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ABSTRACT OF THE THESIS 

TRENDS IN WATER QUALITY WITHIN THE BROWARD COUNTY  

PORTION OF THE BISCAYNE AQUIFER 

by 

Leigh Auwers Ammon 

Florida International University, 2013 

Miami, Florida 

Professor Assefa M. Melesse, Major Professor 

Continuous and reliable monitoring of contaminants in drinking water, which adversely 

affect human health, is the main goal of the Broward County Well Field Protection 

Program. In this study the individual monitoring station locations were used in a yearly 

and quarterly spatiotemporal Ordinary Kriging interpolation to create a raster network of 

contaminant detections. In the final analysis, the raster spatiotemporal nitrate 

concentration trends were overlaid with a pollution vulnerability index to determine if the 

concentrations are influenced by a set of independent variables. The pollution 

vulnerability factors are depth to water, recharge, aquifer media, soil, impact to vadose 

zone, and conductivity. The creation of the nitrate raster dataset had an average RMS 

Standardized error close to 1 at 0.98. The greatest frequency of detections and the highest 

concentrations are found in the months of April, May, June, July, August, and September. 

An average of 76.4% of the nitrate intersected with cells of the pollution vulnerability 

index over 100.  

Key words: Biscayne Aquifer, GIS, kriging, spatiotemporal contaminant trends, nitrates, 

Broward, pollution index 
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1. INTRODUCTION 

This section introduces the Broward County environmental code, which incorporates 

localized aquifer factors as they pertain to the development and implementation of 

science based well field protection policies. The contaminant characteristics of lead, 

nitrate, and toluene, as the focus contaminants in this study, are discussed in this section 

as well. The study area, research questions, and objectives of this thesis will also be 

examined. 

1.1 Study Area 

This research covers the southeast coastal area of Broward County Florida, which has a 

current population of 1,780,172 (U.S. Census Bureau, 2011) and applied to the portion of 

Broward County underlain by the Biscayne aquifer. The political boundary of Broward 

County Florida is located within the Broward-Palm Beach Coast Watershed (BPBCW) 

and has a developable area of 1101.74 km2, approximately 7.82% of the total BPBCW. 
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Figure 1: Map of Broward County Study Area 

 

 
Figure 2: Major Cities and Roads in Broward County 

Historically groundwater has been a globally important natural resource for water supply 

due to its low contamination capabilities, when compared to surface water, as well as its 

large storage capacity (Hiratsuka, 2011). However, in recent years, due to an increase in 

urban development, high population growth, and excessive use of fertilizer and 

pesticides, this resource has come under threat of degradation through overuse, 
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inappropriate use, as well as increased potential contamination sources and releases. This 

study will demonstrate a method to track the travel time and direction of contaminants 

through an aquifer using geographic information systems (GIS). This study does not 

incorporate data beyond the political boundaries of Broward County even though the 

Biscayne Aquifer spans most of south Florida.  

 

Figure 3: Map of Broward County Canals and Land Use, Reference Table 1 for LU/LC 

Code 
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Table 1: Land Use Area 

Land Use Area 

LU/LC Code Area (m2) Percentage 
Urban 100 723647269.89 60.00%

Agriculture  200 51899488.06 4.30%
Range Land 300 49983319.16 4.14%

Forest 400 31130599.33 2.58%
Water 500 176960810.31 14.67%

Wetlands 600 52118036.62 4.32%
Barren Land 700 23182642.22 1.92%

Roads 800 97118621.63 8.05%
 

The Broward County surface is largely composed of urban, industrial, and agricultural 

land use areas (Broward County Maps). The chemical and physical processes of 

carbonate aquifers, located in highly urbanized areas, which have undergone 

karstification, such as the Biscayne Aquifer, must be researched as those processes have 

the potential to greatly affect the groundwater quality of the region (Renken, 2008). This 

research will use GIS modeling to analyze the spatiotemporal trends of significant 

environmental indicator chemicals detected during well field monitoring of the Biscayne 

Aquifer. Water samples from different wells throughout the county were analyzed for the 

following chemicals: nitrates, lead, and toluene. 

 

1.2 Environment of the Study Area 

The studies compiled for this research agree that the Biscayne Aquifer is vulnerable to 

many different sources of pollution. The type of media that composes this karst aquifer is 

what makes it so susceptible to pollution. According to Assaf (2009) the Biscayne 

Aquifer is composed of karstified limestone, which is a highly porous media that offers 
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little opposition to contamination movement between surface water and groundwater. 

The potable wells in Broward County generally extend down to depths of -18 m to -62 m 

and are located at the depth of the well field’s primary production zone (Harvey, 2008). 

The touching-vug flow zones, located from -10 m to -18 m, are located at the depth that 

is most likely to influence the amount of water withdrawn from drinking water 

production wells (Renken, 2008).  

 

The Biscayne Aquifer also contains many conduits, which form as a result of localized 

input from surface streams coming into contact with an unconfined portion of the aquifer 

(Bailly-Comte, 2010). The surface and subsurface waters mix which leads to the 

dissolution of aquifer media due to the under saturated nature of surface water relative to 

the carbonate minerals found in the aquifer. The Biscayne Aquifer is however unlike 

other karst environments, such as the Edwards aquifer, the Madison limestone, or the 

Paleozoic carbonate rocks of the Appalachians, all of which can be distinguished by large 

conduits (Renken, 2008). The Biscayne aquifer contains small-scale horizontal, 

lithostratigraphically concentrated, conduit development and features leading to high 

matrix conductivity. If contaminants from the surface are found solely within conduits 

the contaminant plume will be obvious fairly quickly; the outflow of this contaminated 

groundwater to surface water will be great in size but short-lived (Screaton, 2004). Water 

flow is often faster through conduits because they are composed of younger rocks that are 

not recrystalized carbonates. Within the conduits, during low flow conditions such as 

found during the dry season, the conduits will drain water from the surrounding matrix 

(Bailly-Comte, 2010). During high flow conditions such as those found during the rainy 
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season, may cause the larger conduits to reverse water flow from the conduits back into 

the adjacent aquifer matrix (Screaton, 2004). The groundwater recharge for the Biscayne 

Aquifer is mainly fed by precipitation received during the wet season (Pathak, 2010). 

However, most of the recharge is discharged as a base-flow, which occurs after the wet 

season and between major rainfall episodes (Armour, 2010).  

 

1.3 Hydrological and Geological Background 

The Biscayne aquifer, located in south Florida, has been identified as the sole source of 

potable drinking water for 2.4 million citizens (Renken, 2008). Broward County is 

divided up into 14 different political basins: C-9 East, C-9 West, C-10, C-11 East, C-11 

West, C-12, C-13 East, C-13 West, C-14, Hillsboro Canal, Intercostal, L-35A Borrow, 

North New River, and Pompano Canal. The aquifer media is composed of a highly 

transmissive, porous karst limestone and the aquifer itself is unconfined. These features 

can significantly increase contaminant infiltration into the drinking water and subsequent 

contaminant transportation and pollution within the drinking water aquifer (Collin 1998). 

Once the contaminants have entered an aquifer, travel time within the aquifer is 

dependent on the influence of aquifer features such as porosity, hydraulic conductivity, 

soil type, and geologic formation. Drinking water protection is difficult to implement in 

karst aquifers because of the high potential for rapid movement of contaminants and 

limited attenuation of pollutants in any one place within the aquifer (Renken, 2008). The 

swift movement of contaminants is intensified by eogenetic karst characteristics of the 

Biscayne aquifer, where limestone is close to the land surface augmenting conduit and 

porosity development (Florea, 2007). Water flow within the Biscayne is 
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lithostratigraphically controlled, moving water through flow zones that occur within 

highly transmissive, touching-vug pore space, which establish the stratiform flow zones 

(Pore Classes, 2013). The transmissivity values for this aquifer range from 0.4 to 3.1 m2/s 

and are at the high end of values recorded for geologic materials (Renken, 2008). These 

flow zones are capable of transporting contaminants hundreds of meters to kilometers 

within the aquifer (Renken, 2008). 

 

1.3.1 Cone of Depression 

Other features found within the drinking water aquifer affecting contaminant travel time 

are the multiple cones of depression created by drinking water supply wells. Broward 

County public drinking water wells pump water solely from the karst Biscayne Aquifer.  

A cone of depression is created when the water table, in the area surrounding a wellhead, 

drops as a result of pumping at the drinking water well (Pinder, 2009). These cones of 

depression are formed as water is drawn radially to the well causing the water table level 

to decline. However, the water table of the Biscayne aquifer occurs near the land surface 

even with the extensive pumping rates of potable wells within the well fields (Renken, 

2008). The size of the cone within the different levels of the aquifer is based on the 

pumping rate and hydraulic characteristics of the aquifer itself. The high permeability of 

the karst aquifer allows a significant quantity of water flow through the unconfined 

aquifer media of the carbonate limestone that constitutes the Biscayne Aquifer (Ginn, 

2004). In the shallow subsurface of the aquifer the cones of depression, created by in-use 

potable wells, respond rapidly to precipitation events (Renken, 2008). Wider, and 
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shallow, cones of depression, and therefore, wider cones of influence, typically occur 

around wells in aquifers of high transmissivity. Well field protection regions include 

surface and subsurface areas marked to protect public drinking water systems. Due to 

increased aquifer sensitivity, well field protection zones are designated in these areas in 

order to mitigate and control contamination and pollution risks. Typically, the well field 

protection region coincides with the width of the cone of depression around a well field 

projected at the land. Multiple pumping wells located in close proximity to each other, as 

occurs in well fields, results in individual pumping cones, overlapping, producing well 

field protection zones of various shapes and sizes when projected on the ground surface. 

The well field protection zone boundaries are representative of contaminant travel times 

within the Biscayne aquifer. The closer the zone is to the wellhead the greater the level of 

protection is applied in regards to the contaminants that are allowed to be used, stored 

and/or handled on the land surface of the well field (Fasbender et al., 2009).  

 

Contaminant travel times within groundwater for much of the United States are usually 

delineated as 1-, 5-, and 10- year land areas (Miller, 2005). Due to the porous nature of 

the karst aquifer the time-of-travel for contaminants is displayed in days not years. The 

porosity of the Biscayne aquifer was estimated in several preceding investigations with 

porosity values spanning from 10% to over 50% (Renken, 2008). However, these 

estimates may not account for the potentially high flow through void space and the 

connectivity of the void space within the heterogeneous media of the aquifer (Renken, 

2008). The Broward County well field policies state that there are three different time 

travel zones surrounding each potable wellhead; zone 1, the area situated between the 
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potable wells and the 10-day travel time contour, zone 2, the area situated between the 

10-day and the 30-day contours, and zone 3, the area situated between the 30-day and the 

210-day contours. Currently, these three different travel times for contaminants do not 

accurately capture local environmental factors for estimating contamination point 

sources, flow rate, and flow direction (Renken, 2008). When these cones of influence are 

created by the pumping drinking water wells, there is a likelihood that contaminants will 

interact with the different layers of the aquifer. It is assumed that contaminants which are 

introduced into the aquifer within the cone of influence are transported to an in-use 

potable well. Within the area closest to the wellhead, zones 1 and 2, the use of 

contaminants that have an adverse health effect on humans and the environment is 

prohibited (Miller, 2005).   

 

1.3 Policy Background 

The Federal Government and the State of Florida both have programs that are designed to 

protect public drinking water sources. Florida Administrative Code, Chapters 62 through 

521, governs the State Wellhead Protection Program. The Well Field Protection Program 

(Well Field Program) is governed through Chapter 27 of Appendix 11 in Article XIII of 

the Broward County Natural Resource Protection Code. The Broward County 

groundwater protection program was developed through a well field protection program 

managed by the County government. The aquifer is monitored for federal drinking water 

regulation compliance by local governmental administrations and the water supply 

municipalities. Both of these programs monitor water in an effort to protect the public 
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drinking water supply from contamination pollution. These programs require the 

quarterly monitoring of contaminants like lead, nitrates, and toluene that are used in 

businesses such as automotive shops, fueling stations, and horticultural product suppliers. 

These chemicals are detrimental to human health and are indicators of an anthropogenic 

impact to the drinking water supply. Those contaminants are listed as such in the 

Emergency Planning and Community Right-to-Know Act (EPCRA) under the Code of 

Federal Regulations (CFR), 40 CFR Parts 68, 302, 355, and 372. Those facilities and 

municipalities within protected well field zones have designated contaminant-sampling 

plans incorporated into their Hazardous Material Facility License. These sampling plans 

reflect the contaminants to be stored, handled, used and/or produced within the facility, 

and are hazardous to human health and drinking water quality (BC Code of Ordinances, 

Article XIII). The sampling plans are based on chemical inventories performed by county 

inspectors working for the Pollution Prevention, Remediation, and Air Quality Division. 

This study will not attempt to incorporate toxicology information, environmental carrying 

capacity or the impacts these contaminants have on human health into the analysis.  

 

The well field and surface pollutant discharge detection data are reviewed by separate 

governmental entities. Presently there is no long-term spatial coverage plan designed to 

track and share contamination detections between governmental agencies and 

municipalities. The local Well Field Program considers each well field separately when 

testing quarterly for contaminants, a process that does not reflect the travel time of 

contaminants from one well field to another within this aquifer.  
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Table 2: Quarterly Testing Dates 

Yearly Monitoring Quarters 
Quarter 1 January, February, March 
Quarter 2 April, May, June 
Quarter 3 July, August, September 
Quarter 4 October, November, December

 

While in transit, the contaminants considered enter the different zones of influence 

created by pumping production wells. As stated in Broward County governmental policy, 

these zones represent approximately how long it would take a regulated substance to 

reach the drinking water supply well if there was a release to the land and/or surface 

water. The zones of influence refer to those zones delineated by contaminant iso-travel 

time contours around existing or proposed well fields (BC Code of Ordinances, Sec. 27-

376). There are three set zones of influence, each dictating progressively stronger levels 

of environmental protection in regards to contaminant usage, storage and handling. The 

Environmental Assessment and Remediation (EAR) Section of Broward County 

Government generates contaminant travel time contours through hydrological model 

calibrations. 

 

1.4 Research Objectives 

This research is aimed at showing how GIS integration of contaminant tracking, along 

with thoughtful modeling methods based on existing data, can be useful tools for 

government to formulate policy decisions, and identify specific areas that are particularly 

sensitive to pollutant releases (Wang, 2012). In the long run, using GIS for contaminant 

tracking in the aquifer will lead to a greater understanding of contaminant flow and the 
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subsequent protection of drinking water. This study aims to contribute to the Broward 

County governmental process of installing new potable wells in areas expected to be the 

least impacted by pollution vulnerability factors. The overall objective of this research is 

to assess and understand the spatiotemporal movements of contaminants within the 

Broward County segment of the Biscayne Aquifer.  

 

The study addresses the interactions between contaminants leaching into the ground 

water through runoff, lateral movements of contaminants through water retention ponds 

and canals, and periods of aquifer contaminant influx (Armour et al., 2010). Water 

quality indicators indicative of agricultural sources (i.e. nitrate), industrial sources (i.e. 

lead), and petroleum sources (i.e. toluene) were used to track the health of an aquifer near 

a well field (Almasri et al., 2007). GIS modeling of these contaminants allow for the 

tracking of potential point and non-point surface pollution sources (Cosenza et al., 2007). 

The specific objectives of this study are to: 

1. generate lateral, vertical, and seasonal maps of continuous raster coverage 

layers from the stationary contaminant detection points in Broward County, 

2. develop temporal (inter and intra-annual) mapping trends of the contaminants 

(nitrate, lead, and toluene) from the quarterly (2006 – 2011) monitoring data, 

3. construct lateral and vertical maps of the detected contaminants in an area of 

interest (AOI) containing solid waste facilities, significant levels of 

impervious surfaces, automotive repair shops, and fuel stations, and  



 13

4. conduct statistical analyses in order to understand the spatiotemporally 

correlated trends of the contaminants to pollution vulnerability index (PVI) 

factors. 

These four objectives provided the basis to determine if there is a statistical correlation 

over time and space between the specified independent pollution vulnerability factors and 

the minimum contaminant detection levels.  

