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ABSTRACT OF THE THESIS  

EFFECTS OF MULTIPLE ECOLOGICAL DRIVERS ON RECRUITMENT AND 

SUCCESSION OF CORAL REEF MACROALGAL COMMUNITIES 

by 

Alain Duran 

Florida International University, 2013 

Miami, Florida 

Professor Ligia Collado-Vides, Co-Major Professor 

Professor Deron Burkepile, Co-Major Professor 

The study evaluated the effects of herbivory pressure, nutrient availability and potential 

propagule supply on recruitment and succession of coral reef macroalgal communities. 

Recruitment and succession tiles were placed in a nutrient-herbivory factorial experiment and 

macroalgal abundances were evaluated through time. Proportional abundances of macroalgal 

form-functional groups on recruitment and succession tiles were similar to field established 

communities within treatments, evidencing possible effects of adult macroalgae as propagule 

supply. Macroalgal abundance of recruitment tiles increased with nutrient loading and herbivory 

reduction combined whereas on succession tiles nutrient loading increased abundance of 

articulated-calcareous only when herbivores were excluded. Macroalgal field established 

communities were only affected by herbivory reduction.  
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CHAPTER 1 – BACKGROUND 

1.1 Introduction      

Coral reefs provide a wide variety of functional values such as dissipation of wave 

energy, biogeochemical cycling, and nursery habitats for multiple species (Harborne et al., 

2006). Furthermore, human communities living adjacent to coral reefs receive goods and 

services such as food, recreation, and tourism income that place the value of coral reefs at 

approximately $ 29.8 billion per year (Cesar et al., 2003). Despite the economic and ecological 

importance of coral reef ecosystems, they are threatened by local anthropogenic impacts (e.g., 

overfishing, eutrophication, habitat destruction among others) that intensify the effects of global 

stressors such as ocean acidification and thermal stress (Hoegh-Guldberg et al., 2007). 

Consequently, coral reefs worldwide, particularly in the Caribbean, have suffered long-term 

degradation caused by the decline of large carnivores and herbivores and the loss of overall coral 

cover (Pandolfi et al., 2003). In the last three decades coral cover in some places of the 

Caribbean has been reduced to ten percent or less (Gardner et al., 2003) resulting in a phase shift 

from a coral-dominated to a coral-depauperate state (Hughes, 1994; Roger and Miller, 2006; 

Mumby, 2009). Further, there are several causes of coral cover declined such as coral diseases, 

coral bleaching events, out-break of coral-eating organisms, and storm damage (Goreau et al., 

1998; Eakin et al., 2010; Kayal et al., 2012). 

 As a consequence of reduced coral cover, new available space has been created which 

can be colonized by macroalgal propagules, leading to increased abundance of macroalgae 

(Diaz-Pulido and McCook, 2002; Mumby and Steneck, 2008). Once macroalgal propagules have 

settled, different species or form-functional groups of macroalgae can become dominant 

throughout time following different successional patterns (Sammarco, 1983; Hixon and Bostroff, 
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1996; Diaz-Pulido and McCook, 2002). Recruitment of algae species and post-settlement 

succession of coral reef macroalgae communities are both shaped by different herbivore groups 

such as farmers (Pomancentridae), fish grazers (Acanthuridae and Scaridae) and sea-urchin 

grazers (Carpenter, 1986; Hixon and Brostoff, 1996; McClanahan, 1997). Indeed, some authors 

have suggested loss of herbivory (top-down driver) as a major cause of increasing macroalgal 

abundance on coral reefs, but nutrient enrichment (bottom-up) can amplify its effects (Burkepile 

and Hay, 2006; Walsh, 2011). Conversely, it has been proposed that nutrient loading is the 

primary factor regulating biomass and diversity of reef macroalgal communities (Lapointe et al. 

1997; Lapointe et al., 2004). However, top-down and bottom-up forces likely interact with one 

another to shape algal communities (Burkepile and Hay 2006). Little is known about how 

macroalgal propagule supply interacts with nutrient loading and herbivory to shape the 

recruitment and succession of coral reef macroalgal communities (De Ruyter and Breeman, 

1987; Walters et al., 2002). 

1.2 Top-down drivers of coral reef macroalgal community  

Several vertebrate and invertebrate herbivores feed on coral reef macroalgae, functioning 

as important top-down controls (Hay, 1984; Lewis, 1986; Edmunds and Carpenter, 2001; 

Burkepile and Hay, 2010; Butler and Mojica, 2012). Coral reef herbivores can be classified by 

body size, foraging range, grazing frequency, and impact on benthic communities (Steneck, 

1983). Carpenter (1986) grouped reef herbivores into three categories: micro-herbivores 

(restricted mobility and small grazing range such as amphipods, tanaids and gastropods), 

intermediate size herbivores (crabs, sea urchins and blenids), and foragers (larger organisms with 

higher grazing rates, such as fish including parrotfish (Scaridae), surgeonfish (Acanthuridae) and 

chubs (Kyphosidae). Damselfish (Pomacentridae) belong to the intermediate sized herbivore 
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group as they have limited territories and remove small amounts of algal biomass. However, they 

are unique since their distinctive territorial behavior affects consumption rates of other grazers 

(Jones et al., 2006). Because of their foraging habits and different effects on algal communities 

as compared to other herbivores, they are often referred to as farmers (Ceccarelli et al. 2005). 

Despite a high diversity of herbivores, sea urchins and herbivorous fish often remove most of the 

algal biomass from coral reefs (Solandt and Campbell, 2001; McClanahan et al., 2002; 

Bellwood, 2003; Steiner and Williams, 2006; Blanco et al., 2011). For instance, the functional 

importance of the long-spined sea urchin (Diadema antillarum) as a top-down driver was well 

studied before its massive die-off in 1983-84, which resulted in a dramatic increase of 

macroalgae on many Caribbean coral reefs (Sammarco, 1982; Carpenter, 1986, Lessios et al., 

1984). Even though the mass mortality of D. antillarum influenced the present-day phase shift 

from coral to macroalgae domination in some areas of the Caribbean (Hughes, 1994; Mumby et 

al., 2006), it has been shown that the loss of herbivorous fishes could have major impact (Hay, 

1984). 

Anatomical, morphological, and physiological traits allow different species of parrotfish 

(Scaridae) and surgeonfish (Acanthuridae) to remove multiple types of macroalgae, such as 

small and soft filamentous algae, upright, leathery macroalgae, and crustose macroalgae 

(Tilghman et al., 2001; Crossman et al., 2005). Nonetheless, herbivore consumption rates are 

affected by macroalgal morphology, specific chemical defenses and tissue nutrient content, 

resulting in selective grazing by herbivores (Targett et al., 1986; Duffy and Hay, 1994; Schupp 

and Paul, 1994; Hay, 1997; Hoey and Bellwood, 2011) which results in herbivore-specific 

feeding preferences (Hay et al., 1987). For instance, Burkepile and Hay (2010) reported species-

specific grazing rates and preferences among three common Caribbean herbivorous fish; 
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herbivory pressure by Acanthurus bahianus (ocean surgeonfish) and Scarus taeniopterus 

(princess parrotfish) kept the macroalgae community at a short turf and crustose coralline algae 

(CCA) level considered early successional stages. In contrast, foraging activity of Sparisoma 

aurofrenatum (redband parrotfish) resulted in taller macroalgae community, late successional 

stages, very similar to caged experimental treatments. Thus, coral reef macroalgae communities 

are controlled by multiple herbivorous fishes capable of limiting abundance of macroalgae and 

promoting growth of CCA (Burkepile and Hay, 2009; Smith et al., 2010). 

1.3 Bottom-up drivers of coral reef macroalgal community 
 
 Macroalgal primary production is directly related to nutrient and light availability 

(Lüning, 1990). In shallow, relatively oligotrophic tropical regions such as the Caribbean, 

nutrient availability can often limit macroalgal productivity (Lapointe et al., 1997).  Although 

nutrients are recognized to be a major factor determining abundance and diversity of certain 

macroalgal functional groups, it is still unclear with regards to their role in promoting increases 

of algal abundance on coral reefs (McClanahan et al., 2004; Burkepile and Hay, 2006; 

McClanahan et al., 2007). Availability of main macronutrients, nitrogen (N) and phosphorus (P), 

and their roles in driving macroalgal growth are focus of a strong debate among coral reef 

ecologists (Hughes, 1994; Lapointe et al. 1997; Lapointe et al., 1999; Hughes et al., 1999).   

Dissolved inorganic nitrogen (DIN), which includes NH4
+, NO3

-, NO2
-; and soluble 

reactive phosphorus (SRP) are limiting factors of primary production used to evaluate nutrient 

availability in marine environments (Smith, 1984; Lapointe et al., 2005). Even though some 

nutrient thresholds have been proposed to predict algal domination on coral reefs, DIN 1.0 μM 

and SRP 0.1 μM (Lapointe et al. 1993; Lapointe et al., 2005) several studies on this topic have 

not generally supported these concrete thresholds for predicting macroalgal dominance (Lapointe 
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et al., 1993; Hughes, 1994; Lapointe et al., 1997; Hughes et al., 1999; Lapointe et al., 1999; 

Lapointe et al., 2005). It is possible that some factors such as species-specific differences in 

nutrient uptake rate and physiological state of individuals (whether or not individuals are nutrient 

limited) would limit the potential for establishing nutrient thresholds that could lead to increase 

abundance of coral reef macroalgae (Fong et al., 2001; Dailer et al., 2012).   

