
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

4-1-2013

Improving Resource Management in Virtualized
Data Centers using Application Performance
Models
Sajib Kundu
Florida International University, skund001@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the OS and Networks Commons, and the Systems Architecture Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Kundu, Sajib, "Improving Resource Management in Virtualized Data Centers using Application Performance Models" (2013). FIU
Electronic Theses and Dissertations. Paper 874.
http://digitalcommons.fiu.edu/etd/874

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Florida International University

https://core.ac.uk/display/46952489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.fiu.edu%2Fetd%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/874?utm_source=digitalcommons.fiu.edu%2Fetd%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

IMPROVING RESOURCE MANAGEMENT IN VIRTUALIZED DATA

CENTERS USING APPLICATION PERFORMANCE MODELS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Sajib Kundu

2013

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Sajib Kundu, and entitled Improving Resource Man-
agement in Virtualized Data Centers using Application Performance Models, hav-
ing been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Ming Zhao

Tao Li

Kaushik Dutta

Ajay Gulati

Raju Rangaswami, Major Professor

Date of Defense: April 1, 2013

The dissertation of Sajib Kundu is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2013

ii

DEDICATION

To my loving, compassionate, supportive, and assuring mother, father, and

brother.

iii

ACKNOWLEDGMENTS

Journey as a PhD student is a rewarding yet an arduous one. Even with the utmost

sincerity, perseverance, and dedication from my part, this long endeavor would not

have been successful without the blessings and cooperations from my family mem-

bers, advisor, professors, coworkers, friends, and the sponsors. Graduate research is

a symbiotic ecosystem where individual accomplishment is only a part of a collective

glory. The thesis contributions belong as much to me as to these people surrounding

me.

Without any iota of exaggeration, this work is only possible because of the active

and constructive guidance from my academic advisor, Raju. From my inception into

the academic program, his supportive, compassionate, prudent, and sometimes ad-

monishing mentorship has been a constant catalyst in stewarding my career. There

have been brief moments of glitch between his expectations and my levels of com-

mitment; but, overall, I feel these interactions have transformed me into a better

researcher, and a better PhD candidate. It has been a cherishing experience to work

with you, Raju and I sincerely thank you for your advice in my professional as well

as in my personal life.

I want to hold special regards for my parents, Chandi Charan Kundu and Dipali

Kundu, and for my brother, Rajib Kundu. My pursuit of graduate career started

with their unconditional love and support for me. I am grateful to you for keeping

faith and hope in me.

I would like to thank all of my thesis committee members, especially Kaushik,

Ajay, and Ming. Your constant feedback and involvement in forming novel ideas,

outlining directions of my research, publications, and writing, helped putting a

definitive shape to this thesis. I am much obliged to you for your prompt and

unparalleled stimulus to my work.

iv

Also, I would like to thank my co-workers and friends in SyLab, specially Jorge,

Luis, and Ricardo. I am so privileged to have you as my friends and lab mates. I

would like to specifically mention their expert instructions on setting up lab machines

and troubleshooting. I am also grateful to the department staffs, professors, and

other graduate and undergraduate students I had interacted with. I also admire NSF

and other federal agencies who have financially supported my research throughout

the last six years.

Last, but not the least, I reserve special laudatory notes for my dearest friends,

Aritra and Roberto. In happiness or in gloominess, if I had needed any sorts of help,

I exactly knew whom to consult. I will adore you to the last breath of my life.

May I conclude on a different note by uttering ’NO’ to the following: racism,

mindless wars, wanton violence against women, and poverty. Let the free thinking,

equality, love, peace, and shared prosperity be our guiding stars.

v

ABSTRACT OF THE DISSERTATION

IMPROVING RESOURCE MANAGEMENT IN VIRTUALIZED DATA

CENTERS USING APPLICATION PERFORMANCE MODELS

by

Sajib Kundu

Florida International University, 2013

Miami, Florida

Professor Raju Rangaswami, Major Professor

The rapid growth of virtualized data centers and cloud hosting services is making

the management of physical resources such as CPU, memory, and I/O bandwidth in

data center servers increasingly important. Server management now involves dealing

with multiple dissimilar applications with varying Service-Level-Agreements (SLAs)

and multiple resource dimensions. The multiplicity and diversity of resources and

applications are rendering administrative tasks more complex and challenging. This

thesis aimed to develop a framework and techniques that would help substantially

reduce data center management complexity.

We specifically addressed two crucial data center operations. First, we pre-

cisely estimated capacity requirements of client virtual machines (VMs) while rent-

ing server space in cloud environment. Second, we proposed a systematic process

to efficiently allocate physical resources to hosted VMs in a data center. To real-

ize these dual objectives, accurately capturing the effects of resource allocations on

application performance is vital. The benefits of accurate application performance

modeling are multifold. Cloud users can size their VMs appropriately and pay only

for the resources that they need; service providers can also offer a new charging

model based on the VMs performance instead of their configured sizes. As a result,

clients will pay exactly for the performance they are actually experiencing; on the

vi

other hand, administrators will be able to maximize their total revenue by utilizing

application performance models and SLAs.

This thesis made the following contributions. First, we identified resource control

parameters crucial for distributing physical resources and characterizing contention

for virtualized applications in a shared hosting environment. Second, we explored

several modeling techniques and confirmed the suitability of two machine learning

tools, Artificial Neural Network and Support Vector Machine, to accurately model

the performance of virtualized applications. Moreover, we suggested and evaluated

modeling optimizations necessary to improve prediction accuracy when using these

modeling tools. Third, we presented an approach to optimal VM sizing by employing

the performance models we created. Finally, we proposed a revenue-driven resource

allocation algorithm which maximizes the SLA-generated revenue for a data center.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction . 1

2. Thesis Statement, Contributions, and Impact 6
2.1 Thesis Statement . 6
2.2 Thesis Contributions . 6
2.3 Thesis Impact . 8

3. Related Work . 9
3.1 Modeling . 9
3.1.1 Past Modeling Approaches . 10
3.1.2 Building Models . 13
3.2 VM Sizing . 14
3.3 Dynamic Resource Allocation . 15

4. Resource Parameters Selection . 19
4.1 CPU . 22
4.1.1 Xen-specific Parameters . 23
4.1.2 ESX-specific Parameters . 23
4.1.3 Impact of CPU Allocation . 24
4.2 Memory . 25
4.2.1 Xen-specific Parameters . 25
4.2.2 ESX-specific Parameters . 25
4.2.3 Impact of Memory Allocation . 26
4.3 Storage . 27
4.3.1 CDIOPS . 28
4.3.2 VM I/O Latency . 29
4.3.3 Xen-specific Parameters . 30
4.3.4 ESX-specific Parameters . 31
4.4 Summary . 31

5. Application Performance Modeling . 33
5.1 Architectural Overview . 34
5.2 Model Training . 35
5.3 Evaluating Alternative Modeling Techniques 36
5.3.1 Regression Models . 38
5.3.2 Artificial Neural Network Models . 39
5.4 Optimizing Machine Learning Models . 39
5.4.1 Limitations of a Single Global Model 40
5.4.2 Creating Multiple-Models with Sub-Modeling 41
5.5 Evaluation . 45

viii

5.5.1 Measure of Confidence . 47
5.5.2 Robustness to Noise . 48
5.5.3 Modeling Overhead . 49
5.6 Summary . 50

6. VM Sizing . 52
6.1 VM Sizing Problem Definition . 53
6.2 Model-based VM Sizing . 54
6.3 Summary . 56

7. Dynamic Resource Management . 57
7.1 Modeling Resource Allocation . 59
7.1.1 Problem Formulation . 60
7.1.2 How Expensive is Exhaustive Search? 62
7.1.3 Other Heuristic Solutions . 63
7.2 A Heuristic Solution . 64
7.3 Evaluation . 69
7.3.1 Experimental Setup . 69
7.3.2 Alternate Solutions . 71
7.3.3 Quantitative Evaluation . 73
7.4 Summary . 76

8. Conclusions . 78

9. Future Work . 81
9.1 VM Sizing . 81
9.2 Performance Modeling . 82
9.2.1 Online Updating of Performance Models 83
9.2.2 Cross-platform Performance Modeling 84
9.2.3 Modeling Cache Contention . 84
9.3 Dynamic Resource Allocation . 85

BIBLIOGRAPHY . 89

VITA . 96

ix

LIST OF TABLES

TABLE PAGE

3.1 A compendium of related work on application performance modeling . . 10

4.1 Comparison between CDIOPS vs. VM I/O latency for modeling I/O
contention. 28

5.1 Prediction error statistics for the regression and ANN techniques 38

5.2 Training and Testing data set sizes. 40

5.3 Prediction errors when using a single ANN Model. 40

5.4 Number of clusters and the average % overlap between consecutive clus-
ter pairs, measured based on the Jaccard coefficient. 43

5.5 % Error statistics (average, median, and 90th percentile) for different
modeling techniques by using global models and sub models. 46

7.1 Description of symbols used in resource allocation problem formulation . 60

7.2 Description of symbols used in the algorithm 64

x

LIST OF FIGURES

FIGURE PAGE

4.1 Impact of CPU limit. 24

4.2 Impact of memory limit. 26

4.3 Impact of VM I/O latency. 29

5.1 Overview of approach. 34

5.2 % Error in prediction for points sorted based on obtained performance
for the RUBiS bidding mix benchmark. 41

5.3 Actual performance and predictions using ANN and SVM based sub-
models. The x-axis enumerates data points sorted by increasing
performance values. The y-axes represent performance (requests/sec
for RUBiS and operations/sec for Filebench respectively). 45

5.4 Error Distribution of RUBiS Bidding Mix when using sub models for
prediction. The X axis represents CPU Limit (MHz); the Y axis rep-
resents Memory Limit (MB). Each box is divided into three columns
- representing low, medium, and high (from left to right) VM I/O
latency. Error value 0-3% = white, 3-9% = light grey, 9-27% = dark
grey, 27% and more = black. 47

5.5 Change in median error when noise is introduced in the training data set. 48

5.6 Training time. Benchmarks appear in increasing training data set size
from left to right . 49

6.1 Application performance relative to performance target for model-based
VM sizing. Each point represents a specific sizing query. 54

6.2 Optimality of VM Sizing under a target performance and a given VM
I/O latency. Each box is divided into two triangles - lower triangle
represents optimality of CPU, upper triangle stands for memory. The
degree of optimality is determined by the color code (shown above)
of each triangle. 55

7.1 Architectural Overview for Revenue Maximization. 58

7.2 Illustration of sub-optimal allocation with unit δ increments. 67

7.3 Experimental framework for revenue driven resource allocation. 70

7.4 Change in revenue when started with equal resource allocations 73

7.5 Change in revenue when the initial resource allocations to VMs are as-
signed proportionally to respective SLA weights 75

xi

7.6 Trend of actual CPU consumption and suggested CPU allocation for a
VM across multiple iterations of the resource allocation algorithm.
The chosen VM has the lowest SLA priority. Suggested allocations
are applied to the VMs using either shares or limits. 76

xii

CHAPTER 1

INTRODUCTION

Data centers are being increasingly virtualized. The proliferation of virtualiza-

tion technologies and cloud service providers have also made it easy to create or

buy virtual machines (VMs) to host applications. As a result, hundreds of virtual

appliances with diverse characteristics can be consolidated in one physical server.

Consolidation optimizes the utilization of server resources but leaves administrative

tasks in a quagmire. While still attractive relative to traditional non-virtualized

hosting, VM sprawl and over-sized VMs present problems in terms of capital and

operational expenditure at these data centers. If not mitigated, these problems can

potentially forestall the adoption of virtualization techniques; thereby regressing to

over-provisioned, dedicated systems with higher costs of resources such as CPU,

memory, storage, network, and power.

Since virtualization technology facilitates several heterogenous applications to

run in a shared environment, careful attention needs to be directed towards the re-

source consumption characteristics of individual workloads. As the consolidated

application VMs are quite diverse, they exhibit varying degrees of resource de-

mands. Without a thorough understanding of the effects of resource allocation

on application performance, VM resource provisioning may be sub-optimal. More-

over, consolidation creates another challenging problem. An application running

inside one VM can interfere with the performance of another application running

inside another VM that share physical resources. This performance interference is

often significant and applications cannot be modeled correctly without accounting

for the interference. Unfortunately, the contemporary server management systems

do not explicitly address this contention. To minimize the potential for interference

affecting performance, administrators either resort to over-provisioning or require

1

clients to pay more for additional resources. Without faithfully capturing the re-

lationship between resource allocation and application performance and accurately

understanding the effect of interference, configuration of cloud VMs and distribution

of server resources in a data center are likely to be sub-optimal.

Cloud users today pay for a statically configured VM size irrespective of the

actual resources consumed by the application (e.g. Amazon EC2 [ec2]). Thus, it is

highly desirable for cloud users to size their VMs based on the actual performance

needed by their applications and no more. At the same time, cloud service providers

can benefit from a performance based charging model built around an application

service-level agreement (SLA). Thereby, the service providers can supply and charge

for a certain service level to an application, eliminating the need for guess work or

over-provisioning by their customers [NKG10]. Doing so could increase customer

willingness to pay a higher price for better service compared to paying a flat fee

based on the size of their VMs. Moreover, cloud service providers would now have

the flexibility to dynamically optimize the resources allocated to VMs based on

actual demand.

The complexity of meeting application-level SLAs and doing performance trou-

bleshooting in virtual environments has been mentioned in many recent studies

[Dre08, Kot11, Vog08]. As pointed out before, the primary source of this complex-

ity lies in registering accurate relationships between resource allocation and desired

performance targets. Modeling is extremely challenging due to multiple resource

types being involved and sometimes with inter-dependence among these (e.g. mem-

ory and disk I/O). Moreover, while some types of resources (e.g. CPU time, memory

capacity) are easy to partition, other types (e.g. storage and network bandwidth)

are not, making it hard to find a parameter that can characterize contention in a

shared environment. The contention on these hard-to-partition resources can have

2

a significant impact on a VM’s performance and this needs to be captured well by

the performance model. Virtualization magnifies this impact due to the inherent,

underlying sharing and contention [Kot11].

Some previous solutions [PSZ+07, PHZ+09] have partially addressed the resource

management problem by applying control-theory based models to proportionally al-

locate available CPU, storage to running VMs. But, key parts of those solutions

were not explained adequately and the chosen SLA metrics were simple priority

values (detailed in section 3.3). Other selected research acknowledged modeling the

effects of only one type of resource (e.g. CPU [NKG10]) or modeling specific types

of applications (e.g. database [SMA+08, SLG+09]). Moreover, storage I/O con-

tention had not been handled explicitly. Further, server resources were distributed

in proportion to single or dual priority value(s) based on the respective SLAs. To

the best of our knowledge, no work has specifically addressed the resource allocation

problem in data centers with the objective of maximizing SLA-generated revenues.

In this thesis, we address the above gaps by making the following contributions:

• Control Parameters: We identify and study the impact of key VM resource

control knobs and contention parameters that affect the performance of virtu-

alized applications. In doing so, we find that the CPU and memory allocation

levels are central predictors of application performance. We also find that the

I/O latency observed by the virtual machine is an excellent indicator of I/O

contention in a shared storage environment. We present a detailed account of

the process of parameter selection in Chapter 4. The suggested parameters are

application agnostic and are widely available in any virtualization platform.

• Modeling Techniques: We apply and thoroughly evaluate two machine

learning techniques, Artificial Neural Network (ANN) and Support Vector

Machine (SVM), to predict application performance based on the control pa-

3

rameters. We develop sub-modeling, a clustering-based approach that over-

comes key limitations when directly applying these machine learning tools.

Evaluation using a diverse set of benchmarks confirms that these optimiza-

tion techniques substantially improve prediction accuracy. In Chapter 5, we

explain the details of the modeling process, the limitations of standard re-

gression based approaches, and appropriate application of ANN and SVM

modeling techniques to VM performance.

• VM Sizing: We present a simple and effective approach to sizing the re-

source (CPU, memory) requirements for VMs in the presence of storage I/O

contention based on the performance models that we develop. Evaluation indi-

cates that modeling based VM sizing approach is able to deliver performance

guarantees and that the estimated sizes are also optimal or nearly optimal.

We present details in Chapter 6.

• Dynamic Resource Allocation: Data centers are revenue-driven and the

design goal is that the applications experience levels of performances propor-

tional to their shares of revenue as per their SLAs. We develop a greedy al-

gorithm which dynamically repartitions physical resources among VM-hosted

applications running in a data center server with the goal of maximizing SLA-

generated revenues in US dollars. Evaluation captures substantial increase in

revenue when our framework is deployed in comparison to traditional propor-

tional allocation. We explore this contribution vividly in Chapter 7.

We expect that cloud service providers and users, data center administrators and

clients will immensely benefit from our proposed solutions. The improvements will

propel the growth of virtualization by improving client experience and confidence

and significantly reducing data center costs. In the following chapter we formally

4

present our thesis statement, articulate its contributions further, and enunciate its

impact.

5

CHAPTER 2

THESIS STATEMENT, CONTRIBUTIONS, AND IMPACT

In this chapter, we categorize each of our contributions in depth, and extend the

scopes of our solutions beyond what we have emphasized in the previous chapter.

First, we declare a formal thesis statement. Second, we analyze each of the con-

tributions. Lastly, we discuss how these contributions make significant impacts on

constructing powerful resource management tools for virtualized data centers and

cloud service providers.

2.1 Thesis Statement

In this thesis, I improve the management of virtualized data center servers by

(i) exploring several machine learning techniques for accurate and robust appli-

cation performance modeling of the virtualized workloads,

(ii) developing new techniques for sizing of virtual machines with the goals of

meeting target performance as well as reducing over-provisioning in terms of

CPU and memory allocations, and

(iii) developing new techniques for allocating physical resources dynamically with

the objective of maximizing the SLA-based revenue generated for the data

centers.

2.2 Thesis Contributions

Management of data centers lacks automation and is often erroneous or sub-optimal

due to imprecise and limited understanding of the effects of resource availability and

contention on the applications behavior. This results either in over-provisioning of

6

resources or in performance violations of critical client applications. This thesis

develops a framework and techniques to automatically and dynamically allocate

resources for virtualized data centers in a holistic way.

To address this objective, the first part of this thesis describes building accurate

performance models for virtualized applications. Since VM-hosted applications ex-

hibit complex non-linear relationship to the level of allocation of various resources,

simple regression models become ineffective [KRDZ10]. Similarly, non-machine

learning techniques based on queuing theory [DCA+03] and control theory [PHZ+09]

are also incapable of modeling those complex behaviors because they often make

idealistic assumptions about the system and use simple linear or quadratic models

(elaborated in section 3.1). We found that machine learning techniques e.g. ANN

and SVM, are capable of modeling the non-linear resource consumption trends typ-

ical of most applications [KRG+12]. Improving model prediction accuracy involves

investigating such machine learning tools for VM application performance modeling

and more importantly, how to configure them and optimize their usage. Robust and

low-error performance models serve as the backbone of the other thesis contribu-

tions.

