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ABSTRACT OF THE DISSERTATION 

TRANSCRIPTION-COUPLED DNA SUPERCOILING IN ESCHERICHIA COLI:  

MECHANISMS AND BIOLOGICAL FUNCTIONS 

by 

Xiaoduo Zhi 

Florida International University, 2013 

Miami, Florida 

Professor Fenfei Leng, Major Professor 

Transcription by RNA polymerase can induce the formation of hypernegatively 

supercoiled DNA both in vivo and in vitro. This phenomenon has been explained by a 

“twin-supercoiled-domain” model of transcription where a positively supercoiled domain 

is generated ahead of the RNA polymerase and a negatively supercoiled domain behind 

it. In E. coli cells, transcription-induced topological change of chromosomal DNA is 

expected to actively remodel chromosomal structure and greatly influence DNA 

transactions such as transcription, DNA replication, and recombination. 

  In this study, an IPTG-inducible, two-plasmid system was established to study 

transcription-coupled DNA supercoiling (TCDS) in E. coli topA strains. By performing 

topology assays, biological studies, and RT-PCR experiments, TCDS in E. coli topA 

strains was found to be dependent on promoter strength. Expression of a membrane-

insertion protein was not needed for strong promoters, although co-transcriptional 

synthesis of a polypeptide may be required. More importantly, it was demonstrated that 

the expression of a membrane-insertion tet gene was not sufficient for the production of 

hypernegatively supercoiled DNA. These phenomenon can be explained by the “twin-
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supercoiled-domain” model of transcription where the friction force applied to E. coli 

RNA polymerase plays a critical role in the generation of hypernegatively supercoiled 

DNA.  

Additionally, in order to explore whether TCDS is able to greatly influence a 

coupled DNA transaction, such as activating a divergently-coupled promoter, an in vivo 

system was set up to study TCDS and its effects on the supercoiling-sensitive leu-500 

promoter. The leu-500 mutation is a single A-to-G point mutation in the -10 region of the 

promoter controlling the leu operon, and the AT to GC mutation is expected to increase 

the energy barrier for the formation of a functional transcription open complex. Using 

luciferase assays and RT-PCR experiments, it was demonstrated that transient TCDS, 

“confined” within promoter regions, is responsible for activation of the coupled 

transcription initiation of the leu-500 promoter. Taken together, these results demonstrate 

that transcription is a major chromosomal remodeling force in E. coli cells.  
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Chapter 1: Transcription-coupled DNA supercoiling in Escherichia coli topA 

mutants 

1.1 Transcription-coupled DNA supercoiling (TCDS): the “twin-supercoiled-

domain” model 

DNA is typically negatively supercoiled in bacteria (Cozzarelli, 1990; Bates and 

Maxwell, 2005). Changes in the level of DNA supercoiling have been found to play 

important roles on DNA transactions such as replication, transposition, transcription, and 

recombination (Cozzarelli, 1990; Kornberg and Baker, 1992; Wang, 1996; Champoux, 

2001; Bates and Maxwell, 2005; Wang, 2009). It has been demonstrated that DNA 

supercoiling is tightly regulated by different DNA topoisomerases in vivo (Wang, 1996; 

Champoux, 2001). There are four DNA topoisomerases in Escherichia coli: 

topoisomerase I, gyrase, topoisomerase III and topoisomerase IV (Wang, 1996; 

Champoux, 2001). In bacteria, the DNA supercoiling level is tightly regulated by the 

opposing activities of two enzymes: topoisomerase I and gyrase (Pruss and Drlica, 1989; 

Zechiedrich et al., 2000; Snoep et al., 2002). They act differently on negatively and 

positively supercoiled DNA. Topoisomerase I (Massé and Drolet, 1999; Massé and 

Drolet, 1999), the product of the topA gene, functions to relax the negative supercoils in 

intracellular DNA while DNA gyrase (topo II)  (Gellert et al., 1976), which is composed 

of GyrA and GyrB subunit proteins and has a tetrameric structure, acts to convert a 

fraction of the transient positive supercoils to “permanent” negative supercoils at the 

expense of ATP hydrolysis. Inactivating either enzyme results in the production of 

positive supercoiled DNA or hypernegative supercoiled DNA in vivo (Lockshon and 
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Morris, 1983; Pruss, 1985; Pruss and Drlica, 1986; Wu et al., 1988; Lodge et al., 1989; 

Tsao et al., 1989; Lynch and Wang, 1993; Ma et al., 1994). Moreover, the linking number 

change caused by inactivation of either topoisomerase is directly related to the 

transcription of the DNA and relative orientation of  the transcription units (Wu et al., 

1988). 

In E. coli, countervailing activities of topoisomerase I and gyrase are 

homeostatically regulated (Dinardo et al., 1982): an increase in the degree of negative 

supercoiling reduces the transcription of the gyrA and gyrB genes, which encodes the two 

subunits of gyrase, and elevates the transcription of the topA gene, the gene that encodes 

DNA topoisomerase I; a decrease in the degree of negative supercoiling has the opposite 

effects on the expression of these genes (Menzel and Gellert, 1983; Tse-Dinh, 1985; Tse-

Dinh and Beran, 1988). It has been demonstrated that E. coli topA strains are not viable 

unless they acquire compensatory mutations such as mutations in the gyrA and gyrB that 

encode gyrase (Dinardo et al., 1982; Pruss et al., 1982; Raji et al., 1985; Dorman et al., 

1989). The suppression of the lethal phenotype of topA by compensatory mutations 

indicates the proper level of supercoiling in E. coli is essential and is controlled by the 

diametric functions of enzymes. 

Early studies have shown the effects of transcription on DNA topology in E. coli 

cells. The first case was a study by Lockshon and Morris in which a substantial fraction 

of the plasmid pBR322 isolated from E. coli cells after exposure to DNA gyrase 

inhibitors, such as oxolinic acid and novobiocin, became positively supercoiled 

(Lockshon and Morris, 1983). Effects of gyrase alone cannot explain the formation of the 
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positively supercoiled plasmid (Liu and Wang, 1987). In a later study by Pruss (Pruss, 

1985), it was demonstrated that pBR322 isolated from E. coli or Salmonella typhimurium 

topA mutants lacking DNA topoisomerase I is hypernegatively supercoiled. The 

distribution of the DNA topoisomers is much broader than that isolated from the wild 

type strains. In 1986, Pruss and Drlica showed that plasmid pBR322, but not pUC9 (a 

smaller high copy number plasmid, which is derived from pBR322), isolated from E. coli 

topA strains, became hypernegatively supercoiled (Pruss and Drlica, 1986). On the basis 

of these observations, Liu and Wang formulated an elegant model, the “twin-supercoiled-

domain” model of transcription, to explain these results (Liu and Wang, 1987). They 

hypothesized that during the transcription elongation, the transcribing complex (include 

the polymerase, its nascent RNA, and RNA associated proteins) becomes progressively 

more difficult to rotate around the DNA double helix as the size of the growing RNA 

transcript increases. At a critical point, it is more feasible for DNA to rotate around its 

own helical axis to generate a transient positively supercoiled domain ahead of the RNA 

polymerase and a transient negatively supercoiled domain behind it. The formation of 

twin domains during transcription elongation is manifested by a large decrease or 

increase in the linking number of an intracellular plasmid when topoisomerase I or gyrase, 

respectively, is inhibited. This “twin-supercoiled-domain” model indicated that the state 

of supercoiling inside bacterial DNA is strongly modulated by transcription, it also 

predicted that the accumulated supercoiled DNA can be relaxed by DNA topoisomerases 

or neutralized each other by diffusing along the DNA helix (Liu and Wang, 1987). 
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Inside a bacterium, DNA gyrase and topoisomerase I act differentially on 

positively and negatively supercoiled domains (Wang, 1971; Gellert et al., 1976), 

therefore the supercoiling state of intracellular DNA is expected to be regulated by 

several processes, for instance, the transcription process which produces negative and 

positive supercoils at equal rates, the diffusion pathways which allow the cancellation of 

negative and positive supercoils, and the actions of DNA topoisomerases such as DNA 

topoisomerase I-catalyzed relaxation for negatively supercoiled DNA as well as gyrase-

catalyzed negative supercoiling (Wu et al., 1988; Wang and Lynch, 1993)  

There are several studies conducted to support the “twin-supercoiled-domain” 

model of transcription (Wu et al., 1988; Lodge et al., 1989; Tsao et al., 1989; Dröge and 

Nordheim, 1991; Cook et al., 1992; Dayn et al., 1992; Rahmouni and Wells, 1992; 

Dunaway and Ostrander, 1993; Lynch and Wang, 1993; Ma et al., 1994; Albert et al., 

1996; Leng and McMacken, 2002; Leng et al., 2004; Stupina and Wang, 2005; Samul 

and Leng, 2007). Liu and Wang’s model also suggested that in a dilute aqueous solution, 

the friction force applying to the transcription complex was too small to generate 

significant supercoiling of the DNA template that only contain one transcription unit (Liu 

and Wang, 1987). We now know that it is very viscous and crowded inside a living cell 

(Zimmerman and Minton, 1993; Richter et al., 2008), and TCDS should be different from 

the dilute solution situation. It has been demonstrated that increased viscosity was able to 

significantly induce the DNA supercoiling in a defined protein system (Leng et al., 2004), 

which supports the view that in vivo situation is more complicated than the dilute aqueous 

solution. Recently, several groups re-investigated the induced torsional stress by a 
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transcribing RNA polymerase, they showed that even in a dilute aqueous solution, the 

torsional force of RNA polymerase was sufficient to generate the twin-supercoiled-

domains (Nelson, 1999; Mielke et al., 2004). For instance, Nelson demonstrated that 

small natural bends in the DNA helix backbone was able to increase a few thousand fold 

of torsional stress even in a linear unanchored DNA (Nelson, 1999), this torsional force is 

sufficient to generate a positively supercoiled domain in front of the RNA polymerase 

and a negatively supercoiled domain behind it (Nelson, 1999). Another case is a 

Brownian dynamic study conducted by Mielke et al. (Mielke et al., 2004). These studies 

clearly demonstrated that a transcribing RNA polymerase alone is able to drive the 

formation of positively and negatively domains in a naked plasmid DNA template. 

So far, studies of TCDS in vivo and in vitro were almost solely dependent on the 

utilization of circular plasmid in which topology of DNA was determined after 

transcription (Wu et al., 1988; Leng and McMacken, 2002; Samul and Leng, 2007). It has 

been demonstrated that TCDS on plasmids DNA required two barriers (Liu and Wang, 

1987; Lodge et al., 1989; Wang and Lynch, 1993; Leng and McMacken, 2002; Stupina 

and Wang, 2004). The first barrier is a friction barrier generated from preventing or 

retarding the transcription complex from rotating around the DNA double helix; the 

second barrier is a topology barrier that prevents the cancellation of the positive and 

negative supercoiling domains (Figure 1.1). 

1.2 Transcription-coupled DNA supercoiling in E. coli topA strains 

In 1985, Pruss reported that hypernegatively supercoiled pBR322 was isolated 

from E. coli or S. typhimurium topA mutants lacking DNA topoisomerase I and the 
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isolated pBR322 DNA is extremely heterogeneous in linking number (Pruss, 1985). In a 

latter study, Pruss and Drlica showed that plasmid pBR322, but not pUC9 (a smaller high 

copy number plasmid, which is derived from pBR322), isolated from E. coli topA strains, 

became hypernegatively supercoiled, suggesting tet gene was responsible for this 

hypernegative supercoiling in topA strain (Pruss and Drlica, 1986). Further studies 

demonstrated that anchoring the transcribing RNA polymerase to the cell membrane 

through a nascent membrane-bound peptide or protein was required for the generation of 

hypernegative supercoiling in topA strains (Lodge et al., 1989; Cook et al., 1992; Lynch 

and Wang, 1993). For instance, by analyzing the transcription induced DNA supercoiling 

of plasmid pBR322 and its derivatives, Lodge et al. found that transcription-driven twin 

supercoiled domains were generated only if the DNA template was anchored to a large 

cellular structure by coupled transcription, translation, and membrane insertion of a 

nascent protein (Lodge et al., 1989). Later, Lynch and Wang showed that hypernegative 

DNA supercoiling in topA strain required the anchorage of transcribing RNA polymerase 

to the cell membrane through a nascent membrane-bound peptide or protein (Wang and 

Lynch, 1993). Moreover, Cook et al. showed that transcription of membrane-associated 

gene products that are oppositely oriented, rapidly supercoiled the plasmid DNA in topA 

strains (Cook et al., 1992; Ma et al., 1994). In these studies, the membrane-bound 

transcriptional complex cannot rotate around the DNA double helix freely and therefore a 

friction barrier was produced which generates the twin-supercoiled domains on the DNA 

templates (Lodge et al., 1989; Wang and Lynch, 1993; Ma et al., 1994).  

It should be pointed out that all these studies regarding TCDS in E. coli topA 

strains utilized a combination of E. coli RNA polymerase and its promoters. As 
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demonstrated before, plasmid pBR322 and its derivatives contain several E. coli RNA 

polymerase promoters and the length and location of RNA transcripts cannot be 

controlled precisely (Sutcliffe, 1979; Bujard, 1981; Tomizawa and Som, 1984). In this 

case, TCDS may result from simultaneously transcribed of several transcriptional units 

on these plasmid DNA templates. Therefore, it was difficult to determine the factors that 

affect TCDS in E. coli topA strains. Apparently, a more specific model was required to 

identify the parameters that influence TCDS in E. coli. 

In 2007, we established a new system to study TCDS in E. coli (Samul and Leng, 

2007). This new system consists of a set of plasmids (i.e., the pLUC plasmids (Leng et al., 

2004) ) that produced RNA transcripts of different lengths by T7 RNA polymerase (Leng 

et al., 2004) and a E. coli topA strain, VS111(DE3) or DM800(DE3),  in which a λDE3 

prophage containing a T7 RNA polymerase gene under the control of the lacUV5 

promoter has been integrated into the chromosome. Compared to topA strain VS111(DE3), 

DM800(DE3) has a compensatory mutation in the gyrB gene that produces a less active 

DNA gyrase (Sternglanz et al., 1981; McEachern and Fisher, 1989). Using this in vivo 

system, the length and location of RNA transcripts could be precisely controlled. We 

found that transcription by T7 RNA polymerase significantly induced the formation of 

hypernegatively supercoiled DNA. We also discovered that TCDS was dependent on the 

lengths of RNA transcripts, as predicted by the “twin-supercoiled-domain” model of 

transcription. More importantly, our results showed that hypernegative supercoiled DNA 

induced by T7 RNA polymerase did not require the anchorage of plasmid DNA to the 

bacterial cytoplasmic membrane, which is contrary to previous studies (Lodge et al., 

1989; Cook et al., 1992; Lynch and Wang, 1993). This discovery indicated that a 



8 
 

transcribing RNA polymerase along is sufficient to cause a change of local DNA 

superhelicity. These results can be explained by the “twin-supercoiled-domain” model of 

transcription (Figure 1.1). As discussed above, TCDS requires two barriers. The physical 

barrier comes from preventing or retarding the transcriptional complex (including the 

transcribing RNA polymerase and the newly synthesized RNA transcript) from rotating 

around the DNA double helix, which results in the generation of the twin supercoiled 

domains. In our study, a fast-moving T7 RNA polymerase was used to produce sufficient 

friction force in order to generate the twin supercoiled domains, which is the main reason 

why the anchorage of transcription complex to the membrane is not required in E. coli 

topA strains. The second barrier is a DNA topology barrier that prevents or retards the 

diffusion and merger of DNA supercoiling along the longitudinal helix axis of the DNA 

template. In this case, the positively supercoiled DNA and negatively supercoiled DNA 

produced during transcription cannot cancel each other. In addition, DNA gyrase 

functions to convert the positively supercoiled DNA into “permanent” negative 

supercoiled DNA to generate hypernegatively supercoiled DNA in E. coli topA strains. 

Initially, a big cellular structure such as cell membrane was thought to be required for the 

production of a topological barrier. However, as discussed above, recently, our group 

found that certain nucleoprotein complexes, for example, those that contain sharply bent 

DNA sites or unwound DNA sequences, could form such topology barrier to block the 

diffusion and merger of the oppositely DNA domains (Leng et al., 2011). For pLUC 

plasmids, each of them contain one or more DNA-binding sites for several sequence-

specific DNA binding proteins, such as ArgR and IHF, which have potentials to form 

nucleoprotein complexes that can serve as a topological barrier. In addition, E. coli RNA 
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polymerase may be able to associate with E. coli promoters on these DNA plasmids to 

stimulate the coupled supercoiling during transcription elongation. In summary, the 

topological barrier does exist for TCDS on pLUC plasmids. In this case, transcription by 

a fast-moving T7 RNA polymerase should significantly supercoil the DNA templates 

through the “twin-supercoiled-domain” mechanism (Figure 1.1). 