 

1.5 Research Questions 

Monitoring contaminant movement and concentration over time within the Biscayne 

Aquifer will contribute to the production of spatially relevant data necessary to generate 

spatially relevant raster maps demonstrating the vulnerability of certain sections of the 

Biscayne aquifer to pollution. Following such formulation and compilation of various 

data and model sources, the relevant questions are:  

1. Is there a spatiotemporal trend in the potable well detection data (nitrate, lead, 

and toluene)? 

2. Are the well contaminant detection points unconnected? Or is there smoothness 

to the contaminant detection data (i.e. Tobler’s First Law of Geography)?  

3. Are the PVI factors and spatiotemporal contaminant trends significantly 

correlated? 

4. Which potable wells are the most vulnerable to contamination based on real-

time contaminant detection data and the site-specific PVI?  
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Vertical, horizontal, and temporal movements of the three contaminants were obtained 

from quarterly monitoring and potable well water quality samples. The GIS contaminant 

model of different contaminant raster coverages will demonstrate the different types of 

annual and seasonal temporal movement specific to the three different contaminants. 

Horizontal movement of the contaminants is expected to trend in a Southeast direction, 

towards the ocean and Miami-Dade County. Vertical movement of the contaminants is 

expected to show a greater contaminant concentration within the shallower areas of the 

aquifer.  
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2. LITERATURE REVIEW 

This section surveys previous research related to the current study. Summaries are 

presented regarding: the use of GIS for contaminant tracking; the environment of a karst 

aquifer; and movement of contaminants within the Biscayne Aquifer in Miami-Dade 

county. The use GIS as a tool, representative of scientific information in an easily 

understandable visual format, to make raw data increasingly accessible to the public and 

policy makers is also discussed. 

 

2.1 Drinking Water Well Field 

According to the United States Geological Survey and Screaton (2004) the Biscayne 

Aquifer is the principal water supply for all of Dade and Broward Counties and the 

southeastern part of Palm Beach County in southern Florida. As the primary source of 

freshwater in the region the Biscayne Aquifer is used for domestic, public-supply wells, 

and agricultural activities. A study by Nolan and Stoner (2000) indicates that the most 

polluted drinking water wells within the United States are found in agricultural and urban 

settings. Miami, Broward, and Palm Beach are all coastal counties. The county locations 

and high withdrawal rates of water from the aquifer are resulting in an increase of salts in 

the ambient groundwater from intruding ocean water, which has a higher water pressure 

than fresh water (Secunda, 1998).  

 

The well field protection areas in Broward County are defined as those surface and 

subsurface areas surrounding a well field which supply a community drinking water 



 16

system with water (Miller, 2005). Potential contaminants have a more direct pathway to 

the source of drinking water through these protected surface and subsurface areas. The 

goal of the Broward County Well Field program is to reduce both direct contaminant 

pathways and nonpoint sources of pollution in the watershed. This reduction in sources 

can be accomplished through the execution of management measures such as best 

management practices and land use policies (Randhir, 2011).  

 

2.2 Groundwater Pollution Vulnerability Index 

The United States Environmental Protection Agency (USEPA) developed a PVI method 

using depth to water table, recharge, aquifer media, soil media, topography, impact to 

vadose zone and hydraulic conductivity (Kerr, 1987; Nobre, 2007). These are seven 

media parameters, collectively called DRASTIC, that are used traditionally in a 

groundwater PVI method approved by the EPA (Kerr, 1987). The DRASTIC method 

uses a linear model to calculate the pollution vulnerability of the aquifer environment 

(Pathak, 2010).  

 

Studies by Thapinta (2002), Pathak (2010), Nobre (2007), and Secunda (1998) used 

vulnerability factors to create a groundwater pollution vulnerability map. These 

vulnerability factors are pollution indicators for the aquifer groundwater. The factors are 

aspects of the surrounding environment that would adversely affect the health of the 

aquifer; a PVI map is created based on factors representing the groundwater environment 

(Kerr, 1987). Each of these seven factors was weighted based on its relative importance 
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and impact to groundwater vulnerability due to pollution contamination (Thapinta, 2002). 

The ranking of these environmental factors is also determined by the magnitude of each 

class of contaminant to groundwater impact (Nobre, 2007). Each pollution factor is 

further divided into either significant media types or numerical ranges, which have an 

influence on pollution potential (Secunda, 1998). Each pollution vulnerability factor is 

divided into ranges, and each range has a numerical multiplier assigned (Pathak, 2010). 

The pollution vulnerability factors become map attributes that are assigned numerical 

indices so that pollution vulnerability can be gauged statistically.  

 

The DRASTIC method was developed by USEPA as a way to qualitatively evaluate the 

relative vulnerability of a public drinking water aquifer to anthropogenic contamination 

through different types of land use (Secunda, 1998). The evaluation is accomplished by 

creating pollution vulnerability scores at different locations through the numerical joining 

of environmental factors affecting movement of surface contaminants to groundwater 

(Thapinta, 2002). The higher the vulnerability scores the greater the potential for 

pollution contamination (Huan, 2012). According to Pathak (2010), this layer overlay 

method is one of the most widely used to compute groundwater vulnerability indices over 

large geographical areas; these areas often involve a variety of hydrogeological settings. 

With the DRASTIC method providing the ability to track vulnerable areas of the surface 

aquifer, techniques were developed to predict which subsurface areas are more likely 

than others to become polluted as a result of actions taking place at or near the land 

surface (Pathak, 2010 and Huan, 2012). According to Secunda (1998), the DRASTIC 

model has proven to be useful when estimating vadose zone susceptibility to pollutants 
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permeating from the ground surface through synthesis of the seven mappable 

hydrogeological impact factors. However, certain ratings assigned by the EPA’s 

committee of experts were found to be more applicable than others within different 

regions of the world; so where required localized ratings have been modified to 

accommodate for local environmental differences (Secunda, 1998). According to Morio 

(2010), this ability to tune the DRASTIC method to different environments allows for a 

more accurate spatial distribution of estimated contaminants in groundwater. 

Modifications to the DRASTIC method also depend on the type, amount and quality of 

data that is available in the region being studied. The PVI method is also determined by 

the objective of the overall study (Morio, 2010). In the DRASTIC method, the disposition 

of the vulnerability is integrated into the model by separating the numerical values or 

media type of each factor into ranges and then assigning a rating value to each range 

(Pathak, 2010; Huan, 2012). However, the DRASTIC method will ignore the difference 

of factor values within an assigned range and is therefore unable to reflect small 

variations of hydrogeological factors on groundwater pollution vulnerability (Pathak, 

2010). According to Nobre (2007), in the final DRASTIC map the greater the intrinsic 

vulnerability index values the greater contamination potential. 

 

2.2.1 Pollution Index Vulnerability Factors 

The first of the pollution factors captured in the DRASTIC metric is depth (D) to water 

table. According to Nobre (2007) and Pathak (2010), this vulnerability factor is usually 

generated by a knowledge database of municipal and private borehole logs. This database 
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contains direct measurements of existing groundwater wells, which recount unique well 

features every time they are used (Pathak, 2010). In south Florida, the depth to water 

table during the dry season is roughly – 0.6 to – 1.2 m below the surface and during the 

wet season the water table usually reaches the standing water covering the Holocene 

deposits, which are layered over the Biscayne aquifer (Renken, 2008). The second 

pollution factor is recharge (R): the recharge map is usually constructed by a combination 

of natural precipitation layer, a land use/land cover (LULC) map, and a soil curve number 

(CN) (Nobre, 2007). According to Nobre, the precipitation information used in 

generating the recharge coverage is usually based on the collection of raw data from 

government agency rain gauges. For instance, in many cases high runoff areas are 

associated with agriculture and urban land uses (Randhir, 2011). Furthermore, the 

information regarding groundwater flow is intended to improve the DRASTIC 

interpolation accuracy especially if contaminant concentration data is scarce (Pacheco, 

2012). The third pollution factor is aquifer (A) media type. The influence this factor has 

on pollution vulnerability varies widely depending on the aquifer environment. 

According to Secunda (1998) the karstic limestone that composes the Biscayne Aquifer is 

assigned a higher rating, which means higher pollution potential. This particular geologic 

formation serves as one of the easier transport pathways for pollution contaminants to 

reach the aquifer (Nobre, 2007; Pacheco, 2012). The fourth pollution factor is the aquifer 

soil (S) media type. The Biscayne Aquifer is mostly composed of sand and sandy loam, 

which is assigned one of the higher pollution vulnerability ratings. Those soils 

characteristics that lead to high porosity also have a high potential for contamination 

percolation to the water-table below (Secunda, 1998). In a case such as this, in order to 
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obtain a more accurate reading of the effect that soil media will have on pollution 

potential the hydrologic soil group (HSG) – infiltration potential of soil – was combined 

with the land use categories creating twelve combination ranges for four soil groups and 

three LULC categories (Nobre, 2007). For instance, assigning land uses different ratings 

and weights allows for the characterization of extensive land uses, like effluent irrigation 

of crops, as potential sources of groundwater pollution (Secunda, 1998). The different 

land use classifications are determined by training the Land Remote-Sensing Satellite 

System (LANDSAT) 5-TM imagery data to recognize different wavelengths as being 

representative of different LULC coverage (Nobre, 2007). The additional parameters 

incorporated into DRASTIC land cover and CNs are helpful in increasing the accuracy of 

vadose zone vulnerability (Secunda, 1998). The goal of this approach is to obtain greater 

accuracy in soil media estimates because temporal and spatial changes in LULC can have 

significant detrimental effects on the health of an aquifer ecosystem (Randhir, 2011; 

Veni, 1998). Those areas where urban land covers are the major land use can demonstrate 

the highest impervious cover in the watershed (Randhir, 2011). High runoff potential and 

topsoil loss are associated with agriculture and early urban land uses (Randhir, 2011; 

Veni, 1998). The fifth pollution factor is topography (T) of the aquifer environment. 

According to Secunda (1998) the topography of the flat plain of south Florida leads to 

higher percolation time from surface water to the water table. This environment causes 

higher pollution vulnerability ratings (Navas, 2011). The sixth pollution factor is the 

impact (I) to vadose zone of the aquifer environment. According to Secunda, limestone 

lithology is dominant in the Biscayne Aquifer environment of south Florida (Secunda, 

1998). This environment indicates that the pollution vulnerability ratings for this region 
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will be higher than those regions with granite lithology (Han, 2006). The seventh 

pollution factor is hydraulic conductivity (C). Most of the data readings used to compute 

the conductivity raster coverage for a region comes from aquifer pump tests of 

monitoring and potable municipal wells (Rahman, 2007; Nobre, 2007). 

  

2.2.2 Pollution Vulnerability Index Mapping 

As the seven pollution factors are assigned weights and ratings, a trend in pollution 

vulnerability mapping begins to develop. Secunda, (1998), suggests that the higher 

indices in the final DRASTIC map are the result of the cumulative rating and weight 

contributions of the following three environmental factors: high recharge coefficient, low 

depth to water-table, and sandy soils (Secunda, 1998). According to Thapinta (2002), 

over the past two decades there have generally been three approaches used to assess 

groundwater pollution susceptibility: direct observations, simulation methods, and index 

methods. The first two methods measure groundwater vulnerability using monitoring data 

and this data is typically paired with contaminant characteristics to increase accuracy 

(Nobre, 2007).  Direct observation and simulation methods render the most conclusive 

results; however, there is rarely sufficient data available to develop accurate regional 

vulnerability assessments (Rahman, 2007). Index methods, like the DRASTIC model, 

combine factors that affect the movement of contaminants from the surface to subsurface 

environment. The final numerical output yields vulnerability scores at different spatial 

locations throughout the aquifer surface (Thapinta, 2002). The pollution index factors for 

DRASTIC are chosen based on specific regionalized data (Secunda, 1998). This allows 
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for local environmental experts to make study area modifications to the vulnerability 

factor weights and ratings during the evaluation period (Secunda, 1998). For instance, in 

a 2002 study by Thapinta to assess groundwater pollution potential by pesticides in 

Central Thailand the numerical ratings for each environmental factor were rank 

correlated with known monitoring detections for pesticide to determine the relative 

significance of each factor (Thapinta, 2002). According to a study by Pathak (2010), 

overlaying local knowledge and regional pollution vulnerability factors will modify and 

improve the DRASTIC method to reflect a reliable tool for ground water protection. The 

methodology presented in a 2006 study by Nobre (2007), regarding groundwater 

vulnerability and risk mapping, determined that it is possible to define the highest risk 

areas within well fields and from the contaminant sources within the well capture zone 

delineate the expected impact to the affected drinking water well.  

 

The purpose of the PVI method is to bridge the gap between data intensive methods and 

non-reproducible subjective methods that are used if known data is scarce (Morio, 2010). 

According to Thapinta and Pathak this method can produce a generalized knowledge base 

and be used over a large region of space while not having to gather extensive amounts of 

field data (Thapinta, 2002; Pathak, 2010). Contaminant data limitations are usually 

characteristic of early project stages regarding drinking water withdrawal from an 

aquifer. In many of these cases the information regarding subsurface pollution only 

comes from primary site investigations and local historical information (Morio, 2010). 

However, the DRASTIC model can be changed to accurately reflect local hydrological 

settings and environmental issues (Pathak, 2010). 
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Developing pollution vulnerability factor coverages that are representative of the large 

aquifer environment provide the methodological basis for identifying wide reaching 

spatial problems (Thapinta, 2002). This vulnerability index model also acts as a 

predictive tool for the management of water resource use in aquifers (Pathak, 2010). 

Those areas that have high pollution vulnerability necessitate detailed inspections of the 

current contaminant vulnerability and groundwater pollution (Thapinta, 2002). Therefore, 

groundwater vulnerability maps are useful tools that can be used to effectively allocate 

limited monitoring resources to these areas where monitoring is most needed (Thapinta, 

2002). Consequently DRASTIC, as a PVI method, creates method that is a fiscally 

responsible way to prioritize specific areas for ground water protection and instill 

accurate monitoring efforts (Assaf, 2009). For instance, correct knowledge of locations 

vulnerable to pollution can be used to place monitoring wells, if the hydrology of the 

aquifer indicates that well field zones will be deleteriously affected outside of the 

currently designated well field zones (Thapinta, 2002). In large geographical areas with 

limited environmental data, the aquifer ground water index maps provide the first 

information which local municipalities, administrators and governmental agencies use in 

the creation of regional and local groundwater resource protection and management plans 

(Dixon, 2005; Pathak, 2010).  

 

2.2.3 Pollution Vulnerability Method Issues 

Although the DRASTIC model is good for demonstrating a generalized knowledge 

dataset there are still some problems with accurate implementation of the model. When 
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this model is applied to the same hydrogeological system across large spatial areas 

dramatically dissimilar results can be generated due to the lack of proper validation 

(Pathak, 2010). Furthermore, when verifying the accuracy of the DRASTIC model by 

conducting a correlation between the gathered real-time field data and the final 

DRASTIC model coverage a large number of non-detects from the field data can 

contribute to a low number of significant correlations between the two layers (Thapinta, 

2002; Huan, 2012). Another limit to the DRASTIC index method is the implication that 

pollution is entering the aquifer from non-point and pollutant loading sources (Assaf, 

2009). As such point-source pollution vulnerability is not accounted for in the index 

because point source contamination is usually released directly to the environment, 

circumventing many factors that could retard contamination (Assaf, 2009). Therefore, 

this limits the accuracy of the DRASTIC model in those watershed areas which have 

anthropogenic activities such as those requiring Total Maximum Daily Load (TMDL) 

permits, solid waste sites, change of top layer characteristics, and other activities that 

form point pollution pathways to the environment due to direct discharge (Assaf, 2009).  

 

2.2.4 Pollution Vulnerability Index Trends 

Groundwater vulnerability assessment can be identified as a pattern recognition problem 

viewed in the form of a map in a GIS environment (Wang, 2012). In order to verify the 

significance of the pollution index method, the resulting potential vulnerability range 

coverage and groundwater data sample layers are overlaid on the map to determine if the 

groundwater vulnerability level generated from the DRASTIC method and the observed 



 25

data correspond spatially with each other (Pathak, 2010). In some studies the validity of 

the DRASTIC model was estimated through the comparison of the final index values 

with known ground water monitoring data (Secunda, 1998). According to a case study by 

Pathak (2010), the output of the vulnerability index models could be tested and validated 

by using the known nitrate data taken from the shallow aquifer in Kathmandu. This 

correlation can be determined by cross sectioning the vulnerability index compared to 

actual contaminant presence and location within the aquifer (Nobre, 2007). 

