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ABSTRACT OF THE THESIS 

POWER STUDY ON TESTING EPIDEMIC ALTERNATIVES 

by 

Zihao Li  

Florida International University, 2013 

Miami, Florida 

Professor Zhenmin Chen, Major Professor  

 Detecting change points in epidemic models has been studied by many scholars. Yao 

(1993) summarized five existing test statistics in the literature. Out of those test statistics, it 

was observed that the likelihood ratio statistic showed its standout power. However, all of 

the existing test statistics are based on an assumption that population variance is known, 

which is an unrealistic assumption in practice. To avoid assuming known population 

variance, a new test statistic for detecting epidemic models is studied in this thesis. The new 

test statistic is a parameter-free test statistic which is more powerful compared to the 

existing test statistics. Different sample sizes and lengths of epidemic durations are used for 

the power comparison purpose. Monte Carlo simulation is used to find the critical values of 

the new test statistic and to perform the power comparison. Based on the Monte Carlo 

simulation result, it can be concluded that the sample size and the length of the duration 

have some effect on the power of the tests. It can also be observed that the new test statistic 

studied in this thesis has higher power than the existing test statistics do in all of cases.  
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1. Background 

Detecting change points in epidemic models has become an interesting topic in 

recent years. Change-points with epidemic alternatives were originally formulated by 

Levin and Kline [2] to model the changes over time in the proportion of abortions. Yao [1] 

summarized several statistical tests for detecting epidemic changes. The shortcoming of 

the methods summarized in [1] is that all the methods assume the population variance to 

be known, which is an unrealistic assumption in practice. To solve this problem, a new 

statistical test will be proposed in this research. The proposed test procedure does not 

depend on unknown population variance. 

2.  Introduction 

The epidemic change model used in this research is described as follows. 

Let  1 2, , , nX X X  be a sequence of normally distributed independent random 

variables. Consider the following model: 

, 1, , , 1,...,
, 1,...,

i
i

i

e i p q n
X

e i p q
µ
µ δ
+ = +

=  + + = +


 

for 1 p q n≤ < < . Here µ  and δ  are unknown parameters. 1, , ne e  are independent 

and identically distributed random variables with E( ie )=0 and 0<Var ( ie )= 2σ <∞ . 

This model describes the situation that the normal state with the mean µ runs up to the 

p th observation. It changes to the epidemic one with the mean value aµ µ δ= +  at the 

( )1p + th observation and stays with this level through the q th observation before the 
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original normal state is restored at the ( )1q + th observation if q  is less than the total 

observation size. 

The thesis is organized as follows. Section 3 reviews several existing test statistics 

and indicates the problems we concern.  Section 4 studies a new test statistic based on the 

test statistic ( 3Z ). Section 5 extends the study to power comparison across the two test 

statistics.  Section 6 draws conclusion that the new test statistic supreme over the existing 

test statistics.   

3. Existing Test Statistics in the literature 

The purpose of this research is to detect epidemic changes. It is desired to check if 

an epidemic change has occurred in an unknown time period. It is assumed that all 

observations are independent. The hypotheses can be described as follows: 

0H : 1 2, , , nX X X are normally distributed with mean µ and standard deviation

σ , 

1H : 1 1, , , ,p q nX X X X+  are normally distributed with mean µ and standard 

deviationσ , while 1, ,p qX X+   are normally distributed with mean

aµ µ δ= +  and standard deviationσ .  

Yao[1] summarized five existing test statistics in the literature. 
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3.1 Levin & Kline’s Statistic 

In the test procedure proposed by Levin& Kline [2], the mean is estimated by MLE 

namely  mS mµ = . Population variance is unknown and needs to be estimated. The test 

statistic is formulated as       

 1 01

1max ( )
2j i mi j m

j iZ S S S j i
m

δ
≤ < ≤

− ≡ − − − − 
 

 (1) 

 The unknown parameter, δ  , is estimated using the smallest increment in means, 

say 0δ . Here m   is the observed sample size and mS is the total summation of observed 

sample data. The estimates of three parameters make applications difficult.  

3.2  The semi-likelihood ratio statistic  

Siegmund [3]  considered the likelihood ratio when 0δ δ= and µ is unknown.  

