5 and 6.5, though not significantly different from 

pH 7.5 and 8.0. Plants in soil pH 5.5 and 6.5 had significantly higher SLA than the other 

plants (Fig. 3.3). The influence of soil pH also was strongly reflected in the 

photosynthetic rates, which showed the same response as SLA. In other words, plants 

grown in pH 5.5 and 6.5 had significantly higher area based photosynthetic rates than 

plants grown in lower or higher pH soils, but there were no significant differences among 

the remaining three treatments (Fig. 3.4a).  As a result of higher SLA and area based 

photosynthesis, mass based photosynthesis was also higher in plants grown in pH 5.5 and 

6.5 (Fig. 3.4b). 

  

3.3.1 Element concentration and uptake 

Soil pH significantly affected the concentrations of Al, Ca, Fe, and N in the leaf 

tissue of L. microphyllum (Table 3.2), while it did not have any influence on the leaf 

concentration of P, K, Mg, Mn, and Zn. Plants grown in soil pH 4.5 had significantly 

higher concentration of Al and Fe and significantly lower concentrations of N. Similarly 

plants grown in pH 8.0 had significantly high concentration of Ca. There was a strong 

relationship between biomass (p<0.0001), RGR (p<0.0001), SLA (p<0.0001) 

photosynthesis (p<0.0001)) and RhiMR (p<0.0001) and leaf concentration of N when all 

the treatments were pooled (Fig. 3.5). However, there were no significant correlations 

between the plant growth parameters and leaf concentration of Al, Ca, Fe, Mg, Mn, P, 

and Zn. 



 
 

Table 0.2 Effect of soil pH on element concentration (mean ± std. dev.) in the leaf tissue of L. microphyllum 

Element 
Concentration mg g-1 

 
pH 4.5 pH 5.5 pH 6.5 pH 7.5 pH 8.5 

Al 0.19 ± 0.02a 0.14 ± 0.01b 0.14 ± 0.03b 0.12 ± 0.02b 0.13 ± 0.02b 

Ca 5.44 ± 0.40a 5.53 ± 0.33 a 5.53 ± 0.99a 5.52 ± 0.48a 7.01 ± 0.5 b 

Fe 0.18 ± 0.05a 0.15 ± 0.03ab 0.12 ± 0.01b 0.13 ± 0.02b 0.13 ± 0.01b 

K 22.01 ± 2.1a 21.75 ± 4.56a 21.1 ± 4.9a 21.16 ± 4.39a 23.9 ± 3.0a 

Mg 2.05 ± 0.29a 2.08 ± 0.45a 2.13 ± 0.4a 1.98 ± 0.14a 2.12 ± 0.29a 

Mn 0.11 ± 0.01a 0.10 ± 0.01a 0.09 ± 0.05a 0.08 ± 0.01a 0.08 ± 0.01a 

P 3.72 ± 0.30a 4.25 ± 0.53a 3.73 ± 0.85a 3.78 ± 0.54a 3.46 ± 0.28a 

N 
1.94 ± 0.32a 3.34 ± 0.31b 3.35 ± 0.26b 2.83 ± 0.18c 1.99 ± 0.23a 

Zn 
0.09 ± 0.01a 0.09 ± 0.01a 0.07 ± 0.02a 0.07 ± 0.01a 0.08 ± 0.02a 

Values in a row followed by the same letter are not significantly different at p ≤ 0.05. 

 

 



 
 

Table 0.2 Comparison of the topsoil characteristics (means with standard deviations in parentheses) at the three sites with and 
without L. microphyllum. 

Site 
 

Al 

(mg/g) 

C 

(%) 

Ca 

(mg/g) 

N 

(%) 

P 

(mg/g) 

Zn 

(µg/g) 

OM  

(%) 

pH 

(H2O) 

TBC 

 

TFC 

 

Central FL Native 
2.62 

(0.64) 

2.18 

(0.50) 

0.68 

(0.34) 

0.04 

(0.11) 

0.67 

(0.10) 

21.46 

(9.94) 

5.18 

(0.80) 

4.95 

(0.45) 

152.5 

(16.42) 

61.16 

(9.82) 

 
Invasive 

5.07 

(0.68) 

4.03 

(0.84) 

0.41 

(0.13) 

0.195 

(0.27) 

1.03 

(0.26) 

15.93 

(8.25) 

8.65 

(1.09) 

5.78 

(0.12) 

138.33 

(10.78) 

88.83 

(3.31) 

 
P Levela ** ** * ns ** ns ** ** ns ** 

Jonathan 

Dickinson 
Native 

0.43 

(0.07) 

3.13 

(1.10) 

1.19 

(0.21) 

0.26 

(0.08) 

1.02 

(0.06) 

7.24 

(1.26) 

1.08 

(0.41) 

6.36 

(0.09) 

57.33 

(7.25) 

33.5 

(4.84) 

 
Invasive 

0.93 

(0.30) 

7.02 

(1.88) 

3.35 

(1.77) 

0.44 

(0.12) 

1.15 

(0.09) 

8.77 

(1.86) 

4.32 

(0.90) 

6.57 

(0.1) 

39 

(4.28) 

46.66 

(7.76) 

 
P Levela * ** * ** * ns ** * ** * 

Tree Tops Native 
1.62 

(0.14) 

16.55 

(3.02) 

9.11 

(1.15) 

1.31 

(0.40) 

1.11 

(0.04) 

17.48 

(5.17) 

36.75 

(0.10) 

5.54 

(0.04) 

282.5 

(11.07) 

51.66 

(5.68) 

 
Invasive 

1.88 

(0.25) 

22.43 

(4.15) 

17.21 

(6.30) 

1.27 

(0.17) 

1.22 

(0.16) 

23.21 

(4.53) 

44.42 

(2.71) 

5.60 

(0.06) 

143.66 

(13) 

73.83 

(12.27) 

 
P Levela * * * ns ns * ** ns *** ** 

a Significance for paired t-test,  ns:  not significant; Probability levels: *: P<0.05; ** P<0.01; ***P<0.0001. 
OM: soil organic matter; TBC: total bacterial count (count x 107); TFC: total fungal count (count x 103).   
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Table 0.3 Results of two-way analyses of variance (ANOVA) with degree of freedom (DF), F-value and probability levels for the 
effects of site, plant type and the interaction of the two on the soil characteristics. 

Source DF Al C Ca Cu Fe K Mg Mn N P OM Zn pH 

Site 2 
195.3 179.89 75.91 46.87 19.5 10.09 28.59 3.47 99.65 16.78 2132.23 14.73 102.88 
*** *** *** *** *** *** *** * *** *** *** *** *** 

Plant 1 
65.24 25.33 13.52 0.14 2.55 14.74 12.16 2.54 1.9 19.04 85.22 0.08 30.13 
*** *** ** ns ns *** ** ns ns *** *** ns *** 

Site × 
Plant 

2 
27.05 2.29 7.53 0.52 0.55 0.83 4.19 3.31 0.94 2.8 7.68 2.66 12.29 
*** ns ** ns ns ns * ns ns ns ** ns *** 

 

 

 

 

 

 

Probability levels: *: P<0.05; ** P<0.01; ***P<0.0001.OM: soil organic matter; TBC: total bacterial count; TFC: total 
fungal count.   

 

Source DF TBC TFC 
Site 2 660.62 

*** 
60.40 
*** 

Plant 1 235.15 
*** 

63.65 
*** 

Site X 
Plant 

2 120.48 
*** 

2.58 
ns 
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3.3.2 Mycorrhizal colonization 

As expected, soil pH also had a significant effect on the degree of mycorrhizal 

colonization (Fig. 2). The degree of colonization was highest at pH 5.5 with no 

significant difference at pH 6.5 and 7.5, while the degree of colonization was 

significantly lower at both pH 4.5 and pH 8.0. There was no significant difference in the 

mycorrhizal structures such as vesicles, arbuscules, and hyphae among the four soil pH 

levels (data not shown).  

When the pH treatments were analyzed independently there was no strong 

correlation between the root colonization by mycorrhizal fungi and plant growth 

parameters or the leaf concentration of elements. However when the samples were pooled 

there was a strong correlation between the degree of mycorrhizal colonization and plant 

growth parameters as well as the leaf element status (Table 3.3). Additionally, there was 

a significant correlation between the degree of mycorrhizal colonization and element 

uptake by L. microphyllum.  
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Figure 0.2 Mean value (± SE) of degree of mycorrhizal colonization at different pH 
levels. Similar letters represent no significant difference at p ≤ 0.05. 

Table 0.3 Correlation coefficients of plant growth parameters and leaf element 
concentration with the degree of mycorrhizal colonization. 