The second contribution of the thesis is VM sizing which is the problem of

accurately estimating the amount of CPU and memory required to host client ap-

plications in the cloud. The goal here is two fold. First, the calculated allocations

must be sufficient to reach the target application performance level for all appli-

ances. Second, the allocations have to be optimal to prevent unnecessary wastage

of resources which otherwise can be used to host other applications. We use our

application performance models to meet both objectives.

The third contribution empowers administrators to repartition primary physi-

cal resources (CPU, Memory and Storage I/O) among VM-hosted applications to

7

maximize revenue for the data centers. Several challenges need to be overcome to

achieve this goal. First, the effects of altering resource allocations and contention

on individual VMs have to be captured. As in the case of VM sizing, the per-

VM performance models are utilized to accomplish this task. Second, an efficient

algorithm which is able to maximize SLA-generated revenues by allocating server

resources among the hosted workloads by handling diverse performance models and

SLA functions, is necessary.

2.3 Thesis Impact

The contributions in this thesis will help both the cloud service providers and clients

by bringing ease, transparency, and efficiency in the administrative operations as

well as in delivering performance guarantees. Service providers (e.g. Amazon [ec2],

Rackspace [rac]) which typically offer Infrastructure-as-a-Service (IaaS), are likely to

adopt this work to reduce over-provisioning and to enhance their revenues without

relying heavily on human supervision or being over-intrusive in monitoring perfor-

mance data. Since individual SLAs are respected, clients will also feel comfortable to

host their sensitive applications in the shared environment without renting/buying

extra resources. The revenue-driven approach will also encourage clients to pay ad-

ditional rents for guaranteed performance levels. In essence, this thesis underscores

the importance of an improved management infrastructure in today’s data centers.

The proposed solutions are expected to accelerate the move towards shared cloud

services as opposed to dedicated servers by boosting client confidence and admin-

istrative efficiency. Last, but not the least, the proposed techniques are universal

enough to be incorporated in commodity virtualized server management software

irrespective of the specifics of the underlying hypervisors and storage systems being

used.

8

CHAPTER 3

RELATED WORK

In this chapter, we extensively explore the existing literature pertaining to this

thesis. In doing so, the discussions will follow the contributions listed in the thesis

statement (Chapter 2.1). First, we will delve into the modeling techniques related to

application performance prediction and troubleshooting. Second, the current status

of the works on VM sizing will be discussed. Last, research regarding dynamic

resource allocation in servers will be emphasized.

3.1 Modeling

Creating performance models for applications as a function of underlying system

parameters is a well researched area. Many previous studies have focused on pre-

dicting an application’s performance based on low level performance counters related

to cache usage, allocation, and miss rates [SKZS08, DCA+03]. Utilizing such models

is difficult in virtualized environments because the support of hardware performance

counters at the VM granularity is not widely available in production hypervisors.

However, virtualized environments provide an unique opportunity to model an ap-

plication’s performance as a function of the size of the VM or underlying hardware

resource allocation. The resources allocated to a VM are fungible and can be changed

in an online manner. For example, VMware’s vSphere utility allows changing the

minimum reservation and maximum allocation or relative priority of CPU, mem-

ory, and I/O resources available to a VM at runtime. In this section, we examine

the work related to application performance modeling as a function of one or more

resources.

9

Modeling

Technique

Strengths Weaknesses Applications

Queuing & Control Theory based Techniques

Queueing

Theory

Usability,

Speed

Restrictive as-

sumptions

Predicting response times of internet ser-

vices [DCA+03]

Control The-

ory

Simplicity Computational

complexity

Linear MIMO models to manage resource for

multi-tier applications [PHZ+09]

Machine Learning (ML) Techniques

Regression

Analysis

Usability,

Transparency

Limited scope Memory resource modeling [WSW08],

Translating physical models to virtual

ones [WCOS08], Fingerprinting prob-

lems [BGF+10]

Bayesian Net-

works

Extensibility,

Transparency

Binary deci-

sions, Domain-

based

Fingerpointing for SLA violations [CGK+04],

Signature construction of systems his-

tory [CZG+05], Building workloads signatures

and classifying based on the signature

type [VNM+12]

Fuzzy Logic Extensibility Usability, Sta-

bility

Predicting resource demand of virtualized web

applications [XZF+08]

Reinforcement

Learning

(RL)

Exploratory Value pre-

dictions not

supported

CPU/memory resource allocation for

VMs [RBX+09]

Kernel

Canonical

Correlation

Analysis

(KCCA)

Multivariate

analysis

Sensitivity to

outliers

Predict Hadoop job execution time [GCF+10]

Artificial

Neural Net-

works

Powerful Opacity, Con-

figuration,

Computational

complexity,

Overfitting

Performance prediction for virtualized applica-

tions [KRDZ10]

Support Vec-

tor Machines

Powerful Opacity, Con-

figuration

Workload modeling in shared storage sys-

tems [UYA+05], Estimating power consump-

tion [MAC+11]

Table 3.1: A compendium of related work on application performance modeling

3.1.1 Past Modeling Approaches

We classify these works into two broad classes: (1) Queuing & control theory based

techniques and (2) Machine learning techniques. Table 3.1 provides a summary of

the related work; we elaborate on each below.

Queuing and Control Theoretic Models. Doyle et al. [DCA+03] derived analyt-

ical models using basic queuing theory to predict response times of Internet services

under different load and resource allocation. Bennani et al. [BM05] considered using

10

multi-class queuing networks to predict the response time and throughput for online

and batch virtualized workloads. The effectiveness of these solutions is limited by

their simplified assumptions about a virtualized system’s internal operation based

on closed-form mathematical models.

Another related class of solutions have applied control theory to adjust VM re-

source allocation and achieve the desired application performance. Such solutions

often assume a linear performance model for the virtualized application. For exam-

ple, first-order autoregressive models were used to manage CPU allocation for Web

servers [LZSA05, WZS05]. A linear multi-input-multi-output (MIMO) model was

used to manage the multi-type resources for multi-tier applications [PHZ+09]. A

similar MIMO model was also used to allocate CPU resource for compensating the

interference between concurrent VMs [NKG10]. Such linear models are not sufficient

to accurately capture the nonlinear behaviors of virtualized applications which are

demonstrated and addressed in this thesis.

Machine Learning Approaches. Machine learning techniques have been exten-

sively studied for performance analysis and troubleshooting. The CARVE project

employs simple regression analysis to predict the performance impact of memory

allocation to VMs [WSW08]. Wood et al. use regression to map a resource usage

profile obtained from a physical system to one that can be used on a virtualized

system [WCOS08]. However, the accuracy of regression analysis has been shown to

be poor when used for modeling the performance of virtualized applications under

different levels of resource contention [KRDZ10].

Cohen et. al [CGK+04] introduced Tree-Augmented Bayesian Networks to iden-

tify system metrics attributable towards SLA violations. The models enable an

administrator to forecast whether certain values for specific system parameters are

indictors of application failures or performance violations. In subsequent work, the

11

authors used Bayesian networks to construct signatures of performance problems

based on performance statistics and clustering similar signatures to support search-

ing for previously recorded instances of observed performance problems [CZG+05].

Bodik et al. [BGF+10] challenged the usefulness of Bayesian classifiers and in-

stead used logistic regression with L1 regularization to compute the metrics relevant

to fingerprint computation. This was shown to be effective for automatic perfor-

mance crisis diagnosis and in turn facilitating remedial actions. The above tech-

niques address bottleneck identification and forecasting whether certain resource

usage and/or application metrics would lead to SLA violations. However, they do

not address how much SLA violation would be incurred or how resources should

be allocated to prevent future violation. In contrast, we specifically address perfor-

mance prediction: given a set of controllable/observable parameters, what would the

application’s performance be? Such prediction can then be used within an optimized

resource allocation or VM sizing framework.

Xu et al. consider the use of fuzzy logic to model and predict the resource

demand of virtualized web applications [XZF+08]. The VCONF project has studied

using reinforcement learning combined with ANN to automatically tune the CPU

and memory configurations of a VM in order to achieve good performance for its

hosted application [RBX+09]. These solutions are specifically targeted for the CPU

resource. In addition to CPU, we address memory and I/O contention explicitly in

this thesis.

To address ”what-if” questions, we apply ANN models in [KRDZ10]. Though

the initial application of ANN in [KRDZ10] showed promise, our own investigation

later revealed several drawbacks limiting its applicability. First, we observed that

the parameter to capture I/O contention in shared storage platform can lead to

arbitrary inaccuracy in the model (as demonstrated in section 4.3.1). Second, we also

12

observed that constructing a single model encompassing the entire parameter space

in a multi-dimensional model was also severely deficient. In this thesis, we discuss

our initial experience with ANN (Chapter 5.3.2) and subsequently propose new

modeling techniques that overcome these limitations effectively and evaluate our new

techniques on a wide set of real-world virtualized server benchmarks (Chapter 5.4).

Further, we demonstrate that our models can also be used for accurate VM sizing

(Chapter 6).

We explore the power of both ANN and SVM approaches to machine learning.

Although SVMs are generally applied as a powerful classification technique, SVM-

based regression (SVR) is gaining popularity in systems data modeling. In [UYA+05],

SVR was used to build models to predict response time given a specified load for

individual workloads co-hosted on shared storage system. SVR has also been used

to model power consumption as a function of hardware and software performance

counters [MAC+11]. To the best of our knowledge, prior to our work, SVR has not

been used before for performance prediction of virtualized applications.

3.1.2 Building Models

In this thesis, we apply advanced machine learning methods to model the relation-

ship between the resource allocation to a virtualized application and its performance

using a limited amount of training data. Such a model is subsequently used to pre-

dict the resource needs of an application to meet its performance target. One of the

questions in this approach is when and how the model is built. Since our approach

requires collecting application performance data for a wide range of resource allo-

cation choices, it is difficult to build the model quickly based only on observations

from production runs. One option is to have a staging area where a customer can

deploy the application and run a sample workload against various resource alloca-

13

tion configurations to facilitate modeling. We can also leverage recent work like

justrunit [ZBJ+09] where authors provided a framework for collecting training data

by running cloned VMs and applications in an identical physical environment. The

modeling techniques that we develop in this thesis can complement and enhance a

such a system which used simple linear interpolation to predict performance results

for unavailable allocations.

3.2 VM Sizing

The VM sizing problem in cloud services has been explored before under the purview

of resource provisioning and capacity management of virtualized servers. There has

been research in both industry and academia towards addressing this problem [capa,

capb, pla].

Gmach et al. [GRCK07] proposed a trace-driven approach to predict required

resource capacity for a set of workloads. Specifically, it addressed whether a re-

source pool has sufficient resources to host a new workload, packing of workloads on

a specific server, and future demand predictions. Wood et al. [WCOS08] estimated

resource requirements when applications are transitioned from non-virtualized sys-

tem to virtualized system. They did so by running a series of micro-benchmarks on

the non-virtualized system and on the target virtualized system and subsequently

devised a regression model to capture the virtualization overheard. A workload

trace was used as the basis for estimating resource usage in the non-virtualized sys-

tem. Very recently, Meng et al. [MIK+10] pointed out that capacity prediction by

sizing individual VMs separately leads to wastage of physical resources. Instead,

they proposed a joint VM sizing approach which statistically multiplexes the re-

source demands of individual clients. They also offered a VM selection mechanism

14

whereby administrators have the ability to group VMs on a physical server based

on individual resource requirements estimated by application-specified SLA models.

All of these previous approaches have dealt with VM sizing from the point of

view of capacity planning of the data centers. However, none of them have offered

any flexibility towards choosing an appropriate VM size based on the clients perfor-

mance target. In our work, we aim to provide a framework that will provide clients

the ability to choose the customized resource sizes that will guarantee their target

performance and the selected sizes will be close to optimal. We make a formal state-

ment of our sizing problem and show the benefits of performance modeling based

VM sizing in Chapter 6.

3.3 Dynamic Resource Allocation

The related work on resource allocation in virtualized environments primarily fall

into two broad categories: (a) application-specific solutions that employ domain

knowledge as an integral part of the optimizer, and (b) dynamic reallocation of a

specific resource type (in most cases CPU) for an arbitrary application class.

Aboulnaga et al. [SMA+08] proposed automatic virtual machine configurations

for database workloads. They implemented a virtualization design advisor that uses

information about the virtualized database workloads to generate optimal configu-

ration parameters for each VM hosting a database instance. At a high level, this

approach addresses resource reallocation to minimize the cost associated with each

database workload which is typically the execution time. While this work relies on

expert knowledge about the database with the cost estimation model varying as the

type of database changes, our approach is designed to be application-agnostic. Ac-

tiveSLA [XCZ+11] suggested a framework for admission control of individual queries

in cloud database systems where admission decisions are guided by SLAs and ex-

15

pected profits. In contrast, we formally model the application-independent version

of the resource reallocation problem and compare it against known allocation-based

optimization problems. We finally present an efficient algorithm that provides a

widely applicable heuristic solution.

Recent work on adaptive control of virtualized resources in data centers [PSZ+07]

describes an approach for handling multi-tier applications with the high-level goals

of (i) guaranteed application-level QoS, (ii) high-resource utilization across all phys-

ical nodes, and (iii) QoS differentiation during resource contention. However, this

work only considers CPU allocation and it is not clear how it would work for other

types of resources. The follow-up work by the authors proposed an improved ver-

sion [PHZ+09] which addresses among other improvements: (i) CPU as well as

disk I/O resources, (ii) service level objectives within the contention differentiation

metric, and (iii) the restriction of hosting a particular tier in a specific node. The op-

timization objective we consider in our work is different in the sense that we consider

SLA to be more complex including not only the targeted performance metric and

priority, but also differential revenue for achieving different levels of performance.

Our problem formulation and solution are explicitly geared towards maximizing the

revenue for the data center at any instant. Very recently, CloudScale [SSGW11]

was proposed as an automatic elastic resource scaling system for multi-tenant cloud

computing infrastructure to minimize SLO violations and meeting additional objec-

tives of optimizing physical resource usage and energy savings. Again, the work is

targeted towards the prevention of SLO violations and is only capable of predicting

CPU load demands.

Some systems e.g. Pesto [GSA+11], Cake [WVA+12] dealt only with storage

system provisioning in accordance to the SLOs. Xu’s et al. work [XZF+08] on vir-

tualized data center resource management also considered the profit-driven resource

16

optimization problem, which was formalized as an instance of the continuous knap-

sack problem and solved using a greedy allocation algorithm. In comparison, this

thesis recognizes the discrete nature of VM resource allocation and the need of in-

cremental resource reallocation in order to ensure system stability and performance

prediction accuracy.

Q-cloud [NKG10] aims to mitigate performance interference potentially caused

by running several disparate VMs onto a single server. Under Q-cloud the client can

expect to get the same performance as will be achieved by running the application in

a dedicated system. Additionally, clients can provide multiple levels of Q-states and

thereby cloud providers can distribute unused resources to the application VMs and

hence earn more rent by increasing resource utilization. The implementation was

directed towards CPU bound applications and the reason was attributed towards

the unavailability of I/O capping mechanisms. However, their proposed models

assumed a degree of linearity in resource consumption trends. In Chapter 4, we will

show that linear trend is hardly the case for virtualized applications. Apart from

our robust modeling technique and handling of CPU, memory and storage I/O, the

most important difference lies in our goals. We are not just interested in performance

interference removal, but we also envision a market or revenue driven approach where

application VMs are rewarded or penalized based on their performance SLA curves

given a certain amount of minimum reservations.

Recently, Bryant et al. proposed a prototype of a micro-elastic server called

Kaleidoscope [BTI+11] to dynamically create small cloned worker VMs to satisfy

increased demand on a target VM. They used a novel VM state coloring technique

to glean useful semantic information of guest OS page tables and then clone VM

states to instantly create replicas of those VMs which can satisfy additional user

requests for parent VMs. Although the technique is promising, it did not address

17

how the physical resources should be distributed according to their respective SLAs.

Essentially, we view kaleidoscope as a complementary solution that satisfies instan-

taneous load spikes in user VMs. On the other hand, our revenue driven approach

delivers a more effective resource partitioning when the loads on the VMs are stable

and the resource allocation decision is guided by the SLAs.

The rest of the chapters are laid out as follows. Chapters 4 investigates the

resource control parameters crucial for performance modeling as well as resource

provisioning. Chapter 5 explores several modeling techniques and proposes new op-

timizations to existing machine-learning based approaches for accurate performance

prediction. Chapter 6 discusses a performance model-based VM sizing approach.

Chapter 7 emphasizes the potential of a novel revenue driven resource allocation

algorithm that employs the performance models we create. Chapter 8 summarizes

the thesis. Chapter 9 concludes by delineating several directions for future reserach.

18

CHAPTER 4

RESOURCE PARAMETERS SELECTION

The resources allocated to a virtual machine directly impact the hosted application’s

performance. Choosing appropriate control knobs to handle resource allocation for

a VM is critical to ensure desirable performance and create a robust model. The

purpose of this chapter is three folds. First, we discuss the principles we follow

while selecting control parameters. Second, we identify the knobs in the form of

VM resource allocation parameters that can be used to directly control application

performance. We focus our discussions on control knobs available both in indus-

try dominated VMware ESX hypervisor [VMw10a], and in university open-source

Xen hypervisor [BDF+03]. Third, we demonstrate that the relationship between

these controls and the application performance is quite complex and hard to model.

Several profiles of RUBiS [rub] and Filebench [fil] are chosen for this study; these

applications consume a variety of physical resources (CPU, Memory and I/O) in a

complex fashion. The brief descriptions of the workloads are presented next.

RUBiS Browsing. A Java servlet based RUBiS [rub] Browsing workload was used

for the experiments. Client user requests were handled by a Tomcat web server and

the underlying database was MySQL. The webserver, database and clients were run

on the same VM to minimize network effects that we do not address in this work.

1000 clients were run simultaneously. The Browsing Mix consists of 100% read-only

interactions. After each run, RUBiS reported average throughput as requests/sec,

which was used as our application performance metric.

RUBiS Bidding. A similar set up was used for RUBiS Bidding Mix workload

with 15% writes. 400 clients running simultaneously were used and the performance

metric was average requests/sec as before. Both of the RUBiS profiles are CPU and

memory intensive. They generate a small number of I/Os and hence are largely

19

insensitive to the I/O contention.

Filebench-OLTP. Filebench [fil] is a widely used benchmark for creating realistic

I/O intensive workloads such as OLTP, webserver, mail server, etc. We used the

Linux based Filebench tool and ran the OLTP application profile which emulates

a transaction processing workload. This profile tests for the performance of small

random reads and writes, and is sensitive to the latency of moderate (128k+) syn-

chronous writes to the log file. We configured the benchmark to create 32 reader

threads and 4 writer threads; I/O size was set to 2KB with a 10GB dataset. We

took the Operations per Second (Ops/Sec) reported by Filebench as the application

performance metric for this workload.