 

2.3 Indicator Chemicals in Drinking Water 

The protection of groundwater, and thus the requisite study of indicator chemicals, is 

globally important (Pathak, 2010). Groundwater, as a renewable natural resource, is 

valuable due to its large storage capacity and low susceptibility to pollution in 

comparison to surface (Pathak, 2010; Navas, 2012). However, groundwater is 

continuously under threat of degradation both by anthropogenic contamination and by 

inappropriate use (Pathak, 2010). Studies show that some of the most contaminated wells 

are located underneath agricultural land, followed by urban land due to rapid 

development (Mattern, 2009; Pathak, 2010). The solutes of major environmental concern, 

nitrate and phosphate, are exported via groundwater discharge in agricultural regions; the 

solutes usually originate from fertilizers applied to intensive cropping systems (Rasiah, 

2010). In many regions of the world rapid urbanization and development is unplanned 

and haphazard. Therefore, the migration and conversion of pollutants in water pollution 
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accidents typically are the result of a dynamic, complex, and nonlinear system of 

anthropogenic activities (Zhang, 2011).  

 

2.3.1 Nitrate, Lead, and Toluene  

Three contaminants, nitrate, lead, and toluene, are being used in the Groundwater Quality 

Index of this study. The Maximum Contaminant Level (MCL) for these contaminants is 

referred to in the 1974 Safe Drinking Water Act. This law regulates enforceable ground 

water regulation levels and establishes the prescribed level of contaminant concentrations 

at which no adverse health effects are likely to occur. These contaminants were chosen 

because they each represent common sources of drinking water contamination and they 

are the most prevalent in terms of total detection concentration amounts (Water: Safe 

Drinking Water Act (SDWA), 2012). 

 

These three contaminants are introduced to the aquifer by widespread improper business 

practices found within Broward County. The presence of nitrate in groundwater can 

indicate runoff from fertilizer use, nitrification of ammonia from leaking septic tanks or 

natural erosion of deposits (Lake, 2003). The MCL for nitrate is 10 miligrams per liter 

(mg/L); continued exposure to nitrate in drinking water above the MCL may lead to cases 

of methemoglobinemia or blue-baby syndrome (Gurdak, 2012). High levels of nitrate 

reduce the ability of red blood cells to carry oxygen, leading to a bluish skin tone and the 

risk of death (Gurdak, 2012). The continued exposure to this contaminant, at 

concentrations as low as 2.5 to 4 mg/L, may lead to the same health concerns discussed 
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previously. The method detection limit for nitrate is 0.01 mg/L (US EPA's Methods and 

Minimum Detection Limits, 2007). 

 

Lead in groundwater may be due to improper disposal of consumer products, e.g., bullets 

around outdoor gun ranges if not properly disposed of, lead-acid battery corrosion, or 

degradation of older household plumbing systems (Cao, 2002). The MCL for lead is 

0.015 mg/L. The continued exposure of lead above the MCL in children may cause 

delayed physical and mental development (Davis, 2009). In adults continued exposure to 

this chemical may cause high blood pressure and kidney malfunctions (Lead in Paint, 

Dust, and Soil, 2011). The method detection limit for lead is 0.005 mg/L ((US EPA's 

Methods and Minimum Detection Limits, 2007). 

 

Toluene in ground water may indicate the presence of landfills, discharge from petroleum 

or chemical factories or leachate from gasoline or diesel storage tanks (Wang, 2012). 

Almost all toluene is derived from petroleum processing; most is never recovered. The 

most common use of toluene is in the production of benzene. Toluene is also used as an 

octane booster or enhancer in gasoline. The MCL for toluene is 1 mg/L (Safe Drinking 

Water Act, 1998). Toluene can cause nervous system damage as well as liver or kidney 

damage (USEPA Toluene Chemical Survey, 1994). The method detection limit for 

toluene is 0.0005 mg/L (US EPA's Methods and Minimum Detection Limits, 2007). 
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2.4 Using GIS in Contaminant Water Interpolation 

Accurate contaminant water interpolation in GIS is based on spatial continuity. Creating 

continuous raster coverage over large areas from point datasets is performed through 

interpolation. Interpolation utilizes concentration measurements mostly from monitoring 

point observation data distribution networks (Morio, 2010). The continuous raster 

coverage relationship is an important characteristic of spatial data that provides 

awareness into into the physical, or spatial, environment of the phenomena being studied 

(Assaf, 2009). For instance, GIS technology has been used to produce maps of 

groundwater vulnerability relative to pesticide contamination in central Thailand 

(Thapinta, 2002). Interpolation is applied to point datasets in order to estimate the values 

of a chosen raster cell, or physical point, in which no real-time field sampling was ever 

performed (Vyciene, 2009). All input data layers used in the interpolation are generated 

from their original source either as a point, line, or polygon layer (Pathak, 2010).  

 

There are two main types of interpolation that are used in spatially tracking water 

contamination movement. The first is the deterministic spline method of interpolation. 

This is where the interpolated surface cells are created closer in value to the point value 

of the original primary point data (Vyciene, 2009). However, this practice is not suitable 

for dataset phenomena representing a wide range of numerical records within a small 

distance from each other (Vyciene, 2009; Navas, 2011). If the point dataset is spatially 

uneven or classified the spline method is not suitable; instead the spline method works 

better if the points are located in a grid setup (Vyciene, 2009). Spline interpolation is also 

sensitive if the quality of the preliminary datasets is in question (Vyciene, 2009; 
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Whitman, 2010). The second is the statistical kriging method of interpolation. The 

predictive values are produced on a weighted linear combination of the available sample 

points (Vyciene, 2009; Whitman, 2010). Kriging algorithms use various mathematical 

functions to model the varying z values between known points to create a continuous 

spatial coverage (Vyciene, 2009). 

 

The extent of contamination for the calculation of a groundwater quality index can be 

assessed using the ArcGIS package of programs (Assaf, 2009), which includes Spatial 

Analyst and Geostatistical Analyst (Vyciene, 2009). The interpolated layers are converted 

into raster layers so that the real time contaminant data can be used in conjunction with 

the PVI, DRASTIC, within Spatial Analyst, Geostatistical Analyst, and Geostatistical 

Calculator (Pathak, 2010). In this process the cell size to be used for the raster is chosen 

based on the spatial resolution of available data as well as computational considerations 

(Thapinta, 2002). In particular, the end result of any assessment or conversion cannot be 

shown in greater detail than that of the least detailed input factor (Secunda, 1998). 

Conversely, the smaller the cell sizes the better the reflection of the hydro-environment 

realities within the study area (Secunda, 1998). In most studies the available data for the 

DRASTIC pollution factors only allowed for a 30m x 30m grid resolution for the 

generation of a continuous output layer (Pathak, 2010). Typically, there is a compromise 

between resolution (and required model accuracy), and resulting map utility – a highly 

detailed map implies hydrogeologic features that are merely artifacts of the interpolation 

model, whereas a less detailed map may not contain enough detail to b of any real use. 
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The final raster coverage results map can be formatted to show the spatial location and 

the probability of contaminant concentrations greater than the MCL (Assaf, 2009). 

 

In the creation of the DRASTIC layers, IS also uses interpolation for the generation of the 

original factor layers and a raster calculator for the generation of the final PVI layer. In a 

study by Pathak (2010), both an inverse distance moving average (IDW) interpolation 

technique and ordinary kriging (OK) were utilized in transforming the measured depth-

to-groundwater point data to a raster surface. In a study by Nobre (2007), the DRASTIC 

factor depth-to-water table was created via the OK method; it was assumed that the 

variables were normally distributed. In Nobre’s analysis (2007), the precipitation 

coverage was generated by the Thiessen polygon method; the product of which was then 

converted to a raster layer. In a study by Thapinta (2002) both rainfall, in point format, 

and well depth, in vector format, were converted to raster grids through spline 

interpolation. The DRASTIC vulnerability index factors have two different raster layers 

for each parameter: one for rating (within the parameter) and one for individual weights 

(Secunda, 1998). There are nine different types of interpolation techniques that can 

potentially be used to create a uniform raster layer, which in turn can be used in 

conjunction with the chosen pollution vulnerability factors (Whitman, 2010). This puts 

the groundwater quality index and DRASTIC layers in the same data format for statistical 

interpretation.  

 

In a GIS environment the creation of groundwater vulnerability maps and groundwater 

quality index allows for a statistical comparison between the two. The statistical 
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comparison is accomplished through map algebra operational procedures (DeMers, 

2002). This can create a basis for a long-term sustainable resource management and 

groundwater protection program based on those areas of high aquifer vulnerability 

(Nobre, 2007; Navas, 2011). The generation of a PVI covering the entirety an aquifer 

system in watershed scale is so powerful because of the visual and spatial capabilities of 

GIS (Pathak, 2010). Utilizing GIS for predicting the two components of temporal and 

spatial change is accomplished through the interface between adjacent raster cells 

(Randhir, 2011). Nobre (2007) indicated that the integration approach in a GIS 

environment used for producing a vulnerability index provides a mechanism for 

identifying what areas within the aquifer watershed should be protected by land use 

restrictions and prioritized for ground water monitoring.  

 

The same study also indicated that using GIS to map spatial data, through the application 

of specific GIS tools, is subject to significant uncertainties (Nobre, 2007). For instance, 

the interpolation of regional data using geostatistics, the transformation of data from 

vector to raster format, and the classification of environmental factors by pollution 

vulnerability weights and ratings can result in outcomes that may not be demonstrative of 

the environmental condition within the timeframe being researched (Nobre, 2007). 

However, cross validation techniques can be used to validate the accuracy of datasets 

produced by the model in all situations (Vyciene, 2009). The technique has five 

parameters that can be used in assessing the error between between the known and 

predicted datasets. These parameters consist of the mean error, root mean squared 
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prediction error, average standard error, mean standardized error and root mean squared 

standardized error. 

 

OK is the interpolation method most often used in the generation of regionalized cell 

values from scattered data points (Rivest, 2011). This interpolation method is a popular 

method of spatial interpolation for contouring and surface mapping (Bonham-Carter, 

1994). In order to properly assess the variability in an OK model it is important that the 

average standard errors are close to the root-mean-squared predication errors (Vyciene, 

2009). The rules for the placement of these errors in confirming the accuracy of the 

prediction model are as follows. If the average standard errors are greater than the root 

mean square prediction error there has been an overestimation of the prediction 

variability (Vyciene, 2009). However, if the average standard error is less than the root 

mean square prediction errors then there is an underestimation of the prediction 

variability given by the model (Vyciene, 2009). If the root-mean-squared standardized 

value is less than 1 the model has overestimated the prediction values. However, if the 

root-mean-squared standardized value is greater than 1, this indicates that the predictions 

have been underestimated (Vyciene, 2009). In the OK interpolation method the most 

important geostatistical indicator is the standard root mean square error. This parameter 

demonstrates how representative the chosen interpolation method is for the chosen 

hydrologic characteristic (Morio, 2010). The closer the standard-root-mean-square error 

is to 1, the better the continuous output prediction coverage for that dataset (Vyciene, 

2009).  
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 Over the past few decades the GIS geostatistical methods have been widely applied in 

situations where time series monitoring data needs to be sequentially incorporated into 

mathematical models (Morio, 2010). Both spline and kriging interpolation modeling 

methods can be used to develop either temporal or spatial variation coverages (Zhang, 

2011). However, even though kriging has a tendency to smooth the original data 

distributions, this interpolation method maintains a closer semblance to the true shape of 

the original dataset (Vyciene, 2009; Rivest, 2011). A further constraint to the 

interpolation methods is that any cell can only represent one fixed output at a time 

(Randhir, 2011). 

 

2.4.1 Use of GIS as a Tool 

The goal of this study is to use GIS modeling technology to develop an intrinsic PVI map 

to groundwater. This goal is based on the many unique variables that must be considered 

in order to create a sustainable long-term protection of drinking water within an 

unconfined karst aquifer environment. The use of GIS in this type of study is essential. 

GIS has been typically used to create maps of watershed vulnerability, contaminant risk 

ranking, and has focused on contaminant plumes within different types of aquifer 

environments. Yet a review of the literature indicates that although GIS has been used in 

many modeling studies, GIS has not been used in conjunction with hydrologic modeling 

to create a contaminant flow model within this type of aquifer. Additionally, past 

hydrological contaminant vulnerability research studies utilizing GIS have not 

investigated a karst aquifer environment. Different types of aquifer environments directly 
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affect how contaminants will move over time and space making any conclusions drawn 

from these past studies inapplicable with this case study. 

 

As demonstrated in the work of Finkel et al., (2010) GIS can be used to generate water 

quality modeling to determine contaminant concentration changes over time and through 

the aquifer space. GIS can also be used to generate an overlay index method of those 

variables, which make an aquifer vulnerable to pollution influx. This is done in order to 

predict which areas of the aquifer are more likely than others to become polluted.  

 

Generally there are three ways that contaminants in groundwater can be classified and 

tracked: (1) direct observation of contaminants within the aquifer which is the most 

accurate but there is typically not high enough observation density for regional 

vulnerability assessments; (2) simulation methods; and (3) index methods (Thapinta, 

2002). The number of direct observations of contaminants through monitoring techniques 

in Broward County is skewed towards the eastern portion of the county making any 

conclusions of pollution vulnerability incompatible with application throughout the rest 

of the county. Both simulation and index methods use environmental variables and 

chemical properties for vulnerability assessments but due to deficient data and 

computational burden the simulation method is better utilized at the local rather than 

regional level of study. In this case the ground water index vulnerability map will be 

based on seven variables that influence the hydrogeological environment that make up 

the aquifer and surrounding environment. These environmental parameters influence how 

susceptible different parts of the aquifer are to different types of contamination. The 



 35

variables, ranked according to attributes affecting pollution vulnerability in the aquifer 

environment, are depth to water table, recharge, aquifer media, soil type, topography, 

impact on vadose zone, and hydraulic conductivity (Nobre, 2007). The model is called 

DRASTIC. This model is used to assign large spatial areas different vulnerability scores 

while not requiring that extensive amounts of field data be gathered. GIS is ideal for this 

type of model because it has capability for easily displaying, recognizing, compiling and 

comparing the different hydrological areas within certain regions of the study area (Miller 

2005). Because of the Well Field Program and National Pollutant Discharge Elimination 

System (NPDES) Program there is a basis of field data to verify the output of the 

DRASTIC model to be generated for each year of the 2006-2011 study. Therefore, this 

study will also examine the validity of the DRASTIC index by comparing those areas in 

Broward County deemed vulnerable to pollution to the groundwater field data generated 

from the two programs.  

 

In addition to the lack of spatiotemporal contaminant studies within this aquifer system 

other issues stress the imperativeness of performing this type of work. Population 

increase throughout south Florida has also negatively affected long term aquifer 

sustainability due to increased utilization of groundwater resources beyond potential 

recharge capacity; leading to coastal saltwater intrusion and inland pollution leachate 

infiltration (Assaf, 2008). This increasing demand for water affects the natural flow of 

nutrients, as well as contaminants introduced by anthropogenic sources at the aquifer 

surface. As the state of Florida incorporates increasingly lenient business legislature and 

development ventures, the integration of less stringent environmental protection laws are 
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being integrated into the state and local regulatory code of ordinances. As a result of this 

the hydrologic environment of the Biscayne Aquifer is made even more unique due to the 

complex spatially varying land cover patterns throughout Broward County as well as the 

varying rainfall patterns over the six years. The environmental necessity for monitoring 

contaminants found within the drinking water aquifer, in Florida’s increasingly business 

oriented governmental society is imperative. As the influx of businesses within Broward 

County continues to grow, increasing chances of pollution vulnerability, the importance 

of a strong GIS based model monitoring system becomes more evident when studying 

problems that are spatial in nature. 

