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ABSTRACT OF THE DISSERTATION 
 

POSITRON EMISSION TOMOGRAPHY (PET) TUMOR SEGMENTATION  

AND QUANTIFICATION: DEVELOPMENT OF NEW ALGORITHMS 
 

by 
 

Ruchir Bhatt 
 

Florida International University, 2012 
 

Miami, Florida 
 

Professor Anthony McGoron, Major Professor 
 

Tumor functional volume (FV) and its mean activity concentration (mAC) are the 

quantities derived from positron emission tomography (PET). These quantities are used 

for estimating radiation dose for a therapy, evaluating the progression of a disease and 

also use it as a prognostic indicator for predicting outcome. PET images have low 

resolution, high noise and affected by partial volume effect (PVE). Manually segmenting 

each tumor is very cumbersome and very hard to reproduce. To solve the above problem 

I developed an algorithm, called iterative deconvolution thresholding segmentation 

(IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the 

PVE and calculates mAC. The algorithm corrects for the PVE without the need to 

estimate camera’s point spread function (PSF); also does not require optimizing for a 

specific camera. My algorithm was tested in physical phantom studies, where hollow 

spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity 

distribution. It was also tested on irregular shaped tumors with a heterogeneous activity 

profile which were acquired using physical and simulated phantom. The physical 

phantom studies were performed with different signal to background ratios (SBR) and 
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with different acquisition times (1-5 min). The algorithm was applied on ten clinical data 

where the results were compared with manual segmentation and fixed percentage 

thresholding method called T50 and T60 in which 50% and 60% of the maximum 

intensity respectively is used as threshold. The average error in FV and mAC calculation 

was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were 

~5% for 16 ml tumor. The overall FV error was ~10% for heterogeneous tumors in 

physical and simulated phantom data.  The FV and mAC error for clinical image 

compared to manual segmentation was around -17% and 15% respectively. In summary 

my algorithm has potential to be applied on data acquired from different cameras as its 

not dependent on knowing the camera’s PSF. The algorithm can also improve dose 

estimation and treatment planning. 
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CHAPTER 1 

Introduction 

 
Liver cancer is one of the major causes of death due to cancer; it is the fifth most 

common among men (13,980 deaths) and ninth most common among women (6,570 deaths), 

with 21,370 and 7,350 new cases annually in men and women, respectively [1]. Radiation 

therapy is one of the promising treatment methods for patients with unresectable1 hepatocellular 

carcinoma (HCC)2

 

. There are two main types of radiation therapy. The first is internal radiation 

therapy, an example of whichis selective internal radiation therapy (SIRT). The second is 

external radiation therapy, and examples of it are three-dimensional conformal radiation therapy 

(3D-CRT), image modulated radiation therapy (IMRT) and image guided radiation therapy 

(IGRT). The explanation of the different radiation therapies will be provided in the later section.  

                                                 
1 Tumors which cannot be surgically removed for variety of reasons which include size, location and the stage of the 
tumors 
 
2 Most common type of liver cancer 
 

Liver tumor 

Tumor necrosis 
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Figure 1.1 (left) a CT image of a patient with liver tumor, (right) PET/CT image of the same 

patient but in this image necrotic core within the tumor is visible.  

For all of the above mentioned radiation therapies, the most important starting point is 

determining the accurate tumor volume and its contour3

Utilizing tumor volume for dose measurement is just one application, another important 

use of tumor volume is for prognostic value, i.e. for predicting the progression or outcome of a 

tumor upon a treatment [

. Tumor volume is used to determine the 

dose for a particular therapy. Most of the radiation therapies use computed tomography (CT)  for 

calculating tumor volume because of the low cost compared to MRI and PET. CT and MRI give 

only anatomical information of a tumor, whereas positron emission tomography (PET) provides 

functional information. By providing functional information, PET is able to distinguish between 

tissues which are metabolically active and which are necrotic. In Figure 1.1 (right) we can see a 

PET/CT image with a liver tumor having necrotic core but in Figure 1.1 (left) CT image shows 

liver tumor as a large uniform mass without the necrotic core. Using anatomical information 

provided by the CT and MRI can sometimes lead to error in the dose estimation.  

2-9].  Keeping track of the tumor volume over the lifetime of the 

treatment can lead to a better understanding of how effective a given treatment is for a given 

tumor type.  

Another important aspect of tumor quantification is estimating metabolic activity4

                                                 
3 Location and the margins of a tumor 

 of the 

tumor from PET. If a tumor shows more metabolic activity the chances of it being malignant is 

much higher.  

 
4 Amount of glucose uptake by a tumor  
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For a better comparison of metabolic activity between different patients or the same 

patient at different times, the term standard uptake value (SUV) is widely used. SUV is the ratio 

of the mean activity in a region of interest (ROI) times the body weight to the injected dose 

(Equation 1.1).  The mean activity in a ROI can also be called the mean activity concentration 

(mAC) of tumors if the ROI includes only tumors. The ROI can include both tumors and organs 

depending on what the SUV is being measured for.  The quantity mAC5 is dependent on the 

functional volume6

10-13

 (FV). Another term that is used as a prognostic value is called total lesion 

glycolysis (TLG), which is the product of FV and SUV [ ]. From this definition we can see 

that the accuracy of TLG is also dependent on tumor FV. 

 ( )
( ) )(/

/
gmweightBodyMbqdoseInjected

gmMbqionconcentratROIMeanSUV =                                                           (1.1)  

One limitation of PET is that the resolution of a PET image is very low compared to CT 

and MRI images. The low resolution of PET is due to the physics of the imaging modality 

(positron range and scatter) and also due to the number of detector crystals on a camera’s gantry. 

The PET images are also noisier compared to CT and MRI images; this noise is due to scatter 

and low sensitivity of PET. There are many methods by which the noise in a PET image can be 

reduced; one is by using the right kind of filter, but too much filtering can also reduce the 

contrast; second is to use cameras having time of flight (TOF) capability, even though it is a very 

promising method it is expensive and provides limited gain compared to a standard PET camera.  

Another limitation of PET is that PET images suffer from partial volume effect (PVE). 

PVE is equivalent to the convolution of the actual image with the camera’s point spread function 
                                                 
5 Mean activity is the  ratio of sum of all the intensity values of pixels segmented as tumor times the number of 
pixels segmented 
 
6 It’s the metabolically active volume measured from PET 
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(PSF). The spatial resolution of the camera is equal to the full width half maximum (FWHM) of 

the Gaussian PSF. The PSF is not spatially uniform, so retrieving the original image is an ill-

posed problem [14]. In Figure 1.2 we observe that PVE makes the margins of the actual object 

blurry, and this blur is what makes it difficult to quantify the tumor FV.  

 

Figure 1.2 we see the effect of partial volume effect (PVE) on an 2D object, where the size of the 

measured object (right) is larger and activity is smaller than the actual object (left) (image 

modified from Soret et al 2007) [15]. 

To date, manual segmentation is still considered the gold standard for segmenting a 

tumor. The manual segmentation of tumors in PET images is time consuming, which can lead to 

attrition on the part of radiologist, affecting the result. Additionally, the results from manual 

segmentation are very hard to reproduce making it difficult to use if large sets of data are 

required to be processed in the clinic. The importance of the tumor FV and the impracticality of 

manual segmentation are two of the motivations behind developing an automatic tumor 

segmentation and quantification algorithm for PET images.  

Currently, there is no standard protocol in which PET images are reconstructed, as they 

vary with different manufacturers. Each manufacturer of a PET camera uses slightly different 

PVE affected 
Object 
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geometries, detectors size and reconstruction algorithms; this makes it imperative to develop an 

algorithm which does not need to be optimized for a particular camera. I have developed iterative 

deconvolution thresholding segmentation (IDTS) algorithm which is the combination of the 

histogram thresholding and Van-Cittert deconvolution methods. The algorithm is unique as it 

segments; measures FV, and also measures PVE corrected mAC. I have formulated the stopping 

conditions within the algorithm in such a way that the algorithm does not need to be optimized 

for a particular camera. This feature will enable the algorithm to be useful in analysis of multi-

center PET data. The algorithm, as an initiation step, requires user input in generating a volume 

of interest (VOI), after which the algorithm is automatic. Herein, the IDTS algorithm is tested on 

a physical tumor phantom with homogeneous and heterogeneous activity, simulated phantom 

data-NCAT phantom with added Gaussian blur and noise to mimic real data and clinical data 

which is validated with comparison to manual segmentation by a radiologist.  

1.0 ORGANISATION OF THE DISSERTATION 

The dissertation is organized as follows and the flow of the dissertation is given in Figure 1.3: 

Chapter: 1 gives Introduction and the description of different radiation therapies, SIRT, 3D-

CRT, IMRT and IGRT. The chapter also gives information on how the tumor FV is used to 

calculate prescribed dose.  

Chapter: 2 provides background on different segmentation and FV estimation algorithms and 

how they vary from each other.  And also gives information about different PVE correction 

algorithms which are used to calculate corrected activity concentration. 
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Chapter: 3 mathematically describes the iterative deconvolution thresholding segmentation 

(IDTS) algorithm. The chapter also contains information about alterations made to the IDTS 

algorithm so that it can be successfully applied on clinical data. 

Chapter: 4 describes the algorithm to generate volume of interest (VOI) from user drawn ROI. 

Chapter: 5 provides results of estimated FV and mAC from physical phantoms with 

homogeneous activity profile and on tumors with heterogeneous activity profile, generated 

through physical phantom and simulated phantom studies. The chapter also provides the results 

of the impact of tumor FV and mAC with the change in reconstruction algorithm parameters. 

The chapter provides result of the IDTS algorithm when applied on clinical data. The result from 

the IDTS algorithm and fixed percentage thresholding are compared to the manual segmentation 

(gold standard). In this chapter we apply the altered IDTS on phantom data and compare the 

variation in the results to the IDTS algorithm. 

Chapter: 6 provides general discussion and significance of the work and also gives an outline of 

possible future work. 



7 
 

 

Figure 1.3 Flow chart of the organization of the complete dissertation 
 

 

 Chapter 2.1: Background on segmentation and FV estimation 
algorithms 

Chapter 2.2: Background on PVE correction algorithms  

 
Chapter 3: Iterative deconvolution thresholding segmentation 

(IDTS) algorithm 

Chapter 4: Volume of interest (VOI) generating algorithm 

 

Chapter 5.1: Result from physical phantom studies 
(homogeneous tumors) 

Chapter 5.2: Results from physical and simulated phantom 
studies (heterogeneous tumors) 

Chapter 5.3: Result of algorithm applied on clinical data 

Chapter 5.4: Impact of variation in VOI on the FV  

 
Chapter 6.1: Overall discussion and significance of the work 

Chapter 6.2: Outline of the future work 
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1.1 RADIATION THERAPY 

1.1.1 INTRODUCTION 

Radiation therapy is a potential treatment for patients who have unrespectable hepatocellular 

carcinoma. There are two types of radiation therapy: external radiation therapy and internal 

radiotherapy. This chapter provides a brief description of the different radiation therapy methods 

and how dose is calculated. 

1.1.2 SELECTIVE INTERNAL RADIATION THERAPY 

In selective internal radiation therapy (SIRT) a micro-particle is tagged with a beta 

emitting radioisotope (e.g. Yattrium-90). The SIRT therapy is also termed as radioemboization 

therapy. The SIRT treatment kills the tumor in two ways: 1) micro-particles are lodged and get 

stuck in the tumor where they stop the supply of oxygen and thereby starve the tumor cells, 2) 

the radioisotope which is tagged gives out beta radiation thereby killing the tumor cells. The 

range of the beta emitter is not high so the normal tissues are spared from radiation. Figure 1.4 

shows an illustration of how the particle gets lodged into the tumor through the arteries.  

 

Figure 1.4 Illustrated representation showing the particles injected inside a tumor. 

There are two types of particle mostly used in the clinics Sir-spheres and TheraSphere. 

Sir-spheres are micro resin particles and TheraSpheres are glass particles. This particle are 

Y-90 micro-
particles 

Catheter 
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tagged with yattrium-90 (Y-90) radioisotope and injected through the hepatic artery. There have 

been many literature publications comparing the performance of the two spheres with equal 

efficacy [16-19]. The dose for SIRT treatment has been mostly estimated using computed 

tomography (CT) images [20-23]. PET has also been recently used for estimating dose and 

where liver tumor volume and liver tumor contour are combined to estimate dose [24]. The 

formulation of the dose calculation is given in the Equation 1.2 below  

livertumor

tumor

VolumeVolume
Volume0.2-BSADose(GBq)

−
=                                                           1.2      

        

where BSA is body surface area.  The role of PET in the SIRT treatment has been steadily 

increasing, not just for treatment planning, but also for prognostic evaluation [25-27]. Both 

tumor volume and standard uptake value are used for prognostic evaluation [22, 25, 26].  

1.1.3 EXTERNAL RADIATION THERAPY 

There are many forms external radiation therapy, including the ones called three 

dimensional conformal radiation therapy (3D-CRT). In this therapy a topographic image is take 

like computed tomography (CT), magnetic resonance imaging (MRI) or positron emission 

tomography (PET) to construct a 3D stereoscopic image and through computer software the 

radiation beam is conformed around the tumor. Figure 1.5 gives an example of how an external 

beam is applied on tumors in the abdomen.  
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Figure 1.5 Conceptual illustration of how the external radiation therapy works, where different 

colors represent different energy beams (Image modified from Hartgrink et al) [28] 

The 3D-CRT only provides uniform intensity over the volume and the next evolution of 

the treatment is called intensity modulated radiation therapy (IMRT). The IMRT differs from 

3D-CRT such that IMRT uses a modulated radiation beam which can apply precise dose based 

on the tissue type. IMRT treatment is mostly applied on head and neck tumors and the dose is 

calculated using CT images. The dose applied is calculated by software based on the image; this 

concept is called dose painting (Figure 1.6).  