Parameter 
Pearson Correlation 

Coefficients 
P value 

Biomass 0.64 0.0002 

RGR 0.65 <.0001 

SLA 0.67 <.0001 

RhiMR 0.78 <.0001 

RMR -0.65 0.0001 

Photosynthesis 0.64 0.0001 

Al -0.43 0.0191 

Fe -0.45 0.0136 

N 0.87 <.0001 
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Figure 0.3 Mean (±SE) value specific leaf area (SLA) at different pH levels. Similar 
letters represent no significant difference at p ≤ 0.05. 

 
Figure 0.4 Mean (±SE) value of area based photosynthesis (a), mass based photosynthesis 
(b) at different pH levels. Similar letters represent no significant difference at p ≤ 0.05. 
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Figure 0.5 Linear regression of leaf nitrogen concentration and (a) total biomass, (b) 
specific leaf area (SLA); (c) relative growth rate (RGR); (d) area based photosynthesis  
(µmol m-2s-1) 
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3.4 Discussion 

Different soil pH levels were selected to include a wide range of soil pH where L. 

microphyllum has been reported to grow in its native range in Australia and the invaded 

regions in Florida. At soil pH 4.5 and 8.0 the plants were noticeably smaller and grew 

less vigorously compared to the other treatments. Soil pH 5.5 and 6.5 provided the most 

favorable conditions for the nutrient uptake, growth and biomass accumulation. This 

result was expected for L. microphyllum because extensive growth occurs in slightly 

acidic soils of Florida. Few other ferns in Florida have also been reported to prefer soil 

pH close to 6.0; field study by Van Loan (2006) showed that Lygodium japonicum, 

another pest plant species in Florida, was present in sites with soil pH 6.0. Similarly, 

Mathur (1980) reported that the fern Rumohra adiantiformis requires soil pH between 5.5 

and 6.0 for optimal growth. However, as opposed to my expectation the plants grown in 

alkaline soils survived, maintained a fair growth rate and produced fertile fronds.   

 Past research has shown that invasive species have a higher tolerance to low soil 

pH and have superior ability to assimilate nutrients (Thompson et al. 1987; Emery and 

Perry 1995). In its native range in Australia, L. microphyllum grows in highly acidic soils 

(soil pH range 3.9-4.7) (Chapter 2), this adaptive capability of L. microphyllum to acidic 

soils was visible in my study. Contrary to my expectation plants grown in soil pH 8.0 

maintained a fair growth rate, but the decline in the RGR was visible with the increasing 

soil pH thus further increasing the soil pH could provide a desired outcome, although its 

potential negative impact on native flora (both plants and microorganisms) would need to 

be assessed. The high RGR of plants grown in soil pH 5.5 and 6.5 plants corresponded to 

the higher mass-based photosynthesis, which resulted from the increased SLA as well as 
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area-based photosynthesis. My results indicate that variation in RGR was explained by 

the variation in photosynthetic capacity of L. microphyllum and SLA.  

 My results show that the biomass allocation to the belowground structures was 

different across the different pH treatments. An unexpected result was that plants grown 

in strongly acidic soils allocated the highest biomass to the roots compared to the other 

plants at the cost of biomass allocation to the rhizomes. The higher biomass allocation to 

the roots in acidic soils contradict the common assumption that Al toxicity in acidic soil 

causes a significant reduction in root growth by inhibiting cell division in the root apical 

meristem (Farid 1991; Ryan et al. 1993; Crawford & Wilkens 1998) resulting in reduced 

water and nutrient uptake. Abhramhamsen (1983) suggested that certain plant species 

have the ability to translocate the Al absorbed from roots to other parts of plant to avoid 

Al toxicity, element concentration in the roots were not measured in my study but this 

may be one explanation for the extensive root growth in the plants in soil pH 4.5 and 

would need to be substantiated in future research. Additionally, there is a possibility of 

root exudates secretion by L. microphyllum as a defense mechanism to Al toxicity. The 

ability to avoid Al toxicity in acidic soils could in part explain the extensive growth of L. 

microphyllum in the sand mine spoils with toxic levels of Al and Fe in central Florida 

(Soti, pers. obser.). The pH of soil in direct contact with the roots was not possible to 

measure without disturbing the plants so I do not know if the L. microphyllum plants had 

any influence on the soil in direct contact with the roots. 

 Another possibility is that extensive root growth is necessary for the acquisition of 

water and nutrients for plants; in my study water was not a limiting factor, but nutrients 

could have been limiting resource for plants growing in acidic soil. Schindelbeck and 
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Riha (1988) and Kidd & Proctor (2001), have found that decrease in soil pH caused an 

increased biomass allocation to roots; Bates et al. (2002) found that when the soil pH was 

lower than 4.4 the root: shoot ratio increased in Vitis labruscana L. plants. Phenotypic 

plasticity is one of the key characteristic of invasive plants which allows them to adapt to 

a wide range of habitat types (Claridge & Franklin, 2002). Previous studies have shown 

that L. microphyllum is extremely plastic in its ability to respond to myriad environmental 

conditions, including plasticity in reproduction, physiology, allocation, and morphology 

(see: Lott et al. 2003, Gandiaga et al. 2009, Volin et al. 2004, 2010 and 2013). In the 

present study, my results show that L. microphyllum adapts to low nutrient conditions in 

acidic soil by increasing biomass allocation to the roots. Phenotypic plasticity in response 

to environmental conditions has been reported in Melaleuca quinquenervia, a flowering 

tree which shares habitat with L. microphyllum in its native range in Australia and is 

invasive in most of the regions in south Florida, where 97% of its variation was 

accounted for soil pH (Kaufman & Smouse, 2001).  

Soil pH had a significant effect on the element uptake by L. microphyllum. Higher 

concentration of Al in the leaves of plants growing in acidic soils did not substantially 

alter the growth parameters of L. microphyllum. It is reported that Al and Mn toxicity 

occur in soil when the pH is below 4.8 (Slattery et al. 1999), but L, microphyllum plants 

grown in strongly acidic soils did not show any sign of toxicity. Marschner (1995) 

suggested that N acts as growth regulator itself and is tied into plant growth allocation by 

direct involvement with plant growth regulators as well. In my study, the major element 

influencing plant growth was N.  Its concentration was significantly higher in the plants 

grown in soil pH 5.5 and 6.5, and strongly correlated with the RGR, photosynthesis, 
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RhiMR, and SLA. A positive correlation between leaf N concentration and RGR, SLA, 

and photosynthetic capacity have reported for a wide range of plants (Poorter et al. 1990; 

Grime, 1991; Poorter and Bergkotte 1992; Reich et al. 1994; Nielsen et al. 1996; 

Cornelissen et al. 1997; Reich et al. 1998). Phosphorus is reported to form insoluble 

compounds under high soil pH conditions, causing P deficiency in plants (Shen et al. 

2011).  In my study there was no significant difference in the leaf concentration of P 

among the various soil pH treatments; this could have been in part influenced by 

arbuscular mycorrhizal fungi (AMF). Root colonization by AMF colonization is reported 

to be most positive when the soil is P-limited (Hoeksema et al. 2010), but in my study the 

plants were not limited by nutrients. However, AMF did have a significant effect on the P 

accumulation in the leaves of L. microphyllum.  

 L. microphyllum is reported to have most of the traits of an aggressive invader, 

including its reproductive characteristics, and its lack of a significant pathogens or 

herbivores in its introduced range. My results show that L. microphyllum can maintain a 

fair growth rate over a wide range of soil pH, indicating a continuing threat to most 

uninvaded sites. Soil pH levels 5.5- 6.5 were optimal for rapid growth and biomass 

accumulation.  

Burning and application of herbicides are the most commonly used methods to 

control L. microphyllum. Loveless (1959) found that burning raises the soil pH in tree 

islands of the northern Everglades. Furthermore, the fate of the chemical herbicides used 

to control L. microphyllum and other exotic invasive species depends upon soil pH. I 

found that increasing soil pH from highly acidic to near-neutral pH provides a more 

favorable condition for L. microphyllum growth. Prescribed burning, which causes a 
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temporary increase in soil pH, is a widely used method to control L. microphyllum, but 

my study shows that L. microphyllum could be benefitting from the slight increase in soil 

pH resulting from fire as well as the release of nutrients that are associated with burning. 