The test statistic is formulated as 

 2 01

1max ( ) 1
2j i mi j m

j i j iZ S S S j i
m m

δ
≤ < ≤

 − −  ≡ − − − − −  
  

. (2) 

3.3  The likelihood ratio statistic 

For the case that µ  and δ  are both unknown with δ >0, the square root of a slightly 

generalized log likelihood ratio statistic is calculated as  

 
0

1
2

3 max ( ) 1j i nn j i n

j i j iZ S S S j i
n n≤ − ≤

−  −    ≡ − − − −    
    

.  (3) 
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The test statistic sheds some light on our interest in parameter-free test. To show the 

distribution of 3Z  does not depend on µ , note that  

1 1 1

j ji

j i k k k
k k k i

S S X X X
= = = +

− = − =∑ ∑ ∑ . 

Let 1 2, , , nt t t  be iid   random variables from  (0,1)N  distribution. 

k kX tµ σ= +  ( 1, 2, , )k n=   

                            
1 1

( )
j n

j i n k k
k i k

j i j iS S S j i t n t
n n

µ σ µ σ
= + =

− −  − − = − + − + 
 

∑ ∑  

                
1 1

( ) ( )
j n

k k
k i k

j ij i j i t t
n

µ µ σ σ
= + =

−
= − − − + −∑ ∑  

                   
1 1 1

1
j i n

k k k
k i k k j

j i j it t t
n n

σ
= + = = +

  − − = − − +   
    

∑ ∑ ∑  

Here n  is the observed sample size and nS is the total summation of observed sample 

data. Clearly, the parameter µ is eliminated inherently in the test.  

3.4  The score-like statistic 

In the general model, δ  is unknown. By setting δ =0, the invariant efficient score 

statistic becomes  

 4 1
max j i ni j n

j iZ S S S
n≤ < ≤

− ≡ − − 
 

  (4) 
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By setting j n≡ , It is a special form of Pettitt’s method testing one change-point 

hypotheses (Pettitt, 1980[4]; James et al., 1987[5]).  

3.5  The recursive residual statistic  

Brown et al. [6] developed the so-called recursive statistic for testing a change-point 

in a linear model. We considered the standard residual of ky from the mean value  

( ) ( )1 11 1kky y y k−− ≡ + + − . 

Denote  

{ }
1
2

1( 1) ( )k k kw k k y y −≡ − −    ( 2, , )k m=  . 

Define cumulative sum as     


2k kS w w≡ + + . 

The test statistic is formulated as 

  ( ) ( )
0

1
2

5 max j i
n j i n

Z S S j i
≤ − ≤

≡ − − .  (5) 

3.6  Comparison of the existing test statistics 

The performance of 2Z shows a little more robust over 1Z if the duration of the 

epidemic state q p−  is close to m . If 0δ =0, 1Z  becomes 4Z . Actually, 4Z is a special 
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case of the Levin & Kline statistic when people try to detect the change in means even 

though the increment is very small.  

It seems simpler to study 4Z  than to study  1Z , 2Z , and 3Z . Yao (1993) specified 

all other conditions being the same, the 4Z  shown the favorite outcome. However, we 

cannot ignore the unknown parameter 0δ  in test statistics 1Z , 2Z , and 4Z .  When 0δ  is 

very small, 2Z  and   4Z  perform similarly. Yao (1993) conducted numerical comparisons 

across 1Z , 2Z , 3Z , 4Z , and 5Z . Yao experimented 10,000 repetitions Monte Carlo to 

layout the results. The power of 1Z  and 5Z  is not symmetric during the epidemic status. 

Then the two-side epidemic detections by  1Z  and 5Z have to be complicate by 

comparing data with either side significance level.  Again, for 0δ =0.2 the semi-likelihood 

statistic  2Z   and the score-like statistic  4Z   perform roughly the same. Comparing with 

2Z  and   4Z , the Levin & Kline’s 1Z  has higher power when q p−  is near 0. The power 

becomes lower when q p−  tends to be larger. Only the extreme case makes 1Z  

functional.  Furthermore, the likelihood ratio statistic 3Z  has greater power than 1Z  for 

small values of q p−  . Levin & Kline’s statistic seems not our preferable in any case.  