 

Figure 1.6 Dose painting. Different colors represent different amount dose given in centigray 

(cGy). (Image modified from Hartgrink et al) [28].  

Gamma beam 
different color 
signifies different 
energies 
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Recently PET images are used for head and neck tumor contour volume since CT images 

cannot provide information if the region is necrotic or hypoxic. If the regions within the tumor 

are hypoxic it requires higher dose than the rest of the tumor [29, 30].   

The next evolution of the external radiation is called image guided radiation therapy 

(IGRT) where the treatment is adapted based on the movement of the tumor. More than IMRT, 

IGRT provides better treatment protocol when applied in the liver as the tumors in liver move 

due to breathing.  
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CHAPTER 2 

Background 

 

2.1 FUNCTIONAL VOLUME ESTIMATION ALGORITHM 

2.1.1  INTRODUCTION 

The functional volume (FV) estimation starts with tumor segmentation. There are many 

algorithms which find FV directly or apply segmentation and FV estimation in two steps [31, 

32]. The major kind of segmentation algorithms are adaptive thresholding, active contouring 

(also termed as snakes), gradient based segmentation, clustering algorithm and fuzzy logic based 

segmentation.  

2.1.2  ADAPTIVE THRESHOLDING 

Adaptive thresholding uses features from the image by fitting it to the actual volume. The 

parameters are derived from the curve and used for segmentation [33-39]. The adaptive threshold 

needs to be optimized for each camera as the fitting curve for one camera does not apply to other 

cameras. The features are mostly found by doing phantom studies, which makes it difficult to 

apply if any of the features changed from the phantom studies. It is difficult to fit a curve and 

find parameters for all cases as the phantom data is very simple and cannot correlate well with a 

clinical image.  

2.1.3  ACTIVE CONTOUR SEGMENTAITON 

The active contour method (also termed as snakes) finds the point of low energy around 

the image [31, 40, 41]. The active contour algorithm requires a pre-stage, usually filtering or 

thresholding, as the performance of the active contour method is very limited in PET images. 
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This algorithm has very limited scope as it requires tumors that are well separated. Li et al. used 

a region growing algorithm to segment all the tumors and then used an active contour method to 

find the FV [31]. The algorithm requires input parameters which must be optimized by 

performing phantom studies.  

2.1.4  GRADIENT BASED SEGMENTATION 

Gradient based segmentation uses a gradient or edge detection of tumor boundaries to 

determine the tumor volume. Geets et al. used a watershed algorithm for segmenting tumors. The 

algorithm is applied in two steps where the deconvolution is applied to make the boundaries 

sharper. In PET images the boundaries of the tumor are very blurry and require some 

enhancement. They tested the algorithm with phantom data with spherical tumors but only using 

one signal to background ratio. The algorithm performed better in the clinical images but they 

are difficult to validate.  

2.1.5  CLUSTERING ALGORITHM 

The clustering algorithm is the machine learning algorithm which iteratively isolates the 

tumor from background. The algorithm uses fuzzy C-mean clustering which segment the pixels 

based on their location with respect to each other in order to remove the blur.  A wavelet 

transform is used so that the algorithm could converge to the right volume [42]. Belhassen et al. 

used NCAT simulated phantom only to validate their algorithm and did not perform any physical 

phantom studies. The algorithm was able to segment tumors with heterogeneous activity profile 

[42]. Yang et al. also tested their algorithm on simulated phantom data and were able to segment 

heterogeneous tumors as well as the heterogeneity within the tumor [43]. 
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2.1.6  FUZZY BASED SEGMENTATION 

Fuzzy based segmentation uses fuzzy logic where the stochastic statistics are used to 

determine if a pixel belongs to the tumor or background [44]. Hatt et al. have developed a fuzzy 

logic based Bayesian segmentation algorithm. The algorithm is computationally expansive as it 

has to determine for each pixels if it belongs to background or tumor. The algorithm was tested 

on physical phantom data and also on simulated phantom data. The algorithm failed to segment 

tumors less than 1 ml in volume. The algorithm was later modified to make it able to segment 

heterogeneous region within the tumor [45]. 
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2.2 PVE CORRECTION ALGORITHM 

2.2.1  INTRODUCTION 

Partial volume effect (PVE) is the major hurdle in the quantification of the tumors 

activity. The activity of the tumor is used to determine if the tumor is malignant or benign. The 

partial volume effect can make malignant tumor look benign [15]. There have been many 

methods of PVE correction but not all methods are applied for tumor quantification. One of the 

major applications of PVE correction is in brain studies [46]. The brain is a compact organ where 

activity from the desired sites spill out into neighboring regions. Algorithms used for PVE 

correction in the brain are beyond the scope of the research. The PVE correction algorithm 

changes from its application. PVE correction can be applied to quantify tumors or it can be 

applied to measure the volume of a compartment in kinetic studies [47]. There are two major 

methods of PVE correction; one uses anatomical data like computed tomography (CT) and 

magnetic resonance imaging (MRI) and another method uses deconvolution to correct for PVE. 

  

2.2.2  ANATOMICAL DATA BASED PARTIAL VOLUME EFFECT CORRECTION 

In this method the anatomical information provides the margin around the tumor and by 

blurring with the resolution of the camera and then subtracting and dividing with PET data we 

get the PVE corrected activity [48]. The problem with this method is that it requires co-

registration of anatomical data with the PET data for the PVE correction to be successful. This 

can be challenging if the patient moved during any of the scans.  
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2.2.3  DECONVOLUTION BASED PARTIAL VOLUME EFFECT CORRECTION 

The deconvolution method involves deconvolving the image with the point spread 

function (PSF) of the camera. Finding the right value of the PSF can be challenging as the PSF is 

not spatially uniform. Using a single value PSF in the deconvolution algorithm is not optimal for 

PVE correction. Moreover the deconvolution process adds noise within the image, and this noise 

can be controlled by adding a regularization term to the deconvolution algorithm [49]. Kirov et 

al. used the deconvolution method with regularization. The PSF they employed was not the 

cameras PSF but was custom made for their algorithm [49]. The PVE correction method only 

corrects the maximum intensity pixel and the mean value is not corrected. Teo et al. used Van-

Cittert deconvolution but employed a slightly larger PSF function than the camera’s [50]. On the 

other hand, Barbee et al. used spatially varying PSF which was acquired through phantom 

studies [14]. Boussion et al. used the Lucy-Richardson deconvolution method with wavelet 

transform [51]. They performed PVE correction on the entire image rather than on a single 

object.  
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CHAPTER 3 
 

Tumor Segmentation and Quantification Algorithm 

 

3.1 INTRODUCTION 

The whole tumor quantification algorithm is divided into four parts. The first part of the 

algorithm is called histogram thresholding (HT) where the tumor and the blur around the margins 

(due to PVE) of the tumor are segmented. The blur is included in order to measure the total 

activity of the tumor, since part of the activity from the tumor spills out to the background. The 

second part is called iterative deconvolution thresholding segmentation (IDTS), where the output 

from the HT algorithm is inputted and the blur around the tumor is segmented to derive FV. The 

third part of the algorithm is the stopping conditions; these stopping conditions enable the 

algorithm to be independent of the camera’s PSF. The fourth and final part of the algorithm is 

called maximum intensity correction (MIC).  An outline of the complete algorithm is shown in 

Figure 3.1. The second part of the method, the IDTS algorithm, utilizes a combination of 

deconvolution and the modified histogram thresholding (MHT) algorithm iteratively until the 

stopping condition is reached. The output of the IDTS algorithm is checked for volume. If the 

volume is <1.8 ml it is subjected to maximum intensity correction (MIC), which is shown in 

more detail in Figure 3.4 and will be discussed in a later section. The FV derived from the IDTS 

algorithm and the total activity from the HT algorithm is used in estimating the AC of the tumor.  
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Figure 3.1 The complete outline of the tumor quantification algorithm. 

The algorithm described in this paper was applied in two dimensions (2D) on each slice 

individually over the entire volume. Experimentally it was observed that the algorithm failed to 

segment small tumors (< 1ml) when applied in three dimensions (3D). To avoid segmentation of 

local maxima due to the application of the algorithm in 2D, it was once applied on the transaxial 

plane and once on the sagittal plane and the intersection of the two volumes was considered as 

the FV. The variables considered in the paper are 3D functions of coordinates (x,y,z); however, 

since operations are performed slice by slice, they will be written as 2D functions of (x,y) with a 

subscript z parameterizing the slice coordinate. The above formalism is correct for transaxial 
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operations; for sagittal, x is substituted for z to obtain 2D functions of coordinates (z,y) at 

different x slices. 

3.2 HISTOGRAM THRESHOLDING ALGORITHM 

The PET image does not produce a bipeak (bimodal) histogram because of the huge 

intensity variation between tumor and background. This makes it impossible to find the point of 

maximum variance for the identification of optimal threshold, which would segment the tumor 

from the background. To overcome this limitation, a HT algorithm was developed which 

iteratively finds the optimal threshold. In Figure 3.2, the flow chart and different stages of the 

HT algorithm are shown. The HT algorithm is initialized by inputting the manually drawn ROI 

and ROI subtracted image called background (BK). The HT algorithm gives out the segmented 

tumor (SG) after k iterations, and the value of k = {0,1,2,..,k}. The HT algorithm works by 

iteratively finding the point of intersection between the histograms of background )(TH k
BK and 

the segment )(TH k
SG . T is the bin value, where Q = {0,1,.., P } is the bin number and P is the 

total number of bins. The value of each bin is given by T(Q)=(max( ),,( zyxI )/ P )×Q, where ''×  

is the multiplication operator. In both the histograms, the initial 10 bins are discarded since they 

primarily contain the pixels outside the phantom (or outside the body for clinical images), where 

the intensity is as much as 100 times lower than the intensity in the phantom. The histogram was 

divided into 256 bins, since increasing the number of bins made the histogram noisy and 

reducing the bin number below 256 can lead to sampling error where a wide range of intensities 

can be assigned to a single bin. For the initial segment in the HT algorithm the observer has to 

draw a 3D ROI around a tumor (Figure 3.2.b) in image I(x,y,z) (Figure 3.2.a), where x, y and z 

indicate the 3D coordinate space and x = {1,2, ..,X}, y = {1, 2, ..,Y} and z = {1, 2, ..,Z} indicate 

the size of each dimension. 
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Figure 3.2 Block diagram of the HT algorithm with different components. (a) The original image 

on which the observer would draw a ROI. (b) Manually drawn ROI encompassing the selected 

tumor. (c) Initial segment (SG) and background (BK) obtained from the ROI. (d) Histogram of 

the background and the SG are plotted on the same scale and k
zT is the threshold calculated 

between bins T1 and T2. (e) Once the stopping condition is satisfied the SG derived includes the 

blur around the tumor. 
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After attaining the subsequent binary mask by drawing the 3D ROI (called ‘ROI’), the initial 

value of SG and BK for 0=k  is defined as ),(),(),(0 yxROIyxIyxSG zzz •=  and 

),(),(),( 00 yxSGyxIyxBK zzz −= , respectively (Figure 3.2.c), and ''•  is the point wise 

multiplication.  

The HT algorithm utilizes the histogram of ),( yxSGz and ),( yxBKz  (Figure 3.2.d) to iteratively 

find the threshold value ( k
zT ) in the range between T1 and T2 (Equation 3.1). T1 is the bin value, 

the value where )(TH k
BK is maximum and T2 is the bin value of the last bin ‘P’ (Equation 3.1). 

The threshold is the point of intersection between the two histograms and Equations 3.1 and 3.2 

shows how the value k
zT is calculated. As the algorithm is applied in 2D, k

zT is calculated for 

each slice (z). 
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The k
zT value achieved from Equations 3.1 and 3.2 is used to update ),( yxBK k

z  and 

),( yxSGk
z as described in Equations 3.3 and 3.4.  
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The algorithm is continued until the stopping condition k
z

k
z TT =+1 is satisfied. Once the 

stopping condition is satisfied the segmented tumor (SGk) (Figure 3.2.e) achieved is not corrected 

for PVE and contains the blur pixels around the tumor.           

In the case of multiple tumors in a homogeneous background the HT algorithm can be 

applied on all tumors simultaneously. Due to the inherent noisy nature of the PET image, the HT 

algorithm segments isolated small regions as tumors. These regions are just two dimensional 

noise regions and, based on their dimensionality, these noise regions are removed. The image 

derived after removal of the noise region is converted into a binary image BI according to 

Equation 3.5 (below).              