 Several conceptual models have been put forth to explain the effect and magnitude of 

major ecological drivers responsible for controlling abundance of coral reef macroalgae (e.g., 

herbivory and nutrients; Littler and Littler, 1984; Steneck and Dethier, 1994; Littler et al., 2006).  

The Relative Dominance Model (RDM) was proposed by Littler and Littler (1984) where four 

groups of benthic reef organisms are predicted to dominate depending upon bottom-up (nutrient 

levels) and top-down (herbivory activity) ecological controlling forces. According to Littler and 

Littler (1984) coral reefs with low nutrient levels and low herbivory tend to have higher 

abundance of filamentous algae whereas high nutrient levels and high herbivores activity favors 

dominance of coralline algae. Their conceptual model also predicts that a combination of low 

nutrient levels and high herbivory facilitates coral dominance and contrarily high nutrient levels 

and low herbivore activity enhances abundance of fleshy algae.  

 On the basis of Grimes’s model (1977) and Littler and Littler’s model (1984), Steneck 

and Dethier (1994) proposed a conceptual model combining productivity potential of different 

macroalgal form-functional groups and disturbance potential, defined as intensity and frequency 

of grazing. The model expects higher macroalgal biomass at low disturbance and high 

productivity potential levels while lower macroalgal biomass at low productivity and high 

disturbance potential levels (Steneck and Dethier, 1994). Importantly, Steneck and Dethier’s 

model included seven macroalgal form-functional groups having leathery (e.g., Sargassum spp.) 
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and articulated calcareous (e.g., Amphiroa spp.) the highest biomass when there is a combination 

of low disturbance and high productivity potential levels. The Relative Dominance Model was 

modified in 2006 by Littler et al., by integrating coral reef resiliency and human impact concepts 

and modifying dominant groups under different levels of both grazing activity and nutrient 

availability. The new proposed model predicts dominance of coral and crustose coralline algae 

(CCA) when combining low nutrient and high grazing activity levels suggesting that lower 

human impact results in more resilient coral reefs.  

Factorial experiments testing the above mentioned conceptual models by manipulating 

nutrient availability and herbivory level have demonstrated that nutrient loading can affect coral 

reef macroalgae abundance only when herbivores are absent (Burkepile and Hay, 2006, 2009; 

Sotka and Hay, 2009). Additionally, it has been revealed that herbivore exclusion could increase 

reef macroalgae cover faster (less than one month) than nutrient loading (Smith et al., 2010). 

Moreover, a noticeable response (increased abundance) of coral reef macroalgae to nutrient 

enrichment could be evident only after approximately three to four months (Smith et al., 2010). 

Furthermore, it has been shown that grazing intensity could be modified by nutrient availability 

where enriched algae are preferably consumed by herbivorous fish (Boyer et al., 2004; Burkepile 

and Hay, 2009). In summary, variations in magnitude effect of nutrient availability depend on 

the context (e.g., herbivory pressure level, macroalgal species composition) and specific study 

time scale.  

1.4 Propagule supply and recruitment of macroalgae in coral reefs  

Recruitment in marine environments, defined as addition of new individuals to 

populations, is a determinant process structuring open populations (Caley et al., 1996; Robersson 

and Kaufman, 1998). Furthermore, recruitment rates of marine organisms are determined by the 
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number of propagules (marine plants) and larvae (marine animal) available as well as natural 

disturbances and oceanographic processes such winds and currents (Reed et al., 1988; Caley et 

al., 1996; Wilson and Meekan, 2001; Clark and Johnston, 2005). In that sense, some ecological 

studies of coral reef fishes have shown that fish recruitment is directly affected by number of 

larvae (larval supply) and other factors such as microhabitat characteristics and currents 

(Milicich et al., 1992; Sale, 2004; Grorud-Colvert and Sponaugle, 2009). Likewise, Stoner et al. 

(1996) described substantial differences in larval density (number of veliger) of Queen Conch 

(Strombus gigas) between two separated populations caused by differential abundance of 

reproductive adults and consequently larval supply. In the case of marine macroalgae, propagule 

supply and dispersal distance have been also proposed to play an important role on population 

recruitment but few studies have focused on coral reef macroalgae (Kendrick and Walker, 1991; 

Stiger and Payri, 1999).    

Macroalgae can reproduce either sexually or asexually resulting in a large production of 

propagules, such as zygotes, parthenogenetic gametes, spores and fragments that are released to 

the marine environment. However, reproduction events are triggered by several environmental 

factors such as lunar cycle, photoperiod, water temperature, and natural disturbances (Luning, 

1990), which in many species may explain marked seasonality. For instance, Andersson et al. 

(1994) showed a circadian (18:00 to 22:00 h) and fortnightly rhythm for egg release during the 

reproductive season of Fucus vesiculus in the Baltic Sea. Also, Hay and Norris (1984) found that 

six sympatric species of the red algae within the genus Gracilaria exhibited an increase in the 

percentage of reproductive plants following the onset of the turbid dry-season in late November. 

Clifton (2008) suggested that earlier reproductive period of some bryopsidales species (Phylum 

Chlorophyta) in Panama compared to Florida Keys could be a consequence of warmer water 
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occurring earlier in Panamanian coastal zone. Additionally, species of Enteromorpha recruited 

abundantly from overwintering propagules in March-April and dominated areas with propagule 

banks in Baltic rocky shores (Worm et al., 2001). Santos and Duarte (1996) found a spore peak 

production of Gelididum sesquipedale (10.4x106 spores/m2 and 4.9x105 spores/m2 of 

tetrasporophyte and carposporophyte respectively) in March at the coastal area of Portugal. In 

China, Sargassum thunberguii shows a reproductive season from spring to early summer (May-

June) where the number of germlings per kg of adult reaches about 1.2x105 quantified from 

natural populations (Zhang et al., 2012). Noticeably, the number of macroalgae propagules in 

marine systems is high and varied with species-specific reproductive periods. Regardless of the 

seasonality of reproduction, the role of adult macroalgal assemblage structure as propagule 

supply is an important factor on determining macroalgal recruitment (Lotze et al., 2000). Indeed, 

establishment of macroalgal assemblages is affected by the number of mature individuals as well 

as adult fertility affecting propagule supply (Stiger and Payri, 1999; Bellgrove et al., 2004).  

After propagules have been released from the parent plant, they must settle, attach, and 

become established (Fletcher and Callow, 1992). Environmental factors such as water flow and 

viscosity can influence propagule sinking speed and subsequent establishment (Chartes et al., 

1973; Okuda and Neushul, 1981; Granhag et al., 2004). Further, temperature, salinity and 

surface roughness affect the ability of propagules to attach and establish on the substrate (Callow 

et al., 1997; Maggs and Callow, 2002).  Diaz-Pulido and McCook (2004) found density of 

settlement significantly higher on rough surfaces compared to smooth surfaces for reef species of 

order Fucales (mostly Sargassum spp.) and Lobophora variegata. Moreover, Ericksson and 

Johansson (2003) concluded that sediment, particularly organic sedimentation, had a negative 

effect on macroalgal recruitment.  
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Along with number of propagules, recruitment success and consequently development of 

macroalgal community structure are determined by propagule dispersal. Further, it has been 

proposed that macroalgal dispersal distance is among the shortest for marine organisms with 

over 60% of propagules being retained within less than one km from the parent plant (Kinlan and 

Gaines, 2003; Kinlan et al., 2005). However, a high variation of dispersal distance along with 

type and size of propagule can be found among algal species.  For instance, Reed et al (1988) 

described equal densities of filamentous brown algae recruits from the parent thalli up to 500 m 

away. Conversely, Kendrick and Walker (1991) found that 96% propagules of Sargassum 

spinuligerum settled within 0.25 meter from the parent thalli. Additionally, propagules of 

Macrocystis sp. could successfully be recruited over 3 km from parent plants (Reed et al., 2004). 

Hence, species-specific variations in dispersal distances could be a function of parent height, 

propagule size and abiotic factors with currents being especially important (Okuda and Neushul, 

1981; Norton, 1992; Gaylord et al., 2006). Thus, composition of local macroalgal community 

may strongly determine the abundance and species identity of macroalgal propagules and 

ultimately recruitment patterns on coral reefs 

1.5 Succession of coral reef macroalgal communities 

After propagules have established, different species of macroalgae can become dominant 

at different times following successional dynamics (Hixon and Brostoff, 1996; Diaz-Pulido and 

McCook, 2002). Several successional patterns have been described for coral reef macroalgae 

communities depending upon abundance and type of herbivores, as well as substrate type and 

competition between algae and other benthic organisms for space (McClanahan, 1997; Diaz-

Pulido and McCook, 2002). Sammarco (1983) compared the effect of territorial damselfish 

behavior and large herbivorous fish (parrotfish and surgeonfish) on algal community 
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composition using four treatments (caged, shaded, territory and open). After three months, plates 

in all four treatments were covered by turf algae (>67% cover). But in open areas, naturally 

grazed by fish, turf algae decreased after 11 months resulting in bare substrate and endolithic 

algae covering 40% and 50% of plots respectively. Interestingly, macroalgal diversity was higher 

within damselfish territories compared to exclosure treatments (Sammarco, 1983). Additionally, 

Carpenter (1986) evaluated the impact of different herbivore groups on succession of macroalgal 

communities. One month after initiation of the experiment, all plates were comprised of 

approximately 80% turf algae. After nine months, macroalgae (height >1 cm) covered over 50% 

of the tiles within cages where urchins (primarily D. antillarum) and herbivorous fishes were 

excluded.  When only fishes and microherbivores grazed the plates, macroalgae turf (height < 1 

cm) had higher biomass and lower diversity (dominated by Sphacelaria tribuloides), whereas in 

treatments only grazed by urchins and microherbivores macroalgae biomass was lower and turf 

algae encompassed 20-25 species (Carpenter, 1986). Furthermore, Hixon and Brostroff (1996) 

studied the effect of herbivory on the rate and trajectory of coral reef macroalgae succession. 