Filebench-Webserver. We also used the webserver profile that performs a mix of

open, read, close on multiple files in a directory tree, accompanied by a file append

to simulate the web log. We created a fileset of total size 10GB and used 32 threads.

Application performance was recorded in terms of operations per second (Ops/Sec).

Filebench-Fileserver. The Filebench-fileserver workload performs a sequence of

creates, deletes, appends, reads, writes and attribute operations on the file system.

A configurable hierarchical directory structure is used for the file set. Similar to the

Webserver benchmark, we used a dataset of 10GB and 32 simultaneous threads.

For the experiments, we used an AMD-based Dell PowerEdge 2970 server with

dual socket and six 2.4 GHz cores per socket. The server has 32 GB of physical mem-

ory and ran VMware ESX-4.1 hypervisor. All the VMs ran Ubuntu-Linux-10.04.

VMs were restricted to use only four specific cores (0-3). Remaining cores were kept

idle. All the virtual disks for VMs, and the ESX install were on a VMFS [CAVL09]

(VMware’s clustered file system) data-store on local 7200 RPM SAS drives from

Seagate. We used a VMware vSphere client running on a separate physical machine

for managing resources of the individual VMs. The statistics were collected using

20

esxtop utility and all the data was transferred to a separate Dell PowerEdge T105

machine with quad-core AMD Opteron processor (1.15GHz×4), 8 GBs of physical

memory, 7.2k rpm disk, running Ubuntu-Linux-10.10 for analysis. All modeling

tasks were also done using this machine.

To simulate I/O contention, we used a separate Ubuntu-Linux VM with 1000

MHz of VCPU and 512 MB of memory which ran fio [fio] - a Linux-based I/O work-

load generation tool co-located with the virtualized application being modeled. The

number of outstanding I/Os (OIO) and other workload parameters (e.g., sequen-

tiality) were varied to create different levels of I/O contention on the shared VMFS

data-store. Another VM on the same host was used to run Perl-based scripts for

changing the allocation parameters for the VMs running the benchmarks.

We look for following requirements to hold true while identifying resource param-

eters. First, the parameters must either directly map to or indirectly reflect known

resource usage behavior of processes, and they must be easy to control and/or ob-

serve. This will allow system administrators to intuitively use such parameters.

Second, contentions in shared environment have to be accounted. For example, an

I/O intensive application running in one VM may affect the I/O operations of an

application running in another VM. We explicitly address storage I/O contention,

local or networked. But, we do not handle (non-storage) network I/O contention

in our work. While host-level NIC bandwidth is typically not a bottleneck, there

is little control over in-flight packages once they leave the host. Datacenter level

solutions are necessary to manage network I/O contentions. Third, we select the

minimum set of model parameters that efficiently captures application performance

with high-accuracy and are yet application-independent. We take a minimalistic ap-

proach to parameter selection by starting from known, high-level, system resources

that can directly impact application performance including CPU, memory, and disk.

21

Finally, our chosen knobs are generic enough to be found in any hypervisor platform.

Although not considered in this thesis, it is conceivable that processor cache

resources can be also incorporated as an additional parameter, either by controlling

the cache allocation (if it is partitionable) across VMs or by taking into account

the influence of cache contention between VMs via hardware performance counters.

In this work, we have mostly focussed on macro-level resource management rather

than micro-level characterization (e.g. cache misses). Next, we delve deeper into

parameterizing each of the key resource dimensions - CPU, memory, and disk. A

special attention has been given to model disk I/O contention.

4.1 CPU

The common practice in modeling CPU usage by an application is establishing a

correlation between the average or peak CPU utilization of an application and its

observed performance [DO00, SKZS08, SS05, WCOS08]. These models have been

used for application placement to predict running times of applications [DO00], to

predict CPU utilization at different application load levels for capacity planning

purposes [SS05], for cross-platform performance prediction [SKZS08], and for map-

ping resource usage of an application running natively to that when the application

runs within a VM [WCOS08].

Since a primary goal for performance modeling in our case is to provide tunable

knobs to the system administrator for controlling performance, the commonly used

CPU utilization, an observable (rather than controllable) parameter, is ill-suited.

Moreover, forcing the application to specific CPU utilization levels is necessary to

create a model that predicts performance based on CPU utilization and requires

changing application load levels, thus requiring knowledge of application semantics.

Instead, we choose the CPU allocation which merely imposes an upper limit on CPU

22

utilization, and is a basic control parameter across all virtualization architectures

and solutions. This parameter can be directly utilized by a data center system

administrator to determine the expected application performance for a given CPU

resource allocation.

4.1.1 Xen-specific Parameters

By default, Xen uses a credit scheduler for time-sharing CPU cycles across the VMs,

including the dom-0 VM. We instantiate the CPU allocation generic parameter as

the Xen-specific CAP parameter which places a upper bound on a VM’s CPU usage

and can be changed dynamically from within dom-0 (the controller VM in Xen

hypervisor) at run-time [KRDZ10].

4.1.2 ESX-specific Parameters

ESX provides three control knobs for CPU allocation to individual VMs: reserva-

tion, limit, and shares [VMw10b]. Reservation guarantees a certain minimum CPU

allocation expressed in MHz. Limit (in MHz) provides an upper bound on the CPU

allocation. Share provides a mechanism for proportional allocation during time pe-

riods when the sum of the CPU demands of the currently running VMs exceeds

the capacity of the physical host. We chose reservation and limit, both set to the

same value as our control knob, to enforce the physical segregation of CPU resources

across multiple VMs running on a single physical machine and to ensure that the

VM will never get any allocation more than the set value as well. This approach

is similar to the implementation in many public clouds such as Amazon EC2. In

multiple SLA-level environments, reservation and limit can be set at different values

for guaranteeing minimum performance and higher performance respectively.

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 800 1000N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

 M
e

tr
ic

CPU (MHz)

RUBiS Browsing
RUBiS Bidding

Filebench OLTP
Filebench Webserver
Filebench Fileserver

Figure 4.1: Impact of CPU limit.

4.1.3 Impact of CPU Allocation

Even with such physical segregation for the CPU, the typical relationship between

application performance and the CPU allocation is complex. We exemplify this

complexity in ESX environment by setting CPU limit at different levels. We mea-

sure the performance of the five virtualized applications while varying the VM’s

CPU limit from 200 MHz to 1 GHz. The memory allocations were kept high enough

to ensure that memory is not the bottleneck. We used a VMFS data store on a

local disk on the ESX host to store the virtual disks of the VMs. Figure 4.1 shows

the normalized performance of these applications. As seen from the graph, both

the RUBiS workloads behave non-linearly; the performance slope is different at

various CPU allocation ranges. The three personalities of Filebench: OLTP, web-

server, and fileserver behave quite differently. While the webserver and fileserver

performances saturate quickly at 400MHz, OLTP performance, on the other hand,

varies almost linearly with CPU allocation. Overall, this data reveals that virtu-

alized workloads can have quite different performance curves with respect to CPU

allocation [KRG+12].

24

4.2 Memory

The use of memory utilization for modeling application performance has been ex-

plored before [SS05]. In a virtualized environment, besides sharing the same draw-

backs as CPU utilization when used as a control knob, the memory utilization metric

also incorrectly characterizes an unused portions of the file system page cache as

part of the memory utilization of a VM which gets attributed to the resident appli-

cation; application performance and its memory utilization can change substantially

while the VM memory utilization remains constant, and vice-versa.

Virtualization allows the VMs sharing the host physical memory to have their

own isolated memory allocation. Following the rationale for the CPU resource pa-

rameter, we choose the the VM memory allocation for the VM as our model parame-

ter. This parameter provides a control knob that is available across all virtualization

solutions.

4.2.1 Xen-specific Parameters

Changing memory allocation for a VM is very straightforward in Xen. These mem-

ory allocation limits are strictly enforced by the virtual machine monitor. The xm

mem-set command can be issued from dom-0 to change the memory allocation of a

VM dynamically, allowing full control over dynamic memory repartitioning across

VMs as needed. Thus, we instantiate the memory allocation generic parameter as

the Xen-specific mem-set alloc (MEM) parameter [KRDZ10].

4.2.2 ESX-specific Parameters

Similar to the knobs for CPU, the ESX hypervisor provides three controls for mem-

ory allocation: reservation, limit, and shares. The semantics of these knobs are sim-

25

 0

 0.2

 0.4

 0.6

 0.8

 1

 256 384 512 1024N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

 M
e

tr
ic

Memory (MB)

RUBiS Browsing
RUBiS Bidding

Filebench OLTP
Filebench Webserver
Filebench Fileserver

Figure 4.2: Impact of memory limit.

ilar to the ones for CPU. Once again, we used limit (specified in MBs) as the control

parameter which guarantees a certain memory allocation and no more. Reservation

can also be used in conjunction to preserve minimum performance of the work-

load [KRG+12].

4.2.3 Impact of Memory Allocation

As in CPU, we tested the effects of memory allocations on the same five workloads

on ESX. Figure 4.2 shows the normalized performance of these applications as we

vary the memory limit from 256 MB to 1 GB. The CPU allocation was kept at a

sufficient level to avoid saturation, and there was no I/O contention at the storage.

In case of the RUBiS browsing mix workload, performance improves sharply be-

tween 256 MB and 512 MB, and remains almost flat afterwards. This behavior can

be attributed to the fact that working set size of the workload fits into the memory

after a certain allocation. A similar observation can also be made in case of the

RUBiS bidding mix workload, where the working set fits within 384 MB of mem-

ory. The Filebench-OLTP workload shows almost no memory dependency and the

26

performance remains flat when the VM’s memory allocation ranges from 256 MB

to 1 GB. The performance of the Filebench webserver and fileserver rises gradually

as more of the working set fits in memory.

Overall, these workloads show varied behavior. Some are insensitive to VMmem-

ory allocation, while others show either a sudden or gradual increase in performance

as the entire or an increasing fraction the working set fits in memory.

4.3 Storage

Strict performance isolation and guaranteed I/O allocation in virtualized environ-

ments is challenging because storage arrays are accessed in a distributed manner

and the allocation is not under direct control of the hypervisor [GAW09, GMV10].

Currently there are no widely available mechanisms for strictly partitioning I/O

bandwidth across multiple VMs. Most virtualization solutions provide a mecha-

nism to prioritize I/O requests from different VMs at the level of I/O scheduler

which directly impacts the I/O performance. However, relative prioritization alone

is insufficient to model the influence of disk I/O resource on application performance

which ultimately depends on the disk I/O bandwidth actually made available to the

application VM. The contending I/O volume due to concurrently running VMs on

the same host has a direct influence on the resource availability, especially in case

of shared storage. So, a parameter to incorporate contention is a must to address

the effects of storage I/O on application performance. I/O contention can be con-

trolled or modeled in several ways: measuring or controlling the number of I/Os/sec,

MB/sec or I/O latency. We specifically tried with two candidates - Competing Disk

I/O Operations Per Second (CDIOPS) as well as VM I/O latency. In the following

two sections, we elaborate on the details of each metric and explain why we pick up

VM I/O latency as a winner over the other choices.

27

I/O Type Postmark TPS CDIOPS I/O latency [ms]

Seq 49 6016 48.08

Seq 52 8483 48.43

Seq 46 8303 46.14

Rand 13 154 77.14

Rand 13 155 70.06

Rand 11 165 81.9

Table 4.1: Comparison between CDIOPS vs. VM I/O latency for modeling I/O
contention.

4.3.1 CDIOPS

CDIOPS is the sum of all contending disk I/Os (at a given moment) from other vir-

tual machines (excepting the target VM itself) sharing the same storage. Although,

we found it to be quite effective in our initial work [KRDZ10], on subsequent analy-

sis two majors drawbacks were found. First, obtaining the true CDIOPS value when

using shared networked storage requires explicit communication either with other

hosts or the storage device; this may not be feasible or if so, would incur substantial

overhead to keep the information up-to-date. Second, when there is high variance

in I/O sizes from competing workloads, the CDIOPS metric can be substantially

inaccurate in capturing the actual I/O contention. Large I/O requests would keep

the CDIOPS low while causing high device latencies for all VMs. Finally, even the

sequentiality characteristics of competing I/O can lead to inaccuracies when using

a single CDIOPS value for modeling sequential versus random I/Os which have

different costs.

To illustrate this limitation of using IOPS for modeling I/O contention, we ran

the Postmark [Kat97] benchmark in a VM running on a ESX host and generated I/O

contention using fio [fio] on a different VM. We fixed the I/O size at 4KB and and

issued 4 outstanding I/Os at a time. Keeping the CPU and memory allocation levels

constant, we configured the fio VM to issue either random or sequential I/O. We

record the data for three different instances for each type. Table 4.1 reports the VM

28

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
N

o
rm

a
li

ze
d

 P
e

rf
o

rm
a

n
ce

M
e

tr
ic

Latency (ms)

RUBiS Browsing

RUBiS Bidding

Filebench OLTP

Filebench Webserver

Filebench Fileserver

Figure 4.3: Impact of VM I/O latency.

storage latency, CDIOPS, and the resulting transactions-per-second (TPS) of the

Postmark VM. When the competing I/O is sequential, in spite of the higher CDIOPS

values, the application performance is better than the case when the competing

I/O is random and the CDIOPS values are lower. This simple experiment clearly

indicates the inadequacy of the CDIOPS as a measure of I/O contention. Similar

example can be constructed for bandwidth (in MB/sec) based modeling by using

small and large sized I/Os.

4.3.2 VM I/O Latency

VM I/O latency is the storage I/O latency observed by the target VM. We refer to

VM storage I/O latency or storage I/O latency as VM I/O latency henceforth. VM

I/O latency has broader acceptability as it directly reflects the impact of VM I/O

contention irrespective of its complexity due to different I/O sizes, sequentiality etc.

Moreover, latency can be easily measured from the hypervisor hosting the target

VM, no matter whether the storage is networked or local. Table 4.1 demonstrates

that using the VM I/O latency more accurately reflects the performance impact of

I/O contention on the Postmark workload.

29

To understand how VMs behave as I/O contention (as captured by I/O latency)

varies, we ran each of the five applications in one of the VMs (appVM) and ran the

competing I/O fio workload in another VM (called fioVM) both sharing the same

storage. The load is varied from the fioVM to create different levels of I/O con-

tention and cause different I/O latencies perceived by the appVM. Figure 4.3 shows

normalized performance as the I/O latency is varied from 20 ms to 120 ms. Most

of the applications suffer significant performance degradation when the average I/O

latency seen by the appVM increases. The RUBiS Bidding and Browsing workloads

generate very few number of I/Os (because their working set is small and fits well in

the memory) which made them largely insensitive to the I/O contention [KRG+12].

4.3.3 Xen-specific Parameters

In Xen, all disk I/O for a particular VM is attributed to its corresponding blkback

process running inside dom-0. Ionice values can be assigned to blkback processes

to adjust their relative priorities in disk I/O scheduling. Thus, the disk I/O pri-

ority generic parameter is instantiated as the Xen-specific IONICE parameter for

each driver domain blkback process. I/O operations from all VMs can be conve-

niently measured using the xentop tool, which provides cumulative statistics of total

number of read and write requests separately from each domain. We used ionice

in conjunction with CDIOPS for our initial publication [KRDZ10]. However, no

storage latency metrics were found in the xentop tool, at the time we were working

with xen.

30

4.3.4 ESX-specific Parameters

I/O latency can be measured in ESX hypervisor with the use of esxtop. More-

over, I/O shares provide control over relative I/O prioritization in case the LUN

queue is saturated. Recently, some techniques have been proposed to control I/O

latency seen by a VM in ESX environment. Techniques like PARDA [GAW09] and

mClock [GMV10] have been proposed to offer better I/O scheduling inside the hy-

pervisor. With PARDA, each virtual disk can be assigned an I/O share value which

determines the relative weight of the I/Os from this virtual disk as compared to

others. mClock provided additional controls of reservation and limit to control VM

latency. Given the lack of access to the source code of ESX and these technologies,

we used the degree of contending workloads to control I/O latency for our exper-

iments. This gives us the same model although with more effort. In future, we

plan to explore some of these soft controls (reservations, shares, limit) to vary I/O

latency for VMs in our experiments.

4.4 Summary

In this chapter, we identified the key allocation parameters (controllable/observable)

that effectively characterize application performance. On next chapter, we experi-

mentally corroborate that these chosen set of relatively few number of parameters

indeed ensure accurate performance modeling. Moreover, the micro-analysis in this

chapter shows that the performance of various applications varies in a non-linear

and complex manner as the allocation of resources for the VM is changed. We

also noticed that the relationship with respect to one resource is dependent on the

availability of other resource as well. For an example, RUBiS bidding workload is

seen to be almost neutral to I/O latency in Figure 4.3. While this observation holds

31

true for most of the memory levels, under low memory allocations (256 MB) the

performance is impacted by the changes in VM I/O latency. When operating on

256 MB, the performance changed from 1.5 requests/sec under high latency (80-100

ms) to 6 requests/sec under low latency (25-35 ms); an increase of 300%. On the

other hand, the performance remains stuck at 59-60 requests/sec when operating

under 1024 MB, no matter what the VM I/O latency level is. This sort of behavior

clearly emphasizes the level of complexities exhibited by VM-hosted workloads.

32

CHAPTER 5

APPLICATION PERFORMANCE MODELING

Accurately modeling behavior of the virtualized applications is a key to enable au-

tomated VM sizing or revenue driven resource allocation in cloud data centers. The

task of modeling is non-trivial due to non-linear dependence of performance on re-

source levels and the complex influence of contention; as demonstrated in Chapter 4.

Moreover, data centers typically host dissimilar applications with widely-varying

characteristics on a single physical node. Modeling with respect to a specific type

of workloads may not be suitable due to this wide-scale heterogeneity. It is im-

portant to find modeling tools which are application agnostic and can characterize

applications behavior without collecting too many informations from the applica-

tions itself. In this chapter, we discuss the following things. First, we depict the

overview of the architecture we are targeting. Second, we show how the the models

are trained. Third, we experimentally verify why simple regression models do not

work in our environment whereas advanced machine learning tools e.g. Artificial

Neural Network (ANN) and Support Vector Machine (SVM) turn out be the best

candidates. Fourth, we show how even sophisticated tools e.g. ANN and SVM can

fail to deliver higher prediction accuracy for certain complex workloads. We ana-

lyze the root cause of why direct applications of ANN and SVM are still insufficient

and propose improved use of those tools to substantially increase modeling prowess.

Lastly, we thoroughly evaluate our modeling optimization including its prediction

accuracy, robustness, and overhead.

33

Figure 5.1: Overview of approach.

5.1 Architectural Overview

We portray how modeling can be used for a virtualized host in Figure 5.1. The

virtual machine monitor is responsible for allocating basic resources such as CPU

cycles, memory capacity, and disk bandwidth. At a high level, allocating a specific

share of physical resources to a VM results in a specific performance that is mea-

surable using application-specific performance metrics such as response time and/or

throughput. The Performance Model for any VM is built by recording application

performance metrics under certain combinations of those parameters. This pro-

cedure is called Model Training. A detailed description is presented in section 5.2.