In my study, L. microphyllum had highest growth at neutral soil pH and began to show a 

significant decrease at a soil pH of 8.0, likely further growth reductions would happen in 

even more alkaline soils. Thus, raising soil pH may be a possible management option to 

explore in the future, but increasing the soil pH would need to be studied carefully for its 

potential adverse effects to native flora as well, including both native plants and soil 

microorganisms. 
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Abstract 

 Invasion by exotic species threatens ecosystems not only by competing with 

native species for resources, but also by having a substantial impact on the structure, 

function, and composition of the belowground ecosystem by modifying the physical, 

chemical, and biological properties of the soil. Old World climbing fern (Lygodium 

microphyllum) is one of the worst non-native plant species and has become a serious 

threat to the greater Everglades ecosystem of south Florida. In the present study, I 

analyzed the effects of Old World climbing fern on surface soil characteristics at invaded 

sites in Florida. I compared soil characteristics of six invaded and adjacent uninvaded 

plots at three different locations. My results show that the fern can grow and thrive in a 

wide range of soil types and the impact on the soil was site specific with effects being 

more prominent in sites with low nutrient status. Additionally, there were significant 

differences in the soil nutrient status and microbial population in the invaded and 

uninvaded sites. Sites with Old World climbing fern had significantly higher nutrient 

concentrations that correlated with higher soil organic matter. Overall my results indicate 

that this exotic pest plant can alter its belowground environment to its own benefit by 

enhancing the soil nutrient status by adding soil organic matter. 
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Nomenclature: Old World climbing fern, Lygodium microphyllum 

Key words: invasive plants, nutrient cycle, pH, soil organic matter 

 
4.1 Introduction 

 Invasion by exotic invasive plants has a substantial impact on the structure, 

function, and composition of the native communities (Evans et al. 2001; Ehrenfeld 2003; 

Rice and Emery 2003; Vila et al. 2011). Existing literature provides evidence that 

invasive plant species can modify physical, chemical, and biological properties of the soil 

including inputs and cycling of nutrients (Ehrenfeld 2003; Hawkes et al. 2005; Sperry et 

al. 2006), soil pH (Kourtev et al. 2003), soil organic matter and aggregation (Saggar et al. 

1999). Invasive plants also modify the biotic composition of the soil by affecting the soil 

food web (Duda et al. 2003), total microbial communities (Kourtev et al. 2003), and 

fungal communities (Hawkes et al. 2006). Some invasive plants are also reported to 

exude allelochemicals which could inhibit soil borne pathogens, defend against disease, 

and repel insects (Yuan et al. 2012; and references there in). However, the documented 

impacts of invasive species on soil characteristics are diverse. While most of the studies 

have reported increased soil nutrient stock in invaded sites compared to non-invaded sites 

creating a positive feedback benefiting invasive species (Duda et al. 2003; Vanderhoeven 

et al. 2005; Liao et al. 2008; Perkins 2011), some other studies have shown negative 

feedback (Ley and D’Antonio 1998; Mack and D’Antonio 1998; Leary et al. 2006). A 

meta-analysis of litter decomposition rates by Liao et al. (2008) showed that the litter 

decomposition rate of the invasive plants was on average, 117% faster than the co-

occurring native species. However, Ehrenfeld (2010) demonstrated slower rates of leaf 
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decay in exotic species compared with the native plant species. The species-specific 

variation was attributed to be the most important factor in determining the decomposition 

rates (Hoorens et al. 2003), as each plant species has a unique biochemical composition, 

including the nitrogen concentration and carbon-to-nitrogen ratio. Gordon (1998) in her 

meta-analysis has shown that out of 31 species considered most invasive, 12–20 (39–

64%) potentially alter the ecosystem properties of geomorphology, hydrology, 

biogeochemistry, and disturbance in Florida.  

 Lygodium microphyllum (Old World Climbing Fern) is a highly invasive species 

distributed throughout the freshwater and moist habitats of south Florida. It is common in 

cypress swamp, pine flatlands, wet prairies, sawgrass marshes, mangrove communities, 

and Everglades tree islands (Pemberton and Ferriter, 1998). Once established, L. 

microphyllum dominates both understory and overstory native wetland habitats. It has the 

ability to grow in varying hydrological (Gandiaga et al. 2009), nutrient (Volin et al. 

2010), soil pH (Chapter 2), and light gradients (Volin et al. 2004). Results from Chapter 2 

also show that L. microphyllum is highly dependent on mycorrhizal fungi for growth and 

phosphorus uptake; thus, fungi could highly enhance its invasiveness. According to an 

estimate by (Ferriter and Pernas 2006),	
   L. microphyllum covers 183,080 acres in the 

entire South/Central Florida region. Managing L. microphyllum has been a significant 

challenge for land resource managers and researchers as a consequence of its extensive 

rapid invasion in natural areas of south Florida.  

 Aboveground changes caused by L. microphyllum in south Florida natural areas 

are obvious and have remained the focus of land managers and researchers, but 

belowground changes caused by the plant-soil feedback have not gained much research 
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interest so far.   However, for the management of this exotic invasive and restoration of 

invaded sites, it is essential to understand the direct and indirect impacts of L. 

microphyllum on soil processes and how these changes can influence the successful 

management of invaded areas. If L. microphyllum can successfully modify soil processes 

such as nutrient cycling, litter decomposition, and soil microbial communities, simply 

removing it may not be an effective management strategy. Furthermore, it is necessary to 

assess the effects of soil modification by L. microphyllum on the invasability of plant 

communities, whether this modification facilitates other invasive species and if it has a 

negative impact on the native species. The aim of the present is to obtain baseline 

information on how L. microphyllum alters the physical, chemical, and microbial 

characteristics of the invaded sites, which would help to better understand and interpret 

effects of soil additives to control this pest plant species. I compared an invaded and a 

nearby non-invaded site to examine the impacts of L. microphyllum invasion on the 

topsoil chemistry and microbial populations at three sites with different soil 

characteristics.  

 

4.2 Methods 

4.2.1 Sampling sites 

 Two sites in south Florida were selected for the comparison of soil characteristics: 

Tree Tops Park (Broward County) and Jonathan Dickinson Park (Martin County), and 

one site in central Florida, the Trustcorp/Tiedtke property (Lake County). These sites 

were paired to include one plot with L. microphyllum and another with native plants. The 

sites were selected on the basis of the following criteria: 1) a well-established 
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monospecific population; 2) sites that had not undergone any management activities for 

at least the last five years; 3) homogeneous soil type under both the native and invasive 

plants; and 4) adjacent plots with native plants. Site location and dominant vegetation in 

the sampling sites are given in Table 4.1. 

 

Table 0.1 Site locations, vegetation, and site type. 

  

Site Coordinates Dominant species in the 

invaded sites 

Site Type 

Tree Tops 

Park 

26° 4'0.04"N, 

80° 16' 5.88"W 

Chrysobalanus icaco, Osmunda 

regalis var. spectabilis, Annona 

glabra 

County Park, 

disturbed 

habitat 

Jonathan 

Dickinson 

27°0’37.33”N, 

80°7’20.28”W 

Pinus elliottii,  Myrica cerifera, 

Ilex cassine, Serenoa repens 

State Park, 

undisturbed 

habitat 

Central 

Florida 

28° 23' 4.03" N,  

81° 44' 41.30" W 

Pinus elliottii,  Quercus 

geminata, Quercus nigra,  

Serenoa repens 

Private 

property, sand 

mine spoil 
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4.2.2 Soil sampling and analysis 

	
   At each sampling site, six 1 m × 1 m plots were selected randomly and soil from 

the 10-15 cm deep zone was collected from each of the four corners  and the center of 

each plot with a soil corer (ø 18 mm) and mixed homogeneously into one bulk sample for 

each plot. The soil samples from south Florida were transported to the laboratory in a 

cooler and the samples from central Florida were cooled to 4oC and shipped overnight. A 

portion of the soil samples from all sites were stored in a 4oC refrigerator until analysis 

for biological measurements. A small portion of each soil sample was air dried and 

passed through a 2 mm sieve for analysis of physicochemical properties. Those 

subsamples were then ground to fine powder with a mortar and pestle, and stored at room 

temperature in air-tight containers for further analysis of nutrients and trace elements. 

The soil pH was measured with a pH meter, (soil: solution ratio 1:2 in water), texture was 

measured by the hydrometer method, and total organic matter was measured based on the 

standard loss-on-ignition method (500oC, 5 hours; Storer 1984). Total C and N were 

measured with a Truspec CN analyzer. Total Ca, Fe, Al, Mg, K, Mn, and P were 

measured with an ICP–MS at USDA, ARS Laboratory, Homestead, Florida after 

following the acid digestion Method 3050 (USEPA 1996). One gram of each finely 

ground soil sample was transferred to a large glass tube and mixed with 10 ml of 30% 

HNO3. The tubes were covered with a vapor recovery system and heated to 95±5oC and 

refluxed for 10 minutes without boiling under the hood in a heating block maintained 

with a Partlow Mic 6000 Profile Process Controller.  After cooling to 40oC, 5 ml of 

concentrated HNO3 was added and the sample was heated again until no brown fumes 

were given off. After cooling to 40oC, 2 ml of DI water and 3 ml of 30% H2O2 was added 
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to each tube and heated until the effervescence subsided. The samples were cooled and 

diluted to 50 ml with DI water, centrifuged at 2000 rpm for 10 minutes and filtered with 

Whatman No. 41 filter paper.  