They compared development rate and diversity of reef macroalgal communities under three 

treatments: damselfish territory (Stegastes fasciolatus), grazed areas (open to parrotfish and 

surgeonfish) and caged areas (herbivore exclusion). Results demonstrated that, compared to open 

treatments, damselfish decelerated (slowed) succession by maintaining the community at early-

successional stages dominated by green and brown filamentous algae for over 230 days. In 

contrast, in open areas the trajectory of macroalgal succession was different as the early-

successional stage was quickly replaced by different groups of macroalgae such as crustose and 

prostrate algae (Hixon and Bostroff, 1996). Thus, there are evidences of herbivory as a 

significant driver of coral reef macroalgal succession. Indeed, abundance and diversity of 
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macroalgae communities at different successional stages are strongly driven by intensity and 

frequency of grazing (Burkepile and Hay, 2010).  

In conclusion, recruitment and post-settlement succession of coral reef macroalgae are 

driven by a wide variety of ecological factors including the number and species-specific type of 

arriving propagules, type and availability of substrate and grazing pressure of different 

herbivores (Hixon and Bostroff, 1996; McClanahan, 1997; Diaz-Pulido, 2002, 2003; Burkepile 

and Hay, 2010). However, there remains a lack of information regarding the consequences of 

their combined interactions. Therefore, my research question is: How does seasonality affect 

recruitment and post-settlement succession of coral reef macroalgal communities under different 

levels of nutrient availability and herbivory?  

There are multiple studies showing nutrient enrichment, eutrophication, as major cause 

increasing abundance of opportunistic, fast-growing macroalgal species such as Chaetomorpha 

spp. Ulva spp., Codium spp. Enteropmorpha spp. Cladophora spp. (Lapointe et al., 1993; 

Lapointe et al., 1997; McClanahan et al., 2004; Smith et al., 2005). However, when considering 

major drivers of frondose, fleshy macroalgal species, the primacy of nutrient enrichment is still 

under debate (Hughes, 1994; Hughes et al., 1999; McClahanhan et al., 2004). I hypothesized that 

nutrient enrichment will increase (positive effect in conceptual model, Figure 1) percent cover of 

opportunistic early successional species whereas the magnitude of its effect on macroalgal 

abundance will decrease towards late successional stages. The effect of coral reef herbivorous 

fishes controlling multiple macroalgal successional stages has been well documented (Carpenter, 

1986, Hixon and Bostroff, 1996; Burkepile and Hay, 2010). Therefore, I predicted that intense 

herbivory will decrease abundance (negative effect in conceptual model, Figure 1) of macroalgae 

at all successional stages. In addition, potential propagule supply, defined as the abundance of 
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adult macroalgae in close proximity to the studied sites, will increase abundance of macroalgae 

recruits acting as a propagule source (positive effect in conceptual model, Figure 1). 

 

Figure 1. Conceptual model including the ecological factors studied throughout the thesis and their 
hypothesized effects. (-)  symbol indicates overall grazers reducing macroalgal abundance at early and 
late successional stages; (+) symbols (bottom-up and potential propagule supply) predict increasing of 
macroalgae cover at early and late successional stages. Effects of nutrient availability and potential 
propagule supply vary through time with less magnitude effect (thinner arrow) on abundance of 
macroalgae at late successional stages  
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CHAPTER 2 - RECRUITMENT AND SUCCESSION OF CORAL REEF 
MACROALGAL COMMUNITIES UNDER DIFFERENT ECOLOGICAL DRIVERS 

Abstract 
Structure of coral reef macroalgal communities is shaped by herbivory pressure and nutrient 

availability. However, the magnitude of impact of both ecological drivers throughout macroalgal 

succession remains unclear. Current study evaluated the effects of herbivory pressure, nutrient 

availability and potential propagule supply, on recruitment and succession of coral reef 

macroalgae. In September 2011, two limestone tiles were placed in a nutrient-herbivory factorial 

experiment (25 quadrats). One tile (recruitment tiles) was replaced every three months and 

abundance of algal species was evaluated in the lab. The remaining tile (succession tiles) was 

kept in the field throughout the nine-month study period. Percent cover of macroalgal form-

functional groups of succession tiles and field established communities within quadrats were 

assessed in January and June, 2012. Total abundance of macroalgae increased towards June in 

recruitment and succession tiles and field established communities. Proportional abundance of 

macroalgal form-functional groups on recruitment and succession tiles were similar to field 

established communities suggesting possible effects of adult macroalgae as potential propagule 

supply. Macroalgal abundance of early successional species increased with combined nutrient 

loading and herbivore removal on recruitment tiles whereas on succession tiles nutrient increased 

percent cover of articulated calcareous species only when herbivores were excluded. 

Additionally, nutrients did not affect the abundance of macroalgae in field established 

communities. In summary, nutrient loading level and herbivory pressure controlled macroalgal 

communities at early-stages while effects of nutrient loading tended to decrease towards late-

successional stages. Moreover, adult assemblages of coral reef macroalgae could affect 

recruitment and post-settlement succession.  
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2.1 Introduction  

In coral reefs, special attention has been paid to herbivory pressure and nutrient 

availability as primary ecological drivers of macroalgal communities (Sammarco, 1983; Lewis, 

1986; Hixon and Bostroff, 1996; Lapointe et al., 2004; Burkepile and Hay, 2006). However, the 

relative magnitude of the effect of each ecological driver has on structuring macroalgal 

assemblages is still under debate, since increases of macroalgal abundance in some coral reefs 

have been attributed to either eutrophication or reduction of herbivores (Littler et al., 1993; 

Hughes 1994; Lapointe et al., 1997; Thacker et al., 2001; Littler et al., 2006; Rasher et al., 

2012). However, grazing rates of herbivorous fishes vary with season and depends on nutritional 

value and chemical defenses of macroalgal species (Hay et al., 1987; Bolser and Hay, 1996; 

Boyer et al., 2004; Burkepile and Hay, 2009, 2010).  Furthermore, it is known that coral reef 

macroalgal species respond differently to nutrient loading since some species (e.g., opportunistic 

fast-growing) could quickly increase growth rates in nutrient enriched environments (Lapointe et 

al., 1993; Lapointe et al., 1997; McClanahan et al., 2004; Smith et al., 2005). However, when 

referring to the abundance of frondose algal species, the controlling effect of nutrient loading 

remains uncertain (Hugher, 1994; Hughes et al., 1999; McCLanahan et al., 2004). Additionally, 

abundance of coral reef macroalgae species changes seasonally responding to temporal 

variations of environmental conditions such as salinity, water temperature and light availability 

(Stiger and Payri, 1999; Ferrarri et al., 2012). Hence, the effect of herbivory pressure and 

nutrient availability on controlling coral reef macroalgae might vary seasonally, locally and is 

content dependent. 

Plant communities are subjected to progressive temporal changes of both species richness 

and abundance, defined as community succession (Grime, 1979). Furthermore, terrestrial 
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ecologists have classified primary succession as colonization of substrate that has never been 

previously occupied and secondary succession as recolonization after disturbances open free 

space (Moore et al., 1998). In marine communities some macroalgae have been classified as 

early-successional species (e.g., filamentous turf algae such as Ectocarpus sp., and Ulva spp.) 

whereas others as late-successional species (e.g., Sargassum sp., Corallina sp., Amphiroa sp.) on 

the basis of their growth and reproduction rates, and morphological characteristics (Littler and 

Littler, 1980; Dawes, 1998). Biological traits of early-successional species include small size, 

year-around reproductive cycle, and high growth rates that allow them to rapidly colonize 

available substrate (Steneck and Dethier, 1994; McClanahan, 1997). Conversely, late 

successional forms include taller species with higher thallus complexity characterized by slow 

growth and reproduction rates and usually more resistant to grazing through physical and 

chemical defenses (Steneck and Dethier, 1994). 