 

2.5 Dissolved Chemical Constituent Transport in the Biscayne Aquifer 

In April 2003 a tracer test was conducted using Rhodamine WT (RWT), a fluorescent 

dye, in order to obtain greater information regarding impact that the chemical and 

physical processes have on the migration of contaminants, chemicals, within the 

Biscayne aquifer (Shapiro, 2008). In February 2004 there was a companion tracer test 

used to analyze the different Biscayne aquifer factors affecting the transport of chemicals 

and pathogens. This test utilized different sized microspheres to imitate the movement of 

oocyst through different types of aquifer media (Harvey, 2008). These two tests were 

conducted in the northern portion of the Miami-Dade well fields and were used to expand 

the knowledge base of the potential ability for the karst limestone to transport suspended 

chemical components as well as waterborne pathogens (Renken, 2008).  
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The velocities obtained during transport of previous dye tracer tests conducted by the 

Miami-Dade Department of Environmental Resources Management ranged from 1 to 30 

m/d (Renken, 2008). Many of the tracer tests conducted before 2003 had focused solely 

on generating a travel time association from point to point within the aquifer (Renken, 

2008). The 2003 tracer test demonstrated a lack of dye dispersivity from the path of the 

groundwater flow within the aquifer formation. This test indicated that the lack of dye 

dilution, from the injection well to the production well, was representative of chemical 

interaction with the groundwater drawn to the production well from the surrounding 

aquifer formation (Renken, 2008).  

 

One of the aquifer formations responsible for this interaction between the injection well, 

high levels of tracer concentration, and detection of the tracer at the production well are 

the touching-vug flow zones directly below the surface casing in the injection well 

(Shapiro, 2008). The groundwater movement through touching-vug flow zones are 

characterized by a merger of vugs into pathways marked by repeated twists, turns and 

bends through which groundwater moves from vug to vug. The high porosity of these 

stratiform touching-vug flow zones are efficient pathways for tracer, and contaminant, 

movement in the drinking water well fields. The 2004 tracer tests tracked the 97m 

transport route of the different sized microspheres, 1.6, 2.9, and 4.9 um, to the pumping 

well (S-3164) through the karst limestone of the Biscayne aquifer (Harvey, 2008). The 

removal of these microspheres at well S-3164 was inversely size dependent (Harvey, 

2008) with 2.9% of the largest microspheres (4.9 um) removed and 5.8% of the smallest 

microspheres (1.6 um) removed (Harvey, 2008). The highest concentration peak for the 
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microspheres was observed traveling at a faster rate through the karst aquifer limestone 

than was originally calculated from an in situ transport test which utilized a nonreactive 

tracer (Harvey, 2008). According to Shapiro the multiple pathways of limestone conduit 

openings are representative of varying average velocities, which range over multiple 

orders of magnitude, which affect the dispersion and clustering of the dye and 

microspheres (Harvey, 2008). For instance, microspheres not found within one day of 

their introduction to the aquifer indicates that particulate tracers only travel substantial 

through those karst conduits with the highest velocity (Harvey, 2008; Bailly-Comte, 

2010). The field demonstrations of the April 2003 and February 2004 field tests 

demonstrate the insufficiency of incorporating only total porosity to calculate the well 

field protection zone travel time boundaries around production wells. The tests also 

reinforce the need to use colloidal particles that are similar in oocyst size and Rhodamine 

dye, indicative of contaminant transport, to demonstrate the affect these two factors could 

have on production well vulnerability in aquifers that have complex matrix porosity and 

velocity flow paths (Harvey, 2008).  

 

Chemical contamination events ranging from days to months to years within the Biscayne 

aquifer could result in the dilapidation of water quality (Shapiro, 2008). During the April 

2003 test Rhodamine dye was used to reflect the movement of contaminants within the 

production well drawdown area. One aquifer feature, touching-vug flow zones, seems to 

control much of the groundwater and chemical transport, inflow or outflow (Manda, 

2005). Borehole image logs estimate this aquifer feature to be approximately 0.9 m in 

thickness (Renken, 2008). Moreover, the shallow uncapped karst limestone aquifer is 
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hydrologically connected to surface water and therefore has a greater chance of oocyst 

introduction as well as contamination from surface spills (Harvey, 2008). 

 

The two different tracer aquifer tests performed in the Miami-Dade portion of the 

Biscayne aquifer in 2003 and 2004 indicates that the aquifer is conducted as a dual-

porosity matrix medium and shows that the high transport of tracers is comparable to 

other types of karst (Renken, 2008). The dual-porosity feature of the aquifer exists 

because of the presence of touching-vug flow zones. This aquifer media factor is further 

characterized by the formation of stratiform zones of high permeability as well as 

burrows, and interburrows, increased by karst media dissolution (Renken, 2008). These 

aquifer features create an environment where an in-use production well does not greatly 

change the water table level because the water contained within the porous aquifer matrix 

is released and supplements the water being withdrawn from the touching-vug porosity 

(Renken, 2008). 

 

The 2004 tracer test also demonstrated that the ambient hydraulic stresses have an 

inconsequential impact on the groundwater flow conditions during the tracer injection 

itself as well as during the monitoring and tracer recovery period at the production well 

(Shapiro, 2008). However, the limestone void space of the Biscayne aquifer is seriously 

different from other distinguishing karst features (Renken, 2008). In this aquifer setting 

the groundwater can flow through a network composed of separate vugs, where flow 

occurs though matrix porosity, or through interconnected vugs, where flow happens 

through touching conduits (Renken, 2008). 



 40

Due to the touching-vug porosity in the Biscayne aquifer there is likely to be a high level 

of surface area for dispersal of groundwater because of the interconnected conduits in the 

touching-vug void space (Shapiro, 2008) of the karst limestone. However, the limestone 

is heterogeneous in nature and as a result has large variability in matrix porosity (Shapiro 

2008; Bailly-Comte, 2010). The transport of contaminants within the touching-vug flow 

zones are influenced by multiple pathways containing fluid velocities that range over 

numerous orders of magnitude (Shapiro, 2008). 

 

The touching-vug flow zones are the primary way, which solutes, particulates, and fluids 

are transported within the Biscayne aquifer (Harvey, 2008). There are certain pathways 

within the aquifer, which, over time, have become preferred groundwater flow zone paths 

due to the high touching-vug porosity (Harvey, 2008). There are several research studies, 

which have shown that the transport flow regime of chemicals through fractures rock can 

be accounted for by a one-dimensional, linear flow system (Bailly-Comte, 2010). This is 

due to the consistent channeling of groundwater flow within the highly permeable 

carbonate fractures (Shapiro, 2008). The extensive surface porosity of the touching-vug 

flow zone accounts for most of the groundwater transmission in the limestone (Shapiro, 

2008). The faster flow zones of higher macroporosity indicate the likelihood that the 

contaminants will travel longer distances with lower removal of contaminants from the 

water flow (Harvey 2008). The slower flow zones indicate that contaminants would be 

quickly dissipated because of filtration and settling (Harvey 2008). However, because of 

the heterogeneous porosity of the limestone the flow system is likely to reflect 

characteristics of both linear and radial aquifer conditions (Shapiro, 2008). 
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The touching-vug flow zones of the aquifer matrix porosity are associated with high 

storativity and high transmissivity of water (Shapiro, 2008). For example, increases in the 

water table brought on by heavy rainfall can dissipate after roughly 1 day (Shapiro, 

2008). The region of the touching-vug flow zone located at – 10.0 m was responsible for 

most of the tracer movement because the transmissivity of the touching-vugs at this depth 

of the aquifer is greater than those touching-vugs at greater depth (Shapiro, 2008). 

 

The carbonate and fractured rocks within the Biscayne aquifer are full of even smaller 

fractures and conduits. The majority of the tracer movement, or chemical mass 

movement, is affected by the hydraulic conductivity of these fractures and conduits 

because their flow velocity can range over many orders of magnitude (Bailly-Comte, 

2010). According to Becker and Shapiro (2000), the hydraulic conductivity of fractures 

range over more than 6 orders of magnitude (Shapiro, 2008) within the geologic setting 

of the Biscayne aquifer. Due to this, the tracers used in the 2003 and 2004 tests exhibited 

changeability in the velocity over multiple orders of magnitude (Shapiro, 2008). Those 

individual conduit flow paths exhibiting the fastest velocities within the fractured rocks 

of the Biscayne aquifer controlled the first detection arrivals and the peak concentration 

arrivals of the chemical constituents (Shapiro, 2008).  

 

The flow paths and corresponding velocity indicates that in the heterogeneous setting of 

the karst aquifer is not representative of the Fickian interpretation of hydrodynamic 

dispersion (Shapiro, 2008) where the mass transport of chemicals is proportional to the 

concentration gradient of the aquifer matrix and in the direction of the concentration 
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gradient. Determining the preferred pathways and end fate of contaminants introduced to 

the subsurface groundwater within the karst limestone is important in gauging 

contaminant longevity within the aquifer. The implementation of water resource 

protection and management shouldn’t be determined by a groundwater flow model based, 

which relies solely on estimates of bulk hydraulic properties (Renken, 2008). 
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3. METHODOLOGY 

This chapter introduces the Broward County well field capture zones. The PVI model 

was integrated into a GIS-based interface to facilitate the delineation of known and 

unknown contaminant areas of interest within the county. GIS was also used to extract 

the necessary model input layers, such as CN and runoff rates, for the pollution 

vulnerability model. The interpolated contaminant raster layers were also created from 

known stationary contaminant points through this interface.  

 

3.1 Facility Well Field Capture Zone 

The primary contaminant data sources used in this research are taken from the surface-

monitoring stations of the NPDES program, monitoring well and potable well points of 

the Well Field Program and located within the surface well field boundaries ratified by 

the Broward County government. The contaminant detection point layers will reflect data 

from 26 different well fields and 47 different well depths, ranging from -15 feet to -202 

feet, within the potable well cones of influence. Contaminant detection data outside of the 

surface well field boundaries is not used in this research. Surface monitoring stations are 

located throughout the county but only the stations located within the boundary were 

used in this research. There are also no wells approved by county government for 

monitoring or potable water withdrawal which the county maintains continuous quarterly 

detection data. This research therefore only focuses on those detection points that are 

approved and maintained by governmental entities. Therefore, this research only reflects 
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aquifer movement of contaminants from within the cones of influence generated by the 

potable wells. 

 

The well field capture zones used in this research have been approved by the Broward 

County Board of County Commissioners. Facilities utilizing hazardous materials and 

located within well field boundaries 2 and 1 must obtain licenses and install monitoring 

wells for tracking of contaminants. All hazardous material facilities that have a 

Hazardous Material and/or Storage Tank license are stored in the county Public One Stop 

Service (POSSE) management database.   
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Figure 4: Map of Broward County Well Field Capture Zones 
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In this research project the facilities with wells on their properties were captured in a 

separate spatial GIS layer. When the facilities are created a stationary point is generated 

in the POSSE_FACILITIES point shapefile. To capture those facilities located within the 

37 Broward County well fields the Select by Location Tool was utilized so that 

POSSE_FACILITIES completely contained within well field zone 3, the largest of the 

well field boundaries, were selected and exported to a new layer Wellfield_Facilities. 

 

3.1.1 Contamination Source Index and Well Index 

Determining if a facility within the well field boundary required a monitoring well for the 

tracking of chemicals that are used on site depends on the 10 factors: secondary 

containment, discharge, evidence of release, solvents > 25 gallons, most protected 

wellfield zone, chemicals detected, AST > 550 gallons, UST > 110 gallons, Superfund 

Amendments and Reauthorization Act (SARA) Title III Vessel, SARA Title III Facility. 

The Source Index (SI) of contaminants at each facility for this research was determined 

by these 10 factors, where the contaminants are on the facility property in relation to the 

nearest supply well, and where the facility falls within the oblong well field protection 

boundary.  

 

For each of the 3 contaminants being tracked a separate monitoring and potable well GIS 

layer was created. Within the layers the Broward County potable wells were assigned a 

well index based on the individual contaminant locations (those facilities contained 

within the individual potable well protection boundary) and location to the nearest 
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potable well by zone. The original Broward County supply well GIS layer was imported 

into the Geodatabase and specific wells were extracted after determining which potable 

wells had contaminant detections during the timeframe of the 5-year study. The Broward 

County GIS potable well layer was Merged with the monitoring well layer created for 

this research and then the excel spreadsheet containing contaminant detections by facility 

and well field was Joined with this PW_MW.shp layer. This was accomplished through 

each separate well field and contaminants tracked in this research because monitoring and 

potable wells often have the same names in different well field locations. 
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Figure 5: Potential Facility Contamination SI 
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3.2 GIS and Contaminant Modeling 

ArcGIS Geostatistical Analyst was used to interpolate continuous raster layer maps from 

the spatially discrete points associated with the quarterly and yearly average contaminant 

concentration data. The Broward County well field protection program started collecting 

quarterly subsurface monitoring well and subsurface potable well contaminant detection 

data in 2006; this study observes the time range from the beginning of 2006 through the 

end of 2011. Contaminant data was chosen based on availability within the well field 

program across county extents. Using GIS, three different vertical layers for nitrates, 

were quantitatively compared to observe the variation in contaminant concentration 

between different depths of the Biscayne Aquifer. The depths used were -5 feet, -15 feet, 

and the range of -60 feet to -202 feet. The presence of any statistically significant 

influences between the three layers was determined through a cross correlation graph of 

well depth versus nitrate concentration. In the second analysis, the three vertical 

monitoring levels for each contaminant were merged to generate a single continuous 

raster layer for each year the contaminants were tracked. This raster layer will reveal a 

lateral, seasonal contaminant map across Broward County. In the third analysis, these 

maps will allow for an association study between the spatial distribution of contaminants 

and the location of potential areas of vulnerability that may be more susceptible to and 

impacted by anthropogenic actions. 
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3.2.1 Contaminant Model Inputs and Raw Data Preprocessing 

The datasets used in the individual objectives within this study are the same sets used 

throughout the study. The locations of the potable wells were taken from the official 

Broward County government issued GIS layer. The location of the monitoring wells was 

verified through the licenses issued by the well field program and by visual field 

identification of the wellhead locations. The NPDES pollutant discharge monitoring 

station locations were verified through maps located on the U.S. Environmental 

Protection Agency (EPA) website and through field visits to the different surface 

monitoring stations. The attribute tables created in this study contain the spatial 

coordinates of potable and monitoring well locations, the surface water discharge 

monitoring station locations, temporal data of the dates the water samples were taken, 

and the contaminant concentrations in milligrams per liter (mg/L) (Lake, 2003). 

 

The well field contaminant detections were collected at irregular spatial intervals as 

dictated by the location of the well fields across the county. The density of available data 

may fluctuate from well field to well field depending on the distribution of given sample 

points. Therefore, the interpolation technique used had to account for the randomly 

spaced detection points. The local polynomial interpolation, OK, creates a surface that is 

optimal for calculating a surface that has low differences between interpolated and true 

surface values. The kriging interpolation is smoothing and is optimal to use in those 

conditions where a trend needs to be developed from multiple points from wide 

numerical and spatial ranges.  
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The raster coverage layer for contaminant concentration change across the county over 

time was generated by OK interpolation technique at a 75-25% split of training and 

validation groups from the stationary monitoring point data. In the generation of 

regression models with the ordinary kirging tool, the validation dataset will allow for 

accuracy testing of the interpolated contaminant concentration layers for the seasonal and 

averaged yearly monitoring points. Contaminant trends were assessed from the first 

quarter 2006 to the fourth quarter 2011 to show overall yearly and quarterly 

spatiotemporal changes. 

 

The quarterly detection point data from January 2006 to December 2011 were used to 

explore the temporal contaminant trends of nitrates, lead, and toluene in the Broward 

County segment of the Biscayne Aquifer. However, due to certain management of the 

program toluene had no detections before 2007; there were only 4 years of detections for 

this contaminant unlike the other two chemicals being tracked. The three sources of point 

data (i.e. monitoring wells, potable wells, and surface water monitoring stations) were 

merged for nitrates only in order to track contaminant concentrations over time. The 

temporal layer will combine all three layers of the point detection locations to attain a 

continuous raster coverage layer of contaminants across the Biscayne Aquifer. The 

spatial locations of the monitoring point features is the common attribute that is used to 

link the attribute table created in Excel to the monitoring point locations created inside of 

a GIS environment. In this case the non-detects were input as the minimum detection 

limit (MDL) of the 3 different contaminants tracked. The contaminant data was input into 

Microsoft Excel format from detection reports generated quarterly in POSSE and then 
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converted to a CSV format to Join to the spatial layer of monitoring, potable, and surface 

station location shapefiles. 