1.3 Effects of transcription-coupled DNA supercoiling on the Salmonella 

typhimurium leu-500 promoter 

DNA supercoiling plays a crucial role in transcription regulation, as demonstrated 

in several systems (Cozzarelli, 1990; Wang and Lynch, 1993). The supercoiling effects 

could also play an important role on promoter function in vivo (Chen et al., 1992). One of 

the best characterized examples is activation of the S. typhimurium leu-500 promoter by 

TCDS. The leu-500 promoter, isolated from leucine auxotroph of S. typhimurium, is a 

single A-to-G point mutation in the -10 region of the promoter which controls the leu 

operon (Mukai and Margolin, 1963; Dubnau and Margolin, 1972; Gemmill et al., 1984). 

The supX locus (initially named su leu 500) was first described by Mukai and Margolin 

(Mukai and Margolin, 1963). Mutation in the supX locus could restore the leucine 

prototrophy and the chromosomal location of supX was identified between the tryptophan 

operon and cysteine B locus in S. typhimurium (Mukai and Margolin, 1963; Dubnau and 

Margolin, 1972). Later, the supX gene was identified the same gene as topA which 

encodes for topoisomerase I (Sternglanz et al., 1981; Trucksis and Depew, 1981; 

Trucksis et al., 1981; Wang and Becherer, 1983; Margolin et al., 1985). The AT to GC 

mutation was expected to increase the energy barrier to form a functional transcription 
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complex and this barrier can be overcome by the mutation in topoisomerase I gene that 

causes the loss of topoisomerase I’s activity (Trucksis et al., 1981; Richardson et al., 

1984; Margolin et al., 1985; Richardson et al., 1988). Intriguingly, Lilley and Higgins 

showed that activation of the leu-500 promoter was only dependent on the topA 

background and did not correlate with global supercoiling, as measured from extracted 

DNA templates (Lilley and Higgins, 1991). In addition, when the leu-500 promoter was 

cloned into a plasmid, the topA background was no longer required for activation of the 

leu-500 promoter (Richardson et al., 1988; Lilley and Higgins, 1991; Chen et al., 1992). 

These phenomena suggested an unknown regulation factor rather than the topA 

background was responsible for the activation of the leu-500 promoter. Studies conducted 

by Wu’s group and  Lilley’s group pointed out leu-500 promoter could be activated when 

it was coupled to transcription of another divergently oriented promoter, suggested that 

transcription-driven localized supercoiling was responsible for the activation of the leu-

500 promoter (Chen et al., 1992; Chen et al., 1993; Tan et al., 1994; Mojica and Higgins, 

1996; Spirito and Bossi, 1996; Chen et al., 1998). Furthermore, after analyzing the leuO 

operon and the surrounding elements in S. typhimurium chromosome, Wu and co-

workers found that ilvIH promoter and the leuO gene were located upstream of the leu-

500 promoter and they were transcribed divergently to the leu-500 promoter (Haughn et 

al., 1986; Wu et al., 1995). On the basis of these results, Wu et al. proposed a promoter 

relay mechanism to explain the expression of the ilvIH-leuO-leuABCD gene cluster that 

is coordinated in a sequential manner (Fang and Wu, 1998; Fang and Wu, 1998; Wu and 

Fang, 2003). In this model, leuO promoter is activated by ilvIH promoter, which is 

located within the 1.9 kb intervening sequence. Both the leuO promoter and expression of 
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the LeuO protein are required for subsequent activation of the leu-500 promoter (Fang 

and Wu, 1998). The key component in this model is TCDS which generates transient 

changes on DNA templates. In addition, recently, Hanafi and Bossi showed the 

orientation of the DNA supercoiling could affect neighboring promoters: transcription-

induced positively supercoiling suppressed the promoter function while transcription-

driven negatively supercoiling could activate the leu-500 promoter (Hanafi and Bossi, 

2000). 
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Figure 1.1 A two-barrier model to explain TCDS on circular plasmids DNA. As RNA 

polymerase binds to the DNA double helix and transcribed counterclockwise, positively 

supercoils will be generated ahead of the transcribing RNA polymerase and negatively 

supercoils behind it. A physical barrier (barrier 1) is formed by preventing or retarding of 

RNA polymerase from rotating around the DNA double helix. A topological barrier 

(barrier 2) may be generated from the formation of some nucleoprotein complexes. When 

there is more than one RNA polymerase present, greater extent of TCDS will be achieved. 
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Chapter 2: Dependence of transcription-coupled DNA Supercoiling on promoter 

strength in Escherichia coli topoisomerase I deficient strains 

The work described in this chapter has been published in the Gene (2013) 514(2), 82-90. 

2.1 Abstract  

Transcription by RNA polymerase can induce the formation of hypernegatively 

supercoiled DNA in vitro and in vivo. This phenomenon has been nicely explained by a 

“twin-supercoiled-domain” model of transcription where a positively supercoiled domain 

is generated ahead of the RNA polymerase and a negatively supercoiled domain behind it. 

In Escherichia coli topA strains, DNA gyrase selectively converts the positively 

supercoiled domain into negative supercoils to produce hypernegatively supercoiled 

DNA. In this article, in order to examine whether promoter strength affects transcription-

coupled DNA supercoiling (TCDS), we developed a two-plasmid system in which a 

linear, non-supercoiled plasmid was used to express lac repressor constitutively while a 

circular plasmid was used to gage TCDS in E. coli cells. Using this two-plasmid system, 

we found that TCDS in topA strains is dependent on promoter strength. We also 

demonstrated that transcription-coupled hypernegative supercoiling of plasmid DNA did 

not need the expression of a membrane-insertion protein for strong promoters; however, 

it might require co-transcriptional synthesis of a polypeptide. Furthermore, we found that 

for weak promoters the expression of a membrane-insertion tet gene was not sufficient 

for the production of hypernegatively supercoiled DNA. Our results can be explained by 

the “twin-supercoiled-domain” model of transcription where the friction force applied to 

E. coli RNA polymerase plays a critical role in the generation of hypernegatively 

supercoiled DNA. 



21 
 

2.2 Introduction 

DNA supercoiling plays fundamental roles in a number of essential DNA 

metabolic pathways, such as DNA replication, recombination, and transcription (Bates 

and Maxwell, 2005; Cozzarelli and Wang, 1990; Wang, 2009). In Escherichia coli, DNA 

is typically negatively supercoiled. DNA supercoiling status inside E. coli cells is 

primarily set by counter actions of two DNA topoisomerases, DNA gyrase, and 

topoisomerase I (Champoux, 2001; Snoep et al., 2002; Wang, 1996; Zechiedrich et al., 

2000). Inactivating DNA gyrase or topoisomerase I results in the production of positively 

(Lockshon and Morris, 1983) or hypernegatively (Pruss, 1985) supercoiled DNA, 

respectively.  

Since the 1980s, it has been demonstrated that transcription by RNA polymerase 

could introduce supercoils to plasmid DNA templates in vitro and in vivo (Leng and 

McMacken, 2002; Leng et al., 2004; Lockshon and Morris, 1983; Pruss, 1985; Tsao et al., 

1989; Wu et al., 1988). Liu and Wang proposed a “twin-supercoiled-domain” model of 

transcription to explain how transcription by RNA polymerase is able to supercoil the 

plasmid DNA templates (Liu and Wang, 1987). This elegant model hypothesizes that a 

transcribing RNA polymerase becomes increasingly more difficult to rotate around the 

axis of the DNA double helix as the size of the growing RNA transcript increases. At a 

critical point, energetically, it is more feasible for the DNA molecule to rotate around its 

own helix axis to produce a positively supercoiled domain in front of the RNA 

polymerase and a negatively supercoiled domain behind it. These two transient 

supercoiled domains may be relaxed by DNA topoisomerases or cancel each other by 
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diffusion (Leng and McMacken, 2002; Mielke et al., 2004; Nelson, 1999; Tsao et al., 

1989; Wu et al., 1988).  

So far, there is substantial experimental evidence to support the “twin-

supercoiled-domain” model of transcription (Albert et al., 1996; Cook et al., 1992; 

Dunaway and Ostrander, 1993; Leng and McMacken, 2002; Lodge et al., 1989; Lynch 

and Wang, 1993; Ma et al., 1994; Stupina and Wang, 2004; Tsao et al., 1989; Wu et al., 

1988). For instance, in E. coli topoisomerase I-deficient (topA) strains, transcription by 

RNA polymerases is capable of driving the plasmid DNA templates to hypernegatively 

supercoiled status (Cook et al., 1992; Lodge et al., 1989; Pruss, 1985; Wang and Lynch, 

1993). It was shown that transcription-coupled hypernegative supercoiling of plasmid 

DNA required co-transcriptional synthesis of a membrane-associated protein or 

polypeptide for plasmid pBR322 and derivatives (Cook et al., 1992; Lodge et al., 1989; 

Lynch and Wang, 1993; Ma et al., 1994). A possible explanation for this requirement is 

that co-transcriptional synthesis of a membrane-associated protein or polypeptide 

substantially increased the friction force against the transcribing RNA polymerase. In this 

scenario, a significant amount of “twin-supercoiled-domains” is generated. After the 

positively supercoiled domain is converted into negative supercoils by DNA gyrase, the 

transcribed DNA templates become hypernegatively supercoiled.  

Using a similar approach, we recently demonstrated that transcription by T7 RNA 

polymerase strikingly stimulated DNA supercoiling; transcription-coupled DNA 

supercoiling (TCDS) was dependent on the length of RNA transcripts in E. coli topA 

strains VS111(DE3) and DM800(DE3) (Samul and Leng, 2007). Additionally, we found 

that hypernegative supercoiling of plasmid DNA by T7 RNA polymerase did not require 
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anchoring of DNA to the bacterial cytoplasmic membrane (Samul and Leng, 2007). We 

attributed these results to the fact that a much stronger T7 promoter and a much faster T7 

RNA polymerase (comparing with E. coli RNA polymerase (Seidel and Dekker, 2007)) 

were used in our transcription–supercoiling (T–S) assays. In this case, the “twin-

supercoiled-domains” were efficiently generated and, as a result, TCDS did not need 

transcriptional machinery to couple to translation and membrane-insertion. These results 

also suggested that promoter strength is important to TCDS in E. coli cells. In order to 

further study how promoter strength affects the efficiency of TCDS in E. coli topA strains, 

herein we developed a new two-plasmid system: the first plasmid is a linear plasmid 

derived from coliphage N15 (Ravin and Ravin, 1999) and was used to express lac 

repressor constitutively. In addition, the linear plasmids cannot be supercoiled (Deneke et 

al., 2000) and therefore will not interfere with the supercoiling assays; the second 

plasmid is a circular plasmid that was used to examine TCDS by E. coli RNA polymerase. 

Using this unique two-plasmid system, we found that transcription-coupled 

hypernegative supercoiling of plasmid DNA templates was dependent on promoter 

strength and did not require the expression of a membrane-insertion protein for strong 

promoters, which is consistent with our results for T7 RNA polymerase (Samul and Leng, 

2007). 

2.3 Methods 

2.3.1 Materials 

Ethidium bromide, kanamycin, lysozyme, and chloroquine were purchased from 

Sigma-Aldrich Corp. (St. Louis, MO). Ampicillin and bovine serum albumin (BSA) were 
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obtained from Fisher Scientific (Fairlawn, NJ). Tetracycline was purchased from EMI 

Science (Gibbstown, NJ). Isopropyl-β-D-thiogalactopyranoside (IPTG) was obtained 

from Anatrace, Inc. (Maumee, Ohio). All restriction enzymes, T4 DNA ligase, and T4 

polynucleotide kinase were bought from New England Biolabs, Inc. (Beverly, MA). Pfu 

DNA polymerase was purchased from Stratagene, Inc. (La Jolla, CA). All synthetic 

oligonucleotides used as primers were obtained from MWG-Biotech, Inc. (Huntsville, 

AL). QIAprep Spin Miniprep Kit, QIAquick Gel Extraction Kit, RNeasy Mini Kit, and 

QIAquick Nucleotide Removal Kit were bought from QIAGEN, Inc. (Valencia, CA). 

ThermoScript RT-PCR System plus Platinum® Taq DNA polymerase was purchased 

from Invitrogen, Inc. (Carlsbad, CA). Power SYBR Green PCR Master Mix was obtained 

from Applied Biosystems, Inc. (Carlsbad, CA). GFP-Ab2 Mouse Monoclonal Antibody 

is a product of Thermo Fisher Scientific, Inc. (Fremont, CA). Horseradish peroxidase 

(HRP)-conjugated anti-mouse antibody was obtained from EMD Biosciences, Inc. 

(Madison, WI). Supersignal West Pico Chemiluminescent Substrate was bought from 

Thermo Scientific, Inc. (Rockford, IL). 

2.3.2 Bacterial strains and plasmids 

E. coli strain VS111 [F−LAM-rph-I ΔtopA] as described in Stupina and Wang 

(2005) was obtained from the Coli Genetic Stock Collection/E. coli Genetic Resource 

Center (CGSC) at Yale University. E. coli strain DM800 [F−Δ(topAcysB)204 arcA13 

gyrB225] was kindly provided by Dr. Marc Drolet at Universite de Montreal. All linear 

plasmids were derived from coliphage N15-based, linear plasmid pG591 (Ravin and 

Ravin, 1999), which was kindly provided by Dr. Nikolai V. Ravin at Centre 
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“Bioengineering” RAS, Russia. Plasmid pZXD4 was constructed by inserting a 33 bp 

synthetic DNA fragment containing a multiple cloning site into the unique BglII site of 

pG591. Plasmid pZXD51 (Figure 2.1A) was constructed in two steps. First, promoter Placi 

controlling the expression of LacI in pET-30a(+) was mutated to the strong promoter 

PlacI
q using PCR-based, site-directed mutagenesis. Then the laci gene including promoter 

Placi
q was amplified by PCR and inserted between NheI and AflII sites of pZXD4 to 

generate plasmid pZXD51. E. coli strains carrying pZXD51 express LacI constitutively. 

All circular plasmids constructed in this work were derived from plasmid pBR322. 

Plasmid pBR322se1 was constructed by converting the −35 region of promoter Panti-tet 

into an XhoI site using PCR based, site-directed mutagenesis. In this case, promoter Panti-

tet was removed. Plasmid pBR322se2 was created after a Shine–Dalgarno sequence (5′-

AAGGAGG-3′) was inserted to the upstream region of the open reading frame of the tet 

gene. Plasmid pBR322se3 was made by introducing KpnI and SacI sites into the plasmid 

surrounding the weak promoter Pbla. In this scenario, promoter Pbla may easily be replaced 

by other promoters. Plasmid pZXD7 was created by removing a Dcm sequence of 

pBR322se3 associated with the unique MscI recognition site using PCR-based, site-

directed mutagenesis. Plasmid pZXD8 was generated after a BglII site was inserted to the 

downstream region of the tet gene of plasmid pZXD7. A 37 bp synthetic 

deoxyoligonucleotide containing a multiple cloning site was then inserted into the unique 

KpnI site of pZXD8 to yield plasmid pZXD9. Plasmid pZXD11 was constructed after a 

36 bp synthetic DNA fragment containing a T7 promoter was inserted into the EcoRI and 

XhoI sites to replace promoter Ptet. Plasmid pZXD12 was made after a 64 bp synthetic 

DNA fragment containing an inactive promoter Pleu-500 was inserted into the HindIII and 
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KpnI sites of pZXD11. Plasmid pZXD14 was created when an 813 bp DNA fragment of 

pLUC1 carrying four tandem copies of rrnB T1 transcription terminators (Leng and 

McMacken, 2002) was inserted into the unique MscI site of pZXD12. Plasmids pZXD44, 

50, 49, 47, and 48 were constructed by replacing the T7 promoter with E. coli promoters 

PT7A1/O4, Ptac, PlacUV5, Plac, and PlacL8, respectively, between the EcoRI and XhoI sites of 

pZXD14. 

Plasmids pZXD57, 58, 56, 55, and 54, each carrying a GFPuv gene under the 

control of E. coli promoters PT7A1/O4, Ptac, PlacUV5, Plac, and PlacL8, respectively, were 

constructed in a few steps. First, an AgeI site was introduced between the Shine–

Dalgarno sequence and the start codon of the tet gene of plasmid pXZD48 to generate 

plasmid pXZD52 using PCR-based, site-directed mutagenesis. Second, the unique XhoI 

site in the GFPuv gene of plasmid pGFPuv (Stratagene, Inc., La Jolla, CA) was silently 

removed without changing the open reading frame of GFPuv gene using PCR-based, site-

directed mutagenesis to yield plasmid pZXD53. Third, a 737 bp PCR product containing 

the GFPuv gene was cloned into the AgeI and BsmI sites of plasmid pZXD52 to produce 

plasmid pZXD54. In this case, the tet gene was replaced by the GFPuv gene under the 

control of E. coli promoter PlacL8. Plasmids pZXD57, 58, 56, and 55 were constructed by 

replacing the E. coli promoter PlacL8 with promoters PT7A1/O4, Ptac, PlacUV5, and Plac 

between the EcoRI and XhoI sites of pZXD54, respectively. 

