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ABSTRACT OF THE THESIS

DETERMINING MAGMATIC PROCESSES FROM ANALYSIS OF PHENOCRYSTS

AND GABBROIC XENOLITHS CONTAINED IN CALBUCO ANDESITES

by

Tiffany Sperry Horst

Florida International University, 2007

Miami, Florida

Professor Rosemary Hickey-Vargas, Major Professor

Calbuco Volcano, in Southern Chile, has eruptive products of predominantly

andesitic hornblende-bearing lava. A purpose of this work is to understand magmatic

processes and how Calbuco magma chemistry is related to the explosive volcanic

character. Calbuco lava has a mineral assemblage of plagioclase, hornblende,

orthopyroxene, clinopyroxene, olivine, and magnetite and entrained gabbroic xenoliths

with the same mineral assemblage. The presence of hornblende is evidence for dissolved

water in the magma. Detailed petrographic/textural analysis has been done using

petrographic microscopy and back-scattered electron imaging (BSE); geochemical

analysis by electron microprobe (EPMA). Major findings include 1) that hornblende and

hornblende-bearing gabbroic cumulates crystallize from Calbuco magma, 2) that

plagioclase grains are compositionally zoned, recording evidence of temperature,

chemical, and water content fluctuations in the magma, and 3) that hornblende is unstable

under upper magma chamber conditions at Calbuco, and is breaking down into

plagioclase, olivine, orthopyroxene, clinopyroxene, and magnetite in the magma.
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Chapter 1. Introduction

Calbuco Volcano is located in the Central Southern Volcanic Zone (CSVZ) of

Southern Chile (Figure 1). Although it is surrounded by numerous active volcanic

centers, it is different from these other volcanoes in its eruptive style and eruptive

products. Calbuco is an explosive volcano in contrast to the widespread effusive

volcanism in this area. Eruptions typically include lahars and pyroclastic flows, in

addition to surges (lateral blasts), block and ash flows, and subplinian eruptions. Calbuco

is also unusual petrographically compared to other CSVZ composite stratovolcanoes

because: 1) hornblende is a phenocryst; 2) andesite is the predominant product rather than

basalt; and 3) there are gabbro and granulite xenoliths in the lavas (Lopez-Escobar, et al.,

1995). The presence of hydrous minerals in the eruptive products, such as hornblende,

and the explosive eruptive history suggest that the Calbuco magma is more water-rich

than that at surrounding volcanic centers. The eruptive products of surrounding

volcanoes do not have hydrous mineral assemblages. As an example, the nearest

neighboring volcano, Osorno, 18 km to the north, has porphyritic eruptive products

(basalt and andesite) that contain phenocrysts of plagioclase and clinopyroxene (Lopez-

Escobar and Parada, 1991).

Previous work based on bulk rock chemistry proposed that Calbuco andesites

developed by crustal contamination, fractional crystallization of an assemblage with

homblende, and magma mixing (Lopez-Escobar et al., 1995 and Hickey-Vargas et al.,

1995). This project is focused on understanding some of the internal processes at work

inside Calbuco on a finer scale by examining the individual mineral phases, particularly

plagioclase and hornblende. Compositional zoning of plagioclase is studied in detail to

1



determine what, if any, magmatic processes are recorded during the growth of the crystal.

Previous work has shown that processes, such as magma mixing, the presence of water in

the magma, magmatic temperature fluctuations, and magma chamber convection can be

recorded in major element zoning of plagioclase. Studies of plagioclase major and trace

element zoning have been conducted at Tatara-San Pedro (Chile; Singer et al., 1995),

Thera Volcano (Greece; Stamatelopoulou-Seymour et al., 1990), Medicine Lake Volcano

(California; Brophy et al., 1996), Soufriere Hills (Montserrat; Zellmer et al., 2003;

Stewart and Fowler, 2001), Mount St. Helens (Washington; Pearce et al., 1987),

Iztaccihuatl Volcano (Mexico; Nixon and Pearce, 1987), Seguam Volcano (Alaska;

Singer et al., 1993; Singer and Pearce, 1993), Laacher See (Germany; Ginibre et al.,

2004), Parinacota Volcano (Chile; Ginibre et al., 2002b), Mount Pinatubo (Philippines;

Hattori and Sato, 1996), and Zigana Granitoid (Turkey; Karsli et al., 2004). Hornblende

is studied to try to determine the composition of the mineral assemblage of the

breakdown reaction products. The presence of hornblende in arc volcanics is not well

understood. Questions as to whether it crystallizes from the magma or whether it forms

due to later reactions have been posed by Costa et al. (2002). Little is known about how

andesites are actually formed despite the fact that the Earth's crust has an overall

andesitic composition. Arguments for andesite formation have included elevated

dissolved water contents in the magma (Allen and Boettcher, 1978 and 1983; Moore and

Carmichael, 1998; Foden and Green, 1992), crystal fractionation (Grove and Baker,

1984; Moore and Carmichael, 1998; Pichavant et al., 2002; Beard, 1986; Grove et al.,

1982; L6pez-Escobar et al., 1995; Cawthorn and O'Hara, 1976 and references therein),

crystallization of hornblende (Allen and Boettcher, 1978 and 1983; Green and Ringwood,

2



1967; Cawthorn and O'Hara, 1976; Yagi and Takeshita, 1987; L6pez-Escobar et al.,

1995), magnetite crystallization (Cawthorn and O'Hara, 1976 and references therein;

Martel et al., 1999), crustal assimilation (Grove et al., 1982; L6pez-Escobar et al., 1995),

magma mixing (Grove et al., 1982; L6pez-Escobar et al., 1995), partial melting of

subducted oceanic crust (Cawthorn and O'Hara, 1976 and references therein), and direct

and partial melting of mantle peridotite (Cawthorn and O'Hara, 1976 and references

therein). Since Calbuco andesites have a complex mineral assemblage, each mineral

phase is also examined to try to determine the relationship between phases. Study of the

textures, such as breakdown textures present or phenocryst rims, and compositions of the

mineral phases present in the andesite will lead to an understanding of phase stability in

the Calbuco magma chamber. This study of andesites and magmatic processes at

Calbuco is important to help advance the understanding of andesite genesis worldwide.

Calbuco is an understudied volcano, in comparison with well known volcanic

centers such as Mt. Saint Helens or Soufriere Hills, but is actually of great importance

locally due to its explosive nature. Calbuco Volcano is surrounded by inhabited towns

and villages, such as Ensenada to the northeast, Puerto Varas to the west, and Puerto

Montt to the south, and poses a potentially serious threat to these people by endangering

their life, home, and livelihood. Proper volcanic hazard mitigation of the threat posed by

Calbuco is essential, however a thorough understanding of the internal magmatic

processes of Calbuco, which this project will contribute to, is essential to successfully

interpret and predict the external behavior of the volcano.

The next several chapters, 2 through 6 include primarily descriptive information,

followed by interpretation in chapters 7 and 8. Chapter 2 contains a description of the

3



regional geologic and tectonic information for Southern Chile Calbuco as well as the

volcanic history of the volcano and a review of prior geochemical work. Chapter 3

describes the collection of new samples, their preparation, and methods of analysis.

Chapter 4 contains a detailed description and comparison of the textures, chemistry and

mineral assemblages of the andesite, basaltic andesite, as well as the crystal clusters

found in both, and gabbroic xenoliths found in the andesite. Chapter 5 includes a detailed

description and comparison of hornblende chemistry and textures in both the andesite and

gabbroic xenoliths. This chapter also includes a detailed description of the hornblende

breakdown products found, including texture and mineral assemblage. Chapter 6

includes a detailed description of plagioclase crystal populations present in Calbuco

andesite and basaltic andesite along with the major, minor, and trace element zoning

found. This chapter also details the resorption textures and surfaces found along with

plagioclase growth between resorption events and the chemistry of glass trapped within

plagioclase crystals. Chapter 7 contains discussion of hornblende crystallization and

subsequent breakdown as well as magma chamber processes recorded in plagioclase

zoning. This chapter also discusses an overview of magma properties, of both andesite

and basaltic andesite, as well as an overview of magmatic processes inside Calbuco.

Chapter 8 contains interpretation of hornblende formation and breakdown reaction

product, as well as the genesis of cumulate gabbroic xenoliths. This chapter also contains

interpretation of the magma chamber processes recorded in plagioclase zoning and the

synthesis of Calbuco and the magma storage zone. Chapter 9 is a listing of the

references.
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Chapter 2. Background

2.1 Andean Volcanic Zones - Geology and Tectonics

The Andean Volcanoes are divided into four separate volcanic segments; the

Northern Volcanic Zone (NVZ), between the latitudes of 5 N and 2 S, the Central

Volcanic Zone (CVZ), between 140 and 28 S, the Southern Volcanic Zone (SVZ),

between 330 and 46*S, and the Austral Volcanic Zone (AVZ), between 490 and 550S

(L6pez-Escobar, et al., 1995). These regions are defined by geological boundaries on the

Nazca plate (Figure 2). Along the Andean Cordillera from north to south, the southern

boundary of the NVZ is the Carnegie Ridge. The CVZ is situated between the Nazca

Ridge on the north and the Juan Fernandez Ridge on the south. The SVZ is located

between the Juan Fernandez Ridge in the north and the Chile Rise in the south. The AVZ

is found south of the Chile Rise. Volcanism in the Andes is the result of subduction of

the Nazca plate, and the Antarctic plate, beneath the South American plate. The

Antarctic plate is being subducted beneath the South American plate in the extreme south

of the continent, south of approximately 48 S latitude, and is responsible for formation of

the AVZ. The Nazca plate is moving toward the NE and is subducting below the South

American plate at a rate of approximately 8 m/y, (Lavenu and Cembrano, 1999). The dip-

angle of subduction varies from north to south affecting the presence of volcanic activity.

Between the latitudes of 5 N-2 S (NVZ), 16-28 S (CVZ), and south of 33 S (SVZ and

AVZ), where the subduction angle is approximately 300, there is active volcanism. Areas

where the subduction dip-angle is shallow, approximately 5-10*, are lacking in

volcanism, between the latitudes of 2-15 S and 27-33 S (Thorpe, 1984). According to
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Hickey et al. (1984), in the SVZ the major volcanic chain is located approximately 300

km from the Peru-Chile Trench. The depth to the Benioff zone varies within the four

regions of the Andes. Beneath the NVZ and CVZ it is at a depth of approximately 140

km, and beneath the SVZ and AVZ it is shallower, at a depth of approximately 90-120

km (Thorpe, 1984). Within the SVZ, between 38 -46 S, the subduction angle of the

Nazca plate is approximately 260 and the age of the subducted crust decreases southward

from approximately 25 Ma (at 38 S) to approximately 0 Ma where the Chile Ridge is

currently being subducted (at 46 S) (Cembrano et al., 2000).

Variations in the age and crustal thickness beneath the NVZ, CVZ, SVZ, and

AVZ are detailed by Thorpe (1984). The crust beneath the NVZ is Paleozoic-Mesozoic

in age and approximately 40-50 km thick. Below the CVZ the crust thickens to

approximately 70 km, dating 2000 Ma; this thick segment of crust may be part of the

Brazilian Shield. The crust underneath both the SVZ and AVZ is also Paleozoic-

Mesozoic in age, however in these zones the crust decreases to approximately 35 km

thick. Volcanic products in the four different volcanic zones, NVZ, CVZ, SVZ, and

AVZ, have distinct petrologic characteristics. The NVZ lavas are predominantly basaltic

andesite and andesite, the CVZ lavas range from basaltic andesite to dacite, while the

SVZ and AVZ lavas are typically basalt and basaltic andesite in composition (Thorpe,

1984).

2.la The Southern Volcanic Zone

The SVZ is subsequently divided into four regions, the northern SVZ (NSVZ;

330-34*30'S), the transitional SVZ (TSVZ; 34030'-370 S), the central SVZ (CSVZ; 370-

420 S), and the southern SVZ (SSVZ; 42 -46 S) on the basis of petrological,
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geochemical, and tectonic considerations (Tormey et al., 1991). One factor which may

be affecting the type of lava produced in each of the subdivisions of the SVZ is the

variation in the thickness of the continental crust beneath these four regions. This

variation in thickness is detailed by L6pez-Escobar, et al. (1995). The continental crust is

thickest beneath the NSVZ, 55-60 km, and the lavas produced are predominantly

andesites and dacites. Beneath the TSVZ the thickness of the continental crust decreases

southward from 55 km to 35 km and the prevailing lava types are andesite and dacite

with an increasing abundance of basalt. The thickness of the crust beneath both the

CSVZ and SSVZ was reported to be 30 km or less and the lavas produced are primarily

basalt with the occurrence of minor andesite, dacite, and rhyolite. Calbuco Volcano is

located at 41'20'S within the CSVZ.

2.2 Regional Geology of Southern Chile

The plate boundary off the Pacific coast of Southern Chile is an active margin

caused by the subduction of the Nazca Plate beneath the South American plate. Along an

east-west transect across Southern Chile (Figure 3) there are three main zones: a fore arc

zone, the active volcanic zone, and a foreland zone (Lavenu and Cembrano, 1999). The

fore arc zone is made up of the Coastal Range and the Central Depression. According to

Lavenu and Cembrano (1999), the Coastal Range is made up of several independent

blocks displaced from each other, and therefore is not a coherent coastal sliver. The

border between the Coastal Range and the Central Depression consists of a series of N-S

striking fault systems. The Central Depression is a half-graben over 1000 km long, 75

km wide, and trends N-S. The northern and southern limits of the Central Depression are

the geographic limits of the Southern Volcanic Zone, and the eastern border of the
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Central Depression is straight and parallel to the Main Cordillera, but is not a tectonically

active feature (Lavenu and Cembrano, 1999). The Main Cordillera is located in the

active volcanic zone and is divided by the Liquine-Ofqui Fault Zone (LOFZ) (Figure 4).

The (LOFZ), located within the SVZ, is one of the largest strike-slip faults associated

with active subduction (L6pez-Escobar et al., 1995). The LOFZ is an intra-arc strike-slip

fault (Cembrano et al,. 2000) characterized by two main NNE trending straight

lineaments which are offset from each other and connected by a series of en echelon

faults. These two straight lineaments run from 390 to 44 S and from 440 to 47 S with a

right step at 44 S (Cembrano et al., 1996 and 2000). In conjunction with the LOFZ, there

are small eruptive centers (SEC) to the east of the main volcanic belt, which run roughly

parallel to the LOFZ. These SEC consist mainly of maars and scoria cones either with or

without lava flows. Lava flows ranging from basalt to basaltic andesite in composition

have been found (L6pez-Escobar et al., 1995). There is an elevation difference of 600-

800 m between the basement east and west of the LOFZ. On the east side of the LOFZ,

beneath the Main Cordillera, the basement appears to be uplifted blocks (Lavenu and

Cembrano, 1999). The foreland zone is predominantly located in Argentina.

2.2a Basement Lithology

The oldest basement rocks exposed within the area near Calbuco are Jurassic to

Cretaceous in age, and mid to late Paleozoic basement is exposed along the coast and

eastern Andes (Hickey et al., 1984). The North Patagonian batholith, which forms the

majority of the southern Chilean Andes, consists of a Late Jurassic-Early Cretaceous belt

on the west, a narrow Miocene-Pliocene belt in the center, and a mid-Cretaceous belt on

the east (Cembrano et al., 2000). Cembrano et al. (2000) describe the Patagonian
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batholith as heterogeneously deformed granodioritic to tonalitic plutonic rocks and minor

undeformed granite and leucogranite, all of which intrude low- to medium-grade

metamorphic rocks. Metamorphic rocks of the Sotom6 Chaiquenes Metamorphic

Complex are found within the active volcani belt approximately 10 km south of Calbuco

(Figure 7). Hickey-Vargas et al. (1995) indicated that these intruded metamorphic rocks

closely resemble Paleozoic sequences found in the Coastal Metamorphic Complex

(Coastal Range from Lavenu and Cembrano, 1999), which is a continuous belt from 330

to 55 S and is made up of metabasaltic and metasedimentary rocks.

2.3 Calbuco Volcano

Calbuco Volcano (Figure 5) is a Late Pleistocene to Holocene active composite

stratovolcano located at 41 20'S in the CSVZ (Figure 2). Calbuco is 1,800 m in height,

2,003 m above sea level, and its base covers approximately 150 km2 (Moreno et al.,

2004). According to Hickey-Vargas et al. (1995), L6pez-Escobar et al. (1995), and

Moreno et al. (2004), Calbuco Volcano is immediately underlain by over 550 m of Early

Pleistocene volcanic sequences, the Huehuhuehu and the Reloncavi Strata, which consist

of volcaniclastic material and basaltic lavas (Figure 6). These volcanic sequences overlie

Miocene (16 to 10 Ma) granites, diorites, and gabbros from the Patagonian batholith

(Figure 7) (Hickey-Vargas et al., 1995; L6pez-Escobar et al., 1995; Moreno et al., 2004).

The basement beneath the area of the LOFZ consists of the same volcanic sequence, the

Reloncavi Strata, which underlies Calbuco, and the SEC also overlies Miocene rocks

from the Patagonian batholith (L6pez-Escobar et al., 1995). Calbuco sits on top of an

uplifted block, which is continuing to be uplift at a rapid rate of 0.9 mm/yr (Moreno et

al., 2004).
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2.3a Volcanic History

Calbuco is generally violently eruptive with eleven documented eruptions since

the 1 8 th century, the most explosive eruption in 1893 (Appendix A). Typical eruptions

will generate pyroclastic flows, hot lahars, subplinian eruptions, and blocky lava flows.

In the last ~90,000 years there have been three caldera collapses. Calbuco's eruptive

products (Figure 8), which cover a total area of approximately 1,500 kin 2, are divided

into four units, Calbuco 1-4 (Moreno et al., 2004; Moreno, personal communication),

which are separated in time by large scale caldera collapses. The first unit, Calbuco 1,

predates the last glaciation and lasted until approximately 90,000 years ago. Calbuco 1

was significantly eroded by the glaciation, and the intraglacial unit, Calbuco 2, formed

above the roots of the eroded volcano. Calbuco 2 lasted until approximately 13,900 years

ago, collapsing toward the NNE. Dome growth during the Calbuco 3 period produced a

larger cone than during the Calbuco 2 period. The collapse of Calbuco unit 3 was before

the beginning of recorded history and also toward the NNE. Calbuco 4 is the volcanic

unit within recorded history. Since its last major eruption in 1961, there has been a small

ash eruption (1972), sporadic fumaroles on the main crater (1995-1999) and ongoing new

cone growth, currently at a height of approximately 50 m (Moreno et al., 2004; Moreno,

personal communication)

2.3b Prior Geochemical Work

Geographically, the distribution of basalt in the Andes seems to be concentrated

south of 36 0 S, and andesite and rhyolite are typically found north of 36 0 S due to the

thickness of the crust (Hickey et al., 1984). Calbuco is located south of 36 S; its lavas,

however, are porphyritic andesites and rare basaltic andesites. The andesites contain
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crustal xenoliths and the mineral assemblage includes plagioclase, orthopyroxene,

magnetite, and rare clinopyroxene, olivine, and hornblende. The crustal xenoliths are

both pyroxene granulites and hornblende gabbronorites (Hickey-Vargas et al., 1995).

The surrounding Small Eruptive Centers (SEC) and nearby stratovolcanoes, including

Osorno, are predominantly basaltic. Osorno also has a small amount of dacite (L6pez-

Escobar et al., 1995). Lopez-Escobar et al. (1995) and Hickey-Vargas et al. (1995)

studied the bulk rock elemental and isotope geochemistry of Calbuco andesite and

xenoliths. They concluded: 1) there is isotopic evidence of crustal contamination of the

magma (Figure 9); 2) hornblende crystallized from the magma and underwent

decompression melting during ascent to the surface; 3) the isotopic and trace element

evidence for magma mixing with a more silicic magma is lacking; and 4) the gabbro

xenoliths are actually cognate cumulates of the crystallizing assemblage entrained in the

magma rather than true xenoliths. L6pez-Escobar et al. (1995) and Hickey-Vargas et al.

(1995) concluded that subtraction of about 30% of the gabbroic assemblage from the

parent basalt could produce the andesitic composition of Calbuco (Figure 10). The

crustal xenoliths, both the granulites and hornblende gabbronorites, were determined not

to have the appropriate geochemical characteristics to be the crustal contaminants of

Calbuco andesites (Figure 9) (Hickey-Vargas et al., 1995).
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Figure 2: Map of South America.
Map of South America showing the four Andean volcanic zones and the location of the

features on the Nazca plate which are responsible for the volcanic zones. Osorno and

Calbuco are also shown. Figure after Lopez-Escobar (1984).
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Figure 3: East-West transect across Southern Chile.
Transect across Southern Chile from east to west showing the fore arc zone, the active
volcanic zone, and the beginning of the foreland zone. The fore arc zone consists of the
Coastal Range (Coastal Cordillera) and Central Depression. The active volcanic zone is
the Main Cordillera and is divided by the LOFZ. The foreland zone is to the east of the

active volcanic zone and is mostly in Argentina. Diagram from Lavenu and Cembrano

(1999).
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south. The fault has a right step at 44S and the two segments are connected by a series of

en echelon faults. The locations of Calbuco and Osorno are show in addition to nearby

towns and cities. The direction of the motion of the Nazca plate over the last 48 Ma is

indicated. Figure after Cembrano et al. (2000).
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Figure 5: Photographs of Calbuco Volcano.

A is the view from the south of the volcano, taken from Puerto Montt, showing the

proximity of the volcano to a major city. B is from Osomo volcano and the view is from

the north. The lava flow from the 1961 eruption is indicated. C is also taken from the

north. The avalanche caldera rim from the caldera collapse at ending Calbuco unit 2 and

current central dome are indicated. Photograph C by Hugo Moreno.
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Figure 6: Geologic map of Calbuco.
Geologic map of the volcanic products from Calbuco showing the four volcanic units,
Calbucol, 2, 3, and 4, pyroclastic and debris avalanche deposits, and basement

sequences. The basement sequences include the Reloncavi Strata and Huefiuhuenu Strata

which are early Pleistocene volcanic sequences. The Reloncavi Strata consists of basaltic

lavas, volcanic breccia, and lapilli. The Huenuhuenu Strata consists of volcaniclastic

material and basalt. The Ral n Superunit consists of a Miocene plutonic belt of the

Northern Patagonian Batholith (Lopez-Escobar et al., 1992). Map and description of

basement units from L6pez-Escobar et al. (1995).
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showing the location of the Southern Volcanic Zone and the area mapped. Symbols in

the key are: 1-quatemnary sediments; 2-modern lava and pyroclastic flows; 3-Peninsula

Rollizos gabbro (Miocene); 4-Lago Chapo unit (leucogranites; Miocene); 5-Cayutue unit

(gabbro, diorite, quartz diorite; Miocene); 6-Reloncavi unit (tonalites, granodiorites;

Miocene); 7-Sotom6-Chaiquenes high grade metamorphic complex (schist and gneiss;

Paleozoic); 8-deposits from small eruptive centers. Diagram from Parada et al. (1987).
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Figure 9: Sr versus Nd isotope plot for Calbuco bulk rock analysis.
Plot showing Sr versus Nd isotopes for Calbuco, Osorno, the Small Eruptive Centers,
granulite and gabbronorite xenoliths, and the CSVZ and NSVZ regions. An increasingly
negative correlation between Sr and Nd in magma is indicative of increasing crustal
signature, or crustal contamination. Calbuco plots away from Osomo and the rest of the
CSVZ in the direction of the crust. This plot also shows that the granulite xenoliths do
not have the isotopic signature to be crustal contaminants of Calbuco. Figure after
Lopez-Escobar et al. (1995).
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Figure 10: SiO 2 versus K 20 plot of gabbroic xenoliths.
SiO 2 versus K20 plot showing cumulate xenoliths (i.e. hornblende gabbros) in relation to
Osorno and Calbuco Volcanoes. Gabbro subtraction line was calculated by Lopez-
Escobar et al. (1995) and indicates that Calbuco lavas do not plot along an anhydrous
trend and can be reproduced by subtracting approximately 30% of the cumulate gabbro
assemblage from Osorno lavas. Figure after Lopez-Escobar et al. (1995).
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Chapter 3. Methods

3.1 Sample Collection of New Samples

A small number of new samples from Calbuco unit 2 were collected from

Calbuco Volcano in November of 2004. These samples were of lava flows, pyroclastic

and surge deposits, block and ash flows, and debris avalanche flow in contrast to all

previous samples which were only of lava flows. Figure 11, which is from a field trip

guide prepared by Moreno et al., 2004, shows the location of collection of each of these

and is referred to in the following explanation. On the west side of the volcano, samples

were collected at field trip stops C-4 2.1, 2.4, and 2.5. One sample (C-4 2.1A) of

potentially "juvenile material" (Moreno, personal communication) was collected at a road

cut labeled 2.1 on the map, which was a hummock, or debris avalanche deposit. Location

2.4 on the map was a pyroclastic/surge deposit and a block and ash flow deposit which

had been used as a quarry. Three samples of lava blocks and scoria were collected at this

location (C-4 2.4A, C-4 2.4B, and C-4 2.4C). The last sample collected on the west side

of Calbuco was scoria (C-4 2.5 A) at location 2.5, which was a block and ash flow and

surge flow deposit. On the east side of the volcano two pumice samples were collected

(C-4 3.3A upper and C-4 3.3B lower). These samples were collected at location 3.3

which was a fallout deposit. This particular deposit was very weathered.

3.2 Sample Preparation

Both recently and formerly collected samples were selected and cut for thin

section preparation and for whole rock analysis. The polished thin sections were made

by National Petrographics and were suitable for use with the petrographic microscope but
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were not adequately polished for microprobe analysis. I attempted to polish

approximately four of them but I was unsuccessful.

Thick rock chips, cut to the approximate size of 1x2 inches and between 1/4 and %

inch thick, were prepared for laser ablation ICP-MS analysis of plagioclase phenocrysts.

These were also polished to be used on the microprobe, by Maria Pages, an

undergraduate Geosciences major. These samples were first to be put into the

microprobe for major element analysis of the plagioclase zoning by running a transect

from core to rim, and then a second transect, which could be run parallel to the

microprobe transect, was to be run for trace elements using laser ablation. This method

would ensure that the two transects were sampling the same material. After applying this

method in my research, I would not recommend this method for future use. Due to the

thickness of these samples, analysis with the petrographic microscope was not possible

and textural analysis was limited to the use of back-scattered imaging. I would

recommend samples being made into thick sections, rather than thin sections, which are

thick enough for laser ablation, but still thin enough for use on the petrographic

microscope.

Samples selected for whole rock analysis were crushed, powdered, and digested

and prepared for major and trace element analysis by Judene Tulloch and Shaunia Stokes,

undergraduate interns with the GeoSCOPE program. Whole rock analysis was done for

major and trace elements using JY 70 Type III Inductively Coupled Plasma Emission

Spectrophotometry (ICP-ES) at Florida International University. Major element analysis

was completed by Donna Williams, an undergraduate Geoscience major, and I completed

the trace element analysis at a later date. Whole rock analysis was done of the following
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samples: Calbuco-1, C-4 2.1A, C-4 2.4A, C-4 2.4B, C-4 2.4C, C-4 2.5A, C-4 3.3A upper,

and C-4 3.3B lower (Table 1).

3.3 Petrographic Microscope

An Olympus BH-2 petrographic microscope with a Nikon COOLPIX 5700 digital

camera was used for optical and textural analysis and for acquiring photomicrographs.

Optical and textural analysis was done on both lava and cumulate xenolith samples using

newly prepared thin sections as well as thin sections previously prepared during research

by Hickey-Vargas et al. (1995) and Abdollahi (1990).

3.4 Electron Microprobe

Electron microprobe analysis of mineral phases in lava and cumulate xenolith

samples was done and the Florida Center for Analytical Electron Microscopy (FCAEM)

at Florida International University using a JEOL 8900R Electron Microprobe (EPMA)

with Back-Scattered Electron Imaging (BSE). Mineral phases analyzed included

plagioclase, orthopyroxene, clinopyroxene, magnetite, ilmenite, hornblende, phlogopite,

apatite, and olivine. Major element analysis was done with a 30 second count time, 10

second background count time, using 15kv and a 20na current and trace element analysis

was done with a 240 second count time, 80 second background count time. Major

elements analyzed included the following: for plagioclase- Si, Al, Fe, Mg, Ca, Na, and K;

for orthopyroxene, clinopyroxene, and olivine- Si, Ti, Al, Cr, Fe, Mn, Ni, Mg, Ca, Na,

and K; for hornblende- Si, Ti, Al, Cr, Fe, Mn, Mg, Ca, Na, K, F, and Cl; for magnetite

and ilmenite- Si, Ti, Al, Cr, Fe, Mn, Ni, Mg, and S; for phlogopite- Si, Ti, Al, Cr, Fe, Mn,

Mg, Ca, Na, K, F, Cl, and Ba; for apatite- Si, Fe, Ca, Ce, Na, P, S, Mn, Sr, F, and Cl.

Trace elements were only analyzed for plagioclase and included Fe, Ti, Mg, and Sr.
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Minerals were analyzed on both thin sections and thick rock chips, however with the

sample holders available at FCAEM it was difficult to position the rock chips so they

were perfectly flat on top and I would not recommend this procedure in the future.

Volcanic glass analysis was done using a 10 diameter defocused beam at a 30 second

count time and 10 second background count time. Glass was analyzed for Si, Ti, Al, Fe,

Mn, Mg, Ca, Na, K, and P. BSE images were collected of all samples analyzed.