Recruitment of macroalgae relies upon several factors such as number of propagules 

released by parents (propagule supply), propagule dispersal distance, as well as abiotic factors 

such as space availability, currents, and water temperature (Callow et al., 1997; Lotze et al., 

2000; Worm et al., 2001). However, while only few studies have focused on coral reefs, the 

effects of macroalgal propagule supply on structuring macroalgal marine communities has been 

mostly studied at temperate ecosystems such as kelp forests and rocky shore, and single, invasive 

and blooming species (Kendrick and Walker, 1991; Stiger and Paire, 1999; Lotze et al., 2000; 

Reed et al., 2004; Zhang et al., 2009). Yet, coral reefs have highly diverse macroalgal 

communities with over 700 species that can reproduce sexually and asexually releasing millions 

of propagules that could be recruited within approximately one meter from the parent plant 

(Kendrick and Walker, 1991; Stiger and Payri, 1999; Zhang et al., 2012). Further, macroalgal 
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reproduction periods are triggered by physical factors such as water temperature, tide cycles, 

photoperiod and natural disturbances (Hay and Norris, 1984; Luning, 1990; Clifton, 2008). 

Consequently, multiple species of macroalgae provide propagules that settle on available coral 

reef space at any given time. Therefore, macroalgal propagule supply may be an important, but 

underappreciated, driver of macroalgal recruitment and post- settlement succession on coral 

reefs.  

Furthermore, post-settlement success, growth rate, and competition among germlings are 

controlled primarily by herbivory, nutrient availability, and light availability, among other biotic 

and abiotic factors (Foster, 1975; Lapointe et al., 1981; Greene et al., 1983; Vance, 1988; Hill et 

al., 2004; Karez et al., 2004; Collado-Vides et al., 2011; Guimaraens et al., 2011). For instance, 

some authors have shown herbivory as the primary driver since abundance of coral reef 

macroalgal assemblages has dramatically increased when herbivores are excluded (Lewis, 1986; 

Hixon and Brostoff, 1996; Burkepile and Hay, 2009; Sotka and Hay, 2009; Ferrari et al., 2012; 

Poore et al., 2012). Conversely, Lapointe et al. (2010) reported increased macroalgal abundance 

as solely a consequence of eutrophication on coastal marine ecosystems. Further, Smith et al. 

(2010) indicated that both herbivores and nutrient availability control algal community structure 

on coral reefs but on different time scales. According to Smith et al. (2010), effects of herbivore 

reduction will be noticed in less than a month while the effects of nutrient enrichment will be 

visible after three to four months.  

Most of the research evaluating the relative magnitude of both nutrient availability and 

herbivory pressure on controlling abundance of macroalgae have focused on adult macroalgal 

assemblages (Burkepile and Hay, 2006; Sotka and Hay, 2009; Ferrarri et al., 2012; Rasher et al., 

2012). However, it is known that species composition and abundance of coral reef macroalgal 
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communities could change through time following dissimilar successional patterns, as a 

consequence of type and intensity of grazing (Hixon and Bostroff, 1996; McClanahan, 1997; 

Burkepile and Hay, 2010). In particular, herbivorous fishes are described as major drivers of 

macroalgal succession compared with others such as micro-herbivores (small gastropods, 

polychaetes, etc.) and long-spined sea-urchin Diadema antillarum (Hay, 1984; Carpenter, 1986). 

Indeed, herbivore exclusion experiments report that after 11 months, only uncaged areas (grazed 

by herbivorous fish) were still covered by early-successional species and bare substrate 

(Sammarco, 1983). Furthermore, Hixon and Brostroff (1996) showed a successional 

deceleration, a slower succession rate, with damselfish activity as they selectively removed late-

successional species. Conversely, high grazing intensity by parrotfish and surgeonfish in 

uncaged areas shifted early successional species towards crustose and prostrate species that were 

rare or absent in ungrazed areas, defined as a deflected successional pattern (Hixon and Bostroff, 

1996).  

In addition to herbivory, nutrient availability is also considered one of the major drivers 

of tropical marine primary producers (Duarte, 1992; Fourqurean et al., 2002; Szmant, 2002; 

Lapointe et al., 2004; Collado-Vides et al., 2011). Indeed, growth rate and abundance of marine 

macroalgae increase when systems are enriched with nitrogen and phosphorus (Pedersen and 

Borum, 1997; Larned, 1998; Kuffner and Paul, 2001; Bracken and Nielsen, 2004). However, all 

macroalgal species do not respond similarly to nutrient enrichment, which could be related to 

multiple factors such as differences in morphology, initial tissue nutrient status, and species 

physiology (Learned, 1998; Reef et al., 2012; Fong et al., 2001; Kuffner and Paul, 2001; Fong et 

al., 2003). In particular, fast-growing species typical of early successional stages (e.g., 

Chaetomorpha sp., Ceramium sp., Ulva sp., Cladophora sp. and cyanobacteria) are well known 
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for their rapid increase in abundance following increases in nutrient loading (Lapointe et al., 

1993; Lapointe et al., 2005; Smith et al., 2005). In contrast, the effect of nutrient enrichment on 

abundance of mature late successional species is still unclear (Hughes, 1994; McClanahan et al., 

2004). Indeed, recent studies suggest that nutrient availability would play a secondary role on 

controlling adult macroalgal growth only if herbivory pressure level is low or absent (Burkepile 

and Hay, 2009; Sotka and Hay, 2009; Walsh, 2011).  

The general objective of the study was to evaluate seasonal recruitment and post-

settlement succession of coral reef macroalgal communities in relation with potential propagule 

supply under different levels of herbivory pressure and nutrient availability. The specific 

objectives were: 1) to assess the effect of herbivory pressure and nutrient availability on the 

abundance of adult macroalgae as potential propagule sources, 2) to evaluate the effect of 

nutrient availability and herbivory pressure on seasonal recruitment of macroalgal species, and 3) 

assess the effects of herbivory pressure and nutrient availability on succession of coral reef 

macroalgal communities. We hypothesized that: 1) reductions in herbivory and increases in 

nutrient availability will increase abundance of adult macroalgae and indirectly facilitate 

macroalgal recruitment via increased propagule supply, 2) increases in nutrient availability and 

reduction of herbivore pressure will increase abundance of macroalgal recruits, enhancing 

successional rates and 3) reduction of herbivore pressure rather than nutrient availability will 

accelerate successional rate of macroalgal communities. 

2.2 Materials and methods 

Study site and experimental design 

The study was conducted at a spur and groove reef system, located in the upper Florida 

Keys (25°00’05”N, 80°24’55”W) nearby Pickles Reef. The reef is a mid-depth area (5-6 m) off 
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of Key Largo, where parrotfish and surgeonfish are the dominant herbivorous fish and the long-

spined urchin Diadema antillarum is present at low densities (<1 individual per 50 m2, personal 

observations). Eight experimental plots (3x3m) separated from each other by at least 5m (Figure 

1) were established in June 2009 to examine the interactive effects of herbivory and nutrient 

availability on reef benthic dynamics. Each plot was delineated with metal nails driven into the 

reef at the corners and centers of each 1m2 subplot (quadrat). Each plot contains two quadrats 

(1x1m2) for herbivore exclosure covered with plastic-coated wire mesh (2.5 cm diameter holes).  

Two other three-sided plots (1x1 m2) were used as herbivore exclosure controls (Figure 2). Four 

of the eight 9m2 experimental plots were enriched with total 4375 g of Osmocote (19-6-12, N-P-

K) slow-release garden fertilizer since June 2009. The Osmocote was placed in a 15 cm diameter 

PVC tube with 10 (1.5 cm) holes drilled into it. These tubes were open on each end but wrapped 

in fine plastic mesh to keep the fertilizer inside and attached to a metal nail within the plot for a 

total of 25 enrichment tubes (175 g of Osmocote) per enrichment plot.  Enrichment tubes were 

replaced every 4-6 weeks to ensure consistent nutrient addition. The field sampling period was 

meant for a full year but as a consequence of Hurricane Isaac in August 2012, the study took 

place from September 2011 to June 2012 and laboratory work from January 2012 to September 

2012. As a consequence of tropical storm damages, the sample size was different among 

treatments: NE=5 (Nutrient enrichment-Exclusion), CE=4 (Control-Exclusion), CO=8 (Control-

Open) and NO=8 (Nutrient enrichment-Open).  
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Figure 2. Study site and experimental design 

 
Fish community structure and nutrient levels of the study site 

Fish community structure was evaluated four times during the study period (September, 

2011; January, 2012; April, 2012 and July 2012) via 30 x 2m belt transects (n=12) placed 

haphazardly across the study site following AGRRA methodology (Protocols Version 5.4; Lang 

et al., 2010). All fishes were identified and their size estimated to the nearest cm. Size estimates 

were converted to biomass for each fish using published length:weight relationships (Bohnsack 

and Harper, 1988). Density and biomass of total and herbivorous fish were estimated at each 

time. 

To evaluate the effectiveness of nutrient enrichment treatments versus ambient nutrient 

controls of the experiment, twenty samples of water (nutrient enrichment treatment=10 and 

control treatment=10) were collected by divers from approximately 3 cm above the benthos in 

July 2009 to be analyzed for dissolve inorganic nitrogen (DIN) and soluble reactive phosphorous 

(SRP).  A few minutes after collection, samples were filtered into acid-washed bottles and placed 



29 
 

on ice for posterior laboratory analyzes. Dissolved inorganic nitrogen (DIN = ammonium and 

nitrite + nitrate) and soluble reactive phosphorus (SRP) concentrations were determined via 

autoanalyzer. Additionally, twenty samples of Dictyota sp. were collected in July and August 

2009, (n=10 control, n=10 enriched treatments) to analyze tissue carbon:nitrogen (C:N) levels.  

