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ABSTRACT OF THE THESIS

MESHFREE METHOD FOR PREDICTION OF THERMAL PROPERTIES OF
POROUS CERAMIC MATERIALS
by
Maryam Zahedi
Florida International University, 2013
Miami, Florida

Professor Igor Tsukanov, Major Professor

In the presented thesis work, meshfree method with distance fields is applied to
create a novel computational approach which enables inclusion of the realistic geomet-
ric models of the microstructure and liberates Finite Element Analysis(FEA) from the
dependance on and limitations of meshing of fine microstructural feature such as splats
and porosity.

Manufacturing processes of ceramics produce materials with complex porosity
microstructure.Geometry of pores, their size and location substantially affect macro
scale physical properties of the material. Complex structure and geometry of the pores
severely limit application of modern Finite Element Analysis methods because they
require construction of spatial grids (meshes) that conform to the geometric shape of the
structure. As a result, there are virtually no effective tools available for predicting overall
mechanical and thermal properties of porous materials based on their microstructure.

This thesis is a separate handling and controls of geometric and physical compu-
tational models that are seamlessly combined at solution run time. Using the proposed
approach we will determine the effective thermal conductivity tensor of real porous ce-
ramic materials featuring both isotropic and anisotropic thermal properties. This work
involved development and implementation of numerical algorithms, data structure, and

software.
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CHAPTER 1
INTRODUCTION
1.1 Problem Definition and Motivation

The industrial and technological progress highly depends on creation of new ma-
terials with advanced mechanical and thermal properties. Many works are going to be
done in response to the increasing need of industry to the materials with customized
properties. One of these welcome materials is ceramic.

A ceramic material may be defined as any inorganic crystalline material, com-
pounded of a metal and a non-metal. It is solid and inert. Ceramic materials are brittle,
hard, strong in compression, but weak in shearing and tension. They withstand chemical
erosion that occurs in an acidic or caustic environment. Ceramics generally can with-
stand very high temperatures such as temperatures that range from 1,000 C to 1,600 C
(1,800 F to 3,000 F). Exceptions include inorganic materials that do not have oxygen
such as silicon carbide. Glass by definition is not a ceramic because it is an amorphous
solid (non-crystalline). However, glass involves several steps of the ceramic process and
its mechanical properties behave similarly to ceramic materials.

Traditional ceramic raw materials include clay minerals such as kaolinite, more
recent materials include aluminium oxide, more commonly known as alumina. The mod-
ern ceramic materials, which are classified as advanced ceramics, include silicon carbide
and tungsten carbide. Both are valued for their abrasion resistance, and hence find
use in applications such as the wear plates of crushing equipment in mining operations.
Advanced ceramics are also used in the medicine, electrical and electronic industries.

The physical properties of any ceramic substance are a direct result of its crys-
talline structure and chemical composition. Solid state chemistry reveals the fundamen-
tal connection between microstructure and properties such as localized density varia-
tions, grain size distribution, type of porosity and second-phase content, which can all
be correlated with ceramic properties such as hardness, toughness, dielectric constant,
and the optical properties exhibited by transparent materials.

Mechanical properties are important in structural and building materials as well as

textile fabrics. They include many properties used to describe the strength of materials



such as: elasticity / plasticity, tensile strength, compressive strength, shear strength,
fracture toughness, ductility (low in brittle materials) and indentation hardness[21].

Because of ceramic’s great properties, study of them became very important.
Everyday many research works are going to be conducted to improve properties of ce-
ramic materials by changing their fabrication method and also finding the best method
to measure their properties. In this research, porous ceramic materials produced by
plasma spray manufacturing are under review. The final goal is to find value of thermal
conductivity of this type of material.

Plasma spraying is a part of thermal spraying, a group of processes wherein a
feedstock material is heated and propelled as individual particles or droplets onto a
surface. The thermal spray gun generates the necessary heat by using combustible gases
or an electric arc. As the materials are heated, they are changed to a plastic or molten
state and are confined and accelerated by a compressed gas stream to the substrate. The
particles strike the substrate, flatten, and form thin platelets (splats) that conform and
adhere to the irregularities of the prepared substrate and to each other. As the sprayed
particles impinge upon the surface, they cool and build up, splat by splat, into a laminar
structure forming the thermal spray coating[1].

Plasma spray is the most versatile of the thermal spray processes. Plasma is
capable of spraying all materials that are considered sprayable. In plasma spray devices,
an arc is formed between two electrodes in a plasma forming gas, which usually consists
of either argon/hydrogen or argon/helium. As the plasma gas is heated by the arc, it
expands and accelerated through a shaped nozzle, creating velocities up to MACH 2.
Temperatures in the arc zone approach 36,000F (20,000K). Temperatures in the plasma
jet are still 18,000F (10,000K) several centimeters from the exit of the nozzle. Nozzle
designs and flexibility of powder injection schemes, along with the ability to generate very
high process temperatures, enables plasma spraying to utilize a wide range of coatings.
The range goes from low melting point polymers such as nylon, to very high temperature
melting materials such as refractory materials including tungsten, tantalum, ceramic

oxides, and other refractory materials.



Hardness, density, corrosion resistance, adhesion and porosity are the characteris-
tic of materials which used thermal spray coating for their construction. Thermal spray
coatings are often used because of their high degree of hardness relative to paint coat-
ings. Their hardness and erosion resistance make them especially valuable in high-wear
applications. Such materials have high melting temperature as well as low thermal con-
ductivity which make them very applicable to be used in power plants boilers, turbine
blades, furnaces, combustion chambers and thermal coatings.

Plasma-sprayed (PS) coatings play an important role in armoring components
subjected to high-heat-fluxes in different contexts. These coatings are characterized by
a random distribution of porous inclusions of different size which arises from cumulative
deposition and rapid solidification of partially molten droplets. Thermal barrier coatings
(TBCs) for gas turbine blades are the most prominent example where high thermal
isolation is required. On the other hand, PS-coatings are also considered for extreme
thermo physical environments like the first wall of a nuclear fusion reactor.

Here, high energy ions and neutrons are constantly escaping the fusion plasma and
hitting so called plasma-facing components (PFCs). The thermal loads are ranging from
1 to 20 MTW/m? in normal operation condition, while even higher peaks are expected
during disruptive events. Therefore, contrary to TBC, the heat removal capability of
a coating designed for PFC should be the highest possible in order to prevent melting
of the involved materials and maximize the life-time of the coated components. As a
result, a deep understanding of the heat-transfer mechanisms and an accurate estimation
of the thermal conduction of PS-coatings is of paramount importance in the design and
analysis of PFC [23].

On the other hand, we should mention that although the porosity coefficient of
the plasma spray (PS) coating materials is 15 percent less than those which produced
by casting method, but still existed and affects overall (homogenized) mechanical and
thermal properties of the material.

Therefore, for accurate computer simulations, the effect of the material microstruc-
ture has to be accounted for. Since the size of the pores is very small ~ 1um a brute-force

application of the engineering analysis methods based on Finite Element Method will



result in spatial meshes with prohibitively many degrees of freedom. In fact, applica-
bility of the existing computational tools to predict the overall mechanical and thermal
properties of the realistic ceramic materials is limited by the Finite Element Method
that requires construction of a spatial grid that must conform to the shape of the geo-
metric model. In these applications, geometric model that corresponds to the material
microstructure needs to be reconstructed from micrographs or /and micro CT scans.

Since the geometry of the microstructure including shape, size, orientation and
volume fraction could affect the overall(homogenized) properties of the macrostructure,
therefore, bringing the accurate geometry of the microstructure into consideration is of
great importance. While most authors used ellipsoid or spherical pores for modeling the
shape of heterogeneities, a few of them used methods which will allow them to use more
realistic geometry. Only a few works are known in which people tried using realistic
geometry obtained either from CT scanning or from micrographs. Construction of the
spatial meshes for such geometric models is a non-trivial task which requires substantial
simplification of the geometry, time consuming and error prone data transfer as human
intervention.