3.5 Laser Ablation

Laser ablation analysis was done at Florida International University in the

Chemistry Department using a Perkin Elmer Sciex, ELAN DRC II, UP-213 Laser

Ablation Inductively Coupled Mass Spectrometer (LA-ICP-MS) with the help of Tatiana

Trejos. Samples analyzed were the thick cut rock chips. The initial aim of using laser

ablation was to analyze trace elements within individual zones within compositionally

zoned plagioclase. The smallest spot size that the laser could be taken down to was 8

microns which caused two problems. First, the compositional zones in the plagioclase

were smaller than 8 microns, so data acquisition on individual zones was impossible, and

second, with a spot size that small the laser could not return quantitative data. Results of

these tests are given in appendix A. The thickness and shape of these rock chips also

caused difficulty with the laser ablation analysis. Sample holders for the laser ablation

unit hold round samples, and the rock chips were rectangular. Because of this, the

laminar air flow that introduces the particles into the mass spectrometer was interrupted

and the analysis could not be done without cutting the samples to 5 mm or less in

thickness. Once it was determined that plagioclase zoning could not be analyzed,

homogenous cores of plagioclase megacrysts were supposed to be analyzed for trace
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elements. A spot size of 80 microns was to be used and three spots were to be analyzed

in the core for Sr, Ba, Ti, Mg, B, Cs, Rb, P, K, and Cr. Fe was also to be analyzed with

three separate spots, for a total of 6 spots analyzed. This was not possible due to

mechanical problems with the instrument. Data reduction of the initial tests was done

using the Glitter software package in the Chemistry Department.
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Route 1 November 20
Route 2 November 21
Route 3 November 22

'-- Route 4 November 23

LAS CASCADAS

LAGO LLANQUINUE E TRO 2

22.

44 3 32

- 2

PUERTO
MONTT- 14 3

Figure 11: Map of sample collection sites from IAVCEI 2004 field trip guide.
Map from IAVCEI 2004 field trip guide showing Calbuco Volcano and Osorno Volcano.
Numbers indicate field trip stops. Samples were collected at stops 2.1, 2.4, 2.5, and 3.3.
See text for details of samples collected at each stop. Figure from Moreno et al., 2004.
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Chapter 4. Chemistry and Petrography of Eruptive Products

4.1 Introduction

Eruptive products from Calbuco, including basaltic andesite, andesite, crystal

clusters and gabbroic xenoliths in the andesite, and the individual mineral phases

contained in each rock type, have been analyzed chemically. Andesite and basaltic

andesite samples have been analyzed for whole rock chemistry by ICP-ES. Volcanic

glass and individual mineral phases, plagioclase, clinopyroxene, orthopyroxene, olivine,

hornblende, and magnetite, in the basaltic andesite, andesite, crystal clusters, and

gabbroic xenoliths have been analyzed for major, minor, and trace element content by

electron microprobe. This chapter contains the details of these chemical analyses, along

with textural descriptions of the mineral phases present in each eruptive product, together

with comparisons of mineral and glass chemistry, and rock and mineral textures in

different eruptive products.

4.2 Whole Rock Chemistry of Newly Collected Samples and Samples Analyzed

Table 2 gives ICP-ES analysis of the newly collected pyroclastic, surge, fallout,

and debris flow deposits. Compositional ranges of these products are from basaltic

andesite to dacite. The surge deposit (scoria; 55% SiO 2) and fallout deposit (pumice; 58-

61% SiO 2) samples both fall into the andesitic range with dacite at the higher end of the

pumice compositions. The pyroclastic (scoria; 53-54% SiO 2) and debris flow (juvenile

material; 53% SiO 2) deposits are both basaltic andesite. Major element plots (Figure 12)

of these newly collected samples and published data (L6pez-Escobar et al., 1995) show

that MgO, Fe 2O 3, A12O 3 , and CaO are negatively correlated with SiO 2 at Calbuco. This is

also true for basalts, basaltic andesites, and dacites from Osorno, and Osomo basalts have
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higher concentrations of these oxides than Calbuco. In contrast, Na2O, K20, and P2 0 5

are all positively correlated with SiO 2 at both Osorno and Calbuco, and the concentration

of these oxides at Osorno is lower than at Calbuco. However TiO 2 is positively

correlated with SiO 2 in mafic Osorno products, and negatively correlated among Calbuco

products. The concentration of this oxide is roughly the same for both volcanoes. In all

of the whole rock analyses, the oxides in the Calbuco fallout deposits group together with

the lava flows from Calbuco while the pyroclastic and debris flows and surge deposits

group together directly between the group of Osorno products and Calbuco lava flows.

Relative to Calbuco lava flows and fallout deposits, the pyroclastic and debris flows and

surge deposits have higher MgO, Fe2 O3, A12O 3 , TiO2, and CaO and lower Na2O, K20,

and N 20. The bulk rock analysis of the newly collected lava, pyroclastic, and debris

flows and fallout and surge deposit samples is in agreement with the bulk rock analyses

reported by L6pez-Escobar et al. (1995). The chemical composition of andesite from

Calbuco Volcano falls into a narrow range (55-60 wt% SiO 2) according to (L6pez-

Escobar et al., 1995). This narrow silica range has been consistent over the life of the

volcano as seen in samples from all four Calbuco units. Samples previously collected

and analyzed (Lopez-Escobar et al., 1995) were from Calbuco units 1, 2, 3, and 4, and the

samples studied are representative of the andesitic eruptive products of Calbuco.

4.3 Mineral Assemblages and Textural Description of Products

4.3a Basaltic Andesite

The basaltic andesite scoria (Figure 13) is porphyritic with plagioclase, pyroxene,

olivine, and magnetite phenocrysts (complete electron microprobe data of all mineral

phases can be found in appendix B). Plagioclase phenocrysts are compositionally zoned,
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ranging overall from An33-9 2 (Figure 14), with an average low at approximately An60 .

Plagioclase zoning is discussed in detail in a later chapter (chapter 6). The two pyroxene

varieties found are orthopyroxene and pigeonite (Figure 15). Contrary to the mineral

assemblage of the andesite and the gabbroic cumulates, clinopyroxene does not occur as a

phenocryst mineral phase in the basaltic andesite. Orthopyroxene, compositionally

ranging from En69-7 3Wo2 -4, occurs as phenocrysts which are generally rimmed with

pigeonite, En5 6-59Wo7-9 . There are also microphenocrysts of pigeonite with the same

composition as the rims on the orthopyroxene phenocrysts. Oxide minerals in the

basaltic andesite are magnetite, ranging from Mt5 0 -64 (Figure 16). Compositionally,

olivine (Figure 17) ranges from Fo63-79. Two grains analyzed were zoned with cores

ranging from Fo 78-7 9 and rims from Fo06 -68, and three more are rimmed with pigeonite

with the same En range as the orthopyroxene rims. Five olivine grains, ranging from

F070 -72 , are reacting to form orthopyroxene. Only a small overall number of grains are

poikilitically enclosed within other grains; there are magnetite grains enclosed in

pyroxene and pyroxene grains enclosed in olivine. Comparison of the Mg-number of the

mafic minerals (Figure 18) shows a bimodal distribution for olivine, from 78-80 and 63-

73. Orthopyroxene compositions, ranging from 71-76, tend to be more magnesian than

the lower olivine Mg-number range, with a slight overlap at the less magnesian end of the

range for orthopyroxene. The majority of the orthopyroxene crystals seem to fall in

between the bimodal Mg-numbers of olivine. Pigeonite rims and microphenocrysts have

Mg-numbers which range from 61-64 and barely overlap the least magnesian olivine

analyzed.
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4.3b Andesite

Calbuco andesite (Figure 19) is fine grained and porphyritic with phenocrysts of

plagioclase, orthopyroxene, clinopyroxene, olivine, oxide minerals, and rare hornblende

(complete electron microprobe data of all mineral phases can be found in appendix B).

There are a small number of poikilitically textured grains. Poikilitic texture is observed

in some of the phenocrysts in the basaltic andesite and andesite samples as well as one of

the cumulate xenoliths (12-20-8; discussed below). This texture can be indicative of one

of two different processes. First, it can indicate a phenocryst growth sequence, the

enclosed grain being the first to have formed. The second indication could be that the

enclosing grain was simply growing faster than the one it enclosed. Plagioclase is

poikilitically enclosed in grains of magnetite, pyroxene, and hornblende. Orthopyroxene

is poikilitically enclosed in olivine and plagioclase, and magnetite is enclosed in

pyroxene. Hornblende crystals (discussed in detail in chapter 5) are unstable and are

breaking down. The overall compositional range (Figure 20) of the plagioclase cores is

An60 -93 . Pyroxene phenocrysts (Figure 21) are both orthopyroxene and clinopyroxene.

The clinopyroxene is augite, compositionally ranging from En4 3 -4 6Wo38-42 .

Orthopyroxene phenocrysts range from En5 4 -75Wo 2 -5 in composition and some are

rimmed with pigeonite and sub-calcic augite (En4 9-59 Wo5 -16). Olivine phenocrysts

(Figure 22) in the andesite have the same compositional range (Fo 63 -79) as the olivine

phenocrysts found in the basaltic andesite. Similar to the olivine found in the basaltic

andesite, the olivine in the andesite (Fo 63-75) is reacting to from orthopyroxene. The

composition of the plagioclase phenocrysts ranges from An21 _94 , with the more calcic

compositions found predominantly in the cores of the phenocrysts. Oxide minerals are
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magnetite, ranging from Mt49 -68 (Figure 23). The Mg-number of the mafic minerals,

Figure 24, ranges from 64-69 and 75-80 for olivine, 67-71 for hornblende, 72-76 for

clinopyroxene, 56-77 for orthopyroxene, with the majority between 65-74, and 57-63 for

pigeonite rims. Olivine shows a bimodal distribution, as it does in the basaltic andesite,

with the less magnesian compositions nearly overlapping the hornblende compositions.

Clinopyroxene tends to overlap the majority of the orthopyroxene compositions and also

tends to overlap the gap between olivine Mg-numbers. Pigeonite is much less magnesian

than the other minerals with the exception of a few orthopyroxene grains.

4.3c Crystal Clusters

Anhydrous clusters of mafic minerals (Figure 25) are found entrained in the

andesite and basaltic andesite erupted from Calbuco Volcano. These clusters are

aggregates of minerals which are also found as phenocrysts in the lava and as coarse

grains in the cumulate xenoliths. Crystal clots like these are common in volcanoes

throughout the world, both calc-alkaline (examples include Scarfe and Fujii (1987),

Garcia and Jacobson (1979), Castro and Stephens (1992), Sial et al. (1998)) and tholeiitic

(Amma-Miyasaka and Nakagawa, 2003). According to Garcia and Jacobson (1979),

these crystal clots must have no interstitial glass present. L6pez-Escobar et al. (1995)

have termed the mineral aggregates which resulted from hornblende breakdown in

Calbuco Volcano as crystal clots, however, Garcia and Jacobson (1979) have made a

distinction between the mineral aggregates and hornblende breakdown products based on

the textures found in each. The crystal clusters found in Calbuco lavas have very

different textures from the hornblende breakdown products found, and are therefore can

be assumed to be genetically different. Although these clusters are coarse grained
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mineral aggregates, they typically have some interstitial glass present and therefore the

majority can not be termed "crystal clots" in the terminology of Garcia and Jacobson

(1979).

4.3c.i Mineral Assemblage and Textural Description

Based on the mineral assemblage of these crystal clusters, they have been grouped

in to four categories, or types; types A, B, C, and D (Table 3). Types A and B are further

divided in to sub categories Al, A2, Bl, and B2 (complete electron microprobe data of

all mineral phases can be found in appendix B). All categories of the A and B type

crystal clusters have the same basic mineral assemblage of orthopyroxene, plagioclase,

and magnetite. Type Al clusters (Figure 26, Figure 27, and Figure 29) are made up of

only this basic assemblage (orthopyroxene En5 4-73Wo2 -5 ; plagioclase An4 2-91; magnetite

Mt 42 -92 ) with interstitial glass sometimes present. The plagioclase grains may or may not

be zoned. Type A2 clusters (Figure 26, Figure 27, Figure 28, Figure 29) have

orthopyroxene (En 67 -7 4 Wo 3-4), plagioclase (An6 1-91), magnetite (Mt5 6-69 ), in addition to

olivine (Fo6 8 -7 5 ). The olivine is typically reacting to form orthopyroxene. Again, there

may or may not be interstitial glass present and the plagioclase may or may not be zoned.

Type B clusters differ from type A by the presence of clinopyroxene. Type B1 clusters

(Figure 26, Figure 27, Figure 29) have clinopyroxene (En4 2 4 5 Wo3s- 43), orthopyroxene

(En 65-71Wo 2 -3 ), plagioclase (An67-91), and magnetite (Mt57 _6 8 ), while type B2 clusters

(Figure 26, Figure 27, Figure 28, Figure 29) have clinopyroxene (En4 1-46Wo4 04 2 ),

orthopyroxene (En 64 -72 Wo 2-3), plagioclase (An 64-9 1), magnetite (Mt60-71), and olivine

(Fo67-7 1). Interstitial glass is sometimes present in both type B1 and B2 clusters, and the

plagioclase may or may not be zoned. Types C and D are distinct from the first groups in
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that they do not typically have interstitial glass. Type C clusters (Figure 26, Figure 28)

are made up of large, zoned, high An plagioclase (Ans4 -92) and moderate to high Fo

olivine (Fo6 6 -so). This olivine may or may not be reacting to form orthopyroxene. Type

D clusters (Figure 26) are aggregates of only large zoned plagioclase crystals (An 87-90).

Mg-numbers of the mafic minerals within all cluster types are generally overlapping

(Figure 30).

4.3c.ii Chemical Composition of Volcanic Glass

Quenched volcanic glass is found interstitially in the crystal clusters and also

trapped in plagioclase crystals (Figure 31). The glass is clear and brown, ranging in

shades from medium to dark. Analysis of the interstitial glass and glass trapped within

plagioclase grains (Figure 32) was done on cluster types Al, B1, B2, and C in one

representative lava sample (12-20-7a). The interstitial glass is rhyodacitic to rhyolitic in

composition, ranging from 64-75 wt% SiO 2 . The SiO 2 range for the interstitial glass for

type Al clusters is 71-74 wt%, for type B1 clusters the SiO 2 range is 65-74 wt%, type B2

clusters range from 64-75 wt% SiO 2, and type C clusters have 73-74 wt% SiO 2 glass.

The composition of the glass trapped in the plagioclase crystals is detailed in a later

chapter dealing specifically with plagioclase (chapter 6) however it is compositionally

similar to the interstitial glass (complete electron microprobe data of all volcanic glass

can be found in appendix B).

4.3d Gabbroic Xenoliths

Evolved calc-alkaline volcanic rocks originate from fractionation of a

crystallizing assemblage within the magma chamber. The fractionated crystal

assemblage is preserved as cumulate "piles" and can be subsequently entrained in the
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volcanic eruption as cumulate xenoliths. An alternative origin for gabbroic xenoliths is

that they are derived from plutonic basement rock. Gabbroic xenoliths are fairly common

among subduction zone volcanoes (some examples include Volcin Calbuco, Chile,

Hickey-Vargas et al., 1995 and McKelvey and Hickey-Vargas, 2004; Volcin San Pedro,

Chile, Costa et al., 2002; Mt. Pel6e, Lesser Antilles, Pichavant et al., 2002 and Fichaut et

al., 1989; Mt. St. Helens, Cascades, Medicine Lake, California, Arenal, Costa Rica, Costa

et al, 2002; and several localities in Japan, Yagi and Takeshita, 1987 and Costa et al.,

2002). Three xenolith samples with similar mineral assemblages have been studied for

this project, in addition to previous studies done on several xenoliths (Abdollahi, 1990).

The specific samples chosen differ from each other as to the degree of hornblende

breakdown; sample 12-19-18 has the least broken down hornblende, sample 12-20-3 has

the most advanced hornblende breakdown, and the degree of hornblende breakdown in

sample 12-20-8 is intermediate between the two.

4.3d.i Mineral Assemblage and Textural Description

Sample 12-19-18 (Figure 33) consists of coarse grains of hornblende, plagioclase,

olivine, orthopyroxene, magnetite and minor ilmenite, rare clinopyroxene, and iron-

sulfide minerals. The hornblende, discussed in detail in chapter 5, is pargasitic and the

xenolith is composed of only one very large hornblende grain poikilitically enclosing all

other mineral grains. In this xenolith, the hornblende breakdown is very slight, however

where present this breakdown is forming symplectites (Abdollahi, 1990). Plagioclase

grains are approximately 0.05-5 mm in size, unzoned, and are subhedral to anhedra'

(Abdollahi, 1990) and range in composition from An90 .9 7 (Figure 34). Orthopyroxene is

approximately 0.5-4 mm in size and the composition ranges from En7 1_75Wo1-2 (Figure
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35). Only one clinopyroxene grain (Figure 35) was analyzed which was augite

(En4 3 Wo 43 ). Olivine grains (Figure 36) range from Fo70 -7 3 and are approximately 0.5-3

mm in size. The olivine in this xenolith is reacting in two different ways (Figure 37), the

first of which is a reaction to orthopyroxene. This reaction typically takes place at a grain

boundary between the olivine and plagioclase and sometimes includes vermicular

magnetite. The second type of olivine reaction results in the crystallization of

plagioclase, orthopyroxene, and magnetite. These two types of olivine reaction are the

same as the reaction observed in the lava samples and crystal clusters. Compositionally,

magnetite ranges from Mt5 2-1 00 and ilmenite from Ilm 7 o-90 (Figure 38) and both are

approximately 0.05-1 mm in size. Iron sulfide minerals were not quantitatively analyzed,

however an EDS image indicates that the minerals are predominantly made up of Fe and

S (Figure 39), and have been identified in reflected light as pyrrhotite and chalcopyrite

(Macfarlane, personal communication). Orthopyroxene Mg-numbers range from 73-77,

clinopyroxene Mg-number is 76, olivine Mg-numbers range from 72-74, and hornblende

ranges are 62-70 (Figure 40). Since the hornblende in this sample is one large grain, the

variation in Mg-number over several different points indicates compositional zoning.

The orthopyroxene, clinopyroxene, and olivine have overlapping Mg-numbers, which

does not overlap the range of hornblende numbers.

Sample 12-20-3 (Figure 33) is medium to coarse grained and has hornblende,

phlogopite, plagioclase, olivine, orthopyroxene, rare clinopyroxene, magnetite, minor

ilmenite, accessory apatite, and glass (discussed in following section). This xenolith has

a granoblastic matrix of plagioclase supporting large mesh textured crystals of

hornblende, olivine, orthopyroxene, and clinopyroxene. These mesh textured minerals
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are several orders of magnitude larger than the matrix plagioclase. The metamorphic

texture of this particular sample is probably due to the more extensive breakdown of

hornblende and subsequent release of water. Plagioclase grains are approximately 0.25

mm in size and range from An 70 _93 (Figure 34) compositionally, with a few grains as

sodic as An5 6 . The plagioclase is typically unzoned with only rare crystals displaying

zoning. Hornblende, discussed in detail in chapter 5, is one of the mesh textured minerals

and is pargasitic and its breakdown results in symplectites. Magnetite and ilmenite

(Figure 38) range compositionally from Mt5 6 -93 and I1m 6 6 -7 3, and approximately 0.05 to

0.3 mm in size. Olivine is another mesh textured mineral which ranges compositionally

from Fo7 1 -7 4 (Figure 36). There are only three analyzed clinopyroxene grains which are

augite (En 4 2 -43WO42 -4S), and orthopyroxene ranges from En 7 1-77Wo 1 -2 (Figure 35).

Phlogopite grains (Figure 41) are euhedral to subhedral and bladed, ranging in size from

0.25-0.5 mm. Mg-numbers of the mafic minerals (Figure 40) are 73-78 for

orthopyroxene, 72-78 for clinopyroxene, 71-74 for olivine, 67-75 for hornblende, and 77-

79 for phlogopite. Orthopyroxene and clinopyroxene have overlapping Mg-number

ranges. Olivine and hornblende Mg-numbers are lower than both pyroxene types, but do

overlap the pyroxene ranges at the low magnesian end of the range. The more magnesian

end of the hornblende Mg-numbers overlap olivine Mg-numbers, but the total hornblende

range continues to less magnesian compositions. The phlogopite Mg-numbers are higher

than all other ranges overlapping the most magnesian ortho- and clinopyroxene.

Sample 12-20-8 (Figure 33) is comprised of coarse grains of plagioclase,

hornblende, orthopyroxene, olivine, magnetite, and glass (discussed in following section).

Clinopyroxene is absent. Plagioclase grains are approximately 0.5-5 mm in size and
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compositionally range from An 73 -92 (Figure 34). Magnetite ranges in composition from

Mt6 1 74 (Figure 38) and are 0.06-0.75 mm in size. The hornblende, discussed in detail in

chapter 5, is pargasitic and breakdown of the grains results in symplectic textures.

Olivine is approximately 0.06-1.5 mm in size and ranges from Fo 6 7 -7 2 (Figure 36).

Orthopyroxene grains are 0.03-0.3 mm in size and range from En 71 72Wo1 2 (Figure 35).

Interstitial pockets of minerals exhibiting breakdown textures are found between large

plagioclase and hornblende grains involving all minerals (Figure 42). Surrounding the

central coarse grains are five concentric reaction bands (Figure 43) consisting of

plagioclase, olivine, orthopyroxene, minor magnetite and ilmenite, and one hornblende

grain. In these reaction bands, hornblende is pargasitic, similar in composition to the

coarse grains, magnetite ranges from Mt 64 -6 9, ilmenite ranges from I11m 7 2 -7 3, plagioclase

ranges from An79.94, orthopyroxene ranges from En6 9 -76Wo1 3, and olivine ranges from

Fo 67 -7 6. The ranges of Mg-numbers in this sample (Figure 40) are 72-74 for

orthopyroxene, 68-72 for olivine, and 64-71 for hornblende. The Mg-numbers for olivine

and hornblende overlap with a few hornblende grains which are less magnesian. The

orthopyroxene is more magnesian than the olivine or hornblende.

In comparing the Mg-numbers of the individual minerals between the three

cumulate xenolith samples (Figure 40), the Mg-numbers of the orthopyroxene in 12-19-

18 and 12-20-3 overlap but the orthopyroxene in 12-20-8 is less magnesian than in the

other two cumulate xenoliths. The overall range of the Mg-numbers of the clinopyroxene

grains in all three samples overlaps the overall Mg-number range of the orthopyroxene in

all three samples. The majority of the Mg-numbers of the olivine in all three samples

overlaps the less magnesian end of the ortho- and clinopyroxene ranges with a few less
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magnesian grains. The olivine in sample 12-19-18 is more magnesian than the olivine in

12-20-8, and the olivine in 12-20-3 overlaps the ranges of the other two samples.

Overall, the Mg-numbers of the hornblende in the three samples is overlapping, the

majority of which overlap the less magnesian end of the olivine Mg-numbers. The Mg-

numbers of the phlogopite is more magnesian than the range of any of the other mafic

minerals (complete electron microprobe data of all mineral phases can be found in

appendix B). Of the three xenoliths studied in detail, 12-19-18 is the only sample with

iron-sulfide minerals, however it is also the only sample without glass. Olivine is

reacting to form orthopyroxene, oxides, and plag in 12-19-18 and 12-20-8, which both

have igneous textures, and not in 12-20-3, which has a granoblastic texture.

4.3d.ii Chemical Composition of Glass

Quenched glass is found in the cumulate gabbroic xenoliths both interstitially and

trapped in plagioclase and pyroxene crystals. Pyroxene crystals containing glass are

relatively few in number. The glass is similar in appearance to the glass in the crystal

clusters, clear and medium to dark brown (Figure 44). Analysis of interstitial glass was

done on two xenolith samples (12-20-3, 12-20-8); plagioclase and pyroxene trapped glass

was analyzed on one sample (12-20-3). Interstitial glass is dacitic to rhyolitic in

composition, ranging from 61-74 wt% SiO 2, overlapping the compositional range of the

crystal clusters described above (Figure 45). Glass found trapped inside plagioclase

grains is detailed in a later chapter (chapter 6), and does however overlap compositionally

with the interstitial glass although the SiO 2 range does not quite stretch as high or low as

the interstitial SiO 2 range. Glass within the pyroxene has a very narrow compositional

range of 69-70 wt% SiO 2, which is likely due to the scarcity of pyroxene crystals
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containing glass and the subsequent low number of analyses (complete electron

microprobe data of all volcanic glass can be found in appendix B).

There is a general trend in the glass, both interstitial and trapped within

plagioclase and pyroxene, toward a dacitic to rhyolitic composition. Pyroxene grains in

the crystal clusters record only a rhyolitic composition, however, the range is still within

the upper limits of the overall SiO 2 range. One reason for this may be that some

pyroxene grains have crystallized only from highly evolved magma, however the

similarity in the composition of all pyroxene grains in all eruptive products tends to point

away from this as an explanation for the glass compositional range. An alternative

explanation is that the high SiO 2 content is due to post entrapment crystallization.

4.4 Summary

Andesite is the predominant volcanic product from Calbuco Volcano, although

rare basaltic andesite has been erupted. Entrained in the lava are crystal clusters and

cumulate gabbroic xenoliths with the same mineral assemblage as the lava. The andesite

has phenocrysts of zoned plagioclase, orthopyroxene, magnetite, rare hornblende and

minor olivine and clinopyroxene. The rare hornblende phenocrysts are breaking down.

They have opacite rims and black microcrystalline patches of breakdown reaction

products. The basaltic andesite has phenocrysts of zoned plagioclase, orthopyroxene,

olivine, magnetite, and microphenocrysts and phenocryst rims of pigeonite. Olivine is

found in both andesite and basaltic andesite. In the andesite the grains are few and in

reaction, however in the basaltic andesite olivine is a major phase and the majority of the

phenocrysts are intact. Hornblende and clinopyroxene are not found in the basaltic

andesite. The entrained crystal clusters have the same overall mineral assemblage as the
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phenocryst assemblage in the andesite (zoned and unzoned plagioclase, orthopyroxene,

clinopyroxene, olivine, and magnetite) and rhyodacitic to rhyolitic glass. Hornblende is

not found in the crystal clusters. Entrained cumulate gabbroic xenoliths also have the

same overall mineral assemblage as the phenocryst assemblage in the andesite (unzoned

plagioclase, orthopyroxene, magnetite, hornblende, and rare clinopyroxene), with the

presence of accessory minerals, apatite, Fe-sulfides, phlogopite, and ilmenite, which are

not found in the andesite, and dacitic to rhyolitic glass. In contrast to the low modal

abundance of hornblende phenocrysts in the lava, hornblende is abundant in the gabbroic

xenoliths and occurs without opacite rims. The hornblende in the xenoliths does however

have the same black microcrystalline breakdown reaction products found in the

phenocrysts. Major element chemistry of individual mineral phases shows overlapping

compositions for respective phenocryst phases and crystals in gabbroic xenoliths and

crystal clusters. Ranges of Mg-numbers of the individual mafic mineral phases are also

generally overlapping.
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SiO 2 vs K20
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Figure 12: Bulk rock oxide plots.
Bulk rock MgO, Fe 2O 3, A12G3, TiO 2, CaO, Na20, K20, and P 20 5 wt% versus SiO 2 wt%.
Bulk rock analyses of newly collected lava blocks, pyroclastic and debris flow deposits,
and surge and fallout deposits from Calbuco, in addition to previously reported Calbuco
and Osorno lava blocks (L6pez-Escobar et al., 1995).
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Figure 13: Photomicrographs of basaltic andesite.
Photomicrographs in plane and cross polarized light of newly collected basaltic andesite.
Field of view is 2.8 mm.
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An mol% in Basaltic Andesite Plagioclase
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OC-42.4C
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An mol%

Figure 14: Histogram of An mol% versus frequency of plagioclase phenocryst cores in
basaltic andesite.
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Figure 15: Ternary plot showing the composition of orthopyroxene phenocrysts in

basaltic andesite.
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FeO ' Fe2O3
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Figure 16: Ternary plot showing the composition of magnetite phenocrysts in basaltic
andesite.
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Figure 17: Histogram of Fo mol% versus frequency of olivine phenocrysts in basaltic

andesite.
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Mg# Comparison Mafic Phenocrysts Basaltic Andesite
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2
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-- 3-Olivine
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55
Orthopyroxene Pigeonite Olivine

Mineral Type

Figure 18: Basaltic andesite mafic mineral Mg#.
Plot of mineral type versus Mg-number ranges of mafic minerals (orthopyroxene,
pigeonite, and olivine) in basaltic andesite.
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Figure 19: Photomicrographs of andesite.
Photomicrographs in plane and cross polarized light of andesite. Field of view is 2.8 mm.
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An mol% in Andesite Plagioclase Cores
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Figure 20: Histogram of An mol% versus frequency of plagioclase phenocryst cores in
andesite samples.
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Figure 21: Ternary plot showing the composition of orthopyroxene and clinopyroxene

phenocrysts in andesite.
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Fo mol% in Andesite Olivine
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Figure 22: Histogram of Fo mol% versus frequency of olivine phenocrysts in andesite.
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Figure 23: Ternary plot of magnetite phenocrysts in andesite.
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Figure 24: Andesite mafic mineral Mg#.
Plot of mineral type versus mg-number ranges of mafic minerals (orthopyroxene,
clinopyroxene, pigeonite, olivine, and hornblende) in andesite.
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Figure 25: Photomicrographs of crystal clusters.
Photomicrographs in plane and cross polarized light of crystal clusters in lava samples.
A: Type B1 crystal cluster (plagioclase, orthopyroxene, clinopyroxene, and magnetite).
B: Type A2 crystal cluster (plagioclase, olivine, orthopyroxene, and magnetite) with
interstitial glass. Field of view is 2.8 mm.
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An mol% vs Frequency All Cluster Types Q D Type Clusters
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An mol% BA

Figure 26: Histogram of An mol% versus phenocrysts of plagioclase in type Al, A2, B1,
B2, C, and D crystal clusters.
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Figure 27: Ternary plot of orthopyroxene and clinopyroxene grains in type Al, A2, B1,
and B2 crystal clusters.
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Fo mol% vs Frequency All Cluster Types
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Figure 28: Histogram of Fo mol% versus frequency of olivine grains in type A2, B2, and
C.
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Figure 29: Ternary plot of magnetite in type Al, A2, B1, and B2 crystal clusters.
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Mg# Comparison of Mafie Minerals in Different Crystal ClusterTypes
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Figure 30: Crystal cluster mafic mineral Mg#.
Plot of cluster type versus Mg-number ranges of mafic minerals in type A1, A2, B1, B2,
and C crystal clusters.