 >

=
Otherwise

zyxSGif
zyxBI

0
0),,(1

),,(                                                                 (3.5)                                                                                                                                                   

3.3 THE IDTS ALGORITHM 

The SG and BI from the HT algorithm are now inputted to the second stage of the algorithm 

(in Figure 3.1 box called IDTS algorithm). The IDTS algorithm (after satisfaction of the stopping 

condition) outputs TU, where TU is the binary mask of the PVE corrected segmented tumor. TU 

is further used to calculate FV. The IDTS algorithm is a combination of two parts, deconvolution 

and the MHT algorithm. The IDTS algorithm is applied on each tumor individually. Henceforth 

the explanation of the algorithm is for finding the FV for a single tumor. The IDTS algorithm is 

the prime algorithm which corrects for the PVE, and the value of the TU is dependent on the 

stopping conditions. The purpose of the stopping conditions is to automatically terminate the 

algorithm making it independent from arbitrarily choosing the number of iterations. A detailed 

explanation of the stopping conditions is given in section 3.4.  
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3.3.1 DECONVOLUTION METHOD 

PET images are always blurred by the camera’s PSF, and deconvolution is often used to 

deblur the image. For accurate recovery of a non-blurred image, it is necessary to accurately 

estimate the PSF of the camera, which is quite challenging if the PSF is non-isotropic. The 

proposed algorithm uses the Van-Cittert’s deconvolution method (Equation 3.6 below). In 

Equation 3.6, α  is the convergence parameter which is set to value 1 and ''⊗  is the convolution 

operator.  

)),(),((),(),(1 yxDEPSFyxIyxDEyxDE k
zz

k
z

k
z ⊗−+=+ α                                           (3.6)  

),(),(and0),(,Where 01 yxIyxDEyxDE zz
k
z =≥+

                     

PSF is the 2D Gaussian point spread function and ),( yxDE k
z is the deconvolved image. 

),( yxDS k
z is the segment of a deconvolved image (given in Equation 3.7 below), which is used 

in MHT algorithm.   

),(),(),( 1 yxBIyxDEyxDS z
k
z

k
z •= +

                                                                              (3.7)  

To obtain ),( yxTU k
z , the deconvolution algorithm is used at the onset to aid the MHT 

algorithm in segmentation of the blur around the tumor.  The number of iterations (k) required to 

obtain ),( yxTU k
z  is dependent on the amount of blur present and the choice of PSF used in 

Equation 3.6.             

3.3.2 MODIFIED HISTOGRAM THRESHOLDING (MHT) ALGORITHM  

The MHT algorithm used is similar to the HT algorithm, where instead of ),( yxSGk
z , 

),( yxDS k
z  is used to generate )(TH k

SG . Unlike the HT algorithm, the value of T(P) keeps 
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updating with every iteration ‘k’. The value of each bin is QPDSQT k ×= ))/(max()( . The 

),( yxBKz  is kept constant when applying the MHT algorithm (Equation 3.8).  The histogram 

derived from ),( yxDS k
z and ),( yxBKz , )(TH k

SG and )(TH BK , respectively, is inputted in 

Equations 3.2 and 3.3 to obtain the threshold (
k

zT ).  

),(),(),( yxSGyxIyxBK zzz −=                                                                                    (3.8) 

The background is not updated since now we are segmenting blur from the ),( yxSGk
z , and 

the intensity of the blur is found to be mostly greater than the intensity of the background. When 

the tumor has heterogeneous activity distribution there is a possibility that the intensity of the 

blur on the edges could be greater than the intensity of some pixels within the tumor. So making 

the blur pixels part of the background can lead to segmentation of those pixels within the tumor.  

The ),( yxDS k
z  and k

zT  are used to derive a binary image ),( yxTU k
z , as given in Equation 

3.9. ),( yxTU k
z  includes the tumor whose blur is segmented.  
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(3.9)
 
 

k
zVO  is the total number of voxels calculated from ),( yxTU k

z  (Equation 3.10), and the 

product of total zVO  and volume of each voxel provides the FV (Equation 3.11) of a tumor,                                                                                                                                                        
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3.4 STOPPING CONDITION 

The main challenge in the development of this algorithm was in determining the most 

appropriate stopping condition which could lead to accurate volume estimations. As a result, two 

stopping conditions were deemed necessary: one that is applicable to tumors of all sizes having 

homogeneous activity uptake and another that is applicable when the size of the tumors is large 

(>8ml) and on tumors with heterogeneous activity uptake. The IDTS algorithm does not 

determine the applicability of the specific stopping condition depending on the nature of the 

tumor, and the algorithm is terminated when either one of the two stopping conditions is 

satisfied.  

3.4.1 FIRST STOPPING CONDITION 

In an ideal image which is not affected by blur and noise, the activity concentration (AC) 

is close to the maximum intensity for an object. For large tumors in PET images, the maximum 

intensity is close to the actual AC. 
 

The value of maximum intensity (MV) of SG (Equation 3.12 below) reduces as the size of the 

tumor decreases due to PVE. The MV of a tumor is still the value that is least affected by PVE.  

)),,(max( zyxSGMV =                                                                                               (3.12)  

Due to the application of the whole algorithm in 2D the algorithm calculates AC 

(Equation 3.13 below) of tumor on each slice (z) and compares it with MV. The first stopping 

condition is induced when AC is greater than or equal to MV (Equation 3.14 below); this 

condition is checked for each iteration (k) and each slice (z). It is important to remember that the 

first stopping condition is applicable on tumors with homogeneous activity uptake, 
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k
z

ZYX

zyxk
z VO

zyxSG∑
==

,,

1,,

),,(
AC

                                  
(3.13)

     
 

MVk
z ≥AC                                   (3.14) 

3.4.2 SECOND STOPPING CONDITION 

The second stopping condition is based on the nature of the deconvolution algorithm. It is 

most useful in segmenting tumors with heterogeneous activity uptake. The outcome of the 

deconvolution process is different for tumors whose volume is <8ml in comparison to tumors 

whose volume is ≥  8ml. In Figure 3.3 (below) the value ),( yxDS k
z  increases from the center 

and decreases towards the edges, whereas in Figure 3.3.b (below) the value of ),( yxDS k
z tends to 

zero at the center as well as towards the edges. It should be noted that the value of ),( yxDS k
z  

approaches zero towards the edges regardless of the size of the tumor.   
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Figure 3.3 The deconvolution applied on the line signal (solid line) from a 4 ml tumor (a) and 16 

ml tumor (b) after 8 iterations. DS (dotted line) is the segmented deconvolved signal.  (a) The 

value of DS increases from the center and approaches zero at the edge. (b) The value of DS 

approaches zero at the center and the edge.   

This information should be considered to avoid segmentation of pixels from the central 

part of the tumor.  The tendency of the value of ),( yxDS k
z to go to zero at the center for large 

and heterogeneous tumors is used to formulate the second stopping condition. The second 

stopping condition is actuated when a value of ),( yxDS k
z  at the center goes below the threshold 

( k
zT ) gained from the MHT algorithm, at which point the IDTS algorithm is terminated. For 
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tumors with heterogeneous uptake, the second stopping condition is usually reached at a lower 

number of iterations compared to the first stopping condition. This property helps the algorithm 

from over or under estimating the FV. For the identification of the pixels belonging to the center 

region of ),( yxDS k
z , a morphological operation of erosion is used.   

3.5. MAXIMUM INTENSITY CORRECTION  

At this stage of the process, the IDTS algorithm will return an overestimated FV for small 

tumors but a more accurately estimated FV for large tumors. The overestimation of FV hampers 

the performance of AC estimation as it is a function of FV (Equations 3.11 and 3.13).  In order to 

get FV closer to the actual volume, it is necessary to compensate for the reduction of maximum 

intensity due to PVE, especially in small tumors (<1.8ml). Hence, it is necessary to develop a 

method by which a correction for the maximum intensity value (MV) is possible. The main idea 

of MIC is to iteratively segment the blur pixels from SG and add the mean value of the blur 

pixels (MBV) to the MV. The algorithm is iteratively progressed until it arrives at the updated 

maximum value (uMV). In Figure 3.4 (below), the MIC algorithm is implemented outside the 

original IDTS algorithm hence we use a different variable for the iteration number ‘j’. The 

variable with index ‘j’ would be identified as a variable derived from the MIC algorithm and 

value of j = {0,1,2..,j}. 
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Figure 3.4 Complete block diagram of maximum intensity correction (MIC) algorithm. The 

output from the MIC is used as the stopping condition in the main IDTS algorithm. 

 

After calculation of juMV , the IDTS algorithm will be re-applied and FV would be re-

calculated for a tumor. During the re-application of the IDTS algorithm the juMV  would be 

used in the first stopping condition instead of MV (Equation 3.14). The MIC is only applied once 

on a tumor and an outline of the algorithm is shown in Figure 3.1.  

It is observed from experiments that the greatest overestimation of FV occurred for 

FV<1.8ml. Therefore, 1.8 ml was chosen as a threshold to determine which tumor should be 

subjected to the MIC algorithm. The MIC algorithm is a combination of IDTS algorithm and 



30 
 

stopping condition applied on one slice of SG, where ‘N’ is the slice number. The goal of the 

MIC algorithm is to calculate juMV , so the slice which contains the MV pixel (the number of 

that slice is ‘N’) is selected to be subjected to the MIC algorithm.  We choose one slice in the 

MIC algorithm because applying MIC in the whole 3D tumor leads to an overestimation of 

maximum intensity, which in turn leads to an underestimation of FV.  

After identification of the qualified tumors for the MIC algorithm, the parameters SG  

and the binary image BI  gained from HT algorithm are inputted into MIC algorithm. Once the 

slice number N is identified from SG, ),( yxSGN and ),( yxBI N  are subjected to the IDTS 

algorithm (within the MIC algorithm) until the stopping conditions are satisfied. Next ),( yxTU j
N

and j
NVO  are derived from the above step and used to identify the spill-out or blur pixels which 

in turn would be used to measure mean value of blur pixels (MBV). From Equation 3.15 below, 

the ),( yxBR j is the binary 2D image displaying the location of the blur pixels.  

),(),(),( yxTUyxBIyxBR j
NN

j −=                                (3.15) 

The ),( yxBR j
 would be used to measure the jMBV ;however, for small tumors the spill-in is 

significant and must be accounted for. This is achieved by measuring the mean background (MB) 

through application of dilation operation around ),( yxBI N  as expressed in the following 

equation. 

),()),(),((),( yxBIyxSTyxBIyxDL NN −⊕=                                          (3.16) 

),( yxDL  contains all of the pixels that are outside of ),( yxBI N after application of the 

morphological operation of dilation (Equation 3.16), designated by the symbol ‘⊕’. ),( yxST  is 

the structuring element, which in this case is a unitary matrix of size 3×3. The dilation operation 
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is used to estimate MB because the pixels around the blur are most responsible for spill-in. The 

dilation for such a small tumor is chosen to be safe as there is less chance of including the 

intensity of neighboring tumors in the calculation of MB. In Figure 3.4, it is shown that MB is 

calculated only once at the start. 

),( yxDL  measured from Equation 3.16 and ),( yxI N  (where, ),( yxI N is a 2D image of the 

original input data (I(x,y,z) )) is used in the measurement of MB (Equation 3.17).  

∑

∑

=

=

•
= YX

yx

YX

yx
N

yxDL

yxIyxDL
MB ,

1,

,

1,

),(

)),(),((

                                          

(3.17) 

 

Furthermore, MB would be used to measure jMBV  (Equation 3.18 below).  MB is used in 

jMBV measurement because with small sized tumors with low SBR (<5) the effect of spill-in is 

strong and the intensity of blur pixels is highly influenced by the intensity of the background. If 

the SBR is high, Equation 3.19 (given below) can be used instead to yield better results. 

Identifying the true SBR in any clinical image presents a challenge, thus the algorithm becomes 

impractical if it is dependent on the SBR. Hence, Equation 3.18 is used in the proposed 

algorithm in order to make this algorithm applicable under any condition.  
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The jMBV gained from Equation 3.18 or Equation 3.19 is used to calculate juMV  

(Equation 3.20) and the juMV  is be inputted in the stopping condition as shown in Figure 3.4. 

The algorithm continues till the condition jj uMVuMV =+1 is satisfied, then the uMV is injected 

in the stopping condition of the main algorithm (Figures 3.1 and 3. 4). 

jj MBVMVuMV +=                                                                                                   (3.20) 
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3.6. ALTERED HISTOGRAM THRESHOLDING (FOR CLINICAL IMAGES) 

The HT algorithm, when applied on some clinical images, fails to find the correct 

threshold and thereby fails to segment the tumor. The clinical images, unlike phantom images, 

have high heterogeneous activity profile in the background; this causes the histogram to be 

noisy. The noisy histogram is the main reason why the HT algorithm fails The noisy histogram 

affects the HT algorithmbecause it uses Equations 3.1 and 3.2 to find the threshold, where the 

threshold is the point of intersection between the histogram of the background ))(( TH k
BK and the 

histogram of the segment ))(( TH k
SG , where T is the bin value. With threshold (Tk) at every 

iteration k, the algorithm updates the background image (BK) and segment image (SG), given in 

Equations 3.3 and 3.4.  

 

Figure 3.5 The progression of HT algorithm after (a) iteration 1, (b) iteration 5 and (c) iteration 

30. 

Figure 3.5 shows histograms of BK and SG after the application of HT algorithm at 

iterations 1, 5 and 30. The threshold fails to moves forward after 5 iterations and its value 

remains the same after 30 iterations. In Figure 3.5 we see that there are many bins still 

overlapping on each other. This is the feature which shows that the HT algorithm has failed. The 
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overlapping features of the histograms were similar for all clinical cases on which the algorithm 

was applied and failed. Hence, the overlapping feature was used to solve the failing of the HT 

algorithm in the clinical image by altering the method for calculating the threshold. In the 

original HT algorithm, the algorithm was stopped when the threshold (Tk) equals Tk-1 with Tk the 

final threshold after k iterations. From section 3.2 we know that T is the bin value, Q is the bin 

number {0,1,2,..,P} and P is the total number of bins. We also showed how bin value (T) is the 

function of bin number (Q) and how its calculation is done using the equation                          

T(Q) = (max( ),,( zyxI )/ P )×Q. 