Collected algal material was kept in separate bags and transported on ice to the Florida 

International University Seagrass Lab. Once in the lab, the samples were clean, dried for 48 

hours at 60 ºC and ground to a fine powder. Carbon and nitrogen content were determined using 

a CHN analyzer (Fisons NA1500; Fisons Instruments, Milan, Italy; Fourqurean et al., 1992).  

Field established communities 

Abundance (% cover) of field established macroalgal communities within each square 

meter quadrat (n=25), hereafter field established communities, was visually assessed at the form-

functional groups (FFG, Steneck and Dethier, 1994) in January and June 2012. Macroalgal 

species were identified following criteria of Littler and Littler (2000) and Dawes and Mathieson 

(2008) identification keys. A list of species was created from field and laboratory (recruitment 

tiles) observations to determine the pool of potential existing species available for propagule 

settlement (Appendix 1 shows the list of algal species identified throughout the study and 

corresponding form-functional group).  

Recruitment of coral reef macroalgal communities 

To study macroalgal recruitment and succession, two tiles (10x10 cm) made of 

Pleistocene coral skeleton were placed inside each quadrat in September 2011. One of the tiles 

(recruitment tile) was replaced every three month (set I: September-December 2011, set II: 

December 2011-March 2012 and set III: March- June, 2012). After three months in the field, 

recruitment tiles were taken to the FIU Marine Macroalgae Research Laboratory and placed in 
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individual aquariums previously prepared to replicate the field conditions as closely as possible 

(salinity: 35-36ppt, temperature: 25-28ºC, constant water circulation and air pump). Light values 

were elevated to 369±58 μmol/s/m2 at the surface and 163±19 μmol/s/m2 at the bottom. The light 

cycle at the laboratory was set up with four fluorescent low output bulbs (Lithonia Lighting All 

Season Shoplight) from 6:00am to 8:00pm (~ 50 μmol/s/m2 underwater) and two Very High 

Output bulbs (VHO) from 8:00am to 6:00pm (~162 μmol/s/m2 underwater). For recruitment tiles, 

two evaluation rounds of percent cover at the lowest taxonomic possible level occurred at the 

laboratory, one evaluation immediately after retrieving the tiles from the field and the second 

evaluation after three months in laboratory conditions. Tiles were kept in aquariums to promote 

growth of algae recruits that could not be identified in the first evaluation round as a 

consequence of too small size or lacking of identifiable species features.  

Succession of coral reef macroalgal communities 

For macroalgae successional patterns, the second tile (succession tile) was kept in the 

field during the entire study period (September 2011 to June 2012). Percent cover of succession 

tiles at FFG level, following a Steneck and Dethier (1994) classification, was recorded “in situ” 

in January and June, 2012.  

Statistical analyses   

Data were assessed for normality and homogeneity of variances using Levene’s test 

before running statistical analysis. When data did not conform to assumptions of normality and 

homogeneity, the data were transformed as appropriate. Biomass and density of total and 

herbivorous fish were compared between seasons using one-factor ANOVAs. Dissolve inorganic 

nitrogen (DIN) and soluble reactive phosphorus (SRP) in water and Dictyota sp. tissue nutrient 

content, carbon(C), nitrogen (N), and C:N ratio were compared between treatments using  one-



31 
 

factor ANOVA. Macroalgae abundances among treatments and seasons were statistically 

evaluated through three-factor ANOVA (nutrient, herbivores and season). In the case of leathery 

and articulated calcareous macroalgae FFG, statistical analyses were carried out using Kruskal-

Wallis since data could not be normalized using transformation.  

To evaluate possible effects of both nutrient and herbivory levels on macroalgal species 

diversity, differences in diversity indexes (richness, Margalef diversity and Shannon 

heterogeneity index) calculated from recruitment tiles among sets were statistically tested with 

one-factor ANOVAs and among treatments with Kruskal Wallis. A Similarity Percentages 

(SIMPER) analysis was used to estimate the most abundant species among treatments. Analyses 

of most common species abundances were carried out with parametric or non-parametric tests as 

shown in table 3. Multi-dimensional Scaling (MDS) and Analysis of similarity (ANOSIM) were 

performed to calculate the effects of treatments and seasonality on macroalgae composition of 

recruitment tiles. To estimate the possible role of field established communities as potential 

propagule supply, Pearson correlation analyses using overall and FFG abundances of macroalgae 

were run: 1) set II of recruitment tiles (Dec-Mar) and January surveys of field established 

communities, 2) Set III of recruitment tiles (Mar-Jun) and June surveys of field established 

communities, 3) January surveys of succession tiles and field established communities, 4) June 

surveys of succession tiles and field established communities. To evaluate macroalgal abundance 

of succession tiles among treatments and seasons three-factor ANOVA (herbivores, nutrients and 

seasons) were used. In the case of filamentous, corticated foliose, leathery, articulated calcareous 

and crustose, Kruskal Wallis was used to evaluate treatment and season effects. Multi-

dimensional Scaling and ANOSIM analyses were performed with abundance of all FFG to 

calculate the effects of treatments on community succession. Descriptive, parametric and non-
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parametric analyses such as ANOVAs, correlations and Kruskall Wallis were performance using 

SPSS version 19.0 software package, whereas MDS and SIMPER analyses were completed with 

PRIMER 6.1.5 software package.  

 

2.3 Results 

Fish community structure and nutrient levels of the study site 

Means of overall fish biomass and density at the study site were 6495.6±508.1 g/100m2, 

and 39.9±3.2 Ind./100m2 respectively. Grazers (Family Scaridae and Acanthuridae) comprised 

78% of overall fish biomass with an average of 5086.1±569.5 g/100m2, and 74% of overall fish 

density 29.9±2.1 Ind./100m2. Total biomass of parrotfish and surgeonfish were 2771.7±526.6 

g/100m2 and 2315.5±370.6 g/100m2 respectively. There were no differences among seasons of 

total fish (Figure 3, one-factor ANOVA, F=0.23, p=0.885) or herbivore biomass (one-factor 

ANOVA, F=0.30, p=0.82). Similarly, there was no evidence of seasonality on total fish density 

(F=0.45, p=0.72) or herbivorous fish density (Figure 3, one-factor ANOVA, F=0.75, p=0.53).  

 
Figure 3. Total and herbivorous fish biomass and density at experimental site during the four sampling 
seasons. Bars represent standard errors  
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Dissolve inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) of water 

surrounding experimental plots, were threefold and sixfold higher in enriched plots than ambient 

plots respectively (Table 1). No statistical differences were found on Carbon (C) and nitrogen 

(N) tissue content of Dictyota sp., but C:N ratio in control treatments resulted 1.14 higher 

(p=0.01) than enriched nutrient treatments (Table 1). 

Table 1. Water nutrient contents (DIN and SRP) and percentage of nutrient tissues of Dictyota sp (carbon 
(C), nitrogen (N) and carbon:nitrogen (C:N) in ambient and enriched nutrient treatments  
 

 
 

Field established communities 

Including field and laboratory observations, 101 algal species were identified, with 60 

species belonging to the Rhodophyta, 11 to Ochrophyta, 26 Chlorophyta, Phyla, and 4 

Cyanobacteria (Appendix 1). Overall algal cover of field established communities was lower in 

January, 33.4±5.5 % and over twofold higher in June with 83.3±6.2 % (three-factor ANOVA, 

F=151.30, p=0.001). Furthermore, abundance of overall macroalgae of field established 

communities was twofold higher within cages compared to open areas, with 89.6 % and 40.1 % 

respectively (Figure 4, three-factor ANOVA F=149.20, p=0.001) and a significant interaction 

between season and herbivores factors was found (three-factor ANOVA, F=41.2, p=0.001). No 

effects of nutrient treatment or its interactions with season and herbivores factors over 

macroalgal cover in field established communities were found (Figure 4. three-factor ANOVA, 

nutrient F=3.8, p=0.059; nutrient-season F=0.10, p=0.730; nutrient-herbivore F=1.30, p=0.262).  
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Figure 4. Percent cover of overall macroalgae and form-functional groups of field established 
communities in January and June. Bars represent standard errors. Statistical significant of analyzed 
variables, season, herbivores and nutrient, are indicated by S (significant) and N/S (no significant).   