After the training, the model is queried to forecast performance that will be achieved

under certain values of candidate parameters. As discussed in Chapter 4, the input

set of parameters can either be observed or controlled easily by system administrator

and can be used to achieve a target performance for the virtualized applications in

a dynamic environment where resource consumption characteristics or target SLA

deliverables of any application are subject to change.

34

5.2 Model Training

During the training process, a machine learning model gradually tunes its internal

network by utilizing the training data set. The accuracy of any model is contin-

gent upon selection of a proper training data set and is evaluated using a separate,

non-identical testing data set. Briefly, the training starts with a boot-strapping

phase which requires system administrators to identify the best-case and worst-

case resource allocation considered feasible across each resource dimension (CPU

limit, memory limit, and virtual disk I/O latency/CDIOPS) for the workload on

the target hardware. The input parameter set is then chosen by first including

these boundary allocation values and selecting additional allocation values obtained

by equally dividing the ranges between the lowest and highest values across each

resource dimension. The input parameter set and the corresponding output pa-

rameter set (obtained by running the workload on the target system) are chosen as

the initial training data set. Additional allocation values (chosen at random) and

corresponding output values are collected for populating the testing data set.

After this initial training, the modeling accuracy with the initial training data

set is measured by predicting for the testing data set. If satisfactory accuracy (de-

fined an administrator chosen bound on prediction error) is achieved, the training

process concludes. Otherwise, additional allocation values are then computed by

preferentially varying highly correlated input parameters (based on the correlation

coefficient calculated using any statistical tool) by further subdividing the alloca-

tion range with the goal of populating the training set with allocation values that

represent the output parameter range more uniformly. Additional constraints allow

removing values from the training data set to address over-fitting.

35

5.3 Evaluating Alternative Modeling Techniques

Given the range of behaviors of virtualized applications, identifying techniques that

can adequately model them is a formidable exercise. We examine the suitability of

several regression techniques that have been used to model application behavior in

a non-virtualized systems. Observing the impotency, we probe employing advanced

machine learning techniques e.g. ANN. For evaluating model accuracy, we uniformly

use the percentage prediction error when the model is applied for predicting applica-

tion performance. Following benchmarks were used for experiments related to this

section.

Sysbench-CPU. It’s a CPU intensive benchmark from the SysBench [sys] package

which consists of configurable number of events that compute prime numbers from

1 to N (user-specified). The benchmark reports the average event handling time

which we used as the performance metric. As expected, this benchmark is sensitive

to CPU allocation, but insensitive to memory allocation and I/O contention.

Memory-intensive benchmark. We created a micro-benchmark that allocates a

large array in memory and continuously writes to random elements of that array.

The application performs a fixed number of operations (user-specified) and reports

memory-operations-per-second (MOPS). A 1 GB sized file in dom-0 (for Xen plat-

form) was configured as the SWAP virtual block device of the benchmark’s VM. This

simple workload shows complex non-linear behavior with respect to CPU, Memory

allocations as well as to I/O contentions and I/O shares.

Postmark. PostMark [Kat97] is a disk I/O intensive benchmark which models

e-mail systems, electronic news, and e-commerce systems. It creates a number of

files and performs append, create, delete, and truncate operations on the pool of

files. The benchmark reports Transactions Per Second (TPS) as the performance

36

metric. We configured the benchmark to create a data set of size 1.5 GB and perform

10000 transactions. The configures workload showed linear dependence on CPU and

memory allocation, and I/O contentions.

Sybench-OLTP. We used the online transaction processing (OLTP) benchmark

of SysBench [sys] suite with a MySQL-based database setup. This benchmark uti-

lizes all the three types of resources intensively. We created a table size of 2GB

and configured the benchmark to perform 10000 database transactions. The bench-

mark reports the transactions-per-second (TPS) as the performance metric. This

benchmark also demonstrates quite complex behavior to all the three resource types.

The experiments were conducted in xen hypervisor; we used a Dell Optiplex 755

dual core Intel Pentium 4 machine with 2 GB of physical memory running Xen-3.2.0

and and Linux VMs. All VMs including dom-0 ran Linux Kernel-2.6.18.8-xen. At

any instant, dom-0 could use one or more cores that were available. Guest machines

were restricted to use a single core with the choice of the specific core made at run-

time by the VMM, a default Xen option. The VMs used physical partition backed

virtual block devices for storage on the same 7.2K RPM SATA disk drive.

Initial experiments indicated that inadequate CPU allocation in dom-0 can ad-

versely impact application performance. In our setup, we ensure at least 25% CPU

allocation for dom-0 and did not impose any upper bound on the CPU usage for

dom-0. In addition, dom-0 memory allocation (512 MB) was kept constant for all

the experiments. To emulate disk I/O contention, we created an additional VM with

256 MB of memory and 20% CPU CAP, which ran an application issuing random

reads to large files at varied IOPS values. To obtain training and testing data, each

benchmark was run thrice for each input parameter configuration, and an average

value of the performance metric was chosen as the output parameter value.

37

Benchmark Sysbench-CPU Memory Postmark Sysbench-OLTP

Modeling % prediction error % prediction error % prediction error % prediction error

Technique avg. med. 90p. avg. med. 90p. avg. med. 90p. avg. med. 90p.

Regression-L 24.90 20.12 54.88 19.87 20.24 34.87 6.04 4.73 11.42 23.95 17.91 50.54

Regression-Q 21.69 17.81 48.88 8.66 6.47 19.36 6.27 5.09 11.19 73.51 53.12 195.49

Regression-LI 21.89 19.35 49.31 19.80 16.71 37.19 6.58 5.71 12.60 71.36 46.31 213.53

ANN 11.50 6.65 29.60 2.50 1.16 6.10 7.31 3.34 16.24 8.48 4.24 21.95

Table 5.1: Prediction error statistics for the regression and ANN techniques

5.3.1 Regression Models

We investigate several regression types:

Regression linear(L) is the simplest of the regression family which attempts to

establish a relationship between the output and the input parameters by considering

only first degree terms of the input variables whereas regression quadratic(Q)

allows both first order and second order terms for the input variables. To capture if

certain inputs have any combined influence on the application output (e.g. Memory

and I/O Latency), we applied the regression linear interactive(LI) technique

which combines first degree of inputs with pairwise interactive terms. We used the

R statistical package [R] to do the regression analysis.

Table 5.1 summarizes the median, average, and 90th percentile for prediction

errors across three regression models that we examined. Identical set of workloads

and training set and test set were used for all the experiments.

Almost all the cases, the prediction errors are quite high to be considered accept-

able. This experience with regression models leds us to hypothesize that it might be

extremely difficult, to create a conventional mathematical model which can predict

a virtualized application’s performance with acceptable accuracy. These models pri-

marily employ curve-smoothing techniques to fit the training data which may not

help in capturing behaviors when output changes non-smoothly in different ranges of

38

the input parameters. A technique is needed which is adaptive and efficient in mod-

eling complex non-linear relationships between outputs and inputs. Evolutionary

approaches such as artificial neural networks and support vector machines provide

such an ability.

5.3.2 Artificial Neural Network Models

Artificial neural networks (ANN) [Sar94] are advanced non-linear statistical mod-

eling tools based on biological neural networks. The input and output variables

of the ANN can be separated by multiple layers each of which has a configurable

number of hidden neurons. The number of hidden layers and hidden neurons de-

pends on the number of input and output variables and the complexity of their

inter-relationships. There are other internal parameters which need to be tuned as

well - activation function, neuron weights etc. We tuned each of these internals for

getting the best out of ANN for our environment.

After careful tuning, we apply ANN on our chosen set of workloads. The error

values for ANN in Table 5.1 indicate that it is able to adequately model the per-

formance of all the benchmarks providing median error in the range 1.16%-6.65%.

These set of initial results clearly indicate the suitability of ANN in VM-hosted

application modeling. However, we will see in next section that even a cautiously

tuned ANN model which applied directly delivers poor prediction accuracy when

applied to more complex workloads.

5.4 Optimizing Machine Learning Models

In this section, we demonstrate that simple application of ANN-based modeling can

produce large modeling errors when applied directly for realistic data center appli-

39

Benchmark Training points Testing points

RUBiS Browsing 160 79

RUBiS Bidding 198 99

Filebench OLTP 135 75

Filebench Webserver 160 80

Filebench Fileserver 68 68

Table 5.2: Training and Testing data set sizes.

Benchmark % Avg. % Med. Stdev. 90p.

RUBiS Browsing 68.57 5.23 119.73 340.00

RUBiS Bidding 19.30 2.29 45.86 60.18

Filebench OLTP 11.59 8.82 12.63 21.08

Filebench Webserver 19.85 12.88 30.36 38.60

Filebench Fileserver 12.89 6.80 18.64 28.78

Table 5.3: Prediction errors when using a single ANN Model.

cations under a wider span of resource allocations. We introduce the use of another

powerful machine learning model, Support Vector Machine (SVM) which has gained

more popularity recently. We encounter that it has similar limitations as ANN when

used directly for modeling. We probe the root cause of this limitation and propose

improved use of those tools to substantially enhance modeling accuracy. For the fol-

lowing evaluation, RUBiS and Filebench workloads have been used and the all the

pertaining experiments have been carried out in an ESX testbed (Chapter 4). The

number of training and testing data points for each workload is shown in Table 5.2.

5.4.1 Limitations of a Single Global Model

Table 5.3 summarizes error statistics when using ANNs for modeling a set of work-

loads. We note that prediction errors can be high in some cases, for instance, the

RUBiS workloads. We registered identical observations by applying SVM mod-

eling as well. Further analyzing the data revealed that large errors were mostly

concentrated in a few sub-regions of the output value space, indicating a single

40

 0

 50

 100

 150

 200

 0 20 40 60 80 100

%
E

rr
o
r

o
f

P
re

d
ic

ti
o
n

Sorted Output Points

% Error

(a) Single global model

 0

 50

 100

 150

 200

 0 20 40 60 80 100

%
E

rr
o
r

o
f

P
re

d
ic

ti
o
n

Sorted Output Points

% Error

(b) Sub Models

Figure 5.2: % Error in prediction for points sorted based on obtained performance
for the RUBiS bidding mix benchmark.

model’s inability to accurately characterize changes in application behavior as it

moves across critical resource allocation boundaries. We demonstrate this behav-

ior in Figure 5.2(a) where We plot the % error in performance prediction across

different testing points of RUBiS bidding mix benchmark (specified by resource al-

location and I/O latency levels) when sorted by actual obtained performance in

requests/sec. Given the resources available in today’s servers, the multi-dimensional

input parameter space and the corresponding output space can both be large. Con-

sequently, accurately characterizing an application’s performance with a complex

relationship to multiple resource parameters in different portions of the parameter

space using a single model proves difficult.

5.4.2 Creating Multiple-Models with Sub-Modeling

To overcome the limitations posed by a single model, we explored the use of multiple

models that target specific regions of the input parameter space. Our proposed sub-

modeling technique divides the input parameter space into non-overlapping sub-

regions and builds individual models for each sub-region. For making predictions,

specific sub-model(s) is (are) chosen based on which sub-region(s) the parameters

41

of the prediction request fall into. One approach to sub-modeling is sub-dividing

the space into several equal-sized regions. However, this seemingly simple approach

is inadequate. First, it is difficult to determine how many sub-models to use. If

the partitioning of the input space is too coarse grained, the sub-models may not

improve prediction accuracy; if it is too fine grained, it may lead to an unmanageably

large number of sub-models, making it impractical to create sufficient training data

points for each to ensure accurate sub-models. Second, since applications behave

non-linearly and non-smoothly with respect to resource allocations, merely building

sub-models for equally divided regions may not always be effective in isolating and

capturing unique behaviors.

To create robust sub-models, we employ classical clustering techniques whereby

the data points are separated into clusters based on a chosen indicator parameter.

We used an improved version of K-means clustering technique (pamk function in the

fpc [pam] package of R [R]) that automatically identifies the optimal number of clus-

ters based on the observed values. We used application output values and prediction

error values (from using the global model) as two choices for the clustering indicator

parameter. To verify that the clustering results were useful, we checked whether the

cluster boundaries can be clearly identified based on the input parameter values. In

other words, a well-defined cluster should be defined by continuous ranges in the

input parameter space. Next, we demonstrate that output-value based clustering

indeed produces well-defined regions at the input space with negligible overlapping.

We first report the number of clusters and the degree of overlap in consecutive

clusters for each benchmark in Table 5.4. If the total number of clusters is n, the

number of consecutive pairs of clusters is n-1. Sub-modeling is only viable when

there is less overlap in the input dimensions of the clusters formed. We consider two

consecutive clusters overlap only if one or more points in both the clusters overlap in

42

Benchmark # clusters % Overlap of consecutive clusters

RUBiS Browsing 2 1.25

RUBiS Bidding 4 0.37

Filebench OLTP 8 1.09

Filebench Webserver 2 0.63

Filebench Fileserver 2 1.47

Table 5.4: Number of clusters and the average % overlap between consecutive cluster
pairs, measured based on the Jaccard coefficient.

all three input dimensions (CPU, Memory and I/O latency). As we see, the output-

value based clustering is able to produce well-defined clusters as the average overlaps

for all the benchmarks is around 1%, as calculated using the Jaccard coefficient.

After the clustering stage, we segregate the training data points into buckets

based on cluster boundaries and build separate sub-models corresponding to each

cluster.

Predicting for a given resource assignment entails checking the input parame-

ter values and determine which sub-model to use. When clusters do not overlap,

for points in the boundary regions, we use ensemble averaging of the two consecu-

tive clusters that these points straddle. If clusters overlap in the input parameters

space; we use one of two methods to identify the model to use. The first method

uses ensemble averaging of predictions using all the overlapping sub-models. The

second method coalesces the overlapping clusters and builds a single sub-model for

the merged cluster. In general, for applications with high prediction errors either

distributed across the entire parameter space or simply concentrated in a single sub-

region, the sub-modeling technique can help reduce prediction errors substantially

in comparison to a single global model over both ANN and SVM techniques. We

demonstrate the effectiveness of the output value based sub-modeling optimization

in Section 5.5.

Apart from evaluating clustering based on output values, we also performed clus-

43

tering based on prediction error values from the single global model. This choice

was motivated by the skewing of high prediction error values towards low alloca-

tion values for several of the applications (e.g., in the case of RUBiS bidding mix).

At low resource allocation, the sensitivity of the error computation with respect to

predicted values is higher when using a single model for the entire range because

the application performance drops significantly in this range for most workloads.

For instance, requests/sec for RUBiS workloads drops to very low values when the

memory assignment of the VM nears 256 MB. Figure 5.2(a) confirms that the large

errors are concentrated in the lower output region of RUBiS bidding mix which cor-

responds to the application output with less than or equal to 256 MB. We made a

similar observation for the RUBiS browsing workload. We created multiple models

based on the clustering results on the % prediction error values obtained from the

global model. Figure 5.2(b) demonstrates that error based clustering can substan-

tially reduce the % errors in the lower output regions. In fact, the 90th percentile

errors for RUBiS browsing mix dropped from 340% to 27.28%. For the bidding mix,

the reduction is from 60.18% to 25.80%.

In general, if large errors are concentrated within a specific region of input pa-

rameters space, sub-models based on prediction error values from a single global

model become valuable. However, this trend does not hold across all the work-

loads. Except the RUBiS workload mixes, error-based clustering did not lead to

well-defined sub-regions and resulted in high overlap in the corresponding input

parameter spaces, rendering the clusters practically unusable. On the other hand,

sub-modeling based on output values produced robust models across all the work-

loads we examined. We evaluate output value based sub-modeling in more detail in

the following section.

44

!
"#$%&'!(%$)%$! "**!+%,!-./0'! +12!+%,!-./0'!

 0

 20

 40

 60

 80

 100

 120

 0 40 80

(a) RUBiS Brows-
ing

 0

 10

 20

 30

 40

 50

 60

 0 50 100

(b) RUBiS Bid-
ding

 0

 20

 40

 60

 80

 100

 120

 0 35 70

(c) Filebench
OLTP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 40 80

(d) Filebench
Webserver

 0

 20

 40

 60

 80

 100

 120

 140

 0 30 60

(e) Filebench
Fileserver

Figure 5.3: Actual performance and predictions using ANN and SVM based sub-
models. The x-axis enumerates data points sorted by increasing performance values.
The y-axes represent performance (requests/sec for RUBiS and operations/sec for
Filebench respectively).

5.5 Evaluation

We present error statistics for sub-modeling based on output value clustering for each

benchmark in Table 5.5. For all workloads and modeling techniques, sub-modeling

successfully reduces the mean, median and 90th percentile of errors when compared

to using a single global model. Interestingly, even simple regression models achieved

higher accuracy using sub-modeling for most of the benchmarks. This uniform trend

clearly indicates that the complexity of these applications cannot be reduced to a

single consistent representation as a global model would be forced to adhere to.

As the sub models are confined to only a smaller portions of the entire application

performance metric space, these models can offer constrained, but more accurate,

representations of behavior. Although, using sub modeling with clustering increase

the attractiveness of simpler regression based models, the power and utility of using

the machine learning based models is evident when we consider error variance. We

found, in particular, that the effectiveness of regression based modeling is tied to

45

M
o
d
e
li
n
g

R
e
g
r
e
ss
io
n
-L

R
e
g
r
e
ss
io
n
-Q

R
e
g
r
e
ss
io
n
-L

I
S
V
M

A
N
N

B
e
n
c
h

%
p
re
d
ic
ti
o
n

e
r
ro

r
%

p
re
d
ic
ti
o
n

e
r
ro

r
%

p
re
d
ic
ti
o
n

e
r
ro

r
%

p
re
d
ic
ti
o
n

e
r
ro

r
%

p
re
d
ic
ti
o
n

e
r
ro

r

m
a
r
k

a
v
g
.

m
e
d
.

9
0
p
.

a
v
g
.

m
e
d
.

9
0
p
.

a
v
g
.

m
e
d
.

9
0
p
.

a
v
g
.

m
e
d
.

9
0
p
.

a
v
g
.

m
e
d
.

9
0
p
.