0)(1)/),,(max( >+×= THifQPzyxIT k
SG

k
z

k
z                                        (3.21) 

We observed that if the threshold was moved by one bin the algorithm was able to 

segment the tumor. After identifying if the HT algorithm has failed we moved the threshold by 

one bin thereby altering the HT algorithm. The formulation of new threshold in the altered HT 

algorithm is given in Equation 3.21, which is applied after two conditions are satisfied, one is 

that stopping condition 1−= k
z

k
z TT  is reached and other is the condition when the value of the 

histogram of the segment is greater than zero at the threshold k
zT   and it is given by )( k

z
k
SG TH > 

0.   
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Figure 3.6 The progression of altered HT algorithm with at (a) iteration 1, (b) iteration 5 and (c) 

iteration 30.  

 

Figure 3.7 (a) Original image with ROI. (b) The segmentation of the tumor fails with the 

application of the original HT algorithm. (c) The altered HT algorithm was able to successfully 

segment the tumors.  

From Figure 3.6 we can see that the histogram of BK and SG get well separated by the 

time the altered HT algorithm reaches 30 iterations. Figure 3.7 (a) shows the original image on 

which both the HT and altered HT algorithm was applied and its results are shown in Figure 3.7 

(b) and Figure 3.7 (c), respectively. The altered HT algorithm was successful in separating 

background and tumor, whereas the original HT algorithm completely failed.  

3.7 DISCUSSION 

During the formulation of the HT algorithm the fact that data in the clinical images would 

have more heterogeneous activity profile compared to the phantom data was considered. That is 

the reason why the algorithm was applied in 2D instead of 3D. The effectiveness of the 2D 

compared to 3D was never tested in phantom data because it is very difficult to create 

heterogeneous activity profile in the physical phantom, but it is possible to mimic the condition 

in the simulated phantom. The altered HT algorithm is applied only once the stopping condition 

is satisfied; this pre-condition increases the computational time, but not by much.  

a b c 



36 
 

 

 

3.8 CONCLUSION 

The altered HT algorithm performance can be further tested on simulated phantom data 

with heterogeneous activity profile in the background. If the altered HT algorithm works on 

clinical data it should also work in the phantom data. The new values FV and mAC in phantom 

data is calculated by application of the altered HT algorithm and the new results are compared 

with results acquired from the original HT algorithm. The altered HT will change the FV and 

mAC values but it should not be significant.  
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CHAPTER 4 

Volume of interest generating algorithm 

4.1 INTRODUCTION 

The iterative deconvolution thresholding segmentation (IDTS) algorithm is semi-

automatic because it requires the user to draw a region of interest (ROI)  at the first step. The 

user has to decide which tumor is to be segmented or the user can segment multiple tumors 

within a specific organ. In phantom data the ROI was drawn on one transverse slice, which the 

user had to select, and that one ROI was used for all the slices. This approach is impractical in 

clinical images where many organs have activity profiles similar to the tumors. The algorithm 

should also be capable of segmenting tumors from a specific organ as there are therapies like 

selective internal radiation therapy (SIRT) which would only require volume of tumors in liver. 

As the efficicy of a therapy is dependent on segmenting tumors from the right organ the single 

slice ROI drawing is modified into a volume of interest (VOI) generating algorithm. The VOI 

generating algorithm makes the application of the IDTS algorithm in the clinical data less time 

consuming. The VOI still requires the user to draw the ROI but instead of drawing on one 

transverse slice, three ROIs have to be drawn, one in the coronal slice followed by the sagittal 

slice and than last in the transverse slice.  

4.2 PROBLEM WITH DRAWING ONE REGION OF INTEREST 

There are organs like kidney, spine, heart, bladder and many others which can sometimes 

show activity similar to the tumor. An algorithm which attempts to automatically segment 

tumors without the information of the organ in which the tumor is located may result in 



38 
 

segmenting any of the above mentioned organs unintentionally. Segmenting organs together with 

the tumor would render any algorithm useless. It will also reduce the confidence of the 

radiologist towards the results obtained. If the algorithm is not able to differentiate between 

tumor and organ, the process would be very time consuming as the radiologist would have re-

analyze results and manully remove all the organs before applying the segmentation algorithm.  

Figures 4.1-4.3 shows examples of clinical images where the activity of the kidney, heart, 

and spine, respectively are similar to the activity of the tumor. In Figure 4.1.a we observe that the 

kidney has a similar activity profile as the tumor and hence a ROI on that slice, avoiding the 

kidney, will not ensure that the same ROI will not include the kidney  on another slice. To avoid 

this problem we might want to draw the ROI in the sagittal view as the kidney location is clearly 

visible.  However, that choice cannot be universally applied to all images as can be seen in 

Figure 4.2, which shows that in the sagittal view we would fail to see the heart clearly. A similar 

problem is demonstrated in the coronal view as seen in Figure 4.3, where it is difficult to draw a 

ROI without avoiding the spine. In order to overcome this problem we have developed a VOI 

generating algorithm.  
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Figure 4.1 Example of clincial data where the activity of the kidney is similar to the tumor (a) 

transverse slice (b) coronal slice (c) sagittal slice.  

 

 

  

  Transverse                                           Coronal                                    
Sagittal 

a b c 
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Figure 4.2 Example of clincial data where the activity of the heart is similar to the tumor (a) 

transverse slice (b) coronal slice (c) sagittal slice.  

 

 
 

  Transverse                                           Coronal                                    
Sagittal 

a b c 
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Figure 4.3 Example of clincial data where the activity of the spine is similar to the tumor (a) 

transverse slice (b) coronal slice (c) sagittal slice.  

 

4.3 VOLUME OF INTEREST GENERATING ALGORITHM 

The VOI generating algorithm first genarates a maximum intensity projected (MIP) image in the 

coronal view of a 3D image I(x,y,z) where x = [1,2,..,X], y = [1,2,..,Y] and z = [1,2,..,Z]. The MIP 

in the coronal view is the maximum of image I(x,y,z) in the y direction and is givien by

).,(max),( zyxIzxI
ycoronal = . Similarly MIP in sagittal and transverse are the maximum of image 

I(x,y,z) in x and z direction and are given by ).,(max),( zyxIzyI
xsagittal =  and 

).,(max),( zyxIyxI
ztransverse = , respectively. 

 

 
 

  Transverse                                           Coronal                                    
Sagittal 

a b c 
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Figure 4.4 Outline of the VOI generating algorithm (a) Original image (b) ROI on MIP in 

coronal view (c) ROI on MIP in sagittal view (d) ROI on MIP image in transverse view and (e) 

showing 3D rendering of the VOI (red).   

 

Figure 4.4 provides the outline of the overall algorithm. First a ROI is drawn in the 

coronal MIP image ),( zxIcoronal  and given by ),( zxROIcoronal . It is followed by drawing ROI in 

sagittal MIP image given by ),( zxI sagittal  called ),( zxROI sagittal  the formulation of transverse 

MIP is given below 

a 

d 

b c 

   

 

e 
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)),(),,((max),( yxROIzyxIyxI coronalztransverse •=                                                            (4.1) 

Equation 4.1 provides the coronal MIP in a transverse slice generated between the ROI in the 

coronal view. In Figure 4.4.b, the limits of the ),( zxROIcoronal in z direction are used to genrate 

),( zxROItransverse . The intersection between three ROI is the VOI and is given in Equation 4.2 

below. 

),(),(),( yxROIzyROIzxROIVOI transversesagittalcoronal ∩∩=                                           (4.2) 

Figures 4.5 and 4.6 show clinical data from two patients.  In both cases, the VOI was able to 

successfully surround the region in the liver and avoid the kidney and other organs. 
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Figure 4.5 Transverse view of slices of patient 1 where the VOI (red) only surround the region in 

the liver and avoids the kidney and spine.  

 



45 
 

 

Figure 4.6 Transverse view of slices of patient 2 where the VOI (red) only surround the region in 

the liver and avoids the kidney and spine.  

 

4.4 DISCUSSION 

The method proposed herein has increased the user input from drawing the ROI on one slice to 

drawing the ROI on three different views. Li, et al and Dewalle-Vignion, et al have generated 

VOIs where in the case of Li, et al the VOI was just a 3D box and in the case of Dewalle-

Vignion, et al the VOI was generated using MIP images [31, 52]. But in Dewalle-Vignion et al 

the VOI was only applied to tumors in head and neck where the occurrences of multiple organs 

and tumors in the neighboring region are not visible.  
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4.5  CONCLUSION 

The proposed algorithm of VOI generation is simple and fast and would lend confidence to the 

results obtained. The usefulness of the algorithm still needs to be tested in the clinical 

environment where the input of the users and their learning curve have to be considered. Some 

knowledge about how optimally a person can draw VOI will need to be obtained.  
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CHAPTER 5 

Results  

5.1 PHYSICAL PHANTOM STUDIES (HOMOGENEOUS TUMORS) 

5.1.1 INTRODUCTION 

The partial volume effect (PVE) causes the activity in the tumor to spill out into the 

background; the counts are preserved but spread over a larger area. Definitively validating tumor 

volume in clinical data presents a challenge, making it important to validate the performance of 

the algorithm first in the phantom data. The phantom data represents simpler cases compared to 

clinical data, but if an algorithm fails to perform on phantom data it is unlikely to work on 

clinical data. Validation of clinical data is presented in later section.  

The phantom data are categorized into two types: physical and simulated.  Physical 

phantom data is generated by taking images of a plastic phantom that is filled with water and 

radio-isotope using a PET camera. Most of the manufacturers of physical phantoms provide 

spherical inserts which also can be filled with water and radio-isotope in order to simulate a 

tumor. The anthropomorphic mathematical models like NCAT and ZUBAL are used to generate 

simulated phantoms [53, 54]. The simulated phantoms are further sub-divided into simple and 

complex. A simple simulated phantom is generated by convolving Tthe image with a point 

spread function (PSF) and adding Gaussian noise. The PSF is a Gaussian function whose full 

width half maximum (FWHM) is equal to the camera’s spatial resolution [42]. The standard 

deviation of Gaussian noise is inversely proportional to the scan time.  A complex simulated 

phantom data is generated by using the Monte-Carlo method to simulate the physical process and 
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instrumentation of a PET camera. The software packages that can be used to generate Monte-

Carlo based projection data are GATE, SimSET and PET-SORETO [55-57]. Once the projection 

data is achieved they are reconstructed and an open source software that is widely used is called 

software for topographic imaging reconstruction (STIR) [58].  

5.1.2 PHYSICAL PHANTOM DATA 

In order to validate our algorithm, physical phantom studies were performed using the 

LiquiPhil Organ Scanning phantom manufactured by the Phantom Laboratory. The volume of 

the phantom is 11 L. The tumors were represented by hollow spheres of different sizes (0.5, 1, 2, 

4, 8 and 16 ml). They were filled with water and 18F-FDG7

The imaging experiments were performed using a GE Discovery Light Speed scanner at the 

Baptist Hospital of Miami. The size of the entire image was 128 x 128 x 83 or 192 x 192 x 83, 

and the dimensions of each voxel were 5.46 x 5.46 x 3.27 mm or 3.64 x 3.64 x 3.27 mm 

respectively. The acquisition was performed at two bed positions using list-mode and the time 

for each scan was five minutes. To compare the effects of count statistics, scans for three-minute 

and one minute durations were derived from the five-minute list-mode data. The image 

reconstructions were performed using the camera manufacturer’s built-in VUE point algorithm 

with two iterations and 18 subsets; the cut-off filter was 6.4 mm. The VUE point algorithm is a 

maximum likelihood ordered subset expectation maximization (ML-OS-EM) iterative 

reconstruction algorithm which incorporates the random and scatter correction in the ML-OS-

EM equation [

 (1 or 2 mCi/L) and inserted into the 

phantom which was filled with water and 18F-FDG (0.13-0.45 mCi/L) for different SBRs (2.75, 

4.4, 5.5, 7.3 and 8.8).  

59].  

                                                 
7 Floride-18-Fluro-deoxy-glucose 
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The algorithm was tested by varying the parameters in the algorithm, as well as the SBR and 

image acquisition time, which affects the overall image counts. Within the algorithm, the 

parameters that were changed were the shape and size of the manual ROI, the FWHM of the 

Gaussian PSF used in the deconvolution algorithm, and the size of the Gaussian PSF. 

5.1.3 TESTING THE IMPACT OF MANUAL DRAWING OF REGION OF INTEREST 

The drawing of region of interest (ROI) is the only manual input required to start the 

algorithm. As this is the starting step, it is critical that the shape and size of the ROI does not 

impact the final result.  