1.2 Objective and Research Issues

The main goal of the proposed project is to demonstrate a feasibility of homog-
enization of the thermal properties of the porous ceramic materials, using meshfree
method with distance fields which enables us to accommodate the realistic geometry of
the microstructure into homogenization procedure. In particular, we develop numeri-
cal methods and techniques that will use meshfree method for homogenization of the
thermal properties, investigate how thermal properties depend on the geometry of the
microstructure as well as validate the proposed method by a number of carefully selected
benchmark problems.

In this research we will introduce meshfree method and apply this new method
to predict thermal properties of porous ceramic materials. Unlike other traditional sim-
ulation methods that require construction of a spatial grid (mesh) to start analyzing
the properties, this research proposed a method which starts processing from the mi-

crographs directly with no need of mesh construction, so it is called meshfree method.
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This meshfree computational technology enables seamless incorporation of the geometry
into the computational model; complete automation of the solution procedure and exact
treatment of all prescribed boundary conditions. Based on the distances to the geomet-
ric boundaries, this computational approach holds a promise for creating efficient multi
scale and multi resolution tools that can be used to predict overall material’s mechanical
and thermal properties depending on its microstructure.
1.3 Thesis Structure

Chapter I introduces the study. First, the problem is stated. Then the research
objectives and issues are explained. Chapter II provides a brief review of the history of
the methods which are used in this research. The theory of homogenization methods,
their benefits and drawbacks formed the first part. Second part includes the concept
of meshfree method, its solution structure and equations. Chapter III describes the
methodology of research, how Asymptotic Homogenization is combined with meshfree
method to get the result.It also includes a number of numerical experiments to validate
the proposed approach. Chapter IV presents a series of targeted numerical tests to
investigate the dependence of the homogenized thermal properties on the geometry of
the microstructure. We used the results to form comparison graphs, in order to see the

differences more clearly.



CHAPTER 2
BACKGROUND AND LITERATURE REVIEW
2.1 Homogenization Methods

The effective properties of macroscopic homogeneous composite materials can be
derived from the microscopic heterogeneous material structures using homogenization
techniques. Homogenization is a technique for macro micro-scale transition. In a two-
scale method two spatial variables are introduced: x is a macroscopic spatial coordinate
and y = x /e is a microscopic one. The variable y is associated with the small length scale
of the inclusions or heterogeneities. The two-scales process introduced in the partial
differential equations of the problem produces equations in x, y and both variables.
Generally speaking, equations in y are "solvable” if the microscopic structure is periodic,
and this leads to a "rigorous” deduction of the macroscopic equations (in x) for the global
behavior.

In most problems, a mathematical proof of the convergence of solutions to the
”homogenized solutions” is available when € — 0. It should be noticed that the "homog-
enized coefficients” only depend on the local (or microscopic) structure of the medium,
and may be obtained by numerical solution of some boundary value problems in a period
of the structure, the boundary conditions being mostly of the periodic type. In fact,
homogenization gives relevant information on the relation between the local and global
behaviors; for most problems in mechanics the micro and macro-processes are of very
different nature.

The macroscopic mechanical properties of composite material is described by its
microstructure behavior which is exemplified by the interaction between the constituents.
Many heterogeneous materials have regular microstructure which makes it possible to
consider only one small periodic element of the structure — representative volume element
(RVE). (see Fig 2.1).

All computations are performed over RVE, and then, they are extended to the whole
material. As a general procedure it could be said that in most homogenization methods
a local problem of a single inclusion is solved to get the approximation of the local field

behavior,(as it was done by Eshelby in 1957 for elastic fields of an ellipsoidal inclusion)
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Figure 2.1: Representative Volume Element Selection.

then, by averaging these local fields, we could find global properties. This is called basic
mean field homogenization method. Hashin Shtrikman type bounds, Mori-Tanaka type
models and classical self schemes are the most famous homogenization methods of this
type.

In all of these methods, composite is restricted to the matrix-inclusion type with
perfect interfacial bonds between inclusions and their immediate surrounding matrix and
differences between methods related to the assumption which is made to treat with these
interaction. The Mori-Tanaka method approximates the interaction between the phases
by assuming that each inclusion is embedded in an infinite matrix which is remotely
loaded by the average matrix strain or average matrix stress.

Hashin and Shtrikman uses variational bounding techniques to obtain more useful
estimate of modula for isotropic heterogenous materials. They assumed that the par-
ticles are spherical and the action of whole heterogenous material on any inclusion is
transmitted through a spherical shell, which lies wholly in the matrix [9]. According
to [8], it can be seen that the upper Hashin-Shtrikman bound corresponds to the Mori-
Tanaka result. The upper bound can also be obtained with the Mori-Tanaka method
just by interchanging matrix and inclusion material.

Lielens method is another homogenization method which uses the advantages of
Mori-Tanaka method for a two phase material. This method is a properly chosen inter-
polation between the Mori-Tanaka and inverse Mori-Tanaka method and also between
the Hashin-Shtrikman bounds, respectively. The self-consistent method approximates
the interaction between phases by assuming that each phase is an inclusion embedded

in a homogenous medium that has the overall properties of the composite. Therefore



the equation will be implicit and nonlinear. In general, the self-consistent method gives
a sufficient prediction of the behavior of polycrystal but it is less accurate in the case of
two-phase composites|8].

Also, the " Effective Self-Consistent Scheme (ESCS)” and ” Interaction Direct Deriva-
tive (IDD)” are the most recent homogenization method, proposed by Zheng and Du(2001)
based on three-phase model. In the three-phase model, the inclusion is embedded in a
matrix which itself embedded in an unbound, initially unknown effective medium. The
ESCS overcomes the restrictions on spherical and cylindrical inclusions but still has a
complicated structure. Interaction Direct Derivative (IDD)method is a simplified and
explicit version of the ESCS method and has a very simple structure with clear physical

meaning of the single constituent parts|8].

2.1.1 Asymptotic Expansion homogenization method (AEH)

Asymptotic expansion homogenization (AEH) method is another approach for
multi-scale problems. This method is a very good methodology to model physical phe-
nomena in heterogenous material with periodic microstructure. The method of asymp-
totic homogenization proceeds by introducing the fast variable £ = z/e and posing a

formal expansion in € :

u(z) = u(z, &) = ug(z, &) + euy(x, &) + uy(x, £) + O(€%) (2.1)

According to [22], we can introduce a recipe for this type of homogenization as following:

e Step 1. Modeling: the scale is modeled with any Simulation software (mostly

FEM) and define the X¢ as global and Y as local variables.

e Step 2. Introduce the asymptotic series approximation in e: AEH is a perturbation
technique based on an asymptotic series expansion in €, a scale parameter, of a
primary variable such as displacement. The first two terms of the series, represent

the sum of global terms and oscillating small scale term. As mentioned earlier, €



is a scale parameter which is a kind of ratio between micro and macro scale. We

could refer to smooth global term as u° and the small local term as u'.

e Step 3. Derivation of hierarchical equations: this step is problem dependant. In

other words it can be different for elasticity, plasticity or heat conduction problems.

e Step 4. Micro equation: derivation equation in step 4 , results in partial differential
equation in u! to u°. Instead of solving the equation directly for u! a characteristic
function will be used. This function can be obtained by solving an auxiliary equa-
tion with any numerical method (FEM for example). The characteristic function
which could also be called corrector, is used to relate u! to (Ou)®/dz either through

a numerical or an analytical solution.

e Step 5. Homogenization: the gradient of the corrector is used to define a homog-

enized property tensor in Y°.

e Step 6. Solve the global boundary value problem: by the use of any method such
as FEM and characteristic function from step 4, the field equation can be solved

in X¢. This gives the globally smooth solution u".

e Step 7. Localization: at last the localization equations will be derived indirectly

from step 3.