 
In field established communities percent cover of filamentous algae in June was 35.2±3.2 

%, tenfold higher than January with 2.9±0.8 (Krukal Wallis p=0.001). No effects of either 

nutrient enrichment or herbivorous exclusion were found (Figure 4, Kruskal Wallis, nutrient 

p=0.43; herbivores p=0.34). Corticated-foliose macroalgae (e.g., Dictyota spp.) showed a 

significant cover decrease in June compare with January (Figure 4, three-factor ANOVA, 

F=33.81, p=0.001). In January, field established communities had higher percent cover of 

corticated foliose algae in uncaged (Open) compared to caged treatments (three-factor ANOVA, 

F=12.42, p=0.001) whereas nutrient did not indicate statistical significance at any season (Figure 

4, three-factor ANOVA F=1.02, p=0.318). Abundances of leathery macroalgae (e.g., Sargassum 

spp.) was dramatically higher (over 40 times) within cages compared to open treatments (Figure 
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4, p=0.001). Conversely, no seasonal changes or nutrient enrichment effect were observed 

(Kruskal Wallis p=0.49 and p=0.75 respectively). Calcareous articulated algae (e.g., Amphiroa 

spp. and Jania spp.) were over fivefold higher when herbivorous fish were excluded in both 

seasons (p=0.01 respectively). Percent cover of articulated calcareous algae showed a two-fold 

increase from January towards June (Kruskal Wallis, p=0.001). No nutrient enrichment effects 

on abundance of articulated calcareous algae were detected (Kruskal Wallis, p = 0.557 

respectively). Abundance of crustose algae (e.g., Peyssonelia sp. and crustose coralline algae, 

CCA) was twofold higher in June, 8.6±0.8 compared 3.0±1.4 in January (Kruskall Wallis, 

p=0.001). No statistical effects of either nutrients or herbivores were found in crustose 

percentage cover (Kruskall Wallis, p=0.760, p=0.114 respectively).  

There was a significant correlation of overall macroalgal abundances of field established 

communities with corresponding recruitment tiles in January (January-Set II r=0.59, p=0.002); 

and June (June-Set III r=0.53, p=0.006). Moreover, there was a significant relationship in total 

abundance between permanent tiles in January and June with field established communities 

(r=0.86, p=0.001; r=0.43, p=0.031, respectively). Furthermore, abundance of field established 

communities at form-functional group, articulated calcareous and leathery macroalgae, was 

correlated with the abundances found on recruitment and succession tiles in January and June 

(Table 2).  
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Table 2. 
Pearson correlation between abundance of macroalgal form-functional groups of field established 

communities with recruitment and succession tiles.  

Recruitment of coral reef macroalgal communities 

Of the 96 macroalgal species identified throughout the study, only five, Penicillus 

capitatus, Halimeda opuntia, H. tuna, Neomeris sp. and Spyridia clavata were found in field 

established communities and not recruited onto tiles (Appendix 1). The total numbers of species 

recruited were 38, 62 and 61 for sets I (Sep-Dec), Set II (Jan-Mar) and Set III (Mar-Jun) 

respectively. However, species richness averaged 8.48 per tile with no significant difference 

among seasons, the Rhodophyta phylum exhibited the highest species richness (Figure 5; Table 

3, one-factor ANOVA, F=0.96, p=0.38). Among treatments, there was no significant differences 

in species richness, Margalef’s or Shannon Heterogeneity indexes (one-factor ANOVA, F = 

0.31, p = 0.82; F = 1.18, p=0.32 and F=0.70, p=0.55 respectively).  

Overall macroalgal abundance of recruitment tiles was similar before and after laboratory 

conditions, (two-factor ANOVA, F=0.01, p=0.95). However, analysis of macroalgal abundances 

was completed using data from before laboratory conditions surveys. Percent cover of total 

macroalgae doubled from Set I (Sep-Dec) and Set II (Jan-Mar) with 56.1±28.7 and 49.4±30.1 to 

Set III with 111.6±35.9 (Figure 6, two-factor ANOVA, F=39.35, p=0.0001). Overall percent 
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cover of nutrient enrichment-exclusion treatment (NE = 103.9±52.9) was higher compared with 

the other three treatments ranging between 62.9±31.2 and 72.4±41.9 (Figure 6, two-factor 

ANOVA, F=8.78, p= 0.001). No interaction between set and treatment was found in the two-

factor ANOVA analysis (F=2.00, p=0.08).  

Table 3. Diversity indexes by set of macroalgal species recruited on tiles. Letters indicate post-hoc (SNK) 
analysis when significant differences were found.  
 

 
 

                                                        

 
Figure 5. Average number of algal species found on recruitment tiles by phylum in each set. Bars 
represent standard error.   
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Figure 6. Total percent cover of macroalgal by treatments within each set of recruitment tiles. Bars 
represent standard error.   
 

The non-metric Multidimensional Scaling analysis ran with abundance of all present 

species on recruitment tiles showed significant differences among seasons (Figure 7, ANOSIM, 

R=0.436, p=0.001). Additionally, a similarity percentages-species contribution analysis 

(SIMPER) was performed to evaluate the effect of treatments on macroalgal communities of 

recruitment tiles (Table 4). Accordingly, only four taxa of algae, crustose coralline algae (CCA), 

Peyssonnelia sp., Jania capillacea and cyanobacteria were present throughout all treatments with 

some variation in their abundances (Table 4).  

 



39 
 

 
Figure 7. Non-metric Multidimensional Scaling analysis using abundance of all species of algae on 
recruitment tiles by set.  
 
Table 4. Abundance and similarity percentage-species contribution to overall percent cover of recruitment 
tiles of most common species (species that cover at least 90 %) by treatments. Data calculated using 
SIMPER analysis from PRIMER 6. Asterisks indicate most common species by sets.  

 
 

The non-metric Multidimensional Scaling used to analyze treatment effects on 

macroalgal cover of recruitment tiles revealed a clear treatment pattern for all sets together, Set I 

and II (Figure 8, ANOSIM R=0.11, p=0.003; R. 0.33, p=0.002; R=0.48, p=0.001 respectively). 

Contrarily, neither statistical differences nor clear pattern among treatments were found for Set II 

(Figure 8, ANOSIM R=0.03, p=0.700).  
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Figure 8. Non-metric Multidimensional Scaling analysis among treatments including abundance of all 
algal species found on recruitment tiles, for all sets together and set I, II, and III separately.  
 
Succession of coral reef macroalgal communities 

Overall macroalgal percent cover of succession tiles doubled by June, 62.4±5.8, 

compared to January with 31.5±5.3 for all treatments (Figure 9, three-factor ANOVA, F=24.02, 

p=0.001). In both January and June, abundance was significantly higher when herbivores were 

excluded in both control and nutrient enriched treatments (Figure 9, three-factor ANOVA, 

F=32.72, p=0.001) but no effects of nutrient enriched treatments were found (Figure 9, three-

factor ANOVA, F=0.482, p=0.491). The abundance of filamentous algae in June (average 

35.8±3.8) was twice as high as January, 16.4±3.4 (Figure 9, three-factor ANOVA, F=11.33, 

p=0.002). Percent cover of filamentous algae was negatively affected by nutrient availability 

having enriched nutrient treatments lower abundance compared to ambient treatments (three-

factor ANOVA, F=9.81, p=0.003). No effects related with herbivory level were found on 

filamentous algae cover of succession tiles (three-factor ANOVA, F=0.040, p=0.843).   
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Figure 9. Abundance of macroalgal form-functional group on succession tiles by treatment in January and 
June. Whiskers represent standard errors. Statistical significant of analyzed variables, season, herbivores 

and nutrient, are indicated by S (significant) and N/S (no significant).  

  
Conversely to filamentous algae, corticated-foliose macroalgae (e.g., Dictyota spp.), was 

17.7±4.0% in January compared to June (average 7.2±2.4) with no significant differences (three-

factor ANOVA F=3.77, p=0.06). No effects of herbivore exclusion were observed (three-factor 

ANOVA F=2.1, p=0.15) while nutrient enrichment treatments depleted percent cover of 

corticated-foliose within cages (Figure 9, three-factor ANOVA F=5.5, p=0.03). Leathery 

macroalgae were mainly represented by Turbinaria turbinata and Sargassum sp., while 

articulated calcareous were mostly specimens of Amphiroa spp. and Jania spp. Leathery and 

articulated calcareous were present only when herbivorous fish were excluded (Figure 9, Kruskal 

Wallis, p=0.001, p=0.001 respectively). Percent cover of articulated calcareous was higher in 

nutrient enriched treatments (Figure 9, Kruskal Wallis, p=0.02). Conversely, nutrient or 
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herbivores exclusion had no effect on crustose algae (e.g., Peyssonnelia spp. and crustose 

coralline algae) average of 4.3±1.3, at any season (Figure 9, Kruskal Wallis, p=0.11, p=0.6 

respectively).  

In the fourth month, (January) percent cover of overall macroalgae on succession tiles 

was higher within caged treatments compared to open treatments (Figure 10, one-factor ANOVA 

F=10.80, p=0.001). Filamentous and corticated-foliose covered part of all four treatments, where 

leathery and articulated calcareous were only present within nutrient enriched treatment (Figure 

9). Crustose coralline algae covered less that 10% only in open treatments. By the ninth month 

(June), percent cover of filamentous algae increased in all treatments while leathery and 

calcareous-articulated increased in abundance within both caged treatments (Figure, 10). The 

abundance of corticated-foliose (e.g., Dictyota sp) decreased through time within cage enriched 

with nutrient. Approximately 50 % of empty spaces in open areas (uncaged treatments) persisted 

nine months after tiles were placed on the reef (Figure 10). When open areas were nutrient 

enriched, the total abundance did not increase, and differently to control treatment, crustose and 

corticated-foliose algae covered part of the tiles (Figure 10). 