The case with recursive residual statistic 5Z  is more complicated. By fixing δ  and the 

value of q p− , the power will increase along with the increase of value of p q+ . The 

unstable performance of 5Z brought its difficulty to apply the statistic in practice. Yao 

(1993) drew a tentative conclusion that the recursive residual statistic is not demonstrably 
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inferior to the others. Through the rigor required conditions among 2Z , 4Z , and 5Z  ,  3Z  

stands alone out of the list. My thesis attempts to build up the new argument over this 

likelihood ratio statistic.  

 The test statistics reviewed in Yao [1] assume that the variance of the underlying 

distribution is known. Practically, this assumption is unrealistic when working with 

actual data. When the population variance is unknown, it is suggested in Yao’s paper that 

the unknown variance be replaced by its point estimate. However, the point estimation is 

calculated by using samples that contain the effect of 1H  . It may cause the point 

estimator to deviate from the true value significantly. The deviation can be seen from the 

following proposition. 

Proposition 1.  Let  1 2, , , nX X X  be an iid sample from a population distribution with 

mean µ   and variance 2σ . For 1 ,i j n≤ < <  define k kY X= ( 1, 2, , , 1, , )k i j n= +   and 

k kY X c= +   ( 1, 2, , ).k i i j= + +   Then  

( )( )2 2 2( )
( ) ( ) .

( 1)Y X

n j i j i
E S E S c

n n
− − −

= +
−

 

 Here  
( )2

2 1

1

n

k
k

X

X X
S

n
=

−
=

−

∑
 and 

( )2

2 1 .
1

n

k
k

Y

Y Y
S

n
=

−
=

−

∑
 

Proof.  Denote   

{ }1, 2, , 1,K i i j j= + + −         and  {1,2, , , 1, , }cK i j n= +   
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Then 

( ) .j i cY X
n
−

= +                

( )
2 2

2

( ) ( )

1
c

k k
k K k K

Y

j i c j i cX c X X X
S n n

n
∈ ∈

 −   −    + − + + − +            =
−

∑ ∑
 

( )
2 2

( ) ( )
c

k k
k K k K

j i c j i cX c X X X
n n∈ ∈

 −   −    + − + + − +            
∑ ∑  

( ) ( )
2 2( ) ( )

c
k k

k K k K

n j i j iX X c X X c
n n∈ ∈

 − −  −   = − + + − −        
∑ ∑  

( ) ( ) ( )2 2 ( )2
c

k k k
k K k Kk K

n j iX X X X X X c
n∈ ∈∈

− − = − + − + −  
 

∑ ∑ ∑  

( )
2 2( ) ( ) ( )2

c c
k

k Kk K k K

j i n j i j iX X c c c
n n n∈∈ ∈

− − − −     − − + +     
     

∑ ∑ ∑  

                          ( ) ( ) ( )2

1 1

( )2 2
n n

k k k
k k K k

j iX X c X X X X c
n= ∈ =

− = − + − − − 
 

∑ ∑ ∑  

                                                  ( )
2 2( ) ( )( ) ( )n j i j ij i c n j i c

n n
− − −   + − + − −   

   
 

                          ( ) ( )
2

2

1

( )2 ( )
n

k k
k k K

n j iX X c X X j i c
n= ∈

− − = − + − + −  
 

∑ ∑  

                                                    ( )
2( )( ) j in j i c

n
− + − −  

 
 



9 
 

( ) ( ) ( )
2

2

2

2

1

( ) ( )2 ( ) ( )

1

n

k k
k K

Y
k

n j i j iX X c X X j i c n j c
n n

n
S

i
= ∈

− − −   − + − + − + − −   
   =
−

∑ ∑
 

               
( ) ( )

2 2

2

( ) ( )2 ( ) ( )

1

k
k K

X

n j i j ic X X j i c n j i c
n nS
n

∈

− − −   − + − + − −   
   = +

−

∑
 

       ( )2 2
2 2

( ) ( ) ( ) ( )
1 1Y X

j i n j i n j i j iE c c
n n n n

S E S − − − − − −     = + +     − −     
 

                    
2 2

2 2 2( ) ( ) ( ) ( ) ( )( ) 2
1 1X

j i j i j i n j i j iE S c c c c
n n n n n

 − − − − − −   + − + + =    − −    
 

   
2 22

2 2 2( ) ( ) ( ) ( ) ( ) ( )( ) 2
1 ( 1) 1 1X

j i j i j i j i n j i j iE S c c c c
n n n n n n n
− − − − − − −   = + − + +   − − − −   

 

                   
22

2 2 2( ) ( ) ( )( ) 2
1 ( 1) 1X

j i j i n j iE S c c c
n n n n n
− − − = + − +  − − −  

 

                   
2 2

2 ( ) 2 () ( )( )
( 1)X

n j i j i j iE S
n n

− − − + −
= +

−
 

                   
( )2 2( ) ( )

( 1)
( )X

n j i j i
c

n n
E S

− − −
= +

−
 

End of the proof.    