Figure 31: Photomicrograph of glass in crystal clusters.
Photomicrograph in plane polarized light of glass in crystal clusters. Field of view 1.1

mm.
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SiO2 vs K20 in Glass in Crystal Clusters
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Figure 32: SiO 2 versus K 20 of bulk glass analyses.
Plot showing SiO2 wt% versus K 20 wt% of interstitial glass and glass trapped in
plagioclase crystals in crystal clusters.
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Figure 33: Photomicrographs of gabbroic xenoliths.
Photomicrographs in plane and cross polarized light of the gabbroic cumulate xenolith

samples. A: sample 12-19-18, B: sample 12-20-3, C: sample 12-20-8 (interior).
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An mol% in Cumulate Xenolith Plagioclase
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Figure 34: Histogram of An mol% versus frequency of coarse grained plagioclase in all
three gabbroic xenolith samples.
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Figure 35: Ternary plot of coarse grained orthopyroxene and clinopyroxene grains in all
three gabbroic xenolith samples.
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Fo mol % in Cumulate Xenolith Olivije
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Figure 36: Histogram of Fo mol% versus frequency of coarse grained olivine in all three
gabbroic xenolith samples.
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Figure 37: Images of olivine reaction textures.
A) Photomicrographs in plane and cross polarized light of olivine reaction textures in
crystal cluster in lava. Field of view 1.1 mm. B) Back scattered electron images of
olivine reaction textures in cumulate xenolith samples.
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Figure 38: Ternary plot of coarse grained magnetite and ilmenite in all three gabbroic
xenoliths.

Figure 39: EDS image of Fe-sulfide mineral.
Image of EDS analysis showing relative elemental make-up of coarse grained iron sulfide
in cumulate xenolith sample 12-19-18.
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Mg# Comparison Mafic Minerals Cumulate Xenoliths

80 ---

75 -*-- ____
75 - -- -+ 1-Orthopyroxene 12-19-18

* *f 1-Orthopyroxene 12-20-3

" + A 1-Orthopyroxene 12-20-8
70 _____- - ---- - 2-Clinopyroxene 12-19-18

+ 2-Clinopyroxene 12-20-3

3-Olivine 12-20-3

65 -- -- 3-Olivine 12-19-18

-- 
3
-Olivine 12-20-8

4-Homblende 12-19-18

+ 4-Homblende 12-20-3
60 -- 4-Hornblende 12-20-8

-- 5-Phlogopite 12-20-3

55

Opx Cpx Olivine Homblende Phlogopite

Mineral type

Figure 40: Gabbroic xenolith mafic mineral Mg#.
Plot of mineral type versus Mg-number range of coarse grained mafic minerals
(orthopyroxene, clinopyroxene, olivine, hornblende, and phlogopite) in all three cumulate
xenolith samples.

Figure 41: Photomicrographs of phlogopite.
Photomicrographs in plane and cross polarized light of phlogopite crystals in gabbroic

xenolith sample 12-20-3. Field of view 2.8 mm.
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Figure 42: Photomicrographs of interstitial breakdown pockets.
Photomicrographs in plane and cross polarized light of breakdown pockets, containing
olivine, orthopyroxene, magnetite, and hornblende, between coarse grained plagioclase in
gabbroic xenolith 12-20-8. Field of view 2.8 mm.

1r ,

Figure 43: Photomicrographs of reaction bands.
Photomicrographs in plane and cross polarized light of reaction bands in sample 12-20-8.
Field of view 2.8 mm.
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Figure 44: Photomicrographs of glass in gabbroic xenoliths.
Photomicrographs in plane polarized light showing the interstitial glass in cumulate
xenolith samples. Field of view 1.1 mm.

SiO 2 vs K2O in Glass in Cumulate Xenoliths

U U4'

P+ i 12-20-3 Interstitial Glass
U *

3 - - - - - - 12-20-8 Interstitial Glass

A 12-20-3 Glass Trapped in
" - Plagioclase

2 ' . 12-20-3 Glass Trapped in

" o 4 f Pyroxene

I - - - - -

60 62 64 66 68 70 72 74 76 78 80

SiO2 wt%

Figure 45: SiO 2 versus K20 of glass in gabbroic xenoliths.
Plot of SiO 2 wt% versus K 20 wt% of interstitial glass and glass trapped in coarse grained
plagioclase and pyroxene in gabbroic xenolith samples 12-20-3 and 12-20-8. Glass
analyses have been screened for crystal structure, however outlying data points may be
overlap, due to use of a defocused beam on the electron microprobe, between the glass
and host crystals or post entrapment crystals.
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Chapter 5. Hornblende

5.1 Introduction

Results of L6pez-Escobar et al. (1995), Hickey-Vargas et al. (1995), and

McKelvey and Hickey-Vargas (2004) have shown that hornblende is present in both the

cumulate gabbronorite xenoliths as coarse grains and in the andesite lava as phenocrysts.

The presence of homblende, a hydrous mineral, among the eruptive products of Calbuco

is evidence for the involvement of water in Calbuco's magmatic processes. There have

been numerous previous reports of hornblende associated with arc volcanism (examples

include Cawthorn and O'Hara, 1976; Yagi and Takeshita, 1987; Anderson, 1980; Foden

and Green, 1992). Experimental studies of basalts (Yagi and Takeshita, 1987; Foden and

Green, 1992; Green and Ringwood, 1967; Cawthorn and O'Hara, 1976) have shown that

that hornblende fractionation is an important factor in the genesis of calc-alkaline

andesites (Yagi and Takeshita, 1987). Hornblende is a silica-poor mineral (pargasitic

hornblende < 40 wt% SiO 2 ) and as it crystallizes it drives the residual magma toward

higher SiO 2 contents (Foden and Green, 1992) than does the crystallization of other

ferromagnesian minerals, such as pyroxenes.

This chapter is a discussion of hornblende at Calbuco, including the chemistry

and texture of both hornblende phenocrysts and coarse grained hornblende in gabbroic

xenoliths, a comparison of the two hornblende populations, and a description of the

texture, mineral assemblage, and chemistry of hornblende breakdown reaction products.

It also details stability of the hornblende crystals and the Cr contents of the phlogopite

and both hornblende populations compared with the Cr contents of the respective mineral

phases in Volcin San Pedro andesite.
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5.2 Hornblende Phenocrysts in the Lava

Hornblende phenocrysts are found in the andesitic lavas, but not in the basaltic

andesite. The observed phenocrysts are breaking down and are therefore apparently

unstable at the upper magma chamber conditions of Calbuco. Hornblende analysis was

done on one partially reacted crystal remaining in the center of a hornblende

pseudomorph (Figure 46). Two similar hornblende pseudomorphs were found in a

second thick section sample with no hornblende remaining. The reaction products of

these three pseudomorphs were analyzed (complete electron microprobe data of all

hornblende and associated breakdown reaction products can be found in appendix C).

5.2a Textural Description and Mineral Chemistry

Amphibole phenocrysts in the lava are pargasite (Figure 47), which is a calcic

hornblende, NaCa2(Mg 4A)Si6 A12O 2 2(OH) 2, according to the method detailed in Leake et

al. (1997). L6pez-Escobar et al. (1995) reported the presence of edenite phenocrysts,

NaCa 2Mg5 Si 7AlO 22(OH) 2, which have slightly higher Si and Mg and lower Al than

pargasite. Three different types of breakdown products are observed (Figure 48), all of

which typically occur as pseudomorphs of hornblende crystals with a detectable rim. The

first type (Figure 48A, B) is black and "muddy looking" and consists of metamorphic

textured microcrystalline mineral grains. In this type the original hornblende crystal is

either completely or nearly broken down. The second type (Figure 48C, D) consists of

medium grained, unzoned crystals with patches of the same black microcrystalline

material as in the first type. No remaining hornblende has been found associated with the

second type of reaction product. These two types of breakdown products are similar to

the "black type" and "gabbroic type" reaction products described by Garcia and Jacobson
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(1979) in lavas from the Cascade Range respectively, which may coexist in the same

sample. The third type of breakdown products are reaction rims on the hornblende

phenocrysts (Figure 48E, F). Two different types of rims are found, the first type is black

and microcrystalline and the second is lighter in color and medium to fine grained. The

light-colored, medium grained rim is made up of plagioclase and pyroxene with rare

oxide minerals (presumably magnetite) and has only been found on one hornblende

phenocryst. This rim type is similar to the reaction rims described by Devine et al.

(1998a, b) and Rutherford and Devine (2003) in lavas from Soufriere Hills. The black

microcrystalline rims, also described by Devine et al. (1998b) and Rutherford and Devine

(2003) as opacite rims, are similar to the "black type" reaction products described above.

Electron microprobe analyses have been done of the "black type" breakdown products

but not the light-colored reaction rims or "gabbroic type" reaction products due to

polished section quality (see chapter 3 for details).

5.2b Breakdown Chemistry

Products of hornblende phenocryst breakdown (Table 4, Table 5) include

microcrystalline grains of plagioclase, olivine, magnetite, and pyroxene, all of which

range in size up to approximately 5 microns. Plagioclase compositions (Figure 49) range

from oligoclase to labradorite (An27 -6 1). Pyroxene varieties include orthopyroxene, low-

Ca clinopyroxene (pigeonite), and clinopyroxene (augite); with clinopyroxene the most

abundant of the three. The compositions of the different pyroxene varieties (Figure 50)

are orthopyroxene, En 63, Wo3, clinopyroxene En4 3-48, Wo 34 -42, and pigeonite, En5 6-62 , Wo9 -

15. Compositionally, olivine ranges from Fo66-70 (Figure 51). Magnetite grains were

recalculated following the procedure outlined in Droop (1987), and compositionally
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range from to Mt5 4 -64 (Figure 52). Mg-numbers for the different mafic phases in the

hornblende breakdown products are shown on Figure 53. The olivine and pigeonite have

a bimodal distribution of Mg-number ranges. The less magnesian end of the olivine

range overlaps the compositions of orthopyroxene and hornblende, however,

clinopyroxene is more magnesian than this range. Only two pigeonite grains were

analyzed, however the more magnesian of the two overlaps with the composition of the

clinopyroxene. The more magnesian olivine and less magnesian pigeonite compositions

do not coincide with any other compositions.

5.3 Hornblende Crystals in the Cumulate Xenoliths

Homblende is a common phase in gabbroic xenoliths in arc related lava (Yagi and

Takeshita, 1987; Costa et al., 2002). These hornblende-bearing gabbros have been

interpreted to reflect differentiation processes, specifically crystal fractionation (Costa et

al., 2002), inside many volcanic systems including Calbuco (Hickey-Vargas et al., 1995).

Yagi and Takeshita (1987) suggested that fractionation of approximately 40% of a

hornblende gabbroic assemblage from hydrous, high-alumina basalt could produce calc-

alkaline andesitic magma. Compositions of the gabbronorite xenoliths from Calbuco are

consistent with fractionation of this assemblage from a moderate-alumina basaltic

andesite (see chapter 2 for discussion) (L6pez-Escobar et al., 1995).

5.3a Textural Description and Mineral Chemistry

Coarse grained amphibole in three cumulate xenolith samples was recalculated

using the same procedure as the phenocryst recalculation (Leake et al., 1997). As a result

of this recalculation, there are two types of calcic hornblende in the cumulate xenoliths,

pargasite and edenite (complete electron microprobe data of all hornblende and
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associated breakdown reaction products can be found in appendix C). The pargasite is

similar in composition to the pargasitic hornblende phenocrysts in the lava (Figure 54).

Hornblende in the cumulate xenoliths is also unstable and breaking down, although the

individual gabbroic samples exhibit varying degrees of this breakdown reaction from

slight to extreme. Hornblende in sample 12-19-18 is one grain poikilitically enclosing all

of the other grains in the gabbro and is only slightly broken down (Figure 55A). Samples

12-20-3 and 12-20-8 have individual hornblende grains with stability ranging from

slightly reacted (Figure 55B) to extremely broken down (Figure 55C). Similar to

hornblende phenocryst breakdown above, products of this reaction form black

microcrystalline patches around and throughout the crystals, consistent with "black type"

breakdown products from Garcia and Jacobson (1979), which are also collections of

mineral grains 5 microns or less in size (Figure 56).

5.3b Breakdown Chemistry

Mineral breakdown products of the hornblende (Table 4, Table 5) in the three

cumulate xenoliths are the same as products of the phenocryst breakdown (plagioclase,

olivine, clinopyroxene, low-Ca clinopyroxene, orthopyroxene, and magnetite with

accessory ilmenite). Overall, the composition of the reaction-produced plagioclase

overlaps in all three xenoliths; the only variation being in the Na content of the most

sodic grain found in each sample. Compositionally, plagioclase in sample 12-19-18

ranges from andesine to bytownite (An45_79), plagioclase in sample 12-20-3 from

oligoclase to bytownite (An 26-83), and plagioclase in sample 12-20-8 from albite to

bytownite (An7-si). The majority of these grains range from oligoclase to labradorite

(An26-66), overlapping the compositional range of An27-61 for the plagioclase in the
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hornblende phenocryst breakdown (Figure 57). Olivine is only found as a hornblende

reaction product in two of the three xenoliths, samples 12-19-18 and 12-20-3. Olivine in

sample 12-19-18 is Fo65-68, in sample 12-20-3 is Fo 67 -69 and Fo0-0 85 , with no grains

existing between the two ranges (Figure 59). Magnetite and ilmenite (Figure 60) were

recalculated following the same procedure as for the phenocryst breakdown products.

Compositionally, magnetite ranges from Mt 44-100 , with one outlying grain of Mt 20 in

sample 12-19-18, from Mt4-13 and Mt4 8-82, with no compositions found in between in

sample 12-20-3, and Mt23-54 in sample 12-20-8. Only two ilmenite grains were analyzed

in sample 12-20-3 which range from Ilms&-6 1. Orthopyroxene, clinopyroxene, and low-Ca

clinopyroxene (Figure 58) occur in the reaction products, and, similar to the phenocryst

breakdown, clinopyroxene is the most abundant. The orthopyroxene formed in the

hornblende reaction in all three samples ranges compositionally from En7 1-72, Wo3 in

sample 12-19-18, En 73- 75, Wo2 -5 in sample 12-20-3; En7 1-72, Wo2 _3 in sample 12-20-8.

Clinopyroxene crystallized from the breakdown reaction is augite and diopside; diopside

forming only in breakdown products in two of the three xenoliths (En 36_45, Wo4 0-48 in

sample 12-19-18; En 33-48 , Wo34 -45 in sample 12-20-3; En42-53, Wo 25-39 in sample 12-20-8).

The low-Ca clinopyroxenes in the xenolith breakdown products are subcalcic augite and

pigeonite with pigeonite only crystallizing in two of the three samples (En 40_ss, Wo19-23 in

sample 12-19-18; En4 3-69 , Wo 7-23 in sample 12-20-3; En5 2, Wo- 23 in sample 12-20-8).

Comparison of the ranges of Mg-numbers of the mafic phases in the breakdown

reaction products is shown on Figure 53 and is also compared to the compositions of the

mafic phases in the phenocryst breakdown reaction products. The compositional range of

the orthopyroxene in samples 12-19-18 and 12-20-8 are matching and are less magnesian
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than the orthopyroxene in 12-20-3. The overall Mg-number range of the orthopyroxene

in the reaction products of the three cumulate xenoliths is more magnesian than in the

phenocryst reaction products. In sample 12-20-3 there is a bimodal distribution of olivine

compositions similar to the trend in the phenocryst reaction products, however, the upper

end of the range in 12-20-3 is not as magnesian. The lower end of the range of Mg-

numbers for olivine in 12-20-3 overlaps with the olivine compositions of both sample 12-

19-18 and the phenocryst reaction products and the hornblende compositions of the

phenocrysts and all three cumulate xenoliths. The pigeonite follows the same trend as in

the phenocryst reactions where the distribution of Mg-numbers is bimodal or nearly

bimodal, and the lower end of the compositional range is lower than all other Mg-number

ranges. The upper end of the pigeonite ranges in all three cumulate xenoliths overlaps the

clinopyroxene ranges. Overall, Mg-number ranges of clinopyroxene in all three cumulate

xenoliths are overlapping although some outlying points are more and less magnesian.

This range also overlaps the clinopyroxene Mg-number range in the phenocryst reaction

products. With the exception of orthopyroxene, the elemental compositions and Mg-

numbers of all phases in the breakdown products of both the phenocrysts and coarse

grains in the cumulate xenoliths are similar. In addition, the elemental compositions and

Mg-numbers of the original hornblende crystals are similar. This match in composition

supports the idea of crystallization of both the hornblende phenocrysts and the coarse

grained hornblende in the gabbroic xenoliths from similar liquids.

5.4 Cr Contents of the Hornblende

Costa et al. (2002) suggested that crystallization of hornblende and phlogopite in

gabbroic xenoliths in lavas from Volcin San Pedro, TSVZ, is the result of reaction
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between migrating evolved melts aqueous fluids and anhydrous cumulus minerals.

Volcdn San Pedro is located in the Southern Volcanic Zone in Chile, north of Volcdn

Calbuco, at 360S latitude. The gabbroic xenoliths studied were found within dacitic and

andesitic lava flows and have been classified by the authors into two groups. The first

group consists of olivine-hornblende norites and melanorites with interstitial glass

surrounded by euhedral crystals. The second group includes clinopyroxene leuconorites

and hornblende leuconorites, both of which exhibit subsolidus exsolution and

deformation textures. Costa et al. (2002) cite high Cr2 O3 contents and high Mg-numbers

of the hornblende and phlogopite crystals and high Na2O wt% of phlogopite as evidence

for crystallization as a result of reaction. They report (Table 7) 1.2% Cr2O3 in

hornblende for group I xenoliths and < 0.6 % Cr 2O3 for group II xenoliths and in

phlogopite <0.6 % Cr2O 3 for group I xenoliths and < 0.4 % Cr2O3 for group II xenoliths.

The Mg-numbers in hornblende range from 72-80 in group I xenoliths and group II

xenoliths with hornblende; group II xenoliths with clinopyroxene have Mg-numbers

ranging from 64-77. For the phlogopite, the Mg-numbers in group I xenoliths range from

77-82, and in group II from 77-84 for samples containing hornblende and from 70-81 in

samples containing clinopyroxene. The reported Na2O wt% of their phlogopite is 2.21-

3.36 for group I xenoliths, 1.13-1.92 for group II xenoliths with clinopyroxene, and 1.94-

4.08 for group II xenoliths with hornblende. Phlogopite is found in only one cumulate

xenolith from Calbuco and ranges from 1.34-1.94 wt% Na2O, which does overlap the

values in the group II xenolith with clinopyroxene from Costa et al. (2002).

Gabbronorite xenoliths erupted in Calbuco andesites have Cr2O3 contents ranging

from 0.002-0.08 wt% in the hornblende, with five anomalously high values from 0.12-
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0.27, and 0.02 wt% in the phlogopite. For hornblende only four data points fall into the

range of Cr2 O3 wt% reported by Costa et al. (2002), and all of the phlogopite has lower

concentrations; however the hornblende and phlogopite Mg-numbers do fall into the

Costa et al.'s reported range (hornblende: 65-71; phlogopite: 77-79). The lower Cr2 O3

contents of found at Calbuco suggests crystallization of the Calbuco hornblende from a

more Cr-poor liquid than that from which the Volcan San Pedro hornblendes crystallized.

5.5 Compositional Zoning

Compositional zoning in hornblende, found in phenocrysts in Soufriere Hills

andesites, is typically not optically distinguishable, but can be present as inverse

variations of MgO+SiO 2 with FeOt0 ta1+Al2O 3 (Rutherford and Devine, 2003). There is

evidence of zoning in all three cumulate xenolith samples, as well as the analyzed

phenocryst. In all hornblende analyzed, there is a trend toward higher Si contents in the

hornblende formula near the breakdown reaction products, and sometimes an increase in

Mg-number. Edenite has higher Si contents in the formula than pargasite, and the

presence of edenite in the both the cumulate xenoliths and phenocrysts appears to be the

result of compositional variation in the homblende as it is breaking down.

5.6 Hornblende Stability

Experimental determination of hornblende stability has been explored under

varying water saturation, oxygen fugacity, initial composition, and temperature

conditions. Sisson and Grove (1993a) have conducted experiments on high-alumina

basalts (HAB) at 2 kb water saturated conditions and found that hornblende is a near-

liquidus mineral in HAB if the starting material has at least 3 wt% Na2O. If less than 3

wt% Na2O is present, hornblende will not appear until the liquid differentiates to the
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point of andesite. Their findings are in agreement with that of Cawthorn and O'Hara

(1976) who reported the same Na 2O wt% constraints on hornblende crystallization at 5kb

water saturated conditions. Hornblende can be used as an indicator of pressure,

temperature, volatile content, and oxidation state of the magma (Ghiorso and Evans,

2002). Pressure, temperature, and water contents of hornblende formation are discussed

below, however, oxygen fugacity was not able to be determined from the present data.

An attempt was made to determine oxygen fugacity of the hornblende breakdown

reaction based on published coexisting magnetite and ilmenite compositions from

Spencer and Lindsley (1981), however it could not be determined because the

compositional range was too wide.

5.6a Pressure

The AlT versus Al'" relationship in hornblende has been used by Hammarstrom

and Zen (1986) to calculate an igneous geobarometer. Al" is the Al which fills the

remaining space in the T sites, after Si, in the crystal structure. Their formula calculates

the pressure of hornblende crystallization to within 2 kbars (Table 6). Use of

hornblende for this type of calculation must be done under the assumption that the

magmatic Al content in the crystal is preserved. Hammarstrom and Zen (1986) found

that the Al content is preserved due to the fact that Al is one of the least mobile elements

in a crystalline environment and that diffusion of Al within the hornblende would take

orders of magnitude longer than crystallization in a slow cooling pluton. Their

geobarometer does however require the coexistence of quartz with the hornblende to

"lock" the Si content in the crystal due to the negative correlation of Al'" content with Si

in the hornblende structure. According to Rutherford and Devine (2003), hornblende not
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in equilibrium with quartz will have higher A12O3 contents than it would if it were in

equilibrium with quartz. Rutherford and Devine (2003) have used an alternative Al in

hornblende geobarometer to calculate pressures at Soufriere Hills without quartz and

hornblende existing in equilibrium. They found that the use of the geobarometer without

the required mineral stability was justified due to the fact that it returned a pressure which

was consistent with the necessary water pressure to produce the H20 observed in melt

inclusions. Higher Al contents in the hornblende, caused by the lack of quartz in the

mineral assemblage at Calbuco, used in Hammarstrom and Zen's calculation will return

higher values for pressure than if quartz was crystallized from the magma. Under these

conditions, the calculated pressure values could represent the upper limit of the possible

pressure range. The overall range of calculated pressures for the hornblende phenocryst

is 6-8 2 kbars. For the cumulate xenoliths, the calculated pressure ranges are 4-7 2

kbars for sample 12-19-18, 3-11 2 kbars for sample 12-20-3, 3-8 2 kbars for sample 12-

20-8, and 3-10 2 kbars for sample 12-18-1. The phenocryst and cumulate xenolith 12-

19-18 have the same narrow range of calculated pressures, within error, but the three

remaining cumulate xenolith samples have broad calculated pressure ranges and only

overlap the range of the hornblende phenocryst and sample 12-19-18 at the lower end of

the broad range.

Experimentally derived phase diagrams (Figure 61) have been constructed for

lower pressure ranges for andesite (1.25-4 kbars) and basaltic andesite (2-4 kbars) than

the Al in hornblende calculation. Based on the total mineral assemblage at Calbuco, the

pressure ranges inferred from individual phase diagrams are 1.25+ kbars (Rutherford and

Devine, 2003), 1.5-2.25 kbars (Luhr, 2002), and 4 kbars (Pichavant et al., 2002) for
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andesites, and 2+ kbars (Rutherford and Devine, 2003), up to 2.1 kbars (Luhr, 2002), and

4 kbars (Pichavant et al., 2002) for basaltic andesite. These pressures correspond to

depths of 3.8+ km, 4.5-6.8 km, and 12 km for andesite respectively and 6.7+ km, 1.2-6.3

km, and 12 km for basaltic andesite respectively. As expected from the lack of

equilibrium of the hornblende with quartz, the pressures extrapolated from these phase

diagrams is lower than the pressure calculated with the geobarometer from Hammarstrom

and Zen (1986).

5.6b Temperature

Thermometry calculations of melt in equilibrium with hornblende also require

that the melt be quartz saturated. No quartz has been found in any of the andesite from

Calbuco and high-A12O 3 contents of the hornblende suggest that quartz could not be

crystallizing (Rutherford and Devine, 2003). Following the reasoning above, an attempt

was made at temperature calculations using the plagioclase-hornblende geothermometer

from Holland and Blundy (1994). For the overall pressure range of 1-4 kbars and

dissolved H 20 range of 4-7 wt%, the calculated temperature range is approximately 840-

930 C for the phenocryst and approximately 900-1090 C for the three xenoliths

collectively. Published phase diagrams (Figure 61) for volcanic rocks of similar

composition and mineral assemblage show the first appearance of hornblende with

cooling of the magma from approximately 900-1000 C. Based on experimental phase

assemblages and the observed mineral assemblage of the andesite and basaltic andesite

from Calbuco, an overall temperature range for the eruptive products is 845-975 C for

the andesites and 900-1145 C for basaltic andesites. According to individual phase

diagrams, the temperature ranges for phase stability are 845-895 C for andesite, 900-
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950 C for basaltic andesite (Rutherford and Devine, 2003), 925-975 C for andesite and

975-1145 C for basaltic andesite (Luhr, 2002), and 935-970 C for andesite and 935+ C

for basaltic andesite depending on H 20 concentration (Pichavant et al., 2002). Overall,

these published temperatures overlap the calculated temperatures, despite the lack of

quartz in equilibrium with the hornblende.

5.6c Water Content

Rutherford and Devine (2003) and Luhr (2002) have conducted experiments

under water saturated conditions using Soufriere Hills and Colima andesite respectively,

Pichavant et al. (2002) have conducted experiments under water under-saturated

conditions using Mt. Pel6e basaltic andesite, all of which have a similar mineral

assemblage to Calbuco andesites and basaltic andesites. Phase diagrams have been

constructed (Figure 61) using wt% water in the magma as one of their parameters by

Luhr (2002) and Pichavant et al. (2002). At 4 kbars pressure, hornblende is stable above

5 wt% H20 (Figure 61 C) and at a pressure range of 1-3 kbars hornblende is stable from

2-7+ wt% H2O (Figure 61B).

5.7 Summary

Hornblende is found in Calbuco eruptive products as phenocrysts and as coarse

grains in gabbroic xenoliths. In both instances, the mineral chemistry is overlapping and

the crystals are pargasite, a variety of calcic homblende. Hornblende phenocrysts are

chemically stable in the andesite, but are breaking down due to changes in physical

properties in the magma chamber, such as decompression on ascent, dehydration of the

magma, and oxidation of the magma. This breakdown forms three types of reaction

products, 1) reaction rims and 2) "gabbroic type" reaction products, both found only in
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association with phenocryst breakdown, and 3) opacite found on all hornblende crystals.

Chemical analysis of opacite in phenocryst and gabbroic coarse grained hornblende

breakdown shows that the mineral make-up of the opacite consists of microcrystalline

plagioclase, olivine, magnetite, clinopyroxene, and orthopyroxene.

Cr contents of the hornblende and phlogopite from Calbuco have also been

compared to Cr contents reported for the same minerals for Volcan San Pedro. The high

Cr contents of these two mineral phases in Volcan San Pedro eruptive products have been

cited by Costa et al. (2002) as evidence for their formation as a result of reaction between

migrating evolved melts f aqueous fluids and anhydrous cumulus minerals. Cr contents

for hornblende and phlogopite from Calbuco are significantly lower than those reported

for Volcan San Pedro.

Determination of hornblende stability ranges for pressure and temperature of

phenocrysts and gabbroic coarse grains has been attempted using published calculations.