 

3.2.2 GIS Parameters 

The stationary well data does not exhibit a normal distribution in the histogram or a 

Normal QQ Plot. The data were skewed left in the histogram. Therefore, the data was 

transformed and conformed to a normal distribution before interpolation in OK. The log 

transformation was used because even after the outliers were removed from the dataset 

there were still some localized large values and skewed distributions of data. Logarithmic 

transformation was applied to the dataset to produce a bell shaped histogram. The trend 

analysis tool demonstrated a U-shaped trend for the contaminant datasets. This indicated 

that a second order polynomial for global trend model should be implemented for the 

skewed dataset interpolation.  

 

   

Figure 6: Northern Directional Trend Analysis for Toluene Y2011 and Nitrate Q2Y2011 

 
To develop the nitrate raster surface for objective 1 the monitoring, potable and surface 

water datasets were merged. Contaminant concentrations found during surface water 
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monitoring are from the NPDES program. Contaminant concentrations found in 

subsurface monitoring and potable wells are from the Well Field Program. Those three 

GIS layers were merged for the nitrate concentration layer only to create a nitrate layer 

containing 3 different aquifer depths. The well stations included in this study are 

comprised of 46 monitoring wells, 31 potable wells, and 44 surface locations. The 

potable well depths used in this study range from – 80 ft to – 202 ft, the monitoring wells 

reach depths of – 15 ft, and the surface locations are at – 5 ft in open bodies of water.  

 

When analyzing the merged potable and monitoring well toluene dataset for the correct 

interpolation technique it was determined that there were not enough quarterly detections 

to complete the OK interpolation. However, the merged yearly average detections had 

enough known points to complete the OK interpolation. Although in each of the 5 yearly 

averages the outliers could not be removed if the OK interpolation was to be completed. 

For nitrates, a second order trend removal or no trend removal at all was implemented for 

the interpolation depending on what the Trend Analysis reflected during the data 

exploration process. 

 

 

 

 

 

 

 



 54

Table 3: Preliminary Statistical Analysis of Nitrate Data for Interpolation Method 

Nitrates 

Date 
Wells  
Tested 

Total 
Detections Outliers Trend Removal  

Q1Y06 93 49 6 2nd Order Polynomial 

Q2Y06 93 53 11 2nd Order Polynomial 

Q3Y06 93 62 10 2nd Order Polynomial 
Q4Y06 93 65 2 2nd Order Polynomial 

Y2006 93 80 8 2nd Order Polynomial 

Q1Y07 93 65 5 2nd Order Polynomial 

Q2Y07 93 65 9 2nd Order Polynomial 

Q3Y07 93 56 9 2nd Order Polynomial 

Q4Y07 93 65 4 2nd Order Polynomial 

Y2007 93 79 8 2nd Order Polynomial 

Q1Y08 93 59 8 2nd Order Polynomial 

Q2Y08 93 50 14 2nd Order Polynomial 

Q3Y08 93 57 8 2nd Order Polynomial 

Q4Y08 93 9 0 
Autocorrelation breached,
No trend 

Y2008 93 64 11 No trend removal used 

Q1Y09 93 53 14 No trend removal used  

Q2Y09 93 60 7 2nd Order Polynomial 

Q3Y09 93 55 5 No trend removal used  

Q4Y09 93 54 5 No trend removal used  

Y2009 93 60 8 Third Order used 

Q1Y10 93 57 3 2nd Order Polynomial 

Q2Y10 93 46 3 Third Order used 

Q3Y10 93 45 4 No trend removal used  

Q4Y10 93 46 4 2nd Order Polynomial 

Y2010 93 61 0 No trend removal used  

Q1Y11 93 50 4 No trend removal used  

Q2Y11 93 47 6 2nd Order Polynomial 

Q3Y11 93 47 13 2nd Order Polynomial 

Q4Y11 93 10 0 2nd Order Polynomial 

Y2011 93 55 5 No trend removal used  
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Figure 7: Map of Spatiotemporal Nitrate Concentrations 

 

When analyzing the merged potable and monitoring well lead and toluene dataset for the 

correct interpolation technique it was determined that the location of lead and toluene 

detections was concentrated in one area of the county and the total number of detections 

did not allow for an interpolation technique to be implemented on the quarterly datasets. 

However, the yearly average contained enough known detection points to complete the 

OK interpolation; but with no 75-25% split of training and validation groups. Instead the 

nugget was as close to 0 as possible, the Root Mean Square (RMS) Standardized was as 

close to 1 as possible, and the RMS was as close to 0 as possible for validation of the 

coverage. 
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Table 4: Preliminary Statistical Analysis of Lead Data for Interpolation Method 

Lead 

Date 
Wells  
Tested 

Total  
Detections Outliers 

Q1Y06 84 6   

Q2Y06 84 13   

Q3Y06 84 5   
Q4Y06 84 5   

Y2006 84 18 
All detections above MDL are outliers,
All detections kept for interpolation 

Q1Y07 84 5   

Q2Y07 84 9   

Q3Y07 84 8   

Q4Y07 84 16   

Y2007 84 30 
All detections above MDL are outliers,
All detections kept for interpolation 

Q1Y08 84 22   

Q2Y08 84 20   

Q3Y08 84 7   

Q4Y08 84 8   

Y2008 84 36 

16 values eliminated because 
considered outliers, 
Not enough data, so kept in dataset for 
interpolation 

Q1Y09 84 12   

Q2Y09 84 13   

Q3Y09 84 7   

Q4Y09 84 8   

Y2009 84 25 4, Not removed 

Q1Y10 84 8   

Q2Y10 84 11   

Q3Y10 84 9   

Q4Y10 84 7   

Y2010 84 25 9, Not removed 

Q1Y11 84 9   

Q2Y11 84 5   

Q3Y11 84 8   

Q4Y11 84 6   

Y2011 84 17 No detections considered outliers 
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Figure 8: Map of Spatiotemporal Lead Concentrations 

  

Table 5: Preliminary Statistical Analysis of Toluene Data for Interpolation Method 

Toluene 

Date 
Wells 
Tested 

Total 
Detections Outliers 

Q1Y07 56 15   

Q2Y07 56 3   

Q3Y07 56 7   

Q4Y07 56 9   

Y2007 56 21 6, Not removed 

Q1Y08 56 3   

Q2Y08 56 4   

Q3Y08 56 9   

Q4Y08 56 2   

Y2008 56 18 7, Not removed 

Q1Y09 56 1   

Q2Y09 56 4   
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Toluene 

Q3Y09 56 5   

Q4Y09 56 1   

Y2009 56 10 

All detections above MDL are 
outliers, 
All detections kept for 
interpolation 

Q1Y10 56 0   

Q2Y10 56 12   

Q3Y10 56 4   

Q4Y10 56 3   

Y2010 56 19 6, Not removed 

Q1Y11 56 9   

Q2Y11 56 1   

Q3Y11 56 6   

Q4Y11 56 3   

Y2011 56 17 8, Not removed 

 

 

Figure 9: Map of Spatiotemporal Toluene Concentrations 
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The interpolated yearly and seasonal raster layers for each of the five years are shown in 

a graph of contaminant concentration versus time in order to assess any contaminant 

concentration trends expressed within the three different contaminants. The raster layers 

were represented in map layouts with contour lines delineating the changes in 

concentration. The same average yearly layers were overlaid against the PVI in GIS so 

comparisons could be made across different concentration levels. 

 

3.2.3 Data Exploration and Structural Analysis of Contaminant Coverage in an AOI 

Changes in contaminant concentrations within the lateral and vertical spatial dimensions 

of the study area were monitored and observed. The vertical detection layers are made up 

of NPDES surface monitoring points, well field monitoring well points, and the potable 

well point data. The surface readings were taken from the NPDES pollutant monitoring 

stations. The NPDES surface monitoring stations are located in areas where businesses 

are permitted to discharge specified chemicals to surface water. The shallow well field 

monitoring wells are – 15 feet below ground level while potable wells are located – 80 to 

– 202 feet below ground level. The shallow monitoring wells are located at the licensed 

businesses, within the well field, located in those areas close to the potable wellhead. 

Different municipal water treatment plants throughout the county operate the potable 

wells; these well locations were chosen based on proximity to water treatment plants. In 

Broward County water treatment plants are commonly surrounded by, or are near, land 

areas classified as industrial or urban. These three different data gathering systems 
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encompass a large coverage area, both laterally and vertically, allowing for the complete 

tracking of contaminant plumes within Broward County. 

 

The raster coverage of individual contaminant concentrations were generated through the 

OK interpolation method using the three different sets of stationary data points. These 

detection layers will reflect contaminants within various levels of the Biscayne Aquifer. 

The contaminants are represented through the stationary drinking water wells, monitoring 

wells, and pollutant discharge points within the county. Raster coverage was generated 

for each quarter, as well as yearly averages, of the five-year period. However, the whole 

county raster coverage will not be analyzed. The three layers of the aquifer were overlaid 

to analyze the differences in contaminant concentrations; this section is an expansion of 

the analysis study begun in objective 1. The vertical detection layers will track the 

independent contaminant concentrations across four specific AOIs and present data as 

seasonal and yearly phenomenon. The AOIs were chosen based on proximity to land 

usage areas that demonstrate contaminant origins and potential pathways to the aquifer, 

i.e., industrial parks, agricultural plots, bodies of water, and landfills (Wang, 2012). 

These land usages are dispersed throughout the county complicating the originating 

source of contaminants located in the aquifer. The map of the AOI contains: Highway 

595, solid waste facility, golf course, and gasoline stations. 
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Figure 10: Map of Broward County AOI for Well Field Facilities 

 

The lateral layers were created with greater emphasis on time frames due to the greater 

spatial coverage possible in the lateral movement of contaminants across the Biscayne 

Aquifer. The AOI of the lateral analysis is the entirety of Broward County. The point 

layers for surface, monitoring well, and potable well contamination concentration data 

were combined into one aquifer dataset that was used to create raster layers of the entire 

study area using the OK interpolation method. The lateral layers created were monitoring 

for broad trends of contaminant concentration and movement. The seasonal contaminant 
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concentration detection layers were developed from data supplied by businesses and 

municipalities that have hazardous material licenses that require quarterly sampling for 

contaminants. The average yearly contaminant concentration data was generated from the 

averaged quarterly data located in the attribute tables for each of the individual 

contaminants. This data from the required quarterly sampling plans are from those 

businesses and municipalities located in zone 2. OK was used to create the raster layers 

using contaminant concentrations measured at different depths of the aquifer, where data 

is available.   

 

3.3 GIS and Pollution Vulnerability Index Modeling 

The concentrations of the chemicals tracked in this study have changed over the course of 

the six-year time frame. This analysis of objective 4 is designed to determine what 

influence independent variables have on the spatial and temporal aquifer contaminant 

concentrations. Do to uneven well density throughout the county there was not sufficient 

density of contaminant observation for a regional vulnerability assessment. A PVI was 

generated to determine what areas of the county were most vulnerable to pollution. The 

method in this study was based on the DRASTIC method using the environmental 

parameters depth to aquifer, recharge, aquifer media, soil media, topography, impact to 

vadose zone, and conductivity as indicatory of pollution vulnerability in the aquifer. Six 

parameters of data were compiled for the aquifer PVI of this study: depth to water table, 

recharge, aquifer media, soil media, impact to vadose zone, and hydraulic conductivity.  
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The original DRASTIC model included the topography parameter. However, the 

inclusion of this parameter did not change the final model output and so was not included 

in the model calculations. The original DRASTIC model did not include CN in the 

recharge and soil media parameter calculations. The modification of these parameters 

transforms the DRASTIC method into a representative ground water map by improving 

computational technique and local input parameters. This additional input utilized in the 

model improves sensitivity analysis in order to evaluate the relative importance of the 

model parameters, which are then reflected in their individual weights and ratings. 

 

 In the previous objectives the temporal and spatial raster chemical coverages were 

analyzed for trends in their own sections with no analysis considering what external 

variables may have influenced the changes in contaminant concentration. This section 

will focus on contaminant data explanation through the use of temporal, lateral, and 

vertical contaminant raster layers generated in objectives 1 and 2. To validate the 

accuracy of the DRASTIC PVI coverage, the spatiotemporal trends of nitrates 

concentrations were tracked and used to create a raster network of continuous 

contaminant detections over time. The GIS Analyst Tool was used to model subsurface 

features, like contaminant concentrations, and overlay them with the independent 

environmental parameters of the PVI (Huan, 2012).  
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 3.4 Development of Pollution Vulnerability Index Map 

The rating of each numerical range or category within the 6 different pollution 

vulnerability factors was assigned a weight to create a numerical output to be used in the 

final analysis of the PVI map. The following table is a representation of how all of the 

different parameters are being broken down into distinct Ratings and Weights. In the final 

pollution vulnerability map the higher the pollution vulnerability score the higher 

probability that a certain section of the aquifer is contaminated. 

 

Table 6: Biscayne Aquifer PVI Rating 

Parameters Wi 
PVI Rating (Ri) 

1 2 3 4 5 6 7 8 9 10 

Depth to water table 
(m), d 

5               4.7-7.1 1.5-4.6 0-1.4 

Recharge (mm), r 4 0-50   
51-
102

    
103-
138.7

        

Aquifer media, a 3       

Sand 
Shell 
and 
Marl 

      Peat   
Karst 

Limestone

Soil/LULC 
combination map – 
HSG & CN, s 

3 
C/D 

94/99 
B/C 

92/91
A 
89 

C/D 
85/80 

A/B/C
76/79

C 
72 

A 
65/67

A 
49 

A 
43 

  

Impact of Vadose 
Zone, i 5               

Karst 
Limestone 

Bedded 
Limestone 

Sand and 
Gravel 

Hydraulic 
Conductivity (m/d), 
c 

3 0-4.1 
4.2-
12.2 

  
12.2-
28.5 

  
28.5-
40.7 

  40.7-51.1     
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3.4.1 Structural Analysis 

The final output raster grids for each of the 6 pollution vulnerability parameters were 

created within the 8-bit Attribute Table column labeled Output. In this column each 

discrete cell, representing the distinct Ratings within the individual parameters, was 

multiplied by the assigned weight of the parameter using Field Calculator.  Once the 

Ratings and Weights were combined to create a raster Output the Join function in GIS 

was used to Add each of the individual PVI layers together. The breakdown of equation 

used is as follows: 

PVI = RdWd+ RrWr + RaWa + RsWs + RiWi + RcWc 

R = rating; W = weight 

Equation 1: PVI Model (Saidi, 2009 and Kerr, 1987) 

 

3.5 Model Inputs 

The integration of local knowledge and regional pollution vulnerability parameters will 

improve the DRASTIC method and create reliable tool for ground water pollution 

vulnerability identification. Each of the 6 factors, shown in Table 13, was weighted based 

on order of importance and impact to groundwater vulnerability when compared against 

the relative weight another factor would have on groundwater vulnerability to pollution 

contamination. Then within the individual categories the numerical ranges or specific 

classes within the categories were further classified by ratings to demonstrate the relative 

impact they would have on pollution vulnerability to the aquifer. The bigger the rating 
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value within the individual factors denotes the greater impact the category input facet will 

have on the PVI score of the aquifer.  

 

The 6 input data layers gathered for the PVI method was created from original sources as 

either a point or polygon layer. These layers were then converted from a vector (point and 

polygon) to a raster (grid) layer using GIS. All 6 of the pollution vulnerability layers 

converted were created with a predetermined resolution of discrete 30 x 30 meter cells. 

 

3.5.1 Depth to Water Table  

The depth to water from the soil surface was calculated from the Broward County potable 

well database maintained by the Well Field Program and from the SFWMD original GIS 

shapefile of water table depth. The downloaded SFWMD shapefile verified depths for the 

entirety of Broward County against the point depths for the potable wells monitored by 

the county. This shapefile was clipped using the Broward County approved polyline 

layer. The depth to water table rating for the pollution vulnerability map was prepared by 

assigning sensitivity rating values as:  

Table 7: Depth to Water Rating Breakdown for Depth to Water Figure 

Depth to Water  
Table (Meters) 

R
d
 

0.30-0.61 10 
0.91-1.22 9 
1.52-2.13 7 
2.44-3.05 5 
3.35-4.57 3 
4.88-7.92 2 
8.53-13.41 1 
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In the clipped county version of the depth to water final rating there were no areas going 

past -23 feet to the water table. 