R
U
B
iS

G
lo
b
a
l

3
9
7
.0
8

3
6
.0
5

1
3
6
6
.8
3

3
2
3
.8
1

2
3
.9
4

8
6
7
.7
7

3
2
7
.2
7

3
5
.4
7

1
0
9
0
.0
5

5
5
.7
8

1
2
.7
8

1
4
2
.6
7

6
8
.5
7

5
.2
3

3
4
0
.0
0

B
ro
w
si
n
g

S
u
b
-M

o
d
el

1
0
6
.1
1

1
7
.7
4

3
4
0
.6
0

4
2
.7
8

4
.1
6

1
4
5
.0
1

1
0
3
.3
9

1
8
.7
8

3
3
2
.8
0

2
1
.5
1

5
.1
9

6
8
.4
4

1
5
.9
5

2
.9
4

4
5
.8
7

R
U
B
iS

G
lo
b
a
l

3
1
4
.0
5

3
0
.8
7

1
0
9
6
.5
8

1
1
0
.5
3

2
1
.8
1

3
4
1
.5
4

3
1
7
.5
2

2
9
.3
7

1
1
2
6
.9
4

6
8
.8
6

1
4
.2
1

1
0
0
.6
7

1
9
.5
2

1
.9
7

8
0
.0
0

B
id
d
in
g

S
u
b
-M

o
d
el

9
.1
9

2
.4
3

3
4
.7
2

8
.3
7

1
.9
4

3
4
.6
4

9
.1
0

2
.3
9

3
5
.0
8

7
.3
8

1
.7
9

2
2
.5
0

7
.1
8

1
.7
9

3
0
.0
1

F
il
e
be
n
c
h

G
lo
b
a
l

1
8
.3
3

1
5
.7
5

3
3
.4
1

1
7
.8
2

1
2
.6
3

3
5
.5
8

1
4
.0
2

1
0
.4
1

2
8
.7
4

7
.4
0

4
.7
0

1
3
.1
4

1
1
.5
9

8
.8
2

2
1
.0
8

O
L
T
P

S
u
b
-M

o
d
el

6
.3
1

2
.7
4

1
3
.4
2

9
.4
7

3
.4
4

2
9
.4
8

7
.5
5

3
.5
7

1
0
.9
5

5
.6
5

2
.9
0

1
5
.1
9

5
.9
0

3
.0
2

1
3
.6
6

F
il
e
be
n
c
h

G
lo
b
a
l

7
6
.0
3

6
2
.9
9

1
3
8
.3
1

5
0
.5
4

4
4
.9
1

9
6
.7
1

5
1
.4
4

3
3
.4
1

1
1
3
.7
8

2
5
.0
2

1
5
.5
7

5
3
.5
0

1
9
.8
5

1
2
.8
8

3
8
.6
0

W
e
b
se
rv
e
r

S
u
b
-M

o
d
el

3
2
.1
3

2
1
.8
5

5
3
.0
1

2
7
.8
3

2
0
.3
1

5
5
.0
9

2
9
.8
5

2
0
.7
2

5
5
.7
9

1
9
.3
8

1
2
.2
5

3
6
.0
2

1
5
.5
7

8
.4
9

3
3
.0
7

F
il
e
be
n
c
h

G
lo
b
a
l

4
9
.0
2

3
0
.7
0

9
8
.1
8

5
4
.9
4

2
1
.2
0

1
2
3
.3
6

2
7
.5
9

2
1
.1
0

5
5
.7
5

1
3
.8
7

9
.3
8

2
4
.5
6

1
2
.8
9

6
.8
0

2
8
.7
8

F
il
e
se
rv
e
r

S
u
b
-M

o
d
el

2
1
.3
4

1
3
.6
3

4
6
.4
8

1
6
.2
2

8
.9
1

4
2
.6
4

1
8
.3
5

1
1
.2
6

3
8
.9
1

1
0
.8
9

6
.7
2

2
5
.1
4

1
0
.6
0

5
.5
7

2
3
.2
2

T
ab

le
5.
5:

%
E
rr
or

st
at
is
ti
cs

(a
ve
ra
ge
,
m
ed
ia
n
,
an

d
90

th
p
er
ce
n
ti
le
)
fo
r
d
iff
er
en
t
m
o
d
el
in
g
te
ch
n
iq
u
es

b
y
u
si
n
g
gl
ob

al
m
o
d
el
s
an

d
su
b
m
o
d
el
s.

46

!""# $""# %""# &"""#

!'(#

)%$#

'&!#

&"!$#

(a) SVM Sub Model
!""# $""# %""# &"""#

!'(#

)%$#

'&!#

&"!$#)#

!#

&#

"#

(b) ANN Sub Model

Figure 5.4: Error Distribution of RUBiS Bidding Mix when using sub models for
prediction. The X axis represents CPU Limit (MHz); the Y axis represents Memory
Limit (MB). Each box is divided into three columns - representing low, medium,
and high (from left to right) VM I/O latency. Error value 0-3% = white, 3-9% =
light grey, 9-27% = dark grey, 27% and more = black.

the effectiveness of clustering. When the clusters are bigger, regression models

typically perform poorly (average error of 42.78% for R-Browsing using regression-

Q) . On the other hand, ANN and SVM are able to provide reasonable accuracy

in all the scenarios (average errors between 5.90% to 15.95% and 5.65% to 21.51%

respectively, using sub-modeling). To provide a more detailed view of accuracy when

using sub-modeling with ANN and SVM, Fig 5.3 shows the actual and predicted

output values for each of the testing points for benchmark. For clarity, we present

the actual and predicted values sorted in increasing order of actual performance

obtained. Predicted values closely follow the actual values in majority of the cases.

5.5.1 Measure of Confidence

While summary error metrics are valuable indicators, the distribution of error values

across various combinations of input parameters can be a useful guide to the system

administrator while choosing a specific set of allocation values. Particularly, if it

is known that in certain regions of the resource allocation space, the model error

tends to be higher, system administrators can choose to compensate with a greater

47

!"

#"

$"

%"

&"

'!"

'#"

'$"

!" #(" (!")(" '!!"

!
"#
$
%&

'
()
*+
,
"-
%%
$
%"

.+/%++"$0"#$)1+"2!3"

*+,-.",/012-34"

*+,-.",-55-34"

6-78983:;"<=>?"

6-78983:;"@8928/A8/"

6-78983:;"6-7828/A8/"

Figure 5.5: Change in median error when noise is introduced in the training data
set.

degree of over-provisioning. Figure 5.4 shows a heatmap of error distributions of

RUBiS bidding mix workload using sub models as an example to illustrate this point.

As evident, the higher errors are concentrated towards the region of low memory

allocations (256 MB), informing administrators of caution while choosing allocations

surrounding that memory region based on the model predictions of performance.

While we do not address this in our work, it is possible to modify predictions to

be conservative for regions prone to higher prediction errors within the modeling

framework itself once the error distribution is known using a sample set of testing

points.

5.5.2 Robustness to Noise

Our experiments were performed in a controlled environment. However, production

environments can pose additional challenges, especially with respect to performance

variability due to noise. To evaluate the applicability of our models under noise, we

simulated noise in 10% of our training data set points; we modified their observed

performance values by randomly varying them within a fixed percentage specified by

48

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

!
"
#
$
%&
'
()
*+
*+
,
&'
*-

$
&*
+
&.
$
/0
&

.12&.34&!"#$%&

566&.34&!"#$%&

Figure 5.6: Training time. Benchmarks appear in increasing training data set size
from left to right

the degree of noise. For example, if the degree of noise is 20%, the original value was

changed either by +20% or -20%. For clarity, the testing data set was unmodified. In

Figure 5.5, we report the % median modeling errors for each benchmark as we vary

the degree of noise when using the ANN-based sub-modeling technique. Trend lines

indicate a largely linear dependency between noise and error. Additionally, a key

take away from this analysis is that even after 100% modifications of as much as 10%

of the training data points, the modeling accuracy does not suffer substantially. In

case of the RUBiS bidding workload, the % median error just increased from 1.79%

(in case of perfect data) to 2.91% (in case of ±100% change of 10% of the points

in the original training data set). In case of Filebench-Webserver, the degradation

is from 8.49% to 11.48%. This validates one aspect of robustness under potential

noise as is possible in a production environment.

5.5.3 Modeling Overhead

Training a model is usually proportional to the number of points in the training

data set. We show the modeling time for each type of modeling in Figure 5.6, with

49

benchmarks sorted by their training data set size, appearing from left to right. As

we can see, the modeling overhead for the largest training data set (198 points)

is limited to 8 seconds using SVM sub-modeling. The training time for ANN is

calculated as an aggregate of five different model runs, as required by ensemble

averaging. We believe that the presented overhead is sufficiently low to make these

models usable in an on-line production environment where a model is (re)trained at

regular intervals.

5.6 Summary

In this chapter, we show the limited power of regression models to characterize

complex workload behaviors and justify the use of sophisticated machine learning

techniques e.g. ANN and SVM for accurate performance modeling. We also demon-

strate how even ANN and SVM can sometimes fail to deliver improved accuracy;

thereby necessitating the application of multiple sub models. In summary, these

new optimizations substantially improve the prediction accuracy and reduce the av-

erage and 90th percentile prediction errors from 26.48% and 101.68% respectively

(averaged over all applications) for a correctly configured single global model to

11.04% and 29.17% by using sub-modeling with ANN. Similarly, for SVM the aver-

age and 90th percentile prediction errors respectively drop from 34.19% and 66.91%

for a single global model to 12.96% and 33.46% using sub models. We also em-

phasize that between ANN and SVM, there is no clear winner. Although Table 5.5

shows that ANN is slightly better in prediction statistics than SVM for most of the

workloads, these differences are not statistically significant. Moreover, experimen-

tal results confirm that the proposed optimizations are robust to handle noises in

the training data set. Also, the training incurs small overhead which makes these

50

usable in practice for online modeling. In next chapter, we show how our proposed

modeling techniques can help realizing optimal VM sizing for cloud environment.

51

CHAPTER 6

VM SIZING

Cloud service providers (e.g. Amazon EC2) charge customers based on the rented

computing capacity . For the sake of simplicity, capacity is usually represented using

coarse-grained choices (e.g. small, large, and extra-large for standard on-demand in-

stances in Amazon’s EC2 cloud service [ec2]) that map to a certain amount of CPU,

memory and other resources. These choices have proportional as well as skewed

allocation of resources, where one can even get an instance with more CPU and less

memory. In private virtualized environments, administrators have more flexibility

in assigning the resource allocations for a VM. In either case, it is the customers’ re-

sponsibility to determine the VM sizes (CPU and memory capacity) that they need

to meet application-level performance targets. Given the lack of application-based

model customers choose more conservative sizes and over-provision to avoid seeing

performance problems. This leads to sub-optimal sizing and higher costs throughout

the life of the VM. A fine-grained, tailored sizing of VMs, on the other hand, can

allow meeting target performance while minimizing over-provisioning.

In this chapter, we show that given a target application performance metric

and a VM I/O latency level available to the application, our performance models

proposed in previous chapter can be used to find the optimal CPU and memory

sizes. We used a specific I/O latency as an input because it is not configurable in

many cloud environments. However, our modeling can even determine a desired

I/O latency value so as to minimize the overall cost of the VM. We experimentally

demonstrate that, for a range of performance targets across RUBiS Browsing and

Filebench webserver workload, the suggested CPU and memory sizes indeed deliver

the required performance in all cases.

52

6.1 VM Sizing Problem Definition

We define the optimal VM sizing problem as follows:

Problem definition: Given a performance target Ptarget and a VM I/O latency

iolat and a performance model PM , the VM sizing algorithm generates suggested

CPU c and a memory m which are able to meet Ptarget and satisfy the following

constraints:

Pc,m,iolat

Ptarget

≥ 1 (6.1)

subject to:

cmin ≤ c ≤ cmax (6.2)

mmin ≤ m ≤ mmax (6.3)

Pc−δc,m,iolat

Ptarget
< 1 (6.4)

Pc,m−δm,iolat

Ptarget
< 1 (6.5)

under the following assumptions:

Pc+δc,m,iolat ≥ Pc,m,iolat;Pc,m+δm,iolat ≥ Pc,m,iolat (6.6)

Pc−δc,m,iolat ≤ Pc,m,iolat;Pc,m−δm,iolat ≤ Pc,m,iolat (6.7)

Intuitively, these constraints force us to find a VM size such that less of any resource

would make us miss the performance target. Equation 6.1 ensures that application

performance for the suggested c, m, and iolat should be at least equal to or greater

than Ptarget. Equations 6.2 and 6.3 bound allocations to the feasible range; addi-

tionally, allocation choices for CPU and memory in these range can only be made

in units of δc and δm respectively. Equation 6.4 guarantees that the performance

achieved for a smaller CPU allocation fails to meet Ptarget. Similarly, equation 6.5

53

!"#$

!"%$

&$

&"'$

&"($

&"#$

&"%$

!$)!!$ &!!!$ &)!!$ '!!!$
!
"#
$%
&
%
'
()
%
*+
,
*-

.
/
"%
(

0)1(23456(

*+,-$

.+/0$

7.*8%9()%*+,*-./"%(

(a) Suggested CPU allocations

!"#$

!"%$

&$

&"'$

&"($

&"#$

&"%$

!$ ')!$)!!$ *)!$ &!!!$

!
"#
$%
&
%
'
()
%
*+
,
*-

.
/
"%
(

0%-,*1(2034(

+,-.$

/,01$

5.*6%7()%*+,*-./"%(

(b) Suggested memory allocations

Figure 6.1: Application performance relative to performance target for model-based
VM sizing. Each point represents a specific sizing query.

checks for memory optimality. Finally, we assume that allocating additional re-

sources to a VM will not degrade its performance (Equation 6.6) and taking away

resources cannot improve performance (Equation 6.7).

6.2 Model-based VM Sizing

We follow a simple approach to VM sizing, i.e., determining the values of c and

m. First, assuming a memory allocation of mmax, the maximum possible memory

allocation, we use binary search on c to determine its optimal value that would allow

meeting the application’s performance target by querying the performance model

PM using the given iolat (input), mmax, and c. After the optimal value of c is

obtained, we perform a second binary search as above fixing c for various values of

m.

To handle modeling inaccuracy, we use a query performance target 10% higher

than the actual performance target Ptarget. To accommodate our hardware plat-

form, we used cmin=200MHz, cmax=2GHz, mmin=256MB, and mmax=2GB. We use

δc=100 MHz and δm=64 MB in our experiments.

We experimented with two workloads for VM sizing: RUBiS Browsing and

Filebench Webserver workloads. We randomly selected 20 performance targets and

54

!"# $%"# $&"# $'"# $("# $)"#

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

%!" '!" (!")!" $!!" $%!"

!
"
#$
%&

#'
(
)*
+
,-
#.
/
0*
,1
#

2(34*)#5*3673/(+,*#.8*9:*0)0%;*,1#

(a) RUBiS Browsing

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

!" $!" &!" (!" *!" #!!"

!
"
#$
%&

#'
(
)*
+
,-
#.
/
0*
,1
#

2(34*)#5*3673/(+,*#.&50%8*,1#

(b) Filebench Webserver

Figure 6.2: Optimality of VM Sizing under a target performance and a given VM I/O
latency. Each box is divided into two triangles - lower triangle represents optimality
of CPU, upper triangle stands for memory. The degree of optimality is determined
by the color code (shown above) of each triangle.

VM I/O latency levels as inputs to evaluate the accuracy of our models and siz-

ing algorithm. We validate the results by running individual workloads with the

CPU and memory allocation suggested by our sizing technique. VM I/O latency is

controlled by issuing I/Os from a contending VM to the same storage LUN.

Figure 6.1 demonstrates that Ptarget is met or exceeded for all the 20 configura-

tions using our sizing technique; Ptarget is normalized to 1 in all the cases. In other

words, the charts plot the Pachieved

Ptarget
for each performance target; essentially showing

how far are the experimentally observed performances obtained under suggested

CPU, memory allocations from the respective target queries. The X-axis in the two

plots marks the suggested CPU and memory sizes for each query. The wide range

of suggested sizes indicates that the required memory and CPU may vary quite

significantly based on the target performance over most of the available allocation

range, underscoring the need for fine grained VM sizing.

To demonstrate the optimality of the suggested allocations, we run each workload

with smaller CPU (c-δ) and memory (m-δ) allocations. We deem sizing results

as optimal with respect to a specific resource dimension (CPU or memory) if a δ

55

reduction in allocation results in the performance target Ptarget being violated. If

Ptarget is met under a reduced allocation, we investigate the degree of sub-optimality

by running the workload under varying number of δ reductions. In Figure 6.2, we

depict sizing optimality along CPU and memory dimensions separately. Out of 20

randomly selected performance targets for a wide range of chosen VM I/O latency

values, the performance models deliver optimal results on both dimensions in 65%

cases; rest of the points are within 2δ of the optimal, except for two cases where

allocations are sub-optimal by 4δ or 5δ.

6.3 Summary

This analysis indicates that our model-based VM sizing approach can suggest op-

timal sizes in majority of cases while meeting performance targets. In some cases,

we suggested a higher size but that is still better than picking a size without any

information. The higher can also be attributed to the fact that we set a higher

performance target and we want to be conservative in picking our sizes so that

performance is not impacted. This is very critical to increase the confidence of ad-

ministrators in such a tool and over time one can make the estimate more aggressive.

In Chapter 9.1, we will discuss the work still needed to fully realize the potential of

modeling-based VM sizing. The next chapter demonstrates how our performance

models guide another important data center management task.

56

CHAPTER 7

DYNAMIC RESOURCE MANAGEMENT

The machine-learning based application performance models, elaborated in chap-

ter 5, help accurately configuring user VMs to meet desired performance objectives

when renting resources from cloud service providers. We will now discuss how the

models can be the building blocks for online and automatic resource management

of virtual machines in data centers.

Data centers are revenue driven and they generate revenue by charging individual

client applications according to Service-Level-Agreements (SLAs). Lack of automa-

tion and imprecise understanding of the effect of resource usage on applications

performance force data centers to use simple SLAs where the customers are charged

a flat fee based on the resource capacity they are renting or buying. However, this

is not ideal for either customers or server administrators. For customers, there is no

easy way to choose an appropriate capacity. Consequently, they either pay more for

unnecessary resources or experience performance violation. Administrators, on the

other hand, use over-provisioning to avoid the heavy penalties for performance vio-

lations. An alternate charging model is performance oriented whereby a client pays

rent for application performance. This will help data centers to adopt a resource

provisioning scheme where applications are penalized or rewarded in the allocations

of physical resources according to the revenue lost or generated by their respective

SLAs. It will also boost clients’ confidence since they will be paying for exactly the

performance experienced by their applications.

To achieve this goal, we envision a framework and process at the data center

level that will dynamically partition resources among hosted VMs with the goal of

maximizing SLA-generated revenue for the data center. Specifically, we address a

deployment scenario where a set of VMs are sharing a set of resources of varying

57

!"#$!"%$!"&$

!'()*+,$"+-.'&/$"0&')0($

1/20*(-/$$

322'4&5/&)$

366,'-+70&$8/(90(5+&-/$

:;3#$:;3%$:;3&$

1<!#$ 1<!%$ 1<!&$=$ =$ =$>0)+,$1/?/&*/$$@$

Figure 7.1: Architectural Overview for Revenue Maximization.

types (CPU, memory, disk) and each VM is generating a certain revenue for the

data center per unit amount of time at a given performance level. A high-level

architectural overview of this framework is depicted in Figure 7.1. The revenue

generated by a single VM at any instant is a function of the performance level

supported for the application and is defined by its Service Level Agreement (SLA).