 The total colony-forming-units (CFU) of bacteria and fungi were determined by 

the standard dilution spread plate method as described by Seely and VanDemark (1981). 

The dry equivalent of one gram soil was mixed in 9 ml sterile water (autoclaved) and was 

diluted serially. Samples were vigorously mixed during dilution to assist in dislodging the 

bacteria from the soil particles. A serial dilution of 10-2, 10-3, 10-4, and 10-5 was made for 

fungi and 10-4, 10-5, 10-6, and 10-7 for bacteria. A total of 100 µl of diluted soil suspension 

was spread on three plates per soil sample for both bacteria and fungi at each dilution 

level. Nutrient agar containing cycloheximide solution (to prevent fungal growth) was 

used for bacteria and Rose Bengal Agar (RBA) with streptomycine sulphate (to prevent 

bacteria growth) was used for the estimation of fungal colonization. Sterilized water was 

spread on the agar plates that were used as controls.  

 

4.2.3 Data Analysis 

Differences in soil characteristics between the invaded and uninvaded plots were 

compared by means of paired t-tests.  Additionally, a two-way ANOVA was done with 

site and vegetation type (invaded and uninvaded) as the fixed main effects for selected 

soil parameters. Pearson’s correlation analysis was done with all sites pooled to 

determine relationships between the measured soil variables. Differences are reported as 

significant for tests with P-values ≤ 0.05. All the parameters were analyzed with SAS 

Version 9.2 software. 
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4.3 Results and Discussion 

Despite increasing evidence for positive feedback between the exotic invasive 

species and soil, along with the ongoing challenges in successful management of exotic 

species in the south Florida Everglades, there are very few studies quantifying the 

impacts of exotic invasive species on ecosystem processes (See Gordon, 1998). The goal 

of this paper is to determine the soil factors influenced by L. microphyllum and to test 

whether the competitive advantage of L. microphyllum was due in part to nutrient 

sequestration and soil factors that might contribute to the suppression of native plant 

species. I compared soil from three different sites with contrasting soil characteristics and 

land use history; thus, the differences observed in soil measured soil parameters among 

these sites are in large part explained by this.  

 There was a clear contrast between the rhizosphere soils from the three sites 

(Table 4. 2; Table 4.3). All the study sites were acidic (soil pH 4.95-6.36), but the sites in 

central Florida and at Tree Tops Park had lower soil pH compared to the sites at Jonathan 

Dickinson Park.  Likewise, the soil texture differed among the sites; Jonathan Dickinson 

sites had sandy soils, while the soils in central Florida were clayey, and the soil at Tree
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Tops Park was sandy loam. Soil organic matter was highest at Tree Tops Park and was 

lowest at Jonathan Dickinson Park.  

 Impacts on the nutrient cycling process are considered the most prominent effects 

of invasive species in the ecosystem. In my study, several soil characteristics were 

significantly different between the invaded plots and non-invaded plots in all three 

sampling sites. Most notably, there were significant differences in the total soil Al, C, Ca, 

and OM% at all three sites (Table 4.2). At all the sites, soils invaded by L. microphyllum 

had higher concentrations of Al, Ca, C and organic matter. Differences in the 

concentrations of N, P, Zn, and pH were site-specific. Soils under native vegetation were 

generally more acidic; this was statistically significant at the central Florida and Jonathan 

Dickinson sites but was not statistically significant at the Tree Tops Park site. This 

indicates that the effect of L. microphyllum on soil characteristics is site-specific and 

depends on existing soil conditions. There was no significant difference in the Cu, Fe, K, 

Mg, and Mn concentrations under native vegetation and L. microphyllum at all the three 

sites (data not shown).  

 Plant species can change the soil microbial community structure and function 

with varying amount and quality of litter deposition (Ehrenfeld 2003; Kurtev et al. 2002), 

which, in turn, could influence the soil nutrient concentration under the native and 

invasive species. The bacteria population was significantly higher under the native 

species compared to L. microphyllum in two sites; the difference was not statistically 

significant at the central Florida site. On the other hand, the fungal population was 

significantly higher under L. microphyllum compared to the native plants at all three sites 

(Table 2). Further analysis on the type of microbes and the role of allelochemicals, which 
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are reported to be an important determinant for invasive success of exotic plants (Bais et 

al. 2003), in regulating the soil microbial community structure is necessary, but my 

results provide some evidence that L. microphyllum could regulate the structure of soil 

microbial communities in its rhizosphere.  

 My results corroborate the results of Ehernfield (2003) and Callaway et al. (2004), 

where invasive plants enhance productivity and nutrient availability in invaded soils via 

an abundant litter deposition thus increasing their own success. Soil organic matter was 

strongly correlated to the available soil nutrients (Table 4.4) which indicates that the 

difference in the organic matter inputs to the soil under the natives and L. microphyllum 

could influence the difference in the nutrient availability. The most significant effects on 

soil characteristics were seen at sites with the lowest nutrient concentrations (Table 4.2). 

Additionally, the site effect was highly significant for all the soil parameters analyzed, 

indicating that L. microphyllum can adapt to and thrive in sites with a significant 

variation in nutrients as well as other soil characteristics. 



 
 

Table 0.4 Pearson’s correlation coefficients between the selected soil parameters with all sites pooled. 

 

 Al C Ca N OM P Zn pH TBC TFC 

Al -          

C -0.171 
ns 

-         

Ca -0.173 
ns 

0.892 
*** 

- 
 

       

N -0.241 
ns 

0.894 
*** 

0.792 
*** 

- 
 

      

OM -0.030 
* 

0.928 
*** 

0.874 
*** 

0.875 
*** 

- 
 

     

P -0.099 
ns 

0.542 
** 

0.571 
** 

0.524 
** 

0.433 
** 

- 
 

    

Zn 0.255 
ns 

0.389 
* 

0.447 
** 

0.325 
ns 

0.470 
** 

-0.151 
ns 

- 
 

   

pH -0.385 
* 

-0.127 
ns 

-0.142 
ns 

-0.069 
ns 

-0.321 
ns 

0.457 
** 

-0.716 
*** 

- 
 

  

TBC 0.254 
ns 

0.463 
** 

0.339 
* 

0.533 
** 

0.651 
*** 

-0.057 
ns 

0.469 
** 

-0.632 
*** 

- 
 

 

TFC 0.776 
*** 

0.190 
ns 

0.135 
ns 

0.029 
ns 

0.270 
ns 

-0.035 
ns 

0.524 
** 

-0.432 
** 

0.255 
ns 

- 
 

Probability levels: *: P<0.05; ** P<0.01; ***P<0.0001. Coefficients higher than 0.75 are in bold. 
       OM: soil organic matter; TBC: total bacterial count; TFC: total fungal count  
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Overall, my results show increased mineral nutrient concentrations in the 

rhizosphere of L. microphyllum compared to the rhizosphere of adjacent native species. 

These results follow the general trend reported by various researchers, where the nutrient 

pools in the invasive species rhizosphere are significantly increased compared to the 

coexisting natives (Duda et al. 2003; Vanderhoven 2005; Dassonville et al. 2008; Liao et 

al. 2008; Perkins 2011).   This effect was most evident at sites with lowest nutrient 

concentration. As reported by Ehrenfeld (2003) and Liao et al. (2008), this may be the 

direct effect of increased amounts of C and N added to the soil with higher litter input. 

Dassonville et al.  (2008), have reported an opposite impact of invasive species in 

nutrient-poor versus nutrient-rich sites. Although any pre-existing differences in the plots 

with and without L. microphyllum cannot be disregarded with complete certainty, I 

believe that the differences in the soil characteristics between the invaded and uninvaded 

plots could be the result of difference in plant species in them. L. microphyllum invasion 

is still expanding and pre- and post invasion comparison could provide a better insight. 