Obviously the expected value of the alternative variance is larger than the expected 

value of the sample variance in the null distribution.  The Monte Carlo simulation in 

Yao(1993) assumed the variance  to be known. So the simulations process missed the 
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important division step. We will address the adjustment in later of this thesis. We need to 

point out the soundness of the 
3Z σ  trying to reduce influence from the larger variance.  

Let us focus on the nominator of  3Z . 

Let 1 2, , , nt t t  be iid   random variables from  (0,1)N  distribution. 

k kX tµ σ= +  ( 1, 2, , )k n=   

                             
1 1

( )
j n

j i n k k
k i k

j i j iS S S j i t n t
n n

µ σ µ σ
= + =

− −  − − = − + − + 
 

∑ ∑  

1 1
( ) ( )

j n

k k
k i k

j ij i j i t t
n

µ µ σ σ
= + =

−
= − − − + −∑ ∑     

                                  
1 1 1

1
j i n

k k k
k i k k j

j i j it t t
n n

σ
= + = = +

  − − = − − +   
    

∑ ∑ ∑   (6)           

We can easily observe the parameter mean µ  was eliminated. So 
3Z σ  somehow 

makes sense to expect the  σ σ   offset at least part of variance increase during the 

epidemic period. Unfortunately, 3Z  is still a parametric test statistic. The estimator of σ  

is serious matter about the underlying unknown distribution in realistic epidemic cases. 

Yao(1993) skipped the estimation of variance. That makes the results higher power than 

those of the estimation process. Therefore, we need to find a new approach for detecting 

epidemic change which can bypass point estimation of the population variance. 

Meanwhile we also keep the new test free from depending on population mean.   
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4.  New Test Statistic 

A new test statistic for detecting epidemic changes has been proposed in [8] . The 

test statistic is described as follows. 

Let 1 2, , , nX X X  be a sequence of independent and normally distributed random 

variables with unknown variance 2σ   . The mean of iX  is determined by the following 

formula:  

.

, 1, , , 1,...,
, 1,...,i

a

i p q n
i p q

µ
µ

µ µ δ
= +

= = + = +

  

 Here µ and δ  are unknown parameters. In practice, no information about the locations 

of the start-point and end-point of the epidemic alternative will be given. It means that 

both p  and q  are unknown. So we assume that ( ),p q has equal chance to fall at any 

possible points 1, , 2p n= … −  and 1, , 1q p n= + … − . To reduce the negative influence 

by extreme values in the data set, we set the min ( )q p− ≥ 6 which covers at least range 

of data possible inside the epidemic duration.  For the research convenience, only the 

one-sided alternative is considered for simplifying the discussion.  

Let 1 2, , , nX X X  be a sequence of independent random variables, and let i  and 

j  be positive integers satisfying 0m ≤ i < j < 1m . And (1) (2) ( )... nX X X< < <  are the 

corresponding order statistics.   
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The test statistic for detecting the epidemic alternative can then be defined as  

 

[ ]

[ ]
0 1

1
2

2

( ) ( )
2 1 1

( ) 1
max

j i n

nnm j i m

k k
k n k

j i j iS S S j i
n nT

X X
≤ − ≤

= + =

−  −    − − − −    
    =

−∑ ∑
  (7) 

Here 
2
n 
  

 is the integer part of 
2
n . 

The statistic T  is independent of µ  and  σ . The independency can be seen from 

the following proposition. 

Proposition  2.  Let  1 2, , , nX X X  be an iid sample from a population distribution with 

mean µ and  variance 2σ , and let (1) (2) ( )... nX X X< < <  be the corresponding order 

statistics. Let T be defined as above. Then the distribution of T does not depend on µ

and 2σ . 