Several steps need to be taken to implement a revenue-maximizing resource

allocation strategy. The first task is identifying the parameters both for partitionable

resources (e.g. CPU, memory) and for non-partitionable resources (e.g. storage,

network) that will be the control-knobs for administrators to distribute physical

resources. We have dealt with this in Chapter 4. The second task is characterizing

the impact of resource allocation on application performance. We evaluated accurate

and robust performance model building in Chapter 5. The third task is developing an

efficient and effective algorithm which will partition server resources to maximize the

collective revenue across all applications at any given instant. This task is non-trivial

due to the complex mapping of resource allocations to applications performance and

diverse SLA curves. Moreover, complete reallotments of resources from scratch are

58

challenging due to the use of observed VM I/O latency in our prediction model.

Since VM I/O latency cannot be effectively controlled, a drastic change in resource

allocation can abruptly impact VM I/O latency significantly and thus impact the

stability of model-based performance prediction. To minimize the impact of the

changing VM I/O latency, we take an incremental approach where allocations do

not change significantly within a single resource reallocation operation to reduce the

alteration of the VM I/O latency levels observed.

7.1 Modeling Resource Allocation

We now formally model the problem of dynamic multi-resource allocation in virtual-

ized systems to explicitly take into account the influence of both resource allocation

and resource competition. The model maps resource allocations of individual VMs

to revenues generated in US dollars as dictated by individual SLA functions. Perfor-

mance models are being contained within this encompassing framework. We identify

that the optimal multi-resource reallocation problem is at least NP-hard and that

exact solutions are infeasible in practice. The formal problem statement and the

proof of NP-hard are described next.

We have already established that the performance of individual virtualized appli-

cations are determined by the resource assignments and current competition levels

posed by other applications sharing the host. To determine the evenue generatable

by a virtualized application at a future instant, the application performance under

possible future resource assignments must be determined. The obtained application

performance is mapped to the revenue in USD by the given application-specific SLA

curve. As complete redistribution is not possible due to the variance of observed

VM I/O latency within the prediction framework, administrator-defined parame-

ters, k and δ, serve to bound the maximum change we make to the allocations for

59

Parameter Description

n Number of application VMs
m Number of resource types
k Maximum number of times the resource allocation of any VM

can be changed for any resource dimension in a single resource
reallocation operation

δ A vector of length m denoting the units of changes in m re-
source dimensions.

I Set of application VMs
J Set of resource types
Ralloc Current resource allocation vector of dimension m×n
Rtotal A vector of length m for total available resources
Ri,j Resource allocation for VM i ∈ I of resource type j ∈ J

Ropt Optimal resource allocation of vector m×n after the redistri-
bution

S(R) A vector of n SLA functions mapping the application perfor-
mance to revenue in USD

REV Revenue vector of length n
T Time interval of running reallocation algorithm.
PM A vector of length n, each member is a separate performance

model for one VM App i ∈ I

Ψ(Ri,j, ∀j ∈ J) Revenue for application i ∈ I, where amount of resources
allocated to application i is Ri,j , ∀j ∈ J .

Table 7.1: Description of symbols used in resource allocation problem formulation

each resource type within a single resource reallocation operation. An additional

important aspect of our resource allocation problem formulation is that we assume

that SLA curves are complex, non-linear descriptions of revenue dependent on the

application performance metric and not based on simple priority values.

7.1.1 Problem Formulation

We list the various parameters employed in the resource allocation problem for-

mulation in Table 7.1. The SLA-based optimal resource allocation problem can be

formally specified as follows:

60

”Given n application VMs (denoted as set I), m allocatable resource dimensions

(denotes as set J), current resource allotments Ralloc, performance models PM, and

SLA-based revenue function S(R), determine a set of new resource assignments Ropt

for the VMs which will result in maximizing the total revenue REV generated across

all VMs for certain time interval T, given that any change to resource assignment

Ri,j, i ∈ I, j ∈ J is bounded by -kδ to +kδ.”

At each interval T, the problem may be formalized as:

Maximize
∑

i∈I

Ψ(Ropt
i,j , ∀j ∈ J) (7.1)

subject to :

∑
i∈I R

opt
i,j ≤ Rtotal

j ∀j ∈ J (7.2)

R
opt
i,j −Ralloc

i,j ≤ ±kδ ∀i ∈ I, j ∈ J (7.3)

Equation 7.1 maximizes the revenue across all resources. Equation 7.2 restricts

the total resource allocation for each resources across all application VMs to be less

than the total available resources. Equation 7.3 restricts the resource allocation

change of each resource type for each application VM to a maximum of kδ.

The revenue derived by a data center from a particular application VM depends

on the SLA and on the performance of the application, which in turn depends on

the resources allocated to the application VM. However, all these dependencies are

non-linear. Finally, Ri,j , R
alloc, Rtotal and Ropt are assumed to be integer values.

Theorem 7.1.1 The resource allocation problem is at least NP-hard.

Proof. Let us assume that the function Ψ is a linear summation function as follows

Ψ(Ropt
i,j , ∀j ∈ J) =

∑
j∈J AjR

opt
i,j , ∀i ∈ I, where Ajs are constants. Let us also

assume, δ = ∞. Then the resource allocation problem reduces as follows,

61

Maximize
∑

i∈I

∑

j∈J

AjR
opt
i,j (7.4)

subject to :

∑
i∈I R

opt
i,j ≤ Rtotal

j ∀j ∈ J (7.5)

The above problem is the integer knapsack problem, a well-known NP-Complete

problem [Ham]. As the knapsack problem can be reduced to a specific reduced

instance of the resource allocation problem in polynomial time, we can conclude

that this reduced subset problem of the resource allocation problem is NP-Complete.

Consequently, with the additional constraints of equation 7.3 the resource allocation

problem is at least NP-hard.

7.1.2 How Expensive is Exhaustive Search?

Exhaustive or brute-force search techniques may be applied to the resource allocation

problem to find the most optimal solution. For many NP-hard problems, the small

input size allows trivial, brute-force, exact solutions in practice; we examine if this

true in the present case. Per our problem formulation, each resource reallocation can

assume 2k different values, k positions for increments and the same for decrements.

Comparing 2k different possible changes in revenue values for each of the n VMs

and for each of the m resource types to find Ropt will incur an asymptotic time-

complexity of O((2k)mn) which is infeasible for even small n and k. If we assume

that m = 4, n = 10, and k = 5; the time taken to run brute-force search will take

1040 time units. Alternate, efficient heuristic solutions are thus needed for realistic

deployment.

62

7.1.3 Other Heuristic Solutions

The resource allocation problem has considerable similarities to the class of classic

knapsack optimization problems with a common objective of determining a set of

items to include in a sack of finite weight with a goal of maximizing the total value

of the sacked items and with the constraint that the sum of all weights should be less

than or equal to the capacity of the sack. Specifically, the total available capacity

of any type of resource can be treated as the capacity of the sack and the resource

assignments of individual items can be mapped to the weights of the items selected

to place in the sack, the revenue from each VM corresponding to value of each item.

Then, maximizing total knapsack value will map maximizing total revenue. Thus,

we can contemplate applying heuristic solutions from the class of knapsack problems

to the resource allocation problem.

Despite substantial similarity, the revenue maximization problem has several

distinguishing characteristics when compared to the basic knapsack formulation.

First, it is multi-dimensional with m number of resource types, which substantially

increases the size of the solution search space. Second, because SLA-based revenue

functions can be nonlinear, solutions to linear knapsack problems cannot be used

as-is to solve our problem. Third and the most important distinguishing feature

is that for the sake of system stability, our problem requires incremental resource

reallocation, instead of reallocating resources from scratch at every decision time,

and such resource change is constrained according to Equation 7.3. This additional

constraint makes our problem substantially more challenging, whereby the existing

solutions to multi-dimensional, nonlinear knapsack problems [BS02] cannot be di-

rectly applied. Finally, the reduction of an instance of our problem to a complex

variant of knapsack is possible only by eliminating Equation 7.3. With the addition

63

Parameter Description

i Index for application VMs
j Index for resource types
δPg

i,j Gain in revenue for application VM i as resource allocation of
type j is increased by δ keeping all other resource dimensions
constant

δPl
i,j Loss of revenue for application VM i as resource allocation of

type j is reduced by δ keeping all other resource dimensions
constant

MaxGainj Maximum Gain obtained for resource type j
MinLossj Minimum Loss incurred for resource type j
MaxNetProfit Maximum net profit obtained globally i.e. across all VMs and

all resource dimensions.
VMg VM whose gain is maximum for a specific j
VMl VM whose loss is minimum for a specific j
VMgg VM whose gain is maximum for some j and which is globally

selected as a candidate for allocating more resources.
VMlg VM whose loss is minimum for some j and which is globally

selected as a victim for taking away resources.
Rmax Resource type for which the net profit is maximized.

ijpkval Number of times the resource allocation of type j for VM i is
increased.

ijnkval Number of times the resource allocation of type j for VM i is
decreased.

Table 7.2: Description of symbols used in the algorithm

of equation 7.3, the problem complexity increases to a level that we believe it is

unsolvable using existing approximation algorithms for the known Knapsack family

of problems.

7.2 A Heuristic Solution

In this section, we present an algorithm with an acceptable time-complexity

for dynamic resource allocation discussed in the previous section. Given a current

set of resource assignments for a pool of application VMs, the algorithm aims to

find a new set of allocations for each resource which attempts to maximize the

revenue at current application demand. We provide detailed descriptions of the

64

parameters used in our algorithm in Table 7.2 and the entire pseudocode is presented

in Algorithm 1. We quantify the effect of incremental changes using δPg
i,j and δPl

i,j

which denote the gain or loss in revenue as the assignment of resource type j for

application i is increased or decreased respectively by an amount of δ.

Let us assume that the the current resource allocation of resource type j for

application i is r which provides a revenue of p dollars. Our previously developed

ANN model [KRG+12] is used to predict application output for an allocation of

r ± δ which is subsequently mapped by Si to find the corresponding revenue pδ.

The difference between pδ and p indicates the gain or loss under δ increment or

decrement, defined as δPg
i,j or δPl

i,j . We assume that δPg
i,j ≥ 0, i.e., increasing

resource allocation to a VM always results in no change or an increase in performance

and consequently no change or an increase in revenue for the VM, but can never

cause a revenue reduction. Similarly, δPl
i,j ≤ 0 or taking away resources does not

cause an increase in revenue.

Our proposed polynomial-time algorithm uses an iterative, greedy approach to

revenue maximization. In each iteration, it transfers resources from the VM that

offers the least reduction in revenue due to a reduction in resources to the most

revenue-generating VM. In doing so, it also chooses the resource type for which the

relative gain is maximized.

The main algorithm (MaxRevenue Algorithm 1) implements an incremental re-

allocation of resources across application VMs. This algorithm is run each time

a resource redistribution across VMs is considered; this could be either periodic or

based on administrator initiation. The algorithm MaxRevenue identifies the VMs of-

fering the maximum gain and minimum loss for δ change of all resource types j (the

for loop at line 5 of Algorithm 1). In line 6, the algorithm invokes FindMaxMinVM

(Algorithm 2) to identify the VM that offers the minimum loss of revenue due to loss

65

Algorithm 1 MaxRevenue: Revenue Maximization Algorithm

1: while (1) do
2: MaxNetProfit = 0
3: reshuffg = FALSE

4: reshuffl = FASLE

5: for j = 1 to m do
6: Call FindMaxMinVM function to get MaxGainj, MinLossj, VMl, VMg

7: CheckReshuffle()
8: CompareGainNLoss() /*Compare gain with the loss */
9: Call StepAdjustments() to change the VMgg or VMlg if reshuffling is required

10: if MaxNetProfit > 0 then
11: /* Actual resource distribution occurs */
12: RVMgg,Rmax

+ = δ

13: VMRmax
ggpkval

+ = 1
14: RVMlg ,Rmax

− = δ

15: VMRmax

lgnkval
+ = 1

16: else
17: /* No gain in net profit, so the algorithm stops */
18: break

Algorithm 2 FindMaxMinVM : Find VMs with Maximum and Minimum Gain
1: OUTPUT: MaxGainj, MinLossj, VMl, VMg

2: MaxGainj = 0
3: MinLossj =∝

4: for i = 1 to n do
5: /* Finding the VM whose gain is maximum */
6: if δP

g
i,j > MaxGainj and i

j
pkval < k then

7: MaxGainj = δP
g
i,j

8: VMg = i

9: kg = i
j
pkval

10: /* Finding the VM whose loss is minimum */
11: if δP l

i,j < MinLossj and i
j
nkval < k then

12: MinLossj = δP l
i,j

13: VMl = i

14: kl = i
j
nkval

15: return MaxGainj, MinLossj, VMl, VMg

66

Algorithm 3 CompareGainNLoss: Compare gain with the loss

1: INPUT: MaxGainj, MinLossj, MaxNetProfit, VMg, VMl, reshuff
2: OUTPUT: VMgg, VMlg, Rmax

3: if VMg 6= VMl and MaxGainj +MinLossj > MaxNetProfit then
4: MaxNetProfit = MaxGainj +MinLossj
5: VMgg = VMg

6: VMlg = VMl

7: Rmax = j

8: if reshuffg == TRUE or reshuffl == TRUE then
9: break

 4

 5

 6

 7

 8

 9

 10

 11

 25 30 35 40

R
e
v
e
n
u
e
 p

e
r

h
o
u
r

($
)

Allocation level for Rj (%)

VM A
VM B

Figure 7.2: Illustration of sub-optimal allocation with unit δ increments.

of δ amount of resource j and the VM that provides the maximum gain in revenue

for the addition of the same amount.

Our approach is based on making potentially multiple changes to resource alloca-

tion across multiple iterations, with only a small, incremental (δ) resource allocation

change within a single iteration. This enables the algorithm to partition resources

at a fine granularity, allowing the redistribution of a resource from a single donor

VM to multiple recipient VMs and from multiple donor VMs to a single recipient

VM. Thus the algorithm is able to consider a large number of resource reallocation

67

configurations. However, one disadvantage of such an approach is that the alloca-

tion result achieved at each iteration due to a δ change may not be cumulatively

optimal, i.e., for multiple δ change. This is illustrated in Figure 7.2 which depicts

the change in revenue for two hypothetical VMs A and B as their allocation for

resource Rj changes. Let us assume that the current allocation level of Rj for both

VM A and VM B are 30% which generates a revenue of 5$/hr for both VMs. Let

us further assume for simplicity that δ=5 and k=2; these values will typically be

different in a real setting with k being greater and δ being either larger or smaller

depending on the accuracy of the model w.r.t. modeling the impact of the specific

resource. During the next consolidation event, the algorithm would determine in

the very first iteration that VM A offers a greater increase in revenue (2$/hr) for

a δ (5%) increment in Rj allocation from 30% to 35% than VM B which offers a

lower increase (1$/hr) for the same increment. In the second iteration, once again

VM A offers a greater increment (2$/hr) for an increment from 35% to 40%, while

VM B offers only (1$/hr) for an increment of 5% from 30% to 35% of Rj. However,

if we make the allocation granularity more coarse-grain in the first iteration (say

2δ) then the 10% allocation recipient would have been VM B which offers a greater

cumulative increase in revenue (5$/hr) as opposed to VM A (4$/hr).

The CheckReshuffle optimization module addresses the above shortcoming.

It compares the sum of all changes determined as piece-wise optimal in previous

iterations with the entire reallocation made as a single unit made at once (i.e.,

effectively increasing the size of the allocation unit). If CheckReshuffle establishes

that that the larger granularity allocation of a single resource is more beneficial than

incremental δ reallocations, the StepAdjustments function accordingly modifies the

VMs assigned for maximum gain and minimum loss during the current iteration.

In the final section, (lines 10-18), the Algorithm 1 checks if the MaxNetProfit is

68

greater than 0, i.e., there exists an additional revenue benefit from resource redis-

tribution. Upon success, the resource transfers and other manipulations occur from

lines 12 to 16. Otherwise, the algorithm is unsuccessful in finding a better resource

allocation than the current one and no resource redistribution would take place.

7.3 Evaluation

The goal of this section is to evaluate the effectiveness of our revenue driven resource

allocation algorithm which applies our previously-built machine-learning based per-

formance models for virtualized applications [KRG+12]. We compare our method

with an intelligent industry technique deployed using current technology of divid-

ing allocations based on relative VM priority e.g. VM shares. We demonstrate how

starting with some initial VM resource assignments, our algorithm at each iteration,

suggests changes to the resource assignments, that ultimately lead to an increase in

total revenue for the data center.

7.3.1 Experimental Setup

For experiments, we created a cluster of identical AMD-based Dell PowerEdge 2970

servers with dual sockets and six 2.4 GHz cores per socket. Each server has 32

GB of physical memory and ran the VMware ESXi- 5.1 hypervisor. All the VMs

ran Ubuntu-Linux-10.04. The virtual machine disks (VMDKs) were placed in a

centralized 1.2 TB LUN located in a separate storage server using RAID-0 with four

SAS drives. The VMDKs were mounted on the compute servers using NFS. The

experimental test-bed and resource allocation procedure are depicted in Figure 7.3.

The VMs were administered using VMWare vCenter Server [vCe]. We used the

VMware implemented concept of resource pool that extends the per-VM controls

69

!"# !"# !"#!"#

$%&#'()*# $%&#'()*#

+,-#

./)(012/#3((4#

56/7*/1#%/15/1#

6/7*184#

1/)(012/#

844(28*(1#

9334:28;(7#3/1<(1=872/##

.
/
)(
0
12
/
#8
44
(
28
;
(
7
#>
/
2:
):
(
7
)#

9
3
3
4?
#@
.
%
##

*(
#2
40
)*
/
1#

/)A*(3B5)2):%*8*##

########>8*8#

640)*/1#(<#3'?):284#)/15/1)#

#9
3
3
4?
#1
/
)(
0
12
/
##

8
44
(
28
;
(
7
)#
*(
#!
"
)#

Figure 7.3: Experimental framework for revenue driven resource allocation.

to be applicable to a group of VMs [GHJ+12]. VMs are placed on the resource

pool with a condition that the sum of reservations on any resource dimension to the

pool of VMs is not to exceed the reservation on the pool. The advantage of using

resource pools is that it aggregates physical resources from multiple hosts creates

the illusion of a single virtual server. In other words, a resource pool is constructed

using a cluster and the cluster in turn comprises of multiple physical machines. This

resource virtualization achieves transparent migration of the pooled VMs between

the hosts in the cluster at run-time. Migration may occur either as a result of a

certain allocation assignment to a particular VM being deemed unsupportable by

the current server or due to internal load balancing methods [GHJ+12]. In our setup,

we created a pre-configured resource pool and distributed its resources to individual

VMs.

A central resource allocator executes on a separate Dell PowerEdge T105 ma-

70

chine with a quad-core AMD Opteron processor (1.15GHz×4), 8 GB of physical

memory, and a 7.2k RPM disk running Ubuntu-Linux-10.10. VM workloads were

run previously in one of the cluster nodes in a staging environment and the applica-

tion performance models were built and recorded in the central resource allocator.