Successful management of habitats invaded by exotic plant species requires a prior 

knowledge of whether the invaders have significantly altered the ecosystem (Walker and 

Smith 1997) because soil properties such as texture, pH, and organic matter content 

influence herbicide efficiency and therefore control success. Along with the added 

organic matter, nutrients, and changes in the pH of the soil, other specific ecosystem 

process as outlined by Gordon (1998) could also be influenced by various exotic invasive 

species that create positive feedback for themselves and future invaders. Additionally, 

mechanisms such as production of allelochemicals, and changes in the microbial 



78 
 

communities merit future research to achieve successful control of L. microphyllum and 

other exotic invasive species in the Everglades. 
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INFLUENCE OF SOIL BIOGEOCHEMICAL PROPERTIES ON EXOTIC 
INVASIVE LYGODIUM MICROPHYLLUM: A CROSS CONTINENT 

COMPARISON OF SOIL CHARACTERISTICS TO INVASION SUCCESS  
  

 
Abstract 

    With the influence in the plant’s ability to extract water and nutrients, soil 

characteristics play an important role in the distribution of plant species. The objective of 

this research was to analyze the soil characteristics associated with exotic invasive, 

Lygodium microphyllum, in its native range in Australia and the recipient habitat in south 

Florida. Rhizosphere soil samples from both the continents were analyzed for the soil 

physical, chemical and biological characteristics. The results from this study indicate that 

rhizosphere soil characteristics were very different in the two regions. Likewise, leaf 

nutrient status of this plant also varied in the two continents. The composition of 

mycorrhizal fungi, which is believed to aid this plant in the recipient habitat, was also 

very different with higher diversity in the disturbed sites compared to the undisturbed 

sites.  The most important result was the Australian sites had a high concentration of 

aluminum and zinc which are phytotoxic in a highly acidic soil conditions compared to 

the Florida sites. Overall, my results indicate that L. microphyllum could be growing 

poorly in its native range in Australia because of the soil toxic effects associated with 

strong soil acidity and low foliar nitrogen concentration which in turn could affect the 

photosynthetic capacity of the plant. On the other hand, Jonathan Dickinson Park, which 

has the worst case of L. microphyllum infestation in Florida, provides a more favorable 

growth environment for this plant with well drained sandy, slightly acidic soils with low 

concentration of soil elements. This study highlights that along with the characteristics of 



82 
 

exotic plant species and native plant community, the understanding of invasive success of 

exotic plants needs the understanding of belowground community and ecology. 

Key words: soil toxicity, habitat restoration, exotic invasive species, mycorrhizal fungi. 

5.1 Introduction  

Lygodium microphyllum (Old World climbing fern) is an invasive exotic plant 

species taking over many sites in freshwater and moist habitats across southern and 

central Florida.  It is reported to have reached a “critical mass” of coverage and begun 

exponential rate of expansion, where the spread rate is higher than the management 

effort. Biannual surveys conducted by South Florida Water Management District estimate 

that this fern had doubled its coverage in just two years (FNPS 2005). Lygodium 

microphyllum does not have a high economic value in its native range, thus there is very 

little information available about its native ecology and the available information is 

mostly on its native herbivores. Very little is known about why this plant is invasive 

outside its native range (Ferriter 2001). It is reported to be found in a variety of habitats 

including freshwater creeks, perennial creeks, coastal depression wetlands, upland 

rainforests and sheltered canyons near permanent springs in its native range in Australia 

(Goolsby et al. 2003). It Asia, the fern is reported to occur in lowland rainforests in peat 

soils, coastal wetlands and in habitats dominated by wet clay soils (Goolsby et al. 2003). 

In the invaded regions of south Florida L. microphyllum displays most of the 

ecological characteristic associated with successful invasive plants (Westbrooks 1998): it 

has the ability to grow in varying hydrological (Gandiaga et al. 2009), nutrient (Volin et 

al. 2010), and light conditions (Volin et al. 2004). It produces millions of spores all year 
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round which can be transported by wind up to 30 miles; it tolerates a wide range of soil 

pH (Chapter 3); has a symbiotic relationship with arbuscular mycorrhizal fungi (AMF) 

(Chapter 2). Comparative analysis of soil samples from both its native range and invaded 

region have shown that L. microphyllum, which had adapted to close-to-neutral soils in 

Florida, grows in highly acidic soils in its native range in Australia (Chapter 2).  

Additionally the Food and Agriculture Organization (FAO) world soil distribution map 

shows the soil in the native habitats, identified by Goolsby et al. (2006), is a highly acidic 

region (Fig 5.1).  

Soil pH has complex effect on plant growth leading to the variation in the 

distribution of plant species in acidic or calcareous soils. Diekmann and Lawesson (1999) 

reported that pH is one of the major underlying variables determining the floristic 

variation within forests.  The major growth limiting factors associated with acid soil 

infertility include toxicities of aluminum and manganese, and deficiencies or low 

availability of certain essential elements including calcium, magnesium, phosphorus and 

molybdenum (Foy 1984). These factors may directly restrict plant growth or indirectly 

restrict plant growth through interference in the development and functioning of 

symbiotic associations with rhizobia, mycorrhizas and actinomycetes.  It is reported that 

Al toxicity as a result of strong acidic soils have a detrimental effect in plant growth by 

lowering rooting depth, increasing susceptibility to drought and decreased uptake of  

subsoil nutrients. Plants exposed to Al toxicity are reported to have stunted growth, small 

dark green leaves, and late maturity, the root tips and lateral roots are thickened. They 

have many stubby lateral roots but lack in fine branching, thus, inefficient in absorbing 

nutrients and water (Kochian et al. 2004, and references there in). Similarly, soil texture 
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is also an important factor influencing the distribution of minerals, organic matter and 

microbial community and other soil properties (Scott and Robert 2006). Along with soil 

pH, soil texture plays an important role in controlling the mobility of elements in the soil, 

with the mobility of metals being highest in acidic coarse-textured soils (McBride 1994). 

Likewise, soils which are sandy or better drained have extensive fine roots compared to 

clay soils. Volin et al. (2010) indicated that the growth of L. microphyllum was highest in 

sandy soils which indicate that this plant prefers well drained sandy soils. Furthermore, 

the root and rhizome growth of L. microphyllum was highest in the sandy soils of south 

Florida compared to the native Australian soils (Volin et al. unpublished data). 	
  

Most of the research on exotic invasive species is focused on the traits that 

enhance the probability such as high growth rate, short lifecycle, high levels of resource 

allocation to reproduction, and flexible utilization of available environmental resources, 

of a particular species being a successful invader in a recipient community. There are 

several studies with biogeographic comparison of invasive species in their native range 

and invaded range focusing on the impact of variable soil microbes on plant performance 

(Callaway and Aschehoug 2000; Hierro et al 2005; Vermeij et al. 2009; Volin et al. 

2010). However, there are no studies conducted comparing the soil element status and its 

effect on plant growth in the native and recipient habitat.  

 I conducted a cross continent comparison of soil characteristics associated with L. 

microphyllum. Here, I present evidence that the invasion by L. microphyllum in south 

Florida is not only facilitated by the soil microbial community but also by the soil 

chemical characteristics.  In this paper I suggest that invasive plants not only escape from 

their natural herbivores but also the toxic soil environment in their native habitats.	
  	
   



 
 

 

Figure 0 1World soil pH map data source ISRIC-Wise world dataset  
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5.2 Methods 

5.2.1 Sites and sample collection 

 I compared soil samples collected from three different sites in Australia, where 

the plant is native, and the invaded sites in Florida. Sampling dates and site information 

are given in Table 5.1. The soil samples were collected during the dry season in both the 

continents except for the central Florida site, which was added later, because of its unique 

characteristics. At each sampling site, six 1 m × 1 m plots were selected randomly and 

soil from the 10-15 cm deep zone was collected from all four corners  and the center of 

each plot with a soil corer (diameter: 18 mm) and mixed homogeneously into one bulk 

sample for each plot. The soil samples from south Florida were transported to the 

laboratory in a cooler. Samples from Australia and central Florida were stored in 4oC and 

shipped overnight.  

 

5.2.2 Soil nutrient analysis 

 Small portion of each soil sample was air dried, passed through a 2 mm sieve for 

analysis of physicochemical properties. They were then ground to fine powder with a 

mortar and pestle, and stored at room temperature in air-tight containers for further 

analysis of nutrients and trace elements. The soil pH was measured with a pH meter, (soil 

solution ratio 1:2 in water), texture was measured by the hydrometer method, total 

organic matter was measured based on the standard loss on ignition method (500oC, 5 

hours; Storer 1984). Total C and N in soil and leaves were measured with a Truspec CN 

analyzer. Total Ca, Fe, Al, Mg, K, Mn and P in soil were measured with an ICP –MS at 

USDA, ARS Laboratory, Miami, Florida after following the acid digestion Method 
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3050B (USEPA 1996). One gram of finely ground soil samples were transferred to large 

glass tubes and mixed with 10 ml of 30% HNO3. The tubes were covered with a vapor 

recovery system and heated to 95±5oC and refluxed for 10 minutes without boiling under 

the hood in a heating block maintained with a Partlow Mic 6000 Profile Process 

Controller.   