 

Figure 11: Depth to Water Pollution Vulnerability Rating 
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3.5.2 Recharge 

The shallow karst Biscayne Aquifer of Broward County recharges mainly from 

infiltration by precipitation and direct recharge from the Everglades. Therefore, the net 

recharge was calculated by using the following formula: 

 

Recharge rate (V) = e – q   

Equation 2: Recharge Rate 

 
The runoff depth (q) is taken from the CN Equation which is shown in Equation 4. The 

yearly evaporation data (e) was taken from a single station located in Fort Lauderdale 

(NOAA Technical Report 2003) and is shown in Table 9. 

 

The final recharge rating pollution vulnerability map was prepared by assigning 

sensitivity rating values as: 

 

Table 8: Recharge Rating 

V  
(mm/year) 

Rr 

0 – 50  1 
51 – 102  3 

103 – 138.7 6 
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Table 9: Average Yearly Evaporation from the Fort Lauderdale Experiment Station 

Pan Evaporation 70.39/12 5.87 in 
Evaporation polygon 5.87 x 0.75 4.39 in 

Raster 4.39 x 25.5 111.74 mm
 
 
The runoff equation used in this research is based on the infiltration capacity of the 

surface. Therefore, surface runoff is dependent on the different combinations of soil, land 

use, and land cover (LULC) types. The Broward County Basin GIS layer contains all of 

the sub-basins within the county. Land cover aerial photographs were used to model 

landscape patterns for the five years of the study. Aerial satellite images from 2006, 

2008, and 2011 were used to model a rough landscape pattern of the study area through 

the use of the Earth Resources Data Analysis System (ERDAS) unsupervised 

classification tool. Then using the variations between spectral ranges the image was 

reclassified and condensed into unique land use types. Of special interest are the 

hurricane-influenced areas of 2006, the agricultural fields in western Broward County, 

the landfills in the north and south of the county, and the major canals running across the 

county (parallel to Interstate 595, I-595). These different land uses of interest are 

included in the final land classification coverage layer. Classification of raster images of 

Broward County in terms of land use and land cover (LU/LC). The total area of each of 

these basins, sub-classified with LU/LC, was used in the creation of the runoff depth (q) 

throughout the county. Then the raster image was converted to a shapefile layer and 

clipped using the Broward County Basin layer.  
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Figure 12: Map of Broward County LU / LC for 2009 

  

The soil layer was then classified into Hydrologic Soil Groups (HSG) based on the 

minimum infiltration rate of the surface: 

 

Table 10: Hydrological Soil Group 

Hydrological Soil Group (HSG) 
A Low runoff potential 
B Moderately low runoff potential 
C Moderately high runoff potential
D High runoff potential 
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Figure 13: Map of Broward County Hydrologic Soil Groups 

 

The LULC was Intersected with the soil group layer. The CN values for the runoff 

estimation ranged from 0 to 98: lower CNs indicate low runoff potential while larger 

numbers indicate increased runoff potential.   
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Table 11: HSG vs LU/LC for CN 

Land Use 
Land Use 
Element 
Number 

Soil Type 

A B C D 

Urban 100 89 92 94 95 

Agricultural 200 67 78 85 89 

Range Land 300 49 69 79 84 

Forest 400 43 65 76 82 

Water 500 0 0 0 0 

Wetlands 600 49 65 72 80 

Barren Land 700 77 86 91 94 

Roads 800 98 98 98 98 
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Figure 14: Map of Broward County CN for 2009 

 

Precipitation was also determined for use in the surface runoff equation. The daily rain 

measurements were taken from 6 rainfall capture stations of the South Florida Water 

Management District (SFWMD) in eastern Broward County. These were converted into 

average monthly and annual rainfalls represented in measurements of inches/year. These 
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rainfall measurements were imported into Excel and then converted into CSV format for 

import into the GIS rainfall layer. The GIS layer representing the location of rainfall 

capture stations throughout the county in point format was downloaded from the 

SFWMD website. The rainfall point layer was converted into raster format through spline 

interpolation.  

 

Figure 15: Historical monthly rainfall data for individual field sites, SFWMD, 

DBHYDRO 

 

The pollution vulnerability range for rating both the soil and LUC was estimated by the 

following equation: 

 

Soil C & D + Urban = CN 100/95 = PVI Rating 1 

Soil A & B + Forest = CN 40/49 = PVI Rating 10 

Equation 3: PVI CN Rating 
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The greater the recharge the greater the chance there is for contaminants to reach the 

water table. The final runoff depth was determined by the following equation in GIS 

using Raster Calculator: 

 

q = (P+2-200/CN)2 / (P-8-800/CN) 

Volume (m3) = (Q/1000) * Area (m2) 

q = Total Runoff (m3); CN = Runoff Curve Number; P = Rainfall (mm) 

Equation 4: CN Method 
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Figure 16: Map of Runoff Depth 
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Figure 17: Map of Broward County Recharge Pollution Vulnerability Rating 

 

3.5.3 Aquifer Media 

The aquifer media map was a downloaded layer from the Florida Geographic Data 

Library (FGDL) Metadata Explorer. It was created in 2010 and was a part of the state 

DRASTIC Vulnerability Areas of the Surficial Aquifer System GIS layer and was 

published by the Florida Department of Environmental Protection (FDEP). However, the 

original dataset of classified aquifer media was from the USEPA. The final aquifer media 

rating pollution vulnerability map was prepared by assigning sensitivity rating values as: 
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Table 12: Aquifer Media Pollution Vulnerability Rating 

Aquifer Type R
a
 

Limestone 10 
Peat 8 

Sand Shell and Marl 4 
 
 

 

Figure 18: Map of Broward County Aquifer Media Pollution Vulnerability Rating 
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3.5.4 Soil Media  

The soil media map was obtained from the 1990 US Department of Agriculture, National, 

January 2009 LANDSAT5-TM for LULC. The soil media rating for the pollution 

vulnerability map was prepared by assigning sensitivity rating values as: 

 

Table 13: Soil Media Rating Table 

Soil Media  
Type 

Rs  

Udorthents 10 
Limestone/ 

sand 
9 

Sandy loam 6 
Marly/loam 5 
Silty loam 4 
Clay loam 3 

Muck 2 
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Figure 19: Map of Soil Type Pollution Vulnerability Rating 

 

3.5.5 Impact to Vadose Zone 

The impact to vadose zone map was a downloaded layer from the FGDL Metadata 

Explorer. It was created in 2010 and was a part of the state DRASTIC Vulnerability Areas 

of the Surficial Aquifer System GIS layer and was published by the FDEP. However, the 

original dataset was from the USEPA. This layer is the representation of the impact of the 

unsaturated zone above the water table, which controls the passage and attenuation of the 
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contaminated material to the aquifer (Pathak 2011). The final impact to vadose zone 

rating pollution vulnerability map was prepared by assigning sensitivity rating values as: 

 

Table 14: Impact to Vadose Zone Rating Table 

Vadose Zone Ri 
Karst Limestone 8 

Bedded Limestone 9 
Sand and Gravel 10 
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Figure 20: Map of Broward County Impact to Vadose Zone Pollution Vulnerability 

Rating 

 

3.5.6 Hydraulic Conductivity 

The hydraulic conductivity map was created from the point layer of sites contaminated 

with petroleum and non-petroleum constituents. The Broward County EAR licensing 

program section maintains the conductivity points. The hydraulic conductivity is 

measured from the field pump tests implemented at each contaminated site in need of 

monitoring. The final impact to vadose zone rating pollution vulnerability map was 

prepared by assigning sensitivity rating values as: 

 

Table 15: Hydraulic Conductivity Rating Table 

Hydraulic  
Conductivity (m/d) 

R
c
 

0.03-3.99 1 
4-11.99 2 

12-28.98 4 
29.01-40.89 6 
41.71-51.24 8 

 

 
Spline interpolation technique was used to create the raster grid conductivity coverage of 

eastern Broward County. The hydraulic conductivity raster was converted from a 32-bit 

to an 8-bit layer so that an attribute table could be attached to the cells and assigned a 

rating. The hydraulic conductivity ranged from 0.11 to 168.12 feet/day, which was then 

converted to meters/day. The raster attribute table was built and then reclassified through 
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Raster Calculator: Int(“cond3meters”); changed from 32-bit to 8-bit to create the attribute 

table. 

 

 

Figure 21: Map of Broward County Hydraulic Conductivity Pollution Vulnerability 

Rating 

 

3.5 Sensitivity and Validation of the Contamination Map 

Each of the 6 environmental parameters has a final attribute column representative of the 

outcome for the joining of each weight and rating. If the environmental parameter was in 
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raster format it was converted to polygon and the output attribute column was then added. 

The outcome attribute was found by multiplying the pollution vulnerability rate by the 

weight assigned to the parameter. The final Joined layer includes all of the intersected 

parameter output data, which is added together to get a PVI for Broward County.  

 

The continuous PVI layer, representative of specific spatial marks, such as gasoline 

stations, landfills, and potable well radii, was overlaid with the yearly nitrate point layers 

of contamination. This combination generated a correlation graph between contaminant 

concentration movement over time and those areas that are vulnerable to pollution. The 

correlation overlay is performed in order to expand on the analysis explored in objective 

2 when the well fields of Broward County were tracked for contaminants due to the 

aquifer surface vulnerability to contamination.  

 

In order to explain the contaminant concentration trends occurrence graphs were 

generated and overlaid through the use of the interpolated layers created in objectives 1 

and 2. For instance, to determine if there the correlation between the nitrate contaminant 

layers and the PVI was statistically significant a regression curve was generated within 

the graph. The creation of continuous contaminant raster concentrations using GIS 

generates the ability to spatially analyze the layers for varying chemical concentrations. 

The changes in chemical concentration were observed as a response to changes in the six 

parameters of the vulnerability index; all of which embody environmental changes such 

as rainfall runoff and land cover over a temporal timeframe. This last objective would 
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analyze each potential relationship between nitrates and the PVI to determine, through 

temporal trends, if any of the variables have a statistically significant influence on any of 

the contaminant concentrations. 
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4. RESULTS AND DISCUSSION 

This chapter introduces the results of the 3 different contaminant interpolations, the 

results of the PVI analysis, as well as the relationship between the measures pollutant 

data and the pollution vulnerability coverage. The impact that spatial clustering of the 

known points, limited to within the well fields, on the final contaminant interpolation 

coverage is also discussed. The sensitivity of the PVI to each contributing factor is also 

explored. 

 

4.1 Contaminant Interpolation 

The contaminant point data was tracked in order to create interpolated coverage. It was 

found that OK was the least biased and most robust compared to spline and inverse 

distance weighted methods (Whitman, 2010). This is due to the similar hierarchical 

cluster analysis across all well fields distributed unevenly throughout the county. 

Therefore, throughout the interpolation process a second order polynomial trend removal 

was used in the interpolation of these layers, unless otherwise stated. The quality of the 

interpolation method was quantified by comparing the interpolated concentration values 

of all grid elements with the corresponding known values in the reference data grid. The 

total number of contaminant detection points in the dataset, low known values, high 

known values, high known values once the outliers were removed from the dataset, the 

high predicted values from the interpolated dataset, RMS Error (~ 1), RMS Standardized 

(~ 0), average standard error, the known average and the interpolated average are 

included in Tables 16, 17, and 18. These standards were metrics used to estimate an 

overall measure of interpolated coverage quality for each of the three contaminants over 
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the 6 years. The three tables each have a Date column which represents the averaged 

quarterly concentrations at each of the contaminant detection points. The contaminant 

concentrations in these tables are shown in mg/L. 

 

4.1.1 Nitrate Spatial Concentrations 

The mean yearly nitrate concentration decreased 38.76% over the six-year period (from 

0.0005 to 0.1553 mg/L). From the 89 available stations, nitrate concentrations above the 

MDL of 0.0005 mg/L were measured at 72 wells in 2006, 71 wells in 2007, 53 wells in 

2008, 52 wells in 2009, 61 wells in 2010, and 50 wells in 2011. The nitrate 

concentrations show a wide variability in the study area, with values ranging from 0.0005 

up to 30.8005 mg/L (Table 14).  
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Figure 22: Map of Nitrate Interpolation Results 

 

Table 16: Nitrate Interpolation Results 

Yearly Nitrate (98 points) 

Date 
Total  
Points 

Low 
Known 

Low 
Predicted 

High
Known

High, 
Outlier 

Removed

High 
Predicted

RMS 
Error 

RMS 
Standardized

Average 
Standard 

Error 

Known 
Average

Predicted 
Average 

Y2006 72 0.0005 0.01333 3.7705 0.433 0.2875 0.1020 0.7800 0.1365 0.2715 0.0303 

Y2007 71 0.0005 0.03383 8.2405 0.6705 0.3235 0.1512 0.6900 0.1529 0.4220 0.0438 

Y2008 53 0.0005 0.002582 3.1805 0.9953 0.2158 0.1552 1.0600 0.1467 0.2406 0.0112 

Y2009 52 0.0005 -0.1304 8.542 0.7355 0.3141 0.1442 0.9900 0.1202 0.2783 0.0397 

Y2010 61 0.0005 0.0006331 1.6155 0.3555 0.266 0.0753 1.1100 0.0691 0.1005 0.0181 

Y2011 50 0.0005 0.00221 4.083 0.1895 0.07948 0.0419 1.0500 0.0400 0.0847 0.0061 
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The results of the multiple yearly regressions for nitrates displayed an under-prediction of 

data coverage at low and high concentrations. However, OK was more efficient at 

predicting lower ranges of coverage despite the fact that the detections registered as 

negative numbers. The under prediction at high concentrations was within 0.1 mg/L for 

10 timeframes, greater than 0.1 mg/L for 13 timeframes, and less than 0.1 mg/L for 7 

timeframes. The RMS Standardized was greater than 0.5 and less than 1.5 86.67% of the 

30 timeframes. The average standard error was within 0.1 or less of the RMS prediction 

error 90% of the timeframes. The interpolated values were consistently under predicted.  

 

The trend analysis tool for the contaminants demonstrated a U-shaped trend. Typically a 

second order polynomial for the global trend model was used to create the most 

representative coverage (Whitman, 2010). A second order trend removal was used 

because of the skewed spatial and temporal dataset – certain areas within the county had 

lower detections than others. The contaminant detections were lowest towards the coast, 

the east of the county, and highest throughout the center of the county.  

 

Even though the amount of nitrate detected through the 6-year time range was not 

statistically significant, there was a seasonal variation pattern of detection amounts within 

the quarterly averages. The quarterly nitrate detections showed higher concentrations in 

quarter 2, April, May and June, and quarter 3, July, August, and September (Figure 22 

and 23).  
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Figure 23: Quarterly Nitrate Concentration Averages (2006 – 2011)  

 

 

Figure 24: Averaged Quarterly Concentrations for 6-Year Timeframe 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

2006 2007 2008 2009 2010 2011

C
on

ce
n

tr
at

io
n

s 
(m

g/
L

)

Year

Quarterly Nitrate Averages

Q1 (Jan-Mar)

Q2 (Apr-Jun)

Q3 (July-Sept)

Q4 (Oct-Dec)

0.2317 0.2663 0.2532

0.1805
0.1000

0.2000

0.3000

1 2 3 4

C
on

ce
n

tr
at

io
n

s 
(m

g/
L

)

Yearly Quarters

Quarterly Nitrate Concentration Average (2006-2011)

Total Average



 91

 

The second and third quarters during the wet season of Florida, consisting of April, May, 

June, July, August, and September, contained the highest number of contaminant 

detections 83.33% of the time. Quarters 1 and 3 had a higher number of detections, which 

registered higher than the MDL of 0.005 mg/L (Figure 24 and 25).  

 

Figure 25: Quarterly Detections Averaged for Nitrate (2006 – 2011) 

 

 

Figure 26: Total Quarterly Detections for Nitrate (2006 – 2011) 
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The quarterly nitrate coverage maps are included in the appendices in Figures 38 to 43. 

The mean quarterly and yearly averages of these years were used in the successive 

analyses of objectives 1 and 2.  

 

4.1.2 Toluene Spatial Concentrations 

The Broward County Well Field Program did not begin testing for toluene until 2007. 