 

Figure 5.1 Three types of manually drawn ROI (a) The ROI is drawn on every slice close to the 

tumor. (c) The ROI is drawn on one slice and drawn bigger than the tumor. (e) The ROI drawn 

includes multiple tumors. (g) A very large ROI is drawn on one slice. (b, d, f and h) Result after 

segmentation, where in h, the segmentation completely fails. 
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To explore the limits of what shape and size of ROI we can draw, four methods of ROI 

drawing were tested (Figure 5.1). In the first method the ROI was drawn on every slice where the 

tumor was visible. As this method is considered the most accurate, it is compared with the other 

three methods (Figure 5.1. a). The second method involved drawing the ROI only on one slice 

and projecting that ROI onto every other slice (Figure 5.1. c). The third method involved 

drawing the ROI over multiple tumors in one slice (Figure 5.1. e). And the fourth method 

involved drawing a very large ROI with only a few pixels outside the ROI (Figure 5.1. g). The 

volume obtained from the second and third method of drawing the ROI was the same as with the 

first method. The segmented tumors in the first three methods were highly correlated spatially 

(Figures 5.1 b, d and f).  But with the fourth method (Figure 5.1 h) the algorithm completely 

failed to segment tumors from the background.  

5.1.4 RESULTS FROM HT ALGORITHM 

For the algorithm to successfully estimate FV it is necessary to segment the tumors with their 

entire associated blur from the background. Moreover, the SG volume (SG volume is the volume 

of segment SG) should always be greater than the true volume. The FV is highly dependent on 

the SG volume, and any change in the SG volume greatly affects the final FV.  
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Figure 5.2 The ratio of SG volume/True volume after HT algorithm for different SBR. 

 

Figure 5.2 shows a plot of the ratio of SG volume to true volume for different SBR and for 

different tumor sizes. The plot shows SG volume for a 5 minute scan time and pixel size of 5.46 

mm; SG volume for 1 and 3 minute scan times and 3.64 mm pixel sizes are not shown because 

they all show a similar pattern. SG volume is almost double the true volume for all sizes of 

tumors and the ratio of SG volume to true volume increases as the size of the tumor decreases. 

The amount of blur increases as the SBR increases and (SG volume)/(true volume) ratio shows 

that blur is dependent on SBR. The ratio of the SG volume to true volume is lowest at SBR of 

2.75, and the ratio increases as the SBR increases (Figure 5.2). In Figure 5.2 it can be seen that 

there is a large variation in the ratio of SG volume to true volume in small tumors (<2ml) for 

SBR of 2.75 compared to SBR of 7.3. The increase in tumor size reduces the variation in the 
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measurement of (SG volume)/(true volume). The variation is the standard deviation between two 

scans with the same SBR, acquisition time and reconstruction parameters.  

5.1.5 THE FINAL FV AND RC AND ROBUSTNESS OF THE IDTS ALGORITHM 

The SG volume was used as the input for the IDTS algorithm to calculate the final FV. This 

step was fully automated and the performance of the algorithm was tested by varying different 

parameters. The performance of the IDTS algorithm upon varying different parameters is 

demonstrated in Figures 5.3-5.8 for different pixel sizes of 5.46 mm and 3.64 mm. The error bars 

in Figure 5.3-5.8 correspond to the standard deviation between two phantom data sets with same 

SBR and acquisition time. Figures 5.3, 5.5 and 5.7 are plots showing results of the FV estimation 

in terms of percentage of true volume (% of true volume), which is given by Equation 5.1 below. 

Figures 5.4, 5.6 and 5.8 are plots showing results of AC estimation and are plotted in terms of 

RC, where RC is ration of measured AC by known AC. (Equation 5.2 below). 

100
volumetrue
FVvolumetrueof % ×=

                                  (5.1)
 

100
ACKnown

ACRC ×=
                  (5.2)

 

Where FV is the measured functional volume of the segmented tumor (Equation 3.11) and the 

AC is measured using Equation 3.13. 
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Figure 5.3 FV for different SBR by changing FWHM (4 mm, 6 mm, 8 mm and 10 mm). The FV 

in (a), (b) and (c) is for pixel size 5.46 mm and in (d), (e) and (f) pixel size is 3.64 mm. The scan 

time is 5 min and matrix size is 5 × 5. Error bars correspond to standard deviation of the number 

of data sets (n=2). 
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Figure 5.4 RC for different SBR by changing FWHM (4 mm, 6 mm, 8 mm and 10 mm). The RC 

in (a), (b) and (c) is for pixel size 5.46 mm and in (d), (e) and (f) pixel size is 3.64 mm. The scan 

time is 5 min and matrix size is 5 × 5. Error bars correspond to standard deviation of the number 

of data sets (n=2). 
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Figure 5.5 FV for different SBR by changing matrix size (3 × 3, 5 × 5 and 7 × 7). The FV in (a), 

(b) and (c) is for pixel size 5.46 mm and in (d), (e) and (f) pixel size is 3.64 mm. The scan time is 

5 min and FWHM is 6 mm.  Error bars correspond to standard deviation of the number of data 

sets (n=2). 
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Figure 5.6 RC for different SBR by changing matrix size (3 × 3, 5 × 5 and 7 × 7). The RC in (a), 

(b) and (c) is for pixel size 5.46 mm and in (d), (e) and (f) pixel size is 3.64 mm. The scan time is 

5 min and FWHM is 6 mm. Error bars correspond to standard deviation of the number of data 

sets (n=2). 
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Figure 5.7 FV for different SBR by changing scan time (1 min, 3 min and 5 min). The FV in (a), 

(b) and (c) is for pixel size 5.46 mm and in (d), (e) and (f) pixel size is 3.64 mm. The FWHM is 

kept at 6 mm and matrix size is 5 × 5. Error bars correspond to standard deviation of the number 

of data sets (n=2). 
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Figure 5.8 RC for different SBR by changing scan time (1 min, 3 min and 5 min). The RC in (a), 

(b) and (c) is for pixel size 5.46 mm and in (d), (e) and (f) pixel size is 3.64 mm. The FWHM is 

kept at 6 mm and matrix size is 5 × 5. Error bars correspond to standard deviation of the number 

of data sets (n=2). 

In Figure 5.3 the FWHM of the Gaussian PSF was changed to assume values of 4, 6, 8 

and 10 mm. The FWHM was not chosen lower than four because at the lower FWHM (<4) the 

deconvolution algorithm is unable to remove the blur completely. For Figure 5.3, three levels of 

SBR were chosen (2.75, 4.4 and 7.3). The results shown are for a 5 min scan, and the matrix size 

of the PSF was kept at 5 × 5.  The FV shown in Figure 5.3 was used to calculate the RC of the 

AC (Figure 5.4).  The impact of the matrix size of the Gaussian PSF was tested by considering 
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sizes of 3 × 3, 5 × 5 and 7 × 7. The FWHM and acquisition time were kept constant at 6 mm and 

5 min, respectively. Figure 5.5 shows the FV and Figure 5.6 shows RC for different PSF matrix 

sizes. The algorithm performance was also tested by varying the acquisition time to observe the 

variation in FV and RC due to the different noise levels. FV and RC are shown in Figure 5.7 and 

Figure 5.8, respectively, with FWHM and matrix size of PSF kept constant. The approximate 

mid value among the range of FWHM and matrix size tested was chosen to be 6 mm and 5 × 5, 

respectively. 

FV and RC results (Figures 5.3-5.8) were measured over multiple parameters. To make a 

better comparison of results from the proposed algorithm to those published in other literature, 

the FV and RC were plotted by keeping most of the parameters constant and varying only the 

tumor size and SBR. The parameters chosen to be kept constant were pixel size, FWHM, matrix 

size and acquisition time, whose values were 3.64 mm, 5×5 and 5 min respectively (Figures 5.8). 

The criterion for choosing the values of the above parameters was that they gave the best results 

for FV and RC.  

5.1.6 STATASTICAL ANALYSIS OF PHANTOM STUDIES 

The goal of this project was to develop a numerical algorithm that will provide accurate 

estimates of liver tumor Functional Volume (FV) and activity Recovery Coefficient (RC) with 

minimal input required from a physician or technologist, and further that it would be independent 

of the camera used to collect the images. To this end numerous parameters related to the quality 

of the image including noise (acquisition time), SBR (signal to background ratio), and 

parameters specific to the camera and reconstruction including FWHM (full width half max of 

the camera’s point spread function), matrix size and image size were varied and their impact on 

FV and RC observed. From the graphs in Figures 5.3-5.8, 2 parameters were kept constant and 
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the other 4 were changed so that the data could be more easily visualized on a 2-dimensional 

plot. However, this representation fails to provide a concise way to allow a clear understanding 

of which parameters are the major contributor to the variation in the results. To help in the 

understanding of the contribution of each parameter we designed a factorial analysis and 

measured the Effect value of each parameter. The analysis consisted of calculating the effects of 

each of the 6 factors in a statistical sense. The analysis is based on the physical phantom data of 

homogeneous tumors with two replicates and is presented in the next section.   

5.1.6.a Factorial analysis 

The statistical analysis allows the testing of the hypothesis that the performance of the 

algorithm is independent of the camera used to generate the images. There are in total six 

parameters (factors) which were changed, as listed in Table 5.1. The two outputs or response 

variables are FV and RC. The levels of the factors are also given in the table below. 

Table 5.1 Parameters (factors) and their values (levels) used in the factorial analysis. All factor 

levels are treated as nominal data. 

Image size 5.46 mm 3.64 mm     

Acquisition time 1 min 3 min 5 min    

Signal to background ratio 2.75 4.4 8.8    

Matrix size 3×3 5×5 7×7    

FWHM 4 mm 6 mm 8 mm 10 mm   

Tumor volume 0.5 ml 1 ml 2 ml 4 ml 8 ml 16 ml 
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The Effect values were calculated using the software Design Expert 8.0. The Image size is 

the size of each pixel in the image. Acquisition time is related to noise and thus shorter scanning 

time equates to higher noise and longer scanning time equates to lower noise. Three levels of 

signal to background ratio (SBR) are used. Matrix size is the size of the point spread function 

(PSF) and full width half maximum (FWHM) of the PSF. Tumor volume is the known volume of 

spheres. The Effect values and p-values were calculated for each parameter and are listed in 

Table 5.2. 

Figure 5.9 is a plot of the Effect values for each Tumor volume. In Figure 5.9.a the response 

variable is FV and in Figure 5.9.b the response variable is RC. Figure 5.9 shows that the FWHM 

has no significant impact on the FV and RC. It can also be observes that the Image Size has a 

significant impact on FV and RC for the 16 ml Tumor. Image Size was changed post 

reconstruction and its impact on other parameters cannot be known from the current statistics. It 

is known from the literature that the tumor size has the most impact on the RC, which is also 

confirmed by our statistical analysis and shown in Figure 5.10.b. SBR and Acquisition Time are 

also known to have significant impact on the FV and RC measurement and is also confirmed by 

the analysis of our algorithm. These finding are not surprising, but the statistical analysis 

provides an appreciation of the degree of contribution of these factors on the algorithm’s 

performance. 

Figure 5.10 is a plot of the Effect values of all 6 parameters (factors), including tumor 

size, for the two response variables FV (Figure 5.10.a) and RC (Figure 5.10.b). The FWHM has 

no impact on the FV and RC, and Matrix Size has little effect, except for perhaps the largest 

tumor. This finding supports the hypothesis that the algorithm is independent of the camera used 

to collect the images and suggests that the algorithm can confidently be applied on images 
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acquired from different cameras. Further, the statistics prove that the algorithm could accurately 

perform PVE correction without knowing the spatial resolution of the camera.  

There is an interesting amplification of the effect of Image Size on FV and RC that is 

difficult to explain without further investigation. It could be that the accuracy and precision of 

the FV and RC estimates for the largest tumor was such that high statistical significance was 

obtained, while there may be little practical significance. A more in depth analysis of these 

results still must be done. 

The Effect values due to the interaction of different parameters (factors) are shown in 

Table 5.2 and Table 5.3 for response variable FV and RC respectively. The primary purpose of 

doing this statistical analysis was to show that FWHM has no impact on the FV and RC. We also 

wanted to observe the best parameter value that would provide an accurate estimation of FV and 

RC. The current statistical study is unable to provide the best parameters because the factor level 

values are nominal rather than numerical. This precludes a quantitative model fit. To find the 

optimal parameters, the statistics would have to be done for each sub levels of the parameter and 

this could be further investigated. This was outside the scope of this dissertation. 
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Figure 5.9 Contribution of different parameter in terms of effect values in measurement of (a) FV and (b) RC for different size tumors. 
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Figure 5.10 Contribution of different parameters in term of Effect values for measuring 

(a) FV and (b) RC considering true volume (TV) as one of the parameter.   
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Table 5.2 Effect values of each of the parameters (factors) and their corresponding 

interaction for the response variable FV. (TV = tumor volume, IS = image size, AT = 

aqusition time, SBR = signal to background ratio, MS = matrix size and FWHM = full 

width half maximum) 

Term df SumSqr MeanSqr Prob>F F Value %Contribution 

A-TV 5 10.36352 2.072704 < 0.0001 48.42853 7.290664 

B-IS 1 3.964439 3.964439 < 0.0001 92.62873 2.788955 

C-AT 2 10.40554 5.202771 < 0.0001 121.5622 7.320225 

D-SBR 2 19.17799 9.588996 < 0.0001 224.0459 13.49158 

E-MS 2 0.890347 0.445173 < 0.0001 10.40143 0.626352 

F-

FWHM 3 0.003339 0.001113 0.9943 0.026004 0.002349 

AB 5 9.30996 1.861992 < 0.0001 43.50526 6.54949 

AC 10 1.508862 0.150886 0.0001 3.525441 1.061474 

AD 10 10.81621 1.081621 < 0.0001 25.27197 7.609127 

AE 10 2.072835 0.207283 < 0.0001 4.843157 1.458224 

AF 15 0.006004 0.0004 1.0000 0.009352 0.004223 

BC 2 0.271572 0.135786 0.0422 3.172621 0.191049 
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BD 2 1.621757 0.810879 < 0.0001 18.9461 1.140895 