 

Table 0.1 Sampling sites, dominant vegetation and date of sample collection for the two 
continents. 

 

 After cooling to 40oC 5 ml of concentrated HNO3 was added and the sample was 

heated again until no brown fumes were given off. After cooling to 40oC, 2 ml of DI 

Site Coordinates Dominant vegetation Sample date 

Tree Tops Park, FL, 

US 

26° 4'0.04"N, 

80° 16' 5.88"W 

Royal fern Dec, 2010 

Central Florida 

US 

28° 23' 4.03" N  

81° 44' 41.30" W 

Royal fern June 2012 

Jonathan Dickinson, 

FL, US 

27°0’37.33”N, 

80°7’20.28”W 

 

Slush pine Dec, 2010 

Daintree Ferry, 

Queensland, AU 

16°15'25.57"S, 

145°24'3.94"E 

Drynaria June, 2011 

Logan Reserve, 

Queensland, AU 

27°40'4.16"S, 

153°16'0.44"E 

Bungwall fern June, 2011 

Nudgee, 

Queensland, AU 

27°22'31.12"S, 

153° 5'39.42"E 

Melaleuca June, 2011 
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water and 3 ml of 30% H2O2 was added and heated until the effervescence subsided. The 

samples were cooled and diluted to 50 ml with DI water, centrifuged at 2000 rpm for 10 

minutes and filtered with a Whatman No. 41 filter paper.  

 

5.2.3 Microbial analysis: bacteria and fungi population 

 The total colony forming units (CFU) of bacteria and fungi was determined by the 

standard spread plate dilution method as described by Seely and VanDemark (1981). Dry 

equivalent of one gram soil was mixed in 9 ml sterile water (autoclaved) and was diluted 

serially. Samples were vigorously mixed during dilution to assist in dislodging the 

bacteria from the soil particles. A serial dilution of 10-2, 10-3, 10-4, and10-5 was made for 

fungi and 10-4, 10-5, 10-6, and 10-7 for bacteria. A total of 100 µl of diluted soil suspension 

was spread on three plates per soil sample for both bacteria and fungi at each dilution 

level. Nutrient agar containing cycloheximide solution (to prevent fugal growth) was 

used for bacteria and Rose Bengal Agar (RBA) with streptomycine sulphate (to prevent 

bacteria growth) was used for the estimation fungal colonization. Sterilized water was 

spread on the agar plates were used as control. Inoculated plates were incubated at 26oC 

for 3 days before the colonies were counted. Dilution plates with 100 to 300 colonies per 

plate were counted.   

 

5.2.4 Mycorrhizal spore identification 

 Results from previous chapters indicate that the mycorrhizal root colonization in 

L. microphyllum is significantly higher in the invaded regions compared to the native 

regions in Australia. I further identified the mycorrhizal spores in the rhizosphere soil of 
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L. microphyllum in both the regions following the wet sieving technique (Gerdemann and 

Nicolson 1963). 100 ml of DI water was added to dry equivalent of 50 g of soil from each 

site. It was then mixed vigorously to separate the spores from soil aggregates. The 

mixture was washed through a series of sieves (2 mm, 100 µm and 32 µm). Washing was 

done until the water flowing through the sieves was clear. The sievate retained on the 

sieves was washed and centrifuged with water to remove floating organic debris and the 

supernatant was discarded. The pellet in the bottom was re-suspended in a 50% sucrose 

solution, and centrifuged for one minute at 2000 RPM to separate the spores from denser 

soil components. Immediately after centrifugation, spores in the sucrose supernatant were 

rinsed in a fine sieve to remove the sucrose. The spores were then washed into a filter 

paper for vacuum filtration. The fungal spores were then mounted on slides for 

taxonomic identification to the genus level based on the spore morphology and wall 

characteristics, using the descriptions by the International Culture Collection of 

Arbuscular and Vesicular-Arbuscular Mycorrhizal Fungi (http:// invam.caf.wvu.edu). 

The genus that was dominant was taken as the representative mycorrhizal AMF type for 

each site.  
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5.2.5 Statistical analysis 

Analysis of variance (ANOVA) was done to compare the difference in the soil 

and leaf nutrient status of L. microphyllum among the different sites in the two 

continents. Linear regression with Pearson’s correlation analysis and was done with all 

sites pooled to determine relationship between the measured soil variables. Differences 

are reported as significant for tests with P-values ≤ 0.05. All the parameters were 

analyzed with SAS Version 9.2 software. 

 

5. 3 Results 

5.3.1 Soil texture 

	
   Soil texture, shown in Table 5.2, varied significantly among the different sites. 

Soil in Jonathan Dickenson was dominantly sand (98% sand),  sandy loam in Tree Tops, 

sandy clay loam in Logan, loam in Nudgee, silt loam in Daintree and clay in  Central 

Florida. 

 

5.3.2 Nutrient analysis 

My results indicate a significant variation in the soil properties in the recipient 

habitat in Florida and native range in Australia (Table 5.3). The native range in Australia 

had strong acidic soil ranging from pH = 4.1 at Nudgee to pH = 4.55 at Logan. The 

Florida sites had significantly higher soil pH ranging from 5.60 at Tree Tops Park to 6.57 

at Jonathan Dickinson Park.  Soil Al concentration was highest at the Central Florida site 

followed by Logan and Nudgee in Australia.  Soil C% and organic matter % was highest 

in Tree Tops park followed by Logan, C% was lowest in Daintree while organic matter % 
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was lowest in Jonathan Dickinson. Total Cu ranged from 43.94 µg g-1 in Daintree to 1.84 

µg g-1 in Jonathan Dickinson, there was no significant difference among the other four 

sites. Total Fe was also highest in Daintree in Australia: 15.86 mg g-1 and lowest in 

Jonathan Dickinson 0.54mg g-1.  Total K in soil was also highest in Daintree (1.77 mgg-1) 

and Logan (1.49) while there was no significant difference among the other sites. The 

Australian sites and Central Florida site had significantly lower level of N compared to 

the Tree Tops and Jonathan Dickinson sites. Total Mg in soil was highest in Logan (1.27 

mg g-1) followed by Tree Tops Park (0.68 mg g-1) and was lowest in Central Florida (0.20 

mg g-1). Total soil Mn was also highest in Daintree (0.27 mg g-1) while there was no 

significant difference among other five sites. N% in the soil was highest in Tree Tops 

(1.27%) followed by Logan (0.71%), and Jonathan Dickinson (0.49%). There was no 

significant difference in the total P level among all the sites. Logan had highest 

concentration of Zn in the soil (37.80 µg g-1) followed by Daintree (27.91 µg g-1) and 

Tree Tops (23.21 µg g-1)    

 

5.3.3 Bacteria and fungi population 

 The average counts of bacteria and fungi, colony forming units CFU per gram of 

1 g dry soil, was significantly different in all the sites (Table 5.3). The CFU of bacteria 

and fungi was influenced by soil texture. Total colony forming units of bacteria was 

highest in Daintree (288 × 107) and lowest in Jonathan Dickinson (43.83 × 107) and there 

was no significant difference in the population in the other four sites. Likewise, the total 

colony forming units of fungi was also highest in Daintree (123.5 × 103) while there was 

no significant difference among the other five sites. Correlation analysis indicated that, 
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there was no relationship between the soil organic matter, total carbon on the soil bacteria 

and fungal population, however there a strong relationship with the soil texture. There 

was a strong negative relationship between the sand content in the soil and the CFU of 

bacteria (r = -0.62; p < 0.0001) and fungi (r= -0.67; p< 0.0001) on the other hand there 

was strong positive relationship with the silt content in the soil (bacteria: r = 0.76; p< 

0.0001 and fungi: r=0.75; p<0.0001). Surprisingly the bacteria population had a negative 

relationship with the soil pH (r= -0.57; p=0.0003) while the fungi had no relationship 

with the soil pH. 

 

5.3.4 AMF spores 

 The spore composition based on the morphology was different among the six 

sampling sites. Spores of different sizes and colors were present in all sites. Highest 

morphological diversity was a seen in Tree Tops followed by Central Florida, and the 

lowest diversity was seen in Jonathan Dickinson. Glomus was found in all the locations 

but was dominant in Nudgee, Logan and central Florida; Scutellospora was dominant in 

Tree Tops, and Jonathan Dickinson; and Gigaspora in Daintree (Fig. 5.2).  
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Figure 0. 2 AMF morphotypes extracted from the rhizosphere soil of L. microphyllum in 
the two continents. Glomus sp. spore (a, e, f); Gigaspora sp.  with the bulbous 
sporangeneous cell (h, j); Scutellospora sp. showing the germination shield (b, d, g, i). 