Calculations for both pressure and temperature of hornblende crystallization require the

coexistence of quartz, to stabilize the Si content in the hornblende crystal structure, which

does not crystallize in Calbuco andesite. Despite the lack of quartz, a calculated pressure

range of 3-11 2 kbars was determined for gabbroic xenolith hornblende, which is likely

to have been affected by the lack of quartz in equilibrium, and 6-8 2 kbars for phenocryst

hornblende, higher than the range (1.25-4 kbars) extrapolated from published phase

diagrams of andesite with a similar mineral assemblage. In contrast to the pressure

calculations, temperature calculations for both phenocryst (840-930 C) and coarse

grained gabbroic hornblende (900-1090 C) overlap the temperature ranges (845-975 C)

extrapolated from published the same phase diagrams.
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SH~ornblende

r Figure 46: BSE images of hornblende

pseudomorphs.
SA, B, C: Back-scattered electron images

of pseudomorph of hornblende
phenocryst breakdown reaction products.
C: partially reacted hornblende grain
(outlined) remaining in center of
reaction products.
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Hornblende Phenocryst Composition in Lava

100

pargasite
edenite magnesiosadanagaite

magnesiohastingsite

no 50

+ Calbuco-1 Hornblende
Involved in Breakdown

ferropargasite

ferro-edenite sadanagaite
hastingsite

0

7.5 6.5 5.5 4.5

Si (cations) in Formula

Figure 47: Hornblende phenocryst composition.
Plot of Si cations in recalculated hornblende formula against Mg-number of hornblende
phenocryst. Recalculation and plot after Leake et al., 1997.
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brad w ea tionp o ut n eato i s ,B Horblnd Rin p a- p aie (A)
-t " f te. ._riA -

andur 48:ssPhoied(Boghs sfhowingbladk pe"rs breakdown reaction products.C,:

Hornblende in plane-polarized (C) and cross-polarized (D) light showing "gabbroic type"
breakdown reaction products. The "black type" reaction product is also present. E:

Hornblende in plane polarized light with a microcrystalline opacite reaction rim. F:

Hornblende in plane polarized light with a white reaction rim consisting predominantly of

plagioclase and pyroxene. Field of view is 2.8 mm.

90



\o

X\ O V O v D a a M N O nj
a1 a1 V 00

O 
06 00 1.6

U 0
U o

" p l O M N

' bA 
r- 00 vl 00

CQ a O [
M M N
r r r

O c

N N N

Q

O IbA c 00

U O 

i

U R
l N N V

N U O Qr

y O Q C

00 N N Q\

O U C

N 
O

O Z N N v-

U R

4t oo O "-- .--. D,
O R3 v7 'V ' '

O

co 00
[n . x v 00 oM,' 

oM,'

cn a o o o

S.. R =' \ -- ' O Vl V O V'1 M 00 M O C\ V7 M W '-

N o v) oo oo C l v) C\ M O V O O a1 00

C

I
O ct

x to
ca m c c b ca

Cd
^ N i 00 i 00 00 00 CO ON "-" O N



0

0 0 TT
cC 'C O N N v1 [\ l\

00 -- v M O N 'V

C1 00 CN M M
V 'V 'V 00 00 00 00

0
0

01 [- 00 V N M
V 'V 'V 00 00 00 00

0

k C i i 7 N i

0

Q05 w p

G
O
w

'V _ 01 00 00

y Q/ In d' 77

Q =

CC

C O p o N O v N N
O Q p N N N N "

, 

3 

r 

\ 

M 

O 00 O O\ --0

ca 
00 C1

as 
In 1-0 1

p o 00 /' t N N
i! 3. Q M C1 v'1 V' 01 M

V ' M M M M E

1.0 00 W- m
w p M M V V

n n "-- 00 O, 'V N r O [ O N ,-" 00CC r C 00 

oo 'r,

O 00 O, O O 00

c cqx cn cn aq cw n
co cz CG C13

Ln I'D

N N N N N N



0

R p o M N . "--O
00

V N M 00

0

N I 
M

0

k C 
p

C M 
N

O O '

C
O

w
R
V M 00 N

00 1.0 7

Q

a+ R

O O cn p ? M
00 01

L Q 
N

R

3 3 y\CR N N

a w 0 
N N N

Ln 
kn

cc
R
1.L' v7 \J O M 01 C' M l

01 ' ' 01 t ' 01 O
0 c p V' VJ

1 00 M C\ M O M

O O 00 mr- ' N O D\ Lr)
N M M M M M N

W\ M O O O M 
C C1

o M O O [ v7 ,V O DD .-- -- DD M O v7 [ N 'V
R O M O W N Vr ( -- ct O O M N V') [- 00 00 N V'1 r- rV Vr
1y + l0 00 00 ,1- Ln M -- N M 'RT W-) M M'n M M M M M M

I r- 00 I-D

x IQ pp pp b A 0A W

[r w as w a a a

, ao 00
o

O O N ON rn ON V N V

N N N N N N

08



CQ ti O o v? M M
'C 'M O v)Lr)

v'1 N M

O oo "o oO " O O

0IR

0

y w 0 i 
i

O
O

CQ
'v O O
p Qr M

d C
a, Rt

0 0
o Q , 01

?r U

p o r o N

a W g o

Y! O ' O ^M oo

V M d M M

w~ 
N V O lf M

O ' .4 M 7 v) oo IC I '

1 7

'QR C M O v) V' Cl IT V' l- N
C O O r- N oo t t In t O C '
a Q M N V% It N N v vll V V

N
al

^C

x
a

cj N

oo 
N

a N N
M M (



v y

G a a a a a a a a a a a a. a a, a a, a. a s a a. a

------------

.= Q Q Q Q Q 1 Q

U

VI

W k
O
L Q + Q Q Q Q Q Q Q -+ -+ Q Q ""Q Q Q Q Q L1

O w
U 

C
'C

cd

' O

O 
O

Q) a

o a+
R

cu W

"C O

3 p. a o a a a a a a a a. a a a Q a. Q a a Q
0

ccn O

R

O O e ne

a a a a a a a a a a a a a a: a, a a, a, a s a.. a. a

= a. a s a. a. w a a. a a a a a a a a a. a s z z a

o x

II

U
"' N M 7 v17Ur O i O "" "--N ri n p l -- N M V v .- , N r,

p" N y i. 00 00 00 GO 00 M M M M M M M M DD DD a0 00 W 00 .

In U .... O O O O O O O O O O O O O O N N '

N N N N N N N N N N N N N N a N N

I N N N N N N N N N N N N N N M M U

N N N N N

E- f1r Q,



An mol% of Plagioclase in Hornblende Phenocryst Breakdown Products

4 - -- - -

3

Q 2 * 32824

0-1 9-10 18-19 27-28 36-37 45-46 5455 63 64 72-73 81-82 90-91 99-100

An mol%

Figure 49: Histogram of plagioclase in hornblende breakdown.
Histogram of frequency versus An mol% showing the composition of plagioclase in
hornblende breakdown products of phenocrysts.

Wo

En Fs

Figure 50: Ternary plot of pyroxene in hornblende breakdown.
Ternary plot showing compositions of ortho- and clinopyroxene in hornblende

breakdown products of phenocrysts.
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Olivine in Hornblende Phenocryst Breakdown

3 -

2

U 32824 Hbld Brkdn

0 ,

85-86 80-81 75-76 70-71 65-66 60-61 55-56 50-51

Fo mol%

Figure 51: Histogram of olivine in hornblende breakdown.
Histogram of frequency versus Fo mol% showing composition of olivine in hornblende
reaction products of phenocrysts.

TiO
2

+ 32824 Hbld Brkdn

FeO Fe2O3
Mt Hem

Figure 52: Ternary plot of oxides in hornblende breakdown.
Ternary plot of magnetite composition in hornblende phenocryst breakdown products.
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Mg# Comparisons of Mafic Minerals in Hornblende Breakdown Products

100 - - Lava- Orthopyroxene Mg#

+ Lava-Pigeonite Mg#

Lava-Clinopyroxene Mg#

Lava-Olivine Mg#

90 + Lava-Hormblende Mg#

+ 12-19-18 Orthopyroxene Mg#

+ 12-19-18 Pigeonite Mg#
80 - --- 12-19-18 Clinopyroxene Mg#

12-19-18 Olivine Mg#

*, $ + 12-19-18 Hoomblende Mg#

70 ---- - --- -- - -- + 12-20-3 Orthopyroxene Mg#

= *+ 12-20-3 Pigeonite Mg#

" 12-20-3 Clinopyroxene Mg#

60 -- - 12-20-3 Hormblende Mg#

+ + 12-20-3 Olivine Mg#

+ 12-20-8 Orthopyroxene Mg#

50 + 12-20-8 Pigeonite Mg#

Lava 12-19-18 12-20-3 12-20-8 12-20-8 Clinopyroxene Mg#

Sample # + 12-20-8 Hornblende Mg#

Figure 53: Mg# of mafic minerals in hornblende breakdown.
Plot comparing Mg-numbers of mafic phases found as phenocrysts in the lava with mafic
phases found in cumulate xenoliths.

Hornblende Composition in Cumulate Xenoliths

100

12-19-18 Coarse Grains
pargasite

edenite - magnesiosadanagaite 12-20-3 Coarse Grains

magnesiohastingsite 12-20-8 Coarse Grains

G 50 12-18-1 Coarse Grains

* 12-19-18 Hornblende
Near Breakdown

ferropargasite
+ 12-20-3 Hornblende

ferro-edenite sadanagaite Near Breakdown
hastingsite + 12-20-8 Hornblende

Near Breakdown

0

7.5 6.5 5.5 4.5

Si (cations) in Formula

Figure 54: Hornblende composition in gabbroic xenoliths.
Plot of Si cations in hornblende recalculation formula versus Mg-number of hornblende

for coarse grained hornblende in cumulate xenoliths. Plot and recalculation after Leake

et al., 1997.
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Figure 55: Photomicrographs of
hornblende in gabbroic xenoliths.
Photomicrographs in plane polarized
light of coarse grained hornblende in

three cumulate xenoliths. A: sample 12-
19-18 showing little hornblende
breakdown. B: sample 12-20-3 showing
severe breakdown. C: sample 12-20-8
showing moderate breakdown. Field of
view is 2.8 mm.

Figure 56: Images of opacite.
A: Photomicrograph of hornblende in plane polarized light showing microcrystalline

"black type" breakdown products in coarse grain in cumulate xenolith. Field of view is

2.8 mm. B: Back-scattered electron image showing texture of "black type" hornblende

breakdown reaction products.
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An mol% of Plagioclase in Hornblende Breakdown Products in Xenoliths

4

3 --

' 12-20-8
2 - 0 12-20-3

0 12-19-18

0. 910367

0-1 9-10 18-19 27-28 36 7 45-46 54-55 63-64 72-73 81-82 90-91 99-100

An mol%

Figure 57: Histogram of plagioclase reaction products in gabbroic xenoliths.
Histogram of frequency versus An mol% of plagioclase in hornblende reaction products
from breakdown of coarse grains in cumulate xenoliths.

Wo

Hed
12-19-18 Hbld
Brkdn
12-20-3 Hbld Brkdn

12-20-8 Hbld Brkdn

En Fs

Figure 58: Ternary plot of pyroxene in gabbroic hornblende breakdown.

Ternary plot showing ortho- and clinopyroxene compositions in hornblende reaction

products from breakdown of coarse grains in cumulate xenoliths.
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Olivine in Hornblende Breakdown Products in Cumulate Xenoliths

3 -

Q 12-19-18 Hbld
Brkdn

0 12-20-3 Hbld
Brkdn

05- g B
85-86 80-81 75-76 70-71 65-66 60-61 55-56 50-51

Fo mol%

Figure 59: Histogram of olivine in gabbroic hornblende breakdown.
Histogram of frequency versus Fo mol% of olivine in hornblende reaction products from
breakdown of coarse grains in cumulate xenoliths.

TiO2

12-19-18 hbld

* 12-20-3 hbld brkn

12-20-8 hbld brkdn

FeO Fe103
Mt Hem

Figure 60: Ternary plot of oxides in gabbroic hornblende breakdown.

Ternary plot showing compositions of magnetite and ilmenite in hornblende reaction

products from breakdown of coarse grains in cumulate xenoliths.
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Hlag Mt L

SOpx: Cpx

1000" 0
975I~ii* C(px --

P=4kbar

25Basaldtic and~esite m/
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9i0
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Figure 61: Andesite and basaltic andesite phase stability diagrams.
Phase diagrams showing stability of hornblende in andesite (A, B) and basaltic andesite
(C). Orange and blue shaded areas on all three diagrams correspond to conditions under
which Calbuco andesite (plagioclase + hornblende + magnetite + orthopyroxene
clinopyroxene olivine) and basaltic andesite (plagioclase + olivine + orthopyroxene +
olivine : clinopyroxene) would be stable respectively. A: (after Rutherford and Devine,
2003) shows the stable phases in Soufriere Hills andesite at water saturated conditions.
Stability fields indicate first appearance with decreasing temperature. Triangles on the
plot indicate experimental results from Rutherford and Devine (2003) for Soufriere Hills

andesite and the black bar indicates pressure and temperature based on natural samples.

B: (after Luhr, 2002), shows pressure versus temperature for Colima andesite under water

saturated conditions with oxygen fugacity at the NNO buffer. Stability fields indicate

first appearance with falling temperature. Filled black dots and corresponding numbers

indicate experimental results from Luhr (2002), gray shaded area indicates the mineral

assemblage from natural Colima samples, and slanted dashed lines represent the wt%

H 20. C: (after Pichavant et al., 2002) for Mount Pel6e basaltic andesite at water under-

saturated conditions and oxygen fugacity variations of ANNO < +1 to ANNO > +2.5.

Stability curves are labeled with mineral names inside their stability field. Circles on the

diagram correspond to experimental results; open circles ANNO < +1 and closed circles

+1 < ANNO < +1.5 and ANNO > +2.5. Dashed lines for Opx and Mt stability fields

correspond to ANNO > +2.5. These diagrams show that hornblende is stable below

approximately 900-1000*C, at pressures above approximately 0.5kbar, and above 2-5wt%

water.
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Table 6: Calculated Pressure Range.
Table showing the calculated pressures of hornblende crystallization using a
geobarometer based on the amount of Al in the crystal. Data for sample 12-18-1 from
Abdollahi (1990). Calculations after Hammarstrom and Zen (1986).

Ranges of Calculated Pressures (kbars)
Lava Cumulate Xenoliths

Calbuco-I 12-19-18 12-20-3 12-20-8 12-18-1
7.7 6.8 8.0 7.4 6.5 7.3 8.8 8.2 10.9 7.7 6.9 8.0 8.3 7.6 9.5
7.0 6.0 6.4 5.1 4.1 3.7 4.5 3.6 3.1 4.5 3.6 3.1 4.7 3.8 3.3

Table 7: Cr 2O 3 wt% comparison of hornblende and phlogopite.
Table comparing the Cr 2O 3 wt% and Mg-number of hornblende and phlogopite and Na2 O
wt% of phlogopite in gabbroic xenoliths reported by Costa et al. (2002) with that found at
Calbuco.

Comparison of Cr2 O3 wt% and Mg-number of Hornblende and Phlogopite and Na2O wt% of Phlogopite
From Calbuco with Values From Volcan San Pedro

Hornblende

Calbuco Volcan San Pedro (Costa et al., 2002)

Gabbroic Group I Group 2 Group 2
Average (w/hornblende) (w/clinopyroxene)

Cr2Oj wt% 0.002 - 0.08 1.2 <0.6 <0.6

Mg# 65-71 72-80 72-80 64-77

Phlogopite

Cr10 3 wt% 0.02 <0.6 0.4 50.4

Mg# 77 - 79 77 - 82 77 - 84 70 - 80

NaO wt% 1.34-1.94 2.21-3.36 1.94-4.08 1.13-1.92
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Chapter 6. Plagioclase

6.1 Introduction

Plagioclase is a major igneous mineral phase found in arc settings, and in rocks

across the compositional range from basalt to rhyolite, and because of this abundance, is

widely studied. This chapter deals with the texture and chemistry of the plagioclase

crystal populations found both in Calbuco andesite and basaltic andesite. Topics of

discussion include plagioclase zoning, including major, minor, and trace element zoning,

along with the types of zoning present in phenocrysts from Calbuco. Controls on trace

element incorporation into the plagioclase crystal structure are also discussed.

Additionally, plagioclase resorption surfaces, textures, and events are discussed. The

chemical composition of volcanic glass trapped within plagioclase grains is also

discussed.

6.2 Crystal Populations and Textural Descriptions

There are five different plagioclase crystal populations in the eruptive products of

Calbuco Volcano. These are: 1) megacrysts, 2) phenocrysts, 3) plagioclase in the

cumulate gabbronorite xenoliths, 4) plagioclase in the crystal clusters, and 5) plagioclase

formed as a result of hornblende breaking down. Of these five populations, all are found

in andesitic samples and only megacrysts, phenocrysts, and plagioclase in the crystal

clusters are found in basaltic andesite.

6.2a Megacrysts

Plagioclase megacrysts are 1600 microns and larger in size and found in both the

andesite and basaltic andesite samples (Figure 62). In both rock types, these crystals are

euhedral to subhedral and have no noticeable melt inclusions or resorption features in the
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core; resorption features may be present in the thicker zoned rims. Plagioclase

megacrysts have an unzoned core with a very high An mol%, ranging from An87-92 in the

andesite, with one grain as low as An 83, and An9 0 in the basaltic andesite. Progressing

outward from the core, these grains have zoned rims of thicknesses varying from 20-130

microns in the andesite, with two that have thick rims of 180-390 microns, and 200

microns in the basaltic andesite. The zoned rims have a lower An mol% than the cores;

An49-85 in the andesite and An65-79 in the basaltic andesite (Figure 63) (complete electron

microprobe data and transect plots of all plagioclase can be found in appendix D).

6.2b Phenocrysts

Plagioclase phenocrysts are 1500 microns and smaller in size and found in both

the andesite and basaltic andesite. There was not a separate compositional study done of

the phenocrysts and microphenocrysts, therefore this group also includes

microphenocrysts. The subcategory of microphenocrysts, encompassing approximately

30% of the plagioclase crystals, includes crystals 0.13 mm and less in size and will

hereafter be included in the phenocryst crystal population. The phenocrysts are euhedral

to anhedral and a small percentage are sieve textured. Phenocrysts in both the andesite

and basaltic andesite are complexly zoned (Figure 64) with core An compositions that are

lower than the core composition of the megacrysts, ranging from An58 -92 in the andesitic

samples and An 73 .90 in the basaltic andesite (Figure 65). The phenocryst rims range

compositionally from An35-84 in the andesites and An48 -86 in the basaltic andesites

(complete electron microprobe data and transect plots of all plagioclase can be found in

appendix D). The majority of these crystals have normal zoning with overprinted

oscillatory zoning. There are a few reverse-oscillatory zoned crystals; however, the
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occurrence is rare. Some crystals also have patchy zoning. Point counting of a

representative andesitic lava sample from the Calbuco 4 unit (Table 8) demonstrates that

approximately 36% of these crystals are euhedral and 64% are anhedral. Many of these

grains contain melt inclusions, and an average of 26% of these inclusions are confined

within specific compositional zones within the grain.

6.2c Cumulate Xenoliths

Plagioclase in the three cumulate gabbronorite xenoliths is predominantly

unzoned, although there are a few grains found which do show a small amount of zoning.

One transect was taken of a slightly zoned grain, ranging from Ans6 at the core to An79 at

the rim (Figure 66). Compositionally, these plagioclase grains range from An90-93 , with

one highly calcic grain of An 97, in sample 12-19-18, An7-93, with two less calcic grains

ranging from An 5 6- 64 , in sample 12-20-3, and An73-92 in sample 12-20-8 (complete

electron microprobe data of all plagioclase can be found in appendix D). Among the

three gabbronorite samples studied, the plagioclase is found in varying stages of stability.

The plagioclase is decomposing accompanied by decompression melting of the

hornblende in the xenoliths. In sample 12-19-18 the plagioclase is euhedral to anhedral

and poikilitically enclosed in one hornblende grain which is enclosing all mineral phases

in the thin section. Plagioclase decomposition in this sample is slight, as is the

hornblende breakdown (Figure 67). Similarly, the plagioclase decomposition in sample

12-20-8 is slight, although the hornblende in this sample is more broken down than in

sample 12-19-18. Plagioclase grains in this sample are predominantly anhedral and

breakdown reactions in the xenolith are taking place between the plagioclase grains

(Figure 68). In contrast, the plagioclase in sample 12-20-3 is extremely decomposed
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(Figure 69). Hornblende in this sample, along with all other mineral phases, has broken

down the most extensively of the three samples. The entire xenolith has a metamorphic

texture (detailed in chapter 4) and the plagioclase is microcrystalline and sometimes

spongy with patches of glass.

6.2d Crystal Clusters

Crystal clusters are found in both andesite and basaltic andesite samples. These

clusters have been grouped into six different categories based on their mineral

assemblage, and are discussed in detail in chapter 4. All six of these categories contain

euhedral to anhedral plagioclase, most of which is unzoned, however some zoned crystals

are incorporated. Plagioclase in type Al clusters ranges from An42 -91 , and in type A2

clusters ranges from An9 0 .9 1 with one less calcic crystal at An6 1. Type B1 clusters have

plagioclase grains which range from An67 -76, with one highly calcic grain of An9 1. Type

B2 crystal clusters have plagioclase which range compositionally from An 64.9 1. Types C

and D clusters have plagioclase which ranges from An 4 -92 and An8 7 90 respectively

(complete electron microprobe data of all plagioclase can be found in appendix D).

6.2e Hornblende Breakdown Product

Plagioclase is found among the products of hornblende breakdown. These grains

are microcrystalline, ranging in size from approximately <5 microns, and compositionally

range from An7 .8 3. This plagioclase population is discussed in detail in chapter 5.

6.3 Zoning

It has been stated that plagioclase zoning is a stratigraphic record of the magmatic

events which occur during crystallization (Singer and Pearce, 1993; Vance, 1962).

Plagioclase zonation is caused by elemental variations in the magma as the crystal is
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growing, specifically variations of Ca and Na. Plagioclase solid solution ranges from

anorthite (An), the Ca-rich, high temperature end member to albite (Ab), the Na-rich,

lower temperature end member. Plagioclase zoning is manifested in the mineral grain as

the variation of anorthite (An) mol%. Due to the coupled substitution described by

Grove et al. (1984) of NaSi for CaAl into the plagioclase crystal structure, major element

diffusion is extremely slow and An zoning, once the closure temperature of

crystallization has been reached, will remain essentially unchanged under most geologic

circumstances (Costa et al., 2003). Due to this "freezing" of An zoning, individual

plagioclase zones can be expected to preserve a record of the conditions inside the

magma chamber at the time of crystal formation.

Several different types of zoning are common in plagioclase, but the main types

found in the samples from Calbuco are normal zoning, reverse zoning, and oscillatory

zoning; minor patchy zoning is also found. Normally zoned crystals have a more An rich

core with a progressively more Ab rich rim. Reverse zoning is the opposite of normal

zoning, the core has a higher Ab mol% and the rim a higher An mol%. Oscillatory

zoning is the result of oscillations of An mol% between a normal and a reverse trend.

Although the term "oscillatory" is used to describe this type of zoning, Shore and Fowler

(1996) point out that the oscillations in both zone thickness and composition are not

necessarily harmonic or regular. Shelly (1993) describes three types of oscillatory

zoning, major sharp reversals, small irregular oscillations, and complex oscillatory

zoning. The major sharp reversals are large An mol% spikes followed by normal

zonation. Small irregular oscillations are small reversals between normal and reverse

zoning. Complex oscillatory zoning is a combination of major sharp reversals and small
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irregular oscillations. Patchy zoning (pictured in Figure 81) is a mixture of remnant

plagioclase, representing the outermost zone of the crystal prior to resorption, and

plagioclase grown during or immediately after the resorption event (Ginibre et al.,

2002b).

The An mol% of the plagioclase can be affected by several different factors which

influence magma and plagioclase compositions. These factors include magma mixing,

stratification of the magma chamber, phenocryst recycling, tidally-driven circulation

within the magma chamber, plagioclase resorption during magma ascent (Singer and

Pearce, 1993), the dissolved water content of the magma, magma storage depth (Singer et

al., 1995 and Holten et al., 1997), crystallization kinetics due to fluctuations in Ca and Na

in the magma immediately surrounding the crystal during growth, magmatic temperature

and pressure, decompression, and crystal growth rate (Singer et al., 1995 and Holten et

al., 1997). Many authors link recorded An mol% variations to one or more of these

factors to demonstrate specific magmatic process or group of processes at work in the

volcanic system studied (examples include Nixon and Pearce, 1987; Stewart and Fowler,

2001; Bottinga et al., 1966; Hattori and Sato, 1996; Stamatelopoulou-Seymour et al.,

1990; Kuritani, 1998; Blundy and Shimizu, 1991; Ginibre et al., 2004; Ginibre et al.,

2002a,b; Singer et al., 1995; Karsli et al., 2004).

6.3a Major Element Zoning

Plagioclase crystals found in most of the eruptive products from Calbuco Volcano

display complex zoning patterns. Major element concentrations of plagioclase crystals

have been determined using the electron microprobe, which has an analytical error of

better than f1 An mol% (Sen, personal communication). Electron microprobe transects
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(appendix D) reveal that the plagioclase megacrysts are all normally zoned. With the

exception of one megacryst, which exhibits oscillatory zoning over the entire crystal, all

of these grains have an unzoned core with normally zoned rims of varying thickness.

These rims have varying degrees of fine scale oscillations overprinted on the normal

zoning. The zoning oscillates over a range of 1-10 An mol% (Figure 70). The one

megacryst which is completely zoned is found in the andesitic lava and ranges core to rim

from An 5 7 -83. The oscillations fluctuate over a range of 0.5-14 mol% An (Figure 71). In

the basaltic andesite plagioclase, zoning oscillates over a range of 1-10 An mol% (Figure

72).

Electron microprobe transects taken of the phenocrysts in both the andesite and

basaltic andesite samples show that they are predominantly normally zoned (Figure 73),

except for nine crystals which are reversely zoned (Figure 75), seven of which are found

in the andesitic lava and two in the basaltic andesite lava. Both the normally zoned and

reversely zoned plagioclase grains have fine scale oscillatory zoning overprinting the

overall normal or reverse zonation trend. This fine scale oscillatory zoning is discussed

in section 6.2d. The plagioclase found in the gabbronorite xenoliths and clusters within

the lava are predominantly unzoned, with only a few slightly zoned crystals. Detailed

transects have not been taken of the slightly zoned crystals in the xenoliths or clusters.

The plagioclase in the hornblende breakdown product is not zoned.

6.3b Minor and Trace Element Zoning

Trace element contents of Fe, Ti, Mg, Sr, and Ba in plagioclase were measured by

electron microprobe transects taken from core to rim over the zoned portions of the

megacrysts and phenocrysts within both the andesite and basaltic andesite samples

111



(appendix D). Detection limits for these elements on the electron microprobe are

approximately 500 ppm at short count times (Beasley, personal communication).

Concentrations of Ba are completely below the detection limit of the microprobe under

the operating conditions chosen and will not be considered further. Sr concentrations are

below microprobe detection limits at low count times but can be detected at higher count

times, therefore there are a limited number of Sr transects. Ti concentrations are variable

at low count times but detectable at higher count times and are also only reported for a

limited number of transects. In contrast, concentrations of Fe and to a lesser extent Mg

are detectable at both low and high count times (Figure 76). The analytical error of the

electron microprobe is taken to be 100 ppm of the elemental concentration (Beasley,

personal communication). The transects show that there is also trace element zoning in

the plagioclase phenocrysts and megacrysts. However, in accord with the findings of

Ginibre et al. (2002b) on plagioclase in lavas from Parinacota Volcano in Northern Chile,

the fine-scale oscillations seen in the major element zoning are not duplicated in the trace

element zoning.

Attempting to uniquely discriminate between some of the previously discussed

factors which cause An mol% variations (see section 6.2) solely based on binary

compositional variation (i.e. Ca and Na variations) may be difficult (Singer et al., 1995).

Singer et al. (1995), Ginibre et al. (2002b), and others have found that, in addition to the

variation in An mol%, it was necessary to examine variations in minor and trace

elements, such as Fe, Mg, Ti, which are incompatible elements in plagioclase, and Sr,

which is a compatible element. Since these elements are not inherent to the plagioclase

crystal structure, their variations within the mineral are a function of the partition
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coefficient for each element between the mineral and the melt. As a result of this, Singer

et al. (1995) concluded that studying the variations in minor and trace elements along

with An mol% variation could help to distinguish between magmatic processes

responsible for plagioclase zoning. Each trace element can be used to recognize different

magmatic processes due to element-specific factors affecting partition coefficients.