BE 2 0.515191 0.257595 0.0025 6.018691 0.362433 

BF 3 0.00019 6.34E-05 0.9999 0.001482 0.000134 

CD 4 1.604313 0.401078 < 0.0001 9.371155 1.128623 

CE 4 0.15191 0.037977 0.4707 0.887339 0.106867 

CF 6 0.003209 0.000535 1.0000 0.012496 0.002257 

DE 4 0.15433 0.038583 0.4623 0.901478 0.10857 

DF 6 0.002957 0.000493 1.0000 0.011515 0.00208 

EF 6 0.010082 0.00168 0.9997 0.039261 0.007093 

ABC 10 1.302063 0.130206 0.0008 3.042257 0.915992 

ABD 10 3.226012 0.322601 < 0.0001 7.537544 2.269476 

ABE 10 0.401495 0.040149 0.4968 0.938089 0.282449 

ABF 15 0.009914 0.000661 1.0000 0.015442 0.006974 

ACD 20 2.767085 0.138354 < 0.0001 3.232633 1.946624 

ACE 20 0.4242 0.02121 0.9692 0.49557 0.298422 

ACF 30 0.015153 0.000505 1.0000 0.011802 0.01066 

ADE 20 0.552446 0.027622 0.8802 0.645392 0.388641 
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ADF 30 0.027352 0.000912 1.0000 0.021302 0.019242 

AEF 30 0.02769 0.000923 1.0000 0.021566 0.01948 

BCD 4 0.717984 0.179496 0.0022 4.193908 0.505097 

BCE 4 0.058014 0.014503 0.8518 0.338872 0.040812 

BCF 6 0.004734 0.000789 1.0000 0.018436 0.00333 

BDE 4 0.222685 0.055671 0.2677 1.300752 0.156657 

BDF 6 0.006575 0.001096 0.9999 0.025602 0.004625 

BEF 6 0.010331 0.001722 0.9997 0.040229 0.007268 

CDE 8 0.009491 0.001186 1.0000 0.027718 0.006677 

CDF 12 0.017419 0.001452 1.0000 0.033915 0.012254 

CEF 12 0.012921 0.001077 1.0000 0.025158 0.00909 

DEF 12 0.017133 0.001428 1.0000 0.033359 0.012053 

ABCD 20 2.066249 0.103312 0.0005 2.413885 1.453591 

ABCE 20 0.224474 0.011224 0.9996 0.262241 0.157916 

ABCF 30 0.023025 0.000768 1.0000 0.017933 0.016198 

ABDE 20 0.333605 0.01668 0.9930 0.389733 0.234689 

ABDF 30 0.031553 0.001052 1.0000 0.024575 0.022198 
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ABEF 30 0.019473 0.000649 1.0000 0.015166 0.013699 

ACDE 40 0.165647 0.004141 1.0000 0.096758 0.116532 

ACDF 60 0.053631 0.000894 1.0000 0.020885 0.037729 

ACEF 60 0.099695 0.001662 1.0000 0.038823 0.070135 

ADEF 60 0.048004 0.0008 1.0000 0.018694 0.033771 

BCDE 8 0.074447 0.009306 0.9879 0.21743 0.052373 

BCDF 12 0.016833 0.001403 1.0000 0.032775 0.011842 

BCEF 12 0.007942 0.000662 1.0000 0.015464 0.005587 

BDEF 12 0.013409 0.001117 1.0000 0.026108 0.009433 

CDEF 24 0.028056 0.001169 1.0000 0.027314 0.019737 

ABCDE 40 0.39272 0.009818 1.0000 0.229397 0.276276 

ABCDF 60 0.06466 0.001078 1.0000 0.02518 0.045488 

ABCEF 60 0.043165 0.000719 1.0000 0.016809 0.030366 

ABDEF 60 0.049533 0.000826 1.0000 0.019289 0.034846 

ACDEF 120 0.140967 0.001175 1.0000 0.027447 0.099169 

BCDEF 24 0.027291 0.001137 1.0000 0.026569 0.019199 

ABCDEF 120 0.113198 0.000943 1.0000 0.022041 0.079634 
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Table 5.3 Effect values of each of the parameters (factors) and their corresponding 

interaction for the response variable RC. (TV = tumor volume, IS = image size, AT = 

aqusition time, SBR = signal to background ratio, MS = matrix size and FWHM = full 

width half maximum) 

 

Term df SumSqr MeanSqr Prob>F F Value % Contribution 

A-TV 5 35.33211 7.066422 < 0.0001 958.7613 54.90496 

B-IS 1 0.517484 0.517484 < 0.0001 70.21148 0.804154 

C-AT 2 1.252574 0.626287 < 0.0001 84.97365 1.946459 

D-SBR 2 2.540063 1.270032 < 0.0001 172.3159 3.947176 

E-MS 2 0.385528 0.192764 < 0.0001 26.15396 0.599099 

F-FWHM 3 0.003377 0.001126 0.9280 0.152713 0.005247 

AB 5 0.813919 0.162784 < 0.0001 22.08626 1.264804 

AC 10 0.38386 0.038386 < 0.0001 5.20815 0.596506 

AD 10 5.75199 0.575199 < 0.0001 78.04212 8.938407 

AE 10 1.142252 0.114225 < 0.0001 15.49791 1.775023 

AF 15 0.011033 0.000736 1.0000 0.099797 0.017145 

BC 2 0.036251 0.018125 0.0859 2.459226 0.056333 
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BD 2 0.770782 0.385391 < 0.0001 52.28929 1.197771 

BE 2 0.2767 0.13835 < 0.0001 18.7711 0.429983 

BF 3 0.000982 0.000327 0.9876 0.044424 0.001526 

CD 4 0.406171 0.101543 < 0.0001 13.77718 0.631177 

CE 4 0.062159 0.01554 0.0776 2.108421 0.096594 

CF 6 0.004955 0.000826 0.9951 0.11204 0.007699 

DE 4 0.098234 0.024558 0.0100 3.332052 0.152652 

DF 6 0.00456 0.00076 0.9961 0.103125 0.007087 

EF 6 0.010153 0.001692 0.9671 0.229579 0.015777 

ABC 10 0.272328 0.027233 < 0.0001 3.694905 0.423189 

ABD 10 0.813934 0.081393 < 0.0001 11.04333 1.264828 

ABE 10 0.33035 0.033035 < 0.0001 4.482143 0.513354 

ABF 15 0.007522 0.000501 1.0000 0.068036 0.011689 

ACD 20 0.628203 0.03141 < 0.0001 4.261679 0.976207 

ACE 20 0.222477 0.011124 0.0691 1.509269 0.345723 

ACF 30 0.017588 0.000586 1.0000 0.079545 0.027331 

ADE 20 0.40855 0.020427 < 0.0001 2.771571 0.634873 
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ADF 30 0.030158 0.001005 1.0000 0.136393 0.046864 

AEF 30 0.035721 0.001191 1.0000 0.161554 0.05551 

BCD 4 0.220091 0.055023 < 0.0001 7.465398 0.342014 

BCE 4 0.032009 0.008002 0.3621 1.085746 0.049742 

BCF 6 0.001124 0.000187 0.9999 0.025415 0.001747 

BDE 4 0.175191 0.043798 < 0.0001 5.942414 0.272241 

BDF 6 0.005289 0.000882 0.9941 0.119606 0.008219 

BEF 6 0.014567 0.002428 0.9217 0.329406 0.022637 

CDE 8 0.028795 0.003599 0.8651 0.488359 0.044747 

CDF 12 0.008226 0.000686 1.0000 0.093008 0.012783 

CEF 12 0.009252 0.000771 0.9999 0.104608 0.014377 

DEF 12 0.02196 0.00183 0.9956 0.248291 0.034125 

ABCD 20 0.299555 0.014978 0.0046 2.032155 0.465498 

ABCE 20 0.144571 0.007229 0.4830 0.980761 0.224659 

ABCF 30 0.015998 0.000533 1.0000 0.072352 0.02486 

ABDE 20 0.157992 0.0079 0.3735 1.071803 0.245514 

ABDF 30 0.020253 0.000675 1.0000 0.091598 0.031473 
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ABEF 30 0.026842 0.000895 1.0000 0.121395 0.041711 

ACDE 40 0.188262 0.004707 0.9617 0.638579 0.292554 

ACDF 60 0.048117 0.000802 1.0000 0.108808 0.074773 

ACEF 60 0.055392 0.000923 1.0000 0.125259 0.086078 

ADEF 60 0.064556 0.001076 1.0000 0.145982 0.100319 

BCDE 8 0.059716 0.007464 0.4242 1.01277 0.092797 

BCDF 12 0.003856 0.000321 1.0000 0.043596 0.005992 

BCEF 12 0.009261 0.000772 0.9999 0.104709 0.014391 

BDEF 12 0.018181 0.001515 0.9983 0.205564 0.028253 

CDEF 24 0.021849 0.00091 1.0000 0.123518 0.033953 

ABCDE 40 0.280387 0.00701 0.5587 0.951062 0.435713 

ABCDF 60 0.033937 0.000566 1.0000 0.076743 0.052738 

ABCEF 60 0.036593 0.00061 1.0000 0.082747 0.056864 

ABDEF 60 0.042102 0.000702 1.0000 0.095205 0.065425 

ACDEF 120 0.088019 0.000733 1.0000 0.099519 0.136779 

BCDEF 24 0.026869 0.00112 1.0000 0.151897 0.041753 

ABCDEF 120 0.07599 0.000633 1.0000 0.085918 0.118086 
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5.1.7 DISCUSSION 

The main purpose of the proposed algorithm is to give accurate FV estimates and 

3D contour of tumors which would help in the determination of the appropriate radiation 

dose for radiotherapy (e.g Y-90 microspheres SIRT, IMRT and radio-immunotherapy). 

The AC and Total Lesion Glycolysis (TLG) are also very useful in monitoring response 

to therapy, and TLG relies on accurate FV estimates. The algorithm described in this 

study is robust in that the shape and size of the user-defined ROI has no impact on the 

accuracy of the FV, as long as the ROI is within the organ of interest. Similarly, for a 

phantom experiment, the ROI must be positioned within the phantom.  The contour of the 

ROI must be smaller than the size of the body because the HT algorithm requires the 

generation of two histograms, one for ROI and another for background.  If the ROI is too 

large then there would be too few pixels in the background and a very small background 

region compared to the ROI which would not be adequate enough to sample the entire 

spectrum of the background (Figure 5.1. h). This would cause the HT algorithm to 

incorrectly calculate the threshold value.     

Li et al. used a Region Growing algorithm to achieve the segment similar to the 

HT algorithm [31]. In the Li et al. algorithm the identification of maximum intensity was 

used as an initiation point for the algorithm. An advantage of the proposed algorithm 

compared to that of Li et al. is that it can segment multiple tumors within a given ROI 

since the HT algorithm is not based on maximum intensity. The HT algorithm, in some 

slices, segments isolated pixels or isolated clusters which are not part of any of the 
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tumors, due to the noisy nature of PET images. These isolated pixels can be easily 

removed by using region labeling. 

Blur is removed from the segment (SG) using the IDTS algorithm. The maximum 

intensity value (MV) within the tumor is used in one of the stopping conditions to reach 

accurate volume estimation (Equation 3.15). The maximum intensity has been typically 

used to measure SUVmax and is least affected by PVE [15]. The maximum intensity of an 

image could be affected by noise, but the algorithm was tested for different noise levels 

by collecting images at different acquisition times (Figures 5.7 and 5.8).  Additionally, 

the MIC algorithm was used to correct the maximum intensity for tumors smaller than 

1.8 ml. The algorithm chooses the tumor on which the MIC algorithm can be applied 

automatically. To do this the algorithm measures the FV of each tumor and if it finds any 

tumor whose volume is less than 1.8 ml the MIC  algorithm is applied on that particular 

tumor and the FV is recalculated.  

Hatt et al. have been able to show high accuracy in estimating FV but they are not 

able to identify FV of tumors smaller than a diameter of 10 mm [44]. In contrast, our 

algorithm is able to segment and calculate the FV of tumors less than 10 mm. Apart from 

FV estimation; the algorithm is also able to measure the activity concentration of the 

tumor. The purpose of the development of this algorithm is to segment tumors, while at 

the same time estimate FV and measure PVE corrected activity concentration (AC).  

Kirov et al. and Teo et al. have successfully corrected the PVE using 

deconvolution [49, 50]. Both methods require estimation of the PSF of the camera. 

Barbee et al. used a non-isotropic PSF which was estimated by fitting the blur to a 
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Gaussian function [14]. But the PSF was measured by doing phantom studies where a 

cylinder filled with 18F-FDG within the phantom was used as a point source while no 

activity was in the remainder of the phantom resulting in a very favorable SBR.  The 

amount of blur in a tumor is also dependent on the SBR so it would be difficult to pre-

define the PSF [15]. In the cases of Kirov et al. and Teo et al. the number of iterations of 

the deconvolution algorithm applied had to be optimized based on phantom studies [49, 

50]. In our algorithm the FV and PVE corrected RC are independent of the PSF used in 

the deconvolution algorithm and thus there was no need to optimize the number of 

iterations to get the final FV.   