Each ESX host runs the esxtop tool to collect per-VM level as well as host-level

performance data. We also ran vscsiStats [vsc] on each ESX host which reports

storage I/O latency statistics for each VMDK.

7.3.2 Alternate Solutions

We now discuss alternate solutions to dynamic resource management that are pos-

sible in the context of a VMware ESX host. An ESX host provides several control

knobs for managing resource assignments to individual VMs. In particular Limit,

Reservation, and Share; each can be used to control the allocation of CPU and

memory to VMs [GHJ+12]. Limit places an upper bound on the amount of resource

a VM can consume; reservation guarantees a certain minimum amount of resource a

VM can utilize. Share is a prioritization scheme by which the ESX can dynamically

vary the resource allocated to a VM between its reservation and limit values based

on a specified priority or weight value as demand varies. In other words, shares

have the potential to dynamically distribute physical resources proportional to the

SLA weights of the VMs based on the actual demand. The work-conserving na-

ture of shares makes it an instant choice of tool for resource distribution based on

application-specified SLA priorities for server administrators. On the other hand,

limit is non-work conserving but it provides strict isolation in resource multiplex-

ing (for CPU and memory) between VMs on the same host. To compare, we exe-

cuted our resource management algorithm by using either shares as the control knob

or applying limits as the control knob to enforce resource assignemnts. Although

71

the algorithm was designed to use limit values, while applying shares, we mapped

each suggested limit to its share value by dividing the resource assignment with

the total capacity of the resource pool. Specifically, we evaluate four schemes: (i)

Share Reservation: this case applies shares in combination with some reservations

for both CPU and memory; (ii) Share noReservation: shares are used without any

reservation for both CPU and memory; (iii) Limit Reservation: limits are used as

the controlling knobs for VMs alone with reservations for both CPU and memory;

and (iv) Limit noReservation: limits are applied without any specified reservations.

Irrespective of the resource assignment mechanism (i.e. limits or shares), the re-

source allocation process works as follows. Initially, the available CPU and memory

in the resource pool are divided among the running VMs either equally or in propor-

tion to the application-specified SLA weights. VMs were allowed to run for an epoch

of 5 mins. VMs continuously report the application performance to the central re-

source allocator. Once the interval elapses, the VM-level statistics are collected from

each ESX host. The SLA functions are applied to transform the application per-

formance to corresponding revenue values in USD. Application performance models

are consulted next to determine the relative gain or loss in revenue if resources were

to be added or subtracted from individual VMs. The greedy algorithm (listed in

Algorithm 1) is then run using the model-predicted revenue data and a new set of

resource assignments for the pool of VMs are generated. The new assignments are

informed to the vCenter Server which guarantees the successful completion of the

new allocations. The VMs are run for another epoch and the whole process repeats.

The procedure stops if there is no additional gain in total revenue across multiple

iterations (2) or if the models do not predict any further net profit by reassignment

of resources to the current pool of VMs. However, it is important to note that real-

location will again become necessary if a new VM is added to the pool, or a running

72

!"#$

"##$

""#$

%##$

%"#$

&##$

#$ '$ ($)$!$ "$ %$

!
"
#
"
$
%
"
&'
(
)
*
+&

,-"./01$&21%$-&

*+,-./0.1.-2,345$

*+,-./540.1.-2,345$

67879/0.1.-2,345$

67879/540.1.-2,345$

Figure 7.4: Change in revenue when started with equal resource allocations

VM is stopped, or the loads inside the VMs change.

7.3.3 Quantitative Evaluation

To illustrate the power of our framework, we created a pool of 10 VMs each run-

ning an identical instance of the Filebench Webserver [fil] workload. The resource

pool capacity for CPU was set at 4 GHz and that for memory was 4 GB. Initially,

resources were distributed equally among the VMs. We chose δ, the lowest gran-

ularity of resource movement, to be 100 MHz for CPU and 64 MB for memory.

The value of k was selected as 2. In other words, in each epoch of the resource

allocation procedure, a VM was allowed to have a maximum change of 200 MHz

of CPU and 128 MB of memory from its previous assignment. Caution was taken

to minimize the modeling inaccuracy that may arise due to significantly low δ or

high kδ. Since models were trained with data points separated from each other in

the parameters space at coarse granularity, choosing a really small value for δ lead

73

to prediction inaccuracy. On the other hand, since the performance models use the

current observed VM storage I/O latency to predict the application performance for

next iteration, it is important that the I/O latency remains stable. The value of kδ

(the maximum resource change) should not be too high as it may destabilize the

VM storage I/O latency across multiple iterations within the revenue maximization

algorithm.

Figure 7.4 shows how the total revenue from 10 VMs changes as we apply our

algorithm after each epoch or iteration. We compare all the four scenarios we have

described before. In case of reservation, we set each VM to have atleast 200 MHz

CPU and 256 MB of memory. In cases of no reservations, the values were set at

zero. While using shares, we set the limit of each VM to the capacity of the resource

pool thereby forcing SLA-based prioritization in resource partitioning. On the other

hand, in cases using limits, all the VMs were initialized with equal shares. Further,

the sum of limits of the pool of VMs were set to be equal to the capacity of the re-

source pool. SLAs were chosen as simple weight values to transform the normalized

application performance metrics to US Dollars. As we see from Figure 7.4, in each it-

eration, our resource allocation algorithm drove the assignment from a state of lower

revenue to a state of higher revenue. However, our proposed limit-based approaches

provided much higher revenue than the share scheme. Limit noReservation deliv-

ered a 22% increase in revenue with respect to the initial placement. On the other

hand, Share noReservation rendered 10% revenue increment. More importantly, the

end state achieved when using VM resource limits delivered 18% higher revenue in

comparison to that obtained when using shares. This result underscores the use-

fulness of employing limit-based approach in combination with the greed heuristic

to automatically increase the revenue of virtualized data centers. We observed a

gain of 7% when we started with a different initial configuration where resources are

74

!"#$

%##$

%&#$

%!#$

%'#$

%"#$

'##$

'&#$

#$ ($ &$)$!$ %$ '$ *$ "$ +$ (#$

!
"
#
"
$
%
"
&'
(
)
*
+&

,-"./01$&21%$-&

,-./012030/4.567$

89:9;12030/4.567$

Figure 7.5: Change in revenue when the initial resource allocations to VMs are
assigned proportionally to respective SLA weights

assigned proportionally to the application-specified SLA weights (Figure 7.5). Here

too, using limits provided higher revenue than using shares.

To understand why using shares led to relatively poor outcome when compared to

using limits, we analyzed the VM with the lowest SLA weight and plotted its average

CPU consumption against time for both the allocation strategies. We compared the

CPU consumption in each graph with the allocation suggested by our algorithm.

As we see from Figure 7.6, as expected, the shares allow the allocation of the VM

to fluctuate arbitrarily irrespective of its suggested assignment as demand varies.

Despite this particular VM achieving higher performance, it did so by reducing the

allocations of the higher priority VMs. Since this particular VM had the lowest

priority, it contributed little to the collective revenue across the pool of VMs while

reducing the chances of extracting a higher revenue from the VMs with higher SLA

weights. On the other hand, limit-based allocation enforced an useful isolation

among individual VMs which contributes to much higher total from multiple hosted

VMs.

75

!"#$%&'()!*+) ,%--'$.'()!*+)

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

+!!"

#!!!"

$
!
"

#
!
!
"

#
*
!
"

$
(
!
"

%
&
!
"

&
$
!
"

'
!
!
"

'
*
!
"

(
(
!
"

)
&
!
"

*
$
!
"

+
!
!
"

!
"
#
$%
&
'
()
$

*+,-$%.-/)$

(a) Impact of Shares

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

%
!
"

$
'
!
"

%
(
!
"

&
)
!
"

#
!
!
"

(
%
!
"

*
'
!
"

)
(
!
"

+
)
!
"

$
$
!
!
"

$
%
%
!
"

$
&
'
!
"

$
'
(
!
"

$
#
)
!
"

$
*
!
!
"

!
"
#
$%
&
'
()
$

*+,-$%.-/)$

(b) Impact of Limits

Figure 7.6: Trend of actual CPU consumption and suggested CPU allocation for a
VM across multiple iterations of the resource allocation algorithm. The chosen VM
has the lowest SLA priority. Suggested allocations are applied to the VMs using
either shares or limits.

7.4 Summary

In this chapter, we proposed and evaluated a novel revenue driven resource allo-

cation method to distribute available physical resources to VMs hosted in a data

center. We provided a formalization of this problem and proved that this revenue

maximization problem is NP-hard. A greedy but fast heuristic solution to the rev-

enue maximization problem was proposed and implemented. We experimentally

validated that our machine-learning based models can be applied in cooperation

with the revenue maximization algorithm to substantially increase the data center

revenue. The results showed up to 22% gain in revenue by using the proposed algo-

rithm, starting with equal assignments of resources. When starting with allocations

in proportion to the application-specified SLA weights, our algorithm registered 7%

gain in total revenue. Moreover, our scheme increased the total revenue by 18%

when compared to a share-based allocation technique. Fine-grained analysis re-

vealed better isolation in sharing of CPU and memory by the VMs while applying

76

limit-based allocation compared to share-based allocation. In Section 9.3, we iden-

tify several directions for future research to strengthen the impact and to broaden

the scope of this framework.

77

CHAPTER 8

CONCLUSIONS

Optimal management of data center resources is a crucial yet cumbersome task.

While promising to relieve administration complexity, advancement of virtualiza-

tion technologies has temporarily compounded the resource management problem

due to higher degree of consolidation within a single host. In this thesis, we devised

machine-learning based application performance models for virtualized applications

and employed our models to serve two critical operations: (i) estimating the vir-

tual machine capacity based on the target performance while renting computing

and memory from Infrastructure-as-a-Service (IaaS) providers, and (ii) developing

a revenue driven resource distribution algorithm to maximize the Service-Level-

Agreement (SLA) based revenue for the data centers.

This thesis made the following advances in the state-of-the-art of server resource

management in virtualized data centers. First, we identified the key resource pa-

rameters characterizing the application performance. We chose high level control

knobs that are easily available in any hypervisor platform to tune the allocation of

CPU cycles and memory capacity for each VM. We also demonstrated how varying

those control parameters affect application performance in a complex, non-linear

fashion and that these trends are significantly diverse across different applications.

A difficult challenge of parameter identification was picking the accurate parameter

for characterizing the performance of a shared storage system which is typically cen-

trally located in a separate server in data centers. Although we could not completely

control the partitioning of storage I/O bandwidth, we found that the observed VM

I/O latency for a virtual machine disk (VMDK) correctly represents the current con-

tention level in a storage LUN irrespective of the degree of randomness, read/write

ratio, number of outstanding I/Os, and the I/O size distribution. The VM-level I/O

78

latency metric also works regardless of if the storage is locally attached or remotely

located.

Second, we investigated several machine-learning and non-machine-learning tech-

niques to accurately predict the application performance for a VM given an assign-

ment of CPU and memory, and the observed storage contention (in the form of VM

I/O latency). Of these, we selected two popular evolutionary tools, artificial neural

network (ANN) and support vector machine (SVM), to be our building blocks for

modeling. We tuned these tools and evaluated them on both the XEN and ESX

hypervisors by training and testing the accuracy of the models using multiple work-

loads. Initial evaluation revealed large modeling errors with certain applications.

To reduce the modeling errors, we implemented a novel technique of clustering and

subdividing the input parameter space based on the application performance values

for a given application and then building separate ANN or SVM models for individ-

ual clusters. The new optimizations improved the prediction accuracy and reduced

the average and 90th percentile prediction errors substantially.

Third, we proposed and implemented a framework for calculating the required

compute power and memory capacity of a VM given a target performance objective

and an allowable range of VM I/O latency while renting server space from a cloud

host. The performance models were queried to obtain the optimal VM sizes. We

experimentally demonstrated that model-based VM sizes not only achieved the de-

sired performance for all of our chosen target data points spread across two different

workloads, but also the proposed sizes were optimal in most cases for both the CPU

and memory dimensions and close to optimal for the rest. This empirical evidence

underscores the power of model-based VM sizing for cloud service providers.

Last, we designed, built, and evaluated a novel revenue driven resource allocation

algorithm which partitions the available physical resources among a pool of VMs

79

with the goal of attaining high SLA-based revenue for the data center operators.

Performance models were integrated with a version of the hill-climbing algorithm

to achieve the objective of maximizing SLA-based revenue. To recreate a miniature

data-center like environment, we evaluated our framework by building a cluster of

multiple ESX machines hosting a large number of VMs with a centralized storage

server hosting the virtual disks. Results indicated substantial gain in revenue in

comparison to some static partitioning of available resources. More importantly,

our system delivered significantly higher revenue in comparison to the share-based

allocation method that is deployable in current production systems.

To conclude, this thesis contributes to accelerate the progress of autonomous

and dynamic resource provisioning of virtual machines in a data center. However,

several aspects of our work require further research. These are the subject of our

future work and elaborated upon in the next chapter.

80

CHAPTER 9

FUTURE WORK

This thesis has addressed indicator VM parameters selection for controlling and

inferring VM performance, building and optimization of VM performance models

based on suitable machine-learning techniques, VM sizing based on these perfor-

mance models, and revenue driven dynamic resource allocation in virtualized data

centers. In this chapter, we identify the directions in which the work contained in

this thesis can be extended in the future.

9.1 VM Sizing

Chapter 6 corroborated the accuracy and efficacy of VM performance models to

deliver desired application performance targets when hosting the application VMs

in cloud environment. The evaluations depicted 100% success in achieving target

performance levels. More importantly, the configured VM sizes were optimal in 65%

of the cases. However, further investigations are required to inquire why optimal

allocations are not being realized in some cases. Although, our data indicate that

the sub-optimality (for the 35% of the target points) is within a few allocation units

for most of the points, in one or two cases our solution is farther away from the

optimal. The first extension to this work should identify whether this sub-optimality

is a consequence of poor performance prediction or of any procedural shortcoming

in our sizing algorithm or both.

In the version of the VM sizing problem that was explored in this dissertation,

the storage performance indicator parameter, VM I/O latency, was considered as

a static input. The sizing tool thus only estimated optimal CPU and memory for

the application VM at a given VM I/O latency. No calculation of optimal VM

81

I/O latency was performed; the VM I/O latency parameter merely served as an

input along with the target performance metric. Since current storage systems and

hypervisors do not provide fine-grained control of I/O latency, we did not explore

this direction in our initial work on the VM sizing problem. In the future, we

anticipate that VM I/O latency will be virtualized and allocated similar to CPU

and memory resources. This is attractive for both the cloud service provider who

can now optimize storage I/O and charge for various levels of I/O performance as

well as for the customer who can expect a specific storage performance for their

VMs. The second extension should incorporate this estimation of acceptable VM

I/O latency level within our sizing framework. If I/O latency gets provisioned in

data center, the critical question that arises is trading-off between memory and

I/O latency since these two are inter-dependent. We believe that our modeling

techniques will be able to characterize the inter-dependence between these control

variables because we train the models under various combinations of memory and

observed VM I/O latency values. The future work should evaluate this version of

the problem by applying I/O latency controlling techniques on a shared storage

system to calculate optimal VM I/O latency for the target VM.

9.2 Performance Modeling

Chapter 5 demonstrated how advanced and optimized use of certain machine-learning

techniques rendered highly accurate performance prediction of virtualized workloads

that in turn delivered optimal VM sizing (chapter 6) and data center resource dis-

tribution (chapter 7). However, there are important and challenging new directions

yet to be explored.

82

9.2.1 Online Updating of Performance Models

In this thesis, we have assumed that the application behavior is stable and addressed

the offline modeling of its performance. Such a performance model is valuable to a

variety of applications that are mainly concerned with average case performance and

have static workloads. However, for applications that service dynamically changing

workloads, online training of the performance model becomes necessary. Several

issues need to be answered to make online modeling practical.

First, it is necessary to identify changes in the resource demand level of client

applications. One approach is to incorporate load/demand as an another input

parameter to our performance model and constantly monitor the load level of the

target VM. However, this approach may require domain knowledge and thus can be

potentially intrusive. Another approach is to constantly monitor application perfor-

mance under allotted allocations and observed contentions. If the newly recorded

results under the same allocations and contention differ significantly from the pre-

dictions of the original performance model, a change in load level could be the cause.

This approach is application agnostic and non-intrusive. The future research should

evaluate the pros and cons of both the techniques. Second, it is important to distin-

guish between short-term and long-term variations. Application performance can

substantially change at a certain instant in time due to short-lived spikes in clients

load or abrupt and temporary change of machine environments. Short-lived outliers

would need to be isolated from sustained performance variations to reduce noise in

the training data. Third, an approach to efficiently retrain the model online is re-

quired. We believe that our current approach can be extended to work in a dynamic

setting primarily because of the relatively low training times incurred as shown in

Chapter 5. The future work should develop techniques for effective construction and

83

updating of performance models online.

9.2.2 Cross-platform Performance Modeling

In the current version, the performance models were pre-built in a staging environ-

ment with the assumption that the application VMs will run later in an identical

deployment infrastructure. Our current experimental cluster consists of identical

physical machines. However, data center clusters may consist of dissimilar physical

machines with varying underlying hardware and thus potentially different effects of

resource allocations on application performance metrics. The performance model

built on a particular type of hardware may be erroneous in its predictions if the ap-

plication migrates to a machine with a non-identical hardware configuration. One

approach to deal with this challenge is to build separate performance models for all

distinct machine configurations in the cluster. But the training data collection for

performance models is a time-consuming task and constructing numerous models

will prolong the staging process. The smarter solution should transform an appli-

cation performance model trained on a specific machine hardware to an updated

model when the target VM is migrated to a server with a dissimilar configuration.

Such cross-platform modeling techniques will be valuable for future generation of

data centers.

9.2.3 Modeling Cache Contention

Our performance models have explicitly included the parameter for I/O contention

in shared storage system. However, our work so far has ignored another key shared

resource i.e. CPU cache. As demonstrated in recent works [KVR, GLKS11], the

shared processor cache introduces significant performance interference among the

84

co-located VMs. In our experiments, we maintained low VM-to-core ratio to mini-

mize any potential cache contention effects on the running workloads. However, in

an actual production environment, a single core is often shared across large number

of VMs. In such environments, CPU cache interference modeling will be neces-

sary. Such modeling should identify parameters which accurately characterize the

interference of co-located VMs in shared CPU cache.

9.3 Dynamic Resource Allocation

Chapter 7 motivated the impact of revenue driven framework for distributing clus-

ter resources among client VMs. The implementation and evaluation of the greedy

heuristic in cooperation with the apriori constructed performance models registered

up to 18% total revenue gain in comparison to the existing share-based propor-

tional allocations. We envision several extensions to complement and strengthen

our system.

First, the allocation of storage was addressed indirectly by characterizing con-

tention in a shared LUN with virtual disk I/O latency as the indicator parameter.