Plasmid pZXD59 was created when a 735 bp DNA fragment containing the 

GFPuv gene in reverse orientation amplified from plasmid pZXD53 was inserted into the 

AgeI and BsmI sites of plasmid pZXD57. In this scenario, E. coli cells carrying pZXD59 

are not able to express GFPuv protein after IPTG induction. Plasmids pZXD60 and 61 
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were produced when lacZ gene in the forward and reverse orientations was amplified 

from plasmid pYC2/CT/lacZ and inserted into the AgeI and BsmI sites of pZXD57. In 

this case, E. coli cells carrying pZXD60 are able to express β-galactosidase after IPTG 

induction. However, E. coli cells carrying pZXD61 are not able to express β-

galactosidase after IPTG induction. Plasmid pZXD62 was constructed after a 2.3 kb PCR 

fragment of lacZ gene was inserted between the HindIII and KpnI sites of pZXD57. 

Plasmid pZXD63 was produced after a 1.8 kb PCR fragment of lacZ gene was inserted 

into the HindIII and KpnI sites of pZXD44. Plasmids pZXD60A and pZXD63A were 

constructed where the start codon (ATG) of the lacZ and tet genes were, respectively, 

mutated to the stop codon TAG using PCR-based, site-directed mutagenesis. In this 

scenario, E. coli cells carrying plasmids pZXD60A and 63A are not able to express β-

galactosidase and tetracycline resistance protein, respectively. Please notice that plasmids 

pZXD60, 61, 62, 63, 60A, and 63A have the same size, i.e., 7055 bp. 

2.3.3 In vivo T-S assays 

Escherichia coli cells carrying different plasmids were grown overnight in LB 

containing 50 μg/ml of ampicillin and kanamycin. The overnight culture was then diluted 

(1:100) in fresh LB containing 50 μg/ml of ampicillin and kanamycin, and grown until 

optical density of the cells at 600 nm reached approximately 0.5. IPTG (final 

concentration, 1 mM) was added to the cell culture to initiate transcription by different 

promoters, i.e., PT7A1/O4, Ptac, PlacUV5, Plac, and PlacL8. Plasmid DNA was purified using 

QIAGEN Miniprep Kit. The topological state of each DNA preparation was analyzed by 

electrophoresis in a 1% agarose gel in 1× TAE buffer (40 mM Tris-acetate, 1 mM EDTA, 

and pH 7.8) containing 2.5 μg/ml of chloroquine. After electrophoresis, agarose gels were 
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stained with ethidium bromide, destained, and photographed under UV light. The net 

intensity of DNA topoisomers was determined using KODAK 1D Image Analysis 

Software. The percentage of hypernegative DNA supercoils was calculated by dividing 

the intensity of the hypernegatively supercoiled DNA band by the total intensity of all 

DNA topoisomers. 

2.3.4 Western blotting experiments 

Western blotting experiments were used to verify the expression of GFPuv 

protein in E. coli topA strain VS111 after 1 mM of IPTG induction. Total protein purified 

from E. coli cells was analyzed by electrophoresis in a 15% SDS-PAGE and 

electrophoretically transferred to a 0.45 μm nitrocellulose membrane. The membrane blot 

was then blocked with a solution containing 5% nonfat skim milk in TBST (50mM Tris–

HCl, pH 8.0, 138 mM NaCl, 2.7 mM KCl, and 0.05% Tween-20) for 45 min at room 

temperature and incubated with the primary antibody, GFP Ab-2 mouse monoclonal 

antibody, diluted 1:1000 in TBST solution overnight at 4 °C. After the overnight 

incubation, the membrane blot was washed three times with TBST, blocked with a 

solution containing 5% nonfat skim milk in TBST for 15 min at room temperature, and 

then incubated for 1 h with an HRP-conjugated anti-mouse IgG secondary antibody 

(diluted 1:5000) at room temperature. The immunoreactive GFPuv protein was detected 

with Supersignal West Pico Chemiluminescent Substrate. 

2.3.5 RNA isolation, cDNA synthesis, and polymerase chain reaction (PCR) 

Total RNA was isolated from E. coli cells using QIAGEN RNeasy Kit as 

described by the manufacturer. To determine the integrity of the total RNA samples, 16S 
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and 23S rRNA were resolved by electrophoresis in a 1.2% agarose gel in 1× MOPS 

buffer containing formaldehyde (20 mM MOPS, 8 mM sodium acetate, 1 mM EDTA, 1% 

formaldehyde, and pH 7.0). After electrophoresis, agarose gels were stained with 

ethidium bromide, destained, and photographed under UV light. cDNA were synthesized 

from total RNA samples using ThermoScript RT-PCR System. 2.76 μg of RNA was 

mixed with a sequence-specific primer (final concentration, 0.5 μM) or random hexamer 

primers (50 ng/μl) and four deoxynucleotide triphosphates (dNTPs; final concentration, 1 

mM). The mixtures were incubated at 65 °C for 5 min and transferred to ice for another 5 

min to remove secondary structures of RNA. The denatured RNA samples were then 

mixed with 1× cDNA synthesis buffer with a total volume of 20 μl containing 5 mM 

DTT, 40 units of RNaseOut, and 15 units of ThermoScript Reverse Transcriptase, and 

incubated at 60 °C for 1 h to synthesize cDNA. The cDNA synthesis mixtures were 

transferred to an 85 °C water bath for 5 min to terminate the reactions. After the synthesis 

step, 2 units of RNase H were added to the reaction mixtures and incubated at 37 °C for 

20 min to remove the RNA templates. 

PCR reactions were carried out using cDNA samples synthesized as described 

above. A 50 μl PCR reaction contains 1× PCR Buffer without Mg2+, 1.58 mM MgCl2, 0.2 

mM dNTPs, 0.2 μM of each primer (Table 2.1), 0.5 μl cDNA, and 2 units of Platinum 

Taq DNA polymerase. The reactions started at 94 °C for 2 min, proceeded for 16 cycles 

of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min, and terminated at 72 °C for 10 min. 

Subsequently, the PCR products were analyzed by electrophoresis in a 12% 

polyacrylamide gel in 1× TAE buffer. After electrophoresis, polyacrylamide gels were 
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stained with ethidium bromide or SYBR gold, destained, and photographed under UV 

light. 

2.3.6 Real-time PCR Assays 

Real-time PCR assays were carried out using MiniOpticon Real-time PCR system 

(Bio-Rad, Hercules, CA). A 20 μl reaction contains 0.5 μl cDNA, 0.5 μM of each primer 

(Table 2.1), and 10 μl of Power SYBR Green PCR Master Mix (2×). The reaction started 

at 95 °C for 10 min and continued for 40 cycles at 95 °C for 15 s and 60 °C for 1 min. 

The Cq values (quantification cycle values) were calculated from the exponential phase of 

each PCR amplification reaction as recommended by the manufacturer.  

2.4 Results and Discussion 

2.4.1 Establish an IPTG-inducible, two-plasmid system to study TCDS in E. coli 

topA strains 

In this study we established a two-plasmid system to examine effects of different 

factors on TCDS in E. coli topA strains VS111 and DM800. The first plasmid pZXD51 

(Figure 2.1A) is a linear plasmid derived from coliphage N15-based, low-copy-number 

plasmid pG591 (Ravin and Ravin, 1999) where a laci gene was cloned under the control 

of the strong Placi
q promoter. In this case, E. coli strains carrying pZXD51 produce ~3000 

molecules of LacI per cell constitutively (Lutz and Bujard, 1997). The second plasmid is 

a circular plasmid that serves as a supercoiling-reporter (Figure 2.1B). Here we 

constructed a series of plasmid DNA templates that contain different strengths of E. coli 

promoters (Lanzer and Bujard, 1988), i.e., PT7A1/O4, Ptac, PlacUV5, Plac, and PlacL8 (Figure 

2.1C), to examine effects of promoter strength on TCDS by E. coli RNA polymerase. 



31 
 

Since each promoter region contains a lac O1 operator (Figure 2.1C), transcription 

initiated from these promoters is IPTG-inducible in E. coli cells overexpressing LacI, e.g., 

E. coli cells carrying the linear plasmid pZXD51. We also added a set of Rho-

independent, rrnB T1 transcription terminators to each plasmid. The presence of multiple 

rrnB T1 terminators enabled us to restrict transcription to selected regions of 

supercoiling-reporter plasmids and to modulate the length of RNA transcripts produced. 

Since supercoiling-reporter plasmids have a different DNA replication origin (pMB1 

origin), they can co-exist with the linear plasmid pZXD51 in E. coli cells. Indeed, these 

two types of plasmids were able to simultaneously transform E. coli topA strains VS111 

and DM800. Additionally, as mentioned above, an advantage of using a linear plasmid to 

express LacI is that linear plasmids cannot be supercoiled (Deneke et al., 2000) and, as a 

result, will not interfere with the supercoiling assays. In this case, this new system will be 

ideal for our in vivo supercoiling studies. Plasmids constructed in this study are 

summarized in Figure 2.1 and Table 2.2. 

2.4.2 Transcription-coupled hypernegative supercoiling of plasmid DNA is 

dependent on promoter strength 

Having established the two-plasmid system, we proceeded to examine whether 

TCDS is dependent on promoter strength after IPTG induction. As mentioned above, we 

simultaneously introduced the linear plasmid pZXD51 and a supercoiling-reporter 

plasmid into E. coli topA strains VS111 and DM800. Since previous studies showed that 

hypernegative supercoiling of plasmid pBR322 and its derivatives is dependent on the 

expression of the co-transcription and translation of membrane-associated tet gene (Cook 
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et al., 1992; Lodge et al., 1989; Lynch and Wang, 1993; Ma et al., 1994; Pruss, 1985; 

Pruss and Drlica, 1986; Stupina and Wang, 2005), we decided to use a set of five 

supercoiling-reporter plasmids that carry a tet gene under the control of an IPTG-

inducible promoter with different strengths, i.e., promoters PT7A1/O4, Ptac, PlacUV5, Plac, and 

PlacL8. As expected, our RT-PCR experiments (Figure 2.2) demonstrated that the 

transcription level of E. coli strains harboring different plasmids after IPTG induction is 

correlated with promoter strength in vivo (Lanzer and Bujard, 1988). Interestingly, E. coli 

cells carrying plasmids pZXD44 and 50 were able to grow on agar plates containing 10 

μg/ml of tetracycline even in the absence of IPTG (Figure 2.7A). This resistance is most 

likely due to the leaky expression of the tetracycline resistance protein from the strong 

PT7A1/O4 and Ptac promoters, since pZXD44 and 50 contain PT7A1/O4 and Ptac, respectively. 

However, only E. coli cells carrying plasmids pZXD50 and 49 were able to grow on agar 

plates containing 10 μg/ml of tetracycline and 1 mM of IPTG (Figure 2.7B). As 

demonstrated previously, overexpression of tetracycline resistance protein results in cell 

death (Eckert and Beck, 1989), which is likely the reason for E. coli cells harboring 

plasmid pZXD44 carrying the strong PT7A1/O4 promoter being unable to grow on agar 

plates in the presence of 1 mM of IPTG. Indeed, our results showed that IPTG was able 

to inhibit cell growth for E. coli strains VS111 and MG1655 harboring plasmid pZXD44 

(Figure 2.7C and D). Because promoters Plac and PlacL8 are too weak, E. coli cells carrying 

plasmids pZXD47 and 48 could not produce enough tetracycline resistance protein to 

overcome the antimicrobial activities of tetracycline.  

We next determined the topological status of the set of five supercoiling-reporter 

plasmids pZXD44, 50, 49, 47, and 48 in E. coli topA strain VS111 harboring the linear 
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plasmid pZXD51. Figure 2.3 shows the results. Before IPTG induction, plasmid pZXD44, 

which carries a strong PT7A1/O4 promoter, had a superhelical density, σ, of approximately 

−0.06 to −0.07 (Figure 2.3A and B, lane 1). In the presence of the DNA intercalator 

chloroquine (2.5 μg/ml), this plasmid migrated during agarose gel electrophoresis as if it 

contained a few negative supercoils. After IPTG induction, as expected, some 

topoisomers quickly became hypernegatively supercoiled (estimated σ < −0.09; 

hypernegatively supercoiled DNA is the fastest moving band in the gels where DNA 

topoisomers are no longer resolvable under our experimental conditions): the amount of 

hypernegatively supercoiled DNA was dependent on the IPTG concentration added to the 

cell culture (Figure 2.3A and 2.8) and the induction time (Figure 2.3B and 2.8). These 

results clearly demonstrated that the induction of expression of the membrane-insertion 

tet gene under the control of the strong PT7A1/O4 promoter was able to drive the formation 

of hypernegatively supercoiled DNA, which is consistent with previous published results 

(Cook et al., 1992; Lynch and Wang, 1993; Pruss, 1985). Similar results were obtained 

for plasmids pZXD50 and 49 which carry Ptac and PlacUV5, respectively (Figure 2.3C and 

2.8). However, to our surprise, IPTG was not able to induce the production of 

hypernegatively supercoiled DNA for plasmids pZXD47 and 48, which harbor the weak 

promoters, Plac and PlacL8, respectively (lanes 4 and 5 of Figure 2.3C). These results 

demonstrated that the expression of a membrane-insertion tet gene is not sufficient for the 

production of hypernegatively supercoiled DNA. Intriguingly, our results showed that 

transcription-coupled hypernegative supercoiling of plasmid DNA is dependent on 

promoter strength: the stronger the promoter, the more hypernegatively-supercoiled DNA 
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produced (Figure 2.3C and D). Similar results were also obtained using E. coli topA 

strain DM800 as the host strain (Figure 2.8G). 

2.4.3 Transcription-coupled hypernegative supercoiling of plasmid DNA in E. coli 

topA strains did not require the expression of a membrane-insertion protein for 

strong promoters 

As mentioned above, we recently found that hypernegative supercoiling of 

plasmid DNA by T7 RNA polymerase did not require anchoring of DNA to bacterial 

cytoplasmic membrane (Samul and Leng, 2007). Thus, we decided to examine whether 

TCDS by E. coli RNA polymerase in E. coli topA strains VS111 and DM800 requires 

anchoring of DNA to bacterial cytoplasmic membrane through co-transcriptional 

synthesis of polypeptides encoding membrane proteins in this new two-plasmid system. 

Our results showed that, for strong promoters, TCDS did not require anchoring of DNA 

to bacterial cytoplasmic membrane through the expression of a membrane-insertion 

protein.  

We first constructed a set of five supercoiling-reporter plasmids, pZXD57, 58, 56, 

55, and 54 that carry a cytosolic green fluorescence protein UV (GFPuv) gene under the 

control of IPTG-inducible promoters with different strengths, i.e., promoters PT7A1/O4, Ptac, 

PlacUV5, Plac, and PlacL8 (Figure 2.9 and Table 2.2). These plasmids were introduced to E. 

coli topA strains VS111 and DM800 that also harbor the linear plasmid pZXD51. As 

expected, after IPTG induction, GFPuv gene products in E. coli strains harboring 

different plasmids at transcription and expression levels were correlated with promoter 

strength (Figure 2.10). Interestingly and also as expected, IPTG was able to induce the 
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generation of hypernegatively supercoiled DNA for plasmid pZXD57 that carries a 

strong PT7A1/O4 promoter (Figure 2.4). These results suggest that the expression of a 

cytosolic GFPuv protein was sufficient to induce the production of hypernegatively 

supercoiled DNA although the amount of generating hypernegatively supercoiled DNA 

was lower than that for plasmid pZXD44 (compare Figure 2.3A and 2.4A; also compare 

Figure 2.8F and 2.4C). Consistent with above described results, transcription-coupled 

hypernegative supercoiling of plasmid DNA for this set of five supercoiling-reporter 

plasmids, i.e., pZXD57, 58, 56, 55, and 54, was also dependent on promoter strength 

(Figure 2.4B and D). Similar results were obtained for plasmids by using E. coli topA 

strain DM800 as the host strain (data not shown). 