Proof.  Let 1 2, , , nt t t  be iid   random variables from (0,1)N  distribution. 

k kX tµ σ= +  ( 1, 2, , )k n=   

Then    
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[ ]

[ ]0 1

1 1 1

1
2 2

( ) ( )
2 1 1

1
max

( ) 1

j i n

k k k
k i k k j

m j i m nn

k k
k n k

j i j it t t
n n

T
j it t j i
n

= + = = +

≤ − ≤

= + =

  − − − − +   
    =

  −  − − −        

∑ ∑ ∑

∑ ∑
. 

               From  (6), 

               
1 1 1

1
j i n

j i n k k k
k i k k j

j i j i j iS S S t t t
n n n

σ
= + = = +

  − − − − − = − − +   
    

∑ ∑ ∑  

               and  

                       

[ ]

[ ]

[ ]

[ ]2 2

( ) ( ) ( ) ( )
2 1 1 2 1 12 2

n nn n

k k k k
k n n k k n k

n nX X t tµ σ µ σ
= − + = = + =

    − = + − +         
∑ ∑ ∑ ∑  

                                          
[ ]

[ ]2

( ) ( )
2 1 1

nn

k k
k n n k

t tσ
= − + =

 
= −  

 
∑ ∑ .  (8) 

Then we have  

[ ]

[ ]0 1

1
2

1 1 1

2

( ) ( )
2 1 1

1 ( ) 1
max

j i n

k k k
k i k k j

nnm j i m

k k
k n k

j i j i j it t t j i
n n n

T
t t

σ

σ

= + = = +

≤ − ≤

= + =

  − −  −    − − + − −       
       =

 
−  

 

∑ ∑ ∑

∑ ∑
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[ ]

[ ]0 1

1 1 1

1
2 2

( ) ( )
2 1 1

1
max

( ) 1

j i n

k k k
k i k k j

m j i m nn

k k
k n k

j i j it t t
n n

j it t j i
n

= + = = +

≤ − ≤

= + =

  − − − − +   
    =

  −  − − −        

∑ ∑ ∑

∑ ∑
. 

End of the proof.      

It can be seen that the distribution of the statistic T does not depend on the 

parameters µ and 2σ  under the null hypothesis 0H . Therefore, it is unnecessary to 

assume that the populatin variance 2σ is known.  

Therefore we need to find critical values at significance levels for this proposed 

test statistic and conduct power comparison. In the present paper, we only consider the 

one sided test and set the significance level 0.05α =  . Also we will compare point 

estimator of the change points obtained by the proposed method with existing methods in 

the literature. 

5. Critical values and power comparison 
    

5.1 Critical values of test statistic T  

To obtain the critical values of test statisticT , this research used the Monte Carlo 

simulation in SAS/IML.  
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The procedure for the critical value calculation of T  is summarized as follows: 

1) For n=20, 21,  , 100, generate 1 2, , , nX X X  pseudo random samples from 

the standard normal distribution (0,1)N . 

2) Let (1) (2) ( ), , , nX X X  be the ordered data set of the generated data

1 2, , , nX X X . 

3) Calculate max   

[ ]

[ ]

1
2

2

( ) ( )
2 1 1

( ) 1j i n

nn

k k
k n k

j i j iS S S j i
n n

X X
= + =

−  −    − − − −    
    

−∑ ∑
 .  

4) Repeat steps (1) to (3) 100,000 times.  

5) Finally, the critical values are obtained at 90, 95, 97.5, 99, and 99.5 

percentiles.  

The critical values are listed in Table 1 at page 25. The first column in the table is 

for the sample size (from 20 to 100). The critical values corresponding to significance 

levels α = 0.10, 0.05, 0.025, 0.01, and 0.005 are listed through column 2 to column 6. 

Table 1 keeps 7 decimal places for the critical values.  

5.2 Power comparison at n=60 

In my research, Monte Carlo simulation is used to simulate the distribution of the 

test statistic T  described in (8).  Simulation study is also used for test statistic 3Z described 

in (3) with the unknown variance replaced by its estimate.  For the generated pseudo 
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random standard normal numbers, each number is divided by the sample standard 

deviation  
k kX X σ=  .  Then we obtained the new critical values for 3Z . Table 2 

compares the power of 3Z  with the assumption of known variance, 3Z with unknown 

variance, and T  with 100,000 repetition Monte Carlo experiments. To keep the setting 

used in Yao(1993), sample size n=60 and significance level 0.05α =  are considered. To 

see how the sample size effects the power, sample sizes n=20 is also used with the same 

significance level. Then the critical value of 3Z  with the assumption of known variance is 