 

Figure 10. Graphical representation of macroalgal succession on permanent tiles by treatment. Size of 
colors represent mean of percent cover of macroalgal form-functional groups.  
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 To estimate the impact of different treatments on macroalgal, a MDS was run including 

abundance of all macroalgal form-functional groups on permanent tiles from each survey time, 

January and June. In January the MDS separated nutrient enrichment-exclusion from the other 

three treatments (Figure 11, ANOSIM, R=0.19, p= 0.02). Whereas, by June, nutrient enrichment-

exclusion treatment and control nutrient-exclusion treatments seem to differ from open 

treatments (Figure 11, ANOSIM, R=0.46, p=0.01).  

 

Figure 11. Non-metric Multidimensional Scaling analysis by treatment including abundance of all 
macroalgal form-functional group on succession tiles in January and June 

 

2. 4 Discussion 

The magnitude of the effects of nutrient availability and herbivore pressure on controlling 

macroalgal abundance varied with community successional stage. While both bottom-up 

(nutrient availability) and top-down (herbivory pressure) drivers were important at early-

successional stages, only top-down (fish grazing) remained determinant at late-successional 

stages. In addition, total abundance and FFG composition of field established communities 

within quadrats, was similar to macroalgal communities of recruitment and succession tiles, 
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suggesting that adult coral reef macroalgal communities could play an important role regulating 

recruitment via propagule supply.  

Fish community structure and nutrient levels of the study site 

The experimental site presented a high density and biomass of herbivorous fish compared 

to other Caribbean reefs such as Guanacahabibes National Park, Cuba and Virgin Islands Coral 

Reef Monument (Claro and Cantelar, 2003; Nemeth et al., 2003; Lang and Ginsburg, 2006). In 

addition, higher DIN and SRP in water content and lower C:N ratio in Dictyota sp. tissue 

evidenced higher availability and uptake of nitrogen in nutrient enriched treatments. In fact, 

similar results have been found by other authors where nutrient enrichment of marine systems 

has led to rapid uptake of nitrogen and consequently decrease of C:N ratio (Ferdie and 

Fourqurean, 2004; Littler et al., 2010). Thus, the experimental setting could be considered 

operative and reliable. 

Analyses of total macroalgae abundance of established communities across the study 

period showed a clear increase towards spring season (June). Comparable seasonal patterns have 

been reported for other Caribbean reefs such as Glover Reef Atoll, Belize and Puerto Rico (Ruiz 

and Ballantine, 2009; Ferrari et al., 2012). Three macroalgal form-functional groups, 

filamentous, calcareous articulated and crustose coralline algae were the major components of 

summer seasonal increase which could be related with higher water temperature and light 

availability (Tsai et al., 2005; Ferrari et al., 2012). In the case of corticated-foliose algae (e.g., 

Dictyota sp.) abundance decreased towards June (spring/summer). Since corticated-foliose algae 

presented higher abundance in open treatments in January, the decrease of percent cover could 

be caused by increased grazing rate in spring-summer season. It has been demonstrated that 

parrotfish and surgeonfish, increase their grazing frequency during wet (spring-summer) season 
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(Smith, 2008; Duran and Claro, 2009). However, herbivory studies completed in Floridian coral 

reefs have shown reduction of abundance of Dictyota sp. in areas grazed by herbivorous fish 

(Burkepile and Hay, 2006; Burkepile and Hay, 2008; Sotka and Hay, 2009).  On the other hand, 

Lirman and Biber (2000) reported abundance peak of Dictyota sp. in July-August covering 57 % 

of coral reef at northern Florida Reef Tract. According to Lirman and Biber (2000), growth rate 

and monopolization of Dictyota sp. at their site are consequence of insufficiently control of 

herbivores. In addition, seasonal variation in abundance of Dictyota sp. could be related with 

water temperature and light availability rather than herbivory consumption (Ferrari et al., 2012). 

Significant higher abundance of total macroalgae of field established communities within 

caged treatments supports the hypothesis that herbivory is a major driver of reef macroalgal 

assemblages (Lewis, 1986). Substantial evidences of herbivores exclusion treatment showing 

strong effects on controlling reef macroalgal assemblages could be found in multiple recent 

scientific studies (Burkepile and Hay, 2009; Sotka and Hay, 2009; Rasher et al., 2012). 

Furthermore, herbivore pressure could also regulate macroalgal interspecific competition. In fact, 

when herbivorous were excluded, abundance of leathery and calcareous articulated macroalgae 

(late successional species) increased while corticated-foliose decreased. Contrarily to herbivory, 

no effects of nutrient enrichment treatments on total macroalgal abundance field established 

communities were observed indicating that nutrient loading did not exert major control of adult 

macroalgal assemblages at the study site. According to Smith et al., (2010) effects of nutrient 

loading on coral reef macroalgae become tangible after three to four months of releasing 

nutrients but the current study was started after for two years of steadily nutrient release at the 

experimental site. Therefore, the study time period should be long enough to notice any effect of 

nutrient enrichment on macroalgae within experimental setting. On the other hand, similarities 
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(correlations) of community composition at FFG across different successional stages, 

recruitment tiles, succession tiles and field established communities could be taken as the first 

evidence of adult macroalgal community acting as propagule supply on coral reefs.  

Recruitment of coral reef macroalgal communities 

It was found a seasonal recruitment marked by differential species composition and 

abundances on recruitment tiles across sets. Indeed, cover of algae was higher in Set III (Mar-

Jun, spring season). Total number of species was higher in Sets II and III. However, only 

Rhodophyta species number increase towards Set III. It is well documented that some red 

macroalgal species (Laurencia sp. and Gracilaria sp.) have a reproductive peak towards summer 

season triggered by warmer water temperature (Tsai et al., 2005). Nevertheless, less reproduction 

between March-June of unidentified species of Gracilaria has been also reported (Hay and 

Norris, 1984). However, a different experimental design and metrics could be useful to address 

the topic such as examination of reproductive tissue in multiple macroalgal species and potential 

responses to ambient factors (light, nutrient availability and temperature). In addition, reduction 

of herbivory and nutrient loading combined (Nutrient enrichment-Exclusion) was the only 

treatment showing effects on abundance of macroalgae on recruitment tiles. Particularly, nutrient 

loading could enhance germination and increase growth rate of new arrival and overwinter 

propagules (Cecere et al., 2011). Therefore, the combination of denser propagule areas and 

nutrient loading could override grazing rate and consequently increase abundance of macroalgae 

(Worm et al., 1999). However, such situations have been mostly reported for fast-growing 

species of macroalgal such as Ulva spp., Cladophora sp., Polysiphonia sp. and Ceramium sp. 

(Worm and Lotze, 2006; Karez et al., 2004; Imchen, 2012). Importantly, in coral reefs, 
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abundance of macroalgal recruits could also be related with type of substrate, herbivory and 

nutrient availability (Diaz-Pulido and McCook, 2002, 2003, 2004).  

Succession of coral reef macroalgal communities 

Succession patterns are expect to follow a replacement of early stages species such as 

filamentous turf (e.g., Enteromorpha sp. Ceramium sp., Felmania sp.) by late successional 

species such as leathery and calcareous articulated. Results of this study show that succession 

was affected by nutrient enrichment treatment that significantly increased percent cover of  

articulated-calcareous macroalgae but only in succession tiles when herbivorous were excluded, 

and not on field established communities. Thus, it is thought that the magnitude of nutrient 

availability effects reduces towards late successional stages and it is noticed only when herbivory 

pressure is reduced or absent. For instance, after nine months, late succession species of 

macroalgae (e.g., Sargassum sp. and Amphiroa sp.) were present only on succession tiles placed 

within cages with and without nutrient enrichment. Contrarily, both open nutrient enriched and 

open control treatments, still mostly covered by early successional species after nine 

experimental months (e.g., filamentous turf). Thus, both nutrient availability and herbivory were 

significant drivers at early successional stages whereas only herbivory showed significant effects 

of macroalgal abundance towards later successional stages.  
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Figure 12. Schematic representation of magnitude effects of grazing intensity, nutrient availability and 
propagule effects on recruitment and succession of coral reef macroalgal communities. Propagule supply, 
grazing intensity and nutrient availability are determinant at early succession stages. Towards late 
successional stages, grazing intensity (solid line) remains constant while impact magnitude of nutrient 
availability and propagule supply (dashed lines) decrease.  

 

Furthermore, macroalgal cover of different form-functional groups onto succession tiles 

varied with treatments which suggest treatments effects on interspecific macroalgal competition. 

For instance, abundance of calcareous articulated and leathery species increased in June while 

corticated-foliose (e.g., Dictyota sp.) decreased. Similar results were found by Hixon and 

Bostroff (1996) where removal of grazers led to a rapid shift from green and brown filaments to 

finely branched filaments and succeed by blades and coarsely thick filaments. Macroalgal 

species of late successional stages such as leathery (e.g., Sargassum spp. and Turbinaria spp.) 

and calcareous articulated (e.g., Amphiroa spp., Halimeda spp. and Jania spp.) are well known to 

be consumed by coral reef grazers (Lobel and Ogden, 1981; Hoey and Bellwood, 2010). 

However, their resistance to herbivory has been also suggested (Littler et al. 1983; Steneck and 

Dethier, 1994). Current results support the hypothesis that high abundance and diversity of 

herbivorous fish can control growth rate of late-successional macroalgal species and 
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consequently increase coral reef resilience (Burkepile and Hay, 2011). Additionally, some 

successional trajectories (pathways) of coral reef macroalgal assemblages have been proposed 

where abundances and species composition of different successional stage species vary 

depending upon predominant herbivore groups (Sammarco, 1983; Hixon and Bostroff, 1996). 