6.3b.i Fe

Details of the incorporation of Fe into plagioclase have been widely published,

including Singer et al. (1995), Ginibre et al. (2002b), Bindeman et al. (1998), Longhi et

al. (1976), Phinney (1992), Sugawara (2001), Sato (1989), and Wilke and Behrens

(1999). According to Bindeman et al. (1998), as Fe is incorporated into plagioclase, there

is a strong negative correlation with An content (Figure 77a). Ginibre et al. (2002b) and

Sugawara (2001) have suggested that the negative correlation with An content is actually

a negative correlation with temperature. Looking separately at both species of iron,

ferrous and ferric, ferrous iron (Fe2+) will be incorporated into either octahedral (M) or

tetrahedral (T) sites in the crystal lattice (Sugawara, 2001), substituting for Ca in the M

sites and Al in the T sites (Wilke and Behrens, 1999). Ferric iron (Fe3 +) is the preferred

species of iron in plagioclase and is incorporated into T sites replacing Al (Sugawara,

2001). Partitioning of Fe into plagioclase is extremely sensitive to oxygen fugacity (fO2)

(Sugawara, 2001; Bindeman et al., 1998; Ginibre et al., 2002b; Longhi et al., 1976; Sato,

1989; Phinney, 1992; Wilke and Behrens, 1999) due to an increase in the partition

coefficient with increasing oxygen fugacity (Sugawara, 2001). An increase in f02 will

increase Fe3+/Fet, and therefore increase the Fe content of the plagioclase. Since Fe+ is

the dominant iron species in plagioclase, it will be assumed that the behavior of total iron
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(Fet) in plagioclase is equivalent to the behavior of Fe3 +. For simplification, total iron

(Fet) will be discussed as iron (Fe). According to Longhi et al. (1976), temperature is not

likely to have an effect on the partition coefficient for Fe between plagioclase and liquid.

They have reported partition coefficients ranging from 0.058 0.008 to 0.18 0.02 for

plagioclase in basalt. For intermediate rock compositions under water saturated

conditions at 5 kbar pressure, Wilke and Behrens (1999) have reported partition

coefficients ranging from 0.085-0.66 and 0.099-0.791.

In agreement with Bindeman et al., (1998), there is an overall negative correlation

between An mol% and Fe concentration for plagioclase in both Calbuco andesite and

basaltic andesite (Figure 78). However, within transects of individual plagioclase grains

(Figure 79), sharp increases (spikes) in An mol% tend to be accompanied by an increase

in Fe concentration in the plagioclase in the andesite. The plagioclase in the basaltic

andesite (Figure 80) showed a similar trend of Fe enrichment and depletion with An

spikes. Considering only this trace element, an increase in Fe concentration alone could

indicate an increase in fO 2 of the magma or mixing with a Ca and Fe rich magma. Since

An mol% of the plagioclase is not directly affected by f02, another accompanying

parameter, such as high fH 20, would be necessary to explain the correlated high Ca + Fe.

6.3b.ii Mg

Mg partitioning between plagioclase and melt is complex. According to

Bindeman et al. (1998) and Ginibre et al. (2002b), there is only a very weak negative

correlation between Mg content and An content (Figure 77b). Longhi et al. (1976) and

Ginibre et al. (2002b) report a small temperature dependence on Mg incorporation into

plagioclase, with changes needing to be on the order of several hundred degrees in order
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to vary the Mg partitioning (Singer et al., 1995). Sato (1989) reported no correlation

between Mg content and oxygen fugacity. The complexity of Mg partitioning into

plagioclase can be expected due to sensitivity to pressure, melt composition, or splitting

between M and T sites in the crystal structure (Bindeman et al., 1998). Sugawara (2001)

report the possibility of Mg substituting for either Ca in the M site or Al in the T site.

Peters et al. (1995) show a positive correlation between the partition coefficient for Mg

and the activity ratio of [SiO2]LJ[A12O 3]L meaning an increase in Mg content in

plagioclase as the magma differentiates.

The Mg concentration of plagioclase in andesite and basaltic andesite from

Calbuco has an overall negative correlation with An mol% (Figure 78), however this

correlation is not as weak as the correlation between Mg and An mol% found by

Bindeman et al. (1998). Within individual plagioclase transects, An spikes are usually

accompanied by a decrease in Mg concentration in plagioclase in both andesite and

basaltic andesite (Figure 79, Figure 80). Considering only Mg, the decreased

concentration with An spikes could be due to the increase in An mol% (partitioning

effects) or due to mixing with a Ca-rich, Mg-poor magma or an H 20 rich, Mg-poor

magma (Table 9).

6.3b.iii Ti

Ti has a strong negative correlation with An content (Figure 77c), however, based

on calculations of temperature dependency, the correlation is seemingly independent of

temperature (Bindeman et al., 1998; Ginibre et al., 2002b). Peters et al. (1995) concluded

that Ti partitioning into plagioclase is dependant on magma composition and small

compositional variations in the liquid could cause large changes in the partition
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coefficient for Ti. Ti is incorporated into the crystal structure in a T site, substituting for

Si (Peters et al., 1995).

The relationship between Ti and An content of plagioclase in Calbuco andesite

and basaltic andesite is negatively correlated (Figure 78). Within transects of individual

plagioclase grains in the andesite, there is not a strong tendency for Ti to either increase

or decrease with An spikes (Figure 79). On the contrary, in basaltic andesite (Figure 80),

there is a tendency for Ti to decrease with An spikes in plagioclase transects.

Considering only Ti, a decrease in Ti concentration correlated with increases in An mol%

could be due to the existing negative correlation between An mol% (partitioning effects)

and Ti concentration, or could be the result of magma mixing with a Ca rich, Ti poor

magma or an H 20 rich, Ti-poor magma.

6.3b.iv Sr

Based on the findings of several people, including Blundy and Wood (1991),

Bindeman et al. (1998), and Ginibre et al. (2002b), the controlling factor for Sr

partitioning into plagioclase is the composition of the plagioclase. Sr has a negative

correlation with An content (Figure 77d), and fills a crystallographic M site, substituting

for Na (Blundy and Wood, 1991). Previous conclusions have shown that pressure at

shallow crustal depths, melt composition, temperature, and crystallographic defects

within the plagioclase grain do not have an effect on the partitioning of Sr (Blundy and

Wood, 1991).

Sr in plagioclase in Calbuco andesites and basaltic andesites has no clearly

defined correlation with An mol% (Figure 78). This is likely the result of low Sr

concentrations in the plagioclase close to the detection limit of the microprobe. Sr is
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compatible in the plagioclase crystal structure and partition coefficients (Srplag/Srmeit)

should range from 1-2 (Hickey-Vargas, personal communication), however the range for

Sr in plagioclase in Calbuco andesite is 0.9-2.5 and in basaltic andesite is 0.8-3.5. This

indicates that individual compositional zones may vary in stability in the magma and may

indicate mixing with a magma of different Sr compositions. Within transects of

individual plagioclase grains (Figure 79, Figure 80), Sr tends to decrease with An spikes

in the plagioclase in the basaltic andesite but a trend is not discernable in the andesitic

plagioclase. Decreases in Sr concentration with increases in An mol% could be due to Sr

tendency to substitute for Na in the plagioclase crystal structure or could reflect mixing

with a Ca rich, Sr poor magma or an H 20 rich, Sr poor magma.

6.3c Plagioclase Resorption

As magmatic conditions fluctuate inside a magma chamber, plagioclase crystals

may circulate through magma having higher An content. As the crystal comes in contact

with magma that has a composition different from the liquid in equilibrium with the

outside crystal zone, resorption, or dissolution, of the plagioclase occurs because the

crystal is no longer stable in the surrounding magma. Magmatic processes which can

cause resorption of plagioclase are 1) increased temperature due to magma mixing with a

hotter, more mafic magma, magma recharge, or convection within a temperature

gradient, 2) an increase in the wt% of dissolved water in the magma due to mixing with a

hydrous melt or convection within a water gradient. The H20 content of the magma may

also be affected by crustal contamination, but the effect of this would be recorded in

plagioclase on a local scale. Distinguishing petrographically between increased
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temperature and increased H20 wt% is not possible. To make this distinction, trace

element fluctuations can be used.

6.3c.i Resorption Textures

Sieve textured plagioclase and patchy zoning (Figure 81) are two of the resorption

textures preserved in the plagioclase from Calbuco Volcano. Patchy zoning has been

interpreted by Ginibre et al. (2002b) to be the result of simultaneous dissolution of the

outermost existing zone and crystallization of a higher An zone. Some of the sieve

textured grains have glass preserved along with the resorption surface, and some have

holes which may have contained glass which was polished out at the time the slide was

made. As a result of point counting done on representative plagioclase phenocrysts to

determine resorption patterns (Table 8), approximately 21% of the phenocrysts have

resorption with preserved glass within a particular crystal growth zone (Figure 82).

6.3c.ii Resorption Surfaces

Distinguishable resorption surfaces are found in plagioclase phenocrysts and the

outer zones of some of the megacrysts and have been categorized as major and minor

resorption surfaces. Major resorption surfaces (R) are resorption events which visibly cut

across more than one zone (Figure 83). Minor resorption surfaces (r) cut across only one

zone (Figure 84). Textural analysis of resorption surfaces for my samples has only been

possible using the petrographic microscope. Due to this, identification of these surfaces

has only been done on samples with thin sections which could be used on the electron

microprobe (see chapter 3 for details of analysis). Published work has shown that these

surfaces can be characterized using high-resolution back scattered imaging (Ginibre et

al., 2002b). In this work, plagioclase zones as thin as approximately 1 micron could be
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imaged quite clearly, however, the resolution of the microprobe used for my samples was

not as high and the smallest zones clearly imaged are approximately 12 microns.

Transects were also taken on plagioclase in the thick rock chips; resorption surfaces can

not been seen, chemical variations can be analyzed.

Minor resorption surfaces are characterized by rounded corners on a particular

zone, pinching out of a zone, rough surfaces instead of planar, and are sometimes not

well pronounced in the crystal. This type of resorption occurs both with and without

patchy zoning. Minor resorption surfaces are also found with and without

glass/inclusions, varying from small to quite large, and are typically found in the interior

of the grain (Figure 84). Major resorption surfaces are typically found near the rim of the

grain. This type of resorption is typically found in conjunction with patchy zoning and

glass/inclusions. The glass/inclusions found are both large and small in size (Figure 83).

Details of the resorption surfaces of individual plagioclase crystals studied are in

appendix D.

6.3d Plagioclase Growth Zones

The interior portion of the crystal between resorption surfaces has been labeled as

a "growth zone" (Figure 85). Within these growth zones, both normal and reverse zoning

occur with finer-scale oscillations overprinted. Three types of oscillatory zoning have

been identified, labeled type 1, type 2, and type 3. Type 1 oscillatory zoning has An

fluctuations up to 2 mol% with no visible resorption surfaces similar to the low-

amplitude oscillations reported by Ginibre et al. (2002b). Type 2 oscillatory zoning has

An fluctuations ranging from approximately 2-5 mol% and occur without visible

resorption surfaces. Type 3 oscillatory zoning has An fluctuations typically as high as 10
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mol%, with a few sudden sharp increases (spikes) fluctuating higher, and are typically

following visible resorption surfaces. These visible resorption surfaces can be either

major or minor resorption surfaces. Both types of resorption surfaces are followed

immediately by spikes in An content. Minor resorption surfaces are followed by An

spikes ranging from 5-10 mol% and higher, and major resorption surfaces are followed

by An spikes ranging from 3-10 mol%. An example of this can be found in Figure 85.

Some crystals have abrupt An drops within a growth zone or at the rim ranging from

approximately 12-24 mol% in the interior of the crystal and approximately 37% at the

crystal rim (Figure 85).

6.4 Chemical Composition of Glass Found in Plagioclase

Quenched glass is found in three of the different plagioclase populations:

plagioclase phenocrysts, plagioclase in crystal clusters, and plagioclase in cumulate

xenoliths. The glass in all three plagioclase populations is clear and brown varying from

a medium brown to deep brown. In the phenocrysts, glass is typically found oriented

randomly; however, a few grains do have glass trapped within a specific zone (Figure

82). Analysis was done of the glass in plagioclase phenocrysts in one representative

sample. The compositional range of the glass is dacitic to rhyolitic (65-74 wt% SiO2).

(This same SiO 2 range is also represented in numerous glass inclusions confined within a

single plagioclase crystal (dacitic to rhyolitic, 65-74 wt% SiO 2)). Glass contained in the

plagioclase crystals in the crystal clusters is also dacitic to rhyolitic in composition (63-

74 wt% SiO 2). Coarse grained plagioclase in the cumulate xenoliths has glass inclusions

that fall into the same dacitic to rhyolitic compositional range (65-70 wt% SiO 2),

however the upper end of this range is lower than in the previous crystal populations
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(Figure 86). It should be noted that glass was also analyzed in pyroxene phenocrysts,

pyroxene in the cumulate gabbro xenoliths, and interstitial glass in the crystal clusters and

gabbro xenoliths for comparison (details given in chapter 4). The interstitial glass in both

the crystal clusters and cumulate xenoliths (64-75 wt% SiO2 and 61-74 wt% SiO 2

respectively) and the glass in the pyroxene phenocrysts and coarse grains in cumulate

xenoliths (65-74 wt% SiO 2 and 69-70 wt% SiO 2 respectively) have a similar SiO 2 range

to that found in the plagioclase crystals.

The two groups with the largest number of analyses are the glass in the

plagioclase phenocrysts and the interstitial glass in the gabbroic xenoliths. Glass in

plagioclase phenocrysts has a slightly different composition than the glass in the crystal

clusters or gabbroic xenoliths, with some overlap, for all oxides except TiO 2 and P 20 5

(Figure 87). The glass in the plagioclase phenocrysts tends to have higher MgO, Fe 2O3,

and CaO versus SiO 2 than the glass in the gabbroic xenoliths or crystal clusters. For all

three groups there is an overall negative correlation between SiO 2 and MgO, Fe 2O3, and

CaO. Glass in the plagioclase phenocrysts is lower in A12O 3 than in the other two groups,

and all three groups are positively correlated with SiO 2. For TiO 2 and P 20 5 the glass in

all three groups overlaps in composition and there is no correlation between these oxides

and SiO 2 . The concentrations of these groups also overlaps for K20, however, glass in

the plagioclase phenocrysts has a tightly defined trend which is positively correlated with

SiO2 and the glass in the plagioclase in the crystal clusters and gabbroic xenoliths show

significant scatter about the phenocryst trend. Compared with bulk rock analyses from

Calbuco and Osorno lavas and Calbuco pyroclastic and debris flows and surge and fallout

deposits, the bulk analysis of the glass in the three plagioclase populations shows trends
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of the oxide compositions that are not as narrowly defined as those of the eruptive

products (Figure 88). Comparison of correlation trends with SiO 2 show that the glass and

eruptive products are negatively correlated with Si0 2 for MgO, Fe2O 3, and CaO and

positively correlated for Na2O. A12 0 3 and K 20 in the eruptive products have no

correlation with Si0 2, but the glass is positively correlated with Si0 2 for each oxide. The

glass pockets show no correlation with SiO 2 for TiO 2 and P 20 5 . The eruptive products

show the same correlation for P 20 5 as the glass pockets, however, the eruptive products

are negatively correlated with Si0 2 for TiO 2 .

6.5 Summary

Plagioclase found in Calbuco andesite and basaltic andesite can be grouped into

five different crystal populations; 1) megacrysts, 2) phenocrysts, 3) plagioclase in the

cumulate gabbroic xenoliths, 4) plagioclase in the crystal clusters, and 5) plagioclase in

the hornblende breakdown reaction products. Megacrysts have large, unzoned, high An

cores and thin, zoned outer rims and phenocrysts have lower An cores and are

predominantly zoned. Plagioclase in the gabbroic xenoliths is predominantly unzoned

with only rare zoned crystals; similarly, plagioclase in the crystal clusters is

predominantly unzoned with few zoned crystals. Plagioclase formed by hornblende

breakdown is discussed in chapter 5. Rims found on megacrysts are normally zoned

while phenocryst zoning is primarily normal zoning overprinted with oscillatory zoning

with rare reverse zoning. Some phenocrysts also have patchy zoning. Minor and trace

element incorporation with major element zoning in the phenocrysts and megacrysts was

also looked at for Fe, Mg, Ti, and Sr. Based on partitioning experiments, all four of these

elements would be expected to have a negative correlation with An mol%, which is the
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case for Mg in the plagioclase in the andesite and basaltic andesite, and Ti and Sr in the

plagioclase in the basaltic andesite. This trend is not seen for Fe in the plagioclase in

both the andesite and basaltic andesite and for Ti and Sr in the andesite.

Plagioclase resorption textures and surfaces, and the crystal growth between

resorption events, have been examined on phenocrysts in the andesite and basaltic

andesite. Resorption can be the result of increased magmatic temperature or increased

dissolved H20 in the magma. Resorption textures found are patchy zoning and sieve

textured plagioclase, and two types of resorption surfaces can be identified; major

resorption surfaces, which cut across more than one plagioclase zone, and minor

resorption surfaces, which cut across only one other zone. Between these resorption

surfaces, plagioclase growth zones contain three different types of oscillatory zoning.

Type 1 oscillatory zoning has An mol% fluctuation up to 2 mol%, type 2 zoning has An

mol% fluctuation of 2-5 An mol%, and type 3 zoning has fluctuations of up to 10 An

mol% or higher. Both type 1 and type 2 oscillatory zoning occur without visible

resorption surfaces, while type 3 oscillatory zoning occurs with both visible major and

minor resorption surfaces.

Glass found in plagioclase phenocrysts, plagioclase in crystal clusters, and

plagioclase in gabbroic xenoliths has overlapping compositional ranges of dacitic to

rhyolitic, which is also similar to the compositional range of glass found interstitially in

gabbroic xenoliths and crystal clusters, as well as pyroxene crystals. For most oxides,

glass found in the phenocrysts has a slightly different composition than glass in the

gabbroic xenoliths or crystal clusters. Compared with bulk analysis of Calbuco eruptive

products (lavas, pyroclastic flows, debris flows, surge deposits, and fallout deposits), the
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glass found in these three plagioclase populations show trends of oxide compositions

which are not as narrowly defined as those of the eruptive products.
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Figure 62: Photomicrographs of plagioclase megacrysts.
A: Photomicrograph of plagioclase megacryst in cross polarized light. Field of view is
2.8 mm. B: Backscattered electron image of plagioclase megacryst.
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Figure 63: Histogram of plagioclase megacrysts.
Histogram of An mol% versus frequency of core and rim analyses from plagioclase

megacrysts in andesite and basaltic andesite.
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Figure 64: Images of plagioclase phenocrysts.
A, B: Photomicrographs of zoned plagioclase phenocrysts in cross-polarized light. Field

of view is 2.8 mm. C, D: Backscattered electron images of zoned plagioclase

phenocrysts.
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An mol% vs Frequency of Cores and Rims of Plagioclase Phenocrysts in Andesite and Basaltic Andesite
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Figure 65: Histogram of plagioclase phenocrysts.
Histogram of An mol% versus frequency of core and rim analysis of plagioclase
phenocrysts in both andesite and basaltic andesite.
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Table 8: Point count analysis of andesite.
Part 1: Point counting analysis showing the modal abundance of the mineral phases in
andesitic samples. Part 2: Point count analysis showing modal abundance of melt
inclusions/glass.

Part 1 Modes

Sample 12-19-8a 32825

Groundmass 44.4 48.1

Opaque Minerals 2.7 3.4

Mafic Silicates 15.1 11.4

Plagioclase 37.9 37.2

Phenocrysts 72.5 69.1
(>.13mm)

Microphenocrysts 27.9 31.0
(<.13mm)

Part 2 Crystal and Melt Inclusion Modes

Sample 12-19-8a 32825

Phenocrysts Microphenocrysts Phenocrysts

Melt Inclusions

Clustered in Center 37.1 12.8 16.1

Single Zone 21.0 4.3 17.8

Spread Out 63.7 51.1 55.2

Very Large 23.4 4.3 21.3

None 0.8 29.8 21.8

Radiating 4.0 0 0
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Anhedral 62.9 57.5 70.7

Euhedral 37.1 42.6 29.3

Resorbed Center 21.8 2.1 13.2

Zoned 88.3 68.1 86.8
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B Transect of Zoned Plagioclase in Cumulate Xenolith 12-20-3
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Figure 66: Zoned plagioclase in gabbroic xenolith.
A: Photomicrograph in cross polarized light of zoned plagioclase grain in cumulate
gabbroic xenolith. Field of view is 2.8 mm. B: core to rim transect of zoned plagioclase

grain.

Figure 67: Photomicrographs of plagioclase in gabbroic xenolith 12-19-18.
Photomicrograph in plane polarized (A) and cross polarized (B) of plagioclase in

cumulate xenolith sample 12-19-18 showing little or no breakdown. Field of view is 2.8

mm.
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Figure 68: Photomicrographs of plagioclase in gabbroic xenolith 12-20-8.
Photomicrographs in plane polarized (A) and cross polarized (B) light of plagioclase in
cumulate xenolith sample 12-20-8 showing little or no breakdown. Field of view is 2.8
mm.

4RA A

Figure 69: Photomicrographs of plagioclase in gabbroic xenolith 12-20-3.

Photomicrographs in plane polarized (A, B) and cross polarized (C) light of plagioclase

in cumulate xenolith sample 12-20-3. Field of view is 2.8 mm. A shows spongy textured

plagioclase with glass. B and C show microcrystalline plagioclase.
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A Transect of Megacryst in Andesite 32822b-6-1

100 - --
S90

3- 80-- -
0

E 70 - - - - -
a 60 - - -
Q 50 -- --

40

0 100 200 300 400 500 600 700 800 900 1000

Trans ect Distance (microns)

B Transect of Megacryst in Andesite 32824-1-1

100
80 - - -
80
70

c 60 -
Q 50

40

0 200 400 600 800 1000 1200

Trans ect Distance (microns)

Figure 70: Transects of plagioclase megacrysts in andesite.
Representative plagioclase transects, taken core to rim, of megacrysts in andesite
samples. The complete data set is in appendix D.
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Figure 71: Transect of zoned megacryst in andesite.
Transect of zoned plagioclase megacryst in andesite from core to rim.
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Transect of Megacryst in Basaltic Andesite C-4 2.4 C 2-1
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Figure 72: Transect of megacryst in basaltic andesite.
Transect of plagioclase megacryst in basaltic andesite from core to rim.
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Figure 73: Transects of plagioclase phenocrysts in andesite.
Representative transects of normally zoned plagioclase phenocrysts in andesite, taken

from core to rim. Complete data set in appendix D.
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A Transect of Phenocryst in Basaltic Andesite C4 2.4 C 1-3
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Figure 74: Transects of plagioclase phenocrysts in basaltic andesite.
Representative transects of normally zoned plagioclase phenocrysts in basaltic andesite,
taken from core to rim. Complete data set in appendix D.
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BB Transect of Reversely Zoned Phenocryst in Andesite Calbuco-1 3-2
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Figure 75: Reversely zoned transects of plagioclase phenocrysts in andesite and basaltic

andesite.
Representative transects of reversely zoned plagioclase phenocrysts in andesite (top two)
and basaltic andesite (bottom 2), taken from core to rim. Complete data set is in

appendix D.
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A Mg vs Transect Distance 32824-3-3
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Figure 76: Trace element transects comparing electron microprobe count times.
Transects of plagioclase comparing Fe and Mg concentrations detected with long and
short count times. Long count times were 240 seconds with 80 seconds background
counting and short count times were 30 seconds with 10 seconds background counting.
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Figure 77: An mol% versus. trace element partition coefficients.
An mol% versus partition coefficients for partitioning of Fe (A), Mg (B), Ti (C), and Sr

(D) into plagioclase showing a negative correlations. Negative correlation with Mg is

slight. Figures from Bindeman et al. (1998).
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D Mg vs An mol% Megacrysts
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Figure 78: An mol% versus. trace element concentrations in plagioclase phenocrysts.
Plots of An mol% versus trace element concentration (A, B: Fe; C, D: Mg; E, F: Ti; G, H:
Sr) in plagioclase phenocrysts and megacrysts from both andesite and basaltic andesite
samples. Fe, Mg, and Ti show a negative correlation with An mol%, although the
phenocrysts in unit 3 and 4 andesite show only a slight negative correlation for Fe. Sr
correlation with An mol% is more variable.
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Figure 79: Trace element transect comparison with An mol% in andesite.
Representative trace element transects of Fe, Mg, Ti, and Sr versus An mol% in
plagioclase in andesitic samples. Two An mol% spikes, labeled 1 and 2, of greater than 5
mol% have been correlated with respective points on the trace element transects. At both
points 1 and 2 Fe is increasing with increasing An mol%. Mg is decreasing in correlation
with both points. Ti is decreasing with An mol% at point 1 but increasing at point 2. Sr
is increasing at point 1 and decreasing at point 2. The complete data set showing trace
element comparisons with An mol% spikes in andesitic samples is in appendix D.
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Figure 80: Trace element transect comparison with An mol% in basaltic andesite.
Representative trace element transects of Fe, Mg, Ti, and Sr versus An mol% in
plagioclase in basaltic andesite samples. One An mol% spike, labeled 1, of greater than 5
mol% has been correlated with respective points on the trace element transects. This
example shows all four trace elements decreasing with increasing An mol%. The
complete data set showing trace element comparisons with An mol% spikes in basaltic
andesite is in appendix D.
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Figure 81: Photomicrographs of plagioclase textures.
Photomicrographs and back scattered electron image showing sieve textures and patchy
zoning. A and B show sieve textured plagioclase. A is a photomicrograph taken in plane
polarized light showing sieve textures in the core of a plagioclase grain. Field of view is
2.8 mm. B is a backscattered image of the same plagioclase grain. C and D are showing
patchy zoning in plagioclase. Both are photomicrographs taken in cross polarized light of

the same plagioclase grain. The field of view for C is 2.8 mm, and for D is 1.1 mm.
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Figure 82: Photomicrographs of volcanic glass in plagioclase.
Photomicrographs in plane and cross polarized light of two plagioclase grains with glass
confined within specific growth zones. Field of view is 2.8 mm.
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Figure 83: Photomicrograph of major plagioclase resorption zones.
Photomicrograph in cross polarized light showing two major resorption zones. Field of
view 1.1 mm.

Figure 84: Photomicrograph of minor plagioclase resorption zones.
Photomicrograph in cross polarized light showing three minor resorption zones. Field of

view 1.1 mm.
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Figure 85: Plagioclase resorption and growth zones.
Representative plagioclase transect (transect line indicated) with major and minor

resorption zones indicated (rI, r2 , and R 3). Resorption zones are followed by An mol%

spikes. A, B, C, and D are four growth zones representing time between resorption
events. Growth zones A and B both show a sharp drop in An mol% of 10% and 12%

respectively. Photomicrographs- A: Showing the location of the electron microprobe
transect on plagioclase crystal corresponding to transect 12-20-7a-5-1, B: Location of

major (R) resorption zone, and C: Location of minor (r) resorption zones. A: Field of

view is 2.8 mm, B, C: Field of view 1.1 mm.
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SiO 2 vs K20 of Glass in Three Plagioclase Populations
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Figure 86: SiO 2 versus K 20 of glass in plagioclase.
Plot of SiO 2 wt% versus K 20 wt% of glass trapped within plagioclase phenocrysts and
plagioclase grains in cumulate xenoliths and crystal clusters.
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E SiO 2 vs CaO
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H SiO2 vs P2 OS
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Figure 87: SiO 2 versus oxides in bulk glass analysis in plagioclase phenocrysts.
Plot comparing wt% oxides (MgO, Fe2O3, A12 0 3, TiO 2, CaO, Na20, K20, and P20 5 )
versus wt% SiO2 for bulk analysis of glass trapped in plagioclase phenocrysts,
plagioclase in crystal clusters, and plagioclase in cumulate xenoliths. Glass analyses
have been screened for crystal structure, however outlying data points may be overlap,
due to use of a defocused beam on the electron microprobe, between the glass and host
crystals or post entrapment crystals.
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Figure 88: SiO 2 versus oxides of bulk glass analysis in all plagioclase populations.

Plot comparing wt% oxides (MgO, Fe 2O 3, A12 0 3, TiO2 , CaO, Na20, K 20, and P 20 5 )
versus wt% SiO 2 for bulk analysis of glass trapped in plagioclase phenocrysts,
plagioclase in crystal clusters, and plagioclase in cumulate xenoliths with bulk analyses
of Calbuco and Osorno lavas, Calbuco pyroclastic and debris flows, and Calbuco fallout

and surge deposits. Glass analyses have been screened for crystal structure, however

outlying data points may be overlap, due to use of a defocused beam on the electron

microprobe, between the glass and host crystals or post entrapment crystals.
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Chapter 7. Discussion

7.1 Introduction

This chapter discusses hornblende crystallization and breakdown, as well as the

magmatic processes recorded in plagioclase crystals. The discussion of hornblende

crystallization includes the gabbroic xenoliths, chemical stability of the hornblende

crystals, Cr content comparisons with hornblende from Volcin San Pedro, and the

mineral make-up of hornblende breakdown reaction products. Discussion of specific

condition changes in the magma chamber recorded in the plagioclase includes magma

mixing, magmatic temperature changes, changes in dissolved H20 content of the magma,

magma chamber convection driven circulation, magma chamber pressure changes, and

plagioclase equilibrium crystallization kinetics. This chapter also contains an overview

of the magmatic properties of Calbuco andesite and basaltic andesite, including mineral

stability, temperature, pressure, dissolved water content, and magmatic density, as well as

an overview of the magmatic processes inside Calbuco, including crystal fractionation,

magma chamber convection, and magma recharge.

7.2 Hornblende Crystallization

7.2a Gabbroic Xenoliths

An understanding of the origin of the gabbroic xenoliths found in Calbuco

Volcano's eruptive products is important to an understanding of magmatic processes

there. A primary question is whether they are true xenoliths (i.e. fragments of country

rock) or whether they are sections of a related cumulate pile entrained in the magma. If

they are part of the cumulate pile, they provide information about magmatic evolution of

Calbuco lava. If they are xenoliths, they are potential contaminants for the magma. In
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addition to the gabbroic xenoliths, there are also granulite xenoliths which have been

previously determined to be country rock incorporated within the magma (Hickey-Vargas

et al., 1995). It has also been found that Calbuco has been influenced by crustal

contamination (Lopez-Escobar et al., 1995).