3.410, while the one in Yao (1993) is 3.37. The difference is not a major concern because 

the computers are much more powerful than twenty years ago. However, when the data 

were standardized with estimated variance, the critical value shifted away. The lower 

power performance indicates Yao(1993) Monte Carlo simulation did not consider this 

important step. The estimation process apparently lowers the power. Figure 1 indicates 

that without the estimation, T outperforms 3Z with unknown variance when n is 60 and 

the epidemic duration is 6. That means when epidemic character data moderate, test 

statistic T is more powerful than test statistic 3Z . Figure 1 to Figure 4 show that T always 

have the higher power across δ  = 0.8, 1.2, 1.6, and 2.4. The great benefit of T is it can 

stay away from variance estimation. Therefore, test statistic T is able to detect the 

epidemic in other unknown distributions of data.  

The procedure for the power calculation for T  is summarized as follows: 

1) Generate 1 2, , , nX X X  pseudo random samples from the standard normal 

distribution (0,1)N . 
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2) Input the δ  values in the given duration of generated data set. 

3) Calculate the values of the T statistic. In the 3Z  calculation, the data set is 

divided by the sample standard deviation before calculating the values of test 

statistic. 

4) Let (1) (2) ( ), , , nX X X  be the ordered data set of the generated data 

1 2, , , nX X X . 

5) Counting the number of values exceeding the critical value at the given 

significance level. The percentage of the numbers that are above the critical 

value is the simulated power.  
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Table 2  

     n=60 
    3Z  3Z  T 

  
known var unknown var unknown var 

    0 6m =  1 54m =  0 6m =  1 54m =  0 6m =  1 54m =  

Δ q-p       

 
6(54) 

   0.8 
 

0.178 0.173 0.182 
1.2 

 
0.431 0.386 0.404 

1.6 
 

0.740 0.677 0.694 
2.4   0.991 0.981 0.983 
  10(50)       
0.8 

 
0.341 0.323 0.335 

1.2 
 

0.721 0.675 0.686 
1.6 

 
0.949 0.922 0.926 

2.4   1.000 1.000 1.000 
  20(40)       
0.8 

 
0.594 0.567 0.580 

1.2 
 

0.938 0.915 0.919 
1.6   0.998 0.995 0.995 
  30       
0.4 

 
0.191 0.208 0.217 

0.8 
 

0.655 0.635 0.647 
1.2   0.963 0.949 0.951 
          
Critical   3.410 3.322 0.069 
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Figure 1    Power with n=60 and q-p=6  

  

 

Figure 2     Power with n=60 and q-p=10 
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Figure 3     Power with n=60 and q-p=20 

 

 

Figure 4     Power with n=60 and q-p=30 
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When δ =0.8, q p−  is near 0, all of the powers are weakened.  Also when q p−  

closed to 54 which is closed to n in this case, the power becomes fading away. The 

20q p− = case shows the highest power and is followed by 10q p− =  case. The 

potential explanation is that when the epidemic duration is too short or too long, the test 

statistics have has less in detecting epidemic changes.  

5.3  Power comparison at n=20 

Table 3  

    n=20 
    3Z  3Z  T 

  
known var unknown var unknown var 

  q-p min(j-i)=3 min(j-i)=3 min(j-i)=3 

 
10 

   0.8 
 

0.296 0.246 0.430 
1.2 

 
0.578 0.463 0.661 

1.6 
 

0.839 0.703 0.850 
2.4 

 
0.996 0.969 0.990 

          
Critical   3.077 2.882 0.169 

 

To see the effect of sample size on the power, n=20 case was used for the three test 

statistics. Table 3 compares the powers at q p−  =10. Under the unknown variance, T   

shows the steep power over 3Z  to detect the relative long epidemic duration in the short 
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time period. Critical values with significance level 0.05α =  are list at the bottom of 

Table 3.  

In Figure 5, it shows that the test statistic T  is more powerful than over 3Z  when δ

=0.8, 1.2, 1.6, and 2.4. Especially when the abnormal data is moderate, such as δ = 0.8, 

the new test statistic T  indicates the advantage of parameter free statistic is very outstanding. 

The relative short period of data collection bearing the mid-range of epidemic characteristic data 

is an ideal condition for the test statistic T  .   