Up to now, different methods of homogenization were introduced. There are
more mathematical details about these methods that could be found in [8] and [9] and
[22]. Also, there are bunch of papers about application of these methods in structural
analysis which used constitutive equations for their calculation which are out of scope
of this research so they are ignored. In this research, we are considering homogenized
thermal conductivity of the heterogeneous composite material. Unlike solid mechanic
problems in composite materials, only a few works have been done in thermo-fluid area
which in the following some of them are mentioned.

In [19] Mori-Tanaka method is applied for finding effective thermal conductivity

of the composite media reinforced with ellipsoidal inclusions, then extended to account



for random orientation of particles and particle size distribution. Comparison of experi-
mental and numerical results demonstrated that Mori-Tanaka method is still applicable
for these complex systems.

In [7] authors used both Hashin-Shtrikman bounds and Effective Medium The-
ory(EMT) to find thermal conductivity of porous materials. According to them isotropic
materials which presented as 'porous’ may be divided into two classes: internal porosity
material in which the optimal heat transfer pathway is through the continuous phase
like granular or particulate materials, in which the void volume may be occupied by
either liquid or gaseous components and external porosity materials are those in which
the optimal heat transfer pathway is through the dispersed phase. It may refer to a
material having a continuous solid matrix that contains pores/bubbles, which may be
isolated or interconnected. They believed that a model that accurately predicts the
effective thermal conductivity of internal porosity will not necessarily be applicable to
external porosity materials or vice versa. Their proposed bounds support conclusions
from previous studies that suggested there was inherently greater uncertainty involved
with predicting the effective thermal conductivity of external porosity materials than
there is with internal porosity materials.

Among different homogenization methods, Asymptotic Expansion is more often
used for modeling the thermal conductivity in heterogenous material. Young Seok Song
and Jae Ryoun Youn examined the effective thermal conductivity tensor of carbon-
nano-tubes (CNT) filled composites by using Asymptotic Expansion Homogenization
method(AEH) [18]. According to them this method is able to perform both localization
and homogenization for the heterogenous medium. In multi-scale approach, the homog-
enization and the localization are the main concerns: the former yields smeared material
properties used in the macroscopic field equations and the latter provides estimation of
the microscopic material behaviour based on the macroscopic solution and this is one
of the superiorities over other methods. Also contribution of complex geometries and
anisotropic material properties of fillers can be precisely calculated through AEH method
which can not be handled by other analytic models. Yasser M.Shabana and Naotake

Noda in [10] used AEH to evaluate the thermomechanical effective properties of another
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group of heterogenous material which is called Functionally Graded Material (FGM) .
We will also use Asymptotic Expansion Homogenization method to predict the thermal
conductivity of the composite ceramic materials.
2.2 Meshfree method with distance field

In all of the aformentioned homogenization methods, one thing was in common and
it was the usage of Finite Element Method (FEM) in discritizing the domain.The Finite
Element Method (FEM) has become one of the most popular and powerful analytical
tools for studying the behavior of a wide range of engineering and physical problems.
Quick development of several general- purpose finite element software packages which
verified and calibrated over the years made them available almost to everyone who asks
and pays for them[17].

In applied mathematics, finite element method (FEM) is a general mathematical
tool for obtaining approximate solutions to boundary value problems. It uses variational
methods (the Calculus of variation) to minimize an error function and produce a stable
solution.

Same as the idea of approximating the larger circle by many tiny straight lines,
FEM also approximates a complex equation on a large domain by many simple equations
on smaller sub-domain called finite elements. Applying finite element method dates back
to long times ago. For instance, finding the circumference of a circle by approximating
it by the perimeter of polygon by ancient mathematicians was among first FEM appli-
cations [14] The basic ideas of the finite element method as known today were presented
in the papers of Turner et al., [20] and Argyris et al.,[2].

Application of finite element method was quickened by super-fast development
of high speed digital computers. The book by Przemieniecki [11] presents the finite
element method as applied to the solution stress analysis problem. Zienkiewich et al.,[3]
presented the broad interpretation of the method and its applicability to any general
field problem.

Although FEM based methods were considered as a revolution in computational
analysis, but it has some shortcomings in finding the physical properties from the realistic

geometry of materials. In this regard, it is required to construct a spatial grid that must
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conform to the shape of the geometric model which is taken from the micro graphs.
It will be very difficult due to the fact that meshing could not be done precisely for
this kind of geometries. As a result, to avoid difficulties of mesh construction, meshfree
method is applied.

At the core of the meshfree method of analysis with distances field is representation
of a physical field by the Taylor series expansion, originally proposed by Kantorovich|6]
and developed by Rvachev [12] and [13].

| —

u(0)w* + W™ d (2.2)

u (w) = u(0) + Z

-

!

This representation is a straightforward generalization of a classical Taylor series, where
the term |z — xy| measuring the distance to the point zy, is replaced by w measuring
the distance to a set of points. Similarly, the k' order derivatives of the function u in
the classical Taylor series are replaced by coefficients u; that are k' order derivatives
of the function u in the direction n normal to the boundary of a geometric domain.
In contrast to classical Taylor series, where the coefficients are constants, ux(z,y, z) in
the expression (2.2) may be arbitrary functions. This also holds when w represents
approximate distance to the geometric boundary.

Taylor series (2.2) provides connection between the values of a physical field at
any spatial point and values of the field and its normal derivatives prescribed on the
boundary of a geometric domain. In the context of engineering analysis this means that
the function u given by expression (2.2) satisfies specified boundary conditions exactly.
The remainder term w™'¢ assures completeness of the Taylor series (2.2), and it can
be used to satisfy additional constraints imposed on u, which are usually formulated in
the form of differential equations, integral equations, or variational principles.

To find a function u that satisfies both boundary conditions and additional con-
straints one needs to determine the function ¢. In most cases, this problem has no exact

solution. Thus, ¢ is approximated by linear combination of basis functions:

N
o= Z Cixi- (2.3)
i=1
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Now, the solution of the original problem is transformed into determining the numerical
values of the coefficients C; in expression (2.3) by any standard numerical method. The
basis functions y; in the last expression can be chosen from any sufficiently complete
system of linearly independent functions: polynomials, radial basis functions, B-splines
or even finite elements. Representing physical fields by Taylor series (2.2) reveals two
salient features of our meshfree method: exact treatment of boundary conditions (this is
the only meshfree method which allows exact treatment of different types of boundary
conditions), and clean and modular separation of geometric and analytic information
[16].

The shape of the geometric domain is completely described by distance w to the
boundary; and the basis functions can be defined on a grid that does not conform to
the geometric input. Since a physical field u represented by expression (2.2) satisfies
the prescribed boundary conditions exactly, the solution procedure needs to determine
numerical values of the coefficients C; in the remainder term (2.3) such that u gives the
best approximation to the differential equation of the problem.

A typical solution procedure includes construction of distance fields to the bound-
aries where boundary conditions are specified, differentiation of the functions in the
Taylor series (2.2) with respect to spatial coordinates, integration over the un-meshed
geometric domain and its boundary, solution of an algebraic problem, and visualization
of the analysis results.

2.2.1 Scan and Solve Approach

The use of distance fields derived from sampled data makes it possible to im-
plement a scan-and-solve approach to modeling of physical fields, which is particularly
effective when physical fields need to be modeled and analyzed in existing artifacts for
which traditional geometric models may not exist. Reverse engineering of geometric
models for such parts is a difficult and time consuming process fraught with difficulties
due to inaccuracies, wear, deformations, and imprecision of both natural and engineered
objects. The key observation is that the traditional reverse engineering and meshing
pipeline may be bypassed if an object model and its boundary are described by an

approximate distance field.
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Such fields may be often constructed directly from sampled data generated by
3D laser scanners or other scanning technology. Once the points on the surface of the
part have been generated, a variety of methods can be used to compute an approximate
distance field. In our examples the exact distance field was randomly sampled throughout
the volume, and then represented by B-splines with coefficients computed using the least
square method. The scan and solve approach is depicted in the flowchart in the Fig.
2.2 with operands depicted as ovals, and operations depicted as rectangles. At the
outset, the geometry is scanned to produce a 2D or 3D image. Here, image refers
to a regular grid of pixels or voxels for 2D or 3D geometry, respectively. The image
is then segmented using image processing techniques to produce a binary image with
foreground and background only. A Euclidean distance transform is then applied to
compute a distance value for each image element. Samples of the distance image are
taken at randomly distributed points and a set of basis functions is fit to these samples
to produce an approximate distance field. The approximate distance field is then used

to support meshfree simulation of stress or other physical quantities. [4].