In order to further study transcription-coupled hypernegative supercoiling of 

plasmid DNA in our two-plasmid system, we next constructed six supercoiling-reporter 

plasmids of identical size which also carry a strong, IPTG-inducible PT7A1/O4 promoter 

controlling the expression of different genes (Figure 2.11 and Table 2.2). Plasmid 

pZXD60 carries a lacZ gene under the control of PT7A1/O4. E. coli cells carrying pZXD60 

are able to overexpress β-galactosidase after IPTG induction. Plasmid pZXD60A is 

identical with pZXD60 except the start codon (ATG) of lacZ was mutated to the stop 

codon TAG (amber mutation). In this case, IPTG is not able to induce the expression of 

β-galactosidase for E. coli cells harboring pZXD60A although the transcripts from both 

plasmids should be almost identical. Plasmid pZXD61 contains a lacZ gene in the reverse 

orientation, which cannot direct the expression of β-galactosidase. Plasmid pZXD62 

carries a GFPuv gene under the control of PT7A1/O4, which is able to direct the 

overexpression of GFPuv protein after IPTG induction. Plasmids pZXD63 and 63A are 
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identical except for the start codon of tet gene. pZXD63 carries a tet gene under the 

control of PT7A1/O4 and is able to direct the overexpression of membrane insertion, 

tetracycline resistance protein. pZXD63A, however, has an amber mutation in the start 

codon of the tet gene (ATG to TAG). In this scenario, E. coli cells containing pZXD63A 

are not able to express tetracycline resistance protein. These six plasmids were 

transformed into E. coli topA strain VS111 carrying the linear plasmid pZXD51 and their 

superhelical states were examined after IPTG induction. Figure 2.5 shows the results of 

these in vivo T–S assays. As expected, IPTG was able to induce the production of 

hypernegatively supercoiled DNA for plasmids pZXD60, 62, and 63 which express β-

galactosidase, GFPuv protein, and tetracycline resistance protein, respectively (Figure 

2.5A, B, and C; Figure 2.12A). Interestingly, our results showed that IPTG was not able 

to induce the generation of hypernegatively supercoiled DNA for plasmids pZXD60A, 61, 

and 63A although transcription added a few negative supercoils to these plasmids (Figure 

2.5D, E, and F). Since plasmids pZXD60A, 61, and 63A are not able to direct the 

expression of a polypeptide after IPTG induction, although each plasmid carries a strong 

PT7A1/O4 promoter, these results suggest that the co-transcriptional synthesis of a protein is 

able to facilitate the generation of hypernegatively supercoiled DNA. Nevertheless, a 

close inspection of these gel images revealed that transcription added 5 to 6 negative 

supercoils to plasmids pZXD60A and 63A, and only 2 supercoils to pZXD61.We 

examined the DNA sequences of these plasmid DNA templates and found a downstream 

open reading frame for both pZXD60A and pZXD63A but not for pZXD61. Although 

both open reading frames do not contain a SD sequence, it is possible that they are still 

able to direct the synthesis of a polypeptide with low efficiency. These downstream open 
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reading frames may be the reason for the topological difference among these DNA 

templates. Alternatively, the different amounts of friction torque caused by various 

mRNA secondary structures may also result in the topological difference. Similar results 

were also obtained when E. coli topA strain DM800 was used as the host strain (Figure 

2.12B). 

It has been demonstrated that the stability of E. coli mRNA was strongly affected 

by their association with ribosomes and ribosome-free mRNA was rapidly degraded in 

vivo (Deana and Belasco, 2005; Nilsson et al., 1987; Pedersen et al., 2011). Therefore, we 

decided to examine whether transcription-coupled hypernegative supercoiling of DNA in 

the new two-plasmid system is correlated with the stability of mRNA produced by these 

plasmids after IPTG induction. Figure 2.6 shows the results of our RT-PCR experiments. 

E. coli cells harboring plasmids pZXD60, 62 and 63, which are able to direct the 

overexpression of a polypeptide, i.e., β-galactosidase, GFPuv protein, and tetracycline 

resistance protein, respectively, produced almost the same amount of mRNA after 10 min 

of IPTG induction (compare lanes 1 to 3 of Figure 2.6A), suggesting that mRNA of the 

lacZ, GFPuv, and tet genes had similar stability. The introduction of an amber mutation 

to the start codon of lacZ and tet genes or reversing the orientation of the open reading 

frame of lacZ and GFPuv gene greatly reduced the stability of the RNA transcripts 

(Figure 2.6 and 2.13). Coincidently, transcription was not able to drive these plasmids 

into hypernegatively supercoiled status (Figure 2.5D, E, and F). These results suggest that 

transcription-coupled hypernegative supercoiling of DNA is related to the stability of 

mRNA produced by these plasmids after IPTG induction. 
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2.5 Conclusions 

In this article, we have presented strong evidence demonstrating that 

transcription-coupled hypernegative supercoiling of plasmid DNA in E. coli topA strains 

is dependent on promoter strength, a functional property that has not been revealed 

previously. Not only did we show that transcription-coupled hypernegative supercoiling 

of plasmids carrying a tet gene encoding a membrane-insertion protein required a strong 

promoter (Figure 2.3 and 2.8), but also we demonstrated that transcription from strong 

promoters, such as PT7A1/O4 and Ptac, was able to induce plasmid DNA templates into 

hypernegatively supercoiled status for those harboring a GFPuv or a lacZ gene encoding 

a cytosolic protein in E. coli topA strains VS111 and DM800 (Figure 2.4, 2.5, and 2.12). 

Transcription from weak promoters, such as Plac and PlacL8, however, was not able to 

induce topological changes to plasmids carrying either a membrane-associated tet gene 

(Figure 2.3 and 2.8) or a cytosolic-associated gene, such as GFPuv or lacZ (Figure 2.4). 

Since promoter strength is correlated with transcription initiation (Brunner and Bujard, 

1987; Lutz et al., 2001; McClure, 1985; Saecker et al., 2011), these results suggest that 

transcription initiation plays a critical role in TCDS in E. coli cells. However, our results 

also showed that transcription initiation alone was not capable of inducing plasmid DNA 

templates into hypernegatively supercoiled status. For instance, transcription from the 

strong PT7A1/O4 promoter was not able to induce plasmids pZXD60A, 61, and 63A into 

hypernegatively supercoiled status although transcription added a few supercoils to these 

plasmids after IPTG induction (Figure 2.5D, E, and F). Nevertheless, our results are 

consistent with the “twin-supercoiled-domain” model of transcription (Liu and Wang, 

1987) (please see below for more discussion). 
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In this study, we also showed that, for strong promoters, transcription-coupled 

hypernegative supercoiling of plasmid DNA in E. coli topA strains did not need the 

expression of a membrane-insertion protein although it required co-transcriptional 

synthesis of a polypeptide (Figure 2.4, 2.5, and 2.12). These results are consistent with 

our previously published results for T7 RNA polymerase where the strong T7 RNA 

polymerase efficiently drove plasmid DNA templates to hypernegatively supercoiled 

status even when the transcriptional machinery did not couple to translation and 

membrane insertion (Samul and Leng, 2007). We noticed that these results appear 

inconsistent with the previously published results showing that plasmid hypernegative 

supercoiling by E. coli RNA polymerase required the anchoring or insertion of the 

coupled transcription–translation complex into the cytoplasmic membrane (Cook et al., 

1992; Lodge et al., 1989; Lynch and Wang, 1993; Ma et al., 1994; Pruss, 1985; Pruss and 

Drlica, 1986; Stupina and Wang, 2005). However, a careful analysis showed that both 

situations can be explained by the “twin-supercoiled-domain” model of transcription 

where the friction force (Liu and Wang, 1987) applied to E. coli RNA polymerase is 

different for promoters with different strengths. Under our experimental conditions, weak 

promoters with very low rates of transcription initiation might not lead to the formation 

of an active transcriptional ensemble including a transcribing RNA polymerase, a newly 

transcribed RNA, the associated ribosomes, and a newly generated polypeptide for most 

plasmids, which are not capable of generating sufficient friction force on E. coli RNA 

polymerase to produce the “twin-supercoiled-domains” on plasmids. In this case, TCDS 

is negligible. For example, recent studies showed that a synthetic weak promoter Plar, a 

derivative of Plac, only produced 4 RNAs on average in 1 h in E. coli cells after maximum 
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induction (Golding et al., 2005; Kandhavelu et al., 2011). For most times, there was no 

transcription initiation from Plar promoter (Kandhavelu et al., 2011). Since DNA gyrase is 

also limited in E. coli cells (Taniguchi et al., 2010), the chance for weak promoters to 

drive the plasmid DNA templates to hypernegatively supercoiled status is low. Promoters 

with moderate strength, such as the Ptet promoter (Stuber and Bujard, 1981), may be able 

to generate one or two transcriptional ensembles per plasmid. Because the transcription 

elongation rate of E. coli RNA polymerase is relatively low (Golding and Cox, 2004; 

Uptain et al., 1997), it is possible that transcription alone may not be able to generate 

enough friction torque to fully prevent E. coli RNA polymerase from rotating against the 

DNA double helix and therefore cannot induce the formation of significant amounts of 

localized supercoiled domains. In this case, in order to generate “twin-supercoiled-

domains,” the transcriptional ensemble has to anchor to the bacterial cytoplasmic 

membrane through co-transcriptional synthesis of polypeptide encoding membrane 

proteins to maximize friction resistance. This interpretation explains why TCDS for 

plasmid pBR322 and its derivatives carrying the Ptet promoter depends on the expression 

of a membrane-insertion tetracycline resistance protein in E. coli topA strains (Cook et al., 

1992; Lodge et al., 1989; Lynch and Wang, 1993; Ma et al., 1994; Pruss, 1985; Pruss and 

Drlica, 1986; Stupina and Wang, 2005). For strong promoters, such as PT7A1/O4 and Ptac, E. 

coli RNA polymerase is able to rapidly initiate transcription from them (Brunner and 

Bujard, 1987; Lanzer and Bujard, 1988). Therefore, each plasmid may have multiple 

RNA polymerases (more than two RNA polymerases) simultaneously transcribing along 

the DNA template. It is possible that the friction force against multiple transcribing RNA 

polymerases is significantly increased and sufficient to cause the formation of the “twin-
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supercoiled-domains.” In this scenario, transcription-coupled hypernegative supercoiling 

of plasmid DNA did not need the expression of a membrane-insertion protein. Regardless, 

our results showed that co-transcriptional synthesis of a polypeptide is still required for 

the formation of hypernegative supercoiling of plasmid DNA in E. coli topA strains 

(Figure 2.5). There are two possibilities for this requirement. The first possibility is that 

co-transcriptional synthesis of a polypeptide significantly increases the size of a 

transcriptional ensemble (including a transcribing RNA polymerase, the newly 

synthesized RNA transcript, the associated ribosomes, and the newly synthesized 

polypeptides) and therefore increases the friction torque against the transcription 

ensemble, which prevents or retards the transcribing RNA polymerase from rotating 

around the DNA double helix and helps generate the “twin-supercoiled-domains.” If this 

explanation is correct, anchoring of plasmid DNA to bacterial cytoplasmic membrane 

should increase the efficiency of TCDS. Indeed, our results showed that the efficiency of 

TCDS is higher for plasmids expressing tetracycline resistance protein than that for 

plasmids expressing GFPuv protein although the sizes of both proteins are similar 

(compare Figure 2.3D and 2.4D). The second possibility is that ribosomes protect mRNA 

from degradation by ribonucleases. Because the length of RNA transcripts, which should 

be proportional to the friction force applied to E. coli RNA polymerase, plays a critical 

role in the production of the “twin-supercoiled-domains” (Leng et al., 2004; Liu and 

Wang, 1987; Samul and Leng, 2007), co-transcriptional synthesis of a polypeptide should 

greatly stabilize the mRNA (Deana and Belasco, 2005; Pedersen et al., 2011) and 

therefore increase the efficiency of TCDS in E. coli cells. Our results demonstrating that 

transcription-coupled hypernegative supercoiling of DNA is correlated with the stability 
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of mRNA produced by these plasmids after IPTG induction strongly support this 

explanation (Figure 2.6). Additionally, the facts that transcription alone added a few 

supercoils to plasmids pZXD60A, 61, and 63A also support this interpretation (Figure 

2.5D, E, and F). Nevertheless, these two possibilities are not mutually exclusive and may 

contribute together to TCDS in vivo. 

RNA polymerases are powerful motor proteins (Bai et al., 2006; Seidel and 

Dekker, 2007; Wang et al., 1998) which are able to rapidly move along chromosomes 

and remodel chromosome structures through TCDS (Albert et al., 1996; Cook et al., 1992; 

Dunaway and Ostrander, 1993; Leng and McMacken, 2002; Lodge et al., 1989; Lynch 

and Wang, 1993; Ma et al., 1994; Stupina and Wang, 2004; Tsao et al., 1989; Wu et al., 

1988). The chromosomal remodeling by RNA polymerase in E. coli cells is directly link 

to the activation of transcription and DNA replication. For example, in the ilvYC operon 

of E. coli, the ilvY promoter is divergently coupled to the ilvC promoter (Rhee et al., 

1999). Results from Hatfield Laboratory clearly demonstrated that the transcriptional 

activities of the ilvY and ilvC promoters are dependent on the localized superhelical 

density around the promoter region and can be activated by each other (Opel and Hatfield, 

2001; Rhee et al., 1999). Another well-characterized example is the activation of the 

Salmonella typhimurium leu-500 promoter by divergently-coupled transcription. Results 

from Wu's and Lilley's Laboratories showed that transcription-driven localized 

supercoiling rather than the global superhelical density is responsible for activation of the 

leu-500 promoter (Chen et al., 1992; Tan et al., 1994). An additional example 

demonstrating the biological functions of TCDS stems from the studies of bacteriophage 

λ DNA replication initiation. Previous studied showed that bacteriophage λ DNA 
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replication initiation is dependent on transcription in a nearby promoter in vivo (Hase et 

al., 1989). Our recent results showed that TCDS is responsible for the activation of λ 

DNA replication (Leng et al., 2011). Specifically, the O-some assembled from the DNA 

replication initiator O protein binding to the DNA replication origin functions as a DNA 

topological barrier blocks, confines, and captures TCDS. In this scenario, λ DNA 

replication origin is unwound and DNA replication is initiated. All these examples 

demonstrated that TCDS plays a critical role in certain biological events. 
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Table 2.1. DNA oligonucleotides used for primers of the RT-PCR experiments 

Oligoa Sequence (5’-3’) Location in the gene Gene PCR products 

FL594F ATTATGGCCCACACCAGTGGCGC 2917-2939 LacZ 173bp, distalb 
FL594R TGACGGGCTCCAGGAGTCGTC 3069-3089 LacZ 173bp, distalb 
FL654F CACCGATCGCCCTTCCCAACAGTTG 212-236 LacZ 172bp, proximalc 
FL654R GTAGATGGGCGCATCGTAACCG 362-383 LacZ 172bp, proximalc 
FL580F GCGAGGCTGGATGGCCTTCC 990-1009 tet 176bp, distalb 
FL580R CCGTGACGATCAGCGGTCCAG 1145-1165 tet 176bp, distalb 
FL657F GGCCTCTTGCGGGATATCGTCCATTCC 184-210 tet 168bp, proximalc 
FL657R GATAGTGGCTCCAAGTAGCGAAGCG 327-351 tet 168bp, proximalc 
FL590F TCCAATTGGCGATGGCCCTGT 660-680 GFPuv 101bp 
FL590R GGACCATGTGGTCACGCTTTTCGT 737-760 GFPuv 101bp 
FL586F AGTTATCCCCCTCCATCAGG 154-135 16S rRNA 99bp 
FL586R TGCAAGTCGAACGGTAACAG 56-75 16S rRNA 99bp 

aFLXXXF and FLXXXR represent the forward and reverse primers of the PCR reactions, respectively. bDistal indicates the PCR 
products that locate in the distal region of the gene. cProximal indicates the PCR products locating in the proximal region of the 
gene.
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Table 2.2. Plasmids constructed in this study 

Plasmid  E. coli Promoter Gene under control of the 
cloned promoter 

pZXD44 T7A1/O4 teta 
pZXD50 tac teta 
pZXD49 lacUV5 teta 
pZXD47 lac teta 
pZXD48 lacL8 teta 
pZXD57 T7A1/O4 GFPuvb 
pZXD58 tac GFPuvb 
pZXD56 lacUV5 GFPuvb 
pZXD55 lac GFPuvb 
pZXD54 lacL8 GFPuvb 
pZXD59 T7A1/O4 Reverse GFPuvb 
pZXD60 T7A1/O4 lacZc 
pZXD60A T7A1/O4 N/Ad 
pZXD61 T7A1/O4 Reverse lacZc 
pZXD62 T7A1/O4 GFPuvb 
pZXD63 T7A1/O4 teta 
pZXD63A T7A1/O4 N/Ad 