Figure 5     Power with n=20 and q-p=10 

 

 

6. Conclusion 

Change-points with epidemic alternatives were formulated to model the changes 
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process is assumed to be stable initially, and then at an unknown time point it will exhibit 

an abrupt change in the characteristics, which will continue for an unknown duration 

before stabilizing again to the initial state. Five test statistics for testing epidemic 

alternatives were summarized and compared in Yao [1].  

All the summarized test statistics in Yao [1] are based an assumption that the 

population variance is known. The power comparison on those test statistics presented in 

Yao’s paper was based on that assumption as well. In practice, the population variance is 

usually unknown and needs to be estimated. This thesis extended the power comparison 

result using Monte Carlo simulation. It has been shown that the power of the test statistics 

mentioned in Yao [1] is lowered when the population variance is assumed to be unknown 

and needs to be estimated.  

 To stay away from the known variance assumption, a new method for detecting 

change-points with epidemic alternative is studied in this research. Since this method is 

independent of the population mean μ and the population standard deviation σ, it is 

unnecessary to assume that the variance is known. The method can then be used to obtain 

insight into more general problems. Moreover, by numerical comparison with other five 

existing test statistics summarized in Yao [1], the statistical test presented in this study 

provides quite decent power. Therefore, the proposed test statistic T  should be 

recommended to practitioners for detecting epidemic change in means. 

The newly proposed test statistic is, in fact, a modified version of 3Z  , which is 

one of the test statistics and is the best test statistics out of those five according to Yao’s 
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observation. Monte Carlo simulation result outlines the behaviors of test statistics  3Z   

and  T  under the unknown variance and unknown mean conditions. The test statistic T  

outperformed the test statistic 3Z   in all of cases. Critical values for the proposed test 

statistics are obtained using Monte Carlo simulation. 
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Table 1  Critical Values of Test Statistic T  