As a demonstration of ”"Scan and Solve” approach, Fig 2.3 shows Scan&Solve
stress analysis performed from a SEM micrograph of fracture surface of TaC sample.
The first picture in the analysis pipeline shows a SEM micrograph of fracture surface of
TaC sample. The last three pictures illustrates the distributions of the components of
the displacement vector and normal stress o, (shown on the scale from 0 to 16 GPa).
Segmentation of the SEM micrograph results in a binary image in which white color
depicts material and black color corresponds to the pores. Samples of the Euclidean
distance to the boundary are computed using Euclidean distance transformation. These
samples are used to construct a smooth approximate distance field whose zero set de-
scribes the geometry of the boundary of a cross section. Distance fields to the fixed
portions of the boundary are constructed by trimming[15]. Meshfree analysis combines
distance fields, boundary conditions and basis functions to compute the displacement

field and stresses.
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CHAPTER 3
HOMOGENIZATION OF THERMAL PROPERTIES OF POROUS
CERAMIC MATERIALS USING MESHFREE METHOD WITH
DISTANCE FIELD

3.1 Asymptotic Homogenization

In previous chapter different homogenization methods, specifically asymptotic ex-
pansion homogenization were explained and also solution structure for meshfree method
were introduced. In this chapter we are going to combine both of these methods to
find thermal conductivity tensor of a porous ceramic material. Applying asymptotic
expansion homogenization and following the steps which was explained in chapter 2,

temperature field can be expressed as follows:
T(x,y) = T°(x) +&(T")(z, y) (3.1)

TY is the macroscopic or global (homogenized) temperature and T is the microscopic or
local temperature. The macroscopic quantities are functions of the macroscale (x) only
as shown in equation (3.1). According to [10] the governing equation of heat conduction

problem is described by:

/ iy OLOT g — / FOTdQ + / h6TdTNST (3.2)

R ax] ox;
Substituting equation (3.1) into the governing equation (3.2) and using averaging tech-
nique for a periodic function ¥ in the same way with the standard homogenization
procedure, the micro-macro coupled problem can be resolved into macroscopic and mi-

croscopic problems:

hm/ﬂ@b(%)dﬁz/ﬂ%/y@b(y)d}/dQ (3.3)

9 5T" 9oT"
I Y = YVOT! 4
/Q Kip o d / kij =g, — Y0 (3.4)
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oT° . ,06T°
e Q= MM)/TW ,
Ky%(a%)(a%)d “Lf 0T°dQ+ | hoT'd (3.5)

By solving the microscopic equation (3.4) using the periodic boundary condition,

we obtain the characteristic function associated with heat conduction in the microstruc-
ture due to the mismatch of the thermal conductivities of the constituents. In equation
(3.5), the homogenized thermal conductivity tensor k{j and the homogenized internal
heat source f are calculated by the integration over the whole domain and rigorously

defined as follows:

H_ L/ 9
kij - Y] Y(kw klp(?yz)dy (3.6)

1
"= / fdy (3.7)

These procedure which is used by Yasser M.Shabana and Nadotake Noda and is solved
by Finite Element method. Using the same approach, we solved the problem by applying
the Meshfree method.

3.2 Representative Volume Element and Periodic Boundary Condition

As first step, we need to define the representative volume element and the bound-
ary condition. The RVE is usually regarded as a volume V of heterogeneous material
that is sufficiently large to be statistically representative of the composite,or effectively
include a sampling of all microstructural heterogeneities that exist in the composite.
This is the general principle which is adopted, and it leads to the fact that the RVE
must include a large number of the composite microheterogeneities such as: grains, in-
clusions, voids, fibers, etc. It must however remain small enough to be considered as a
volume element of continuum mechanics [5]. Here, RVE is selected as it was shown in
Fig.2.1.

After selecting the RVE, periodic boundry conditions should be applied. Usually
in mathematical models and computer simulations a set of boundary condition is used

to simulate the large system by modeling the small part that is far from its edge and
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since it is supposed that, most of the heterogeneous mirostructures have almost the
same pattern which is repeated through the whole material, it can be called periodic
boundary conditions. Figure 3.1 shows how periodic boundary condition is defined in

this problem.

S

e
\%’ ‘,f

Figure 3.1: Periodic Boundary Condition

According to this figure:
Qb |ac:—a: QS |ac:a

¢ ‘y=fb: ¢ ‘yzb

¢ can be any function on boundaries.

3.3 Solution Structure for Periodic Boundary Condition

Expression(3.8) can be introduced as a solution structure for this problem. The
first term provides approximation of ¢ inside the RVE and satisfied the homogeneous
Dirichlet boundary condition on RVE’s boundary and other terms are responsible for

treatment of periodic boundary condition:

¢ =wd CXi+ Cliixnsr + CiaXnvz + CoygXunis + Clixnsa (3.8
=1
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as:

3.4

(b)

Figure 3.2: Solution structure for periodic boundary condition: (a) function w which
satisfied the homogeneous Dirichlet boundary condition; (b) shows quadratic basis func-
tion in X direction; (c¢) quadratic basis function in Y direction;(d) basis function of third
order of polynomial in X direction;(e) basis function of third order of polynomial in X
direction.

We can transfer w inside the summation operator, so we will have:

n
¢ = Z WO Xi + Gyl X1 + CiliaXnsa + CyligXnts + il uXnpa (3.9)
i=1

¢ is defined in this way:
€ = (3.10)

then ¢ is substituted in equation (3.9), so final shape function will be expressed

n+4

¢ => 0l (3.11)

i=1
Approach

So, up to here, a shape function is produced which satisfied both homogenous

Dirichlet and periodic boundary conditions, now we could substitute this shape function

into the microscopic heat conduction problem equation. Therefore, equation (3.4), will

turn to:

¢! O, / &y,
kip—o dS) = ki ——d2 3.12
/Q payp 0y; Q ! 0y; ( )
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This equation could be considered as a system of algebraic equation like [A][C] =

[B] in which:
G, = / kwgzm gikd (3.13)
D %
by = / k”gjkdﬁ (3.14)

Solving this algebraic equations system, will result in finding C{ coefficients which
can be substituted in shape function equation and find the ¢’ from equation (3.11).
Finally using the calculated shape function in equation (3.6), we will get the homogenized

thermal conductivity. The homogenization procedure is summarized in Fig3.3.

[A][C] = [B] —[C]

oo ! ) )

¢ =0 ZCJZI +CJ lZﬂ+l +Cj 2Zn+2 +CJ 3Zn+3 +Cj 4/‘tfn+4

|
l
R

} P

Figure 3.3: Summary of homogenization procedure

3.5 Benchmarks
Since, there are no related experimental results available in this field in terms of

thermal conductivity tensor, for checking the consistency of the proposed method, we
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set up some numerical experiments to demonstrate this momentous. The goal, initial

data and results are explained precisely in each experiment.

3.5.1 Test 1 : Homogeneous material with no porosity
The goal of this experiment is to demonstrate that the proposed approach can

reconstruct the originally specified material properties in the absence of porosity. We

0
consider a rectangular as with this initial data: k = ,a=0=1.