Despite the lack of monitoring data this contaminant had the second highest number of 

detection counts in the Broward County monitoring and potable drinking water wells 

compared to the two other contaminants in this study. Those wells missing toluene 

concentration data were filled in with the toluene MDL, 0.00009 mg/L, and then the 

outliers were identified. However, all detections above the MDL would have been 

considered outliers and all that would have been left in the dataset were the 0.0009 mg/L 

MDL for use in the interpolation. The number of detection points was so low each quarter 

that there were not enough data points to compute an OK interpolation for each yearly 

quarter. The detections for each quarter were averaged to create a data point containing 

the average yearly concentration for that monitoring station. Both outliers and MDL were 

averaged and included in the average yearly concentration dataset. Therefore, this 

contaminant was only used in objectives 1 and 2 in the development of yearly average 

vertical change detections across the county.  

 

In the average yearly vertical change detection for 2007 there were 21 detections from the 

56 wells that were analyzed for toluene. Six outliers were detected, the removal of which 

would have made the dataset too small to use with the OK technique. The RMS 
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Standardized for this coverage is 0.9674 so the interpolation including all of the polluted 

wells was generally very reflective of the known contamination points. There were no 

detections in the center of Broward County surrounding Highway 595. There was one 

well in each Davie and North Lauderdale (Figure 2) that had a detection greater than 

0.002460 mg/L. These wells bordered the area containing no toluene detections causing a 

U-shaped fit of detection coverage that was reflective of the wells in the North and South 

with non-minimum concentrations.  

 

In the average yearly vertical change detection for 2008 there were 18 detections from the 

56 wells that were analyzed for toluene. Seven outliers were detected, the removal of 

which would have made the dataset too small to use with the OK technique. The RMS 

Standardized for this coverage is 1.043 so the interpolation including all of the polluted 

wells was generally very reflective of the known points of contamination. There were no 

detections in the middle of Broward County. The Trend Analysis showed that there were 

contaminants trending in a North-South direction. The analysis also showed a lower 

amount of contaminant detections trending in an East-West direction surrounded by the 

higher concentrations in the North-South trending detections. The Davie and North 

Lauderdale (Figure 2) wells that registered higher levels of toluene in the Y2007 dataset 

also register high levels in this dataset.  

 

In the average yearly vertical change detection for 2009 there were 10 detections from the 

56 wells that were analyzed for toluene. All detections would be considered outliers in 

this dataset, the removal of which would have made the dataset unusable with the OK 
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technique. The RMS Standardized for this coverage is 0.7397, so the interpolation 

including all of the polluted wells was generally not very reflective of the known points 

of contamination. There are four bulls-eye rings in the coverage created by the Kirging 

interpolation method. They are located in the center (Davie), lower middle region 

(Pembroke Pines), upper left-hand (Coral Springs), and upper right-hand (Deerfield 

Beach) portions of the county (Figure 2). Even after outliers were left in the known points 

the resulting interpolated coverage was not very representative of the known toluene 

concentrations in Broward County.  

 

In the average yearly vertical change detection for 2010 there were 19 detections from the 

56 wells that were analyzed for toluene. Six outliers were detected, the removal of which 

would have made the dataset too small to be used with the OK technique. The RMS 

Standardized for this coverage is 0.8966, so the interpolation including all of the polluted 

wells was generally not very reflective of the known points of contamination. There were 

no detections in the northern portion of Broward County, causing a bulls-eye 

interpolation around a potable well in Plantation (Figure 2). This bulls-eye also connected 

to the Davie well. The other well detections in those areas were compared to the 

interpolated concentrations they were correct within 0.0001 mg/L.  

 

In the average yearly vertical change detection for 2011 there were 17 detections from the 

56 wells that were analyzed for toluene. Eight outliers were detected, the removal of 

which would have made the dataset too small to be used with the OK technique. The 

RMS Standardized for this coverage is 0.8359, so the interpolation including all of the 
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polluted wells was generally not very reflective of the known contamination points. 

There were no detections in the northern and southern portions of Broward County. 

However, this phenomenon did not cause a bulls-eye interpolation around those potable 

wells with higher detections in Sunrise, Lauderhill and Fort Lauderdale (Figure 2).  

 

 

Figure 27: Map of Toluene Interpolation Results 
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Table 17: Toluene Interpolation Results 

Toluene (65 points) 

Date 
Total  
Points 

Minimum 
Known 

Minimum 
Predicted 

Maximum
Known 

Maximum 
Predicted

RMS Error
RMS 

Standardized

Average 
Standard 

Error 

Known 
Average

Predicted 
Average

Y2007 25 0.000101 0.0002104 0.02454 7.11200 0.00006313 0.9222 0.00006811 0.00133 -0.01351

Y2008 18 0.000195 0.0001777 2.17549 7.24600 0.00007187 1.022 0.00007025 0.124781 -0.03025

Y2009 10 0.000158 -0.06365 0.00209 0.01848 0.06625 0.6784 0.03706 0.000863 -0.07699

Y2010 19 0.000142 0.0002403 0.014015 8.42830 2.9055 0.9232 3.1079 0.001194 0.0364 

Y2011 17 0.000159 0.0002385 0.32409 7.08410 0.00004014 0.8359 0.00004652 0.026615 -0.003053

 

These yearly toluene averages possess a SE, NW detection trend. The data did not exhibit 

a normal distribution in the histogram (it was skewed left) on a Normal QQ Plot. 

Therefore, the data was transformed to make it conform to a normal distribution before 

OK interpolation was implemented. The coverages were generated with a second order 

polynomial for a global trend model because the semivariogram trended in a South-East 

and North-East direction across the county. The semivariogram surface indicates that 

there is a spatial autocorrelation in the data. The directional semivariogram in 

Geostatistical Analysis can account for the surface trends of the contaminants. The spatial 

trend was not as strong because there were a low number of clustered data points.  

 
Overarching trends of the toluene detections were that the RMS Standardized was greater 

than 0.5 and less than 1.5 80% of the 5 timeframes. The average standard error was 

within 0.1 or less of the RMS prediction error 80% of the timeframes. RMS Standardized 

for years that the MDL points were taken out was larger than for years that left them in. 

Even if the MDL points were left in the detected outliers that would have to be removed 

still caused an RSM Error greater than 1.  
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4.1.3 Lead Spatial Concentrations 

This dataset was only used to complete objectives 1 and 2. During analysis of the 

contaminant concentrations of lead the outliers were eliminated from the contaminant 

detections in the monitoring and potable well data gathered. It became apparent when the 

outliers were removed before interpolation that there would be too few wells with actual 

contaminant detections for the OK to interpolate the points over the large spatial scale of 

Broward County. In this case these wells with detections were used in conjunction with 

the seven other vulnerability factors to verify that these are the wells with higher levels of 

potential vulnerability to pollution in the development of the PVI. The density of 

detection points was still low enough that the quarters did not have enough data points to 

compute an OK interpolation. Therefore, this contaminant was only used in objectives 1 

and 2 in the development of yearly average vertical change detections across the county. 

All seven years registered a potable well in Davie with concentrations greater than the 

MDL. This well was observed for continuous detections of lead in the PVI analysis map 

to verify if the high level of lead detection corresponds to the level of well pollution 

vulnerability over the course of seven years of detection. 

 

In the average yearly vertical change detection for 2006 there were 18 detections from the 

84 wells that were analyzed for lead. All detections would be considered outliers in this 

dataset, the removal of which would have made the dataset unusable with the OK 

technique. Therefore the wells having no detections were eliminated and only those wells 

with quarterly detections were averaged and included in the interpolation coverage for 

this yearly layer. The RMS Standardized was 1.101 so the interpolation including all of 
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the wells registering contaminants was generally very reflective of the detected points of 

contamination. 

 

In the average yearly vertical change detection for 2007 there were 30 detections from the 

84 wells that were analyzed for lead. All detections would be considered outliers in this 

dataset, the removal of which would have made the dataset unusable with the OK 

technique. Therefore, the wells having no detections were eliminated and only those 

wells with quarterly detections were averaged and included in the interpolation coverage 

for this yearly layer. The RMS Standardized was 1.101 so the interpolation including all 

of the polluted wells was generally very reflective of the detected points of 

contamination. There was only one case where one of the potable wells in Davie had a 

detection level of 0.0070 mg/L but all other monitoring wells did not register as having 

anything over the MDL.  

 

In the average yearly vertical change detection for 2008 there were 36 detections from the 

84 wells that were analyzed for lead. Sixteen outliers were detected and removed from 

the dataset. The wells having no detections were eliminated and only those wells with 

quarterly detections were averaged and included in the interpolation coverage for this 

yearly layer. The RMS Standardized was 1.041 so the interpolation including all of the 

polluted wells was generally very reflective of the detected points of contamination. 

There was only one case located between Lauderhill, North Lauderdale and Pompano 

Beach where one of the potable wells in each of the three cities caused a definite line of 

demarcation between the continuous detection coverage.  
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In the average yearly vertical change detection for 2009 there were 25 detections from the 

84 wells that were analyzed for lead. Of these 25 detections 4 values were eliminated 

once the outliers were calculated. The wells having no detections were eliminated and 

only those wells with quarterly detections were averaged and included in the interpolation 

coverage for this yearly layer. The RMS Standardized was 0.9244 so the interpolation 

including all of the polluted wells was generally very reflective of the detected points of 

contamination. There were only two cases between Davie and Margate where there was 

one potable well in each that had levels of 0.00248 mg/L and higher. All other 

monitoring wells and potable wells in the surrounding areas had lower detections; this 

created a bulls-eye effect in the north and south of the county. However, the interpolated 

coverage in the east and west of the county is reflective of the well detection values in 

those areas.  

 

In the average yearly vertical change detection for 2010 there were 25 detections from the 

84 wells that were analyzed for lead. Of these 25 detections 9 values were eliminated 

once the outliers were calculated. The wells having no detections were eliminated and 

only those wells with quarterly detections were averaged and included in the interpolation 

coverage for this yearly layer. The RMS Standardized was 0.9485 so the interpolation 

including all of the polluted wells was generally very reflective of the detected points of 

contamination. There were only two cases between Davie and Pompano Beach where 

there was one potable well in each that had levels of 0.05 mg/L and higher. All other 

monitoring wells and potable wells in the surrounding areas had lower detections; this 

created a bulls-eye effect in the middle below Highway 595 in Davie and the northeast in 



 100

Pompano Beach. However, the interpolated coverage in the rest of the county is reflective 

of the well detection values in those areas.  

 

In the average yearly vertical change detection for 2011 there were 17 detections from the 

84 wells that were analyzed for lead. Of these 17 there were no values that were 

considered outliers. The wells having no detections were eliminated and only those wells 

with quarterly detections were averaged and included in the interpolation coverage for 

this yearly layer. The RMS Standardized was 1.0587 so the interpolation including all of 

the polluted wells was generally very reflective of the detected points of contamination. 

There was only one case in Davie where there was one potable well in that had detection 

levels of 0.003120 mg/L. All other monitoring wells and potable wells in the surrounding 

areas had lower detections; this created a bulls-eye effect in the middle below Highway 

595 in Davie. However, the interpolated coverage in the rest of the county is reflective of 

the well detection values in those areas.  
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Figure 28: Map of Lead Interpolation Results 

 

Table 18: Lead Interpolation Results 

Lead (88 points) 

Date 
Total  
Points 

Minimum 
Known 

Minimum 
Predicted 

Maximum
Known 

Maximum 
Predicted

RMS Error
RMS 

Standardized

Average 
Standard 

Error 

Known 
Average 

Predicted 
Average 

Y2006 18 0.000501 0.0007147 0.0245 0.011660 0.007971 1.09653 0.006604 0.003784 0.0004701

Y2007 30 0.000825 0.0006201 0.016225 0.002229 0.002118 1.0129 0.001995 0.003437 0.02944 

Y2008 32 0.00055 0.0006053 0.01185 0.001167 0.001107 1.0552 0.001044 0.002355 -0.00002774

Y2009 22 0.000735 0.0005532 0.004015 0.001614 0.001262 0.9298 0.001268 0.002128 0.02919 

Y2010 26 0.000505 0.0005622 0.08725 0.001374 0.0007802 0.9484 0.0007858 0.007861 0.01735 

Y2011 17 0.000623 0.0003686 0.000623 0.002579 0.001327 1.0587 0.001037 0.008005 -0.1236 
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Overarching trends of the toluene detections were that the RMS Standardized was greater 

than 0.5 and less than 1.5 in 100% of the 6 timeframes. The average standard error was 

within 0.1 or less of the RMS prediction error in 100% of the timeframes. 

 

4.2 Area of Interest Temporal Concentrations 

A lateral and vertical model was to be created of the detected contaminants within an 

AOI representative of the different land use of the county. However, there was not 

enough data points to complete the OK interpolation for quarterly nitrate, toluene, and 

lead chemicals, nor the yearly average toluene and lead maps. There were enough data 

points to model the three different vertical layers of average yearly nitrate detections. 

Figures 29, 30, and 31 demonstrate the surface, shallow, and deep nitrate AOI 

interpolation results. 

 

The yearly average surface (-5 ft) coverages for the 6 timeframes have an average 

standard error close to RMS prediction error within 0.01 units. Additional trends of the 

nitrate detection coverage were that the RMS Standardized was greater than 0.5 and less 

than 1.5 in 100% of the 6 timeframes. The yearly average standard error was within 0.1 

or less of the RMS prediction error in 100% of the timeframes. However, in 9 of the 

quarterly timeframes 25.71% of the surface layers had an RMS Standardized greater than 

1.1 and 8.57% (3 total) had an RMS Standardized less than 0.900. All 8 of the 2010 and 

2011 quarterly surface layers had interpolated surfaces with RMS Standardized greater 
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than 1.5. Therefore, the quarterly timeframes were not accurate representations of the 

known quarterly nitrate detections. 

 

 

Figure 29: Map of Surface Nitrate AOI Interpolation Results 

 

The yearly average shallow (-15 ft) coverages for the 6 timeframes have an average 

standard error close to RMS prediction error within 0.4 units. Additional trends of the 

nitrate detection coverage were that the RMS Standardized was greater than 0.5 and less 

than 1.5 in 100% of the 6 timeframes. The yearly average standard error was within 0.1 

or less of the RMS prediction error in 83.33% of the 6 timeframes. However, in 14 of the 
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quarterly timeframes 40% of the shallow layers had an RMS Standardized greater than 

1.1 and 2.85% (1 total) had an RMS Standardized less than 0.900. Three of the quarterly 

surface layers had interpolated surfaces with RMS Standardized greater than 3. 

Therefore, the quarterly timeframes were not accurate representations of the known 

quarterly nitrate detections. 

 

Figure 30: Map of Shallow Nitrate AOI Interpolation Results 

 
All of the yearly average deep (-60 to -202 ft) coverages have an average standard error 

and an RMS prediction error that are greater than 0.01 units of each other. Additional 

trends of the nitrate detection coverage were that the RMS Standardized was greater than 

1.5 in 100% of the 5 timeframes. The yearly average for 22.85% (8 total timeframes) had 
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an RMS Standardized greater than 2. However, 54.28% (19 total timeframes) of the 

quarterly deep layers had an RMS Standardized greater than 1.1 and 2.85% (1 timeframe) 

had an RMS Standardized less than 0.900. Therefore, it was determined that both the 

quarterly and yearly timeframes were not accurate representations of the known quarterly 

nitrate detections. 