n α=0.1 α=0.05 α=0.025 α=0.01 α=0.005 
20 0.1532661 0.1688606 0.1815961 0.1951939 0.2036749 
21 0.1486433 0.163719 0.1760061 0.1893551 0.1978356 
22 0.1436 0.1576624 0.1692808 0.1819009 0.1898116 
23 0.1395886 0.1530257 0.1641669 0.1766411 0.1845658 
24 0.1352017 0.1479896 0.1584798 0.1703081 0.1779986 
25 0.1313733 0.1436647 0.1539657 0.1654042 0.1730334 
26 0.1273106 0.139062 0.1488865 0.1598907 0.1672009 
27 0.1240343 0.1353173 0.144956 0.1556937 0.1626133 
28 0.1204688 0.1313354 0.1404544 0.1508054 0.1575053 
29 0.117395 0.1278418 0.1367407 0.1468518 0.153502 
30 0.1141603 0.1242228 0.132751 0.1424982 0.1489147 
31 0.11144 0.121333 0.1297131 0.1392189 0.1454978 
32 0.1085073 0.1179114 0.12601 0.1349894 0.1412021 
33 0.1060941 0.1152564 0.1231115 0.1320777 0.1381073 
34 0.1035453 0.1123141 0.1199995 0.128639 0.1344773 
35 0.1012103 0.1098547 0.117291 0.1257478 0.1315655 
36 0.0988655 0.1072324 0.1143707 0.1226992 0.1282133 
37 0.0967521 0.1048443 0.1118236 0.1199389 0.125405 
38 0.0945904 0.1024628 0.1092844 0.1171646 0.1223346 
39 0.092658 0.1003772 0.1070123 0.1147611 0.1199426 
40 0.0907363 0.0982262 0.1047477 0.112183 0.1173327 
41 0.0889316 0.0962027 0.102564 0.1100055 0.114959 
42 0.0871319 0.0942406 0.1004684 0.1076947 0.112462 
43 0.0854987 0.092525 0.0986448 0.105662 0.1102375 
44 0.0838474 0.0906678 0.0966285 0.1035174 0.1081272 
45 0.0823201 0.0889657 0.0947917 0.1014992 0.1061885 
46 0.0808164 0.0872768 0.0929381 0.0994785 0.1040623 
47 0.079386 0.0857007 0.0912827 0.0977883 0.1021606 
48 0.0779583 0.0841454 0.0895448 0.0958764 0.100182 
49 0.076659 0.0827643 0.0880865 0.0942737 0.0984957 
50 0.0753504 0.0812772 0.0865062 0.0926387 0.0967903 
51 0.0741816 0.07999 0.0850953 0.0910755 0.0951482 
52 0.0728893 0.0786194 0.0836516 0.0894618 0.0934648 
53 0.0717446 0.077344 0.0822736 0.0879371 0.0919361 
54 0.070588 0.0760621 0.0809155 0.0866086 0.090482 
55 0.0695295 0.0748737 0.0796092 0.085243 0.0890668 
56 0.0684147 0.073686 0.0783067 0.0837234 0.0874351 
57 0.0673958 0.072593 0.0772241 0.0826052 0.0863144 
58 0.0664017 0.0715119 0.0759939 0.0813078 0.0849526 
59 0.065438 0.0704479 0.0748695 0.0800886 0.083732 
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n α=0.1 α=0.05 α=0.025 α=0.01 α=0.005 
60 0.0644937 0.0694155 0.0737757 0.0788786 0.0823889 
61 0.0636117 0.0684232 0.0726876 0.0777018 0.0812084 
62 0.0626863 0.0674441 0.0716342 0.0766683 0.0800565 
63 0.0618954 0.0665836 0.0707145 0.0756277 0.0790058 
64 0.0610002 0.0656012 0.0697209 0.0745806 0.0778689 
65 0.0602141 0.064736 0.0687764 0.0735302 0.0768127 
66 0.0594063 0.0638759 0.0678395 0.0725446 0.0757075 
67 0.0586861 0.063085 0.0669783 0.0715431 0.0747156 
68 0.0579543 0.0622702 0.0661282 0.0707288 0.0738465 
69 0.0571921 0.0614659 0.0652526 0.0696836 0.0727954 
70 0.056475 0.0606684 0.0643513 0.0688171 0.0718091 
71 0.0557922 0.0599292 0.0635872 0.067996 0.0709522 
72 0.0550785 0.0591365 0.0627754 0.0670345 0.0700042 
73 0.0544293 0.058464 0.0620465 0.0662155 0.0690837 
74 0.053828 0.0577943 0.0613113 0.0655321 0.0684001 
75 0.0531799 0.0571118 0.0605593 0.0646665 0.0675556 
76 0.0525564 0.0564007 0.0598313 0.0638474 0.0667195 
77 0.0519898 0.0558021 0.0591824 0.0631797 0.0659648 
78 0.051383 0.0551666 0.0584507 0.0624475 0.0652155 
79 0.0508237 0.0545264 0.0578269 0.0616876 0.0644893 
80 0.0502454 0.0538859 0.0571635 0.0609614 0.0636071 
81 0.0497292 0.0533454 0.0565673 0.0603669 0.0629977 
82 0.0491834 0.0527573 0.0559427 0.0596773 0.0622752 
83 0.0486995 0.0522011 0.0553312 0.05904 0.0616454 
84 0.0481418 0.0515739 0.054662 0.0583653 0.0608823 
85 0.0476672 0.0510737 0.0541127 0.0577744 0.060308 
86 0.0471643 0.0505249 0.0535292 0.0571333 0.0596431 
87 0.0466986 0.0500552 0.0530529 0.0566104 0.0590816 
88 0.0462335 0.049529 0.0524598 0.0559853 0.0584285 
89 0.0457678 0.0490089 0.0519487 0.0553663 0.0577658 
90 0.0453462 0.0485507 0.0514704 0.0549194 0.057346 
91 0.0449015 0.0480728 0.0509334 0.0543599 0.0567078 
92 0.0444388 0.0475599 0.0503767 0.0537567 0.0561928 
93 0.0440412 0.047124 0.0499416 0.0532581 0.0555155 
94 0.0436293 0.0466984 0.0494549 0.0527327 0.0550314 
95 0.0432234 0.0463091 0.048999 0.0522569 0.0545469 
96 0.0428047 0.0458065 0.0485216 0.0517615 0.053981 
97 0.042428 0.0453912 0.0480654 0.0512749 0.0534982 
98 0.0420359 0.0449814 0.0476233 0.0507524 0.0528879 
99 0.0416873 0.0445977 0.0472265 0.0503869 0.0525505 

100 0.0412777 0.044173 0.0467718 0.0498619 0.051985 
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