01
In this case, since we do not have any heterogeneity, so we should expect to get the

same result as the homogenous thermal conductivity. performing homogenization for

10
this problem, we get k£ =

0 1
3.5.2 Test 2: Material with rectangular pattern of the circular holes
The goal of this experiment is to demonstrate that selection of different RVE’s for
one material, will not affect the homogenized thermal conductivity tensor. If we consider
a domain with rectangular pattern of circular holes, Fig 3.4, there are many possibilities
of selecting different RVE’s and in between there are two possibilities for rectangular

RVE’s, one is a square with a hole in center and another one is a square with quadrant

10
in corners. The initial data for both cases are: k = ,

0 1
R=025,a=0b=1,

Fig 3.4, shows the RVE’s and also shape functions of both cases ¢/ , which are gener-
ated regarding to the selected geometry and distance function which were explained in
previous chapter.

Although we have two different RVE’s here, but since we are dealing with one material,

we expected to get the same thermal conductivity for each case. The obtained result for

0.906622 0
first RVE which was a square with a hole in center is: k¥ = ,

S50 0.906622

and result for second RVE which was a square with quadrant in corners is: k% =

0.908391 0
0 0.908391
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(e) (f)

Figure 3.4: Two different RVE’s and their shape functions for a material with rectangular
pattern of the circular holes

As it can be seen, the results are in good agreement. The very close results, also,
indicate the consistency of the proposed method. Furthermore, in order to make sure
that the results are reliable, we did convergence study and check the convergence of
results by increasing the degree of polynomials of basis function. Convergence graph
can be seen in Fig 3.5.

3.5.3 Test 3: Applying standard simulation software approach (SSSA)

As a matter of fact, not only Asymptotic Expansion Homogenization (AEH) could
be applied to find homogenized thermal conductivity of porous ceramic materials, but
also other approaches like those which are used by standard simulation software packages
could be used. The goal of this experiment is to solve the problem with other approach
rather than AEH and compare the results. To do so, first we are going to explain
how standard simulation software approach works, then using this approach, solve the
problem both by ANSYS and Meshfree method.

The heat flux for nonhomogeneous material in two dimension could be written as: q =
ki ko T

ka1 koo T,
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Thermal conductivity vs degree of polynomials for test 2
0.92 .

—e— k11 & k22 for case one
—— k11 & k22 for case two

0.915] 1

0.91¢ 1

0.905 :

Figure 3.5: Convergence study for test 2: case one is a square with a hole in center and
case two is a square with quadrant in corners

So, we have:

@ = —(knTy — k12T, (3.15)

and

qy = _(k21Tx - kQQTy) (316)

which T, and T, are partial derivatives of temperature. Therefore, for performing ho-
mogenization we have to divide the problem in two parts, first applying the temperature
gradient in X direction and found ¢, and ¢, with applying these boundary condition:

T |x:0: 0

and

T ’x:2a: 1

and assume adiabatic condition at Y direction. In this case, T, become zero and we can
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find k1; and ko from these equations:

qy = —ka Ty (3.18)
In next step, the problem is solved by applying the temperature gradient in Y direction
with these boundary conditions:
T |y=0=0

and

T |y=2b: 1

and assume adiabatic condition at X direction. In the same way, T, become zero, so we

can find k15 and koy from these equations:

4z = —k12T, (3.19)

qy = —k'QQTy (320)

This is the general approach which is used by standard simulation software packages.
Fig.3.6 also shows the schematic of the approach.

y

+
O

30 — o O

Figure 3.6: General schematic of standard simulation packages Approach

24



Now, we are going to solve our problem in ANSYS. In order to have comparable
results, we choose the same RVE such as the previous test. A rectangle with a hole in

center ,Fig 3.4.b, and these initial data:

10
k = , R =10.25, a = b = 1. Then, the selected geometry was meshed with the

0 1
ANSYS standard options. As it was explained, we applied temperature gradient in two

steps in X and Y direction.

Details of "User Defined Result” a
=|| Scope
Scoping Method Geometry Selection
Geometry All Bodies
[=I| Definition
Type User Defined Result
Expression = TFY
Input Unit System Metric [m, kg, M, 5, ¥V, A)
Cutput Unit
By Time
Display Time Last
Coordinate System Global Coordinate System
Calculate Time History | Yes [
Identifier !
=/ Integration Point Results
Display Option Averaged -\ |
=] Results Unaveraged -
Minimum Modal Difference =
Maximum Modal Fraction
Information Elemental Difference
Elemental Fraction -

Figure 3.7: ANSYS User Define Result Window

After solving the problem, the contour of temperature distribution was shown as
in Fig 3.8, but temperature distribution is not enough for us, because we need to find
heat flux in X and Y direction according to equation 3.15 and 3.16. As a result, we tried
to find a way that enables us to manage the ANSYS results. ”User Defined Result”

button is used for this purpose. Clicking on this button, will open a new window such as
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Figure 3.8: Temperature Distribution in Y direction

Fig 3.7, which gave us this ability to control showing the results in more details. Using
this option, we can get the heat flux distribution in X and Y direction.

For finding the homogenized thermal conductivity tensor, the heat flux should be
integrated over the domain such as below:
4@ = [ qzdx/A and G, = [ q,dy/A. But since ANSYS did not support integrating the
results in this way, so we had to export the information of each element into the Excel
file and averaged them discretely to get the averaged amount of heat flux according to
the following formulation:
G = (Zn: ¢zi)/n. where "n” is the number of the elements. We solved the problem for
both C;:SIGS and found the averaged heat flux in X and Y directions and applied equations
(3.17), (3.18), (3.19) and (3.20 to find the thermal conductivity tensor. Here are the

results of this test:

0.9523 0
= and at last, using the same approach, we solve the problem

0 0.9541
with Meshfree method and get the following result as homogenized thermal conductivity

0.908626 0

k‘H

tensor: kK =
0 0.908393

First, comparing this result with the previous ones shows the 4.8% differences between
result of meshfree method and ANSYS as one of the most powerful finite element pack-
ages. This is because of the ANSYS limitations in performing the integration over the

physical domain for homogenization purposes and once more, pointed the weakness of
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finite element based packages for finding the accurate physical properties of material.
Second, we can see that this result are almost identical with the results in test 2 and
show that, although two different approaches were used in these two tests, but we got
the same result for one macrostructure.
3.6 More Complicated Patterns

Since porous ceramic materials have both isotropic and anisotropic microstructure,
we try to find homogenized thermal conductivity for both cases by testing different
RVE’s. So, in the following, results for more complicated pattern is presented and it is
tried to accommodate anisotropic RVE’s as well. Periodic boundary condition is applied
in all the cases. Each example is solved in meshfree (AEH), (SSSA) and ANSYS and
results brought for comparison. In addition, convergence study for each case has been

done and the graphs are given.

Figure 3.9: RVE and shape function for example 1

3.6.1 Example 1: square with three diagonal circle

10
The initial data for this case is : k = , R =0.25, a = b = 1. Meshfree

0 1

0.743341 0.021001
AEH result for example 1 is: k= . As result shows, ki; and

0.021001 0.743341
koo are equal so there is equal thermal conductivity in X and Y directions. This can be

related to the symmetry of the geometry of this RVE and the equal amount of material

distribution in each direction. The convergence graph is shown in Fig 3.10. Meshfree

0.756382 0.018629
(SSSA) result are for this case is: k= . Ansys result for this

0.018521 0.756014
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0.857957 0.057042
geometry is: k= . Comparison between the results show that

0.055536  0.865689

Thermal conductivity vs degree of polynomials for geometry ID = 1 3 erbegmd conductivity vs degree of polynomials for geometry ID = 1
0.775¢ . I
0.77¢
0.02
0.765}
0.76%
0.0195+
0.755}
0751 0.019}
0.745}
0'745 10 15 0'01855 1b 15

(a) (b)

Figure 3.10: Convergence graph for example 1

unlike ANSYS result, the meshfree results for both AEH and SSSA are identical. This

is because of ANSYS limitation in performing integration over domain.