7.1a.i Evidence for Gabbroic Xenoliths Being Cumulate

Gabbroic xenoliths consist of plagioclase, orthopyroxene, minor clinopyroxene,

olivine, hornblende, magnetite t ilmenite and accessory phlogopite and apatite, which is

the same overall mineral assemblage as the phenocryst mineral assemblage in the lava.

This fact alone is not compelling evidence that these gabbroic xenoliths are cumulate

since the possibility exists that they could be country rock with a similar igneous origin,

and therefore the same mineral assemblage. In order for the gabbros to be cumulate, they

must have crystallized from the magma at an earlier time and would therefore be

chemically similar to the phenocrysts in the lava. Analysis of the mineral phases shows

that the major element chemistry of the coarse grains overlaps that of the individual

hornblende, orthopyroxene, clinopyroxene, olivine, and magnetite phenocrysts, and the

cores of zoned plagioclase phenocrysts (Figure 89, Figure 90, Figure 91, Figure 92,

Figure 93). The Mg-number of all individual mafic phases can be compared (Figure 94)

and used to estimate how magnesian the magma was from which the minerals

crystallized. This comparison shows that there is some variation in the upper and lower

ends of the Mg-number ranges, particularly for clinopyroxene and phlogopite, but that the

overall Mg-number ranges of the mafic phases in the gabbroic xenoliths overlaps with

that of the phenocrysts. The noted limited Mg-number range in clinopyroxene is likely

caused by its low modal abundance. The relatively high Mg-number range of phlogopite
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may also be caused by low modal abundance but could also indicate its formation

accompanying the breakdown of hornblende. L6pez-Escobar et al. (1995) and Hickey-

Vargas et al. (1995) also concluded that the gabbroic xenoliths are cumulate based on

major element modeling of bull rock data and isotopic constraints.

7.2b Hornblende Formation by Primary Crystallization

The conditions required for hornblende crystallization in calc-alkaline magma are

the presence of water, high pressure, and high Na contents of the magma. Figure 95

shows that all of the whole rock analyses of andesite and basaltic andesite, and

microprobe analyses of glass trapped in plagioclase and pyroxene phenocrysts and

cumulates, with the exception of only a few points, have Na2O wt% greater than 3%.

The few points which have low Na2O are also associated with the lowest of the SiO 2

ranges found in any eruptive product from Calbuco, basalt, and significantly higher FeO

and MgO. Therefore, nearly all Calbuco liquid compositions have greater than 3% Na2O.

Exchange Kd values for Al-Si in hornblende have been experimentally derived for

compositions of high-A120 3 basalts through high SiO 2 rhyolites (Sisson and Grove,

1993a). Exchange Kd values for Fe-Mg partitioning between hornblende and melt has

been determined for high-A120 3 basalt through aluminous andesite (Sisson and Grove,

1993a). Figure 96 and Figure 97 are plots showing the exchange of molar Al-Si and Fe-

Mg respectively between the analyzed hornblende phenocryst and whole rock data. In

both instances Calbuco hornblende values coincide with experimentally derived Kd

values. Therefore, these partition coefficients show that hornblende is in equilibrium

with melt from Calbuco, which adds to the evidence for hornblende crystallization from

the magma.
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According to Costa et al. (2002), gabbroic, hornblende bearing, cumulate

xenoliths are commonly found entrained in arc-related eruptive products while

hornblende phenocrysts are rare. Based on the scarcity of hornblende phenocrysts, they

suggested that hornblende in cumulate xenoliths does not crystallize from the magma but

rather forms as a reaction product from the interaction of a cumulate pile and an evolved

melt t aqueous fluid. As evidence for this, they cite the high modal abundance of

hornblende, the high Cr2O 3 wt% and Mg-number of the hornblende and phlogopite

crystals, and the high Na2O wt% of the phlogopite in the cumulate gabbroic xenoliths

entrained in the andesite to dacite lava flows of Volcan San Pedro.

In some respects, hornblende and phlogopite found in the cumulate gabbroic

xenoliths from Calbuco Volcano differ from those found at Volcin San Pedro. Cr2O3

weight percentages of both hornblende and phlogopite are not as high as those reported

by Costa et al. (2002), with the exception of a few anomalously high points. The overall

Cr2O3 values reported by Costa et al. (2002) are 0.9-1.2 wt% for hornblende and 0.4-0.6

wt% for phlogopite. Hornblende from Calbuco has Cr 2O3 values of 0.002-0.08 wt% for

hornblende and 0.02 wt% for phlogopite, which are significantly lower. The few points

with high Cr 2O3 weight percentages, which have up to approximately ten times higher

wt% Cr2O 3, are in sample 12-19-18 which is made up of only one large homblende grain

poikilitically enclosing all other minerals present. Numerous analyses were taken of this

one hornblende grain, all of which are low in Cr 2O3, therefore, these few Cr-rich points

are probably due to Cr-rich micro-inclusions.

Kd values for the partitioning of Cr between hornblende and melt can be used to

determine whether equilibrium existed between hornblende and both andesite and
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basaltic andesite from Calbuco, as well as the potential parent basaltic andesite from

Osorno. Kd values for Cr were calculated from existing hornblende and lava whole rock

analyses. Table 10 shows a comparison of these values with published values from

Sisson (1994), Luhr and Carmichael (1980), and Dostal (1983). The range of calculated

values for partitioning of Cr between hornblende and andesite from Calbuco match the

ranges of values represented by Sisson (1994) and Luhr and Carmichael (1983). The

range of calculated values for basaltic andesite from Osorno and hornblende also match

published value ranges from Sisson (1994) and Dostal (1983). The range of calculated

values for basaltic andesite from Calbuco, which have not been found with hornblende,

do not match published values. Based on the outcome of these calculations, the high Cr

contents of the hornblende reported by Costa et al (2002) would need to have crystallized

from magma with higher Cr contents than the Cr concentrations of Calbuco andesite.

The overall Mg-number range for San Pedro hornblende was 64-80; 70-84 for

phlogopite (Costa et al., 2002). These values overlap the Mg-numbers for these minerals

from Calbuco; hornblende ranges from 65-71 and phlogopite from 77-79. The high Na2O

wt% in phlogopite is also found in the cumulate xenoliths containing phlogopite from

Calbuco. Costa et al. (2002) report 1.13-4.08 wt% Na2O which overlaps the 1.34-1.94

wt% from Calbuco. However, the phlogopite found in Calbuco is low in modal

abundance and restricted to gabbroic xenoliths which have undergone enough interior

melting to have acquired a metamorphic (granulitic) texture. Based on this and on their

high Mg-number range, the phlogopite has probably crystallized as a result of hornblende

crystals breaking down. The appropriate hornblende compositions (Al-Si, Fe-Mg, and

Cr), appropriate Na2O contents of Calbuco lavas and melt inclusions, and the presence of

160



hornblende phenocrysts are compelling evidence that Calbuco magma has crystallized

hornblende. Despite the claim that few hornblende phenocrysts are found in arc-related

volcanism (Costa et al., 2002), hornblende phenocrysts are found in the andesitic lava

from Calbuco, albeit a low modal abundance. An alternate explanation for their low

abundance is that hornblende crystallized at depth and decomposed during

decompression, either in a shallow magma chamber or during eruption.

Lopez-Escobar et al. (1995) also concluded that hornblende crystallized from

Calbuco magma. They concluded that the lower than expected K 20 contents of Calbuco

andesites actually reflect abnormally high SiO2 abundances at a given extent of

crystallization as fractional crystallization of hornblende drives the residual liquid in the

direction of SiO 2 enrichment (Sisson and Grove, 1993a; Cawthorn and O'Hara, 1976;

Pichavant et al., 2002; L6pez-Escobar et al., 1995; Yagi and Takeshita, 1987; Allen and

Boettcher, 1983; Foden and Green, 1992). Consistent with this, L6pez-Escobar et al.

(1995) concluded that the SiO 2 enrichment trend seen at Calbuco was evidence for

fractionation of approximately 30% of the hornblende gabbro assemblage from the

magma (Figure 10 from chapter 2).

7.2c Breakdown Reaction of Hornblende

Hornblende phenocrysts and coarse grained hornblende in cumulate xenoliths are

undergoing decompression melting during magma ascent due to decreasing pressure.

There are three types of reaction products found, 1) a fine to medium grained "gabbroic

type" composed of anhedral plagioclase, orthopyroxene, clinopyroxene, and magnetite,

2) a microcrystalline "black type" product composed of minute iron ore and pyroxene

minerals (Garcia and Jacobson, 1979) and 3) reaction rims on hornblende phenocrysts.
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Garcia and Jacobson (1979) interpreted the "gabbroic type" reaction products to be

caused by dehydration of hornblende as a result of degassing of the magma chamber, and

the "black type" hornblende breakdown as products of dehydrogenation and oxidation

during extrusion due to decreased H 2O fugacity and increased oxygen fugacity relative to

hydrogen fugacity. The "gabbroic type" is also associated with patches of

microcrystalline "black type" reaction products. Two types of reaction rims occur, a

microcrystalline black rim and a medium-fine grained white rim consisting of

plagioclase, pyroxene, and rare oxides. Opacite rims are the result of opacitization of the

hornblende, a process which begins around the outside of the crystal and along fractures

and cleavage planes and can completely replace the hornblende crystal, and is

characterized by increasing amounts of fine-grained magnetite and anhydrous minerals

(Rutherford and Devine, 2003; Devine et al., 1998b). Rutherford and Devine (2003) and

Devine et al. (1998b) have interpreted the cause of opacite rims and opacitization to be

near surface oxidation of the magma. Based on the fact that the "black type" reaction

products described by Garcia and Jacobson (1979) have the same appearance, texture,

and mineral make-up as opacite rims, and that both reaction products have been

interpreted to result from the same process, "black type" hornblende breakdown products

are the same as opacite rim reaction products and the "black type" reaction product is

extensive opacitization of the entire crystal. White reaction rims are produced as a result

of decompression of the hornblende during magma ascent (Rutherford and Devine, 2003;

Devine et al., 1998a, b). Hornblende phenocryst breakdown typically results in reaction

phases forming hornblende pseudomorphs which may or may not contain remnants of the

original hornblende. Evidence of distinct rims is preserved in the microcrystalline
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pseudomorph. Coarse grained hornblende in the cumulate xenoliths is not typically fully

broken down and opacitization is found occurring throughout or rimming the crystal.

In general, the mineral assemblage of the microcrystalline breakdown products

consists of plagioclase, clinopyroxene, orthopyroxene, pigeonite or sub-calcic augite,

olivine, magnetite ilmenite; however, individual mineral associations can vary (Table 4

and Table 5, chapter 5). Analyses have shown that there are 13 different mineral

assemblages out of 22 individual opacite patches throughout gabbroic xenoliths and

phenocrysts:

1) Plag + Cpx + Low-Ca Cpx + Opx + Ol + Mag

2) Plag + Cpx + Low-Ca Cpx + Mag

3) Plag + Cpx + Pig + Ol + Mag Ilm

4) Plag + Cpx + Pig + Opx +01+ Mag

5) Plag + Pig + Low-Ca Cpx + Mag

6) Plag + Cpx + Pig + Opx + Mag

7) Plag + Cpx + Opx + Mag

8) Plag + Cpx + Ol + Mag

9) Plag + Low-Ca Cpx + Mag

10) Plag + Cpx + Mag Ilm

11) Plag + Ol + Mag

12) Plag + Opx + Mag

13) Plag + Mag.

The variability of mineral assemblages formed by hornblende breakdown could

be an artifact of the small size (< 5 microns) of the individual minerals and the imaging
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resolution and spot size of the electron microprobe at FIU. Due to the fact that the

reaction products are mostly too small to see with back-scattered imaging on the electron

microprobe at FIU, it is not possible to know if the phases analyzed represent all the

phases present in any one patch of opacite, and it is possible that it is not representative.

Because of this uncertainty of the analysis, it is assumed that all of the phases found

(plagioclase, clinopyroxene, orthopyroxene, pigeonite or sub-calcic augite, olivine,

magnetite ilmenite) are the collective result of hornblende breakdown. L6pez-Escobar

et al. (1995) reported that hornblende was breaking down to plag + cpx + mag, however

this reaction formed "gabbroic type" reaction products rather than opacitic products.

Hornblende breakdown reactions have been identified for other volcanic centers and

reported mineral assemblages are similar to assemblages listed above. For hornblende in

dacite from the Cascade Range, Garcia and Jacobson (1979) report a breakdown reaction

of Amph -> plag + cpx + opx + mag ("gabbroic type" reaction products). Reaction rims

have been reported for hornblende from Soufriere Hills, Mount Pel6e, and Colima. At

Soufriere Hills the hornblende was in andesite and the breakdown reaction was Hbld -

cpx + opx + plag + mag + melt (Devine et al., 1998a, b). Hornblende is found in andesite

and high-alumina basalt at Mount Pel6e and the breakdown reaction reported is Hbld -

plag + opx + mag (Pichavant et al., 2002). Hornblende in andesite from Colima has the

following breakdown reaction: Amph -> cpx + Fe-Ti oxide (Mora et al., 2002).

Experimental hornblende breakdown has also produced a similar reaction of Amph -- ol

+ cpx + plag + L V for hornblende in high-alumina basalt (Foden and Green, 1992).

Due to the size of the breakdown phases, it is also not possible to identify the presence or

absence of glass (a liquid phase) associated with the reaction or any subsequent reactions

164



taking place among the reaction products. Since hornblende is hydrous, the breakdown

reaction will release water from the mineral which could result in a separate vapor phase

present in the breakdown reaction products in addition to the mineral phases or initiate

melting. The presence of a liquid and/or vapor could also initiate a second reaction

within the reaction products; the olivine could react with the liquid to form

orthopyroxene and oxide minerals.

Crystal clots have been reported by several people and one interpretation of their

formation has been as the reaction products of hornblende breakdown (Castro and

Stephens, 1992; Scarfe and Fujii, 1987; Garcia and Jacobson, 1979; and Sail et al., 1998;

Amma-Miyasaka and Nakagawa, 2003). Clusters of crystals, which do vary in mineral

associations but generally consist of plagioclase, orthopyroxene, clinopyroxene, olivine,

and magnetite glass, are found entrained in the lavas. Although the mineral assemblage

in these clusters is similar to that found in both the "black type" and "gabbroic type"

products, the crystal clusters are distinctly different. Contrary to the microcrystalline and

medium grain sizes found in the two hornblende reaction products, the crystal clusters are

predominantly coarse grained. The occasional presence of zoned plagioclase crystals

incorporated in the center of these clusters is compelling evidence that they have not

formed by the breakdown of hornblende. The clusters do not resemble hornblende

pseudomorphs, there is no evidence of a microcrystalline rim around the outside of the

cluster, and they lack the presence of the black microcrystalline material found in all

other hornblende breakdown products. Based on these things, I interpret that these

clusters are not hornblende breakdown reaction products. It is likely that they are
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accumulations of phenocrysts from the magma chamber walls, from the cumulate pile, or

phenocryst agglomerates.

7.3 Changes in Magma Chamber Conditions Recorded in Plagioclase

Plagioclase records fluctuations in magma chamber conditions throughout the

growth cycle of the crystal. The coupled substitution of Ca-Al and Si-Na in the crystal

structure "freezes" the chemistry of each growth zone prohibiting diffusion across zones

(Grove et al., 1984). Plagioclase zoning, or changes in An mol% of the crystal, from core

to rim can indicate the magmatic processes inside the volcano at the time of formation of

that particular zone. Many of these magmatic processes can not be distinguished from

one another by textural or major element chemical analysis alone, such as increased

temperature versus increased H 20 content. The use of trace elements variations in

addition to An mol% variations can help to distinguish between these (Singer et al., 1995

and Ginibre et al., 2002b). Changes which can be recorded in plagioclase zoning include:

1) magma mixing resulting in compositional change within the magma chamber, 2)

magmatic temperature change, 3) change in amount of dissolved H20, 4) changes

resulting from convection-driven magma chamber circulation, 5) pressure changes, and

6) small-scale equilibrium crystallization kinetics (Singer and Pearce, 1993; Singer et al.,

1995; Holten et al., 1997).

7.3a Magma Mixing

Magma mixing changes the composition of the magma, and mixes together

crystals which were in equilibrium with each magma. The compositional change of the

magma will affect the An mol% of new plagioclase zones crystallizing in equilibrium

with the magma. Calcic plagioclase (i.e. high An) crystallizes in equilibrium with mafic
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(calcic) magma, and becomes more sodic as the magma is driven toward a more felsic

composition. Mixing events can be recorded as variations in An mol%. Mixing with a

more mafic magma will cause a increase in the calcium content of the magma, and

subsequently the lower An mol% growth zone in contact with the magma will no longer

be in equilibrium and resorption will take place. Plagioclase crystallization will continue

at a higher An mol%. Textural and chemical analysis of this plagioclase will show

resorption surfaces cutting across one or many zones and An mol% spikes where mixing

with a more mafic magma was recorded. Mixing with a more felsic magma will result in

outward crystallization of more sodic plagioclase, and therefore transects of the grains

will show sudden drops in An mol%. Fluctuations in trace element concentrations in

plagioclase will also be expected with magma mixing. Mixing with a more mafic magma

will bring higher concentrations of Fe, Mg, and Ti. Crystal structure constraints cause

these elements to have a negative correlation with An mol%, therefore mixing with a

more mafic magma and partitioning have opposing effects. Mixing with a more felsic

magma is likely to cause an increase in the concentration of Sr in the plagioclase because

Sr partitioning into plagioclase is enhanced by the Na content of the plagioclase. The

decrease in the An mol% of the plagioclase in equilibrium with a more felsic magma will

increase the partitioning of Sr into the crystal structure.

Plagioclase transects from Calbuco show An mol% spikes as well as occasional

An mol% drops. In thin section, these An spikes can be texturally correlated with

resorption surfaces which cut across one or more compositional zone. In plagioclase in

the andesite, Fe typically, but not always, increases with An mol% spikes while Mg

decreases (Figure 78, chapter 6); Ti typically has no correlation (Figure 78, chapter 6). In
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basaltic andesite, Fe has no apparent correlation with An mol% spikes while Mg tends to

increase and Ti typically decreases. Fe, Mg, and Ti are used as indicators of mafic input,

however their inconsistent correlations may indicate that data quality for Mg and Ti are

poor (see chapter 6); or 1) that mafic magma is not being incorporated into the magma

chamber and that An mol% spikes and resorption zones are indicative of another process,

2) that concentrations of these elements in the original magma and/or the newly

introduced magma are low, or 3) that the concentrations of these elements in the

plagioclase is low due to the high An mol% of the plagioclase and the negative

correlation of these elements with An content. Basalt and basaltic andesite from Osorno,

the possible parent composition for Calbuco (Lopez-Escobar et al., 1995) have similar

amounts of Fe, Mg, and Ti (as well as Sr), to Calbuco basaltic andesite and andesite.

This uniformity in the composition of mafic endmembers indicates that the

inconsistencies in correlation with An mol% spikes are not likely caused by differences

in the concentrations of these elements between two mixing magmas. Taken alone, the

correlation of Fe with An mol% spikes in the andesite is consistent with input of mafic

magma (ex. section 7.3a above). Gradual drops happen over tens of microns (i.e., several

analysis points) and abrupt drops are large decreases, ranging from approximately 12-24

An mol%, within 10 microns. Gradual drops in An mol% would be consistent with

mixing with a more felsic, or differentiated magma as the two magmas will homogenize

over time causing a gradual compositional change throughout the whole magma chamber.

7.3b Temperature Changes

Temperature plays a role in the composition of the plagioclase crystallized.

Higher temperatures will stabilize more calcic plagioclase and the calcium content of the
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plagioclase will decrease as the temperature decreases (Figure 98a). Therefore, a change

in the temperature of the magma chamber will result in a change in the An mol% of the

plagioclase crystallizing in equilibrium. Raising the magma temperature will increase the

An mol%. Conversely, decreasing the temperature will crystallize lower An plagioclase.

Transects from the core to the rim of a plagioclase grain will show sudden drops in An

content if the magmatic temperature has decreased and sudden increases, spikes, in An

content with temperature increases. In addition to An spikes, increased temperature will

also result in resorption of the outermost zone or zones of the plagioclase which were in

equilibrium with the magma before the temperature increase. Temperature fluctuations

alone do not have a strong effect on the partitioning of Mg, Ti, or Sr into plagioclase;

however Fe may have a negative correlation with temperature (Ginibre et al., 2002b;

Sugawara, 2001). Therefore, considering the effects of temperature variation alone, the

Ca and Na, and possibly Fe, contents of the plagioclase will be observed to change.

However, since temperature fluctuations are likely caused by mixing with magma of a

different temperature, effects listed above will also be recorded. Transects of plagioclase

from Calbuco show both An mol% drops and spikes, as well as resorption surfaces. This

is consistent with both a rise and drop in temperature, which would be expected as a

result of periodic mixing between more and less mafic magmas.

7.3c Dissolved H2 O Content

Dissolved H 20 in the magma also has an effect on the composition of the

plagioclase crystallized in equilibrium. An H20 rich magma will stabilize calcic

plagioclase. Due to the depression of the plagioclase solidus with water saturation

(Figure 98b), initial plagioclase crystallization will be suppressed until lower
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temperatures are reached, and therefore higher An plagioclase will be stable at lower

temperatures than plagioclase with the same An content in an anhydrous magma.

Variations in dissolved water content will be recorded in variations in the An mol% of

the growth zone in equilibrium with magma. A decrease in H 20 in the magma will cause

a decrease in the An mol% which is in equilibrium.

One likely method for water entering the evolving Calbuco magma is through

crustal contamination with hydrous country rocks. L6pez-Escobar et al., 1995 noted that

basement rocks consist of several units which could contribute to the water content of the

magma during crustal assimilation. One of the metamorphic host rocks for the

underlying Miocene Patagonian Batholith is a staurolite-bearing mica schist of the

Sotomo Chaiquenes Metamorphic Complex. In addition, the plutons making up the

batholith also have hydrous assemblages containing hornblende, and other amphibole

varieties, and biotite with minor amounts of muscovite. Based on major, trace element,

and isotopic evidence, Lopez-Escobar et al. (1995) and Hickey-Vargas et al. (1995)

concluded that a pelitic metamorphic rock, not represented among the xenoliths, was the

dominant contaminant for Calbuco lavas. In either of these cases, increased H2 0

contents would be associated with a felsic crustal input. Transects from core to rim of

plagioclase grains will show an An spike and resorption if the H20 in the magma

increases, and a drop in An mol% if H 20 content decreases. The partitioning of Fe, Mg,

Ti, and Sr between plagioclase and melt is not directly affected by the H20 content of the

magma; therefore, fluctuations in these trace elements in correlation with An mol%

fluctuations would not be expected except when related to other changes induced by

contamination.
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As discussed above, transects of plagioclase from Calbuco show both An mol%

spikes and drops, and also resorption surfaces. In the andesite, spikes are accompanied

by Fe-enrichment, which is inconsistent with felsic input, but could result from increased

Fe /Fe2 . In the basaltic andesite, there is no Fe enrichment, thus increased H 2O is a

possible cause for An mol% spikes.

Ca# plots (Figure 99) of bulk rock versus plagioclase phenocryst and megacryst

cores and rims relative to experimentally derived exchange partition coefficients (Kd) for

Na and Ca (Sisson and Grove, 1993a) show that initial crystallization took place in a

water rich environment. The exchange Kd values for Ca-Na in plagioclase and melt were

derived from water saturated experiments containing 2, 4, and 6 wt% H20 at 2-5, 1, and

2 kbars pressure respectively (Sisson and Grove, 1993a). These Kd values bracket the

majority of the core compositions of the phenocrysts and megacrysts suggesting that

these cores crystallized in the presence of high H 20 contents or at H20 saturation. The

rims of both crystal populations are not as well constrained by the Kd values.

Approximately half of the rims on the phenocryst grains are bracketed by these values,

whereas the other half of the phenocryst rims and none of the megacrysts rims are

bracketed. Kd values for anhydrous crystallization of plagioclase at atmospheric pressure

are also plotted against the rim Ca# values and successfully bracket some of the rim

values for both the phenocrysts and megacrysts. This would suggest that the rims

crystallized in the presence of either a lower concentration of dissolved water, or a

pressure lower than that represented by the Kd values for the given water contents. In

order for the water concentration in the magma to change and affect the plagioclase rim

crystallization, one or more of three processes needs to take place. 1) Calbuco would
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need to have undergone degassing to release some of the dissolved water, 2) a decline in

the rate or amount of contamination of the magma chamber with hydrous country rocks,

and 3) small recharge events with less hydrous magma, both of which would also change

the temperature and magma composition.

7.3d Magma Convection

Convection driven circulation can be difficult to distinguish from episodic

changes in composition, temperature, H 20 wt%, and pressure. Convection in a magma

chamber can take crystals through compositional, temperature, H20 wt%, and pressure

gradients within the magma chamber (Ginibre et al., 2002b). As the crystal passes

through these gradients, the An mol% is affected in the same way it would be for magma

mixing, temperature change, fluctuations in H20 content, and changes in pressure.

Ginibre et al. (2002b) distinguished convection in the magma chamber from temperature

changes due to episodic mixing or differentiation by a lack of correlation of resorption

between individual crystals. They concluded that when resorption surfaces are not

present in all crystals, there has been convective crystal movement through thermal and

compositional gradients, rather than discrete events which affect all crystals. Couch et al.

(2001) cited the presence of crystals which display a range of disequilibrium features,

such as reversely and normally zoned crystals, resorption surfaces, wide ranges of

mineral compositions and minerals not in equilibrium with the surrounding rock matrix

as evidence for magma chamber convection through thermal, but not compositional,

gradients. In their study, they found crystals displaying all of these disequilibrium

features on the scale of a single thin section. In agreement with Couch et al. (2001), a

single thin section from Calbuco can contain plagioclase which is normally and reversely
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zoned, sieve textured, and has resorption surfaces within zoning. Similar to the findings

of Ginibre et al. (2002b), there is no major element correlation of resorption surfaces

between crystals. There is also no correlation between Fe, Mg, Ti, or Sr incorporation

into the crystal in connection with resorption surfaces, which would be expected as the

result of convection mainly through a compositional gradient. The lack of correlation

and presence of a variety of disequilibrium features provides evidence in support of

convection through temperature and H20 wt% gradients recorded in plagioclase crystals.

7.3e Pressure Changes

Pressure variations in the magma chamber have only a small effect on the

composition of plagioclase compared to temperature or water content. According to

Ginibre et al. (2002b), there is a variation of 20 mol% An in the plagioclase for every 12

kbar of pressure. Therefore, convection through a pressure gradient is not likely to be

recorded in plagioclase zoning. Two processes which would cause a large and rapid drop

in pressure are degassing and eruption. Degassing releases dissolved volatiles from the

magma which lowers the volatile content in the magma. Water, although not the only

volatile dissolved in magma, is commonly released during degassing, which would lower

the H 20 content of the magma and therefore cause less calcic plagioclase to begin to

crystallize. This type of rapid decompression could be recognized in a transect of a

zoned plagioclase by a sudden drop in An content, and may also cause sieve textures to

develop in plagioclase (Singer et al., 1995; Hammer and Rutherford, 2002; Couch et al.,

2003b). During eruption, plagioclase growth is rapid which causes zones of

progressively more sodic plagioclase to crystallize (Singer et al., 1995; Hammer and

Rutherford, 2002; Couch et al., 2003b). Eruption events will be seen in plagioclase
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transects as sudden drops in An mol% at the rim of crystal. Eruption events prior to the

final eruption in the life of a crystal may also be recorded throughout the growth history

of the crystal due to the fact that not every volcanic eruption will completely empty the

magma chamber. Fe, Mg, Ti, and Sr are not affected by variations in pressure. Rare

plagioclase with sieve textures are found in Calbuco, and sharp drops in An mol% can be

found at the rim of one-third of all the analyzed grains as well as in the interior of a few.

Crystals with sudden An mol% drops at the rim are recording the eruption which brought

them to the surface, while sudden drops in the interior of the crystal are likely recording

prior eruption events. Sieve textured crystals may be recording degassing events, but

their low modal abundance may also indicate that the core of the crystal was out of

equilibrium with the magma and possibly a xenocryst. Since Fe, Mg, Ti, and Sr are not

affected by pressure, correlation between these elements and An mol% variations would

not be expected as a result of pressure changes.

7.3f Equilibrium Crystallization Kinetics

During plagioclase crystallization, coupled substitution of CaAl and NaSi

determine the An mol% of the crystal. As plagioclase crystallizes in equilibrium, the

magma immediately surrounding the crystal can gradually become depleted in Ca and Al,

thus it begins to incorporate increased amounts of Na and Si, which in turn gradually

enriches the surrounding magma in Ca and Al. This exchange will result in zoning with

low An mol% variations commonly called oscillatory zoning. In a plagioclase transect

from core to rim, these variations can be seen as shifts of up to 2 mol% An. All of the

studied trace elements, Fe, Mg, Ti, and Sr, have a negative correlation with the An mol%

of the plagioclase, however An variations of this magnitude would not correlate with
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significant shifts in their concentration in plagioclase. Fine scale zoning oscillations of 1-

2 An mol% are seen in plagioclase transects but are overprinted with larger An mol%

fluctuations. This could be indicative of crystals which have seen periods of equilibrium

crystallization which were interrupted by one or more of the processes discussed above.