The value of FV is dependent on SG volume. In Figure 5.2 the variation in SG 

volume at SBR 2.75 leads to high variation in FV, as seen in Figure 5.3.a. This variation 

in SG volume could be due to the noise level in the image, which affects the HT 

algorithm for small tumors (< 2 ml) the most. In Figure 5.3.c the FV is closer to the 

actual volume at SBR 7.3, with minimal variation compared at SBR 2.75. Accurate FV 

leads to accurate RC as seen in Figure 5.4.c. Figures 5.3 and 5.4 show that the variation 

in FV and RC due to the use of different FWHMs in the algorithm is minimal. However, 

the size of the matrix of the PSF shows variation in FV and RC for small tumors (< 2ml). 

The matrix sizes of 3 × 3 and 5 × 5 give better FV and RC compared to matrix size of 7 × 

7. However, for large tumors the matrix size shows minimal variation (Figures 5.5 and 

5.6). Hence in any further application of the IDTS algorithm, matrix sizes less than 7 × 7 

should be chosen. The proposed algorithm is impacted by the acquisition time, where the 

acquisition time of 1 min showed the biggest error compared to 3 min and 5 min scan 

times (Figures 5.7 and 5.8).  
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Furthermore, our algorithm as designed determines not only the SG which 

contains the total activity compensated for spill-out, but also obtains the FV.  By simply 

dividing the total activity by the total number of voxels belonging to FV (VO) we can 

obtain the mean activity concentration (mAC). This gives a better measurement of the RC 

of a tumor without the need to estimate the PSF of the camera; it was able to correct for 

the RC just by obtaining the VO. The RC is usually measured using the maximum 

activity of a lesion [15, 49], but in this algorithm it is able to achieve the RC based on the 

mAC.  RC is used to evaluate the accuracy of AC. The AC is used for measuring 

SUVmean and SUVmax. The SUVmax is based on the one pixel with maximum intensity 

making it vulnerable to noise and it is erroneous to use it for heterogeneous tumors. On 

the other hand, the SUVmean is based on average intensity of all the voxels belonging to 

tumor and its accuracy is dependent on FV. The SUVmean measured by our algorithm is 

unique compared to any of the published algorithms because it uses PVE corrected FV 

and blur included total activity to measure mAC. The SUVmean derived from our 

algorithm is a better method to calculate SUV in clinical images compared to SUVmax.   

Our algorithm has shown that the RC value as well as an FV estimate can be 

obtained automatically. De Bernardi et al. presented an algorithm similar to  our’s in the 

sense that they were able to apply segmentation and PVE correction together, but the 

algorithm was applied during reconstruction of an image as compared to the proposed 

algorithm which is applied during post-processing [32], and therefore the algorithm could 

be applied on an image provided by a clinician that has already been reconstructed. De 

Bernardi et al. used the camera’s measured PSF to account for the spill-out of activity 

outside of the tumor. The use of a camera’s PSF or a user defined PSF sets a great 
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limitation on these previously reported algorithms [14] since the PSF may not be known 

or not be obtainable by the clinician providing the reconstructed image set. 

5.1.8 CONCLUSION 

The algorithm developed has many unique features like the ability to measure 

mean activity concentration and the usage of deconvolution to segment the tumor in 

addition to correcting for PVE.  The ability of the algorithm to generate consistent results 

upon varying multiple parameters demonstrates its robustness to withstand the 

complexity encountered in real clinical images.   

5.2 PHYSICAL AND SIMULATED PHANTOM STUDIES (HETEROGENEOUS 

TUMORS) 

5.2.1 INTRODUCTION 

Thus far the algorithm was tested on tumors with homogeneous activity profile, 

which have much lower complexity than clinical data. The studies described in this 

chapter explore the case of heterogeneous tumors. The IDTS algorithm has two stopping 

conditions, the second stopping condition developed considering that there could be 

heterogeneity within the tumors. For the studies described herein, heterogeneous tumors 

were generated by both physical and simulated phantoms. In the physical phantom 

studies the heterogeneous tumors were also irregular shaped making the segmentation 

even more challenging, whereas in the simulated phantom data spherical phantom tumors 

were still used.  
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5.2.2  FV OF IRREGULAR SHAPED HETEROGENEOUS PHYSICAL TUMORS 

The physical phantom used for irregular shaped phantom data is called LiquiPhil 

phantom. The LiquiPhil phantom is provided with irregular shaped inserts in which we 

can place the smaller spheres in order to mimic irregular shaped heterogeneous tumors as 

shown in Figure 5.11. The volume of the organs are large (92-145 ml) and of the spheres 

(0.5-8 ml). The irregular shaped heterogeneous activity simulated tumors were placed 

inside the phantom to better represent a realistic clinical case. The irregular shaped 

physical tumors had cores of different sizes (1, 2, 4 and 8 ml) which could be filled with 

activity. The specifications of the heterogeneous tumors are given in Table 5.4 (below). 

 

Figure 5.11 Schematic of a phantom with an irregular shaped heterogeneous physic 

tumor (indicated by the red dotted circle). 
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Table 5.4 Specifications of the irregular shaped heterogeneous physical tumor phantom 

experiments.  

Number 
Activity ratio between 

tumor and core 

Activity ratio 

between tumor and 

background 

Core volume 

(ml) 

Tumor 

volume (ml) 

Tumor1 3:1 8.25:1 8 145 

Tumor2 3:0 8.25:1 4 92 

Tumor3 1:3 2.75:1 2 137 

Tumor4 1:2 2.75:1 2 137 

Tumor5 2:1 5.5:1 4 94 

Tumor6 2:0 5.5:1 8 137 

 

. The activity levels in the irregular shaped tumor and spherical insert were kept 

different from each other in order to achieve heterogeneity. The algorithm was tested on 

these irregular shaped physical tumors (Figure 5.12). The tumors are visible in Figure 

5.12.a and their corresponding segmentation is shown in Figure 5.12.b.  
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Figure 5.12 Physical tumors with spherical cores of different activity concentrations to 

represent tumors with heterogeneous uptake distribution. (a) Three tumors with spherical 

cores, with different activity concentration between the tumors and their cores. The tumor 

at the right has no activity in the core to simulate necrosis.  (b) Segmentation of the three 

tumors showing that the algorithm is able to segment the necrotic section within the right 

most tumors.  

In Figure 5.13 it is observed that the FV of 5 out of 6 tumors is very close to the 

true volume, but in tumor 3 there is an underestimation in FV of ~10%. The FWHM was 

6 mm and the matrix size of 5 × 5 was used during the application of IDTS algorithm. 

The error bar shows variation due to different acquisition times (1 min, 3 min and 5 min). 

Figure 5.13.a and Figure 5.13.b show FV for phantom data acquired at pixel sizes of 5.46 

mm and 3.46 mm respectively. For tumors with necrotic cores the HT algorithm was able 

to segment the core from the tumor in some of the slices, but failed to do so in the slices 

where the area of the core was small and highly affected by PVE, that is, where the 

intensity within the core was greater than the background intensity.  
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Figure 5.13 The percentage of volume from irregular shaped heterogeneous simulated 

tumors. (a) pixel size 5.46 mm and (b) pixel size 3.64 mm. The FWHM is kept at 6 mm 

and matrix size is 5 × 5. Error bars correspond to the variation due to different image 

acquisition times or image noise (5 min, 3 min and 1 min). 
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5.2.3 COMPUTER SIMULATED PHANTOM DATA 

The algorithm was tested on simulated data, where the tumors are incorporated 

within the NCAT phantom.. Tumors manually segmented from a clinical 18F-FDG -PET 

image and given pixel intensity similar to what is observed in that clinical image was 

placed within the liver in the NCAT simulated image. The tumor volume was 51 ml, with 

the volume of each voxel being 0.03 ml. The size of the image was 128 × 128 × 128. To 

simulate heterogeneous uptake, a second region of volume 6.87 ml was placed within the 

tumor. The second region formed the heterogeneous core of the tumor, where different 

activity concentrations of the tumor and the core could be maintained. Gaussian noise 

was added with a mean of zero and variance of 0.001. The image was convolved with a 

Gaussian PSF (FWHM of 6.5 mm) to simulate blur similar to the one observed in images 

that are derived from the PET camera.  

The simulated data, with known ground truth, helps to provide voxel to voxel 

accuracy of the segmented tumor. The NCAT program was used to simulate nuclear 

emission images of the abdomen in which a tumor with heterogeneous uptake was placed 

inside the liver. Activity concentration ratios of 6:10 and 8:6 between tumor and its core 

were chosen, and are referred to as Tumor 1 and Tumor 2, respectively. The image of 

Tumor 1 is shown in Figure 5.14.   
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Figure 5.14 NCAT simulated phantom where a heterogeneous tumor is incorporated 

inside the liver, SUV of large tumor (51ml) is 6 and the SUV of the heterogeneous 

section (6.8 ml) of the tumor is 9.  The SUV of the liver and kidney is kept at 1.  

The actual volume of the tumor was 51 ml and the percentage of true volume (% 

of true volume), given by Equation 5.1 and classification error (CE) were estimated. CE 

is a function of two types of errors; one is called positive classification error (PCE), 

where voxels of the background are made part of the tumor and the other is called 

negative classification error (NCE), where voxels of the tumor are made part of the 

background (Equation 5.3).  

100NCEPCECE ×
+

=
VO                      (5.3) 
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The percentage of true volume (% of true volume) only gives the correlation 

between the numbers of voxels in the segmented tumor to the true number of voxels. But 

CE also provides spatial correlation of each voxel, which can be used as an extra statistic 

to measure the performance of the algorithm [2]. The results of the CE and percentage of 

true volume (% of true volume) estimation with the different FWHM Gaussian PSF in the 

deconvolution stage of IDTS algorithm is provided in Table 5.5 (below).  
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Table 5.5 Percentage of true volume (% of True Volume) and classification error (CE) of 

the algorithm in segmenting NCAT simulated heterogeneous tumors. The algorithm is 

applied by changing FWHM from 4 mm, 6 mm, 8 mm to 10 mm. The matrix size of PSF 

is kept at 5 × 5.  

Number 

Activity ratio 

between 

background to 

tumor to core 

 

FWHM 

 

4mm 6mm 8mm 10mm 

Tumor1 1:6:10 CE (%) 10.65 9.18 9.18 9.36 

  

% of True 

Volume 107.83 105.71 104.41 103.88 

       

Tumor2 1:8:6 CE (%) 12.89 11.83 11.77 11.42 

  

% of True 

Volume 111.36 109.42 109.18 108.95 

 

5.2.4 DISCUSSION 

The computer simulated data used for testing the proposed algorithm is not as 

realistic as the simulated data used by Hatt et al [44]. Hatt et al. used the Monte Carlo 

based PET simulating software package GATE, which helps to include the variation of 

the camera’s geometry and reconstruction algorithm [44, 45]. In this dissertation 
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Gaussian noise and Gaussian blur were added to NCAT data to simulate PET images 

with PVE. The simulated data presented by Belhassen et al. was used as a guide to 

generate simulated data in this study [42].  Belhassen et al. used NCAT data with Poisson 

noise added but without any addition of blur [42].  Interestingly, with the proposed 

algorithm, the FV estimations for the physical phantom experiments were better than 

those for the computer simulated phantom, but the differences were very small. The 

results of the % of true volume and CE using the computer simulated phantom are around 

10% for both Tumor 1 and Tumor 2, which is comparable to other algorithms cited in this 

dissertation. Nevertheless the algorithm should be further tested on more realistic 

simulated data. The RC of the hetereogeneous uptake tumors were not measured for both 

physical phantom and simulated phantom. The explanation is that to measure the RC of 

hetereogeneous uptake tumors would require measuring FV of different heterogeneous 

sections within the tumor as well as their corresponding AC. Hatt et al. and Belhassen et 

al. were able to segment tumors which have inhomogeneous uptake [42, 45]. Hatt et al. 

were able to segment regions within the tumor. Yang et al. did segmentation of 

heterogeneous region within the tumor. They used simulated data generated using 

SimSet, which is still more advanced then my simulated data [60].  The proposed 

algorithm was tested against tumors which have inhomogeneous uptake, but it did not 

segment the regions within a tumor. Segmenting a region within the tumor (also called 

sub-volume segmentation) could be a helpful feature that would be added to the IDTS 

algorithm. Sub-volume segmentation enables the administration of adaptive modulating 

radiation dose based on the criteria of whether the sub-volumes are necrotic or hypoxic.     
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The algorithm still needs to be tested on an open source database of simulated PET data 

to test its performance and also compare the results to published algorithms [61].. 

5.2.5 CONCLUSION 

In this chapter, our algorithm was used to segment heterogeneous tumors, which 

is important because the activity profile of a heterogeneous tumor is closer to that of a 

real tumor. The algorithm should always be tested on physical and simulated phantom 

data as both have their advantages and disadvantages. The advantage of the physical 

phantom is that the noise and blur are similar to real images. The disadvantage is that it 

lacks ground truth (exact location and activity of a tumor) and while the amount of 

activity can be varied, the shape and size remains fixed.  The advantage of a simulated 

phantom is that it provides the ground truth and there is no limit to how much the tumor 

size, shape and activity could be varied; the disadvantage is that the noise and blur are not 

as realistic as the physical phantom. .  
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5.3 ALGORITHM APPLIED ON CLINICAL DATA 

5.3.1  INTRODUCTION 

Until now the algorithm has been tested on phantom data only, both physical and 

simulated. In order for the algorithm to be acceptable it must be demonstrated 

successfully on clinical images. We have applied our algorithm on 10 clinical data sets all 

with hepatocellular carcinoma. The size and shape of each tumor is different. There are 

some tumors which also have necrosis within them. This is a complex set of data with 

which to test the performance of the iterative deconvolution thresholding segmentation 

(IDTS) algorithm. There is no definitive way to validate the accuracy of an algorithm in 

the clinical data, however. The gold standard that is considered here is manual 

segmentation by a radiologist. To validate our algorithm we are comparing it with manual 

segmentation and see if the results match or correlate. Also to give a better perspective, 

the algorithm is compared to a fixed threshold method.  