A

(a) o (©)

Figure 3.11: RVE and shape functions for example 2

3.6.2 Example 2: square with triangle inside and holes

10
The initial data for this case is : k = , R =0.25 a = b= 1. Meshfree
0 1

0.428356 0

AEH result for Example 2 is: k= . As it is obvious here, since
0 0.478928

we have smaller porosity coefficient than the previous example, the thermal conductivity
become less too. Also, in this example, the thermal conductivity in X and Y direction
are not exactly the same but close to each other and the off diagonal components are zero

which means that k5 is zero. This situation shows an orthotropic behavior. The conver-
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0.430363 0
gence graph is shown in Fig 3.12. Also the SSSA result is: k=

0 0.483600
0.557629 0.001405

The ANSYS result for this RVE is: k= . Comparing these three
0.005423 0.631368

results, show that the meshfree results for both AEH and SSSA are almost the same,
while ANSYS result is much different and it could be because of the same reason which
was explained before.

Thermal conductivity vs degree ofTJonnomials for geometry ID = 2

0.65
—e— k11

0.6f

0.55¢

0.45

10 15

Figure 3.12: Convergence graph for example 2

(@) R

Figure 3.13: RVE and shape function for example 3

3.6.3 FExample 3: square with rectangle inside

10
The initial data for this case is : k = ,a =02, b= 0.8 Meshfree
0 1
0.401291 0
AEH result for example 3 is: kff= . In this example, again
0 0.815216

we have larger amount of material in X direction than Y, so the ki; is lager than
kss and since we have different amounts in X and Y direction, therefore this mate-

rial can be considered anisotropic and also since the off diagonal terms are zero, it is
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orthotropic as well. The convergence graph is shown in Fig 3.14. Meshfree SSSA re-

_ 0.402193 0 . 0.473586 0.003258
sult is:k= . The Ansys result is: k=

0 0.817064 0.00031  0.961689
Close results can be seen in both meshfree approaches and rough result for ANSYS.

Results also showed the anisotropy of homogenized thermal conductivity very well. It
is one of the privilege of using meshfree method homogenization because other methods
like "role of mixture” which frequently used in this kind of problem does not show the

anisotropy.

Thermal conductivity vs degree of polynomials for geometry ID = 5

0.44 Thermal conductivity vs degree of polynomials for geometry ID = 5

0.826 v
0.8241
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0'45 10 15 0'8145 10 15

Figure 3.14: Convergence graph for example 3
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Figure 3.15: Example 4

3.6.4 FExample 4: square with ellipse inside

10
The initial data for this case is : k = ,a=0.3,b=0.8.

01

0.709890 0.109712
Meshfree method for example 4: k= . Again, the role of ori-

0.109712 0.561575
entation is obvious in this RVE and it has different amounts of thermal conductivity in
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each direction, so it is anisotropic. This RVE is comparable to RVE in example 3, the
difference in the slope of the pore result in changing the off-diagonal components from

0 to 0.109712. The convergence graph is shown in fig 3.16. Meshfree SSSA result is:
0.71228 0.111013

0.110487 0.563759

0.837510 0.007002

0.055770  0.72824
In this example, also, ANSYS result is different from two meshfree approaches.

The Ansys result is: k=

Thermal conductivity vs degree of polynomials for geometry ID = 4 Thermal conductivity vs degree of polynomials for geometry ID = 4
0.75f 0.11 ;
——1
—e— 22
—
—% 0.1081
0.7}
0.106
0.65
0.104 1
0.6}
’\,____A 0.102f
0-355 10 15 015 10 15

Figure 3.16: Convergence graph for example 4
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Figure 3.17: RVE and shape function for example 6

3.6.5 FExample 6: H shape

10
The initial data for this case is : k = , a =03, b =08 Mesh-

01
0.168535 0.020295

free method for example 6 is: kH= . An inclined beam can
0.020302 0.211362

be seen in the geometry of this RVE that make the material to show anisotropic be-

havior. As results show, not only the ki; and koo are different, also the off diagonal
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components are not zero and it describes the situations when properties depend on

the direction. The convergence graph is shown in Fig 3.18. Meshfree SSSA result

0.160483 0.021491
for this example is:kH= . The Ansys result for example 5 is
0.0202466 0.211704
0.432033 0.0581818
k= . In all of these example, the meshfree AEH and SSSA
0.0353719 0.7049917

results were almost identical, while the ANSYS results were different. Although all the
results were approximated, but since two of them were more close to each other, there-
fore, we can conclude that those two, are more accurate. It was also concluded that the
rough results of ANSYS is because of the limitation of this simulation software package

in performing integration over the domain.

Tgezrg@ conductivity vs degree of polynomials for geometry ID = 6 02‘;&“*" conductivity vs degree Of polynomials for geometry ID = 6
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0'155 1I0 {5 0'0195 1b 15

Figure 3.18: Convergence graph for example 5

3.7 Realistic Microstructure Obtained From the Micrograph

In this part, we are going to accomplish our commitment in the research and apply
our method on realistic geometry of microstructure. In this regard, we got a microstruc-
ture which is obtained from the micrograph. We used the TaC 1800 micrograph and
applied our method to find it’s homogenized thermal properties.

As it is shown in Fig 3.19, we need to convert the gray picture to binary (black
and white) picture. It can be done by the help of software like Coral Photo Paint, Irfan
View and Paint. Since Meshfree method works with distance functions in constructing

the domain, we need to have the exact information of each point and their distance to
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the boundary. So, here, it is needed to convert the binary image to some kind of image

2

that have the facility to give us the distance information. We used the ” Skeleton

Y

software for this mean. The obtained data from the 7 Skeleton ” software have been
used in the code, and rest of the work is similar to previous examples. Finally we got

homogenized thermal conductivity tensor as:
0.430363 0

0 0.483600

Distance field to e Sampled
the boundaries with Euclidean
prescribed temperature distance

Figure 3.19: Scan&Solve thermal analysis performed from a SEM micrograph of surface
of TaC sample.
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CHAPTER 4
INVESTIGATING THE DEPENDENCE OF THE ANISOTROPY OF

THERMAL CONDUCTIVITY ON GEOMETRIC PROPERTIES

In this chapter, series of targeted experiments are done to investigate the depen-
dence of the anisotropy of thermal conductivity of porous ceramic materials on geometric
properties of their microstructure. There are some important geometric parameters of
microstructure that can affect the homogenized thermal conductivity. Porosity coeffi-
cient, pores orientation and also the density of pores are some of these important factors.
Therefore, we are going to set up an experiment to study the rate of changes of thermal
conductivity regarding these parameters.

To do so, a square will be used as an RVE with a rectangle in it. This rectangle
which later will be called ”cloud of porosity” has three specifications. First, it includes
selected number of circles or ellipses which play the role of porosity in the experiments.
Second, it will rotate 180 degree through each experiment. This rotation will help
to investigate role of orientation of the porosity structure. Third the pores will be
distributed randomly within the rectangle.

In order to investigate the effect of porosity coefficient, we will change the param-
eters such as geometry of pores which could be circle or ellipse, size and number of them
and also dimensions of cloud of porosity . We can run several experiments with different
porosity coefficients and show the results on the graphs. Also, for checking the role of
orientation, we are going to rotate the cloud of porosity and find the related thermal
conductivity in every selected angle. In this way we could depict the variations of the
principle geometric axes with respect to the orthotropic axes and see the correlation
between them.

Before starting to explain the experiments, it will be helpful to define what the
principal geometric and anisotropy axes are.

In this research we are considering two dimensional problems, so matrix notation

Ixx Izy
for moment of inertia will be:

Ixy ITyy
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and we could find the position of principal axes of geometry, using this equation:

2x1.
arctan —*
_ Yy T
ap = (4.1)

Axes of anisotropy for the thermal conductivity will be defined in the same way, using

thermal conductivity tensor components:

k11n—koon
o = B (42)

As it was said before, we could investigate the affect of orientation of pores to the

anisotropy of homogenized thermal conductivity, by comparing these two angles.