Plasmid pZXD60A and 63A have an amber mutation in the start codon of lacZ and tet, 
respectively. aThe tetracycline resistance gene of pBR322 (tet) encodes a 41 kD 
transmembrane protein TetA. bThe green fluorescence protein UV (GFPuv) gene encodes 
a cytosolic protein GFPuv. cThe lacZ gene encodes a cytosolic protein β-D-galactosidase. 
dN/A represents not applicable.  
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Figure 2.1 A two-plasmid system to study TCDS in vivo. This system contains two 
plasmids, a linear plasmid (A), i.e., pZXD51 and a circular, supercoiling-reporter plasmid 
(B), such as pZXD44. The linear plasmid is derived from linear coliphage N15-based 
plasmid pG591 and carries a laci gene under the control of the strong PlacI

q promoter. E. 
coli cells containing pZXD51 over-express lac repressor (LacI) constitutively, which 
binds to the lac O1 operator (the open circle) on the supercoiling-reporter plasmids. The 
supercoiling-reporter plasmids were derived from plasmid pBR322 and constructed as 
detailed under Material and methods. They harbor an IPTG-inducible promoter with 
different strengths and a transcription unit between the promoter and a set of 4 Rho-
independent E. coli rrnB T1 terminators (winged triangles). (C) The DNA sequence of 
five different E. coli promoters PT7A1/O4, Ptac, PlacUV5, Plac, and PlacL8. The underlines 
represent the lac O1 operators. 
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Figure 2.2 RT-PCR analysis of cDNA products of mRNA transcribed from different 
supercoiling-reporter plasmids pZXD44, 50, 49, 47, and 48 in E. coli topA strain VS111 
harboring the linear plasmid pZXD51 after 10 min of IPTG induction (1 mM). (A) RT-
PCR experiments were performed as described under Materials and Methods. The lower 
panel is a 1.2% agarose gel containing 1% formaldehyde to show the integrity of the 
RNA samples used for the RT-PCR experiments. The upper panel is a 12% 
polyacrylamide gel in 1×TAE buffer to show the PCR products of 16S rRNA and tet 
gene cDNA synthesized from the RNA samples isolated from E. coli strain VS111 
carrying supercoiling-reporter plasmids pZXD44, 50, 49, 47, and 48 after 10 min of 
IPTG induction (lanes 1-5 respectively). Labels: PR, promoter; T7A1, the T7A1/O4 
promoter; tac, the tac promoter; lacUV5, the lacUV5 promoter; lac, the lac promoter; 
lacL8, the lacL8 promoter. (B) Real-time RT-PCR analyses of the tet gene mRNA for E. 
coli strain VS111 carrying different supercoiling-reporter plasmids pZXD44, 50, 49, 47, 
and 48 after 10 min of IPTG induction (mean±SD, three independent experiments). The 
relative level of RT-PCR products is proportional to the promoter strength. Promoter 
strength in Pbla units was obtained from Lanzer and Bujard (1988). 
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Figure 2.3 TCDS in E. coli strain VS111 is dependent on promoter strength. The in vivo 
T-S assays were performed as described under Materials and Methods. DNA topoisomers 
were resolved by electrophoresis in a 1% agarose gel containing 2.5 µg/ml chloroquine 
and stained with ethidium bromide. The fastest moving band in the gels where DNA 
topoisomers are no longer resolvable under our experimental conditions represents the 
hypernegatively supercoiled DNA. (A) Dependence of TCDS on IPTG concentration for 
plasmid pZXD44 carrying a tet gene under the control of the strong PT7A1/O4 promoter. 
Lane 1 contained the DNA sample isolated from E. coli cells prior to IPTG induction. 
Lanes 2–5 contained the DNA samples isolated from E. coli cells after 10 min of 
induction with 25, 50, 100, and 1000 µM IPTG, respectively. (B) Time course of the 
hypernegative supercoiling of plasmid pZXD44 in E. coli strain VS111 after 1 mM of 
IPTG induction. Lanes 1-4 contained, respectively, DNA samples isolated from VS111 
after 0, 5, 10, and 15 min of IPTG induction. (C) Dependence of TCDS on promoter 
strength. Lanes 1-5 contained, respectively, DNA samples isolated from E. coli topA 
strain VS111 containing plasmids pZXD44, 50, 49, 47, and 48 after 5 min of IPTG (1 
mM) induction. These plasmids carry a tet gene under the control of IPTG-inducible 
promoters with different strengths, i.e., promoters PT7A1/O4, Ptac, PlacUV5, Plac, and PlacL8. 
Labels: PR, promoter; T7A1, the T7A1/O4 promoter; tac, the tac promoter; lacUV5, the 
lacUV5 promoter; lac, the lac promoter; lacL8, the lacL8 promoter. (D) The percentage 
of hypernegatively supercoiled DNA is proportional to promoter strength (the values are 
the average of at least three independent determinations and the standard deviations are 
shown). These results were calculated as described under Material and methods using the 
TCDS data shown in (C). Promoter strength in Pbla units was obtained from Lanzer and 
Bujard (1988). 
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Figure 2.4  For strong promoters, TCDS in E. coli topA strain VS111 did not require the 
expression of a membrane insertion protein. The in vivo T-S assays for plasmids carrying 
a GFPUV gene under the control of IPTG-inducible promoters with different strengths 
were performed as described under Materials and Methods. DNA topoisomers were 
resolved by electrophoresis in a 1% agarose gel containing 2.5 µg/ml chloroquine and 
stained with ethidium bromide. (A) and (C) The time course of the hypernegative 
supercoiling of plasmid pZXD57 carrying a GFPUV gene under the control of the strong 
PT7A1/O4 promoter in E. coli strain VS111 after 1 mM of IPTG induction. Lanes 1-4 
contained, respectively, DNA samples isolated from VS111 after 0, 5, 10, and 15 min of 
IPTG induction. (B) and (D) Dependence of TCDS on promoter strength. Lanes 1-5 
contained, respectively, DNA samples isolated from E. coli topA strain VS111 containing 
plasmids pZXD57, 58, 56, 55, and 54, that carry a cytosolic GFPuv gene under the 
control of IPTG-inducible promoters with different strengths, i.e., promoters PT7A1/O4, Ptac, 
PlacUV5, Plac, and PlacL8 after 5 min of IPTG (1 mM) induction. Labels: PR, promoter; 
T7A1, the T7A1/O4 promoter; tac, the tac promoter; lacUV5, the lacUV5 promoter; lac, 
the lac promoter; lacL8, the lacL8 promoter. (C) The percentage of hypernegatively 
supercoiled DNA for pZXD57 is a function of IPTG induction time. These results were 
calculated as described under Material and methods using the TCDS data shown in (A). 
(D) The percentage of hypernegatively supercoiled DNA is proportional to promoter 
strength (the values are the average of at least three independent determinations and the 
standard deviations are shown). These results were calculated as described under Material 
and methods using the TCDS data shown in (B). The promoter strength in Pbla units was 
obtained from Lanzer and Bujard (1988). 
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Figure 2.5 TCDS in E. coli topA strain VS111 for different plasmid DNA templates with 
identical size carrying a strong, IPTG-inducible PT7A1/O4 promoter. The in vivo T-S assays 
were performed as described under Materials and Methods. Transcription was induced 
with 1 mM of IPTG. Lane 1 contained the DNA sample before IPTG induction. Lanes 2–
4 contained the plasmid DNA samples after 5, 10, and 15 min of IPTG induction, 
respectively. DNA topoisomers were resolved by electrophoresis in a 1% agarose gel 
containing 2.5 µg/ml chloroquine and stained with ethidium bromide. Plasmids pZXD60 
(A), 62 (B), and 63 (C) carry a lacZ, GFPuv, and tet gene under the control of the strong 
PT7A1/O4 promoter, respectively. (D) Plasmid pZXD60A is identical with pZXD60 except 
the start codon (ATG) of lacZ was mutated to the stop codon TAG (amber mutation). (E) 
Plasmid pZXD61 contains a lacZ gene in the reverse orientation, which cannot direct the 
expression of β-galactosidase. (F) Plasmid pZXD63A is similar to pZXD63 except the 
start codon of the tet gene was mutated to the stop codon TAG (amber mutation). 
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Figure 2.6 RT-PCR analyses of cDNA products of mRNA transcribed from different 
supercoiling-reporter plasmids pZXD60, 60A, 61, 62, 63 and 63A in E. coli topA strain 
VS111 harboring the linear plasmid pZXD51 after 10 min of IPTG induction. (A) RT-
PCR experiments were performed as described under Materials and Methods. The lower 
panel is a 1.2% agarose gel containing 1% formaldehyde to show the integrity of the 
RNA samples used for the RT-PCR experiments. The middle panel is a 12% 
polyacrylamide gel in 1×TAE buffer to show the PCR products of the cDNA synthesized 
from 16S rRNA samples isolated from E. coli strain VS111 carrying different 
supercoiling-reporter plasmids pZXD60, 60A, 62, 63, 63A, 57, and 59 after 10 min of 
IPTG induction. The upper panel is also a 12% polyacrylamide gel in 1×TAE buffer to 
show the PCR products of the cDNA samples synthesized from the mRNA samples 
isolated from E. coli strain VS111 carrying different supercoiling-reporter plasmids 
pZXD60 (lanes 1 and 4), 60A (lane 5), 62 (lane 2), 63 (lanes 3 and 6), 63A (lane 7), 57 
(lane 8), and 59 (lane 9) after 10 min of IPTG induction. (B) Real-time RT-PCR analyses 
of the mRNA samples for E. coli strain VS111 carrying different supercoiling-reporter 
plasmids pZXD60, 60A, 61, 62, 63, 63A, and 59 after 10 min of IPTG induction 
(mean±SD, three independent experiments). Labels: lacZ, the lacZ gene; lacZA, the lacZ 
gene with an amber mutation in the start codon; lacZR, the lacZ gene in the reverse 
orientation; GFPuv, the GFPuv gene; GFPuvR, the GFPuv gene in the reverse orientation; 
tet, the tet gene; tetA, the tet gene with an amber mutation in the start codon. 
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Figure 2.7 The tetracycline sensitivity assays. E. coli topA strain VS111/pZXD51 
containing different plasmid DNA templates was grown at 37 ºC overnight on LB agar 
plates containing 10 µg/ml of tetracycline in the absence (A) or presence (B) of 1 mM of 
IPTG. These agar plates also contained 50 µg/ml of kanamycin and ampicillin. Sections 
I-V contained VS111/pZXD51 carrying plasmids pZXD44, pZXD50, 49, 47, and 48, 
respectively. (C) and (D) are cell growth curves of E. coli strains MG1655/pZXD51 and 
VS111/pZXD51 carrying different plasmids in the absence of tetracycline, monitored at 
OD600. 1 mM of IPTG was added to the cell cultures when OD600 reached ~0.5. The 
red lines and squares represent cell growth curves for E. coli strains carrying plasmid 
pZXD44 that harbors a tet gene under the control of the strong PT7A1/O4 promoter. Other 
symbols represent cell growth curves for E. coli strains carrying plasmids pZXD50 (open 
triangles), 49 (solid triangles), 47 (solid circles), and 48 (open squares). 
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Figure 2.8 TCDS in E. coli topA strains is dependent on promoter strength. The in vivo T-
S assays were performed as described under Materials and Methods. DNA topoisomers 
were resolved by electrophoresis in a 1% agarose gel containing 2.5 µg/ml chloroquine 
and stained with ethidium bromide. (A), (B), (C), and (D) Time courses of the 
hypernegative supercoiling of plasmid pZXD50, 49, 47, and 48 in E. coli strain 
VS111/pZXD51 after 1 mM of IPTG induction, respectively. Lanes 1-4 contained DNA 
samples isolated from VS111/pZXD51 after 0, 5, 10 and 15 min of IPTG induction. (E) 
The percentage of hypernegative supercoiled DNA of plasmid pZXD44 is a function of 
IPTG concentration. These results were calculated as described under Materials and 
Methods using the TCDS data shown Figure 2.3A. (F) The percentage of hypernegatively 
supercoiled DNA for pZXD44 (squares), 50 (circles), and 49 (triangles) is a function of 
IPTG induction time. These results were calculated as described under Materials and 
Methods using the TCDS data shown in (A) and (B) and Figure 2.3B. (G) Dependence of 
TCDS on promoter strength. Lanes 1-5 contained, respectively, DNA samples isolated 
from E. coli topA strain DM800/pZXD51 containing plasmids pZXD44, 50, 49, 47, and 
48 after 5 min of IPTG (1 mM) induction. These plasmids carry a tet gene under the 
control of IPTG-inducible promoters with different strengths, i.e., promoters PT7A1/O4, Ptac, 
PlacUV5, Plac, and PlacL8. Labels: PR, promoter; T7A1, the T7A1/O4 promoter; tac, the tac 
promoter; lacUV5, the lacUV5 promoter; lac, the lac promoter; lacL8, the lacL8 
promoter.  
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Figure 2.9 Plasmid maps of pZXD54, 55, 56, 57, 58, and 59. This series of plasmids were 
constructed as described under Materials and Methods. Each plasmid carries a GFPUV 
gene under the control of an IPTG-inducible promoter, i.e., PT7A1/O4, Ptac, PlacUV5, Plac, and 
PlacL8 and a set of four copies of Rho-independent rrnB T1 transcription terminators 
(winged triangles). The arrow on each plasmid indicates the direction of transcription 
from the IPTG-inducible promoter. The red circle indicates the lac O1 operator in the 
promoter. 
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Figure 2.10 The expression level of GFPuv protein after IPTG induction in E. coli topA 
strain VS111/pZXD51 containing different plasmids is correlated with promoter strength. 
(A) RT-PCR experiments were performed as described under Materials and Methods. 
The lower panel is a 1.2% agarose gel containing 1% formaldehyde to show the integrity 
of the RNA samples used for the RT-PCR experiments. The middle panel is a 12% 
polyacrylamide gel in 1×TAE buffer to show the PCR products of the cDNA synthesized 
from 16S rRNA samples isolated from E. coli strain VS111/pZXD51 carrying different 
supercoiling-reporter plasmids. The upper panel is also a 12% polyacrylamide gel in 
1×TAE buffer to show the PCR products of GFPuv gene cDNA synthesized from the 
RNA samples isolated from E. coli strain VS111/pZXD51 carrying different supercoiling-
reporter plasmids pZXD57 (lane 1), 58 (lane 2), 56 (lane 3), 55 (lane 4) and 54 (lane 5) 
after 10 min of IPTG induction. (B) Western blotting experiments were performed as 
described under Experimental Procedures. Lanes 1-5 contained, respectively, protein 
samples isolated from E. coli VS111/pXD51 cells carrying plasmids pZXD57, 58, 56, 55, 
and 54 after 3 hours of 1 mM IPTG induction. (C) E. coli topA strain VS111/pZXD51 
containing different plasmid DNA templates was grown at 37 ºC overnight on LB agar 
plates containing 50 µg/ml of  ampicillin in the presence of 1 mM of IPTG and 
photographed under UV light. Sections I-V contained pZXD57, 58, 56, 55, and 54, 
respectively. Labels: PR, promoter; T7A1, the T7A1/O4 promoter; tac, the tac promoter; 
lacUV5, the lacUV5 promoter; lac, the lac promoter; lacL8, the lacL8 promoter. 