 
 

Table 0. 2 Soil texture and mean ± standard error of the means of total colony forming units (counts × 107) of bacteria; (count × 
103) of fungi per gram of soil in the invaded and native sites. 

 

 Site Soil Texture Sand % Silt % Clay% 

 
CFU of Bacteria g-1 

soil 
 

 
CFU of Fungi  

g-1 soil 
 

Tree Tops Park, FL, 

US 
Sandy loam 78 16.5 5.5 143.66 (13.00)  73.83 (12.27) 

Central Florida 

US 
Clay 13 40 47 152.5 (16.42) 61.16 (9.82) 

Jonathan Dickinson, 

FL, US 
Sand 98 2 0 43.83 (8.13) 46.66 (7.76) 

Daintree Ferry, 

Queensland, AU 
Silt loam 25 57.5 17.5 288 (16.56) 123.5 (13.63) 

Logan Reserve, 

Queensland, AU 

Sandy clay 

loam 
67.5 20 12.5 103.83 (10.12) 50.5 (8.75) 

Nudgee, 

Queensland, AU 
Loam 50 32.5 17.5 153.5 (6.15) 49 (4.60) 



95 
 

Table 5.3 Mean (Std. Dev.) of the selected soil chemical characteristics in the native sites in Australia and invaded sites in  

Florida  

 

. 

 

 

 

 

 

 

 

 

 

 

 

Note: values in the same row followed by different letters represent significant difference at p<0.05.

Variable Central Florida (FL) Daintree (AU) Jonathan Dickinson 
 (FL) 

Logan (AU) Nudgee (AU) Tree Tops (FL) 

Al (mg g-1) 5.07 (0.61) a 2.14 (0.30)b 0.8 (0.07) c 2.55 (0.07) b 2.35 (0.11) b 1.38 (0.37)d 

C % 4.03 (0.84)a 2.70 (0.44)a 3.02 (1.88) a 12.90 (2.43)b 4.28 (1.19)a 22.43 (4.15)c 

Ca (mg g-1) 0.41 (0.13)a 0.47 (0.11)a 3.35 (1.77)a 0.43 (0.25)a 0.09 (0.01)a 17.21 (6.31)b 

Cu (µg g-1) 8.42 (2.81)a 43.94 (12.31)b 1.84 (0.54)c 10.16 (0.57)a 6.74 (1.57)a 14.76 (4.02)a 

Fe (mg g-1) 2.92 (1.78)ad 15.86 (2.96)b 0.54 (0.25)a 8.34 (1.10)c 5.38 (1.86)ac 4.46 (1.91)d 

K (mg g-1) 0.16 (0.10)a 1.77 (0.35)b 0.09 (0.05)a 1.49 (0.30)b 0.12 (0.02)a 0.18 (0.05)a 

Mg (mg g-1)  0.20 (0.10)a 0.55 (0.18)b 0.21 (0.11)a 1.27 (0.17)c 0.25 (0.05)a 0.68 (0.27)b 

Mn (mg g-1) 0.02 (0.01)a 0.27 (0.14)b 0.02 (0.01)a 0.02 (0.00)a 0.04 (0.00)a 0.05 (0.03)a 

N% 0.20 (0.26)a 0.18 (0.03)a 0.49 (0.10)b 0.71 (0.04)b 0.26 (0.10)a 1.27 (0.17)c 

OM% 8.65 (1.09)a 8.07 (2.89)a 4.32 (0.90)a 35.50 (7.04)b 11.45 (4.71)a 44.42 (2.71)c 

P (mg g-1) 1.03 (0.25) 0.91 (0.16) 1.15 (0.09) 1.16 (0.05) 0.97 (0.06) 1.22 (0.16) 

Zn (µg g-1) 15.93 (8.25)a 27.91 (5.63)a 8.77 (1.86)b 37.80 (12.43)c 14.28 (3.77)a 23.21 (4.53)a 

pH 5.77 (0.12)a 4.24 (0.15)b 6.57 (0.10)c 4.55 (0.14)d 4.01 (0.05)e 5.60 (0.06)a 



96

5.3.5 Leaf nutrient status 

Figure 0.3 Nutrient concentration in the leaves (Mean ± S E) of L. microphyllum 
collected from different sites. For N and P separately, different letters indicate significant 
differences in leaf concentration of N and P (P < 0 05; Tukey's test).         

There was a significant positive correlation between the leaf N concentration and 

soil C (r = 0.48; p=0.003); Ca (r=0.63; p<0.0001); N (r=0.50; p=0.002); P (r = pH 

(r=0.71; p<0.0001); sand% (r=0.65; p<0.0001).  Likewise leaf P concentration had a 

negative correlation with soil Al (r= -0.47; p = 0.l013); Cu (r= -0.34; p = 0.04); Fe (r = -

0.49; p = 0.002); K (r= -0.40; p=0.01); silt (r = -0.65; p<0.0001) and clay %( r = -0.55; 
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p=0.0005). There was a significant positive correlation between leaf P concentration and 

soil C% (r = 0.75; p<0.0001); Ca (r = 0.82; p<0.0001); N% (r=0.81; p<0.0001); OM% 

(r=0.54; p=0.0006); P (r=0.54; p=0.0006); pH (r=0.64; p<0.0001) and sand %( r=0.73; 

p<0.0001). 

 

5.4 Discussion 

 My goal was to determine if there was significant difference in the soil 

characteristics in the native and recipient habitats of L. microphyllum. There was a 

significant difference in the soil chemical, biological as well as physical characteristics in 

the two regions. These soil characteristics can, on their own or in association with other 

habitat features, promote the extensive growth of L. microphyllum in its recipient habitat 

in Florida. There was also a significant difference in the foliar nutrient concentration 

among the sites. My results show soil texture and pH to be the major factors influencing 

L. microphyllum growth.  

 My results show that L. microphyllum has adapted to nutrient poor highly acidic 

soils in its native range and invades slightly acidic soils in Florida.  Along with strongly 

acidic conditions, the Australian soils have high concentration of Al, which is considered 

phytotoxic in strongly acidic soils. Acidic soil conditions are reported to enhance the 

presence of trivalent cation (Al3+), the most toxic form of Al available to plants 

(Delhaaize and Ryan 1995; Lidon and Barreiro 2002; Kochian et al. 2005). My Central 

Florida site, where L. microphyllum was growing over sand mine spoil, had the highest 

concentration of Al. However this was not a restricting factor for L. microphyllum which 

could be because of the soil pH.    Al toxicity in plants is widely studied in crop plants, 
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according to Kochian (1995), Al toxicity causes alterations of physiological and 

biochemical process of plants and consequently in their productivity. Plant species differ 

in their Al tolerance, but given that L. microphyllum grown in Australian soil had lower 

biomass allocation to the belowground structures (rhizomes and roots) compared to the 

plants grown in Florida soils (Volin et al. unpublished data), my results indicate the 

possibility of the “evolution of increased competitive ability hypothesis”. When L. 

microphyllum escaped the highly acidic soil environment to the sites in Jonathan 

Dickinson sandy sites, the plants could have evolved with lowered investment cost to 

defense and reallocation of the resources to growth and reproduction, increasing their 

colonizing success. 

Even with varying soil nitrogen status, foliar N concentration was significantly 

higher in all south Florida plants compared to the Australian plants. Leaf N concentration 

is directly related to increase in relative growth rate (RGR) and photosynthetic capacity 

leading to increased plant productivity and litter decomposition in L. microphyllum 

(Chapter 3) and several other plant species (Vitousek 2004; Treseder 2008; Vitousek 

2010; Chen et al. 2011). This could in part explain the higher growth of L. microphyllum 

in south Florida invaded areas compared to its native range in Australia. Similar results of 

higher nutrient concentration in the Florida plants compared to the Australian plants have 

been reported by Goolsby et al. (2006). Lygodium microphyllum is reported to be highly 

mycorrhizal in south Florida compared to its native range in Australia (Chapter 2), this 

higher degree of mycorrhizal colonization could play a role in the increased foliar N 

concentration.   
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Various soil and plant factors cause a significant influence in the soil microbial 

community, which have a fundamental role in nutrient cycling, plant growth and root 

health. It is widely reported that the rhizosphere community of different plant species 

growing in the same soil are distinct. Likewise an individual plant species scan harbor 

different microbial communities in different soil types. A strong effect of soil texture on 

bacteria and fungi population was evident in this study. Daintree, in Australia with the 

highest percentage of silt harbored highest CFUs of bacteria and fungi, while Jonathan 

Dickinson in Florida with 98% sand had the lowest CFUs of bacteria and fungi.  This 

kind of influence of soil texture on the structure of microbial population has been 

reported previously (Garbeva et al. 2004; Fang et al. 2005). An unexpected result was: 

the bacteria and fungi population remained uninfluenced by the soil organic matter, C% 

or soil pH which indicates a possible difference in the litter quality and secondary 

metabolites produced by the plant in its native range and invaded community. 