4.1 Experiment A:

In this experiment the geometry of the pores is selected to be ellipses with these
dimensions: a = 0.04, b = 0.02. Also the dimension of the cloud of porosity is fixed to
(0.8 x 0.15). Keeping these parameters untouched, we run the code for three different
number of ellipses, 10, 30, 50 separately and plot the results as following. The porosity
coefficient for these three case is: 0.006, 0.018, 0.028.

Figure 4.1: Cloud of porosity for experiment A, geometry of pores are ellipses (a = 0.04,
= 0.02) and cloud of porosity dimension is: (0.8 x 0.15)

4.1.1 Discussion
Figures 4.2 and 4.3 show that thermal conductivity will decrease when porosity
coefficient increases. Higher porosity coefficient means smaller amount of material which

will result in smaller amount of thermal conductivity. Also, as it can be seen, the changes
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Thermal conductivity K11 vs position of the principal geometric axes
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Figure 4.2: kj; for Experiment A, geometry of pores are ellipses (a = 0.04, b = 0.02)
and cloud of porosity dimension is: (0.8 x 0.15)

Thermal conductivity K22 vs position of the principal geometric axes
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Figure 4.3: koo for Experiment A, geometry of pores are ellipses (a = 0.04, b = 0.02)
and cloud of porosity dimension is: (0.8 x 0.15)
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Thern}ajl ﬁénductivity K12 vs position of the principal geometric axes
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Figure 4.4: k5 for Experiment A, geometry of pores are ellipses (a = 0.04, b = 0.02)
and cloud of porosity dimension is: (0.8 x 0.15)

Correlation between principal geometric and orthotropy axes
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50} / .
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Figure 4.5: correlation between geometric and orthotropic axes for Experiment A, ge-
ometry of pores are ellipses (a = 0.04, b = 0.02) and cloud of porosity dimension is:
(0.8 x 0.15)
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for k11 and koo are inverse which show the fact that by changing the porosity orientation,
when the thermal conductivity increases in x direction, it will decrease in y direction
and vice versa.

In addition, these figures show higher ranges of thermal conductivity for higher
porosities. For example in Fig 4.4, ranges of ks is between 0.0006 and 0.0032 when
number of pores are 50 (porosity coefficient = 0.028), but it is between 0.00048 and
0.0013 when number of pores are 30 (porosity coefficient = 0.018). Same thing can be
seen in Fig 4.3, ranges of koy is between 0.96 and 0.97 for 50 number of pores while it
is between 0.9755 and 0.98 for 30 number of pores. It can be interpreted that when we
have larger porosity coefficients, we should expect larger changes in amount of thermal
conductivity regarding to the changes of the orientation of the pores.

Fig 4.4 shows that regardless of changes of orientation, the off diagonal elements
of thermal conductivity tensor (kjz), is very close to zero for materials having smaller
amount of porosity or those which can be considered as homogeneous materials. With
increasing the porosity coefficient, k1o will increase and show more variation regarding
to orientation changes as well. With a closer look to this graph, we can find that,
the intersections of graphs are not exactly coinciding. It can be related to the random
distribution of the pores which results in tiny differences in orientation of the porosity.
[Please see Fig. 4.1].

In Fig 4.5, we could track changing of the anisotropy of thermal conductivity
with respect to orientation of the pores (principal geometric axes). It can be seen that,
there is a strong correlation between them and only small deviation can be found when
number of ellipses are equal to 10.

In the following, rest of the experiments are presented. In general, the
trends in all the graphs are almost the same, but in case of observing any

special case, it will be remarked.

4.2 Experiment B
In the next two experiments, we are going to investigate role of porosity coefficient.

So we run the same test as experiment A, but only change dimensions of ellipses: a =
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0.1, b = 0.05. Keeping these parameters untouched, we run the code for three different
number of circles, 10, 30, 50 separately. The porosity coefficient in these three case is:

0.037, 0.082, 0.106. Results are plotted in Fig 4.7.

Figure 4.6: Cloud of porosity for experiment B, geometry of pores are ellipses (a = 0.1,
b = 0.05) and cloud of porosity dimension is: (0.8 x 0.15)

4.3 Experiment C

This experiment is the same as previous one, only we select bigger ellipses. Di-
mension of ellipses in this test is selected to be: a = 0.2, b = 0.1. Also the dimension of
the cloud of porosity is fixed to (0.8 x 0.15). Keeping these parameters untouched, we
run the code for three different number of circles, 10, 30, 50 separately. The porosity
coefficient for these cases are: 0.11, 0.168, 0.185. Results are plotted in Fig 4.9.

Remark: The same trend as was explained in the observation part is seen in
graph of these experiments.
4.4 Experiment D

The goal of next two experiment is to investigate the effect of density of the
distribution of the pores. We select the same parameters as experiment B, but using
bigger cloud of porosity in order to decrease density of pores distribution. So, the
geometry of the pores is selected to be ellipse with the these dimensions: a = 0.1, b
= 0.05. But dimension of cloud of porosity is changed to (0.8 x 0.4). Keeping these
parameters untouched, we run the code for three different number of circles, 10, 30, 50
separately. In this case the porosity coefficients are: 0.038, 0.101, 0.147. Result of this

experiment can be seen in Fig 4.11.
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Thermal conductivity K11 vs position of the principal ggeometric axes
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Figure 4.7: Results for Experiment B, geometry of pores are ellipses (a = 0.1, b = 0.05)

and cloud of porosity dimension is: (0.8 x 0.15)

Figure 4.8: Cloud of porosity for experiment C, geometry of pores are ellipses (a = 0.2,
b = 0.1) and cloud of porosity dimension is: (0.8 x 0.15)
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Figure 4.9: Results for Experiment C, geometry of pores are ellipses (a = 0.2, b = 0.1)
and cloud of porosity dimension is: (0.8 x 0.15)

Figure 4.10: Cloud of porosity for experiment D, geometry of pores are ellipses (a = 0.1,
= 0.05) and cloud of porosity dimension is: (0.8 x 0.4)
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Figure 4.11: Results for Experiment D, geometry of pores
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0.05) and cloud of porosity dimension is: (0.8 x 0.4)
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4.5 Experiment E

In this experiment, we continue the same trend as previous one and only change the
dimension of the cloud of porosity to (0.8 x 0.6). Keeping other parameters untouched,
we run the code for three different number of circles, 10, 30, 50 separately. The porosity

coefficient in these cases are: 0.039, 0.107, 0.161 and results are plotted in Fig 4.13.

Figure 4.12: Cloud of porosity for experiment E, geometry of pores are ellipses (a = 0.1,
b = 0.05) and cloud of porosity dimension is: (0.8 x 0.6)

4.6 Experiment F

In the next five experiments, all the previous experiments will be tested on the
circles as the geometry of the pores. This is done in order to investigate the effect
of direction of the pores on the material behaviour in terms of thermal conductivity.
(Ellipse is a kind of directional geometry while circles do not have direction).

Like Experiment A, B and C, cloud of porosity dimension is (0.8 x 0.15). Pores are
circles with the radius of: R = 0.02. Keeping these parameters untouched, we run the
code for three different number of circles, 10, 30, 50 separately. The porosity coefficient

for these cases are: 0.004, 0.01, 0.015. The results can be found in Fig4.15

According to Fig 4.15, almost the same trend as previous ones is seen. Range of k7 and
koo for circular pores are less than ellipsoidal ones. Also there are more perturbation in
last graph for the smallest porosity coefficient.