Unlike CPU and memory, storage is not easily partitionable; or in other words,

allocation of certain levels of I/O latency or I/Os Per Second (IOPS) to VMs is

non-trivial and not readily available yet. Nevertheless, the effect of I/O latency on

application performance is significant. We have sidestepped this issue by applying

the VM I/O latency collected in previous allocation decision to suggest future as-

signments and guide the pool of VMs to progress slowly towards a more optimal

resource allocation state. Recent techniques to partition and/or prioritize the al-

location of disk I/O bandwidth [HPcC04, KKZ05, WAEMTG07, GSZV12, SFS12]

suggest that future work on cluster resource management would likely borrow and

extend some of these ideas for storage provisioning. Given such storage capabilities,

85

storage provisioning will involve tunable reservation/limit on IOPS or I/O latency

in conjunction with the observed metrics.

Second, we had intuitively come up with SLA functions of the VMs based on

our knowledge of the workloads and their resource consumption characteristics. Al-

though this naive approach was sufficient for our evaluation purposes, future research

should address the profitability of the SLA functions in the production environment.

A SLA function maps application performance to revenue in US dollars. The ap-

plication performance in turn is a function of resource assignments to that target

VM. The key question here is to determine whether SLA functions are profitable for

the data center and provide good value to clients at the same time. A good SLA

function would need to be designed by considering the resource requirements and

adjusting the revenue curve accordingly. The VM sizing framework (Chapter 6) can

be utilized to provide resource requirement hints to the data center administrators.

Third, the typical web and online analytical processing workloads running in data

centers today are multi-tier. Usually, the topology of multi-tier workloads consists

of several inter-dependent tiers of the same application, each tier being encapsulated

in separate VMs. Resource allocation to such applications will entail reconfiguring

multiple VMs at the same time. In our work, this problem did not manifest as

all the tiers were run on the same VM. An intuitive approach to deal with multi-

tier applications is to logically group all the correlated VMs into a single one and

apply resource allocation to that group as a whole. However, caution is required

in distributing the resources allocated to that logical group across individual VM

tiers. Another approach will be to treat each VM tier separately in terms of resource

allocation decisions. Since the tiers are not required to be co-located, this method

helps easier migration of VM tiers across hosts for load-balancing in the cluster.

Future work should explore alternate strategies to manage multi-tier applications.

86

Fourth, the cost of a specific resource type may serve as an important input

to our proposed revenue model. For example, an application read request can be

served both from memory or from storage without violating the SLA requirement.

If we are achieving the same revenue level by serving either from main memory or

from a storage device, it may be worthwhile to allocate a resource type which is less

expensive. Additionally, if a certain resource type is over-utilized, higher priority

may be given to the under-utilized resource for obtaining similar revenue levels. In

this thesis, we have not differentiated between resource types in terms of their costs

or current demands. If the same higher level of revenue can be achieved with either

CPU or memory, we have not enforced any specific order to pick up a resource type

between them. Cost of hardware was also not accounted for. Future studies should

address cost models in our revenue framework and seek to attain higher revenue by

allocating less expensive or more available resource type first before allocating more

expensive or less available ones.

Fifth, the greedy heuristic proposed in this dissertation provided an approximate

solution to the optimization problem which was proved to be NP-hard in Section 7.1.

Although the heuristic delivered significant increase in revenue, a thorough analysis

of the optimality of the solution in achieving the revenue maximization objective is

necessary. Moreover, our implemented greedy heuristic is incremental and thereby

can be driven towards local maxima points, a common problem with hill-climbing

algorithms. Future extensions should propose and evaluate strategies to overcome

local maxima issues.

Finally, the load inside the client workloads running in cloud environment(s) to-

day are constantly changing. Any resource allocation tool should possess high degree

of elasticity to dynamically shrink or expand VM size as the load drops or escalates.

Future research should incorporate this demand induced resource reconfiguration in

87

the cluster to extract the full potential from our revenue guided framework. This

extension is tied to the successful online updating of the performance models as doc-

umented in the previous section. A comprehensive demand based, revenue driven,

dynamic resource allocation approach and accompanying suite of tools will be very

valuable to the optimized management of cloud data center resources.

88

BIBLIOGRAPHY

[BDF+03] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, and
R. Neugebauer. Xen and the art of virtualization. In Proc. of ACM
SOSP, 2003.

[BGF+10] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard,
and Hans Andersen. Fingerprinting the datacenter: Automated clas-
sification of performance crises. In EuroSys ’10 Proceedings of the
5th European conference on Computer systems, pages 111–124, 2010.

[BM05] Mohamed N. Bennani and Daniel A. Menascé. Resource allocation
for autonomic data centers using analytic performance models. In
ICAC, pages 229–240. IEEE Computer Society, 2005.

[BS02] Kurt M. Bretthauer and Bala Shetty. The nonlinear knapsack prob-
lem – algorithms and applications. European Journal of Operational
Research, (138):459–472, 2002.

[BTI+11] Roy Bryant, Alexey Tumanov, Olga Irzak, Adin Scannell, Kaus-
tubh Joshi, Matti Hiltunen, H. Andres Lagar-Cavilla, and Eyal De
Lara. Kaleidoscope : Cloud micro-elasticity via vm state coloring. In
Proceedings of the sixth conference on Computer systems (EuroSys),
pages 273–286, 2011.

[capa] Vmware capacity planner. http://www.vmware.com/products/capacity-
planner/.

[capb] Vmware vcenter capacityiq. http://www.vmware.com/products/vcenter-
capacityiq/.

[CAVL09] Austin T. Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan
Li. Decentralized Deduplication in SAN Cluster File Systems. In
Proc. of USENIX ATC, June 2009.

[CGK+04] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and
Jeffrey S. Chase. Correlating instrumentation data to system states:
A building block for automated diagnoses and control. In Proc. of
the 6th USENIX OSDI), 2004.

89

[CZG+05] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence
Kelly, and Armando Fox. Capturing, indexing, clustering, and re-
trieving system history. In Proc. of ACM SOSP, 2005.

[DCA+03] Ronald P. Doyle, Jeffrey S. Chase, Omer M. Asad, Wei Jin, and
Amin Vahdat. Model-based resource provisioning in a web service
utility. In USENIX Symposium on Internet Technologies and Sys-
tems, 2003.

[DO00] Peter A. Dinda and David R. O’Hallaron. Host load prediction using
linear models. Cluster Computing, 3(4), 2000.

[Dre08] Ulrich Drepper. The Cost of Virtualization. ACM Queue, Feb. 2008.

[ec2] Amazon elastic compute cloud (amazon EC2). http://
aws.amazon.com/ec2/.

[fil] Filebench: a framework for simulating applications on file systems.
http://www.solarisinternals.com/wiki/index.php/FileBench.

[fio] fio: Flexible I/O tester. http://freshmeat.net/projects/fio/.

[GAW09] Ajay Gulati, Irfan Ahmad, and Carl Waldspurger. PARDA: Pro-
portionate Allocation of Resources for Distributed Storage Access.
In Proc. of USENIX FAST, Feb. 2009.

[GCF+10] Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, and
David Patterson. Statistics-driven workload modeling for the cloud.
In SMDB, 2010.

[GHJ+12] Ajay Gulati, Anne Holler, Minwen Ji, Ganesha Shanmu-
ganathan, Carl Waldspurger, and Xiaoyun Zhu. VMware Dis-
tributed Resource Management: Design, Implementation and
Lessons Learned. http://labs.vmware.com/publications/gulati-
vmtj-spring2012, 2012.

[GLKS11] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubrama-
niam. Cuanta: quantifying effects of shared on-chip resource inter-
ference for consolidated virtual machines. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (SOCC), 2011.

90

[GMV10] Ajay Gulati, Arif Merchant, and P. Varman. mClock: Han-
dling Throughput Variability for Hypervisor IO Scheduling. In 9th
USENIX OSDI, October 2010.

[GRCK07] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kem-
per. Capacity management and demand prediction for next genera-
tion data centers. In ICWS, July 2007.

[GSA+11] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Wald-
spurger, and Mustafa Uysal. Pesto: Online storage performance
management in virtualized datacenters. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (SOCC), 2011.

[GSZV12] Ajay Gulati, Ganesha Shanmuganathan, Xuechen Zhang, and Pe-
ter Varman. Demand based hierarchical qos using storage resource
pools. In Proceedings of USENIX Annual Technical Conference,
2012.

[Ham] P. L. Hammer. Studies in integer programming. IBM Deutschland.

[HPcC04] Lan Huang, Gang Peng, and Tzi cker Chiueh. Multi-dimensional
storage virtualization. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems,
2004.

[Kat97] J. Katcher. Postmark: A new file system benehmark. Technical
report, Network Appliance, 1997.

[KKZ05] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. Triage:
Performance differentiation for storage systems using adaptive con-
trol. In ACM Transactions on Storage (TOS), pages 457–480,
Nov’2005.

[Kot11] Evangelos Kotsovinos. Virtualization: Blessing or Curse? ACM
Queue, Jan. 2011.

[KRDZ10] Sajib Kundu, Raju Rangaswami, Kaushik Dutta, and Ming Zhao.
Application Performance Modeling in a Virtualized Environment. In
Proc. of IEEE High Performance Computer Architecture (HPCA),
January 2010.

91

[KRG+12] Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao, and
Kaushik Dutta. Modeling Virtualized Applications using Machine
Learning Techniques. In Proceedings of the 8th ACM conference on
Virtual Execution Environments (VEE), March 2012.

[KVR] Ricardo Koller, Akshat Verma, and Raju Rangaswami. Estimating
application cache requirement for provisioning caches in virtualized
systems. In Proceedings of the 2011 IEEE 19th Annual International
Symposium on Modelling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS).

[LZSA05] X. Liu, Xiaoyun Zhu, Sharad Singhal, and Martin F. Arlitt. Adap-
tive entitlement control of resource containers on shared servers. In
IM, pages 163–176. IEEE, 2005.

[MAC+11] John C. McCullough, Yuvraj Agarwal, Jaideep Chandrashekar,
Sathyanarayan Kuppuswamy, Alex C. Snoeren, and Rajesh K.
Gupta. Evaluating the effectiveness of model-based power charac-
terization. In Proc. of USENIX Annual Technical Conference, 2011.

[MIK+10] Xiaoqiao Meng, Canturk Isci, Jeffrey Kephart, Li Zhang, Eric Bouil-
let, and Dimitrios Pendarakis. Efficient resource provisioning in com-
pute clouds via vm multiplexing. In ICAC, 2010.

[NKG10] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds:
managing performance interference effects for qos-aware clouds. In
EuroSys ’10, pages 237–250, 2010.

[pam] fpc: Flexible procedures for clustering. http://cran.r-
project.org/web/packages/fpc/index.html.

[PHZ+09] Pradeep Padala, Kai-Yuan Hou, Xiaoyun Zhu, Mustafa Uysal,
Zhikui Wang, Sharad Singhal, Arif Merchant, and Kang G. Shin.
Automated control of multiple virtualized resources. In Proceedings
of the 4th ACM European conference on Computer systems/EuroSys,
pages 13–16, 2009.

[pla] Novell platespin recon. http://www.novell.com/products/recon/.

[PSZ+07] Pradeep Padala, Kang G. Shin, Xiaoyon Zhu, Mustafa Uysal, Zhikui
Wang, Sharad Singhal, Arif Merchant, and Kenneth Salem. Adap-

92

tive control of virtualized resources in utility computing environ-
ments. In Proc. of Eurosys, pages 289–302, 2007.

[R] The R Project for Statistical Computing. http://www.r-project.org/.

[rac] The rackspace cloud. http://www.rackspace.com/cloud/.

[RBX+09] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Le Yi Wang, and
Gang George Yin. VCONF: a reinforcement learning approach to
virtual machines auto-configuration. In ICAC, pages 137–146. ACM,
2009.

[rub] RUBiS: Rice University Bidding System. http://rubis.ow2.org/.

[Sar94] Warren S. Sarle. Neural networks and statistical models, 1994.

[SFS12] David Shue, Michael J. Freedman, and Anees Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In Proceedings
of the 10th USENIX conference on Operating Systems Design and
Implementation (OSDI), 2012.

[SKZS08] Christopher Stewart, Terence Kelly, Alex Zhang, and Kai Shen. A
dollar from 15 cents: Cross-platform management for internet ser-
vices. In Proceedings of the USENIX Annual Techinal Conference,
pages 199–212, 2008.

[SLG+09] G. Soundararajan, D. Lupei, S. Ghanbari, A. D. Popescu, J. Chen,
and C. Amza. Dynamic resource allocation for database servers
running on virtual storage. In Proceedings of FAST, 2009.

[SMA+08] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis,
and S. Kamath. Automatic virtual machine configuration for
database workloads. In Proceedings of the 2008 ACM SIGMOD in-
ternational conference on Management of data, pages 953–966, 2008.

[SS05] Christopher Stewart and Kai Shen. Performance modeling and sys-
tem management for multi-component online services. Proc. of the
2nd USENIX NSDI, 2005.

[SSGW11] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
Cloudscale: Elastic resource scaling for multi-tenant cloud systems.

93

In Proceedings of ACM Symposium on Cloud Computing (SOCC),
2011.

[sys] Sysbench: a system performance benchmark.
http://sysbench.sourceforge.net/.

[UYA+05] Sandeep Uttamchandani, Li Yin, Guillermo A. Alvarez, John
Palmer, and Gul Agha. Chameleon: a self-evolving, fully-adaptive
resource arbitrator for storage systems. In Proc. of USENIX Annual
Technical Conference, 2005.

[vCe] Vmware vcenter server. http://www.vmware.com/products/vcenter-
server/.

[VMw10a] VMware, Inc. Introduction to VMware Infrastructure. 2010.
http://www.vmware.com/support/pubs/.

[VMw10b] VMware, Inc. vSphere Resource Management Guide: ESX 4.1, ESXi
4.1, vCenter Server 4.1. 2010.

[VNM+12] Nedeljko Vasic, Dejan Novakovic, Svetozar Miucin, Dejan Kostic,
and Ricardo Bianchini. Dejavu: accelerating resource allocation in
virtualized environments. In ASPLOS XVII Proceedings of the sev-
enteenth international conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2012.

[Vog08] Werner Vogels. Beyond Server Consolidation. ACM Queue, Feb.
2008.

[vsc] Using vscsiStats for Storage Performance Analysis.
http://communities.vmware.com/docs/DOC-10095.

[WAEMTG07] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gre-
gory R. Ganger. Argon: performance insulation for shared storage
servers. In Proceedings of the 5th USENIX conference on File and
Storage Technologies (FAST), 2007.

[WCOS08] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant
Shenoy. Profiling and modeling resource usage of virtualized appli-
cations. In Proc. of ACM/IFIP/USENIX Middleware, 2008.

94

[WSW08] Jonathan Wildstrom, Peter Stone, and Emmett Witchel. CARVE:
A cognitive agent for resource value estimation. In ICAC, pages
182–191. IEEE Computer Society, 2008.

[WVA+12] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy
Katz, and Ion Stoica. Cake: Enabling high-level slos on shared stor-
age systems. In Proceedings of the 3rd ACM Symposium on Cloud
Computing (SOCC), 2012.

[WZS05] Z. Wang, X Zhu, and S. Singhal. Utilization and slo-based control for
dynamic sizing of resource partitions. In Proc. of 16th IFIP/IEEE
Distributed Systems: Operations and Management (DSOM), Octo-
ber 2005.

[XCZ+11] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Cal-
ton Pu, and Hakan Hacigumus. Activesla: A prot-oriented admission
control framework for database-as-a-service providers. In Proceed-
ings of ACM Symposium on Cloud Computing (SOCC), 2011.

[XZF+08] Jing Xu, Ming Zhao, José A. B. Fortes, Robert Carpenter, and
Mazin S. Yousif. Autonomic resource management in virtualized
data centers using fuzzy logic-based approaches. Cluster Comput-
ing, 11(3):213–227, 2008.

[ZBJ+09] Wei Zheng, Ricardo Bianchini, G. John Janakiraman, Jose Renato
Santos, and Yoshio Turner. JustRunIt: Experiment-Based Manage-
ment of Virtualized Data Centers. In Proceeding of the USENIX
Annual Technical Conference, 2009.

95

VITA

SAJIB KUNDU

May 23, 1984 Born, Kolkata, India

2006 Bachelor or Computer Science and Engineering
Jadavpur University
Kolkata, India

PUBLICATIONS AND PRESENTATIONS

Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao, and Kaushik Dutta
(2013). Revenue Driven Resource Allocations for Virtualized Data Center. To be
submitted.

Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao, and Kaushik Dutta
(2012). Modeling Virtualized Applications using Machine Learning Techniques. 8th
Annual International Conference on Virtual Execution Environments (VEE).

Sajib Kundu, Raju Rangaswami, Kaushik Dutta, and Ming Zhao (2010). Ap-
plication Performance Modeling in a Virtualized Environment. 16th IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).

Kaushik Dutta, Raju Rangaswami, and Sajib Kundu (2008). Workload-based
Generation of Administrator Hints for Optimizing Database Storage Utilization.
ACM Transactions on Storage, vol. 3, no. 4, February.

96

	Florida International University
	FIU Digital Commons
	4-1-2013

	Improving Resource Management in Virtualized Data Centers using Application Performance Models
	Sajib Kundu
	Recommended Citation

	Introduction
	Thesis Statement, Contributions, and Impact
	Thesis Statement
	Thesis Contributions
	Thesis Impact

	Related Work
	Modeling
	Past Modeling Approaches
	Building Models

	VM Sizing
	Dynamic Resource Allocation

	Resource Parameters Selection
	CPU
	Xen-specific Parameters
	ESX-specific Parameters
	Impact of CPU Allocation

	Memory
	Xen-specific Parameters
	ESX-specific Parameters
	Impact of Memory Allocation

	Storage
	CDIOPS
	VM I/O Latency
	Xen-specific Parameters
	ESX-specific Parameters

	Summary

	Application Performance Modeling
	Architectural Overview
	Model Training
	Evaluating Alternative Modeling Techniques
	Regression Models
	Artificial Neural Network Models

	Optimizing Machine Learning Models
	Limitations of a Single Global Model
	Creating Multiple-Models with Sub-Modeling

	Evaluation
	Measure of Confidence
	Robustness to Noise
	Modeling Overhead

	Summary

	VM Sizing
	VM Sizing Problem Definition
	Model-based VM Sizing
	Summary

	Dynamic Resource Management
	Modeling Resource Allocation
	Problem Formulation
	How Expensive is Exhaustive Search?
	Other Heuristic Solutions

	A Heuristic Solution
	Evaluation
	Experimental Setup
	Alternate Solutions
	Quantitative Evaluation

	Summary

	Conclusions
	Future Work
	VM Sizing
	Performance Modeling
	Online Updating of Performance Models
	Cross-platform Performance Modeling
	Modeling Cache Contention

	Dynamic Resource Allocation

	BIBLIOGRAPHY
	VITA