7.4 Overview of Magmatic Properties-Calbuco Andesite and Basaltic Andesite

7.4a Phenocryst Stability-Calbuco Andesite

Phenocrysts of plagioclase, orthopyroxene, magnetite, and rare hornblende,

clinopyroxene and olivine are found in the andesitic eruptive products from Calbuco.

Bulk analyses of the andesite plot on the hydrous 2 kbar cotectics of the Cpx-Ol-Qtz and

Plag-Cpx-Qtz phase diagrams (Figure 100, Figure 101), indicating that a mineral

assemblage of plagioclase, olivine, and clinopyroxene should be stable in the andesite.

Despite this, orthopyroxene and plagioclase are the most abundant mineral phases found

in the andesite with only rare clinopyroxene and olivine crystals. The olivine, and some

of the clinopyroxene, found are in reaction and decomposing and are therefore texturally

out of equilibrium with the andesite. Based on partition coefficients for the exchange of

Fe-Mg between the crystals and the magma, Figure 102 and Figure 103 show that some

crystals of olivine, orthopyroxene, and clinopyroxene are chemically stable in Calbuco

andesite. The remaining clinopyroxene and orthopyroxene grains trend to higher

concentrations of Fe than that which would be in equilibrium with the andesite, as well as

some of the olivine crystals. A few olivine crystals also trend toward higher Mg

concentrations. The pigeonite rims are much higher in Fe and not stable in the andesite.

The finding that not all of the pyroxene and olivine crystals are in equilibrium with the

andesite is expected with the occurrence of magma chamber convection. Couch et al.
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(2001) determined that one result of magma chamber convection is the presence of a

diverse group of mineral phases which were not in equilibrium with the surrounding rock

matrix. Plagioclase phenocrysts show some disequilibrium textures. The cores,

however, are stable in Calbuco andesite. Exchange Kd values for Ca-Na under hydrous

conditions, ranging from 1-2 kbars (Figure 99), bracket the phenocryst core compositions

and show that plagioclase rim compositions range from being stable under the same

conditions as the cores to less hydrous, lower pressure conditions. Plagioclase megacryst

cores in the andesite plot at the upper limit of the exchange Kd plots and trend to possibly

higher water contents than that experimentally produced by Sisson and Grove (1993a),

however the rims of these crystals are in the same stability range as the phenocryst rims.

The megacrysts have unzoned anorthitic cores with zoned rims of lower An content. The

cores of the crystals are fractured and the core and rim are separated by a significant drop

in An mol%. The unzoned nature of the cores and the large An mol% decrease at the

beginning of the zoned rims shows that these crystals are texturally out of equilibrium

with the andesite. Chemically however, plagioclase megacryst and phenocryst cores, and

approximately half of the rims, are stable in the andesite from Calbuco. Hornblende and

olivine crystals show textural evidence of instability and reaction. The factors controlling

the stability of hornblende are the pressure of the magma chamber, the dissolved water

content of the magma, magma chemistry, and, to a lesser degree, magmatic temperature.

Hornblende phenocrysts are rounded and rimmed or completely replaced with opacite

formed by the loss of H 20 and increase of oxygen in the magma. Although these crystals

are breaking down, partition coefficients for the exchange of Al-Si and Fe-Mg between

the hornblende and the magma show that the hornblende is in chemical equilibrium with
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the magma (Figure 96, Figure 97). Therefore, hornblende is not stable under the physical

conditions of the main body of the magma chamber but is still crystallizing from the

magma. This indicates that the deeper portion of the magma chamber is at a high enough

pressure and has enough dissolved H 20 to stabilize hornblende. Due to the convection

and recharge of the magma chamber, it is difficult to determine which mineral phases are

stable. Chemically, hornblende, some olivine, orthopyroxene, and clinopyroxene,

plagioclase cores, and approximately half of the plagioclase rims stable in the andesite

from Calbuco, while some orthopyroxene, clinopyroxene, and olivine, and pigeonite rims

are not chemically stable. Texturally, hornblende, olivine, and clinopyroxene, and select

plagioclase zones are not stable in the andesite. Olivine, clinopyroxene, and hornblende

are found only as rare phenocrysts. Hornblende is breaking down and olivine is reacting

with the magma, and some of the clinopyroxene phenocrysts are sieve textured.

Plagioclase shows complex oscillatory zoning and resorption surfaces. The andesite is

likely to be crystallizing plagioclase, orthopyroxene, hornblende, and magnetite with

small amounts of olivine and clinopyroxene. Although the homblende is rare, it is in

chemical equilibrium with the magma and is found in more abundantly in the cumulate

gabbroic xenoliths (discussed below). Partition coefficients to determine the chemical

stability of magnetite in the andesite have not been found, however they are a common

mineral phase in arc magmas and there is no textural evidence of instability, therefore

they are likely to be stable in the andesite. The majority of the olivine and clinopyroxene

are likely to have crystallized before the magma was differentiated to the point of

andesite.
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7.4b Phenocryst Stability-Calbuco Basaltic Andesite

Phenocrysts of plagioclase, olivine, and orthopyroxene are found in basaltic

andesite eruptive products from Calbuco along with microphenocrysts and rims of

pigeonite (on olivine phenocrysts). In contrast to andesite, hornblende does not occur as

a crystallizing phase. Bulk analysis of the basaltic andesite plotted on Cpx-Ol-Qtz and

Plag-Cpx-Qtz phase diagrams (Figure 100, Figure 101) indicate that the stable mineral

phases expected are plagioclase and olivine. Despite this, orthopyroxene is also an

abundant mineral phase in the basaltic andesite. Compared with andesite plotted on the

same Cpx-Ol-Qtz and Plag-Cpx-Qtz phase diagrams, basaltic andesite plots above the 2

kbar saturated cotectics, towards higher water pressures than andesite. Olivine crystals

found rimmed with pigeonite and are therefore texturally out of equilibrium with the

basaltic andesite. Based on partition coefficients for the exchange of Fe-Mg between the

crystals and the magma, Figure 102 and Figure 103 show that pigeonite and the majority

of the olivine phenocrysts are chemically unstable in Calbuco basaltic andesite. Some

orthopyroxene crystals are stable in the basaltic andesite, however increasing Fe content

of the olivine causes it to trend away from the stability line (Kd value). This trend of a

few olivine and pyroxene crystals stable while the majority trend away from stability is

similar to the chemical stability of pyroxene and olivine in Calbuco andesite. Due to

magma recharge and subsequent magma chamber convection, mixing of andesite and

basaltic andesite, the presence of several mineral phases out of equilibrium with the

magma is not unexpected (Couch et al., 2001). Exchange Kd values for Ca-Na in

plagioclase under hydrous conditions, ranging from 1-2 kbars (Figure 99), bracket the

phenocryst core compositions and show that plagioclase rim compositions range from
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being stable under the same conditions as the cores to less hydrous, lower pressure

conditions. Plagioclase megacryst cores in the basaltic andesite plot at the upper limit of

the exchange Kd plots and trend to possibly higher water contents than that

experimentally produced by Sisson and Grove (1993a), however the rims of these

crystals are in the same stability range as the phenocryst rims. The megacrysts have

unzoned anorthitic cores with zoned rims of lower An content. The cores of the crystals

are fractured and the core and rim are separated by a significant drop in An mol%. The

unzoned nature of the cores and the large An mol% decrease at the beginning of the

zoned rims shows that these crystals are texturally out of equilibrium with the basaltic

andesite. Chemically however, plagioclase megacryst and phenocryst cores, and

approximately half of the rims, are stable in the basaltic andesite from Calbuco, while

only the most Mg-rich orthopyroxene and olivine are chemically stable. Texturally,

olivine is also unstable in the basaltic andesite. Therefore, the basaltic andesite was

probably crystallizing plagioclase + orthopyroxene + magnetite + olivine.

7.4c Magmatic Physical Properties-Calbuco Andesite

Physical properties of the andesitic magma from Calbuco have been estimated

from published density, geothermometry, and geobarometry calculations and

experimentally derived phase diagrams for andesite and basaltic andesite from Medicine

Lake, Volcan Colima, Soufriere Hills, and Mount Pel6e. Temperature estimates using

geothermometry calculations were attempted using two-pyroxene thermometry from

Lindsley (1983) on clinopyroxene and orthopyroxene phenocrysts with the same range of

Mg-numbers and plagioclase-hornblende thermometry from Holland and Blundy (1994).

The two pyroxene thermometry gave a very broad temperature range due to crystal
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compositions clustering over several isotherms on the thermometer quadrilateral,

therefore temperature values from this procedure are not reported. Pressure estimates

using geobarometry calculations have been done for the analyzed hornblende phenocryst

following the regression in Hammarstrom and Zen (1986) for measurements of Al in

hornblende. Density calculations were done using a CIPW norm calculation spreadsheet

provided by Kurt Hollocher (http://www.union.edu/PUBLIC/GEODEPT/COURSES/

petrology/norms.htm).

7.4c.i Magmatic Temperature-Calbuco Andesite

Plagioclase-hornblende thermometry calculations give a temperature range for

hornblende in the andesite of 840-930 C. Published phase diagrams (Figure 61, chapter

5) show temperature ranges of possible andesite stability, based on the mineral

assemblage, of approximately 810-975 C. Despite the lack of quartz in the crystallizing

assemblage of Calbuco andesite (discussed in chapter 5), the temperature ranges

calculated from the Al in hornblende geothermometry overlap with the ranges from the

phase diagrams.

7.4c.ii Magmatic Pressure-Calbuco Andesite

Partition coefficient plots (Figure 99) for the exchange of Ca-Na between

plagioclase phenocrysts and melt show that the cores of these crystals are stable between

approximately 1-2 kbars (3-6 km) under water saturated conditions or 2-5 kbars (6-15

km) with undersaturated conditions, and the majority of the rims from 2-5 kbar (6-15 km)

under water undersaturated conditions to atmospheric pressure (0 km). These same Kd

plots show that plagioclase megacryst cores are stable at 2+ kbars (6+ km) under water

saturated conditions and rims are stable under the same pressure conditions as the
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phenocryst rims. Calculated phase diagrams (Figure 100, Figure 101) show that Calbuco

andesite could be stable at 2 kbars pressure under either water saturated or unsaturated

conditions. Published phase diagrams in Figure 61 (chapter 5) also show that Calbuco

andesite could be stable at approximately 1.25-2.25 kbars pressure, which corresponds to

approximately 4-7 km, or at a higher pressure of 4 kbars (12 km). The only

geobarometry method which gives pressure values which do not coincide with other

values is the Al in hornblende regression. The pressure range calculated by this method

is 6-8 f2 kbars (18-24 6 km), however this method is expected to return pressure values

which are higher than actual values due to the lack of quartz in the crystallizing

assemblage (discussed in chapter 5).

7.4c.iii Dissolved Water Content and Magma Density-Calbuco Andesite

Dissolved water is common in arc magmas. Initially, water enters the mantle

from dehydration of the subducting slab (Stern, 2002), so Calbuco's initial magma

derived from the mantle would be hydrous. In the SVZ, Selles (2004) suggested that

excess water may also be coming from a subducted fracture zone which lies underneath

Calbuco, and also Nevado de Longavi, a hornblende-bearing volcano in the TSVZ. The

fracture zones expose large amounts of the hydrous mineral serpentinite deep within the

subducted lithosphere. For Calbuco, crustal contamination with hydrous country rock

probably has also contributed to the water in the andesite (L6pez-Escobar et al., 1995).

Dissolved water content for andesite stability extrapolated from published phase

diagrams in Figure 61 (chapter 5) is approximately 4.5-6 wt%. Calculated phase

diagrams (Figure 100, Figure 101) show an overlapping dissolved water content range of

up to 6 wt% H20. In agreement with this, the dissolved water content range for the
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stability of the plagioclase cores on the Ca-Na exchange Kd plots (Figure 99) is

approximately 4-6 wt% H 20, and for the plagioclase rims the range is 2-4 wt%. Cores of

the plagioclase megacrysts fall into a higher dissolved water content range on the Ca-Na

exchange Kd plots of 6+ wt% H 20, however the rims of these crystals are in the same

approximate range as the phenocryst rims (2-4 wt%). The average calculated density for

the andesite erupted from Calbuco is 2.58 g/cm 3. There is a slight difference in the

average andesitic densities of each stratigraphic unit; Calbuco 1 is 2.56 g/cm 3, Calbuco 2

is 2.57 g/cm 3, Calbuco 3 is 2.58 g/cm 3 , and Calbuco 4 is 2.59 g/cm 3 . This compares with

densities of 2.6-2.76 g/cm3 for plagioclase (albite-anorthite respectively) and 3.19-3.56

g/cm 3 for clinopyroxene, 3.21-3.96 g/cm 3 for orthopyroxene, 3.20-3.59 g/cm 3 for

hornblende, 3.22-4.39 g/cm 3 for olivine, and 5.18 g/cm 3 for magnetite (Nesse, 2000).

7.4d Magmatic Physical Properties-Calbuco Basaltic Andesite

Physical properties of the basaltic andesitic magma from Calbuco have been

estimated in a similar manner as those of andesite, using published density calculations

and experimentally derived phase diagrams for andesite and basaltic andesite from

Medicine Lake, Volcan Colima, Soufriere Hills, and Mount Pele. Density calculations

were done using a CIPW norm calculation spreadsheet provided by Kurt Hollocher

(http://www.union.edu/PUBLIC/GEODEPT/COURSES/petrology/norms.htm).

7.3d.i Magmatic Pressure-Calbuco Basaltic Andesite

Partition coefficient plots (Figure 99) for the exchange of Ca-Na between

plagioclase phenocrysts and melt show that the cores of these crystals are stable between

approximately 1-2 kbars (3-6 km) under water saturated conditions or 2-5 kbars (6-15

km) with undersaturated conditions and the majority of the rims from 2-5 kbar (6-15 km)
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under water undersaturated conditions to atmospheric pressure (0 km). These same Kd

plots show that plagioclase megacryst cores are stable at 2+ kbars (6+ km) under water

saturated conditions and rims are stable under the same pressure conditions as the

phenocryst rims. These pressure conditions are overlapping the pressures for phenocryst

cores and rims and megacryst cores and rims of plagioclase crystals in Calbuco andesite.

Calculated phase diagrams (Figure 100, Figure 101) show that Calbuco basaltic andesite

could be stable at greater than 2 kbars pressure under either water saturated or

unsaturated conditions. Published phase diagrams in Figure 61 (chapter 5) also show that

the basaltic andesite could be stable at approximately 1.25-2.5 kbars pressure, which

corresponds to approximately 4-8 km, or at a higher pressure of 4 kbars (12 km).

7.4d.ii Temperature, Dissolved Water Content, and Density-Calbuco Basaltic Andesite

Published phase diagrams (Figure 61, chapter 5) show temperature ranges of

possible basaltic andesite stability, based on the mineral assemblage, of approximately

850-900 C and broadly from 975-1130 C for pressure ranges of 1.25-2.5 kbars, and from

930 C upwards at 4 kbars. The basaltic andesite is also an inherently hydrous magma

due to dehydration of the subducting slab. The fracture zone, discussed above, which

was proposed to be subducting beneath Calbuco could be an additional source of water in

the basaltic andesite. It has been determined that Calbuco andesite is contaminated with

hydrous country rock (L6pez-Escobar et al., 1995), and it is possible that the basaltic

andesite is also contaminated with the same hydrous country rock. Isotopic studies

would need to be conducted to determine this. Dissolved water content for basaltic

andesite stability extrapolated from the published phase diagrams is approximately 2-6.25

wt%. Calculated phase diagrams (Figure 102, Figure 103) show a probable dissolved
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water content of greater than 6 wt% H 20. The dissolved water content range for the

stability of the plagioclase cores on the Ca-Na exchange Kd plots (Figure 99) is

approximately 4-6 wt% H20, and for the plagioclase rims the range is 2-4 wt%. Cores of

the plagioclase megacrysts fall into a higher dissolved water content range on the Ca-Na

exchange Kd plots of 6+ wt% H 20, however the rims of these crystals are in the same

approximate range as the phenocryst rims (2-4 wt%). Kd plots of the cores of the

plagioclase phenocrysts and megacrysts show a dissolved water content for basaltic

andesite stability which is similar to water content extrapolated from the published and

calculated phase diagrams. The average calculated density for the basaltic andesite

erupted from Calbuco is 2.61 g/cm 3, from stratigraphic unit Calbuco 3.

7.4e Physical Properties of Entrained Gabbroic Xenoliths-Calbuco Andesite

Gabbroic xenoliths entrained in the andesite have an overall mineral assemblage

of plagioclase, hornblende, orthopyroxene rare clinopyroxene, olivine, magnetite rare

ilmenite, and accessory apatite, phlogopite and Fe-sulfide minerals (pyrite or pyrrhotite).

In sample 12-19-18, plagioclase, orthopyroxene, and magnetite are texturally stable while

olivine is reacting to form orthopyroxene and magnetite. Hornblende poikilitically

encloses all other grains and is only slightly broken down with small patches of opacite

along cleavage planes. Only one clinopyroxene grain was found. In sample 12-20-3, the

only phases which are texturally stable are magnetite and phlogopite. The xenolith has

an overall granoblastic texture. Decomposition of plagioclase has left pockets of glass

inside small rounded plagioclase grains which are also surrounded by interstitial glass.

Hornblende has patches of opacite around the outside and throughout the crystal along

cleavage planes. The hornblende, olivine, clinopyroxene, and orthopyroxene are mesh
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textured. Sample 12-20-8 has large grains of magnetite and plagioclase, which show no

textural evidence of instability, with interstitial pockets of olivine, reacting to

orthopyroxene and magnetite, and hornblende breaking down.

Overall, the maximum and minimum range of Fe/Mg in olivine and pyroxene

(orthopyroxene and clinopyroxene combined) from all three xenoliths, plotted against

exchange Kd values (Figure 102, Figure 103), tend to bracket all of the clinopyroxene

phenocryst values from the andesite, half of the orthopyroxene phenocryst values from

the andesite and all of the orthopyroxene phenocryst values from the basaltic andesite,

and only half of the olivine phenocryst values from both the andesite and basaltic

andesite. The Fe/Mg overlap between all of the clinopyroxene phenocrysts and coarse

clinopyroxene grains in gabbroic xenoliths indicates that these pyroxenes may have

crystallized from magma of similar composition and conditions. The Fe/Mg correlation

between orthopyroxene phenocrysts in the andesite and basaltic andesite with coarse

orthopyroxene and olivine grains in gabbroic xenolith indicates that the phenocrysts may

have crystallized in equilibrium with the coarse gabbroic grains at a magma composition

which was less differentiated than andesite, possibly basaltic andesite. In contrast, the

overall Ca-number range (Figure 99) from coarse grained plagioclase in all three

gabbroic xenoliths falls equilibrium range and overlaps the compositions of the

phenocryst and megacryst cores. This correlation with phenocryst and megacryst cores

gives the same pressure and dissolved water content approximation for the coarse grained

plagioclase of 1-2 kbars water saturated with 4-6 wt% H 20 and 2-5 kbars undersaturated

at 2 wt% H 20. This corresponds to an approximate crystallization depth of 3-6 km and

6-15 km respectively.
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7.4f Physical Properties of Entrained Crystal Clusters-Calbuco Andesite

The overall mineral assemblage of the crystal clusters in Calbuco andesite

consists of plagioclase, orthopyroxene, clinopyroxene, olivine, and magnetite. Olivine

crystals, where present, are texturally unstable and reacting to from orthopyroxene and

magnetite. Clinopyroxene crystals are rare in the clusters and sometimes sieve textured,

and plagioclase, orthopyroxene, and magnetite do not show textural evidence of reaction.

Based on this, it is likely that the stable phases in the crystal clusters are plagioclase,

orthopyroxene, and magnetite.

7.4g Physical Properties of Entrained Crystal Clusters-Basaltic Andesite

The overall mineral assemblage of the crystal clusters in Calbuco basaltic andesite

consists of plagioclase, orthopyroxene, and magnetite, olivine. Olivine crystals, where

present, are texturally unstable and reacting to from orthopyroxene and magnetite.

Plagioclase, orthopyroxene, and magnetite do not show textural evidence of reaction.

Based on this, it is likely that the stable phases in the crystal clusters are plagioclase,

orthopyroxene, and magnetite.

7.4h Volcanic Glass-Calbuco Andesite

Volcanic glass is found trapped in plagioclase and pyroxene crystals and

interstitially in gabbroic xenoliths and crystal clusters. In plagioclase phenocrysts, coarse

grained plagioclase in gabbroic xenoliths, and plagioclase in crystal clusters the SiO 2

wt% of the glass ranges from dacitic to rhyolitic (65-74 wt% SiO 2, 65-70 wt% SiO 2, and

63-74 wt% SiO 2 respectively) (Figure 104). In pyroxene phenocrysts and coarse grained

pyroxene in gabbroic xenoliths the trapped volcanic glass ranges from dacitic to rhyolitic

with 65-74 wt% SiO 2 and 69-70 wt% SiO 2 respectively. Interstitial glass in the crystal
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clusters and gabbroic xenoliths is similar to that trapped in plagioclase and pyroxene

crystals. In general, MgO, Fe 2 O 3, and CaO are negatively correlated with SiO2 for all

glass species while A12O3 , Na2O, and K2O are positively correlated with SiO 2 although

the data points tend to be scattered rather than fitting tightly to a trend. TiO 2 and P 20 5 do

not have either a positive or negative correlation with SiO 2 . These correlations between

SiO 2 and other oxides for volcanic glass are similar to the oxide correlations with SiO 2

for the eruptive products from Calbuco and Osorno (Figure 105), although the eruptive

products data show little or no scatter about the trend.. The scatter observed by the glass

data could be the result of post entrapment crystallization of the glass as rich as dacite

(ranges), as shown by glass inclusions in phenocrysts.

7.5 Overview of Magmatic Processes

Based on a synthesis of results from sections 7.1-7.3, I propose the following

overview of the magmatic system at Calbuco. The magmatic plumbing system beneath

Calbuco Volcano is an open system with the uppermost andesitic magma chamber being

fed by recharge with a high-A12O 3 low-MgO basaltic andesite. The presence of magma

recharge suggests that there is another magma chamber or storage/crystallization zone

where the basaltic andesite evolves, and since basaltic andesite is not typically thought to

be derived directly from the mantle, it is likely that there is more than one other magma

chamber. Figure 106 is a sketch of the possible zones of magmatic storage and evolution

beneath Calbuco. The upper-crustal level magma chamber is generally andesitic but may

differentiate to compositions as evolved as dacite between basaltic andesite recharge

events. The mid-crustal level magma chamber is the source of the recharging basaltic

andesite. Looking at the system from the bottom, basalt derived from the mantle would
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first fractionate olivine + clinopyroxene + plagioclase magnetite to become high-A12O3

low-MgO basalt. Subsequently, the high-A12O 3 low-MgO basalt would initially

fractionate plagioclase + olivine + magnetite clinopyroxene with clinopyroxene

crystallization diminishing due to rising magma. This is followed by fractionation of

orthopyroxene clinopyroxene + plagioclase + olivine + magnetite to become high-

A12O 3 low-MgO basaltic andesite. Ascent of the magma from a lower-crustal level

magma chamber to the mid-crustal level magma chamber at a shallower depth causes the

magma to lose saturation with clinopyroxene (Figure 100). Since clinopyroxene is not

found in the basaltic andesite, it is likely that all phenocrysts have been removed by

settling or resorption. Bindeman and Bailey (1999) reported that unzoned anorthite

megacrysts crystallize from slow cooling high-A12O 3 basalt, so their origin would be in

the mid-crustal level magma chamber. The high-A12O 3 low-MgO basaltic andesite is

periodically injected into the upper-crustal magma chamber where it fractionates

plagioclase, orthopyroxene, magnetite, and hornblende clinopyroxene and olivine to

form andesite. Since there is no additional magma chamber for the andesite to feed into,

the magma is likely to differentiate to andesite with higher SiO 2 than that of the erupted

andesite, and may even become as SiO 2 rich as dacite (approximately 63-65 wt% SiO2).

Magmatic processes taking place in the andesitic magma chamber, in addition to magma

recharge, are magma chamber convection, crystal fractionation, and crustal

contamination with hydrous country rock.

7.5a Crystal Fractionation in Andesitic Magma Chamber

Minerals crystallizing from Calbuco andesite (plagioclase, orthopyroxene,

hornblende, and magnetite) subsequently attach themselves to the walls of the magma
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chamber or settle out of the magma and collect in cumulate piles on the floor of the

magma chamber. There has been a long standing question of whether plagioclase would

sink or float in the magma (Cawthorn, 2002 and references therein). One of the main

controls on the sinking or floating of plagioclase is the density of the magma. The

average density of Calbuco andesite is 2.58 g/cm 3 and according to Nesse (2000), the

density of plagioclase (anorthite) is 2.76. Therefore, it is possible for plagioclase

crystallized from the andesite to sink and collect in the cumulate pile with the denser

mafic minerals. This is cumulate pile has been disrupted prior to eruption and entrained

in the andesite as the studied gabbroic cumulate xenoliths. The minerals crystallized may

also attach to the chamber walls. Disruption and entrainment of this mineral collection is

a possible origin for the crystal clusters due to their lack of hornblende. Hornblende is

found as rare phenocrysts, all of which have opacite rims. These rims indicate that the

hornblende is not physically stable in the magma, however phenocrysts have been shown

to be in chemical equilibrium with the magma. Since they are crystallizing from Calbuco

andesite, they must only be stable at the bottom of the andesitic magma chamber. This

also explains the increased abundance of hornblende fractionating out of the magma and

being incorporated into the cumulate xenoliths without the presence of opacite rims. The

little opacite found in the coarse grained hornblende in these gabbroic cumulates is

mostly along cracks or cleavage plains suggesting that it formed during eruption.

7.5b Magma Chamber Convection in Andesitic Magma Chamber

Magma chamber convection circulates crystals through temperature,

compositional and dissolved water gradients within the andesitic magma. One process

which would be responsible for sustaining magma convection is basaltic andesite
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recharge which would cause a variation in magma composition and temperature and

possibly a variation in dissolved water content. According to Cawthorn (2002), vigorous

convection is responsible for keeping phenocrysts in suspension in the magma rather than

allowing them to settle into the cumulate pile. This process is particularly evident is

oscillatory zoned plagioclase and can also be seen in the disequilibrium of minerals found

in the andesite.

7.5c Recharge of Andesitic Magma Chamber with Basaltic Andesite

Due to the narrow SiO 2 range of Calbuco over its lifetime, recharge is likely to

happen through small, frequent basaltic andesite pulses. These frequent pulses would

carry enough basaltic andesite to mix with the more silicic, possibly dacitic, magma in

the upper-crustal magma chamber and form a hybrid andesite with approximately 55-60

wt% SiO2 , however they would also have to be small enough not to cause regular

eruptions. Dacite has not been reported as an eruptive product of Calbuco. This could be

because the dacite in the magma chamber is too crystal rich to erupt and must mix with

basaltic andesite, causing resorption of some of the crystals, in order to enable eruption,

or that the recharge with basaltic andesite, which would mix with dacite to form andesite,

is at a steady enough rate to ensure that the overall composition of Calbuco remains

andesitic. Another reason for the lack of reported dacitic compositions for Calbuco could

be that a comprehensive study of pumice and other fallout deposits from Calbuco's

eruptive events has yet to be done, future work in this area may uncover dacite erupted

from Calbuco. Evidence for the mixing of the andesite and basaltic andesite after

recharge can be found in the pigeonite rims and microphenocrysts in the basaltic andesite

as well as the presence of plagioclase megacrysts.
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Hornblende Composition Comparison Between Cumulate Xenoliths and Phenocrysts
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Figure 89: Composition of hornblende phenocrysts and from gabbroic xenoliths.

Plot of hornblende Mg-number versus Si cations in homblende formula showing

comparison of phenocryst and cumulate xenolith coarse grain compositions.

Recalculation and plot after Leake et al. (1997)
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Figure 90: Composition of pyroxene phenocrysts and from gabbroic xenoliths.

Ternary plot of pyroxene end member compositions comparing ortho- and clinopyroxene

phenocrysts with cumulate xenolith coarse grains.
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Frequency vs Fo mol% Comparison of Olivine Phenocrysts and Coarse Grains in Cumulate Xenoliths
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Figure 91: Composition of olivine phenocrysts and from gabbroic xenoliths.
Histogram of frequency versus Fo mol% of olivine phenocrysts compared with cumulate

xenolith coarse grains.
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Figure 92: Composition of oxide phenocrysts and from gabbroic xenoliths.

Ternary plot of magnetite and ilmenite compositions of both phenocrysts and cumulate

xenolith coarse grains.

192



Frequency vs An mol% Comparison of Plagioclase Phenocrysts and Coarse Grains in Cumulate
Xenoliths
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Figure 93: Composition of plagioclase phenocrysts and from gabbroic xenoliths.

Histogram of frequency versus An mol% of plagioclase phenocrysts and cumulate

xenolith coarse grains.
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Figure 94: Mg# of mafic phenocrysts and gabbroic phases.