56 
 

      
PvuI

pZXD63
(7,055 bp)

T7A1/O4

PvuI

pZXD62
(7,055 bp)

T7A1/O4
PvuI

pZXD61
(7,055 bp)

T7A1/O4

PvuI

pZXD60
(7,055 bp)

T7A1/O4

PvuI

pZXD60A
(7,055 bp)

T7A1/O4

PvuI

pZXD63A
(7,055 bp)

T7A1/O4

 

Figure 2.11 Plasmid maps of pZXD60, 60A, 61, 62, 63, and 63A. This series of plasmids 
of identical size were constructed as described under Materials and Methods. Each 
plasmid carries a strong, IPTG-inducible PT7A1/O4 promoter and a set of four copies of 
Rho-independent rrnB T1 transcription terminators (winged triangles). The arrow on 
each plasmid indicates the direction of transcription from the PT7A1/O4 promoter. The red 
circle indicates the lac O1 operator in the promoter. 
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Figure 2.12 TCDS in E. coli topA strains VS111/pZXD51 and DM800/pZXD51 for 
different plasmid DNA templates with identical size carrying a strong, IPTG-inducible 
PT7A1/O4 promoter. (A) The percentage of hypernegatively supercoiled DNA for pZXD60 
(squares), 62 (circles), and 63 (triangles) is a function of IPTG induction time. These 
results were calculated as described under Material and methods using the TCDS data 
shown in Figure 2.5A, B, and C. (B) The in vivo T-S assays for E. coli topA strain 
DM800/pZXD51 were performed as described under Material and methods. Transcription 
was induced with 1 mM of IPTG for 10 min. Lanes 1-3 contained the DNA sample for 
plasmids pZXD60, 62, and 63, respectively. DNA topoisomers were resolved by 
electrophoresis in a 1% agarose gel containing 2.5 µg/ml chloroquine and stained with 
ethidium bromide. 
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Figure 2.13 RT-PCR experiments to analyze the cDNA products synthesized from 
mRNA of lacZ and tet genes. (A) PCR primers to detect the proximal products (near the 
start codon of lacZ or tet genes; primer pairs a or c) and the distal products of cDNA 
(near the stop codon of lacZ or tet gene; primer pairs b and d). (B) RT-PCR experiments 
were performed as described under Materials and Methods. The lower panel is a 1.2% 
agarose gel containing 1% formaldehyde to show the integrity of the RNA samples used 
for the RT-PCR experiments. The middle panel is a 12% polyacrylamide gel in 1×TAE 
buffer to show the PCR products of the cDNA synthesized from 16S rRNA samples 
isolated from E. coli strain VS111/pZXD51 carrying different supercoiling-reporter 
plasmids. The upper panel is also a 12% polyacrylamide gel in 1×TAE buffer to show the 
PCR products of lacZ and tet gene cDNA synthesized from the RNA samples isolated 
from E. coli strain VS111/pZXD51 carrying different supercoiling-reporter plasmids 
pZXD60 (lane 1), 60A (lane 2), 63 (lane 3), and 63A (lane 4) after 10 min of IPTG 
induction. Primer pair a was used to detect the proximal products of lacZ (lanes 1 and 2). 
Primer pair c was used detect the proximal products of tet (lanes 3 and 4). Labels: lacZ, 
the lacZ gene; lacZA, the lacZ gene with an amber mutation in the start codon; tet, the tet 
gene; tetA, the tet gene with an amber mutation in the start codon. There is no difference 
for the proximal PCR products between E. coli strains carrying pZXD60 and 60A and 
also between E. coli strains carrying pZXD63 and 63A.                                   
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Chapter 3: Activating the Salmonella typhimurium leu-500 promoter by 

transcription-coupled DNA supercoiling in vivo 

3.1 Abstract 

Transcription is able to modulate localized DNA topology both in vitro and in 

vivo. This phenomenon has been nicely explained by a “twin-supercoiled-domain” model 

of transcription in which a transcribing RNA polymerase is able to induce the formation 

of a transient positive supercoiled domain ahead of the RNA polymerase and a negatively 

supercoiled domain behind it. Transcription-induced localized, topological change of 

chromosome is expected to remodel chromosomal structure and greatly influence DNA 

transactions, such as transcription, DNA replication, and recombination. In this chapter, 

we developed an in vivo system to study TCDS and its effects on the supercoiling-

sensitive leu-500 promoter. This system consists of an E. coli topA strain VS111(DE3) 

and a linear plasmid DNA template in which the leu-500 promoter is divergently coupled 

to the T7 promoter. Additionally, a luciferase gene is under the control of the leu-500 

promoter. Using the highly sensitive luciferase assay and RT-PCR experiment, we 

demonstrated that transient TCDS was able to activate the leu-500 promoter. Our results 

are consistent with the hypothesis in which transcription is a major chromosomal 

remodeling force in E. coli cells. 

3.2 Introduction 

It has been well known that transcription and DNA topology are mutually linked 

(Fisher, 1984; Pruss and Drlica, 1989; Wang and Lynch, 1993). Effects of transcription 

on DNA topology have been studied for many years. In 1983, Lockshon and Morris 
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found plasmid pBR322 isolated from E. coli cells becomes positively supercoiled after 

exposure to DNA gyrase inhibitors (Lockshon and Morris, 1983). In a later study by 

Pruss (Pruss, 1985), it was demonstrated that pBR322 isolated from E. coli or S. 

typhimurium topA mutants lacking DNA topoisomerase I is hypernegatively supercoiled. 

Based on these studies, In 1987, Liu and Wang proposed the “twin-supercoiled-domain” 

model, to explain TCDS (Liu and Wang, 1987). They hypothesized that as the size of the 

RNA transcript increases, it will be more difficult for the transcribing complex to rotate 

around the DNA double helix. Therefore, at a critical point, it is more practical for the 

DNA to rotate around its own helical axis to produce a transient positively supercoiled 

domain ahead of the RNA polymerase and a transient negatively supercoiled domain 

behind it. In bacteria, DNA gyrase functions to convert a part of the transient positive 

supercoils to “permanent” negative supercoils, whereas DNA topoisomerase I and IV 

function to relax a fraction of the transient negative supercoils (Adachi et al., 1989). 

DNA topology was able to affect the transcriptional efficiency of certain genes. 

Although both negative and positive supercoiling have been reported to inhibit 

transcription of some genes (Brahms et al., 1985; Wang, 1992; Gralla, 1996), it appears 

that negative supercoiling usually stimulates transcription. The best example came from 

the study of the prokaryotic leu-500 promoter in S. typhimurium and E. coli, which is 

normally inactive, but it can be activated by negative supercoiling of DNA templates 

(Lilley and Higgins, 1991; Tan et al., 1994). The leu-500 mutation is a single A-to-G 

point mutation in the -10 region of the promoter controlling the leu operon which results 

in leucine auxotrophy (Mukai and Margolin, 1963; Dubnau and Margolin, 1972). The AT 
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to GC mutation is expected to increase the energy barrier for the formation of a 

functional transcription open complex. This phenotype can be suppressed by a mutation 

in the topoisomerase I gene which results in a loss of topoisomerase I’s activities 

(Trucksis et al., 1981). Intriguingly, Lilley and Higgins demonstrated that the activation 

of the leu-500 promoter was only dependent on the topA background but did not correlate 

with the level of global supercoiling, as measured for extracted plasmid DNA (Lilley and 

Higgins, 1991). When the leu-500 promoter alone was cloned into a plasmid, it could no 

longer be activated in the topA strains (Lilley and Higgins, 1991; Chen et al., 1992). 

These results suggested that an “unknown” regulating element is responsible for the 

activation of the leu-500 promoter. Results from Dr. Wu’s group and Dr. Lilley’s group 

showed that transcription-driven localized supercoiling rather than the global superhelical 

density is responsible for activation of the leu-500 promoter (Chen et al., 1992; Tan et al., 

1994), suggesting that the “unknown” regulating element is TCDS. More recently, on the 

basis of a series of careful analyses, Wu and co-workers have proposed a promoter relay 

mechanism to explain the expression of genes in the ilvIH-leuO-leuABCD gene cluster 

which is coordinated in a sequential manner (Fang and Wu, 1998; Fang and Wu, 1998). 

The key component in this model is TCDS, which causes transient localized structural 

changes on DNA templates.  

While it is clear that TCDS plays an essential role in the activation of the leu-500 

promoter, a detailed mechanism explaining how TCDS regulates gene expression is still 

elusive. Many studies showed that transcription has significant effects on DNA topology 

(Dröge, 1994). For example, transcription can induce DNA supercoiling in the presence 



67 
 

of E. coli DNA topoisomerase I or gyrase. Models such as the “twin-supercoiled-domain” 

model of transcription have been proposed (Liu and Wang, 1987), but they cannot 

completely explain all experimental results (Drolet et al., 1994; Chen and Lilley, 1999). 

In addition, many aspects of transcription-coupled DNA supercoiling have yet to be 

explored. A well-controlled system is definitely required for further studies. In addition, 

many DNA transactions such as the initiation of DNA replication, recombination, and 

transcription are coupled to transcription. In many cases, the transient topological 

changes of DNA templates induced by transcription are responsible for the initiation of 

these DNA transactions (Dröge, 1994). Thus, a study of transcription-coupled DNA 

supercoiling and its activation of gene expression in vivo are of biological significance 

and fundamental interest. In this chapter, we established an in vivo system to study 

transient TCDS and its effects on the supercoiling-sensitive leu-500 promoter. Our results 

showed that transient TCDS was indeed able to activate the leu-500 promoter in E. coli 

cells. 

3.3 Methods 

3.3.1 Materials 

Ethidium bromide, Kanamycin, lysozyme and chloroquine were purchased from 

Sigma-Aldrich Corporation (St. Louis, MO). Ampicillin and bovine serum albumin (BSA) 

were obtained from Fisher Scientific (Fairlawn, NJ). Isopropyl-β-D-

thiogalactopyranoside (IPTG) was obtained from Anatrace, Inc (Maumee, Ohio). All 

restriction enzymes, T4 DNA ligase, and T4 polynucleotide kinase were bought from 

New England Biolabs (Beverly, MA). Pfu DNA polymerase was purchased from 
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Stratagene, Inc. (La Jolla, CA). All synthetic oligonucleotides used as primers were 

obtained from MWG-Biotech, Inc. (Huntsville, AL). QIAprep Spin Miniprep Kit, 

QIAquick Gel Extraction Kit, RNeasy Mini Kit, and QIAquick Nucleotide Removal Kit 

were bought from QIAGEN, Inc. (Valencia, CA). ThermoScript RT-PCR System plus 

Platinum® Taq DNA polymerase was purchased from Invitrogen, Inc. (Carlsbad, CA). 

Power SYBR Green PCR Master Mix was obtained from Applied Biosystems, Inc. 

(Carlsbad, CA). Luciferase Assay System is a product of Promega Corporation (Madison, 

WI). SYBR® Gold Nucleic Acid Gel Stain was purchased from Life Technologies (Grand 

Island, NY). 

3.3.2 Bacterial strains and plasmids 

Escherichia coli strain VS111 [F-, λ−, rph-I, ΔtopA] and MG1655 [F−, λ−, rph-I] 

were obtained from the Coli Genetic Stock Collection/E. coli Genetic Resource Center 

(CGSC) at Yale University. The linear plasmids pZXD4, pZXD51, and circular plasmid 

pZXD14 were described in chapter 2 of this dissertation.   

All circular plasmids constructed in this work were derived from plasmid pBR322. 

Plasmid pZXD64 was constructed by introducing a unique AgeI site into the upstream 

region of the tet gene of pZXD14 using PCR-based, site-directed mutagenesis. Then, the 

tet gene between the unique AgeI and BsmI sites of pZXD64 was replaced by a 3,068 bp 

lacZ gene DNA fragment of plasmid pYC2/CT/lacZ (Life Technologies, Grand Island, 

NY) to generate pZXD65. Next, four Rho-independent E. coli rrnB T1 terminators from 

plasmid pLUC1 were inserted into XbaI site of pGL3 (Promega Corporation, Wisconsin, 

WI) to yield pZXD67. A 2,511 bp HindIII-SpeI DNA fragment of pZXD67 carrying a 
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modified firefly (Photinus pyralis) luciferase gene (the codon usage was optimized for 

mammalian cells) and four Rho-independent E. coli rrnB T1 terminators was inserted 

between the HindIII and SpeI sites of pZXD65 to produce pZXD70. Plasmid pZXD74 

was created by silently removing the EcoRI site in the downstream region of lacZ gene of 

plasmid pZXD70 without changing the open reading frame of lacZ gene using PCR-

based, site-directed mutagenesis. Plasmid pZXD76 was generated after a XbaI site was 

inserted into the downstream region of the luciferase gene of plasmid pZXD74. Then, a 

1,688 bp DNA fragment of pZE15luc carrying a firefly (Photinus pyralis) luciferase gene 

(the codon usage was optimized for bacterial cells) was inserted into the HindIII and 

XbaI sites of pZXD76 to yield pZXD77.  

In this study, a few plasmids that differ in the distance and DNA composition 

between the T7 and leu-500 promoters were constructed. pZXD97 was created by 

inserting a 72 bp synthetic deoxyoligonucleotide containing the leu-500 promoter and a 

unique BamHI site into the HindIII and EcoRI sites of pZXD77. pZXD99 was produced 

by inserting a 53 bp synthetic deoxyoligonucleotide into the BamHI and EcoRI sites of 

pZXD97. pZXD94 was constructed in two steps. First, a 72 bp synthetic 

deoxyoligonucleotide containing the leu-500 promoter and a unique AvrII site was 

inserted into the HindIII and EcoRI sites of pZXD77 to create pZXD92. Second, a 720 bp 

DNA fragment of pZXD57 (pZXD57 was described in chapter 2) carrying part of GFPuv 

gene was inserted into AvrII and EcoRI sites of pZXD92 to yield pZXD94. pZXD93 was 

created by inserting a 47 bp synthetic deoxyoligonucleotide into the AvrII and EcoRI 

sites of pZXD92. pZXD100 was produced by inserting a 31 bp synthetic 

deoxyoligonucleotide into the BamHI and EcoRI sites of pZXD97.  pZXD102, pZXD104 
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were created by inserting one or two copies of 52 bp synthetic deoxyoligonucleotide into 

the unique BamHI site of pZXD99, respectively. The distance between the T7 and the 

leu-500 promoters for different plasmids are listed in Table 3.2. 

Plasmids pZXD82, 83, 84, 85, and 86 were constructed by replacing the T7 

promoter with E. coli promoters PT7A1/O4, Ptac, PlacUV5, Plac and PlacL8 between the EcoRI 

and XhoI sites of pZXD77, respectively. 

The linear plasmid pZXD80 was constructed by inserting a 6,833bp BglII-SpeI 

(from pZXD77) fragment carrying a T7 promoter and the leu-500 promoter in the 

divergent orientations as described above into the BglII-NheI sites of pZXD4. Similarly, 

the linear plasmid pZXD103 was constructed by inserting a 6,763bp BglII-SpeI (from 

pZXD99) fragment carrying a T7 promoter and the leu-500 promoter in the divergent 

orientation into the BglII-NheI sites of pZXD4. Plasmids pZXD87, 88, 89, 90, and 91 

were constructed by inserting a ~ 6.9 kb BglII-SpeI (from pZXD82, 83, 84, 85, and 86) 

fragment carrying a PT7A1/O4, Ptac, PlacUV5, Plac and PlacL8 promoter and the leu-500 

promoter in the divergent orientations as described above into the BglII-NheI sites of 

pZXD4, respectively. 

3.3.3 Luciferase Assay 

Luciferase Assay was used to verify the expression of luciferase in various E. coli 

strains carrying different plasmid DNA templates. Briefly, E. coli cells carrying different 

plasmids were grown overnight in LB containing 50 µg/ml of ampicillin or Kanamycin. 

The overnight culture was then diluted (1:100) in fresh LB containing 50 µg/ml of 

ampicillin or Kanamycin in the presence of different concentrations of IPTG, and grown 
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until the optical density at 600 nm reached approximately 0.5. Next, 50 µl of cells were 

mixed with 10 µl of 1 M K2HPO4 (pH 7.8) and 20 mM EDTA, quickly frozen in liquid 

nitrogen for 3 min, and equilibrated to room temperature for 30 min to yield about 60 µl 

of cell lysate. Then, the cell lysate was mixed with 300 µl freshly prepared lysis mix 

containing 1 × cell culture lysis reagent (CCLR), 1.25 mg/ml lysozyme, and 2.5 mg/ml 

BSA, and incubated for 10 min at room temperature. Finally, 100 µl of Luciferase Assay 

Reagent (Promega Corporation, Madison, WI) was added to 20 µl of the cell lysate and 

used for light measurement by using a lunometer (Biocounter, Titusville, FL) with an 

integration time of 10 s. 

3.3.4 RNA isolation, cDNA synthesis, and polymerase chain reaction (PCR) 

Total RNA were isolated from E. coli cells using QIAGEN RNeasy Kit as 

described by the manufacturer. To determine the integrity of the total RNA samples, 16S 

and 23S rRNA were resolved by electrophoresis in a 1.2% agarose gel in 1×MOPS buffer 

containing formaldehyde (20 mM MOPS, 8 mM sodium acetate anhydrous and 1 mM 

EDTA, pH 7.0, and 1% formaldehyde). After electrophoresis, agarose gels were stained 

with ethidium bromide, destained, and photographed under UV light. cDNA were 

synthesized from total RNA samples using ThermoScript RT-PCR System. 2.76 µg of 

RNA was mixed with random hexamer primers (50 ng/µl) and four deoxynucleotide 

triphosphates (dNTPs; final concentration: 1 mM). The mixtures were incubated at 65 °C 

for 5 min and transferred on ice for another 5 min to remove secondary structures of 

RNA. The denatured RNA samples were then mixed with 1×cDNA synthesis buffer with 

a total volume of 20 µl containing 5 mM DTT, 40 units of RNaseOut, and 15 units of 
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ThermoScript Reverse Transcriptase, and incubated at 25 °C for 10 min followed by 50 

°C for 50 min to synthesize cDNA. The cDNA synthesis mixtures were transferred to an 

85 °C water bath for 5 min to terminate the reactions. After the synthesis step, the 

reaction mixtures were mixed with 2 units of RNase H and incubated at 37 °C for 20 min 

to remove the RNA templates.  