 

Figure 31: Map of Deep Nitrate AOI Interpolation Results 

 

 

 

 



 106

Table 19: Nitrate AOI Interpolation Results 

AOI Nitrate 

Date 

Total  
Points, 

Excluding 
MDL 

Minimum 
Known 

Minimum 
Predicted

Maximum
Known 

Maximum 
Predicted

RMS 
RMS 

Standardized

Average 
Standard 

Error 

Known 
Average 

Predicted 
Average 

Surface (5 points), -5ft 

Y2006 5 0.03375 -0.02704 0.204 0.3171 0.08248 0.9122 0.09214 0.1172 0.04659 

Y2007 5 0.0535 -0.05648 0.27125 0.334 0.08348 0.9509 0.08996 0.1291 0.039478

Y2008 5 0.04525 0.0135 0.17425 0.1686 0.05407 1.004824 0.05309 0.09195 0.04316 

Y2009 5 0.0135 -0.05993 0.1575 0.2214 0.06924 1.06382 0.06497 0.077775 0.05334 

Y2010 5 0.047 -0.06891 0.1672 0.3076 0.08712 1.06311 0.08079 0.1146 0.05166 

Y2011 5 0.01162 0.002864 0.0875 0.1106 0.04454 1.1412 0.0395 0.04057 0.04454 

Shallow, -15ft 

Y2006 9 0.021 0.009348 2.8005 1.9661 1.2465 0.9606 1.3304 1.0313 0.06233 

Y2007 9 0.078 0.009348 8.2405 1.9661 1.2465 0.9606 1.3304 1.2904 0.06233 

Y2008 10 0.078 0.0005 2.5155 2.3197 2.4759 0.8639 2.9614 0.8414 0.1289 

Y2009 9 0.1855 -0.02208 8.542 7.5902 2.03385 1.01973 2.8065 1.5947 0.05368 

Y2010 4 0.02175 0.0004131 0.293 0.1988 0.1233 1.1715 0.09428 0.1461 -0.002946

Y2011 5 0.008 -1.3807 0.2255 0.4751 1.02363 1.8856 0.5246 0.0878 -0.2951 

Deep (26 points), -60 to -202ft 

Y2006 22 0.00825 -0.1441 0.733 1.4392 0.50714 1.34749 0.32721 0.2017 0.1581 

Y2007 17 0.00975 -0.8156 5.363 4.01428 1.026875 4.63233 0.188308 0.587779 0.2233 

Y2008 2 0.000575 -0.2178 0.1865 0.8614 0.4167 2.43132 0.09159 0.187075 -0.03567

Y2009           

Y2010 10 0.00675 -0.2096 1.6155 0.4371 0.12208 1.75635 0.0507406 0.18315 0.07739 

Y2011 4 0.008 0.0005 0.5875 0.1659 0.14753 1.51437 0.0695726 0.17775 0.01579 

 

The overarching nitrate spatiotemporal trends within the AOI demonstrate that the 

majority of nitrate detections are located on the surface and in the deeper portions of the 

aquifer environment. The interpolated surface, shallow, and deep interpolation coverage 

layers are not very representative of the observed well points within the AOI as 

demonstrated by the RMS Standardized, RMS, and average standard error final reports. 
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The predicted versus measured scatter plot was also less than 45 degrees in all quarterly 

and yearly timeframes. However, the separation of the individual points demonstrates the 

actual movement of real time data through the different levels of the aquifer environment. 

This is demonstrated through the surface to deep coverages from 2006 to 2007: the 

movement of nitrate through the aquifer is seen in the higher detection points at these two 

depths of the aquifer environment. The movement of nitrates through the shallow, 

monitoring well, coverage is demonstrated through the widest range of detections yet is 

representative of the least number of total detections. These laterally separated individual 

points within the aquifer allow for greater understanding of the relationship between 

contaminant concentration and well depth and are further studied within the 

spatiotemporal correlation graphs. 

 

4.3 Spatiotemporal Correlation Graphs  

The nitrate detection was at the MDL for most of the monitoring wells across the county 

for all three depths studied. Figure 27 depicts the distribution range of nitrate 

concentrations based on well depth and well field location. The outliers were removed 

from these datasets in the interpolation process. There were 89 points in total that were 

included in this relationship scatterplot. Of these detection locations 44 were located in 

surface, at -5 ft, water bodies the detections ranged from 0.0147 to 0.3257 mg/L. The 16 

monitoring wells tested, at -15 feet, detected nitrates ranging from 0.0005 to 1.8748 

mg/L. The 29 potable wells detected nitrates ranging from 0.0005 to 0.952 mg/L. As 

demonstrated from the previous section the widest range comes from the shallow well 
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layer, but contains the least number of well detections. The surface wells contain the most 

concentrated, and lowest, range of nitrates yet the total number of detections is the 

greatest of the three depths. The deep wells contain a concentrated density of lower range 

nitrate detections as well as sporadic nitrate detections at higher ranges. It is shown that 

the contaminant concentrations increased with increasing well depth but total detections 

decreased in frequency with increasing well depth. These trends indicate that the nitrates 

are coming from the surface and filtrating throughout the aquifer towards aquifer depths 

between -80 feet to -135 feet. 

 

  

Figure 32: Nitrate well location, depth and concentration relationship 
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4.4 Pollution Vulnerability Index Map  

This section is used to analyze the PVI by calculating which vulnerability factors have an 

influence on the vulnerability of potable drinking waters wells in Broward County. Direct 

observation of contaminants in ground water provides the most conclusive results when 

evaluating ground water vulnerability to pollution. However, in this case, there is not 

sufficient density of contaminant observations to develop a countywide vulnerability 

assessment. Therefore, the contaminant with the most observations in drinking water 

wells, nitrate, throughout Broward County was incorporated into an index method for 

pollution vulnerability assessment. For the contaminant a relationship graph (Figures 30-

32) have been developed to determine if there is a significant correlation between the 

contaminants and the final PVI map. The six categories of vulnerability factor data are 

depth to water table, recharge (hydrology), aquifer media, soil media (incorporating 

precipitation), impact to vadose zone, and aquifer conductivity (incorporating well radii 

and depth).  

 

4.4.1 Parameter Impact on Pollution Vulnerability Index 

The different factors obtained for the index method are those that are applicable over a 

large spatial region. For each raster (excluding the contaminate layers which will remain 

in point format for the relationship graph) each vulnerability factor was rated 1 to 5. 

Vulnerability scores associated with each raster cell for each vulnerability factor was rank 

correlated to contaminant concentrations in ground water to determine if the final index 

map correlates with observed data. Of the 6 vulnerability categories it was determined 
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that 3 of them influenced the largest spatial area of the county map and contributed the 

most points to the final output of the PVI map. A summary of the 3 categories with the 

greatest influence, contributed greater than 40 points, to the final PVI are shown in this 

subsection.  

 

The first category with the greatest influence on the final PVI map is depth to water table. 

Approximately 66.82% of the coverage layer has a PVI contribution of 50. The highest 

contribution is centered in the western portion of the county, ranging from the Everglades 

and ending roughly 5000 meters inland from the ocean. The western portion of the 

county has a higher water table than the area running along the coastline. The western 

portion has the shallowest depth to water ranging from -0.3048 to -0.9144 feet while the 

eastern portion ranges from -1.219 to -13.41 feet. This leads to a greater chance for 

contaminant infiltration to occur as the depth to water decreases because shallow water 

levels infer longer contaminant travel times. This aquifer feature determines depth of 

material or distance through which a contaminant must travel before reaching the aquifer. 

The greater the distance the contaminant has to travel the greater the opportunity for 

attenuation to occur or restriction of movement by relatively impermeable layers. The 

center of the county has the shallowest depth to water and the highest vulnerability 

potential for pollution. 

 

The second category with the greatest influence on the final PVI map is impact to vadose 

zone. Approximately 57.63% of the coverage layer has a PVI contribution of 50 points. 
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The highest contribution is centered in the west of the county ending 11,000 meters from 

the ocean.  

 

The third category with the greatest influence on the final PVI map is recharge. 

Approximately 99.92% of the coverage layer has a PVI contribution of 32 points. The 

highest contribution is centered in the southwest and northeast portions of the county and 

is based on the greater CN in existence throughout those parts of the county. The high 

residential and urban land use coverages had a positive correlation with the increased the 

nitrate concentrations over time. The higher rank value is also associated with coarser soil 

which is indicative of a higher infiltration pattern from the surface. The higher 

precipitation, during May through October, leads to greater runoff volume and increases 

the chances for infiltration as well. The lower quarterly variance in total rainfall, uniform 

rainfall, during those months also favors increased infiltration. The larger average rainfall 

is associated with increased infiltration and therefore a higher rank value for CN.   

 

The fourth category with influence on the final PVI map is aquifer media. Approximately 

53.66% of the coverage layer has a PVI contribution of 30 points. The highest 

contribution is located along the eastern coastline of the county and spans the area nearly 

15,000 meters inland. 

 

The fifth category with influence on the final PVI map is conductivity. The largest output 

contribution for this layer is found at 24 points. However, the majority (71.31%) of the 

layer is point level 6 and therefore this category does not have one of the largest impacts 
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on the final PVI map. There are bulls eye structures spaced randomly throughout the 

county containing the highest points. However, this setup is not detectable on the final 

PVI output map. 

 

The sixth category with influence on the final PVI map is soil media. Approximately 

33.31% of the layer coverage contains a contribution of 20 points, 35.37% at 18 points, 

and 23.89 at 4 points. The highest contribution ranges across the county from east to west 

respectively. The HSG of the soil and the CN of the land use were both used to determine 

how these surface variables may affect the overall vulnerability of the aquifer. As 

demonstrated over the 6 year timeframe, there was an increase in impervious surface 

cover, increasing runoff potential, infiltration, and pollution vulnerability, due to the 

escalation of urbanization. The largest point coverage also contained coarse soil and 

udorthents, which are drastically disturbed soils, making those regions highly vulnerable 

to pollution. 

 

The output of the PVI model reveals that in the southwest of the county is under high 

vulnerability and the northern portion of the county is classified in the low range of 

medium vulnerability. Along the coastline lies the majority of very high vulnerability 

classification and the water bodies in that area are also classified as medium 

vulnerability. Those categories that most affected the final PVI were those that 

contributed an output greater than 30 for more than 55% of the county coverage. The 

largest 2 contributors to the vulnerability index are the highest in the west of the county 

while the third largest contributor is located in the east of the county. The PVI categories 
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that had the most influence on the final index range were located in the surface and 

deeper layers of the Biscayne Aquifer environment. 

 

Table 20: Pollution Vulnerability Level by Area 

PVI Range Area (m2) Percentage Vulnerability Level

38 - 56 
577800 

0.05244% 
Low 

57 - 74 
1604700 

0.1456% 

77 - 92 
171618700 

15.57% 
Medium 

94 - 110 
134513600 

12.21% 

111 - 128 
515288600 

46.76% 
High 

129 - 146 
157721800 

14.32% 

147 – 164 
110289700 

10.01% 
Very High 

166 - 182 
10162300 

0.9224% 
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Figure 33: Pie Chart of Pollution Vulnerability by Area, Refer to Figure 34 for Legend 
PVI Colors 



 115

 

Figure 34: Map of PVI Range 

 

4.4.2 Validation of Output Pollution Vulnerability Index Model 

In this section the validation of the final output for the PVI model is discussed through 

cross correlation relationship graphs. Figure 29 demonstrates correlating facility source 
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code versus PVI range. In determining the validity of the DRASTIC model potential 

sources of pollution must be taken into consideration. Contaminant detections in this 

study have directionality to them, influenced by the groundwater flow directions as well 

as through the use of certain contaminants at facilities within the well field. In many 

cases the facility SI indicates where contaminants are potentially originating. Figure 29 

shows source code 1 as high pollution potential, source code 2 as medium pollution 

potential, and source code 3 as low pollution potential. 

 

Figure 35: Facility Source and PVI Correlation 
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The observed lead and toluene raw data detection points are not sufficient to develop 

lateral (surface, shallow, and deep) layers. However, the wells that are continuously 

showing those contaminants were be used in the PVI developed from the six vulnerability 

categories based on their weighted rank value averages. Those shallow and deep wells 

that continuously display toluene and lead detections are used to verify if the PVI maps 

are functioning properly. The contaminant layers, using known field values, are used to 

validate the accuracy of the PVI. The known field values are also used to determine 

which vulnerability factors are significant based on the higher observed concentrations in 

ground water versus the higher vulnerability ratings for the six different vulnerability 

factors. 

 

The three different yearly contaminant detection concentrations versus the PVI range 

demonstrated that although there were clusters of matching data there is no correlation 

representing the entirety of the spatial area covered by the pollution vulnerability map. 

The interpolation of regional data using geostatistics, the transformation of pollutant 

contaminant data from vector to raster format, and the process of classifying significant 

pollutant categories and assigning rates and weights to each range of the factor can result 

in a final outcome index that may not be representative of the study area. This 

opportunity for integrating parameters into ranges for the PVI is where the breakdown of 

detailed information takes place even though the real time data of nitrate, lead, and 

toluene has a positive correlation with the groundwater PVI (Thirumalaivasan, 2003). 

The lower concentrations of contaminants were clustered below the index value of 125, 

indicating that the aquifer is at low risk in that location. The upper concentration 
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detections of the contaminants were all correlated with an index value greater than 125. 

Despite this correlation, a large number of non-detects, or MDL, for each well also 

contributed to the low numbers of significant correlations between the contaminant 

detections and the PVI.  

 

Figure 36: PVI and Nitrate Detection Correlation  
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Figure 37: PVI and Lead Detection Correlation 
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Figure 38: PVI and Toluene Detection Correlation 
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5. CONCLUSION AND RECOMMENDATIONS 

This section summarizes the research findings of this paper as well as verifying how well 

the results obtained answer the research questions and objectives posed at the beginning 

of this study. Various problems encountered during the creation of the interpolation 

coverages and the PVI is discussed.  

5.1 Conclusions 

Through the recording of nitrate, lead, and toluene into table format and ensuing 

interpolation of the individual points into raster coverage it was determined that yearly 

quarters 2 and 3 (Table 2) contain the highest concentrations and the greatest numbers of 

detection points. This phenomenon is perhaps due to the increase in rain and runoff 

during those 6 months of the year. The AOI shallow layer, taken from -15 feet, contains 

the widest range of concentrations for nitrates but contains the least number of detections. 

The AOI surface layer contains the most concentrated cluster of low detections and the 

deeper layers contain aspects of the low and high detections of the surface and shallow 

while both contain the highest number of detections. This leads to the conclusion that 

contaminants travel through the aquifer media of the shallow layers to pass between the 

surface and deep layers of the aquifer. However, there were not enough detections to 

perform this type of analysis on other contaminants with different properties, like lead 

and toluene, it is unclear whether or not this conclusion would be applicable to their 

movement within this type of aquifer. In addition the detections were all taken within a 

cone of influence created by a pumping potable wellhead. Therefore, contaminant 
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movement through the aquifer depths may behave differently than when in an aquifer 

environment not influenced by the drawdown of a potable well. 

 

Despite those two shortcomings of the study the impact to the aquifer concerning 

contaminant movement can be seen most clearly in the surface and deep aquifer layers. 

The PVI and AOI study of nitrates indicates that the biggest influences to lateral 

spatiotemporal contaminant movement are factors located at the surface and deep layers 

of the aquifer environment. The quarterly nitrate and yearly lead, toluene, and nitrate 

country coverages further demonstrate that the spatiotemporal vertical movement that 

chemicals have within the aquifer environment are also dependent on the properties of 

contaminants themselves, like weight. The less dense chemicals like lead and toluene 

found with higher frequency in the shallow monitoring wells and not in the deeper 

potable wells.  

 

5.2 Recommendations 

The accuracy of the interpolation coverage results can only be improved upon with the 

implementation of increasingly accurate detection points. This can be accomplished by 

updating groundwater monitoring well protocols though increased sampling frequency of 

current wells to further track areas of existing groundwater vulnerability and pollution. 

Furthermore, a monitoring well grid could be developed to determine where the 

contaminants are originating from and traveling to by drilling and sampling new wells 

throughout the county. This would be a useful tool in determining what businesses, as 
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well as when, well field inspections should take place because the conductivity within the 

aquifer is so high moving contaminants through well fields at a high rate of movement.  

 

In lieu of the implementation of the expensive and time-consuming way of tracking 

contaminants in the previous section is the development of a PVI map of the area in 

question. The index can be created in within a GIS environment because the system is a 

helpful instrument when computing pollution vulnerability indices of groundwater over 

entire watersheds (Thapinta, 2002). Furthermore, in this current political and economic 

environment the PVI is a useful tool in determining which limited resources should be 

appropriated to those areas within the well field program where they are most needed. 

The PVI also contains different categories that can be updated and tracked: for instance 

changing land cover within Broward County. This in turn is a good indicator of potential 

and future threats to well field contamination and can be used as a preliminary evaluation 

tool for use in well field planning. 
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APPENDIX  

 

 

Figure 39: 2006 Quarterly Nitrate Interpolation Map 
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Figure 40: 2007 Quarterly Nitrate Interpolation Map 
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Figure 41: 2008 Quarterly Nitrate Interpolation Map 
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Figure 42: 2009 Quarterly Nitrate Interpolation Map 
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Figure 43: 2010 Quarterly Nitrate Interpolation Map 
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Figure 44: 2011 Quarterly Nitrate Interpolation Map 
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