5.3.2  RESULTS OF THE CLINICAL DATA 

To do the manual segmentation, the radiologist was required to draw manually a 

region of interest (ROI) around each tumor on each slice. The time required by the 

radiologist was around 2-3 three hours on average for each data set. Once the ROIs were 

drawn they were compared with the manual segmentation and the error in the volume 

was measured. The fixed threshold methods were also compared with the manual 

segmentation method. The two fixed threshold methods used were 1) T50, which uses 

50% of the maximum value as the threshold, and 2) T60 which uses 60% of the 

maximum value as the threshold (Figure 5.15 below). The mean activity concentration 
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(mAC) from the manual segmented tumor was also compared with mAC from IDTS 

algorithm, T50 and T60.  

 

Figure 5.15 The results from three methods of segmentation on 5 out of total 10 patient 

data sets: column 1 shows the original image and column 2 shows the output of the IDTS 

algorithm, and columns 2 and 3 give results of the application of T50 and T60 

segmentation methods, respectively.  

 

Patie
nt 1 

Patie
nt 2 

Patie
nt 3 

Patie
nt 4 

Patie
nt 5 

Original 
Image 

IDTS T50 T60 



102 
 

Visually observing Figure 5.15, we can say that the T50 and T60 methods have 

failed to accurately segment the tumors in most cases. The quantitative comparison of the 

IDTS algorithm, T50 and T60 to manual segmentation is given in Table 5.6 (below). The 

“Percentage of volume error” is the percentage difference between estimated FV 

(calculated using algorithms) and the manually segmented volume. Similarly “Percentage 

of mAC error” is the difference between estimated mAC and the mAC derived from 

manual segmentation.  

 

Table 5.6 Results showing percentage of volume error and percentage of mean activity 

concentration (mAC) error of IDTS algorithm, T50 and T60 when compared to manual 

segmentation 

Method Percentage of volume error Percentage of mAC error 

IDTS algorithm -17% +/- 9% 15% +/-11% 

T50 -60% +/- 33% 20% +/-13% 

T60 -73% +/-47% 23% +/-16% 
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5.3.3  DISCUSSION 

. The most accurate way to validate the clinical image is to compare it with a 

histological specimen to ensure that the volume is actually tumor. The histological 

specimen is taken by surgically removing the tumor and measuring the volume and 

comparing the volume with pre-surgery PET scans [62]. Such a comparison is not 

possible in our study as the volumes were measured of tumors which were not resectable, 

so manual segmentation was the only method available for the data to be compared. In 

our study the results were compared to manual segmentation done by a radiologist giving 

a comparison judgment.. There have been studies where the functional tumor volumes 

(FVs) were compared to manual segmentation in CT images [48, 63, 64]. The CT images 

are a good choice for comparison but have several drawbacks as well. CT images within 

a PET machine are not of high resolution whereas using stand-alone CT images would 

require co-registration of the images. For the best comparison, contrast CT images should 

be used as it is easy to manually segment the tumor in them. Still CT images cannot show 

necrosis within the tumor. In Figure 5.15, for patient 5 we see the tumors have necrosis 

and thus a comparison between PET and CT images will never match. Considering all 

these facts the manual segmentation was performed on PET images. One thing that the 

radiologist considered is that the images are blurred and our algorithm finds partial 

volume effect corrected (PVE) functional volume (FV) which removes blur. So, all the 

manual segments were drawn with the intention of removing blur and the background 

around the tumor. The fixed threshold method is still used by radiologists to segment 

clinical data [33, 65]. In order to provide a point of reference and objectivity, the results 

from the IDTS algorithm were shown here with the T50 and T60 method. Fixed 
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thresholding cannot compensate for the background activity and different signal to 

background ratio which have the greatest effect on the results. The T50 and T60 

consistently underestimated the FV, and overestimated the mAC because they were able 

to segment pixels with very high intensity and remove the low-intensity pixels which 

were part of the tumor. There have been publications where the range of threshold from 

30=70 % of the maximum was used [37, 40, 66, 67], hence the T50 and T60 methods 

were chosen here.  

5.3.4  CONCLUSION 

The segmentation results of the IDTS algorithm are very promising when 

compared with manual segmentation results. There were 10 patient data sets used with a 

total of 40 tumors, giving a large enough data set for comparison. The use of more 

numbers of data sets would be very valuable to further test the algorithm. 

 

5.4 PHANTOM DATA WITH DIFFERENT RECONSTRUCTION PARAMETERS 

5.4.1  INTRODUCTION 

The reconstruction parameters play an important role as changes in them can 

affect the output of functional volume (FV) and mean activity concentration (mAC). We 

tested our algorithm with changes in the number of iterations and subset of maximum 

likelihood ordered subset expectation maximization (ML-OS-EM) iterative 

reconstruction algorithm.  
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5.4.2  RESULTS OF DIFFERENT RECONSTRUCTION PARAMETER 

The changes of FV are shown in Figures 5.16-5.19 where the different 

reconstruction parameters are used. Four reconstruction parameters are used: 8 subset ×1 

iterations, 8 subset ×2 iterations,  8 subset ×8 iterations  and  18 subset ×4 iterations. 

 

Figure 5.16 Results of FV estimation with reconstruction parameter 8 subset ×1 

iterations, for different signal to background ratio (SBR) (a) 2.74 (b) 4.4 and (c) 7.3. The 

FWHM of the point spread function was kept at 6 mm and matrix size 5 ×5 and the 

acquisition time was 5 min.  
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Figure 5.17 Results of FV estimation with reconstruction parameter 8 subset ×2 

iterations, for different signal to background ratio (SBR) (a) 2.74 (b) 4.4 and (c) 7.3. The 

FWHM of the point spread function was kept at 6 mm and matrix size 5 ×5 and the 

acquisition time was 5 min.  
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Figure 5.18 Results of FV estimation with reconstruction parameter 8 subset ×8 

iterations, for different signal to background ratio (SBR) (a) 2.74 (b) 4.4 and (c) 7.3. The 

FWHM of the point spread function was kept at 6 mm and matrix size 5 ×5 and the 

acquisition time was 5 min.  

 

Figure 5.19 Results of FV estimation with reconstruction parameter 18 subset ×4 

iterations, for different signal to background ratio (SBR) (a) 2.74 (b) 4.4 and (c) 7.3. The 

FWHM of the point spread function was kept at 6 mm and matrix size 5 ×5 and the 

acquisition time was 5 min.  
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segmentation (IDTS) algorithm to accommodate for the possibility of heterogeneous 

background in clinical data. The altered HT algorithm was re-applied on the physical 

phantom data in order to determine if the FV and mAC vary greatly compared to the 

results in section 5.1. The parameters in the algorithm were kept constant and the values 

of the full width half maximum of the point spread function was kept at 6 mm and matrix 

size of the PSF was 5×5, the scan time was kept at 5 min. These parameters were chosen 

based on the results from section 5.1 as these parameters give the best results. In Figure 

5.20 the results of FV estimation and mAC are given, where ‘% of True Volume’ and 

‘Recovery Coefficient’ formula is given in Equations 5.1 and 5.2. 
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Figure 5.20 FV and mAC estimation after of altered histogram thresholding (HT) 

algorithm. 

The algorithm was modified for clinical images but its performance was also 

tested on the phantom data. We do not see much difference in FV estimation and in some 

cases it is negligible.  

5.4.3  DISCUSSION 

The algorithm is tested by varying the parameters of the reconstruction algorithm. 

Hatt et al. performed a study by changing the cameras but not changing parameters 

within the camera to test the impact on the FV estimation [68].  The reconstruction 

parameters usually are optimized to achieve the best images. The poor results for the 

reconstruction parameter of 8 subset ×1 iterations does not affect the performance of the 

algorithm as this parameter are unlikely to be set for a camera. We intended to test the 

limit of how well the algorithm can perform, so reconstructing with more than one 

iteration demonstrated that the algorithm performance is unaffected.   

5.4.4  CONCLUSION 

The iterative deconvolution thresholding segmentation (IDTS) algorithm has been 

thoroughly tested on physical phantom data, simulated data and clinical data. The 

robustness and reliability of the results will help building more confidence within the 

radiologist.  
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CHAPTER 6 

Summary 

6.1 OVERALL DISCUSSION AND SIGNIFICANCE OF THE WORK 

The algorithm developed is unique compared to any other published algorithm 

developed to date. Our algorithm accomplished tumor segmentation, volume 

quantification and partial volume effect (PVE) correction. This unique feature makes the 

algorithm a complete tumor quantification algorithm. As mentioned in the Chapters 2 

many groups have tried to achieve tumor segmentation and PVE correction but as per our 

knowledge none have achieved both together. The functional volume (FV) and mean 

activity concentration (mAC) are functions of each other. Hence it is important that we 

quantify both FV and mAC in the same algorithm. Both FV and mAC have been used as 

prognostic indicators to predict the success of a treatment [2-6, 11-13, 25]. The mAC is 

used to calculate standard uptake value (SUV); the SUV is based on mAC and is called 

SUVmean. Another way to calculate SUV is by using the maximum intensity of a tumor, 

which is called SUVmax. The use of maximum intensity for measuring SUV could be 

risky as one pixel cannot quantify the entire tumor. If the tumors have heterogeneity then 

using SUVmax would produce an incorrect result. PET images also suffer from noise, so 

basing the SUV on one pixel might result in calculations using that noisy point. To avoid 

the noise, another method that can be used to calculate the SUV is using peak values 

(SUVpeak) which involves using some percentage of high intensity pixels so that the 

problem of using one pixel is avoided.The use of mAC to calculate SUVmean is only 
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possible if the images are PVE corrected.. If the images are not PVE corrected the 

SUVmean would be less when compared to PVE corrected SUVmean. The SUVmean 

measurement requires knowledge of the FV, where the activity of all the pixels are 

summed and divided by the FV. As PVE affects both the activity within the tumor and 

the activity due to blurring, FV is also affected and the error in the non PVE corrected 

SUV could be doubled.  

The SUV measurement of our algorithm is unique in that it accounts for tumor 

activity and blur activity and divides by FV. There have been recent publications by 

several groups where they account for both tumor activity and blur activity for SUV 

measurement; however, they have not shown the accuracy of their FV [69, 70]. Our 

algorithm demonstrated superior performance on small tumors when tested on physical 

phantom data compared to any other published algorithm. The algorithm has potential to 

become a “one-stop shop” for tumor quantification with capability of segmenting tumors 

and measuring PVE corrected FV and mAC. The algorithm was tested with different 

signal to background ratios, different levels of noise and different reconstruction 

parameters. The demonstrated robustness will allow the algorithm to be applied on data 

acquired from different cameras. Using one algorithm to perform analysis in multicenter 

studies will give better correlation among different data sets.  

Additionally, the algorithm is computationally inexpensive, making it ideal for the 

analysis of a large number of data sets. The algorithm has the potential to greatly increase 

the efficacy of dose calculation, and treatment planning could be adapted for every 

tumor. Accuracy of our FV estimation could help reduce the toxicity among  patients by 
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allowing the radiologist to focus the treatment precisely within the tumor margins with 

minimized damage to surrounding healthy tissues.   

6.2 FUTURE WORK 

The iterative deconvolution theresholding segmentation (IDTS) algorithm 

developed herein is currently applied on 2D images slice by slice, once in the transverse 

view and then in the coronal view. The intersection of the two volumes is considered as 

the final volume. Ideally, the algorithm should be completely 3D to perform even faster 

computation. The 2D application of the algorithm causes segmentation of some spurious 

pixels which require further processing to be removed. The IDTS algorithm uses 256 bins 

in the histogram thresholding (HT) algorithm and the final result is dependent on 

choosing the number of bins. To make the algorithm more robust it has to be further 

improved and if possible made independent of the choice of the number of bins used.  

The graphical user interface (GUI) for the application of IDTS algorithm is still in 

its developmental stage and the implementation of GUI will make the algorithm user 

friendly and easy to set-up in a clinic. The volume of interest (VOI) generating algorithm 

has only been applied on the liver tumor segmentation, it has to be tested on tumors from 

other organs. Radiation therapy is widely used in head, neck, and prostate cancer so 

segmentation of tumors in those organs should also be tested.  

Furthermore, the algorithm should be tested against a simulated PET image 

database [61]. Herein, the algorithm was tested on clinical data from 10 patients; one of 

the future goals will be to test the algorithm on a larger patient dataset and determine if 

the output from the algorithm allows to clinician to make better decisions and ultimately 
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improve clinical outcomes. Thus, it would be useful to quantify tumor pre-treatment and 

post-treatment and see if the functional volume (FV) and mean activity concentration 

(mAC) correlates with the dose estimated. 

Another place where the algorithm can potentially be used is to correct for 

blurring due to respiration. Because of the fast computation of our algorithm, it can 

potentially be combined with respiratory gating to provide better tumor quantification.   
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