For instance, Ceccarelli et al. (2011) described damselfish species (Pomacentridae) capable of 

decelerating successional rate by keeping macroalgal assemblages dominated by palatable 

filamentous algae species. At the present experimental study site no differences of damselfish 

density among treatments were found (pers. observations) so it is likely that damselfish would 

not affect results of studied macroalgal succession in our site. Also, McClanahan (1997) reported 

dominance of early-succession filamentous species over 450 day period for highly sea-urchin 

populated coral reefs. Nevertheless, at the current studied site only a single individual long-spiny 

sea-urchin (Diadema antillarum) was observed during the entire study period (September 2011 - 

July 2012). Therefore, macroalgal successional patterns of present study are mostly influenced 

by fish grazers (Scaridae and Acanthuridae) and nutrient loading effects.  Ultimately, results of 

present study have some important implications in terms of coral reef ecosystem functioning. 

Mumby and Steneck (2008) described two ecosystem process feedbacks, positive and negative, 

depending upon grazing intensity. In that sense, present study supports the hypothesis of high 

grazing rate as primary ecological driver or positive process feedback at late-successional stage. 

By controlling abundance of late-successional species, larger and more structural complex 

species, and increasing abundance of crustose algae, herbivores fish could indirectly enhance 

coral recruitment. It has been shown that coral larvae preferentially settle on crustose coralline 

algae while fleshy algae inhibit coral recruitment (Harrington et al., 2004; Ritson-Williams et al., 

2009). Additionally, coral reef macroalgal overgrowths usually proceed after natural 
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disturbances such as hurricanes or coral bleaching events (Gardner et al., 2005; Diaz-Pulido and 

McCook, 2002), where new substrate is available to be colonized. Thus, higher abundance of 

mature macroalgal prevailing right after disturbances would provide propagules and 

consequently facilitate algal overgrowths. In addition, coral depauperate reefs as a consequence 

of storm and physical damages that constantly provide new substrate for algal recruitment might 

be the most vulnerable sites to detrimental effects of high nutrient levels. Therefore, I 

recommend to managers to support policies that will result in reduction of nutrient and increase 

grazers in order to reinforce resilience of coral reef ecosystems.  
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CHAPTER 3 – CONCLUSIONS, IMPLICATIONS AND FUTURE DIRECTIONS 

Results of present study showed that nutrient loading and herbivory pressure significantly 

affect abundance of early-successional species while late-successional species are primarily 

controlled by herbivory and secondarily by nutrient availability. Thus, it is reinforced the 

importance of preventing overfishing of coral reef herbivorous fish since they are capable of 

controlling macroalgal assemblages in all successional stages, early and late stages. Indeed, 

several authors have reported that reduction of herbivores as a consequence of harvesting could 

seriously reduce coral reef resilience (Hughes et al., 2010; Mumby and Steneck, 2008). 

Additionally, assuming the role of adult macroalgal assemblages as potential propagule supply, 

coral reef herbivorous fishes could exert an indirect effect on controlling macroalgal by limiting 

abundance of adults and consequently production of new propagules. In contrast, the impact of 

nutrient loading was found significant only on early-successional species of coral reef 

macroalgal (e.g., filamentous algae such as Chaetomorpha sp., and Ceramium sp.) while 

decreasing in magnitude towards late-successional species (Sargassum sp., and Turbinaria sp.). 

In the case of calcareous articulated algae, nutrient significantly raised abundance but only in 

absent or reduction of herbivorous fish.  

Grazing pressure as primary ecological driver and nutrient availability as secondary 

ecological driver have been also found in several recent coral reef studies (Burkepile and Hay, 

2009; Sotka and Hay, 2009; Ferrari et al., 2012; Poore et al., 2012). However, the magnitude 

impact of each driver on macroalgae species could vary depending upon herbivore density and 

concentration of nutrients. Smith et al. (2005) reported overgrowth of Cladophora sericea in 

Hawaiian coral reef caused by eutrophication where grazing pressure, sea-urchin and fish 

included, was not sufficient to control it. Thus, future coral reef studies could address the 
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following questions: 1) what density and biomass of herbivorous fish and invertebrates are 

required to control macroalgal overgrowth at different levels of nutrient availability? and 2) what 

density and biomass of coral reef macroalgae can herbivores control? For instance, Hoey and 

Bellwood (2011) reported a decrease of reef fish grazing rate as macroalgae density increase. In 

addition, because the most studied nutrients on coral reef macroalgae, nitrogen and phosphorous, 

could exert different effects on growth rate and production of chemical deterrent compounds of 

algae, also affecting grazing rate and herbivorous preferences (Larned, 1998, Boyer et al., 2004; 

Rasher and Hay, 2010; Hay et al., 2011) an upcoming scientific research could investigate: 2) 

How concentration and availability, of different nutrients (e.g., nitrogen and/or phosphorous) 

found on coral reef common pollution sources would affect grazing rate and consumption 

preferences of herbivores? In this sense, some secondary metabolites have been described as 

chemical defense of algae (e.g., Sargassum sp.) against different herbivore groups (Duffy and 

Hay, 1994) which concentration could increase with nutrient addition (Hay et al., 2011). In 

contrast, Boyer et al. (2004) reported an increase of herbivory rates as a consequence of higher 

nutrient content in Acanthophora sp. Perhaps, because of above mentioned studies analyzed 

different macroalgae species, opposite responses to nutrient enrichment treatment of macroalgae 

resistance and tolerance to herbivory were found. Furthermore, macroalgal species could 

response differently to nutrient enrichment depending on type and concentration of nutrient 

available which could also affect herbivory rate. 

As a result of high macroalgal diversity and difficulties of “in situ” species identification, 

the classification system at form-functional groups, following Steneck and Dethier (1994), was 

used in the current study. As a first approach to characterize macroalgal assemblages, analysis of 

form-functional groups provides useful results, but it limits the possibility of examining 
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important macroalgal elements such species-specific chemical defenses, interspecific 

competition and herbivores preferences (Padilla and Allen, 2000). For instance, Dictyota spp. are 

known to chemically deter herbivores while benefiting not only the individual plant but also 

associated macroalgae species (Pereira et al., 2010). Therefore, it would be convenient to use a 

survey method where form-functional group and genus or species composition are combined as 

possible, at least for most common species. In addition, conclusions emerging from present 

research referred to impact and magnitude of coral reef drivers as well as successional patterns 

are based on a single abundance metric, percent cover of macroalgae. However, grazing intensity 

could change depending upon density and height within macroalgal individuals of same species 

(Hoey, 2010; Hoey and Bellwood, 2011). Additionally, in particular macroalgal species of early-

successional stages could take advantages of nutrient availability and not only cover larger areas 

but also increase growth rate which could be tested by using wet and dry mass as metric (Dailer 

et al., 2012). Thus, in order to have a more truthful effect of coral reef macroalgal community 

ecological drivers, other metrics such as biomass and plant height and /or complexity index, or 

architectural index should be included.  

Crustose algae (e.g., Peyssonnelia spp. and Hydrolithon spp. and Porolithon spp.) 

showed about 14% cover in recruitment tiles and approximately 4% and 8% onto permanent tiles 

and field established communities respectively. However, the experimental time of present study 

was nine months which, for this particular group of algae, could be short in order to observe 

long-term response to ecological drivers. For instance, in field caged experiments Burkepile and 

Hay (2009) reported abundance of crustose algae of nearly 15 % after 22 weeks (5th month of 

first year), and approximately 20% after 27 weeks (6th month of second year). However, crustose 

algae could cover up to 60% after a year of having placed experimental tiles on well protected 
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coral reefs (McClanahan, 1997). Nonetheless, the fact that coral reef herbivorous fish are able 

not only to strongly control fleshy macroalgae but also promote crustose algae cover has 

important implications for coral reef resilience. Indeed, Vermeij and Smith (2011) showed how 

crustose coralline algae could induce coral recruitment whereas it is well known the negative 

impact of fleshy macroalgal abundance on recruitment and juvenile survival rate of corals 

(Kuffner et al., 2006; Box and Mumby, 2007). Thus, after natural disturbance such as hurricane 

damages and coral bleaching events, success of coral recruitment and juvenile survival rate are 

key processes for coral cover recover and consequently coral reef resilience. Both mentioned 

process are directly impacted by herbivory pressure as it reduce fleshy macroalgal abundance 

while promoting crustose algae (Mumby and Steneck, 2008; Diaz-Pulido et al., 2009). Although, 

it is recommended for future field researches to extend the study period longer than a year and if 

possible analyze crustose algae at lower taxonomic levels, genus or species. Also, not only fish 

but other coral reef herbivores such as snails, crabs and urchins should be included since they 

could exert significant impact on early successional species and thus contribute to control 

macroalgae growth (Steneck, 1983; O’leary and McClanahan, 2010; Butler and Mojica, 2012).   
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Appendix 1. List of algal species identified for the study site and assigned form functional groups (FFG) 
following Steneck and Dethier, 1994 classification 
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