PCR Reactions were carried out using cDNA samples synthesized as described 

above. A 50 µl PCR reaction contains 1×PCR Buffer without Mg2+, 1 mM MgCl2, 0.2 

mM dNTPs, 0.2 µM of each primer, 0.5 µl cDNA and 2 units of Platinum Taq DNA 

polymerase. The reactions started at 94 °C for 2 min, proceeded 16 cycles (for linear 

plasmids, used 21 cycles instead) of 94 °C for 30 sec, 55 °C for 30 sec and 72 °C for 1 

min, and terminated at 72 °C for 10 min. Subsequently, the PCR products were analyzed 

by electrophoresis in a 12% polyacrylamide gel in 1×TAE buffer. After electrophoresis, 

polyacrylamide gels were stained with ethidium bromide, destained, and photographed 

under UV light. 

3.3.5 Real-time PCR Assays 

Real-time PCR assays were carried out using MiniOpticon Real-time PCR system 

(Bio-rad, Hercules, CA). A 20 µl reaction contains 0.5 µl cDNA, 0.5 µM of each primer 

and 10 µl of Power SYBR Green PCR Master Mix (2X). The reaction started at 95 °C for 

10 min and continued for 40 cycles at 95 °C for 15 s and 60 °C for 1 min. The Cq values 

(quantification cycle values) were calculated from exponential phase of each PCR 

amplification reaction as recommended by the manufacturer. 
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3.3.6 In vivo transcription-supercoiling (T-S) assay 

E. coli cells carrying different plasmids were grown overnight in LB containing 

50 µg/ml of ampicillin. The overnight culture was then diluted (1:100) in fresh LB 

containing 50 µg/ml of ampicillin and different concentrations of IPTG grown until 

optical density of cells at 600 nm reached approximately 0.5. Plasmid DNA was purified 

using QIAGEN Miniprep Kit. The topological state of each DNA preparation was 

analyzed by electrophoresis in a 1% agarose gel in 1×TAE buffer (40 mM Tris-acetate, 1 

mM EDTA, pH 7.8) containing 5 µg/ml of chloroquine. After electrophoresis, agarose 

gels were stained with SYBR Gold and photographed under UV light.  The Net Intensity 

of DNA topoisomers was determined using KODAK 1D Image Analysis Software. The 

percentage of hypernegative DNA supercoils was calculated by dividing the intensity of 

hypernegatively supercoiled DNA band with the total intensity of all DNA topoisomers. 

3.4 Results and Discussion 

3.4.1 Design an in vivo system to examine the activation of the S. typhimurium leu-

500 promoter by transient TCDS 

Previous studies showed that TCDS was able to activate the S. typhimurium leu-

500 promoter (Lilley and Higgins, 1991; Tan et al., 1994; Mojica and Higgins, 1996; 

Chen et al., 1998). Although it was demonstrated that transcription-driven localized 

supercoiling rather than the global superhelical density was responsible for the activation 

of the leu-500 promoter (Mojica and Higgins, 1996), it is not clear whether transient 

TCDS is capable of activating the coupled leu-500 promoter. The main reason for 

causing this vagueness is that previous studies almost solely relied on circular plasmids 
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for determining the topological change of the DNA templates (Tan et al., 1994; Mojica 

and Higgins, 1996; Chen et al., 1998). In this case, it is difficult to judge whether the 

effects come from the transient or permanent supercoiling process. In this study, we 

established an in vivo system, consisting of a circular plasmid or a linear plasmid and E. 

coli topA strain VS111(DE3) or wild type strain MG1655(DE3) to study transcriptional 

activation of the supercoiling sensitive leu-500 promoter by T7 RNA polymerase. Figure 

3.1 shows two plasmids that were constructed for this study. Plasmid pZXD99 is a 

circular plasmid derived from plasmid pBR322 (New England Biolab, Inc., Beverly, 

MA). It carries two divergently-coupled promoters: a unique T7 promoter for 

bacteriophage T7 RNA polymerase and a weak leu-500 promoter for E. coli RNA 

polymerase. The distance between these two promoters is 77 bp (the distance was 

calculated between the -35 region of the leu-500 promoter and the beginning of the T7 

promoter). No other promoter-like sequences were found between these two promoters 

and also around these two promoters. Plasmid pZXD99 also contains a lacZ gene under 

the control of the T7 promoter and a luciferase gene under the control of the weak leu-

500 promoter. In this case, the expression levels initiated from these two promoters can 

be easily monitored (de Wet et al., 1985). Additionally, two sets of four Rho-independent 

rrnB T1 transcription terminators were used to terminate transcription initiated from these 

two promoters efficiently (Leng and McMacken, 2002). The presence of these two sets of 

transcription terminators enabled us to restrict transcription to selected regions of the 

circular plasmid. Plasmid pZXD103 is a linear plasmid derived from coliphage N15-

based, low-copy-number plasmid pZXD4 (N V Ravin and Ravin, 1999). To construct 

pZXD103, the large BglII-SpeI fragment (6,763 bp) including the leu-500 promoter, the 
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T7 promoter, luc, lacZ, and two sets of four Rho-independent rrnB T1 transcription 

terminators was cloned into the multiple cloning site of pZXD4. In this case, 

transcriptional activation of the leu-500 promoter can be examined in a linear plasmid 

background. Because linear DNA templates cannot be supercoiled (N V Ravin and Ravin, 

1999; Deneke et al., 2000; Ravin, 2003), TCDS initiated from the T7 promoter is always 

transient. As mentioned above, we used a few E. coli strains for this study including a 

topA strain VS111(DE3) and a wild-type strain MG1655(DE3) (Table 3.1) in which the 

expression of T7 RNA polymerase is IPTG-inducible and the expression level is 

dependent on the IPTG concentration added to the cell culture (Samul and Leng, 2007). 

Using these two strains, we were able to study the activation of the leu-500 promoter by 

TCDS initiated from the T7 promoter. 

 We also made a few plasmid DNA templates (both circular and linear plasmids) 

to test whether the distance and DNA sequence composition between these two 

promoters are critical for the activation of the leu-500 promoter by TDCS (Table 3.2). 

Additionally, a series of plasmid DNA templates were constructed to examine whether 

TCDS initiated from an E. coli promoter is able to activate the divergently-coupled leu-

500 promoter and whether promoter strength is critical for the activation as well. All 

plasmids constructed in this study are summarized in Table 3.2. 

3.4.2 Transient TCDS is able to activate the supercoiling-sensitive leu-500 promoter 

In order to examine whether TCDS by T7 RNA polymerase is able to activate the 

supercoiling-sensitive leu-500 promoter, plasmid pZXD99 was transformed into E. coli 

topA strain VS111(DE3) and IPTG was added to the cell culture to induce the 
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transcription by T7 RNA polymerase. Since luciferase assays are extremely sensitive, we 

were measuring the firefly luciferase activities to monitor the activation of the leu-500 

promoter. As shown in Figure 3.2, in the absence of IPTG, some luciferase activities 

were measured, indicating that the weak leu-500 promoter was able to direct the initiation 

of transcription of the luciferase gene. Interestingly and also as expected, the addition of 

IPTG to the cell culture greatly stimulated the luciferase activities. At 50 µM of IPTG, 

the luciferase activity increases approximately 10-fold. We also transformed pZXD99 

into a wild type strain MG1655(DE3) and carried out the luciferase assays. IPTG was 

also able to stimulate the luciferase activities in the wild type strain. However, the 

stimulation level was significantly reduced, suggesting that the activation of the leu-500 

promoter is greatly enhanced by a topA background. Additionally, we carried out a 

control experiment in which two compatible plasmids were transformed into VS111(DE3) 

strain. The first plasmid pZXD95 is a circular plasmid and carries a luciferase gene under 

the control of the leu-500 promoter. This plasmid does not contain a T7 promoter. The 

second plasmid is a linear plasmid and carries a T7 promoter controlling the expression 

of lacZ gene. As demonstrated in Figure 3.2, IPTG could not stimulate the luciferase 

activities. These results suggest that transcription by T7 RNA polymerase in the same 

plasmid DNA template is required for the stimulation of the luciferase activities. Since 

the leu-500 promoter is divergently coupled to the T7 promoter, TCDS by T7 RNA 

polymerase is most likely the mechanism for the activation of the supercoiling-sensitive 

leu-500 promoter and the stimulation of luciferase activities. Indeed, our supercoiling 

assays showed that transcription by T7 RNA polymerase significantly supercoiled the 
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transcribed DNA template pZXD99 in the topA strain VS111(DE3) (please see below for 

details). 

Next, we decided to examine whether TCDS by T7 RNA polymerase in a linear 

plasmid DNA template is able to stimulate the luciferase activities under the control of 

the supercoiling-sensitive leu-500 promoter. Since linear plasmids cannot be supercoiled 

(N V Ravin and Ravin, 1999; Deneke et al., 2000; Ravin, 2003), TCDS driven by T7 

RNA polymerase is transient. We transformed the linear plasmid pZXD103 (Figure 3.1) 

into E. coli topA strain VS111(DE3) and performed luciferase assays. In the absence of 

IPTG, we were able to detect a very small amount of luciferase activities, indicating that 

the weak leu-500 promoter was capable of initiating some transcription of the luc gene. 

Nevertheless, the luciferase activities were 20 to 30 fold lower than those in VS111(DE3) 

carrying the circular plasmid pZXD99. There are two reasons for causing the lower 

luciferase activities. The first reason is the copy number difference between E. coli cells 

carrying these two plasmids. Plasmid pZXD99 is derived from pBR322 and each cell 

should contain about 15 to 20 copies of this plasmid. Plasmid pZXD103 is derived from 

the low copy-number, linear plasmid pG591 (N V Ravin and Ravin, 1999) and each cell 

only carries approximately 1 to 3 copies of the plasmid. Indeed, our unpublished results 

showed that VS111(DE3) is able to carry 10 more times of plasmid pZXD99 than plasmid 

pZXD103. In this case, E. coli cells carrying pZXD99 should produce at least 10-fold of 

firefly luciferase as E. coli cells harboring pZXD103. The second reason stems from the 

topology difference between these two plasmids in E. coli cells. Circular plasmids in E. 

coli cells are usually supercoiled with an average superhelical density of ~ -0.06 (Bauer et 

al., 1980; Vologodskii, 1992). Indeed, we determined the supercoiling density of 



78 
 

pZXD99 to be ~-0.06 in VS111(DE3) in the absence of IPTG (please see below for 

details). As mentioned above, linear plasmids cannot be supercoiled in vivo. Because the 

leu-500 promoter is sensitive to DNA supercoiling (Lilley and Higgins, 1991; Tan et al., 

1994), the topology difference should also contribute to the difference of luciferase 

activities in topA strain VS111(DE3) carrying pZXD99 or pZXD103. In the next step, we 

added different concentrations of IPTG to E. coli topA strain VS111(DE3) harboring 

pZXD103 to initiate transcription from the T7 promoter. As expected, IPTG was able to 

significantly stimulate the luciferase activities. At 20 µM of IPTG, the luciferase 

activities almost increased 4-fold (Figure 3.2B). Control experiments showed that the 

stimulation of the luciferase activities was dependent on the transcription of the lacZ gene 

in the same plasmid (Figure 3.2B). Since the leu-500 promoter controlling the 

transcription of the luciferase gene is divergently coupled to the T7 promoter in the linear 

plasmid pZXD103, the transient TCDS generated from the transcription of T7 RNA 

polymerase should be the mechanism for the activation of the luciferase activities. 

Similar results were obtained for the wild type strain MG1655(DE3) carrying plasmid 

pZXD103 (Figure 3.2B). 

In this study, we also carried out RT-PCR experiments to study the stimulation of 

the leu-500 promoter by TCDS generated by T7 RNA polymerase. E. coli strains 

VS111(DE3) and MG1655(DE3) harboring plasmid pZXD99 were used. As shown in 

Figure 3.2C and D, the addition of IPTG into both E. coli cell cultures significantly 

stimulated the transcription of the divergently-coupled leu-500 promoter. These results 

clearly demonstrated that at the transcriptional level, transient TCDS driven by T7 RNA 

polymerase was able to activate the supercoiling-sensitive leu-500 promoter in vivo. 
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3.4.3 The distance and DNA sequence between the divergently-coupled leu-500 

promoter and T7 promoter significantly influence the efficiency of TCDS and the 

activation of the leu-500 promoter 

Previous studies showed that the distance between the two divergently-coupled 

promoters is important for the activation of the leu-500 promoter by TCDS (Brahms et al., 

1985; Chen et al., 1993; Tan et al., 1994; Spirito and Bossi, 1996; Fang and Wu, 1998; 

Ravin and Lane, 1999; Ravin et al., 2000), we, therefore, decided to change the distance 

between the leu-500 promoter and the T7 promoter and examine whether the distance and 

DNA composition between these two promoters affect the efficiency of the activation of 

the leu-500 promoter by TCDS. For this purpose, we constructed two groups of plasmid 

DNA templates. The first group of plasmid DNA templates includes pZXD100, 

pZXD102, and pZXD104 which are derived from pZXD99. Synthetic DNA fragments 

were used to change the distance between the two promoters. In the absence of IPTG, E. 

coli topA strain VS111(DE3) harboring one of these plasmids had similar luciferase 

activities, indicating that the DNA sequence inserting between the two divergently-

coupled promoters did not significantly affect the leu-500 promoter and did not introduce 

new promoter activities near the leu-500 promoter. Similar to E. coli strain VS111(DE3) 

harboring pZXD99, IPTG was also able to significantly activate the luciferase activities 

for VS111(DE3) carrying these three plasmids to a similar level. These results suggest 

that for topA strain VS111(DE3) the distance between the two divergently-coupled 

promoters is not very critical for the activation of the leu-500 promoter by TCDS. The 

second group of plasmid DNA templates contains plasmids pZXD77, pZXD92, pZXD93, 

pZXD94, and pZXD97. First, DNA fragments different from those used in the first group 
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of DNA plasmids were inserted between the two divergently-coupled promoters. 

Additionally, we varied the distance between these two promoters from 36 bp to 750 bp. 

Surprisingly, although we did not find promoter-like sequences in the DNA fragments 

inserted between these two promoters, we saw a significant increase of the luciferase 

activities for E. coli topA strain VS111(DE3) carrying one of these plasmids in the 

absence of IPTG. For instance, the luciferase activity of VS111(DE3) carrying pZXD77 

was measured to be 12,158 RLU, 4 times more than that of VS111(DE3) harboring 

pZXD99. For VS111(DE3) carrying pZXD93, the luciferase activity was even higher and 

was measured to be 68433, 24-fold as that of VS111(DE3) containing pZXD99. Although 

the mechanisms that cause the increase of the luciferase activities have not been 

determined yet, a possible reason is that we accidently introduced promoter-like 

sequences in the region. In this case, the new promoters were able to initiate transcription 

of the luciferase gene. Another possible reason is that the DNA structure was changed 

when we introduced the DNA sequences into the region between the two divergently-

coupled promoters. Furthermore, we may introduce some DNA-binding sequences into 

the region. In this case, certain transcriptional factors bind to the DNA sequence between 

the two promoters and stimulate transcription of the luciferase gene. Nevertheless, our 

results shown in Figure 3.3B demonstrated that IPTG was able to stimulate the luciferase 

activities for E. coli strain VS111(DE3) carrying these plasmid DNA templates, 

suggesting that TCDS by T7 RNA polymerase was capable of activating the leu-500 

promoter in all these circular plasmid templates. 

In this dissertation, we also carried out luciferase assays and RT-PCR experiments 

for E. coli strains VS111(DE3) and MG1655(DE3) carrying circular plasmid pZXD77 or 
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linear plasmid pZXD80. Our results are shown in Figure 3.4. Similar to the results for E. 

coli strains harboring pZXD99 or pZXD103, IPTG was able to stimulate the luciferase 

activities at protein and RNA levels in the topA strain VS111(DE3) and the wild type 

strain MG1655(DE3). These results suggest that transient TCDS by T7 RNA polymerase 

is capable of activating the leu-500 promoter. Interestingly, the activation is dependent on 

IPTG concentration. The luciferase activities reached the highest point when the IPTG 

concentration was 20 µM in the cell culture for E. coli cells containing the circular 

plasmid pZXD77 and 10 µM for E. coli cells harboring the linear plasmid pZXD80. 

Higher concentrations of IPTG result in less luciferase activities. For wild type E. coli 

strain MG1655(DE3), 100 µM of IPTG inhibited the luciferase activities. These results 

suggest that too much supercoiling may inhibit the leu-500 promoter’s activities. 

Regardless, further studies are required to rule out other possibilities. 