Plot of the Mg-number ranges of individual mafic mineral phases of phenocrysts and

cumulate xenolith coarse grains.
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SiO 2 vs Na 2O of Glass Trapped in Plagioclase and Pyroxene Crystals
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Figure 95: Volcanic glass in plagioclase and pyroxene, and interstitial glass.

Plot showing wt% Na2O versus SiO2 of glass trapped in plagioclase and pyroxene

phenocrysts and cumulate xenolith coarse grains. Overlap between glass and enclosing

mineral phase may be possible for small glass pockets due to diffused beam size,
therefore outlying values may be overlapped data.

Table 10: Cr concentrations of hornblende.

Calculated partition coefficient (Kd) value ranges from Cr concentrations in hornblende

and whole rock analyses compared with published Cr Kd values for andesite and basaltic

andesite following the formula Kd=Cr""/Cr". Average bulk rock Cr concentrations

were used as liquid concentrations and hornblende concentrations used were from

individual analyses of hornblende in cumulate xenoliths and one phenocryst. The range

of calculated Kd values reported is compared with published Kd values for respective

magma types.
Kd Values Calculated From Cr Concentrations in Hornblende and Whole Rock Analyses

Versus Published Values

Andesite Basaltic Andesite

Sisson Luhr and Carmichael

Reported Kd (1994) (1980) Sisson (1994) Dostal (1983)

Values 5.1 0.3 31-90 _ 4.2 0.4 12.5

Calculated Kd

Values

Zoned Phenocryst 0.1-7.5 n/a

Calbuco 10-84.5 6.2-52

Osorno n/a 2.3-19.7
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Hornblende-Liquid Al-Si Exchange
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Figure 96: Al-Si exchange in hornblende.
Molar Al-Si exchange plot of Al/Si in hornblende versus melt. Kd value for hornblende

in equilibrium with high-A12O3 basalt to rhyolite (Sisson and Grove, 1993a).
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Figure 97: Fe-Mg exchange in hornblende.

Molar Fe-Mg exchange plot of Fe/Mg in hornblende versus melt. Fe is total iron. Kd

value for hornblende in equilibrium with high-A12O3 basalt to andesite (Sisson and

Grove, 1993a).
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Figure 98: Plagioclase liquidus-solidus loop.
Plagioclase phase diagram showing the positions of the solidus and liquidus under

anhydrous (A) and hydrous (B) conditions. Water saturation depresses the solidus

causing more calcic plagioclase to crystallize at lower temperatures. Diagram from

Philpotts, 1990.
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B Bulk Rock vs. Plagoiclase Phenocryst Rim Ca# Relative to Experimentally Derived Kd Values
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D Bulk Rock vs. Plagioclase Megacryst Rims Ca# Relative to Experimentally Derived Kd Values
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Figure 99: Ca-Na exchange in plagioclase phenocrysts and megacrysts.
Ca# [molar Ca/(Ca+Na)] of the plagioclase grains versus. Ca# of the bulk rock analyses.

Upper and lower limits, along with the majority, of the Ca# of the plagioclase grains in

the entrained gabbros and upper limits and majority values of the Ca# of volcanic glass

are also shown. Experimentally derived Kd values [Kd=(Ca/Napiag/(Ca/Na)Iiq] (Sisson

and Grove, 1993a) from water bearing calc-alkaline rocks have been plotted to constrain

the magmatic conditions. The Kd values correspond to different pressure conditions and

water weight percentages: Kd=5.5 is at 2 kb, water saturated, with 6 wt% H20, Kd=3.4 is

at 1 kb, water saturated, with 4 wt% H20, and 1.7 is from 2-5 kb, water under-saturated,

with 2 wt% H 20. (A) Ca# of the cores of the zoned plagioclase crystals with the upper

and lower limits and majority of the cores of the plagioclase in the entrained gabbros; (B)

Ca# of the rims of the zoned plagioclase grains; (C) Ca# of the cores of the plagioclase

megacrysts with the upper and lower limits and majority of the cores of the plagioclase in

the entrained gabbros; (D) Ca# of the rims of the plagioclase megacrysts. Diagram and

anhydrous Kd values after Rodriquez-Durand and Sen, 2004.
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Figure 100: Ternary Cpx-Ol-Qtz phase diagram.

Ternary Cpx-Ol-Qtz phase diagram projected from plagioclase with atmospheric and 2

kbars hydrous cotectics plotted. 2 kbar cotectics are at water saturation as well as

undersaturation. Olivine, orthopyroxene, clinopyroxene, pigeonite, and quartz stability

fields are shown. Cotectics, from Grove et al. (1983) at atmospheric pressure and Sisson

and Grove (1993a) at 2 kbar pressure, decrease the size of the olivine stability field and

eliminate the pigeonite stability field with increased dissolved water content. Eruptive

products from Calbuco and Osorno are shown. Osorno basalt, basaltic andesite, and

dacite are dark purple diamonds. Light purple diamonds represent a calculated

composition after subtraction of 30% gabbroic mineral assemblage from Osorno basalt

(Lopez-Escobar et al., 1995). Green diamonds are andesitic lava flows from Calbuco, tan

diamonds are Calbuco fallout deposits (andesite), yellow diamonds are Calbuco surge

deposits (andesite), and red diamonds are basaltic andesite debris and pyroclastic flows

from Calbuco.
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Figure 101: Ternary Plag-Cpx-Qtz phase diagram.

Ternary Plag-Cpx-Qtz phase diagram projected from olivine with atmospheric and 2

kbars hydrous cotectics plotted. 2 kbar cotectics are at water saturation or pH 20 at 0.7%

total pressure. Cotectics, from Sisson and Grove (1993a) at atmospheric pressure and at

2 kbar pressure, shift in the direction of plagioclase with increased dissolved water

content. Eruptive products from Calbuco and Osomo are shown. Osorno basalt, basaltic

andesite, and dacite are dark purple diamonds. Light purple diamonds represent a

calculated composition after subtraction of 30% gabbroic mineral assemblage from

Osorno basalt (L6pez-Escobar et al., 1995). Green diamonds are andesitic lava flows

from Calbuco, tan diamonds are Calbuco fallout deposits (andesite), yellow diamonds are

Calbuco surge deposits (andesite), and red diamonds are basaltic andesite debris and

pyroclastic flows from Calbuco.
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Molar Fe/Mg of Bulk Rock vs Ortho- and Clinopyroxene Phenocrysts Relative to Experimentally
Derived Kd Values
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Figure 102: Fe-Mg exchange in pyroxene.

Molar Fe/Mg of the orthopyroxene, clinopyroxene, and pigeonite grains versus. Fe/Mg of
the bulk rock analyses. Upper and lower limits, along with the majority, of the Fe/Mg of
the pyroxene grains in the entrained gabbros are also shown. Experimentally derived Kd

values [Kd=(Fe/Mgpyx/(Fe/Mg)iq] (Sisson and Grove, 1993a) from water bearing calc-

alkaline rocks have been plotted to constrain the magmatic conditions.
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Molar Fe/Mg of Bulk Rock vs Olivine Phenocrysts Relative to Experimental Kd Values

0.6

0.55 --- -

0.5 - Basaltic Andesite C-4

Gabbroic Xenolith Max + aC
Andesite 

32822b
0.45 A_-esite----2

Andesite 32824

" Andesite 32825
0.4

. Gabbroic Xenolith Average --- Kd=.3

0.35 Gabbroic Xenolith Mm - - - Gabbroic Xenolith Max

- - Gabbroic XenolithAverage

0.3 -- - - --- - - - Gabbroie Xenolth Min

0.25 --- Kd=0.3 "

0.2

0.75 0.85 0.95 1.05 1.15 1.25

Bulk Rock Fe/Mg

Figure 103: Fe-Mg exchange in olivine.

Molar Fe/Mg of the olivine grains versus. Fe/Mg of the bulk rock analyses. Upper and

lower limits, along with the majority, of the Fe/Mg of the olivine grains in the entrained

gabbros are also shown. Experimentally derived Kd values [Kd=(Fe/Mgol/(Fe/Mg)iq]

(Sisson and Grove, 1993a) from water bearing calc-alkaline rocks have been plotted to

constrain the magmatic conditions.
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H 2 Glass in PlagioclaseSiO2 VS P205  Phenocrysts
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Figure 104: Bulk analysis of glass in plagioclase, pyroxene, and interstitial glass.

Plot comparing wt% oxides (MgO, Fe 2O 3, A12 0 3, TiO2, CaO, Na20, K 20, and P20 5)
versus wt% SiO 2 for bulk analysis of glass trapped in plagioclase phenocrysts,
plagioclase in crystal clusters and cumulate xenoliths, pyroxene phenocrysts and coarse

grains in cumulate xenoliths, and interstitial glass in crystal clusters and cumulate

xenoliths. Glass analyses have been screened for crystal structure, however outlying data

points may be overlap, due to use of a defocused beam on the electron microprobe,
between the glass and host crystals or post entrapment crystals.
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B SiO2 vs CaO + Osorno Lava
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H1 SiO2 VS P205 + Osorno Lava
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Figure 105: Bulk analysis of glass and Calbuco and Osorno eruptive products.
Plot comparing wt% oxides (MgO, Fe2O 3, A12 0 3, TiO2, CaO, Na 20, K 20, and P205 )
versus wt% SiO 2 for bulk analysis of glass trapped in plagioclase phenocrysts,
plagioclase in crystal clusters and cumulate xenoliths, pyroxene phenocrysts and coarse
grains in cumulate xenoliths, and interstitial glass in crystal clusters and cumulate
xenoliths compared with bulk analyses of Calbuco and Osomo lavas, Calbuco pyroclastic

and debris flows, and Calbuco fallout and surge deposits. Glass analyses have been

screened for crystal structure, however outlying data points may be overlap, due to use of

a defocused beam on the electron microprobe, between the glass and host crystals or post
entrapment crystals.
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Crustal Contamination Connvection Cells

plag + opx + mag + hbld = (cpx - ol)

Upper-crustal
Magma Storage
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(Andesite to Dacite)
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Plag (megacrysts) + ol + magMid-crustal Maama
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(Basalt to Basaltic Andesite)

plag + ol + opx + mag = cpx

Lower-crustal
Magma Storage Cpx - plag + ol +i mag
Zone
(Basalt) paI
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Figure 106: Sketch of Calbuco Magma Storage Zones.

Sketch is not to scale.
Caption on following page.
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Schematic drawing of Calbuco magma storage zones (not drawn to scale).
1) Basalt feeds lower-crustal magma storage zone and fractionates clinopyroxene,
plagioclase, olivine, and magnetite to become high-A12O 3 basalt (HAB).
2) HAB feeds mid-crustal magma storage zone, clinopyroxene crystallization diminishes,
HAB fractionates plagioclase megacrysts, olivine and magnetite to become high-A12O3
basaltic andesite (HABA).
3) HABA fractionates plagioclase, olivine, magnetite, orthopyroxene, and possibly
clinopyroxene.
4) HABA feeds upper-crustal magma storage zone and fractionates plagioclase,
orthopyroxene, magnetite, hornblende, and possibly clinopyroxene and olivine to become
andesite, andesite differentiates possibly as far as dacite between inputs of HABA during
recharge events.
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Chapter 8. Conclusions

Calbuco Volcano, at 4120'S latitude, in the Central Southern Volcanic Zone

(CSVZ) in Southern Chile is a predominantly andesitic volcanic center in contrast to the

many basaltic volcanic centers which surround it. In addition to being andesitic,

Calbuco's eruptive products contain gabbroic cumulate and granulitic xenoliths and

phenocrysts of hornblende. This thesis has generated the following conclusions relating

to the origin of these features.

8.1 Hornblende Crystallization

Results of this work suggest that hornblende crystallizes from Calbuco magmas

starting at basaltic andesite to andesitic compositions. Two new lines of evidence support

this. First, hornblende phenocryst compositions are in equilibrium with the andesite

liquid. Partition coefficients for the exchange of Al-Si and Fe-Mg in high-alumina basalt

to rhyolite and high-alumina basalt to andesite respectively demonstrate the existence of

equilibrium between hornblende phenocrysts and the lava. Plots of both element pairs

show the analyzed hornblende phenocryst to be in equilibrium with the lava. Second,

lavas have characteristics that are consistent with hornblende crystallization based on

experimental studies. Important factors are dissolved H20 in the magma and Na 2O

contents of at least 3 wt% (Sisson and Grove, 1993a; Cawthorn and O'Hara, 1976). The

explosive nature of Calbuco suggests that there is dissolved H20 in the magma, and high

H 20 contents are indicated by plagioclase phenocryst compositions (see discussion

below). Whole rock analyses show that all eruptive products from Calbuco have Na2O

higher than 3 wt%, and glass trapped in plagioclase and pyroxene crystals, both

phenocrysts and coarse grains in the cumulate xenoliths, predominantly have Na 2O wt%
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higher than 3%. The conclusion that hornblende is a crystallizing phase is consistent

with that of L6pez-Escobar et al. (1995), who showed that the unusually high SiO2

contents relative to other oxides found in whole rock analyses of Calbuco lavas is

consistent with approximately 30% fractionation of the crystallizing hornblende gabbro

assemblage from the magma. Crystallization of hornblende will drive the residual liquid

toward increased SiO 2 relative to other oxides (Sisson and Grove, 1993a; Cawthorn and

O'Hara, 1976; L6pez-Escobar et al., 1995; Pichavant et al., 2002; Yagi and Takeshita,

1987; Allen and Boettcher, 1983; Foden and Green, 1992).

8.la Are hornblende-bearing gabbroic xenoliths cognate cumulates?

Coarse grained gabbroic xenoliths entrained in the lava from Calbuco are cognate

cumulates. Evidence for this is: 1) gabbroic xenoliths have the same mineral assemblage

as the phenocryst assemblage in the lavas (i.e. plagioclase, orthopyroxene, hornblende,

magnetite, and rare clinopyroxene and olivine). Electron microprobe analysis of these

phases shows that major element compositions overlap between respective coarse grain

and phenocryst phases. 2) In general, the Mg-number ranges of the mafic phenocrysts

and coarse grains also overlap, both within and between mineral phases, indicating that

the crystals have crystallized from a similarly magnesian magma. These results contrast

with those of Costa et al. (2002) for hornblende in gabbroic cumulate xenoliths in the

eruptive products from Volcin San Pedro in Southern Chile. Hornblende Mg-numbers

from phenocrysts and coarse grains in cumulate xenoliths are as high as those found by

Costa, however, the Cr2 O3 wt% of the homblende is significantly lower and appropriate

for equilibrium with Calbuco andesite. Results from this thesis are consistent with

isotopic analyses of one cumulate xenolith. 14 3Nd/144Nd and 87Sr/86Sr values reported by
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Hickey-Vargas et al. (1995) also show that the gabbroic xenoliths are isotopically similar

to lavas. Based on the striking compositional similarities between the mineral phases,

whole rock analyses, and isotopes, the coarse grained gabbroic xenoliths are in fact

cognate cumulates entrained in the magma. This conclusion is in agreement with

Hickey-Vargas et al. (1995), Abdollahi (1990), McKelvey and Hickey-Vargas (2005),

McKelvey and Hickey-Vargas (2004), and Horst and Hickey-Vargas (2006).

8.2 How does hornblende break down?

Two types of hornblende breakdown reaction products can be observed in

Calbuco lavas, a medium-grained "gabbroic type" and a microcrystalline "black type",

which are similar with findings of Garcia and Jacobson (1979). I infer that opacite rims

found on hornblende phenocrysts are similar to the microcrystalline "black type" reaction

products. Gabbroic types also have patches of black microcrystalline reaction products

which are associated with the coarser grains of plagioclase, pyroxene, and oxides. The

"black type" reaction is found associated in varying degrees with all hornblende crystals

in the eruptive products. Due to the fact that it has a microcrystalline texture, it is likely

that it was formed as the result of rapid breakdown and therefore possibly contains

mineral phases not in equilibrium with one another. This rapid breakdown is likely the

result of eruption, although rapid degassing is another possibility.

Microprobe analysis of hornblende phenocrysts and coarse grains from cumulate

xenoliths demonstrates that this breakdown is altering the composition of the hornblende

crystal. As the hornblende breaks down, the reaction draws out elements such as Fe, Mg,

Ca, and Al, faster than Si. As a result, some pargasitic hornblende grains are even being

altered to edenite, which has higher Si than pargasite. Lopez-Escobar et al. (1995), and

213



references therein, reported the presence of phenocrysts of both pargasite and edenite in

the lava, however, the edenite is not crystallizing from the magma but is actually the

result of phenocryst breakdown.

The mineral assemblage of the hornblende breakdown reaction for hornblende

from Calbuco is:

Hbld -> plag + opx + cpx + ol + mag ( ilmenite) V L

Noting the difficulty of analysis and the uncertainty of the breakdown mineral

assemblage, an alternative reaction could be:

Hbld - plag + cpx + ol + mag ( ilmenite) V L with a subsequent simultaneous

reaction of Ol + L -* opx

These reactions are similar to those published for breakdown assemblages for hornblende

from the Cascade Range, Calbuco, Soufriere Hills, Mount Pele, Colima, and

experimental products which include:

Amph -> plag + cpx + opx + mag (Cascade Range; Garcia and Jacobson, 1979)

Hbld -> plag + cpx + mag (Calbuco; Lopez-Escobar et al., 1995)

Hbld -> cpx + opx + plag + mag + melt (Soufriere Hills; Devine et al., 1998a, b)

Hbld -> plag + opx + mag (Mount Pelee; Pichavant et al., 2002)

Amph -> cpx + Fe-Ti oxide (Colima; Mora et al., 2002)

Amph -> ol + cpx + plag + L V (experimental; Foden and Green, 1992)
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8.3 What changes in magma chamber conditions are recorded in plagioclase zoning?

Compositional zoning in plagioclase records magma chamber conditions.

Plagioclase compositions and zoning in phenocrysts from Calbuco give evidence of

equilibrium crystallization, the presence of water in the magma, eruption events,

temperature fluctuations, convection within the magma chamber, and magma recharge.

8.3a Evidence for Recharge

Plagioclase crystals record the occurrence of recharge events within the magma

chamber and subsequently record magma chamber temperature variations. Several lines

of evidence for recharge occurring at Calbuco include An mol% spikes in plagioclase

zoning and correlating resorption textures, specifically types 2 and 3 oscillatory zoning,

patchy zoning in phenocrysts, the presence of plagioclase megacrysts in the andesite, the

presence of disequilibrium textures in plagioclase and minerals out of equilibrium with

the andesite, and the presence of pigeonite microphenocrysts and rims in the basaltic

andesite. Transects of plagioclase phenocrysts from Calbuco show that the crystals are

normally zoned overall, but the crystals also have oscillatory zoning which records both

An spikes of 10 mol% or greater and drops of up to 37 An mol%. Type 1 oscillatory

zoning (An mol% fluctuations of 1-2 mol% and occur without resorption surfaces) is not

a result of magma mixing. Type 2 oscillatory zoning (An fluctuations of 2-5 mol%

without resorption) and type 3 oscillatory zoning (An fluctuations of up to 10 mol% or

higher with petrographically visible resorption surfaces) and patchy zoning all indicate

temperature and compositional variations as a result of magma mixing.

Major element transects of the megacrysts show that they have unzoned, high An

mol% cores followed by a large decrease in An content connecting the unzoned, high An
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cores with the lower An, zoned rims. A few phenocrysts, although smaller is size,

display the same profile pattern of an unzoned, high An core with a large, gradual An

drop and a zoned rim. The unzoned nature of the core and the overall size of the

megacrysts suggest that they have not crystallized in the same magma chamber as

oscillatory zoned plagioclase, however the drop in An mol% followed by the lower An,

zoned rims suggest that they were introduced to the magma chamber prior to eruption.

Olivine, clinopyroxene, and hornblende crystals in the andesite are rare. Olivine

and clinopyroxene have reaction textures indicating instability and hornblende is

breaking down. L6pez-Escobar et al. (1995) have suggested that olivine and

clinopyroxene are early crystallizing phases which led to the formation of the low-MgO,

high-A12 0 3 parental magma, therefore they are likely to have crystallized at an earlier

stage in the differentiation history of Calbuco; these minerals are largely introduced in

the mafic mixing end member. Comparison of hornblende phenocrysts with partition

coefficients for the exchange of Al-Si and Fe-Mg between the crystal and the magma

from Sisson and Grove (1993a) shows that they have crystallized from the andesite.

Pigeonite has a Mg-number range which is lower than orthopyroxene and olivine and is

found in the basaltic andesite only as microphenocrysts and rims on olivine crystals. The

low Mg-numbers and presence as thin rims and microphenocrysts are consistent with

compositional variation from magma mixing.

8.3b Evidence for the Presence of Water in the Magma

The presence of dissolved water in Calbuco magma is borne out by 1) the

crystallization of calcic plagioclase and its stability in the magma as reflected by partition

coefficients for the exchange of Ca-Na between plagioclase and hydrous melt, and 2) the
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crystallization of hornblende from the magma (discussed above). Cores of plagioclase

phenocrysts, megacrysts, and coarse grains in cumulate gabbroic xenoliths are highly

calcic (An5 8-92 , An87 -92, and An5 6-97 respectively). Water initially enters subduction zone

magmas as a result of dehydration of the subducting plate. This results in suppression of

the plagioclase solidus (Figure 98, chapter 7) allowing highly calcic plagioclase to

crystallize at lower temperatures that would be needed to stabilize the same An content in

anhydrous magmas. In the case of Calbuco, water is also coming from contamination of

the magma chamber with hydrous country rock (L6pez-Escobar et al., 1995), and may

also be coming from a subducted fracture zone beneath Calbuco (Sell6s, 2004). In

addition to the high An mol% of the plagioclase, comparison with experimental exchange

Kd values at various dissolved H20 amounts and various pressures from Sisson and

Grove (2002a) (Figure 99, chapter 7) show that the cores of the three plagioclase

populations above crystallized in the presence of water. Based on the experiments of

Sisson and Grove (2002a), the phenocryst cores in the andesite and basaltic andesite and

coarse grains in cumulate xenoliths are likely stable at pressures ranging from 1-5 kbars

with 2-6 wt% dissolved water at both saturated and undersaturated conditions. These

experiments also show that the cores of the megacrysts in the andesite and basaltic

andesite are likely stable at and above 2 kbars under water saturated conditions with 6+

wt% dissolved water. These same Kd values and the Ca-numbers of the zoned rims of

both the phenocrysts and megacrysts in the andesite and basaltic andesite indicate that

they may have crystallized under progressively lower pressure conditions (1-5 kbars,

hydrous, to 1 atm, anhydrous) or progressively lower dissolved water content (anhydrous

to 6 wt% dissolved H2O), or a more likely combination of both.
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8.3c Evidence for Magma Chamber Convection

Plagioclase phenocrysts, along with the overall mineral assemblage, are recording

magma chamber convection through temperature, compositional, and dissolved water

gradients in Calbuco andesite. That continuous convection occurred, in addition to

episodic recharge and mixing, is indicated by the lack of correlation of An mol% spikes

between individual plagioclase phenocrysts. Evidence for either process is the

coexistence of plagioclase crystals with disequilibrium textures, and other crystal phases

out of equilibrium with the andesite. An mol% spikes occur within plagioclase zoning as

a result of temperature and dissolved water changes in the magma caused by recharge

with hotter magma, and magma compositional changes as a result of recharge with

basaltic andesite and fractional crystallization of the gabbroic mineral assemblage. Types

2 and 3 oscillatory zoning are prevalent in plagioclase phenocrysts, yet specific

resorption events can not be correlated between crystals, in agreement with the findings

of as also found by Ginibre et al. (2002b) at Parinacota volcano. On the scale of a single

thin section, plagioclase crystals show both normal and reverse zoning in addition to

sieve textures and resorption zones, indicating magma chamber convection. The mineral

assemblage of Calbuco andesite contains minerals (orthopyroxene, clinopyroxene, and

olivine) which are out of equilibrium with the andesite; basaltic andesite also contains

pigeonite microphenocrysts and rims which are out of equilibrium with the basaltic

andesite. The presence of disequilibrium textures is in agreement with the findings of

Couch et al. (2001) for Soufriere Hills.
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8.3d Evidence for Recorded Eruption Events

Eruption or degassing events are recorded in plagioclase crystals as sudden, sharp

An mol% drops. Plagioclase crystallization is only affected by sudden, large scale

fluctuations in pressure, such as a major degassing event or volcanic eruption. Sudden,

sharp drops of up to 37 An mol% are seen in electron microprobe transects of plagioclase

at the rim of one-third of the crystals, as well as a few drops of 12-24 An mol% found in

the interior of some grains. The An mol% drops within the crystal may record degassing

of the volcano or prior eruption events, however, the location of the majority of the An

drops at the outer rim, indicates that these crystals have likely recorded the eruption

which brought them to the surface.

8.3f Evidence for Equilibrium Crystallization

Equilibrium crystallization of plagioclase is recorded in phenocrysts from

Calbuco as type 1 oscillatory zoning. As plagioclase growth proceeds, it creates a cyclic

pattern of depletion in Ca and Na in the surrounding magma which produces fine scale

oscillatory zoning with An variation of 1-2 mol%. At Calbuco the type 1 oscillatory

zoning is overprinting with type 2 and 3 oscillatory zoning indicating that, with the open

system magma chamber found at Calbuco, equilibrium crystallization is recorded in

plagioclase but is not a dominant process. For Calbuco, equilibrium crystallization

represents a return to magma homogenization after mixing and a hiatus from eruption

events and local magmatic convection.

8.4 Synthesis of Calbuco and the Magma Storage Zone

Despite the zone of magma storage beneath Calbuco being an open system, the

eruptive products have remained within a very narrow SiO 2 range (55-60 wt%) over the
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life of the volcano. The magma storage zone below Calbuco is being fed by high-A120 3,

high-MgO basaltic magma similar to that from neighboring Osomo. This basalt evolves,

most likely in a lower-crustal magma storage zone, by fractionating olivine,

clinopyroxene, plagioclase and magnetite, resulting in a high-A12O 3, low-MgO basaltic

magma and contributes to the calc-alkaline nature of the volcano. High-An plagioclase

megacrysts crystallize from this high-A12O 3, low-MgO basalt as it cools slowly and

differentiates to high-A12O 3, low-MgO basaltic andesite. Megacryst crystallization and

differentiation to basaltic andesite may take place in a second, mid-crustal level magma

storage zone because clinopyroxene has not been found in the basaltic andesite. Water

enters Calbuco magma initially through dehydration of the subducting plate, and possibly

also as a result of the subduction of a fracture zone directly beneath Calbuco. The rapid

uplift rate beneath Calbuco further contaminates the magma, beginning at the basaltic

andesite stage, with hydrous country rock, significantly adding to the dissolved H 20

content of the magma. The magma storage zone where the andesite evolves is separate

from the basaltic andesite storage zone, allowing the periodic recharge of the andesite

with basaltic andesite. The H 20 incorporated as a result of contamination, along with

high Na2O contents, causes orthopyroxene and hornblende in the andesite, in addition to

the magnetite and plagioclase which are still crystallizing, to begin to crystallize, at the

expense of olivine and clinopyroxene. Crystallization of hornblende drives the residual

magma toward higher SiO 2 contents. Although the basaltic andesite also has elevated

water contents from contamination and high Na 2O contents, hornblende is not

crystallizing due to temperatures above that which would stabilize hornblende. As

crystallization is taking place in the andesitic magma chamber, fractionation is also
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occurring with crystals settling out of the magma. Cumulate piles of the fractionated

assemblage (hornblende, orthopyroxene, plagioclase, and magnetite) are collecting at the

base of the magma chamber. In addition to hornblende crystallization, fractionation of a

mafic mineral assemblage and crustal contamination are also contributing to driving the

residual magma toward higher SiO 2 contents. Differentiation of the magma may drive

the SiO 2 content as high as a dacitic composition, and throughout the differentiation

process the magma chamber has been subject to internal convection cells and continuous

contamination with hydrous country rock, increasing the dissolved H20 content of the

magma. To account for the fact that andesite is erupted rather than dacite, periodic inputs

of fresh basaltic andesite from a mid-crustal magma chamber are mixing in with the

differentiated magma causing fluctuations in temperature and dissolved H20 as well as

once again lowering the SiO 2 contents of the magma. Since the SiO 2 range of all eruptive

products is so narrow over a long period of time, the injections of basaltic andesite must

be frequent and small; large inputs would likely cause more frequent eruptions, which

would allow the eruptive products to sample the wider SiO 2 range actually existing below

Calbuco. Volcanic eruptions may be caused by periodic large injections of parental

basalt, or by the build up of pressure from temperature and dissolved H 20 fluctuations, or

both. The crystallizing mineral assemblage in the andesitic upper magma chamber is

plagioclase, orthopyroxene, magnetite, and hornblende, however the hornblende is only

stable towards the bottom of the magma chamber where the pressure is high enough to

sustain crystallization. Hornblende crystals are fractionated into cumulate piles a the

bottom of the magma chamber without opacite rims present, indicating that they are

stable, however, hornblende phenocrysts of the same composition as the fractionated
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hornblende which have been circulated to higher levels of the magma chamber, possibly

through convection, have opacite rims and are therefore not stable. The mineral

assemblage found in the andesite, which has an average density of 2.58 g/cm 3, is likely to

be stable at temperatures of 810-975 C under pressure of 2 kbars and less with up to 6

wt% dissolved H 20. The mineral assemblage of the basaltic andesite, which has a

density of 2.61 g/cm 3, is likely to be stable at temperature above 975 C and pressures of

greater than 2 kbars with 6+ wt% dissolved H20.
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