My results indicate that L. microphyllum had a symbiotic relationship with 

multiple species of AMF depending on the site conditions. My two sites, Central Florida 

and Tree Tops which had higher diversities of spores are relatively disturbed sites 

compared to the other sites which had lower diversity of spores. This is an expected result 

and is in line with the Intermediate Disturbance Hypothesis (IDH) (Huston, 1979) which 

suggests that a less disturbed healthy ecosystem has lower diversity of arbuscular 

mycorrhizal fungi. I found that Glomus, which is reported to be the dominant and most 

abundant genus of AMF, was present in all sites but dominated in Logan and Nudgee in 

Australia and Central Florida sites. Scutellospora was dominant in Jonathan Dickinson, 

which has the worst case of L. microphyllum infestation in Florida and in the Tree Tops 
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Park. This indicates the influence of soil texture in the composition of AMF species in the 

soil. Even though spore morphology has been used to identify AMF species, it has been 

reported that this technique is not sufficient (Kruger et al. 2009). This study provides 

evidence that the mycorrhizal fungi composition is different in the native and recipient 

habitats along with the soil characteristics, but an in-depth analysis with the use of 

molecular technique is necessary to identify the AMF species and their relationship with 

L. microphyllum.  

  Overall, this study provides baseline information on the variation in the 

rhizosphere soil characteristics of L. microphyllum in its native and recipient habitat. My 

results indicate that Al sensitivity could be a determining factor that restricts the growth 

of L. microphyllum in the highly acidic soils rich in Al in its native range in Australia. 

Further research is necessary to gain an insight on the Al tolerance level of L. 

microphyllum and the role of Al concentration in soil in the growth limitation of L. 

microphyllum. I found that there was significant difference in the microbial populations 

and types in the regions, but I was not able to determine the specific roles of these 

microbes. However, these results are in line with the conclusion of Volin et al. (2010) 

who reported that escape from pathogenic soil microbial community could in part explain 

the extensive growth of L. microphyllum in the recipient habitats of Florida.  My results 

indicate that L. microphyllum can be growing poorly in its native range in Australia 

because of the soil toxic effects associated with soil acidity and low foliar nitrogen 

concentration which in turn could affect the photosynthetic capacity of the plant.  
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CONCLUSIONS AND RECOMMENDATIONS 
This study was conducted to determine why Lygodium microphyllum becomes a 

strong competitor in all hydrological, nutrient, light gradient habitats in south Florida 

compared to its native range in Australia. The studies presented in this dissertation 

provide baseline information and help to understand the complex feedbacks between 

exotic invasive species, soil microbial community and soil elements. I tested the 

hypothesis that the biogeochemical properties of Florida soils provide a more favorable 

condition for this species in the invaded region in Florida than in its native range. I did a 

cross-continent comparison of rhizosphere soil properties to determine if there were any 

specific characteristics in the soil which promote the invasiveness of this plant species in 

Florida.  

Based on the results presented in the second chapter, L. microphyllum appears to 

be a strong host for arbuscular mycorrhizal fungi. However, this relationship with AMF 

varied with location, most probably by site hydrological conditions. Lygodium 

microphyllum had a stronger association with AMF in the dry areas of invaded regions in 

Florida compared to the flooded sites in Florida as well as its native range in Australia. 

The enhanced mycorrhizal fungi are also likely responsible for the greater P uptake and 

biomass accumulation in the control study. This strong association with mycorrhizae and 

an extensive belowground rhizome growth could in part explain efficient nutrient uptake 

leading to the competitiveness of L. microphyllum in nutrient poor Florida soils.  

The green house study in the third chapter indicates that L. microphyllum is able 

to survive and grow in a wide range of soil pH; however, final biomass, relative growth 

rate, photosynthesis and specific leaf area were all significantly greater in soil pH 5.5 - 
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6.5 compared to the other treatments. Correspondingly, nitrogen concentration was also 

significantly related to these four plant parameters. Additionally root colonization by 

mycorrhizal fungi was significantly higher in soil pH 5.5-7.5 and lowest in plants 

growing in 4.5 or 8.0. Arbuscular mycorrhizal fungi colonization in roots was 

significantly correlated with plant growth parameters and nutrient concentration in the 

leaves. Comparison of soil characteristics in the invaded and uninvaded sites in three 

different locations in the fourth chapter shows that even after removal the effect of L. 

mcirophyllum may persist leaving behind a “legacy” influencing the belowground 

ecology. It causes a slight increase in soil pH, increase in soil organic matter and changes 

the ratio of bacteria and fungi population in the soil.  This can have long-term effects on 

the restoration of the invaded sites or sites difficult or challenging for management. Cross 

continent soil characteristics comparison in the fourth chapter show that L. microphyllum 

can be growing poorly in its native range in Australia because of the soil toxic effects 

associated with soil acidity and low foliar nitrogen concentration which in turn could 

affect the photosynthetic capacity of the plant. Plant species differ in their Al tolerance, 

my results indicate the possibility of the “evolution of increased competitive ability 

hypothesis”. When L. microphyllum escaped the highly acidic soil environment to the 

sites in Jonathan Dickinson sandy sites the plants could have evolved with lowered 

investment cost to defense and reallocation of the resources to growth and reproduction, 

increasing their colonizing success. This study documents that that L. microphyllum can 

allocate up to 40% of the total biomass to the rhizomes, which remain unaffected by the 

different control techniques. Thus, L. microphyllum immediately regenerates from the  
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rhizomes after the use of management techniques such as fire, chemical spray, burning or 

cutting.   

Overall, the results of this study could provide broader understanding in the 

ability of L. microphyllum being equally competitive in different habitat types in Florida. 

This study highlights that along with the characteristics of exotic plant species and native 

plant community, the understanding of invasive success of exotic plants needs the 

understanding of belowground community and ecology. It also provides information 

applicable for land managers responsible for protecting the Everglades, developing a 

sustainable control program towards minimizing the impacts of L. microphyllum as well 

as other exotic invasive species. Based on this study I recommend the following issues to 

be addressed in future studies: 

 Lygodium microphyllum can form a very strong symbiotic relationship with 

AMF in its introduced environment in Florida. It is likely that this relationship 

is strongly influenced by site hydrological conditions, but this hypothesis 

needs to be tested in future research, especially when the Florida Everglades is 

undergoing a major hydrological shift as an effort for restoration. Future 

studies should also look into the possibilities of developing an integrated 

management plan which targets the micorrhizal fungi in the roots and 

rhizosphere of L. microphyllum. 

 Prescribed burning, which causes a temporary rise in soil pH, is a widely used 

method to control L. microphyllum, but my study shows that L. microphyllum 

could be benefiting from the slight increase in soil pH resulting from fire as 

well as the release of nutrients that are associated with burning. Further 
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research should be done to determine the effect of fire on the mycorrhizal 

fungi and in soil with various pH levels.  

 In my study, L. microphyllum had highest growth at neutral soil pH’s and 

began to show a significant decrease at a soil pH of 8.0, likely further growth 

reductions would happen in even more alkaline soils. Thus, raising soil pH 

may be a possible management option to explore in the future, but increasing 

the soil pH would need to be studied carefully for its potential adverse effects 

to native flora as well, including both native plants and soil microorganisms. 

 My results indicate that L. microphyllum recruits different species of AMF in 

different sites. This relationship of L. microphyllum with AMF merits further 

research.  In-depth analysis with the use of molecular technique is necessary 

to identify the AMF species and their relationship with L. microphyllum.  

Finally, exotic species invasion will be a continuous threat to the Everglades 

ecosystem and will continuously challenge land managers and researchers. With the 

increased rate and number of exotic species invasion, herbicide treatment will most likely 

become the widely used technique to control invasive species in the future. But, the effort 

of invasive species control should not ignore the belowground effects of invasive plants 

in the Florida Everglades ecosystem, especially when it is undergoing a major 

hydrological shift as an effort for restoration. Understanding the soil nutrient and 

microbial dynamics will provide opportunities to develop a successful integrated 

management technique.  I believe a complete understanding of the soil ecosystem is 

necessary before adopting a management technique to achieve a successful long-term 

invasive species management strategy in the south Florida Everglades.  
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