4.7 Experiment G
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Thermal conductivity K11 vs position of the principal geometric axes
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Figure 4.13: Results for Experiment E, geometry of pores are ellipses (a = 0.1, b = 0.05)
and cloud of porosity dimension is: (0.8 x 0.6)

Figure 4.14: Cloud of porosity for experiment F, geometry of pores are circles (R =
0.02) and cloud of porosity dimension is: (0.8 x 0.15)
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Results for Experiment F, geometry of pores




In this experiment, the radius of the pores is selected to be R = 0.05 in order to
increase the porosity coefficient. The dimension of the cloud of porosity is unchanged:
(0.8 x 0.15), similar to condition which was defined in experiment F. We run the code
for three different number of circles, 10, 30, 50 separately. The porosity coefficients for

these cases are: 0.019, 0.05, 0.071. Results can be seen in Fig 4.17.

Figure 4.16: Cloud of porosity for experiment G, geometry of pores are circles (R =
0.05) and cloud of porosity dimension is: (0.8 x 0.15)

Remark: There are very strong correlation between the assigned parameters
and the graphs are smooth for both cases.
4.8 Experiment H

In this experiment, larger circles are selected: R = 0.1. The dimension of the cloud
of porosity is unchanged: (0.8 x 0.15). The porosity coefficient in these cases increases

to: 0.068, 0.129, 0.154. The results of this part can be found in Fig 4.19.

4.9 Experiment I

In this experiment and the next one, the radius of pores is kept untouched, but
we changed the dimension of cloud of porosity in order to check the effect of changing
the density of distribution of the pores. Geometry of the pores is selected to be circle
with radius of R = 0.05. Also the dimension of the cloud of porosity is selected to be:
(0.8 x 0.4). We run the code for three different number of circles, 10, 30, 50 separately.
The porosity coefficients for these cases are: 0.019, 0.055, 0.085. The results are plotted
in Fig 4.21.
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Figure 4.17: Results for Experiment G, geometry of pores are circles (R = 0.05) and
cloud of porosity dimension is: (0.8 x 0.15)
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Figure 4.18: Cloud of porosity for experiment H, geometry of pores are circles (R = 0.1)
and cloud of porosity dimension is: (0.8 x 0.15)

Remark: As it is seen, lines which represent changes of the smallest porosity
coefficient have more erratic changes.
4.10 Experiment J

As the last experiment, the dimension of the cloud of porosity is changed to
(0.8 x0.6). The geometry of the pores are circles with radius of R = 0.05. Keeping these
parameters untouched, we run the code for three different number of circles, 10, 30, 50
separately. The porosity coefficient for these cases are: 0.02, 0.056, 0.089. Results can
be found in Fig 4.23.

Remark: There are more erratic changes in these figures. It can be due
to the large cloud of porosity which is defined for this experiment. Changing
the orientation of this cloud of porosity can produce this chaos, it means
that, when pores are more disperse, rotating of the RVE will result in larger
differences in thermal conductivity in each direction. Therefore it can be
said that not only the porosity coefficient can affect the material behavior,
but also the pores dispersion can be effective.

4.11 Conclusion of the Experiments

In experiments A, B and C, we gradually increase the porosity coefficient by in-
creasing size of the pores and fixing the distribution density by keeping untouched the
cloud of porosity dimension. We can see in Fig 4.24 that by increasing the porosity
coefficient we will have smaller amount of thermal conductivity in every single angle of

principal geometric axes. Meanwhile the off diagonal elements of thermal conductivity
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Figure 4.19: Results for experiment H, geometry of pores are circles (R = 0.1) and cloud
of porosity dimension is: (0.8 x 0.15)

-

Figure 4.20: Cloud of porosity for experiment I, geometry of pores are circles (R = 0.05)
and cloud of porosity dimension is: (0.8 x 0.4)
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Figure 4.21: Results for Experiment I,geometry of pores are circles (R = 0.05) and cloud

of porosity dimension is: (0.8 x 0.4)

Figure 4.22: Cloud of porosity for experiment J, geometry of pores are circles (R = 0.05)

and cloud of porosity dimension is: (0.8 x 0.6)
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Figure 4.23: Results for Experiment J, geometry of pores are circles (R = 0.05) and
cloud of porosity dimension is: (0.8 x 0.6)
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k12, has both increasing and decreasing trends, depend on the angle of principal geomet-
ric axes. It means that the trends depends on the orientation of the porosity. The same
trend can be seen for experiment G, H and I, when the geometry of pores is circle.
Also, for geometry of pores, we selected ellipses and circles in order to consider
effect of pores shape on the material behavior. For clear investigation of this issue,
we select results for the same porosity coefficient and also the same cloud of porosity
dimension and plotted the results for both geometries in one graph. Fig 4.25 shows
differences very well. We can see that with the same porosity coefficient (0.018) elements
of thermal conductivity tensor for both shape are almost the same. It shows that shape of

porosity can affect the homogenized thermal conductivity but the effect is not significant.

Dispersion of the pores is another parameter which was investigated in this chap-
ter. In order to have clear conclusion about this parameter, we choose the results of
experiment B, D and F for 30 numbers of ellipses and plotted them in Fig 4.26. In these
experiments geometry and dimension of the pores are selected to be the same, ellipses (a
= 0.1 and b = 0.05), but we gradually decrease pores distribution density by increasing
the dimension of cloud of porosity in this way: (0.8 x 0.15), (0.8 x 0.4), (0.8 x 0.6).
According to Fig. 4.26, when pores are more disperse, range of changes in element of
thermal conductivity tensor regard to the angle of anisotropy are smaller. In this case,
material microstructure behaviour goes toward more homogeneity, therefore, it can be
less affected by changes of anisotropy. Also according to Fig 4.26, by decreasing the
pores distribution density, no constant increasing or decreasing trend can be seen in the
amount of thermal conductivity tensor elements and it depends on the orientation of

the pores.
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Figure 4.24: Comparison of the results by increasing the porosity coefficient, (a)and (b):
ki1 and ko for porosity coefficients: 0.006, 0.018, 0.028. (c) and (d): ky; and ko for
porosity coefficients: 0.037,0.082,0.106. (e) and (f): k11 and kq5 for porosity coefficients:
0.11, 0.168, 0.185.
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Figure 4.26: Comparison of the results for different pores distribution

55



CHAPTER 5
CONCLUSIONS

In this thesis, we demonstrated the feasibility of homogenization of thermal prop-
erties of porous ceramic materials using meshfree method with distance field. We showed
how to combine asymptotic homogenization and meshfree method for finding thermal
conductivity. We presented results of several example and investigated the effect of
anisotropy in elements of thermal conductivity tensor. It is learned that the geometry
of the microstructure affected the anisotropy of the thermal conductivity.

Since porous microstructure of the ceramic materials highly affects the macro-
scopic materials properties, the geometry of the microstructure has to be included into
consideration during the analysis. Direct inclusion of the geometry of the microstructure
into analysis at the macro level is infeasible due to excessive computational cost. That
is why homogenization method was applied.

Homogenization requires solution of the boundary value problem at micro scale
level. Mesh-based analysis methods, like Finite Element Method, require spatial meshing
for solving boundary value problem. Meshing of the realistic geometry of the microstruc-
ture is difficult due to data conversion from 2D images and Computed Tomography
(CT)scans. Applying meshfree method which does not need to construct the grid which
must conform to the geometry, solved problems of meshing and enabled us to include
realistic geometry of the microstructure to homogenization procedure.

Further more, dependence of the homogenized thermal conductivity to the geom-

etry of the microstructure was investigated and following points were concluded:

Porosity coefficient affects homogenized material properties

Rule of mixture cannot predict anisotropy of the homogenized material properties

Shape and distribution of the pores may result in anisotropy of the homogenized

material properties

Orientation of the principal axes of anisotropy is well correlated with the orienta-

tion of the principal axes of the porosity structure
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e Dispersion of pores affects homogenized material properties. Higher dispersion of

the pores decreases anisotropy of the thermal conductivity

e Shape of the pores also affects the homogenized thermal conductivity
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