3.4.4 The activation of the leu-500 promoter is dependent on the promoter strength 

of E. coli RNA polymerase 

So far, we only demonstrated that transient TCDS by T7 RNA polymerase was 

able to activate the divergently-coupled leu-500 promoter. One question that arises from 

this study is whether transient TCDS by E. coli RNA polymerase is capable of activating 

the coupled leu-500 promoter and whether promoter strength affects the activation. In 

order to answer this question, we constructed two sets of plasmid DNA templates: five 

circular and five linear plasmids that carry different strengths of IPTG-inducible E. coli 

promoters, i.e., PT7A1/O4, Ptac, PlacUV5, Plac, and PlacL8 (Lanzer and Bujard, 1988); Figure 3.5; 

Table 3.2). we then transformed these two unique sets of DNA templates into E. coli 
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strains (topA and wild type) overexpressing LacI (Table 3.1) and tested the IPTG-

inducible stimulation of luciferase activities. Our results are shown in Figure 3.6. As 

expected, IPTG was able to stimulate the luciferase activities for E. coli strains (both 

topA and wild type) carrying these circular and linear plasmids, suggesting that transient 

TCDS by E. coli RNA polymerase was also able to activate the leu-500 promoter. 

Interestingly and also as expected, the stimulation of luciferase activities is dependent on 

promoter strength. For example, 50 µM of IPTG (1mM of IPTG for E. coli topA strain 

VS111 harboring linear plasmids pZXD87, 88, 89, 90 and 91) was able to stimulate the 

luciferase activities for plasmids containing PT7A1/O4, Ptac, and PlacUV5 and however, could 

not stimulate luciferase activities for plasmid carrying Plac and PlacL8; the stimulation level 

is correlated with the promoter strength for both circular and linear plasmids (Figure 3.6C 

and D). Since our results discussed in chapter 2 demonstrated that TCDS in topA strains 

is dependent on promoter strength, we concluded here that transient TCDS by E. coli 

RNA polymerase was able to greatly influence the nearby promoters’ activities in E. coli 

cells. 

3.4.5 Transcription-coupled hypernegative supercoiling of plasmid is correlated 

with the activation of the leu-500 promoter in the circular plasmid DNA templates 

In this dissertation, we also examined the supercoiling status of the circular 

plasmid pZXD77 in E. coli topA strain VS111(DE3). In the absence of IPTG, plasmid 

pZXD77 (Table 3.2) isolated from E. coli topA strain VS111(DE3) has a supercoiling 

density of ~-0.06. Adding IPTG to the cell culture to induce the production of T7 RNA 

polymerase significantly increased the supercoiling density of plasmid pZXD77 and 
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resulted in the generation of hypernegatively supercoiled DNA (Figure 3.7). Consistent 

with previously published results by our group (Samul and Leng, 2007), the production 

of hypernegatively supercoiled DNA was dependent on the IPTG concentration and 

correlated with the activation of the leu-500 promoter in different E. coli strains. These 

results clearly suggest that TCDS induced by RNA polymerases is the mechanism 

responsible for the activation of the leu-500 promoter.  

3.5 Conclusions 

In this chapter, we successfully established an in vivo system to study transient 

TCDS and the activation of the supercoiling-sensitive leu-500 promoter. This system 

consists of an E. coli topA strain VS111(DE3) and a linear plasmid derived from linear 

coliphage N15. Because linear plasmid DNA templates cannot be supercoiled, TCDS 

initiated  from T7 promoter by T7 RNA polymerase is transient. Using this unique 

system and the highly sensitive luciferase assays, we discovered that transient TCDS by 

both T7 and E. coli RNA polymerases was able to stimulate the supercoiling-sensitive 

leu-500 promoter. These results suggest that transcription in E. coli cells is a major 

chromosomal remodeling force.  
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Table 3.1.  Escherichia coli strains used in this study 

Strain Genotype Source 
VS111 
VS111(DE3) 

F- λ− ilvG- rfb-50 rph-I ΔtopA 
VS111strains with λ(DE3) 

E. coli Genetic Resource Center 
E. coli Genetic Resource Center 

VS111/pZXD51 

 
VS111/pZS4Int-laci 
 
MG1655 
MG1655(DE3) 
MG1655/pZXD51 
 
MG1655/pZS4Int-laci 

VS111strain containing plasmid 
pZXD51  
VS111strain containing plasmid 
pZS4Int-laci  
F−, λ− ilvG- rfb-50 rph-1 
MG1655 strains with λ(DE3) 
MG1655 strain containing 
plasmid pZXD51  
MG1655 strain containing 
plasmid pZS4Int-laci  

In this work 
 
In this work 
 
E. coli Genetic Resource Center 
E. coli Genetic Resource Center 
In this work 
 
In this work 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 
 

Table 3.2. Plasmids constructed in this study 

Plasmid  Promoter Distance between two 
promoters     

Type 

pZXD77 
pZXD82 

T7 
T7A1/O4 

147 bp 
152 bp 

Circular 
Circular 

pZXD83 tac 158 bp Circular 
pZXD84 lacUV5 158 bp Circular 
pZXD85 lac 158 bp Circular 
pZXD86 
pZXD92 
pZXD93 
pZXD94 
pZXD97 
pZXD99 
pZXD100 
pZXD102 
pZXD104 
pZXD80 

lacL8 
T7 
T7 
T7 
T7 
T7 
T7 
T7 
T7 
T7 

158 bp 
36 bp 
77 bp 
750 bp 
36 bp 
77 bp 
55 bp 
129 bp 
181 bp 
147 bp 

Circular 
Circular 
Circular 
Circular 
Circular 
Circular 
Circular 
Circular 
Circular 
Linear 

pZXD87  
pZXD88 
pZXD89 

T7A1/O4 
tac 
lacUV5 

152 bp 
158 bp 
158 bp 

Linear 
Linear 
Linear 

pZXD90 lac 158 bp Linear 
pZXD91 lacL8 158 bp Linear 
pZXD103 T7 77 bp Linear 
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Figure 3.1 Circular plasmid pZXD99 and linear plasmid pZXD103 were constructed to 
study TCDS in vivo. (A) The circular plasmid pZXD99 was derived from pBR322. (B) 
The linear plasmid pZXD103 was derived from linear coliphage N15-based, low-copy 
number plasmid pZXD4 (pZXD4 was described in chapter 2). Plasmid DNA templates 
were constructed as described under Materials and Methods. Both of them contain a lacZ 
gene under the control of the T7 promoter and a luciferase gene under the control of the 
weak leu-500 promoter. There are two sets of four Rho-independent rrnB T1 
transcription terminators (winged triangles) on each side of the plasmids to terminate 
transcription initiated from two promoters. In this case, the transcription unit between the 
promoter and terminators could be controlled precisely. 
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Figure 3.2 Luciferase activity was stimulated by the addition of IPTG in E. coli topA 
strain VS111(DE3) or wild type strain MG1655(DE3) containing circular plasmid 
pZXD99 or linear plasmid pZXD103. Luciferase assays were performed as described 
under Materials and Methods. Different concentrations of IPTG (ranging from 5 µM to 
50 µM) were added to the cell culture to stimulate luciferase activity. Light produced was 
measured by a lunometer. (A) Luciferase assay for circular plasmid pZXD99 in wild type 
strain MG1655(DE3) (solid circles) or topA strain VS111(DE3) (open circle); Control 
experiment for E. coli topA strain VS111(DE3) harboring circular plasmid pZXD95, in 
which there is no T7 promoter, was shown in solid square. (B) Luciferase assay for linear 
plasmid pZXD103 in wild type strain MG1655(DE3) (solid triangles) or topA strain 
VS111(DE3) (open triangles); Control experiment for E. coli topA strain VS111(DE3) 
harboring linear plasmid pZXD91, in which there is no T7 promoter, was shown in solid 
square. (C) RT-PCR analysis of cDNA products of mRNA transcribed from circular 
plasmid pZXD99 in E. coli topA strain VS111(DE3) or wild type strain MG1655(DE3) to 
study the stimulation of luciferase activity by T7 RNA polymerase. RT-PCR experiments 
were performed as described under Materials and Methods. The upper and lower panels 
are 12% polyacrylamide gel in 1×TAE buffer to show the PCR products of luciferase 
gene and 16S rRNA cDNA synthesized from the RNA samples isolated from E. coli topA 
strain VS111(DE3) (1-3) or wild type strain MG1655(DE3) (4-6) without IPTG and with 
20 µM, 50 µM of IPTG induction. (D) The ratios were calculated for RT-PCR analyses 
of PCR products pZXD99 in E. coli topA strain VS111(DE3) (1-3) or wild type strain 
MG1655(DE3) from (C). 
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Figure 3.3 Circular plasmids that differ in the distance and DNA sequence composition 
between two promoters were constructed to examine the stimulation of luciferase activity 
by T7 RNA polymerase after the addition of IPTG in E. coli topA strain VS111(DE3). 
Two groups of plasmid DNA templates that differ in the distance and DNA sequence 
composition between the T7 promoter and leu-500 promoter were constructed and 
transformed into the E. coli topA strain VS111(DE3). Luciferase assays were performed 
as described under Materials and Methods. Different concentrations of IPTG (ranging 
from 5 µM to 50 µM) were added to the cell culture to stimulate luciferase activity. Light 
produced was measured by a lunometer. (A) First group of plasmid DNA templates 
includes pZXD100, pZXD102, and pZXD104. The distance between two promoters are: 
55 bp (solid triangles), 129 bp (solid square) and 181 bp (solid circles), respectively. (B) 
Second group of plasmid DNA templates includes pZXD94, pZXD77, pZXD92 and 
pZXD97. The distances between two promoters are: 750 bp (solid triangles), 147 bp 
(solid square), 36 bp (solid circles) and 36 bp (different sequence, open circles). 
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Figure 3.4 Luciferase activity was stimulated by the addition of IPTG in E. coli topA 
strain VS111(DE3) or wild type strain MG1655(DE3) containing circular plasmid 
pZXD77 or linear plasmid pZXD80. Luciferase assays were performed as described 
under Materials and Methods. Different concentrations of IPTG (ranging from 5 µM to 
100 µM) were added to the cell culture to stimulate luciferase activity. Light produced 
was measured by a lunometer. (A) Luciferase assay for circular plasmid pZXD77 in wild 
type strain MG1655(DE3) (solid circles) or topA strain VS111(DE3) (open circle). (B) 
Luciferase assay for linear plasmid pZXD103 in wild type strain MG1655(DE3) (solid 
triangles) or topA strain VS111(DE3) (open triangles). (C) RT-PCR analysis of cDNA 
products of mRNA transcribed from circular plasmid pZXD77 (1-3) or linear plasmid 
pZXD80 (4-6) in E. coli topA strain VS111(DE3) was used to study the stimulation of 
luciferase activity by T7 RNA polymerase. RT-PCR experiments were performed as 
described under Materials and Methods. The upper and lower panels are 12% 
polyacrylamide gel in 1×TAE buffer to show the PCR products of luciferase gene and 
16S rRNA cDNA synthesized from the RNA samples isolated from E. coli strain 
VS111(DE3) without IPTG and with 20 µM, 50 µM of IPTG induction. (D) The ratios 
were calculated for RT-PCR analyses of PCR products pZXD77 (1-3) or pZXD80 (4-6) 
in E. coli topA strain VS111(DE3) from (C). 
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Figure 3.5 An in vivo system to study E. coli RNA polymerase induced TCDS. This 
system contains two plasmids, a linear plasmid pZXD51 (as described in chapter 2) or a 
circular plasmid pZS4Int-laci that overexpresses LacI and (A) Circular plasmid pZXD82 
that carries T7A1/O4 promoter. The circular plasmids were derived from plasmid 
pBR322 and constructed as detailed under Materials and Methods. They harbor an IPTG-
inducible promoter with different strengths and a transcription unit between the promoter 
and a set of four Rho-independent E. coli rrnB T1 terminators (winged triangles). (B) The 
DNA sequence of five different E. coli promoters PT7A1/O4, Ptac, PlacUV5, Plac, and PlacL8. 
The underlines represent the lac O1 operators. (C) Linear plasmid pZXD87 carries 
T7A1/O4 promoter. The linear plasmids were derived from plasmid pZXD4 (as described 
in chapter 2) and constructed as detailed under Materials and Methods. They harbor an 
IPTG-inducible promoter with different strengths and a transcription unit between the 
promoter and a set of four Rho-independent E. coli rrnB T1 terminators (winged 
triangles). 
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Figure 3.6 Circular plasmids and linear plasmids were transformed into E. coli topA 
strain VS111 or wild type strain MG1655 to examine the stimulation of the luciferase 
activity by E. coli RNA polymerase after the addition of IPTG. Luciferase assays were 
performed as described under Materials and Methods. Different concentrations of IPTG 
(ranging from 5 µM to 100 µM) were added to the cell culture to stimulate luciferase 
activity. Light produced was measured by a lunometer. (A) Luciferase assay for circular 
plasmid pZXD83 that carries tac promoter in E. coli wild type strain MG1655 (solid 
circles) or topA strain VS111 (open circle). (B) Luciferase assay for linear plasmid 
pZXD88 that carries tac promoter in E. coli wild type strain MG1655 (solid triangles) or 
topA strain VS111 (open triangles). (C) (D) The expression level of luciferase gene by E. 
coli RNA polymerase after the addition of IPTG in E. coli topA strain VS111 or wild type 
strain MG1655 containing different plasmids is correlated with promoter strength. 
Luciferase assays were performed as described under Materials and Methods. 50 µM of 
IPTG (for E. coli topA strain VS111 harboring linear plasmids, 1 mM of IPTG was used) 
was added to the cell culture to stimulate luciferase activity. (C) Circular plasmids 
pZXD82, 83, 84, 85, and 86 in E. coli wild type strain MG1655 (solid circles) or topA 
strain VS111 (open circle). (D) Linear plasmids pZXD87, 88, 89, 90, and 91 in E. coli 
wild type strain MG1655 (solid triangles) or topA strain VS111 (open triangles). Promoter 
strength in Pbla units was obtained from Lanzer and Bujard (1988). 
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Figure 3.7 Transient TCDS in E. coli strain VS111(DE3) is responsible for the activation 
of leu-500 promoter. The in vivo T-S assays were performed as described under Materials 
and Methods. DNA topoisomers were resolved by electrophoresis in a 1% agarose gel 
containing 5 µg/ml chloroquine and stained with SYBR Gold. TCDS is dependent on 
IPTG concentration for circular plasmid pZXD77 in E. coli topA strain VS111(DE3). 
Lane 1 contained the DNA sample isolated from E. coli cells prior to IPTG induction. 
Lanes 2–5 contained the DNA samples isolated from E. coli cells with 5 µM, 10 µM, 20 
µM, and 50 µM IPTG induction, respectively. The percentage of hypernegatively 
supercoiled DNA is proportional to the IPTG concentration. 
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Chapter 4: Conclusions and Future Directions 

4.1 Conclusions 

The primary objectives of this dissertation are: 1) to demonstrate that transcription is 

a major chromosomal remodeling force in E. coli cells; 2) to explore whether TCDS is 

able to greatly influence coupled DNA transactions, e.g., to activate a divergently-

coupled leu-500 promoter in vivo. To accomplish the objectives, two series of studies in 

E. coli wild-type and topA strains were performed. 

In chapter 2, using a newly established two-plasmid system, we examined the effect 

of promoter strength on TCDS. Our results suggest that TCDS in topA strains is 

dependent on promoter strength. More importantly, we demonstrated that transcription-

coupled hypernegative supercoiling of plasmid DNA did not require the expression of a 

membrane-insertion protein for strong promoters, although it might require co-

transcriptional synthesis of a polypeptide. In addition, we found that the expression of a 

membrane-insertion tet gene was not sufficient for the production of hypernegatively 

supercoiled DNA. Our results can be explained by the “twin-supercoiled-domain” model 

of transcription, which suggested that friction force applied to E. coli RNA polymerase 

plays a critical role in the generation of hypernegatively supercoiled DNA. 

In chapter 3, we developed an in vivo system to study how TCDS activates a 

divergently-coupled, supercoiling-sensitive leu-500 promoter in E. coli cells. Our results 

demonstrated that transient TCDS induced by either T7 or E. coli RNA polymerase was 

able to activate the leu-500 promoter. These observations suggested that TCDS may be a 

general mechanism for activating transcription in vivo.  
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Taken together, the results presented in this dissertation demonstrated that 

transcription is a major chromosomal remodeling force in E. coli cells and is able to 

activate a divergently coupled, supercoiling-sensitive leu-500 promoter. 

4.2 Future Directions 

Future research on this topic may focus on these three areas:  

1) Examining factors that regulate the activating of the leu-500 promoter by 

transient TCDS in E. coli cells. Since we established a plasmid-based system to study the 

activation of the leu-500 promoter, it should be relatively straightforward to test what 

factors affect the activation of the leu-500 promoter by TCDS. These factors include the 

distance between the two divergently-coupled promoters, the length of RNA transcripts, 

the expression of a membrane-associated protein, and the presence of a topological 

barrier between the promoters. 

2) Identifying new supercoiling-sensitive promoters in E. coli cells. My 

dissertation also provided a new method to screen and identify new supercoiling-sensitive 

promoters in the future. 

3) Establishing a defined protein system to study the activation of the leu-500 

promoter in vitro. 
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